NASA Astrophysics Data System (ADS)
Özdemir, Tonguç
2017-06-01
Radioactive waste generated from the nuclear industry and non-power applications should carefully be treated, conditioned and disposed according to the regulations set by the competent authority(ies). Bisphenol-a polycarbonate (BPA-PC), a very widely used polymer, might be considered as a potential candidate material for low level radioactive waste encapsulation. In this work, the dose rate distribution in the radioactive waste drum (containing radioactive waste and the BPA-PC polymer matrix) was determined using Monte Carlo simulations. Moreover, the change of mechanical properties of BPA-PC was estimated and their variation within the waste drum was determined for the periods of 15, 30 and 300 years after disposal to the final disposal site. The change of the dose rate within the waste drum with different contents of bismuth-III oxide were also simulated. It was concluded that addition of bismuth-III oxide filler decreases the dose delivered to the polymeric matrix due to photoelectric effect.
IONSIV(R) IE-911 Performance in Savannah River Site Radioactive Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, D.D.
2001-06-04
This report describes cesium sorption from high-level radioactive waste solutions onto IONSIV(R) IE-911 at ambient temperature. Researchers characterized six radioactive waste samples from five high-level waste tanks in the Savannah River Site tank farm, diluted the wastes to 5.6 M Na+, and made equilibrium and kinetic measurements of cesium sorption. The equilibrium measurements were compared to ZAM (Zheng, Anthony, and Martin) model predictions. The kinetic measurements were compared to simulant solutions whose column performance has been measured.
Development of a universal solvent for the decontamination of acidic liquid radioactive wastes
NASA Astrophysics Data System (ADS)
Todd, T. A.; Brewer, K. N.; Law, J. D.; Wood, D. J.; Herbest, R. S.; Romanovskiy, V. N.; Esimantovskiy, V. M.; Smirnov, I. V.; Babain, V. A.
1999-01-01
A teritiary solvent containing chlorinated cobalt dicarbollide, polyethylene glycol and diphenylcarbamoylmethylphosphine oxide was evaluated in different non-nitroaromatic diluents for the separation of cesium, strontium, actinides and rare earth elements from acidic liquid radioactive waste. Decontamination factors of >95% for Cs, 99.7% for Sr, and 99.99% for actinides were achieved in four successive batch contacts using actual radioactive waste. Pilot plant testing in centrifugal contactors using simulated wastes, has demonstrated removal of >99% of all targeted ions.
Radioactive waste disposal fees-Methodology for calculation
NASA Astrophysics Data System (ADS)
Bemš, Július; Králík, Tomáš; Kubančák, Ján; Vašíček, Jiří; Starý, Oldřich
2014-11-01
This paper summarizes the methodological approach used for calculation of fee for low- and intermediate-level radioactive waste disposal and for spent fuel disposal. The methodology itself is based on simulation of cash flows related to the operation of system for waste disposal. The paper includes demonstration of methodology application on the conditions of the Czech Republic.
Guerrero, A; Goñi, S; Allegro, V R
2009-01-30
The resistance of class C fly ash belite cement (FABC-2-W) to concentrated sodium sulphate salts associated with low level wastes (LLW) and medium level wastes (MLW) is discussed. This study was carried out according to the Koch and Steinegger methodology by testing the flexural strength of mortars immersed in simulated radioactive liquid waste rich in sulphate (48,000 ppm) and demineralised water (used as a reference), at 20 degrees C and 40 degrees C over a period of 180 days. The reaction mechanisms of sulphate ion with the mortar was carried out through a microstructure study, which included the use of Scanning electron microscopy (SEM), porosity and pore-size distribution and X-ray diffraction (XRD). The results showed that the FABC mortar was stable against simulated sulphate radioactive liquid waste (SSRLW) attack at the two chosen temperatures. The enhancement of mechanical properties was a result of the formation of non-expansive ettringite inside the pores and an alkaline activation of the hydraulic activity of cement promoted by the ingress of sulphate. Accordingly, the microstructure was strongly refined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tietze-Jaensch, Holger; Schneider, Stephan; Aksyutina, Yuliya
2012-07-01
The German product quality control is inter alia responsible for control of two radioactive waste forms of heat generating waste: a) homogeneous vitrified HLW and b) heterogeneous compacted hulls, end-pieces and technological metallic waste. In either case, significantly different metrology is employed at the site of the conditioning plant for the obligatory nuclide inventory declaration. To facilitate an independent evaluation and checking of the accompanying documentation numerical simulations are carried out. The physical and chemical properties of radioactive waste residues are used to assess the data consistency and uncertainty margins, as well as to predict the long-term behavior of themore » radioactive waste. This is relevant for repository acceptance and safety considerations. Our new numerical approach follows a bottom-up simulation starting from the burn-up behavior of the fuel elements in the reactor core. The output of these burn-up calculations is then coupled with a program that simulates the material separation in the subsequent dissolution and extraction processes normalized to the mass balance. Follow-up simulations of the separated reprocessing lines of a) the vitrification of highly-active liquid and b) the compaction of residual intermediate-active metallic hulls remaining after fuel pellets dissolution, end-pieces and technological waste, allows calculating expectation values for the various repository relevant properties of either waste stream. The principles of the German product quality control of radioactive waste residues from the spent fuel reprocessing have been introduced and explained. Namely, heat generating homogeneous vitrified HLW and heterogeneous compacted metallic MLW have been discussed. The advantages of a complementary numerical property simulation have been made clear and examples of benefits are presented. We have compiled a new program suite to calculate the physical and radio-chemical properties of common nuclear waste residues. The immediate benefit is the independent assessment of radio-active inventory declarations and much facilitated product quality control of waste residues that need to be returned to Germany and submitted to a German HLW-repository requirements. Wherever possible, internationally accepted standard programs are used and embedded. The innovative coupling of burn-up calculations (SCALE) with neutron and gamma transport codes (MCPN-X) allows an application in the world of virtual waste properties. If-then-else scenarios of hypothetical waste material compositions and distributions provide valuable information of long term nuclide property propagation under repository conditions over a very long time span. Benchmarking the program with real residue data demonstrates the power and remarkable accuracy of this numerical approach, boosting the reliability of the confidence aforementioned numerous applications, namely the proof tool set for on-the-spot production quality checking and data evaluation and independent verification. Moreover, using the numerical bottom-up approach helps to avoid the accumulation of fake activities that may gradually build up in a repository from the so-called conservative or penalizing nuclide inventory declarations. The radioactive waste properties and the hydrolytic and chemical stability can be predicted. The interaction with invasive chemicals can be assessed and propagation scenarios can be developed from reliable and sound data and HLW properties. Hence, the appropriate design of a future HLW repository can be based upon predictable and quality assured waste characteristics. (authors)« less
Razouk, R; Beaumont, O; Failleau, G; Hay, B; Plumeri, S
2018-03-01
The estimation and control of the thermal power released by the radioactive waste packages are a key parameter in the management of radioactive waste geological repository sites. In the framework of the European project "Metrology for decommissioning nuclear facilities," the French National Agency of Radioactive Waste Management (ANDRA) collaborates with Laboratoire National de Métrologie et D'essais in order to measure the thermal power up to 500 W of typical real size radioactive waste packages (of at least 0.175 m 3 ) with an uncertainty better than 5% by using a measurement method traceable to the international system of units. One of the selected metrological approaches is based on the principles of air flow calorimetry. This paper describes in detail the development of the air flow calorimeter prototype as well as the design of a radioactive waste package simulator used for its calibration. Results obtained from the calibration of the calorimeter and from the determination of thermal powers are presented here with an investigation of the measurement uncertainties.
NASA Astrophysics Data System (ADS)
Razouk, R.; Beaumont, O.; Failleau, G.; Hay, B.; Plumeri, S.
2018-03-01
The estimation and control of the thermal power released by the radioactive waste packages are a key parameter in the management of radioactive waste geological repository sites. In the framework of the European project "Metrology for decommissioning nuclear facilities," the French National Agency of Radioactive Waste Management (ANDRA) collaborates with Laboratoire National de Métrologie et D'essais in order to measure the thermal power up to 500 W of typical real size radioactive waste packages (of at least 0.175 m3) with an uncertainty better than 5% by using a measurement method traceable to the international system of units. One of the selected metrological approaches is based on the principles of air flow calorimetry. This paper describes in detail the development of the air flow calorimeter prototype as well as the design of a radioactive waste package simulator used for its calibration. Results obtained from the calibration of the calorimeter and from the determination of thermal powers are presented here with an investigation of the measurement uncertainties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.
The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order,more » also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP’s LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at <2g/m 2 during ASTM C1285 (Product Consistency) durability testing. Monolithing of the granular FBSR product was investigated to prevent dispersion during transport or burial/storage. Monolithing in an inorganic geopolymer binder, which is amorphous, macro-encapsulates the granules, and the monoliths pass ANSI/ANS 16.1 and ASTM C1308 durability testing with Re achieving a Leach Index (LI) of 9 (the Hanford Integrated Disposal Facility, IDF, criteria for Tc-99) after a few days and Na achieving an LI of >6 (the Hanford IDF criteria for Na) in the first few hours. The granular and monolithic waste forms also pass the EPA Toxicity Characteristic Leaching Procedure (TCLP) for all Resource Conservation and Recovery Act (RCRA) components at the Universal Treatment Standards (UTS). Two identical Benchscale Steam Reformers (BSR) were designed and constructed at SRNL, one to treat non-radioactive simulants and the other to treat actual radioactive wastes. The results from the non-radioactive BSR were used to determine the parameters needed to operate the radioactive BSR in order to confirm the findings of non-radioactive FBSR pilot scale and engineering scale tests and to qualify an FBSR LAW waste form for applications at Hanford. Radioactive testing commenced using SRS LAW from Tank 50 chemically trimmed to look like Hanford’s blended LAW known as the Rassat simulant as this simulant composition had been tested in the non-radioactive BSR, the non-radioactive pilot scale FBSR at the Science Applications International Corporation-Science and Technology Applications Research (SAIC-STAR) facility in Idaho Falls, ID and in the TTT Engineering Scale Technology Demonstration (ESTD) at Hazen Research Inc. (HRI) in Denver, CO. This provided a “tie back” between radioactive BSR testing and non-radioactive BSR, pilot scale, and engineering scale testing. Approximately six hundred grams of non-radioactive and radioactive BSR product were made for extensive testing and comparison to the non-radioactive pilot scale tests performed in 2004 at SAIC-STAR and the engineering scale test performed in 2008 at HRI with the Rassat simulant. The same mineral phases and off-gas species were found in the radioactive and non-radioactive testing. The granular ESTD and BSR products (radioactive and non-radioactive) were analyzed for total constituents and durability tested as a granular waste form. A subset of the granular material was stabilized in a clay based geopolymer matrix at 42% and 65% FBSR loadings and durability tested as a monolith waste form. The 65 wt% FBSR loaded monolith made with clay (radioactive) was more durable than the 67-68 wt% FBSR loaded monoliths made from fly ash (non-radioactive) based on short term PCT testing. Long term, 90 to 107 day, ASTM C1308 testing (similar to ANSI/ANS 16.1 testing) was only performed on two fly ash geopolymer monoliths at 67-68 wt% FBSR loading and three clay geopolymer monoliths at 42 wt% FBSR loading. More clay geopolymers need to be made and tested at longer times at higher FBSR loadings for comparison to the fly ash monoliths. Monoliths made with metakaolin (heat treated) clay are of a more constant composition and are very reactive as the heat treated clay is amorphous and alkali activated. The monoliths made with fly ash are subject to the inherent compositional variation found in fly ash as it is a waste product from burning coal and it contains unreactive components such as mullite. However, both the fly ash and the clay based monoliths perform well in long term ASTM C1308 testing.« less
Cesium Sorption/Desorption Experiments with IONSIV(R) IE-911 in Radioactive Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, D.D.
2001-02-13
This report describes cesium desorption from IONSIV IE-911 during ambient temperature storage and following temperature increases to 35 and 55 degrees C. This report also describes cesium sorption following return to ambient temperature. The IONSIV IE-911 used in these tests was loaded with cesium from Tank 44F radioactive waste in an ion exchange column test in 1999. Cesium desorbed and resorbed in the presence of Tank 44F waste and simulated waste solutions.
NASA Astrophysics Data System (ADS)
Markelov, A. Y.; Shiryaevskii, V. L.; Kudrinskiy, A. A.; Anpilov, S. V.; Bobrakov, A. N.
2017-11-01
A computational method of analysis of physical and chemical processes of high-temperature mineralizing of low-level radioactive waste in gas stream in the process of plasma treatment of radioactive waste in shaft furnaces was introduced. It was shown that the thermodynamic simulation method allows fairly adequately describing the changes in the composition of the pyrogas withdrawn from the shaft furnace at different waste treatment regimes. This offers a possibility of developing environmentally and economically viable technologies and small-sized low-cost facilities for plasma treatment of radioactive waste to be applied at currently operating nuclear power plants.
Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudisill, T.; King, W.; Hay, M.
Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions duringmore » tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.« less
Bayoumi, T A; Reda, S M; Saleh, H M
2012-01-01
Radioactive waste generated from the nuclear applications should be properly isolated by a suitable containment system such as, multi-barrier container. The present study aims to evaluate the isolation capacity of a new multi-barrier container made from cement and clay and including borate waste materials. These wastes were spiked by (137)Cs and (60)Co radionuclides to simulate that waste generated from the primary cooling circuit of pressurized water reactors. Leaching of both radionuclides in ground water was followed and calculated during ten years. Monte Carlo (MCNP5) simulations computed the photon flux distribution of the multi-barrier container, including radioactive borate waste of specific activity 11.22KBq/g and 4.18KBq/g for (137)Cs and (60)Co, respectively, at different periods of 0, 15.1, 30.2 and 302 years. The average total flux for 100cm radius of spherical cell was 0.192photon/cm(2) at initial time and 2.73×10(-4)photon/cm(2) after 302 years. Maximum waste activity keeping the surface radiation dose within the permissible level was calculated and found to be 56KBq/g with attenuation factors of 0.73cm(-1) and 0.6cm(-1) for cement and clay, respectively. The average total flux was 1.37×10(-3)photon/cm(2) after 302 years. Monte Carlo simulations revealed that the proposed multi-barrier container is safe enough during transportation, evacuation or rearrangement in the disposal site for more than 300 years. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wei, Yaqiang; Dong, Yanhui; Yeh, Tian-Chyi J; Li, Xiao; Wang, Liheng; Zha, Yuanyuan
2017-11-01
There have been widespread concerns about solute transport problems in fractured media, e.g. the disposal of high-level radioactive waste in geological fractured rocks. Numerical simulation of particle tracking is gradually being employed to address these issues. Traditional predictions of radioactive waste transport using discrete fracture network (DFN) models often consider one particular realization of the fracture distribution based on fracture statistic features. This significantly underestimates the uncertainty of the risk of radioactive waste deposit evaluation. To adequately assess the uncertainty during the DFN modeling in a potential site for the disposal of high-level radioactive waste, this paper utilized the probabilistic distribution method (PDM). The method was applied to evaluate the risk of nuclear waste deposit in Beishan, China. Moreover, the impact of the number of realizations on the simulation results was analyzed. In particular, the differences between the modeling results of one realization and multiple realizations were demonstrated. Probabilistic distributions of 20 realizations at different times were also obtained. The results showed that the employed PDM can be used to describe the ranges of the contaminant particle transport. The high-possibility contaminated areas near the release point were more concentrated than the farther areas after 5E6 days, which was 25,400 m 2 .
Monte-Carlo Application for Nondestructive Nuclear Waste Analysis
NASA Astrophysics Data System (ADS)
Carasco, C.; Engels, R.; Frank, M.; Furletov, S.; Furletova, J.; Genreith, C.; Havenith, A.; Kemmerling, G.; Kettler, J.; Krings, T.; Ma, J.-L.; Mauerhofer, E.; Neike, D.; Payan, E.; Perot, B.; Rossbach, M.; Schitthelm, O.; Schumann, M.; Vasquez, R.
2014-06-01
Radioactive waste has to undergo a process of quality checking in order to check its conformance with national regulations prior to its transport, intermediate storage and final disposal. Within the quality checking of radioactive waste packages non-destructive assays are required to characterize their radio-toxic and chemo-toxic contents. The Institute of Energy and Climate Research - Nuclear Waste Management and Reactor Safety of the Forschungszentrum Jülich develops in the framework of cooperation nondestructive analytical techniques for the routine characterization of radioactive waste packages at industrial-scale. During the phase of research and development Monte Carlo techniques are used to simulate the transport of particle, especially photons, electrons and neutrons, through matter and to obtain the response of detection systems. The radiological characterization of low and intermediate level radioactive waste drums is performed by segmented γ-scanning (SGS). To precisely and accurately reconstruct the isotope specific activity content in waste drums by SGS measurement, an innovative method called SGSreco was developed. The Geant4 code was used to simulate the response of the collimated detection system for waste drums with different activity and matrix configurations. These simulations allow a far more detailed optimization, validation and benchmark of SGSreco, since the construction of test drums covering a broad range of activity and matrix properties is time consuming and cost intensive. The MEDINA (Multi Element Detection based on Instrumental Neutron Activation) test facility was developed to identify and quantify non-radioactive elements and substances in radioactive waste drums. MEDINA is based on prompt and delayed gamma neutron activation analysis (P&DGNAA) using a 14 MeV neutron generator. MCNP simulations were carried out to study the response of the MEDINA facility in terms of gamma spectra, time dependence of the neutron energy spectrum, neutron flux distribution. The validation of the measurements simulations with Mont-Carlo transport codes for the design, optimization and data analysis of further P&DGNAA facilities is performed in collaboration with LMN CEA Cadarache. The performance of the prompt gamma neutron activation analysis (PGNAA) for the nondestructive determination of actinides in small samples is investigated. The quantitative determination of actinides relies on the precise knowledge of partial neutron capture cross sections. Up to today these cross sections are not very accurate for analytical purpose. The goal of the TANDEM (Trans-uranium Actinides' Nuclear Data - Evaluation and Measurement) Collaboration is the evaluation of these cross sections. Cross sections are measured using prompt gamma activation analysis facilities in Budapest and Munich. Geant4 is used to optimally design the detection system with Compton suppression. Furthermore, for the evaluation of the cross sections it is strongly needed to correct the results to the self-attenuation of the prompt gammas within the sample. In the framework of cooperation RWTH Aachen University, Forschungszentrum Jülich and the Siemens AG will study the feasibility of a compact Neutron Imaging System for Radioactive waste Analysis (NISRA). The system is based on a 14 MeV neutron source and an advanced detector system (a-Si flat panel) linked to an exclusive converter/scintillator for fast neutrons. For shielding and radioprotection studies the codes MCNPX and Geant4 were used. The two codes were benchmarked in processing time and accuracy in the neutron and gamma fluxes. Also the detector response was simulated with Geant4 to optimize components of the system.
FERRATE TREATMENT FOR REMOVING CHROMIUM FROM HIGH-LEVEL RADIOACTIVE TANK WASTE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sylvester, Paul; Rutherford, Andy; Gonzalez-Martin, Anuncia
2000-12-01
A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(III) molar ratio, but the chromium removal tends to level out for Fe(VI)/Cr(III) greater than 10.more » Increasing temperature leads to better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be handled as low-activity waste.« less
Rapid immobilization of simulated radioactive soil waste by microwave sintering.
Zhang, Shuai; Shu, Xiaoyan; Chen, Shunzhang; Yang, Huimin; Hou, Chenxi; Mao, Xueli; Chi, Fangting; Song, Mianxin; Lu, Xirui
2017-09-05
A rapid and efficient method is particularly necessary in the timely disposal of seriously radioactive contaminated soil. In this paper, a series of simulated radioactive soil waste containing different contents of neodymium oxide (3-25wt.%) has been successfully vitrified by microwave sintering at 1300°C for 30min. The microstructures, morphology, element distribution, density and chemical durability of as obtained vitrified forms have been analyzed. The results show that the amorphous structure, homogeneous element distribution, and regular density improvement are well kept, except slight cracks emerge on the magnified surface for the 25wt.% Nd 2 O 3 -containing sample. Moreover, all the vitrified forms exhibit excellent chemical durability, and the leaching rates of Nd are kept as ∼10 -4 -10 -6 g/(m 2 day) within 42days. This demonstrates a potential application of microwave sintering in radioactive contaminated soil disposal. Copyright © 2017 Elsevier B.V. All rights reserved.
Radioactive Demonstrations Of Fluidized Bed Steam Reforming (FBSR) With Hanford Low Activity Wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C. M.; Crawford, C. L.; Burket, P. R.
Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750?C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS)more » feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.« less
Novel use of geochemical models in evaluating treatment trains for aqueous radioactive waste streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abitz, R.J.
1996-12-31
Thermodynamic geochemical models have been applied to assess the relative effectiveness of a variety of reagents added to aqueous waste streams for the removal of radioactive elements. Two aqueous waste streams were examined: effluent derived from the processing of uranium ore and irradiated uranium fuel rods. Simulations of the treatment train were performed to estimate the mass of reagents needed per kilogram of solution, identify pH regions corresponding to solubility minimums, and predict the identity and quantity of precipitated solids. Results generated by the simulations include figures that chart the chemical evolution of the waste stream as reagents are addedmore » and summary tables that list mass balances for all reagents and radioactive elements of concern. Model results were used to set initial reagent levels for the treatment trains, minimizing the number of bench-scale tests required to bring the treatment train up to full-scale operation. Additionally, presentation of modeling results at public meetings helps to establish good faith between the federal government, industry, concerned citizens, and media groups. 18 refs., 3 figs., 1 tab.« less
Biochemical process of low level radioactive liquid simulation waste containing detergent
NASA Astrophysics Data System (ADS)
Kundari, Noor Anis; Putra, Sugili; Mukaromah, Umi
2015-12-01
Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10-5 Ci/m3. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod's model and the decreasing of COD and BOD were first order with the rate constant of 0.01 hour-1.
Biochemical process of low level radioactive liquid simulation waste containing detergent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundari, Noor Anis, E-mail: nooranis@batan.go.id; Putra, Sugili; Mukaromah, Umi
Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive elementmore » in the waste was thorium with activity of 5.10{sup −5} Ci/m{sup 3}. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod’s model and the decreasing of COD and BOD were first order with the rate constant of 0.01 hour{sup −1}.« less
Ferrate treatment for removing chromium from high-level radioactive tank waste.
Sylvester, P; Rutherford, L A; Gonzalez-Martin, A; Kim, J; Rapko, B M; Lumetta, G J
2001-01-01
A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. This method could be generally applicable to removing chromium from chromium-contaminated solids, when coupled with a subsequent reduction of the separated chromate back to chromium(III). The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(II) molar ratio, but the chromium removal tends to level out for Fe(VI)/ Cr(III) greaterthan 10. Increasingtemperature leadsto better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be disposed as low-activity waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bickford, D.F.; Congdon, J.W.; Oblath, S.B.
1987-01-01
At the U.S. Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assessmore » the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition.« less
Characterization of cartridge filters from the IEA-R1 Nuclear Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The management of radioactive waste ensures safety to human health and the environment nowadays and for the future, without overwhelming the upcoming generations. The primary characterization of radioactive waste is one of the main steps in the management of radioactive waste. This step permits to choose the best treatment for the radioactive waste before forwarding it to its final disposal. The aim of the present work is the primary characterization of cartridge filters from the IEA-R1 nuclear reactor utilizing gamma-ray spectrometry, and the method of Monte Carlo for calibration. The IEA-R1 is located in the Nuclear and Energy Research Institutemore » (IPEN - CNEN) in the city of Sao Paulo, Brazil. Cartridge filters are used for purification of the cooling water that is pumped through the core of the pool type nuclear research reactors. Once worn out, these filters are replaced and then become radioactive waste. Determination of the radioactive inventory is of paramount importance in the management of such radioactive waste, and one of the main methods for doing so is the gamma-ray spectrometry, which can identify and quantify high energy photon emitters. The technique chosen for the characterization of radioactive waste in the present work is the gamma-ray spectrometry with High purity Germanium (HPGe) detectors. From the energy identified in the experimental spectrum, three radioisotopes were identified in the cartridge filter: {sup 108m}Ag, {sup 110m}Ag, {sup 60}Co. For the estimated activity of the filter, the calibration in efficiency was made utilizing the MCNP4C code of the Monte Carlo method. Such method was chosen because there is no standard source available in the same geometry of the cartridge filter, therefore a simulation had to be developed in order to reach a calibration equation, necessary to estimate the activity of the radioactive waste. The results presented an activity value in the order of MBq for all radioisotopes. (authors)« less
Foaming in simulated radioactive waste.
Bindal, S K; Nikolov, A D; Wasan, D T; Lambert, D P; Koopman, D C
2001-10-01
Radioactive waste treatment process usually involves concentration of radionuclides before waste can be immobilized by storing it in stable solid form. Foaming is observed at various stages of waste processing like SRAT (sludge receipt and adjustment tank) and melter operations. This kind of foaming greatly limits the process efficiency. The foam encountered can be characterized as a three-phase foam that incorporates finely divided solids (colloidal particles). The solid particles stabilize foaminess in two ways: by adsorption of biphilic particles at the surfaces of foam lamella and by layering of particles trapped inside the foam lamella. During bubble generation and rise, solid particles organize themselves into a layered structure due to confinement inside the foam lamella, and this structure provides a barrier against the coalescence of the bubbles, thereby causing foaming. Our novel capillary force balance apparatus was used to examine the particle-particle interactions, which affect particle layer formation in the foam lamella. Moreover, foaminess shows a maximum with increasing solid particle concentration. To explain the maximum in foaminess, a study was carried out on the simulated sludge, a non-radioactive simulant of the radioactive waste sludge at SRS, to identify the parameters that affect the foaming in a system characterized by the absence of surface-active agents. This three-phase foam does not show any foam stability unlike surfactant-stabilized foam. The parameters investigated were solid particle concentration, heating flux, and electrolyte concentration. The maximum in foaminess was found to be a net result of two countereffects that arise due to particle-particle interactions: structural stabilization and depletion destabilization. It was found that higher electrolyte concentration causes a reduction in foaminess and leads to a smaller bubble size. Higher heating fluxes lead to greater foaminess due to an increased rate of foam lamella generation in the sludge system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasan, Darsh T.
2007-10-09
The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass, while the facilities at the Hanford site are in the construction phase. Both processes utilize slurry-fed joule-heated melters to vitrify the waste slurries. The DWPF has experienced difficulty during operations. The cause of the operational problems has been attributed to foaming, gas entrainment and the rheological properties of the process slurries.more » The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and meter feed processes. Highly viscous material can lead to air entrainment during agitation and difficulties with pump operations. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. Experimental and theoretical investigations of the surface phenomena, suspension rheology and bubble generation of interactions that lead to foaming and air entrainment problems in the DOE High Level and Low Activity Radioactive Waste separation and immobilization processes were pursued under this project. The first major task accomplished in the grant proposal involved development of a theoretical model of the phenomenon of foaming in a three-phase gas-liquid-solid slurry system. This work was presented in a recently completed Ph.D. thesis (9). The second major task involved the investigation of the inter-particle interaction and microstructure formation in a model slurry by the batch sedimentation method. Both experiments and modeling studies were carried out. The results were presented in a recently completed Ph.D. thesis. The third task involved the use of laser confocal microscopy to study the effectiveness of three slurry rheology modifiers. An effective modifier was identified which resulted in lowering the yield stress of the waste simulant. Therefore, the results of this research have led to the basic understanding of the foaming/antifoaming mechanism in waste slurries as well as identification of a rheology modifier, which enhances the processing throughput, and accelerates the DOE mission. The objectives of this research effort were to develop a fundamental understanding of the physico-chemical mechanisms that produced foaming and air entrainment in the DOE High Level (HLW) and Low Activity (LAW) radioactive waste separation and immobilization processes, and to develop and test advanced antifoam/defoaming/rheology modifier agents. Antifoams/rheology modifiers developed from this research ere tested using non-radioactive simulants of the radioactive wastes obtained from Hanford and the Savannah River Site (SRS).« less
Corrosion of radioactive waste tanks containing washed sludge and precipitates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bickford, D.F.; Congdon, J.W.; Oblath, S.B.
1988-05-01
At the US Department of Energy (DOE) Savannah River Plant, the corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Laboratory tests, conducted to determine minimum corrosion inhibitor levels, indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations were conducted to assess the validity of laboratory tests. The in situ results are compared to those of laboratory tests, with particular regard given to simulated solution composition. Transition metal hydroxide sludge contains strong passivating species formore » carbon steel. Washed precipitate contains organic species that lower solution pH and tend to reduce passivating films, requiring higher inhibitor concentrations than the 0.01 M nitrite required for reactor fuel reprocessing wastes.« less
Benzene destruction in aqueous waste—I. Bench-scale gamma irradiation experiments
NASA Astrophysics Data System (ADS)
Cooper, William J.; Dougal, Roger A.; Nickelsen, Michael G.; Waite, Thomas D.; Kurucz, Charles N.; Lin, Kaijin; Bibler, Jane P.
1996-07-01
Destruction of the benzene component of a simulated low-level mixed aqueous waste stream by high energy irradiation was explored. This work was motivated by the fact that mixed waste, containing both radionuclides and regulated (non-radioactive) chemicals, is more difficult and more expensive to dispose of than only radioactive waste. After the benzene is destroyed, the waste can then be listed only as radiological waste instead of mixed waste, simplifying its disposal. This study quantifies the removal of benzene, and the formation and destruction of reaction products in a relatively complex waste stream matrix consisting of NO 3-, SO 42-, PO 43-, Fe 2+ and detergent at a pH of 3. All of the experiments were conducted at a bench scale using a 60Co gamma source.
EnergySolution's Clive Disposal Facility Operational Research Model - 13475
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nissley, Paul; Berry, Joanne
2013-07-01
EnergySolutions owns and operates a licensed, commercial low-level radioactive waste disposal facility located in Clive, Utah. The Clive site receives low-level radioactive waste from various locations within the United States via bulk truck, containerised truck, enclosed truck, bulk rail-cars, rail boxcars, and rail inter-modals. Waste packages are unloaded, characterized, processed, and disposed of at the Clive site. Examples of low-level radioactive waste arriving at Clive include, but are not limited to, contaminated soil/debris, spent nuclear power plant components, and medical waste. Generators of low-level radioactive waste typically include nuclear power plants, hospitals, national laboratories, and various United States government operatedmore » waste sites. Over the past few years, poor economic conditions have significantly reduced the number of shipments to Clive. With less revenue coming in from processing shipments, Clive needed to keep its expenses down if it was going to maintain past levels of profitability. The Operational Research group of EnergySolutions were asked to develop a simulation model to help identify any improvement opportunities that would increase overall operating efficiency and reduce costs at the Clive Facility. The Clive operations research model simulates the receipt, movement, and processing requirements of shipments arriving at the facility. The model includes shipment schedules, processing times of various waste types, labor requirements, shift schedules, and site equipment availability. The Clive operations research model has been developed using the WITNESS{sup TM} process simulation software, which is developed by the Lanner Group. The major goals of this project were to: - identify processing bottlenecks that could reduce the turnaround time from shipment arrival to disposal; - evaluate the use (or idle time) of labor and equipment; - project future operational requirements under different forecasted scenarios. By identifying processing bottlenecks and unused equipment and/or labor, improvements to operating efficiency could be determined and appropriate cost saving measures implemented. Model runs forecasting various scenarios helped illustrate potential impacts of certain conditions (e.g. 20% decrease in shipments arrived), variables (e.g. 20% decrease in labor), or other possible situations. (authors)« less
Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes
Boatner, L.A.; Sales, B.C.
1984-04-11
Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste
Cast Stone Formulation for Nuclear Waste Immobilization at Higher Sodium Concentrations
Fox, Kevin; Cozzi, Alex; Roberts, Kimberly; ...
2014-11-01
Low activity radioactive waste at U.S. Department of Energy sites can be immobilized for permanent disposal using cementitious waste forms. This study evaluated waste forms produced with simulated wastes at concentrations up to twice that of currently operating processes. The simulated materials were evaluated for their fresh properties, which determine processability, and cured properties, which determine waste form performance. The results show potential for greatly reducing the volume of material. Fresh properties were sufficient to allow for processing via current practices. Cured properties such as compressive strength meet disposal requirements. Leachability indices provide an indication of expected long-term performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, C.; Burket, P.; Cozzi, A.
2012-02-02
The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.« less
Modelling the sulfate capacity of simulated radioactive waste borosilicate glasses
Bingham, Paul A.; Vaishnav, Shuchi; Forder, Sue D.; ...
2016-11-10
In this paper, the capacity of simulated high-level radioactive waste borosilicate glasses to incorporate sulfate has been studied as a function of glass composition. Combined Raman, 57Fe Mössbauer and literature evidence supports the attribution of coordination numbers and oxidation states of constituent cations for the purposes of modelling, and results confirm the validity of correlating sulfate incorporation in multicomponent borosilicate radioactive waste glasses with different models. A strong compositional dependency is observed and this can be described by an inverse linear relationship between incorporated sulfate (mol% SO 4 2-) and total cation field strength index of the glass, Σ(z/a 2),more » with a high goodness-of-fit (R 2 ≈ 0.950). Similar relationships are also obtained if theoretical optical basicity, Λ th (R 2 ≈ 0.930) or non-bridging oxygen per tetrahedron ratio, NBO/T (R 2 ≈ 0.919), are used. Finally, results support the application of these models, and in particular Σ(z/a 2), as predictive tools to aid the development of new glass compositions with enhanced sulfate capacities.« less
Modelling the sulfate capacity of simulated radioactive waste borosilicate glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bingham, P. A.; Vaishnav, S.; Forder, S. D.
2017-02-01
The capacity of simulated high-level radioactive waste borosilicate glasses to incorporate sulfate has been studied as a function of glass composition. Combined Raman, 57Fe Mössbauer and literature evidence supports the attribution of coordination numbers and oxidation states of constituent cations for the purposes of modelling, and results confirm the validity of correlating sulfate incorporation in multicomponent borosilicate radioactive waste glasses with different models. A strong compositional dependency is observed and this can be described by an inverse linear relationship between incorporated sulfate (mol% SO 4 2-) and total cation field strength index of the glass, Σ(z/a 2), with a highmore » goodness-of-fit (R 2 ≈ 0.950). Similar relationships are also obtained if theoretical optical basicity, Λ th (R 2 ≈ 0.930) or non-bridging oxygen per tetrahedron ratio, NBO/T (R 2 ≈ 0.919), are used. Results support the application of these models, and in particular Σ(z/a 2), as predictive tools to aid the development of new glass compositions with enhanced sulfate capacities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metcalfe, Brian; Donald, Ian W.; Scheele, Randall D.
2003-12-01
Attention has recently been given to the immobilization of special categories of radioactive wastes, some of which contain high concentrations of actinide chlorides. Although vitrification in phosphate glass has been proposed, this was rejected because of the high losses of chloride. On the basis of non-radioactive and, more recently, radioactive studies, we have shown that calcium phosphate is an effective host for immobilizing the chloride constituents [1]. In this instance, the chlorine is retained as chloride, rather than evolved as a chlorine-bearing gas. The immobilized product is in the form of a free-flowing, non-hygroscopic powder, in which the chlorides aremore » chemically combined within the mineral phases chlorapatite [Ca5(PO4)3Cl] and spodiosite [Ca2(PO4)Cl]. Data from studies on non-radioactive simulated waste consisting of a mixture of CaCl2 and SmCl3, and radioactive simulated waste composed of CaCl2 with PuCl3 or PuCl3 and AmCl3, are presented and compared. The XRD data confirm the presence of chlorapatite and spodiosite in the non-radioactive and radioactive materials. The durability of all specimens was measured with a modified MCC-1 test. Releases of Cl after 28 days were 1.6 x 10-3 g m-2 for the non-radioactive specimens and 7 x 10-3 g m-2 for the Pu-bearing specimens. Releases of Ca after 28 days were 0.3 x 10-3 and 2.0 x 10-3 g m-2 for the non-radioactive composition and the Pu composition, respectively, whilst release of Pu from the radioactive specimens was lower for the mixed Pu/Am specimen at 1.2 x 10-5g m-2. The release of Am from the mixed Pu/Am composition was exceptionally low at 2.4 x 10-7 g m-2. Overall, the release rate data suggest that the ceramics dissolve congruently, followed by precipitation of Sm, Pu and Am as less soluble phases, possibly oxides or phosphates. The differences in behaviour noted between non-radioactive and radioactive specimens are interpreted in terms of the crystal chemistry of the individual systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacKinnon, R.J.; Sullivan, T.M.; Kinsey, R.R.
1997-05-01
The BLT-EC computer code has been developed, implemented, and tested. BLT-EC is a two-dimensional finite element computer code capable of simulating the time-dependent release and reactive transport of aqueous phase species in a subsurface soil system. BLT-EC contains models to simulate the processes (container degradation, waste-form performance, transport, chemical reactions, and radioactive production and decay) most relevant to estimating the release and transport of contaminants from a subsurface disposal system. Water flow is provided through tabular input or auxiliary files. Container degradation considers localized failure due to pitting corrosion and general failure due to uniform surface degradation processes. Waste-form performancemore » considers release to be limited by one of four mechanisms: rinse with partitioning, diffusion, uniform surface degradation, and solubility. Transport considers the processes of advection, dispersion, diffusion, chemical reaction, radioactive production and decay, and sources (waste form releases). Chemical reactions accounted for include complexation, sorption, dissolution-precipitation, oxidation-reduction, and ion exchange. Radioactive production and decay in the waste form is simulated. To improve the usefulness of BLT-EC, a pre-processor, ECIN, which assists in the creation of chemistry input files, and a post-processor, BLTPLOT, which provides a visual display of the data have been developed. BLT-EC also includes an extensive database of thermodynamic data that is also accessible to ECIN. This document reviews the models implemented in BLT-EC and serves as a guide to creating input files and applying BLT-EC.« less
Corrosion susceptibility of steel drums containing cemented intermediate level nuclear wastes
NASA Astrophysics Data System (ADS)
Duffó, Gustavo S.; Farina, Silvia B.; Schulz, Fátima M.; Marotta, Francesca
2010-10-01
Cementation processes are used as immobilization techniques for low or intermediate level radioactive waste for economical and safety reasons and for being a simple operation. In particular, ion-exchange resins commonly used for purification of radioactive liquid waste from nuclear reactors are immobilized before being stored to improve the leach resistance of the waste matrix and to maintain mechanical stability. Combustible solid radioactive waste can be incinerated and the resulting ashes can also be immobilized before storage. The immobilized resins and ashes are then contained in steel drums that may undergo corrosion depending on the presence of certain contaminants. The work described in this paper was aimed at evaluating the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins and incineration ashes containing different concentrations of aggressive species (mostly chloride and sulphate ions). A special type of specimen was designed to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 1 year. The results show the deleterious effect of chloride on the expected lifespan of the waste containers.
Docking 90Sr radionuclide in cement: An atomistic modeling study
NASA Astrophysics Data System (ADS)
Youssef, Mostafa; Pellenq, Roland J.-M.; Yildiz, Bilge
Cementitious materials are considered to be a waste form for the ultimate disposal of radioactive materials in geological repositories. We investigated by means of atomistic simulations the encapsulation of strontium-90, an important radionuclide, in calcium-silicate-hydrate (C-S-H) and its crystalline analog, the 9 Å-tobermorite. C-S-H is the major binding phase of cement. Strontium was shown to energetically favor substituting calcium in the interlayer sites in C-S-H and 9 Å-tobermorite with the trend more pronounced in the latter. The integrity of the silicate chains in both cementitious waste forms were not affected by strontium substitution within the time span of molecular dynamics simulation. Finally, we observed a limited degradation of the mechanical properties in the strontium-containing cementitious waste form with the increasing strontium concentration. These results suggest the cement hydrate as a good candidate for immobilizing radioactive strontium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adu-Wusu, K; Paul Burket, P
2009-03-31
Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtainedmore » from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a result of the WAO reaction. (4) Off-gas composition was measured in the resulting gas phase from the reaction. Benzene and hydrogen were formed during the reaction, but they were reasonably low in the off-gas at 0.096 and 0.0063 vol% respectively. Considering the consistency in replicating similar test results with simulated waste and Tank 48H waste under similar test conditions, the results confirm the validity of the simulant for other WAO test conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehto, J.; Ikaeheimonen, T.K.; Salbu, B.
The fallout from a major nuclear accident at a nuclear plant may result in a wide-scale contamination of the environment. Cleanup of contaminated areas is of special importance if these areas are populated or cultivated. All cleanup measures generate high amounts of radioactive waste, which have to be treated and disposed of in a safe manner. Scenarios assessing the amounts and activity concentrations of radioactive wastes for various cleanup measures after severe nuclear accidents have been worked out for urban, forest and agricultural areas. These scenarios are based on contamination levels and ares of contaminated lands from a model accident,more » which simulates a worst case accident at a nuclear power plant. Amounts and activity concentrations of cleanup wastes are not only dependent on the contamination levels and areas of affected lands, but also on the type of deposition, wet or dry, on the time between the deposition and the cleanup work, on the season, at which the deposition took place, and finally on the level of cleanup work. In this study practically all types of cleanup wastes were considered, whether or not the corresponding cleanup measures are cost-effective or justified. All cleanup measures are shown to create large amounts of radioactive wastes, but the amounts, as well as the activity concentrations vary widely from case to case.« less
Bergeron, M.P.; Bugliosi, E.F.
1988-01-01
Two adjacent burial areas were excavated in a clay-rich till at a radioactive waste disposal site near West Valley in Cattaraugus County, N.Y.: (1) which contains mainly low-level radioactive wastes generated onsite by a nuclear fuel reprocessing plant, has been in operation since 1966; and (2) which contains commercial low-level radioactive wastes, was operated during 1963-75. Groundwater below the upper 3 meters of till generally moves downward through a 20- to 30-meter thick sequence of tills underlain by lacustrine and kame-delta deposits of fine sand and silt. Groundwater in the weathered, upper 3 meters of till can move laterally for several meters before either moving downward into the kame-delta deposits or discharging to the land surface. A two-dimensional finite-element model that simulates two vertical sections was used to evaluate hydrologic factors that control groundwater flow in the till. Conditions observed during March 1983 were reproduced accurately in steady-state simulations that used four isotropic units of differing hydraulic conductivity to represent two fractured and weathered till units near land surfaces, an intermediate group of isolated till zones that contain significant amounts of fine sand and silt, and a sequence of till units at depths that have been consolidated by overburden pressure. Recharge rates used in the best-fit simulation ranged from 1.4 cm/yr along smooth, sloping or compacted surfaces to 3.8 cm/yr near swampy areas. Values of hydraulic conductivity and infiltration used in the calibrated best-fit model were nearly identical to values used in a previous model analysis of the nearby commercial-waste burial area. Results of the model simulations of a burial pit assumed to be filled with water indicate that water near the bottom of the burial pit would migrate laterally in the shallow, weathered till for 5 to 6 meters before moving downward into the unweathered till, and water near the top of the pit would move laterally less than 20 meters before moving downward into the unweathered till. These results indicate that subsurface migration of radionuclides in groundwater to points of discharge to land surface is unlikely as long as the water level does not rise into the reworked cover material. (Author 's abstract)
Thermal-Hydrology Simulations of Disposal of High-Level Radioactive Waste in a Single Deep Borehole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadgu, Teklu; Stein, Emily; Hardin, Ernest
2015-11-01
Simulations of thermal-hydrology were carried out for the emplacement of spent nuclear fuel canisters and cesium and strontium capsules using the PFLOTRAN simulator. For the cesium and strontium capsules the analysis looked at disposal options such as different disposal configurations and surface aging of waste to reduce thermal effects. The simulations studied temperature and fluid flux in the vicinity of the borehole. Simulation results include temperature and vertical flux profiles around the borehole at selected depths. Of particular importance are peak temperature increases, and fluxes at the top of the disposal zone. Simulations of cesium and strontium capsule disposal predictmore » that surface aging and/or emplacement of the waste at the top of the disposal zone reduces thermal effects and vertical fluid fluxes. Smaller waste canisters emplaced over a longer disposal zone create the smallest thermal effect and vertical fluid fluxes no matter the age of the waste or depth of emplacement.« less
Secondary Waste Form Down Selection Data Package – Ceramicrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantrell, Kirk J.; Westsik, Joseph H.
2011-08-31
As part of high-level waste pretreatment and immobilized low activity waste processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed in the Integrated Disposal Facility. Currently, four waste forms are being considered for stabilization and solidification of the liquid secondary wastes. These waste forms are Cast Stone, Ceramicrete, DuraLith, and Fluidized Bed Steam Reformer. The preferred alternative will be down selected from these four waste forms. Pacific Northwest National Laboratorymore » is developing data packages to support the down selection process. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilization and solidification of the liquid secondary wastes. The information included will be based on information available in the open literature and from data obtained from testing currently underway. This data package is for the Ceramicrete waste form. Ceramicrete is a relatively new engineering material developed at Argonne National Laboratory to treat radioactive and hazardous waste streams (e.g., Wagh 2004; Wagh et al. 1999a, 2003; Singh et al. 2000). This cement-like waste form can be used to treat solids, liquids, and sludges by chemical immobilization, microencapsulation, and/or macroencapsulation. The Ceramicrete technology is based on chemical reaction between phosphate anions and metal cations to form a strong, dense, durable, low porosity matrix that immobilizes hazardous and radioactive contaminants as insoluble phosphates and microencapsulates insoluble radioactive components and other constituents that do not form phosphates. Ceramicrete is a type of phosphate-bonded ceramic, which are also known as chemically bonded phosphate ceramics. The Ceramicrete binder is formed through an acid-base reaction between calcined magnesium oxide (MgO; a base) and potassium hydrogen phosphate (KH{sub 2}PO{sub 4}; an acid) in aqueous solution. The reaction product sets at room temperature to form a highly crystalline material. During the reaction, the hazardous and radioactive contaminants also react with KH{sub 2}PO{sub 4} to form highly insoluble phosphates. In this data package, physical property and waste acceptance data for Ceramicrete waste forms fabricated with wastes having compositions that were similar to those expected for secondary waste effluents, as well as secondary waste effluent simulants from the Hanford Tank Waste Treatment and Immobilization Plant were reviewed. With the exception of one secondary waste form formulation (25FA+25 W+1B.A. fabricated with the mixed simulant did not meet the compressive strength requirement), all the Ceramicrete waste forms that were reviewed met or exceeded Integrated Disposal Facility waste acceptance criteria.« less
Bedinger, Marion S.; Stevens, Peter R.
1990-01-01
In the United States, low-level radioactive waste is disposed by shallow-land burial. Low-level radioactive waste generated by non-Federal facilities has been buried at six commercially operated sites; low-level radioactive waste generated by Federal facilities has been buried at eight major and several minor Federally operated sites (fig. 1). Generally, low-level radioactive waste is somewhat imprecisely defined as waste that does not fit the definition of high-level radioactive waste and does not exceed 100 nCi/g in the concentration of transuranic elements. Most low-level radioactive waste generated by non-Federal facilities is generated at nuclear powerplants; the remainder is generated primarily at research laboratories, hospitals, industrial facilities, and universities. On the basis of half lives and concentrations of radionuclides in low-level radioactive waste, the hazard associated with burial of such waste generally lasts for about 500 years. Studies made at several of the commercially and Federally operated low-level radioactive-waste repository sites indicate that some of these sites have not provided containment of waste nor the expected protection of the environment.
Guerrero, A; Goñi, S; Allegro, V R
2009-06-15
The durability of class C fly ash belite cement (FABC-2-W) in simulated radioactive liquid waste (SRLW) rich in a mixed sodium chloride and sulphate solution is presented here. The effect of the temperature and potential synergic effect of chloride and sulfate ions are discussed. This study has been carried out according to the Koch-Steinegger test, at the temperature of 20 degrees C and 40 degrees C during a period of 180 days. The durability has been evaluated by the changes of the flexural strength of mortar, fabricated with this cement, immersed in a simulated radioactive liquid waste rich in sulfate (0.5M), chloride (0.5M) and sodium (1.5M) ions--catalogued like severely aggressive for the traditional Portland cement--and demineralised water, which was used as reference. The reaction mechanism of sulphate, chloride and sodium ions with the mortar was evaluated by scanning electron microscopy (SEM), porosity and pore-size distribution, and X-ray diffraction (XRD). The results showed that the chloride binding and formation of Friedel's salt was inhibited by the presence of sulphate. Sulphate ion reacts preferentially with the calcium aluminate hydrates forming non-expansive ettringite which precipitated inside the pores; the microstructure was refined and the mechanical properties enhanced. This process was faster and more marked at 40 degrees C.
Robertson, John B.
1976-01-01
Aqueous chemical and low-level radioactive effluents have been disposed to seepage ponds since 1952 at the Idaho National Engineering Laboratory. The solutions percolate toward the Snake River Plain aquifer (135 m below) through interlayered basalts and unconsolidated sediments and an extensive zone of ground water perched on a sedimentary layer about 40 m beneath the ponds. A three-segment numerical model was developed to simulate the system, including effects of convection, hydrodynamic dispersion, radioactive decay, and adsorption. Simulated hydraulics and solute migration patterns for all segments agree adequately with the available field data. The model can be used to project subsurface distributions of waste solutes under a variety of assumed conditions for the future. Although chloride and tritium reached the aquifer several years ago, the model analysis suggests that the more easily sorbed solutes, such as cesium-137 and strontium-90, would not reach the aquifer in detectable concentrations within 150 years for the conditions assumed. (Woodard-USGS)
Code of Federal Regulations, 2010 CFR
2010-01-01
..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste, reactor...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste, reactor...
Impeding 99Tc(IV) mobility in novel waste forms
Lee, Mal-Soon; Um, Wooyong; Wang, Guohui; Kruger, Albert A.; Lukens, Wayne W.; Rousseau, Roger; Glezakou, Vassiliki-Alexandra
2016-01-01
Technetium (99Tc) is an abundant, long-lived radioactive fission product whose mobility in the subsurface is largely governed by its oxidation state. Tc immobilization is crucial for radioactive waste management and environmental remediation. Tc(IV) incorporation in spinels has been proposed as a novel method to increase Tc retention in glass waste forms during vitrification. However, experiments under high-temperature and oxic conditions show reoxidation of Tc(IV) to volatile pertechnetate, Tc(VII). Here we examine this problem with ab initio molecular dynamics simulations and propose that, at elevated temperatures, doping with first row transition metal can significantly enhance Tc retention in magnetite in the order Co>Zn>Ni. Experiments with doped spinels at 700 °C provide quantitative confirmation of the theoretical predictions in the same order. This work highlights the power of modern, state-of-the-art simulations to provide essential insights and generate theory-inspired design criteria of complex materials at elevated temperatures. PMID:27357121
Dewatering Treatment Scale-up Testing Results of Hanford Tank Wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tedeschi, A.R.; May, T.H.; Bryan, W.E.
2008-07-01
This report documents CH2M HILL Hanford Group Inc. (CH2M HILL) 2007 dryer testing results in Richland, WA at the AMEC Nuclear Ltd., GeoMelt Division (AMEC) Horn Rapids Test Site. It provides a discussion of scope and results to qualify the dryer system as a viable unit-operation in the continuing evaluation of the bulk vitrification process. A 10,000 liter (L) dryer/mixer was tested for supplemental treatment of Hanford tank low activity wastes, drying and mixing a simulated non-radioactive salt solution with glass forming minerals. Testing validated the full scale equipment for producing dried product similar to smaller scale tests, and qualifiedmore » the dryer system for a subsequent integrated dryer/vitrification test using the same simulant and glass formers. The dryer system is planned for installation at the Hanford tank farms to dry/mix radioactive waste for final treatment evaluation of the supplemental bulk vitrification process. (authors)« less
Stabilization and disposal of Argonne-West low-level mixed wastes in ceramicrete waste forms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barber, D. B.; Singh, D.; Strain, R. V.
1998-02-17
The technology of room-temperature-setting phosphate ceramics or Ceramicrete{trademark} technology, developed at Argonne National Laboratory (ANL)-East is being used to treat and dispose of low-level mixed wastes through the Department of Energy complex. During the past year, Ceramicrete{trademark} technology was implemented for field application at ANL-West. Debris wastes were treated and stabilized: (a) Hg-contaminated low-level radioactive crushed light bulbs and (b) low-level radioactive Pb-lined gloves (part of the MWIR {number_sign} AW-W002 waste stream). In addition to hazardous metals, these wastes are contaminated with low-level fission products. Initially, bench-scale waste forms with simulated and actual waste streams were fabricated by acid-base reactionsmore » between mixtures of magnesium oxide powders and an acid phosphate solution, and the wastes. Size reduction of Pb-lined plastic glove waste was accomplished by cryofractionation. The Ceramicrete{trademark} process produces dense, hard ceramic waste forms. Toxicity Characteristic Leaching Procedure (TCLP) results showed excellent stabilization of both Hg and Pb in the waste forms. The principal advantage of this technology is that immobilization of contaminants is the result of both chemical stabilization and subsequent microencapsulation of the reaction products. Based on bench-scale studies, Ceramicrete{trademark} technology has been implemented in the fabrication of 5-gal waste forms at ANL-West. Approximately 35 kg of real waste has been treated. The TCLP is being conducted on the samples from the 5-gal waste forms. It is expected that because the waste forms pass the limits set by the EPAs Universal Treatment Standard, they will be sent to a radioactive-waste disposal facility.« less
Atmospheric Dispersion Modeling of the February 2014 Waste Isolation Pilot Plant Release
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasstrom, John; Piggott, Tom; Simpson, Matthew
2015-07-22
This report presents the results of a simulation of the atmospheric dispersion and deposition of radioactivity released from the Waste Isolation Pilot Plant (WIPP) site in New Mexico in February 2014. These simulations were made by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL), and supersede NARAC simulation results published in a previous WIPP report (WIPP, 2014). The results presented in this report use additional, more detailed data from WIPP on the specific radionuclides released, radioactivity release amounts and release times. Compared to the previous NARAC simulations, the new simulation results in this report aremore » based on more detailed modeling of the winds, turbulence, and particle dry deposition. In addition, the initial plume rise from the exhaust vent was considered in the new simulations, but not in the previous NARAC simulations. The new model results show some small differences compared to previous results, but do not change the conclusions in the WIPP (2014) report. Presented are the data and assumptions used in these model simulations, as well as the model-predicted dose and deposition on and near the WIPP site. A comparison of predicted and measured radionuclide-specific air concentrations is also presented.« less
Waste IPSC : Thermal-Hydrologic-Chemical-Mechanical (THCM) modeling and simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeze, Geoffrey A.; Wang, Yifeng; Arguello, Jose Guadalupe, Jr.
2010-10-01
Waste IPSC Objective is to develop an integrated suite of high performance computing capabilities to simulate radionuclide movement through the engineered components and geosphere of a radioactive waste storage or disposal system: (1) with robust thermal-hydrologic-chemical-mechanical (THCM) coupling; (2) for a range of disposal system alternatives (concepts, waste form types, engineered designs, geologic settings); (3) for long time scales and associated large uncertainties; (4) at multiple model fidelities (sub-continuum, high-fidelity continuum, PA); and (5) in accordance with V&V and software quality requirements. THCM Modeling collaborates with: (1) Other Waste IPSC activities: Sub-Continuum Processes (and FMM), Frameworks and Infrastructure (and VU,more » ECT, and CT); (2) Waste Form Campaign; (3) Used Fuel Disposition (UFD) Campaign; and (4) ASCEM.« less
40 CFR 227.30 - High-level radioactive waste.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false High-level radioactive waste. 227.30 Section 227.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation. The...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation. The...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bickford, D.F.; Congdon, J.W.; Oblath, S.B.
1986-12-01
At the US Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assessmore » the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition. Transition metal hydroxide sludge contains strong passivating species for carbon steel. Washed precipitate contains organic species that lower solution pH and tend to reduce passivating films, requiring higher inhibitor concentrations than the 0.01 molar nitrite required for reactor fuel reprocessing wastes. Periodic agitation, to keep the organic phase suspended, or cathodic protection are possible alternatives to higher nitrite inhibitor concentrations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, K.B.
1999-12-08
This study examined the ion exchange capacity of crystalline silicotitanate in a simulated waste solution. The focus areas included the effect of temperature and radiation on cesium sorption capacity. The cesium is expected to be removed from high-level radioactive wastes using these ion exchange materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, G.; Yucel, V.; Desotell, L.
2006-07-01
The long-term safety of U.S. Department of Energy (DOE) low-level radioactive disposal facilities is assessed by conducting a performance assessment -- a systematic analysis that compares estimated risks to the public and the environment with performance objectives contained in DOE Manual 435.1-1, Radioactive Waste Management Manual. Before site operations, facilities design features such as final inventory, waste form characteristics, and closure cover design may be uncertain. Site operators need a modeling tool that can be used throughout the operational life of the disposal site to guide decisions regarding the acceptance of problematic waste streams, new disposal cell design, environmental monitoringmore » program design, and final site closure. In response to these needs the National Nuclear Security Administration Nevada Site Office (NNSA/NSO) has developed a decision support system for the Area 5 Radioactive Waste Management Site in Frenchman Flat on the Nevada Test Site. The core of the system is a probabilistic inventory and performance assessment model implemented in the GoldSim{sup R} simulation platform. The modeling platform supports multiple graphic capabilities that allow clear documentation of the model data sources, conceptual model, mathematical implementation, and results. The combined models have the capability to estimate disposal site inventory, contaminant concentrations in environmental media, and radiological doses to members of the public engaged in various activities at multiple locations. The model allows rapid assessment and documentation of the consequences of waste management decisions using the most current site characterization information, radionuclide inventory, and conceptual model. The model is routinely used to provide annual updates of site performance, evaluate the consequences of disposal of new waste streams, develop waste concentration limits, optimize the design of new disposal cells, and assess the adequacy of environmental monitoring programs. (authors)« less
Non-combustible waste vitrification with plasma torch melter.
Park, J K; Moon, Y P; Park, B C; Song, M J; Ko, K S; Cho, J M
2001-05-01
Non-combustible radioactive wastes generated from Nuclear Power Plants (NPPs) are composed of concrete, glass, asbestos, metal, sand, soil, spent filters, etc. The melting tests for concrete, glass, sand, and spent filters were carried out using a 60 kW plasma torch system. The surrogate wastes were prepared for the tests. Non-radioactive Co and Cs were added to the surrogates in order to simulate the radioactive waste. Several kinds of surrogate prepared by their own mixture or by single waste were melted with the plasma torch system to produce glassy waste forms. The characteristics of glassy waste forms were examined for the volume reduction factor (VRF) and the leach rate. The VRFs were estimated through the density measurement of the surrogates and the glassy waste forms, and were turned out to be 1.2-2.4. The EPA (Environmental Protection Agency) Toxicity Characteristic Leaching Procedure (TCLP) was used to determine the leach resistance for As, Ba, Hg, Pb, Cd, Cr, Se, Co, and Cs. The leaching index was calculated using the total content of each element in both the waste forms and the leachant. The TCLP tests resulted in that the leach rates for all elements except Co and Cs were lower than those of the Universal Treatment Standard (UTS) limits. There were no UTS limits for Co and Cs, and their leach rate & index from the experiments were resulted in around 10 times higher than those of other elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C. M.; Pierce, E. M.; Bannochie, C. J.
This report describes the benchscale testing with simulant and radioactive Hanford Tank Blends, mineral product characterization and testing, and monolith testing and characterization. These projects were funded by DOE EM-31 Technology Development & Deployment (TDD) Program Technical Task Plan WP-5.2.1-2010-001 and are entitled “Fluidized Bed Steam Reformer Low-Level Waste Form Qualification”, Inter-Entity Work Order (IEWO) M0SRV00054 with Washington River Protection Solutions (WRPS) entitled “Fluidized Bed Steam Reforming Treatability Studies Using Savannah River Site (SRS) Low Activity Waste and Hanford Low Activity Waste Tank Samples”, and IEWO M0SRV00080, “Fluidized Bed Steam Reforming Waste Form Qualification Testing Using SRS Low Activity Wastemore » and Hanford Low Activity Waste Tank Samples”. This was a multi-organizational program that included Savannah River National Laboratory (SRNL), THOR® Treatment Technologies (TTT), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Office of River Protection (ORP), and Washington River Protection Solutions (WRPS). The SRNL testing of the non-radioactive pilot-scale Fluidized Bed Steam Reformer (FBSR) products made by TTT, subsequent SRNL monolith formulation and testing and studies of these products, and SRNL Waste Treatment Plant Secondary Waste (WTP-SW) radioactive campaign were funded by DOE Advanced Remediation Technologies (ART) Phase 2 Project in connection with a Work-For-Others (WFO) between SRNL and TTT.« less
Risk-informed radioactive waste classification and reclassification.
Croff, Allen G
2006-11-01
Radioactive waste classification systems have been developed to allow wastes having similar hazards to be grouped for purposes of storage, treatment, packaging, transportation, and/or disposal. As recommended in the National Council on Radiation Protection and Measurements' Report No. 139, Risk-Based Classification of Radioactive and Hazardous Chemical Wastes, a preferred classification system would be based primarily on the health risks to the public that arise from waste disposal and secondarily on other attributes such as the near-term practicalities of managing a waste, i.e., the waste classification system would be risk informed. The current U.S. radioactive waste classification system is not risk informed because key definitions--especially that of high-level waste--are based on the source of the waste instead of its inherent characteristics related to risk. A second important reason for concluding the existing U.S. radioactive waste classification system is not risk informed is there are no general principles or provisions for exempting materials from being classified as radioactive waste which would then allow management without regard to its radioactivity. This paper elaborates the current system for classifying and reclassifying radioactive wastes in the United States, analyzes the extent to which the system is risk informed and the ramifications of its not being so, and provides observations on potential future direction of efforts to address shortcomings in the U.S. radioactive waste classification system as of 2004.
NASA Astrophysics Data System (ADS)
Mao, Xianhe; Qin, Zhigui; Yuan, Xiaoning; Wang, Chunming; Cai, Xinan; Zhao, Weixia; Zhao, Kang; Yang, Ping; Fan, Xiaoling
2013-11-01
A simulated radioactive soil waste containing cerium as an imitator element has been immobilized by a thermite self-propagating high-temperature synthesis (SHS) process. The compositions, structures, and element leaching rates of products with different cerium contents have been characterized. To investigate the influence of iron on the chemical stability of the immobilized products, leaching tests of samples with different iron contents with different leaching solutions were carried out. The results showed that the imitator element cerium mainly forms the crystalline phases CeAl11O18 and Ce2SiO5. The leaching rate of cerium over a period of 28 days was 10-5-10-6 g/(m2 day). Iron in the reactants, the reaction products, and the environment has no significant effect on the chemical stability of the immobilized SHS products.
Shakofsky, S.M.
1995-01-01
In order to assess the effect of filled waste disposal trenches on transport-governing soil properties, comparisons were made between profiles of undisturbed soil and disturbed soil in a simulated waste trench. The changes in soil properties induced by the construction of a simulated waste trench were measured near the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL) in the semi-arid southeast region of Idaho. The soil samples were collected, using a hydraulically- driven sampler to minimize sample disruption, from both a simulated waste trench and an undisturbed area nearby. Results show that the undisturbed profile has distinct layers whose properties differ significantly, whereas the soil profile in the simulated waste trench is. by comparison, homogeneous. Porosity was increased in the disturbed cores, and, correspondingly, saturated hydraulic conductivities were on average three times higher. With higher soil-moisture contents (greater than 0.32), unsaturated hydraulic conductivities for the undisturbed cores were typically greater than those for the disturbed cores. With lower moisture contents, most of the disturbed cores had greater hydraulic conductivities. The observed differences in hydraulic conductivities are interpreted and discussed as changes in the soil pore geometry.
The radioactive waste management policy and practice in the Czech Republic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kucerka, M.
1996-12-31
In recent period, the new Czech Atomic Law is in the final stage of preparation, and the author expects that Parliament of the Czech Republic will approve it in the first half of the year 1996. Partly the law deals with new distribution of responsibilities among bodies involved in utilization of nuclear energy and ionizing radiation, the state and local authorities. The new provisions include also radioactive waste management activities. These provisions clarify the relations between radioactive waste generators and state, and define explicitly duties of waste generators. One of the most important duties is to cover all expenses formore » radioactive waste management now and in the future, including radioactive waste disposal and decommissioning of nuclear facilities. The law establishes radioactive waste management and decommissioning funds and the new, on waste generators independent radioactive waste management organization, controlled by state, to ensure the safety of inhabitants and the environment, and a optimization of expenses. Parallel to the preparation of the law, the Ministry of Industry and Trade prepares drafts of a statute of the radioactive waste management organization and its control board, and of the methodology and rules of management the radioactive waste fund. First drafts of these documents are expected to be complete in January 1996. The paper will describe recent practice and policy of the radioactive waste management including uranium mining and milling tailings, amounts of waste and its activities, economical background, and safety. A special attention will be paid to description of expected changes in connection with the new Atomic Law and expected steps and time schedule of reorganization of the radioactive waste management structure in the Czech Republic.« less
Site characterization for LIL radioactive waste disposal in Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaconu, D. R.; Birdsell, K. H.; Witkowski, M. S.
2001-01-01
Recent studies in radioactive waste management in Romania have focussed mainly on the disposal of low and intermediate level waste from the operation of the new nuclear power plant at Cernavoda. Following extensive geological, hydrological, seismological, physical and chemical investigations, a disposal site at Saligny has been selected. This paper presents description of the site at Saligny as well as the most important results of the site characterisation. These are reflected in the three-dimensional, stratigraphical representation of the loess and clay layers and in representative parameter values for the main layers. Based on these data, the simulation of the background,more » unsaturated-zone water flow at the Saligny site, calculated by the FEHM code, is in a good agreement with the measured moisture profile.« less
Method for calcining radioactive wastes
Bjorklund, William J.; McElroy, Jack L.; Mendel, John E.
1979-01-01
This invention relates to a method for the preparation of radioactive wastes in a low leachability form by calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barariu, Gheorghe
2013-07-01
The design criteria and constraints for the development of the management strategy for radioactive waste generated from operating and decommissioning of CANDU Nuclear Units from Cernavoda NPP in Romania, present many specific aspects. The main characteristics of CANDU type waste are its high concentrations of tritium and radiocarbon. Also, the existing management strategy for radioactive waste at Cernavoda NPP provides no treatment or conditioning for radioactive waste disposal. These characteristics embodied a challenging effort, in order to select a proper strategy for radioactive waste management at present, when Romania is an EU member and a signatory country of the Jointmore » Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The helping of advanced countries in radioactive waste management, directly or into the frame of the international organizations, like IAEA, become solve the aforementioned challenges at adequate level. (authors)« less
NASA Astrophysics Data System (ADS)
Edgemon, G. L.; Danielson, M. J.; Bell, G. E. C.
1997-06-01
Underground waste tanks fabricated from mild steel store more than 253 million liters of high level radioactive waste from 50 years of weapons production at the Hanford Site. The probable modes of corrosion failures are reported as nitrate stress corrosion cracking and pitting. In an effort to develop a waste tank corrosion monitoring system, laboratory tests were conducted to characterize electrochemical noise data for both uniform and localized corrosion of mild steel and other materials in simulated waste environments. The simulated waste solutions were primarily composed of ammonium nitrate or sodium nitrate and were held at approximately 97°C. The electrochemical noise of freely corroding specimens was monitored, recorded and analyzed for periods ranging between 10 and 500 h. At the end of each test period, the specimens were examined to correlate electrochemical noise data with corrosion damage. Data characteristic of uniform corrosion and stress corrosion cracking are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singledecker, Steven J.; Jones, Scotty W.; Dorries, Alison M.
2012-07-01
In the coming fiscal years of potentially declining budgets, Department of Energy facilities such as the Los Alamos National Laboratory (LANL) will be looking to reduce the cost of radioactive waste characterization, management, and disposal processes. At the core of this cost reduction process will be choosing the most cost effective, efficient, and accurate methods of radioactive waste characterization. Central to every radioactive waste management program is an effective and accurate waste characterization program. Choosing between methods can determine what is classified as low level radioactive waste (LLRW), transuranic waste (TRU), waste that can be disposed of under an Authorizedmore » Release Limit (ARL), industrial waste, and waste that can be disposed of in municipal landfills. The cost benefits of an accurate radioactive waste characterization program cannot be overstated. In addition, inaccurate radioactive waste characterization of radioactive waste can result in the incorrect classification of radioactive waste leading to higher disposal costs, Department of Transportation (DOT) violations, Notice of Violations (NOVs) from Federal and State regulatory agencies, waste rejection from disposal facilities, loss of operational capabilities, and loss of disposal options. Any one of these events could result in the program that mischaracterized the waste losing its ability to perform it primary operational mission. Generators that produce radioactive waste have four characterization strategies at their disposal: - Acceptable Knowledge/Process Knowledge (AK/PK); - Indirect characterization using a software application or other dose to curie methodologies; - Non-Destructive Analysis (NDA) tools such as gamma spectroscopy; - Direct sampling (e.g. grab samples or Surface Contaminated Object smears) and laboratory analytical; Each method has specific advantages and disadvantages. This paper will evaluate each method detailing those advantages and disadvantages including; - Cost benefit analysis (basic materials costs, overall program operations costs, man-hours per sample analyzed, etc.); - Radiation Exposure As Low As Reasonably Achievable (ALARA) program considerations; - Industrial Health and Safety risks; - Overall Analytical Confidence Level. The concepts in this paper apply to any organization with significant radioactive waste characterization and management activities working to within budget constraints and seeking to optimize their waste characterization strategies while reducing analytical costs. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.H. Little, P.R. Maul, J.S.S. Penfoldag
2003-02-27
This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of bothmore » the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farfan, E.; Jannik, T.
2011-10-01
Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities of the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste related problems in Ukraine and the Chernobyl Exclusion Zone, and in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program. The brief overview of the radioactive waste issues in the ChEZ presented in this article demonstrates that management of radioactive waste resulting from amore » beyond-designbasis accident at a nuclear power plant becomes the most challenging and the costliest effort during the mitigation and remediation activities. The costs of these activities are so high that the provision of radioactive waste final disposal facilities compliant with existing radiation safety requirements becomes an intolerable burden for the current generation of a single country, Ukraine. The nuclear accident at the Fukushima-1 NPP strongly indicates that accidents at nuclear sites may occur in any, even in a most technologically advanced country, and the Chernobyl experience shows that the scope of the radioactive waste management activities associated with the mitigation of such accidents may exceed the capabilities of a single country. Development of a special international program for broad international cooperation in accident related radioactive waste management activities is required to handle these issues. It would also be reasonable to consider establishment of a dedicated international fund for mitigation of accidents at nuclear sites, specifically, for handling radioactive waste problems in the ChEZ. The experience of handling Chernobyl radioactive waste management issues, including large volumes of radioactive soils and complex structures of fuel containing materials can be fairly useful for the entire world's nuclear community and can help make nuclear energy safer.« less
Radioactive cobalt removal from Salem liquid radwaste with cobalt selective media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maza R.; Wilson, J.A.; Hetherington, R.
This paper reports results of benchtop tests using ion exchange material to selectively remove radioactive cobalt from high conductivity liquid radwaste at the Salem Nuclear Generating Station. The purpose of this test program is to reduce the number of curies in liquid releases without increasing the solid waste volume. These tests have identified two cobalt selective materials that together remove radioactive cobalt more effectively than the single component currently used. All test materials were preconditioned by conversion to the divalent calcium or sulfate form to simulate chemically exhausted media.
Final report on cermet high-level waste forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobisk, E.H.; Quinby, T.C.; Aaron, W.S.
1981-08-01
Cermets are being developed as an alternate method for the fixation of defense and commercial high level radioactive waste in a terminal disposal form. Following initial feasibility assessments of this waste form, consisting of ceramic particles dispersed in an iron-nickel base alloy, significantly improved processing methods were developed. The characterization of cermets has continued through property determinations on samples prepared by various methods from a variety of simulated and actual high-level wastes. This report describes the status of development of the cermet waste form as it has evolved since 1977. 6 tables, 18 figures.
Oskolkov, Boris Y; Bondarkov, Mikhail D; Zinkevich, Lubov I; Proskura, Nikolai I; Farfán, Eduardo B; Jannik, G Timothy
2011-10-01
Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities in the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste-related problems in Ukraine and the Chernobyl Exclusion Zone and, in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program.
DECOVALEX Project: from 1992 to 2007
NASA Astrophysics Data System (ADS)
Tsang, Chin-Fu; Stephansson, Ove; Jing, Lanru; Kautsky, Fritz
2009-05-01
The DECOVALEX project is a unique international research collaboration, initiated in 1992, for advancing the understanding and mathematical modelling of coupled thermo-hydro-mechanical (THM) and thermo-hydro-mechanical-chemical (THMC) processes in geological systems—subjects of importance for performance assessment of radioactive waste repositories in geological formations. From 1992 up to 2007, the project has made important progress and played a key role in the development of numerical modelling of coupled processes in fractured rocks and buffer/backfill materials. The project has been conducted by research teams supported by a large number of radioactive-waste-management organizations and regulatory authorities, including those of Canada, China, Finland, France, Japan, Germany, Spain, Sweden, UK, and the USA. Through this project, in-depth knowledge has been gained of coupled THM and THMC processes associated with nuclear waste repositories, as well as numerical simulation models for their quantitative analysis. The knowledge accumulated from this project, in the form of a large number of research reports and international journal and conference papers in the open literature, has been applied effectively in the implementation and review of national radioactive-waste-management programmes in the participating countries. This paper presents an overview of the project.
NASA Astrophysics Data System (ADS)
Uruga, Kazuyoshi; Usami, Tsuyoshi; Tsukada, Takeshi; Komamine, Satoshi; Ochi, Eiji
2014-09-01
The shear rate dependency of the viscosity of three simulated high-level radioactive waste glasses containing 0, 1.2 and 4.5 wt% platinum group metals (PGMs) was examined at a temperature range of 1173-1473 K by a rotating viscometer. Shear stress when the shear rate equals zero, i.e. yield stress, was also measured by capillary method. The viscosity of the glass containing no PGM was shear rate-independent Newtonian fluid. On the other hand, the apparent viscosity of the glasses containing PGMs increased with decreasing shear rate, and nonzero amount of yield stresses were detected from both glasses. The viscosity and yield stress of the glass containing 4.5 wt% PGMs was roughly one to two orders of magnitude greater than the glass containing 1.2 wt% PGMs. These viscoplastic properties were numerically expressed by Casson equation.
Laboratory-scale integrated ARP filter test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, M.; Burket, P.
2016-03-01
The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. There is a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. This task attempted to simulate the entire ARP process, including multiple batches (5), washing, chemical cleaning, andmore » blending the feed with heels and recycle streams. The objective of the tests was to determine whether one of these processes is causing excessive fouling of the crossflow or secondary filter. The authors conducted the tests with feed solutions containing 6.6 M sodium Salt Batch 6 simulant supernate with no MST.« less
77 FR 20077 - Request for a License To Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-03
... NUCLEAR REGULATORY COMMISSION Request for a License To Export Radioactive Waste Pursuant to 10 CFR..., 2012, radioactive waste tons of or disposal by a February 16, 2012, XW019, in the form of ash radioactive waste licensed facility 11005986. and non-conforming as contaminated in Mexico. material. ash and...
77 FR 52073 - Request To Amend a License To Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-28
... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Export Radioactive Waste Pursuant to..., 2012, July 31, 2012, XW012/ radioactive total of 5,500 materials and/or 02, 11005699. waste including tons or about radioactive various 1,000 tons waste that is materials (e.g., metal, 4,000 attributed to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter
2007-01-01
Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-formmore » leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.« less
Impeding 99Tc(IV) mobility in novel waste forms
Lee, Mal-Soon; Um, Wooyong; Wang, Guohui; ...
2016-06-30
Technetium ( 99Tc) is a long-lived radioactive fission product whose mobility in the subsurface is largely governed by its oxidation state1. Immobilization of Tc in mineral substrates is crucial for radioactive waste management and environmental remediation. Tc(IV) incorporation in spinels2, 3 has been proposed as a novel method to increase Tc retention in glass waste forms. However, experiments with Tc-magnetite under high temperature and oxic conditions showed re-oxidation of Tc(IV) to volatile pertechnetate Tc(VII)O4-.4, 5 Here we address this problem with large-scale ab initio molecular dynamics simulations and propose that elevated temperatures, 1st row transition metal dopants can significantly enhancemore » Tc retention in the order Co > Zn > Ni. Experiments with doped spinels at T=700 ºC provided quantitative confirmation of increased Tc retention in the same order predicted by theory. This work highlights the power of modern state-of-the-art simulations to provide essential insights and generate bottom-up design criteria of complex oxide materials at elevated temperatures.« less
Radioactive waste management and practice in Bangladesh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mollah, A.S.; Rahman, M.M.
1993-12-31
A large amount of low- and medium-level radioactive wastes are being generated in different parts of Bangladesh. The solid wastes are being collected in steel containers and liquid wastes are collected in plastic carboys and drums. Gaseous Ar-41 is discharged into the atmosphere through the 25 m height stack under controlled conditions after proper monitoring. The solid radioactive wastes collected are approximately 5 m{sup 3} (1988--1992) with gross beta-gamma surface dose rates from 0.30 {micro}Sv/h to 250 {micro}Sv/h. The liquid radioactive wastes are approximately 200 liters (1988--1992) with gross-beta-gamma surface dose rates from 0.30 {micro}Sv/h to 1 mSv/h. The solidmore » and liquid wastes presently being collected are mostly short lived and low level and safely stored according to international safety codes of practice. Radioactive waste packages collected during the 5-yrs study totaled 16, representing a collective volume of {approximately} 7.5 m{sup 3}. The problem of management of radioactive waste in Bangladesh is not so serious at present because the wastes arising are small now. A computerized data base has been developed to document inventory of all radioactive waste arising in the country. The current practices of collection, handling, safe storage and management of the radioactive wastes are reported in this paper.« less
Removal of radioactive contaminants by polymeric microspheres.
Osmanlioglu, Ahmet Erdal
2016-11-01
Radionuclide removal from radioactive liquid waste by adsorption on polymeric microspheres is the latest application of polymers in waste management. Polymeric microspheres have significant immobilization capacity for ionic substances. A laboratory study was carried out by using poly(N-isopropylacrylamide) for encapsulation of radionuclide in the liquid radioactive waste. There are numbers of advantages to use an encapsulation technology in radioactive waste management. Results show that polymerization step of radionuclide increases integrity of solidified waste form. Test results showed that adding the appropriate polymer into the liquid waste at an appropriate pH and temperature level, radionuclide was encapsulated into polymer. This technology may provide barriers between hazardous radioactive ions and the environment. By this method, solidification techniques became easier and safer in nuclear waste management. By using polymer microspheres as dust form, contamination risks were decreased in the nuclear industry and radioactive waste operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyrwas, R. B.
The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel exposed to two proposed chemical cleaning solutions: acidic permanganate (0.18 M nitric acid and 0.05M sodium permanganate) and caustic permanganate. (10 M sodium hydroxide and 0.05M sodium permanganate). These solutions have been proposed as a chemical cleaning solution for the retrieval ofmore » actinides in the sludge in the waste tanks, and were tested with both HM and PUREX sludge simulants at a 20:1 ratio.« less
NASA Astrophysics Data System (ADS)
Katasho, Yumi; Yasuda, Kouji; Nohira, Toshiyuki
2018-05-01
The electrochemical reduction of two types of simplified simulants of vitrified radioactive waste, simulant 1 (glass component only: SiO2, B2O3, Na2O, Al2O3, CaO, Li2O, and ZnO) and simulant 2 (also containing long-lived fission product oxides, ZrO2, Cs2O, PdO, and SeO2), was investigated in molten CaCl2 at 1103 K. The behavior of each element was predicted from the potential-pO2- diagram constructed from thermodynamic data. After the immersion of simulant 1 into molten CaCl2 without electrolysis, the dissolution of Na, Li, and Cs was confirmed by inductively coupled plasma atomic emission spectrometry and mass spectrometry analysis of the samples. The scanning electron microscopy/energy dispersive X-ray and X-ray diffraction analyses of simulants 1 and 2 electrolyzed at 0.9 V vs. Ca2+/Ca confirmed that most of SiO2 had been reduced to Si. After the electrolysis of simulants 1 and 2, Al, Zr, and Pd remained in the solid phase. In addition, SeO2 was found to remain partially in the solid phase and partially evaporate, although a small quantity dissolved into the molten salt.
[Microbiological Aspects of Radioactive Waste Storage].
Safonov, A V; Gorbunova, O A; German, K E; Zakharova, E V; Tregubova, V E; Ershov, B G; Nazina, T N
2015-01-01
The article gives information about the microorganisms inhabiting in surface storages of solid radioactive waste and deep disposal sites of liquid radioactive waste. It was shown that intensification of microbial processes can lead to significant changes in the chemical composition and physical state of the radioactive waste. It was concluded that the biogeochemical processes can have both a positive effect on the safety of radioactive waste storages (immobilization of RW macrocomponents, a decreased migration ability of radionuclides) and a negative one (biogenic gas production in subterranean formations and destruction of cement matrix).
10 CFR 72.24 - Contents of application: Technical information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C... radioactive waste, and/or reactor-related GTCC waste as appropriate, including how the ISFSI or MRS will be... of spent fuel, high-level radioactive waste, and/or reactor-related GTCC waste as appropriate for...
Code of Federal Regulations, 2010 CFR
2010-07-01
... TRANSURANIC RADIOACTIVE WASTES Environmental Standards for Management and Storage § 191.02 Definitions. Unless... the Department of Energy. (e) NWPA means the Nuclear Waste Policy Act of 1982 (Pub. L. 97-425). (f... radioactive waste, as used in this part, means high-level radioactive waste as defined in the Nuclear Waste...
Code of Federal Regulations, 2013 CFR
2013-07-01
... TRANSURANIC RADIOACTIVE WASTES Environmental Standards for Management and Storage § 191.02 Definitions. Unless... the Department of Energy. (e) NWPA means the Nuclear Waste Policy Act of 1982 (Pub. L. 97-425). (f... radioactive waste, as used in this part, means high-level radioactive waste as defined in the Nuclear Waste...
Code of Federal Regulations, 2012 CFR
2012-07-01
... TRANSURANIC RADIOACTIVE WASTES Environmental Standards for Management and Storage § 191.02 Definitions. Unless... the Department of Energy. (e) NWPA means the Nuclear Waste Policy Act of 1982 (Pub. L. 97-425). (f... radioactive waste, as used in this part, means high-level radioactive waste as defined in the Nuclear Waste...
Code of Federal Regulations, 2014 CFR
2014-07-01
... TRANSURANIC RADIOACTIVE WASTES Environmental Standards for Management and Storage § 191.02 Definitions. Unless... the Department of Energy. (e) NWPA means the Nuclear Waste Policy Act of 1982 (Pub. L. 97-425). (f... radioactive waste, as used in this part, means high-level radioactive waste as defined in the Nuclear Waste...
Development of iron phosphate ceramic waste form to immobilize radioactive waste solution
NASA Astrophysics Data System (ADS)
Choi, Jongkwon; Um, Wooyong; Choung, Sungwook
2014-09-01
The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.
Development of iron phosphate ceramic waste form to immobilize radioactive waste solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jongkwon; Um, Wooyong; Choung, Sungwook
The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions weremore » 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4,136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.« less
A review of numerical simulation of hydrothermal systems.
Mercer, J.W.; Faust, C.R.
1979-01-01
Many advances in simulating single and two-phase fluid flow and heat transport in porous media have recently been made in conjunction with geothermal energy research. These numerical models reproduce system thermal and pressure behaviour and can be used for other heat-transport problems, such as high-level radioactive waste disposal and heat-storage projects. -Authors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, Louis
This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. This report summarizes the 1st quarter of fiscal year (FY) 2017 low-level radioactive waste (LLW), mixed low-level radioactive waste (MLLW) and classified non-radioactive (CNR) shipments. There were no shipments sent for offsite treatment from a NNSS facility and returned to the NNSS this quarter of FY2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belsher, Jeremy D.; Pierson, Kayla L.; Gimpel, Rod F.
The Hanford site in southeast Washington contains approximately 207 million liters of radioactive and hazardous waste stored in 177 underground tanks. The U.S. Department of Energy's Office of River Protection is currently managing the Hanford waste treatment mission, which includes the storage, retrieval, treatment and disposal of the tank waste. Two recent studies, employing the modeling tools managed by the One System organization, have highlighted waste cleanup mission sensitivities. The Hanford Tank Waste Operations Simulator Sensitivity Study evaluated the impact that varying 21 different parameters had on the Hanford Tank Waste Operations Simulator model. It concluded that inaccuracies in themore » predicted phase partitioning of a few key components can result in significant changes in the waste treatment duration and in the amount of immobilized high-level waste that is produced. In addition, reducing the efficiency with which tank waste is retrieved and staged can increase mission duration. The 2012 WTP Tank Utilization Assessment concluded that flowsheet models need to include the latest low-activity waste glass algorithms or the waste treatment mission duration and the amount of low activity waste that is produced could be significantly underestimated. (authors)« less
Behavior of radionuclides in sanitary landfills.
Chang, K C; Chian, E S; Pohland, F G; Cross, W H; Roland, L; Kahn, B
1984-01-01
his study was undertaken to evaluate the possibility of disposing low-level radioactive waste in sanitary landfills with leachate containment to prevent environmental releases. To meet this objective, two simulated landfills, each 200 l. in volume and containing 55 kg of municipal refuse, were operated in the laboratory with simulated rainfall additions for a 9-month period to observe the extent to which radio-cobalt, -cesium, -strontium and tritium were leached into the liquid phase. One of the units was operated with leachate recycle, the other as a single pass control. Liquid samples were analyzed weekly for 3H, 58Co, 85Sr and 134Cs tracers. Weekly analyses were also performed for approximately 30 parameters to define the degree of stabilization of the waste. Major parameters included BOD, COD, pH and concentrations of specific organics, metals and gases. Concentrations of stable cobalt, strontium and cesium were also measured periodically. Soluble radioactivity levels in both systems were reduced by factors of 50 for 58Co, 5 for 85Sr and 7 for 134Cs, taking radioactive decay and dilution into account. Some radionuclide removal from the liquid phase was associated with major chemical changes in the landfills that occurred within 80 days for the control system and within 130 days for the recycle unit. Observed acid, sulfide, and CO2 concentrations suggested mechanisms for removing some of the radionuclides from leachate. Detection of 3H in the off-gas indicated that less than 1% of tritiated waste became airborne. The waste in the leachate recycle unit was more completely stabilized than in the control unit.
Transuranic solid waste management programs. Progress report, July--December 1975
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-09-01
Progress is reported for three transuranic solid waste management programs funded at the Los Alamos Scientific Laboratory (LASL) by the Energy Research and Development Administration (ERDA) Division of Fuel Cycle and Production (NFCP). Under the Transuranic Waste Research and Development Program, continued studies have shown the potential attractiveness of fiber drums as an acceptable substitute for the current mild steel storage containers. Various fire retardants have been evaluated, with one indicating significant ability to inhibit fire propagation. Continued radiolysis studies, under laboratory and field conditions, continue to reaffirm earlier LASL results indicating no significant hazard from radiolytic reactions, assuming nomore » change in current allowable loadings. Care must be exercised to differentiate between radiolytic and chemical reactions. Other efforts have identified a modification of chemical processing to reduce the amounts of plutonium requiring retrievable storage. Studies are also in progress to enhance the sensitivity of the LASL MEGAS assay system. The Transuranic-Contaminated Solid Waste Treatment Development Facility building was 72 percent complete as of December 31, 1975, which is in accord with the existing schedule. Procurement of process components is also on schedule. Certain modifications to the facility have been made, and various pre-facility experiments on waste container handling and processing have been completed. The program for the Evaluation of Transuranic-Contaminated Radioactive Waste Disposal Areas continued development of various computer modules for simulation of radionuclide transport within the biosphere. In addition, program staff contributed to an ERDA document on radioactive waste management through the preparation of a report on burial of radioactive waste at ERDA-contractor and commercial sites.« less
Declassification of radioactive water from a pool type reactor after nuclear facility dismantling
NASA Astrophysics Data System (ADS)
Arnal, J. M.; Sancho, M.; García-Fayos, B.; Verdú, G.; Serrano, C.; Ruiz-Martínez, J. T.
2017-09-01
This work is aimed to the treatment of the radioactive water from a dismantled nuclear facility with an experimental pool type reactor. The main objective of the treatment is to declassify the maximum volume of water and thus decrease the volume of radioactive liquid waste to be managed. In a preliminary stage, simulation of treatment by the combination of reverse osmosis (RO) and evaporation have been performed. Predicted results showed that the combination of membrane and evaporation technologies would result in a volume reduction factor higher than 600. The estimated time to complete the treatment was around 650 h (25-30 days). For different economical and organizational reasons which are explained in this paper, the final treatment of the real waste had to be reduced and only evaporation was applied. The volume reduction factor achieved in the real treatment was around 170, and the time spent for treatment was 194 days.
Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi
2013-07-01
Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these includemore » the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning Directorate (IDD) is responsible for decommissioning activities. The IDD and the RWTMD work together on decommissioning projects. The IDD has developed plans and has completed decommissioning of the GeoPilot Facility in Baghdad and the Active Metallurgical Testing Laboratory (LAMA) in Al-Tuwaitha. Given this experience, the IDD has initiated work on more dangerous facilities. Plans are being developed to characterize, decontaminate and decommission the Tamuz II Research Reactor. The Tammuz Reactor was destroyed by an Israeli air-strike in 1981 and the Tammuz II Reactor was destroyed during the First Gulf War in 1991. In addition to being responsible for managing the decommissioning wastes, the RWTMD is responsible for more than 950 disused sealed radioactive sources, contaminated debris from the first Gulf War and (approximately 900 tons) of naturally-occurring radioactive materials wastes from oil production in Iraq. The RWTMD has trained staff, rehabilitated the Building 39 Radioactive Waste Storage building, rehabilitated portions of the French-built Radioactive Waste Treatment Station, organized and secured thousands of drums of radioactive waste organized and secured the stores of disused sealed radioactive sources. Currently, the IDD and the RWTMD are finalizing plans for the decommissioning of the Tammuz II Research Reactor. (authors)« less
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...
SIMULANT DEVELOPMENT FOR SAVANNAH RIVER SITE HIGH LEVEL WASTE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, M; Russell Eibling, R; David Koopman, D
2007-09-04
The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste (HLW) for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides (primarily iron, aluminum, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, and sulfate). The HLW is processed in large batches through DWPF; DWPF has recently completed processing Sludge Batch 3 (SB3) and is currently processing Sludge Batch 4 (SB4). The composition of metal species in SB4 is shown in Table 1 as a function of the ratiomore » of a metal to iron. Simulants remove radioactive species and renormalize the remaining species. Supernate composition is shown in Table 2.« less
40 CFR 268.34 - Waste specific prohibitions-toxicity characteristic metal wastes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... characteristic wastes from elemental phosphorus processing; radioactive wastes mixed with EPA Hazardous wastes... identified characteristic wastes from elemental phosphorus processing, radioactive waste mixed with D004-D011...
40 CFR 268.34 - Waste specific prohibitions-toxicity characteristic metal wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... characteristic wastes from elemental phosphorus processing; radioactive wastes mixed with EPA Hazardous wastes... identified characteristic wastes from elemental phosphorus processing, radioactive waste mixed with D004-D011...
Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.
Osmanlioglu, Ahmet Erdal
2014-05-01
In this study, the potential utilization of fly ash was investigated as an additive in solidification process of radioactive waste sludge from research reactor. Coal formations include various percentages of natural radioactive elements; therefore, coal fly ash includes various levels of radioactivity. For this reason, fly ashes have to be evaluated for potential environmental implications in case of further usage in any construction material. But for use in solidification of radioactive sludge, the radiological effects of fly ash are in the range of radioactive waste management limits. The results show that fly ash has a strong fixing capacity for radioactive isotopes. Specimens with addition of 5-15% fly ash to concrete was observed to be sufficient to achieve the target compressive strength of 20 MPa required for near-surface disposal. An optimum mixture comprising 15% fly ash, 35% cement, and 50% radioactive waste sludge could provide the solidification required for long-term storage and disposal. The codisposal of radioactive fly ash with radioactive sludge by solidification decreases the usage of cement in solidification process. By this method, radioactive fly ash can become a valuable additive instead of industrial waste. This study supports the utilization of fly ash in industry and the solidification of radioactive waste in the nuclear industry.
78 FR 53793 - Request To Amend a License To Import Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-30
... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Import Radioactive Waste Pursuant to... (Class A total of 5,500 ``Foreign Suppliers.'' No IW022/04 radioactive tons of low- other changes to the existing 11005700 waste). level waste). license which authorizes the import of low-level waste for...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The papers in this document comprise the proceedings of the Department of Energy's Twelfth Annual Low-Level Radioactive Waste Management Conference, which was held in Chicago, Illinois, on August 28 and 29, 1990. General subjects addressed during the conference included: mixed waste, low-level radioactive waste tracking and transportation, public involvement, performance assessment, waste stabilization, financial assurance, waste minimization, licensing and environmental documentation, below-regulatory-concern waste, low-level radioactive waste temporary storage, current challenges, and challenges beyond 1990.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, D.K.; Gitt, M.; Williams, G.A.
1991-07-01
The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations.more » This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.« less
Waste minimization for commercial radioactive materials users generating low-level radioactive waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, D.K.; Gitt, M.; Williams, G.A.
1991-07-01
The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations.more » This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.« less
Evaluation of Terrorist Interest in Radioactive Wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFee, J.N.; Langsted, J.M.; Young, M.E.
2006-07-01
Since September 11, 2001, intelligence gathered from Al Qaeda training camps in Afghanistan, and the ensuing terrorist activities, indicates nuclear material security concerns are valid. This paper reviews available information on sealed radioactive sources thought to be of interest to terrorists, and then examines typical wastes generated during environmental management activities to compare their comparative 'attractiveness' for terrorist diversion. Sealed radioactive sources have been evaluated in numerous studies to assess their security and attractiveness for use as a terrorist weapon. The studies conclude that tens of thousands of curies in sealed radioactive sources are available for potential use in amore » terrorist attack. This risk is mitigated by international efforts to find lost and abandoned sources and bring them under adequate security. However, radioactive waste has not received the same level of scrutiny to ensure security. This paper summarizes the activity and nature of radioactive sources potentially available to international terrorists. The paper then estimates radiation doses from use of radioactive sources as well as typical environmental restoration or decontamination and decommissioning wastes in a radioactive dispersal device (RDD) attack. These calculated doses indicate that radioactive wastes are, as expected, much less of a health risk than radioactive sources. The difference in radiation doses from wastes used in an RDD are four to nine orders of magnitude less than from sealed sources. We then review the International Atomic Energy Agency (IAEA) definition of 'dangerous source' in an adjusted comparison to common radioactive waste shipments generated in environmental management activities. The highest waste dispersion was found to meet only category 1-3.2 of the five step IAEA scale. A category '3' source by the IAEA standard 'is extremely unlikely, to cause injury to a person in the immediate vicinity'. The obvious conclusion of the analysis is that environmental management generated radioactive wastes have substantially less impact than radioactive sources if dispersed by terrorist-induced explosion or fire. From a health standpoint, the impact is very small. However, there is no basis to conclude that wastes are totally unattractive for use in a disruptive or economic damage event. Waste managers should be cognizant of this potential and take measures to ensure security of stored waste and waste shipments. (authors)« less
Thermal Predictions of the Cooling of Waste Glass Canisters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donna Post Guillen
2014-11-01
Radioactive liquid waste from five decades of weapons production is slated for vitrification at the Hanford site. The waste will be mixed with glass forming additives and heated to a high temperature, then poured into canisters within a pour cave where the glass will cool and solidify into a stable waste form for disposal. Computer simulations were performed to predict the heat rejected from the canisters and the temperatures within the glass during cooling. Four different waste glass compositions with different thermophysical properties were evaluated. Canister centerline temperatures and the total amount of heat transfer from the canisters to themore » surrounding air are reported.« less
Code of Federal Regulations, 2011 CFR
2011-01-01
... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.1 Purpose. The... receive, transfer, and possess power reactor spent fuel, power reactor-related Greater than Class C (GTCC... reactor spent fuel, high-level radioactive waste, power reactor-related GTCC waste, and other radioactive...
Code of Federal Regulations, 2010 CFR
2010-01-01
... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.1 Purpose. The... receive, transfer, and possess power reactor spent fuel, power reactor-related Greater than Class C (GTCC... reactor spent fuel, high-level radioactive waste, power reactor-related GTCC waste, and other radioactive...
Code of Federal Regulations, 2010 CFR
2010-01-01
.... Emergency access means access to an operating non-Federal or regional low-level radioactive waste disposal... regional low-level radioactive waste disposal facility or facilities for a period not to exceed 180 days... waste. Non-Federal disposal facility means a low-level radioactive waste disposal facility that is...
Radioactive waste management in a hospital.
Khan, Shoukat; Syed, At; Ahmad, Reyaz; Rather, Tanveer A; Ajaz, M; Jan, Fa
2010-01-01
Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-12-31
This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.
DWPF Safely Dispositioning Liquid Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-01-05
The only operating radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid radioactive waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called “vitrification,” as the preferred option for treating liquid radioactive waste.
Simulated Waste Testing Of Glycolate Impacts On The 2H-Evaporator System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martino, C. J.
2013-08-13
Glycolic acid is being studied as a total or partial replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste tank farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the tank farm were addressed via a literature review, but several outstanding issues remained. This report documents the non-radioactive simulant tests impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The testing for which non-radioactive simulants could be used involved the following: the partitioning ofmore » glycolate into the evaporator condensate, the impacts of glycolate on metal solubility, and the impacts of glycolate on the formation and dissolution of sodium aluminosilicate scale within the evaporator. The following are among the conclusions from this work: Evaporator condensate did not contain appreciable amounts of glycolate anion. Of all tests, the highest glycolate concentration in the evaporator condensate was 0.38 mg/L. A significant portion of the tests had glycolate concentration in the condensate at less than the limit of quantification (0.1 mg/L). At ambient conditions, evaporator testing did not show significant effects of glycolate on the soluble components in the evaporator concentrates. Testing with sodalite solids and silicon containing solutions did not show significant effects of glycolate on sodium aluminosilicate formation or dissolution.« less
ERIC Educational Resources Information Center
Fox, Charles H.
This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. This booklet deals with the handling, processing and disposal of radioactive wastes. Among the topics discussed are: The Nature of Radioactive Wastes; Waste Management; and Research and Development. There are…
DOE Office of Scientific and Technical Information (OSTI.GOV)
N. R. Mann; T. A. Todd; K. N. Brewer
1999-04-01
Development of waste treatment processes for the remediation of radioactive wastes is currently underway. A number of experiments were performed at the Idaho Nuclear Technology and Environmental Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) with the commercially available sorbent material, IONSIV IE-911, crystalline silicotitanate (CST), manufactured by UOP LLC. The purpose of this work was to evaluate the removal efficiency, sorbent capacity and selectivity of CST for removing Cs-137 from actual and simulated acidic tank waste in addition to dissolved pilot-plant calcine solutions. The scope of this work included batch contact tests performed with non-radioactivemore » dissolved Al and Run-64 pilot plant calcines in addition to simulants representing the average composition of tank waste. Small-scale column tests were performed with actual INEEL tank WM-183 waste, tank waste simulant, dissolved Al and Run-64 pilot plant calcine solutions. Small-scale column experiments using actual WM-183 tank waste resulted in fifty-percent Cs-137 breakthrough at approximately 589 bed volumes. Small-scale column experiments using the tank waste simulant displayed fifty-percent Cs-137 breakthrough at approximately 700 bed volumes. Small-scale column experiments using dissolved Al calcine simulant displayed fifty-percent Cs-137 breakthrough at approximately 795 bed volumes. Column experiments with dissolved Run-64, pilot plant calcine did not reach fifty-percent breakthrough throughout the test.« less
Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials
Pierce, Robert A.; Smith, James R.; Ramsey, William G.; Cicero-Herman, Connie A.; Bickford, Dennis F.
1999-01-01
The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.
NASA Astrophysics Data System (ADS)
Gedeon, M.; Vandersteen, K.; Rogiers, B.
2012-04-01
Radionuclide concentrations in aquifers represent an important indicator in estimating the impact of a planned surface disposal for low and medium level short-lived radioactive waste in Belgium, developed by the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS), who also coordinates and leads the corresponding research. Estimating aquifer concentrations for individual radionuclides represents a computational challenge because (a) different retardation values are applied to different hydrogeologic units and (b) sequential decay reactions with radionuclides of various sorption characteristics cause long computational times until a steady-state is reached. The presented work proposes a methodology reducing substantially the computational effort by postprocessing the results of a prior non-reactive tracer simulation. These advective transport results represent the steady-state concentration - source flux ratio and the break-through time at each modelling cell. These two variables are further used to estimate the individual radionuclide concentrations by (a) scaling the steady-state concentrations to the source fluxes of individual radionuclides; (b) applying the radioactive decay and ingrowth in a decay chain; (c) scaling the travel time by the retardation factor and (d) applying linear sorption. While all steps except (b) require solving simple linear equations, applying ingrowth of individual radionuclides in decay chains requires solving the differential Bateman equation. This equation needs to be solved once for a unit radionuclide activity at all arrival times found in the numerical grid. The ratios between the parent nuclide activity and the progeny activities are then used in the postprocessing. Results are presented for discrete points and examples of radioactive plume maps are given. These results compare well to the results achieved using a full numerical simulation including the respective chemical reaction processes. Although the proposed method represents a fast way to estimate the radionuclide concentrations without performing timely challenging simulations, its applicability has some limits. The radionuclide source needs to be assumed constant during the period of achieving a steady-state in the model. Otherwise, the source variability of individual radionuclides needs to be modelled using a numerical simulation. However, such a situation only occurs in cases of source variability in a period until steady-state is reached and such a simulation takes a relatively short time. The proposed method enables an effective estimation of individual radionuclide concentrations in the frame of performance assessment of a radioactive waste disposal. Reducing the calculation time to a minimum enables performing sensitivity and uncertainty analyses, testing alternative models, etc. thus enhancing the overall quality of the modelling analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, E.E.
Molten wax shows considerable promise as a fixative and dust control agent in demolition of radioactively contaminated facilities. Sticky molten wax, modified with special surfactants and wetting agents, is capable of not only coating materials but also penetrating into friable or dusty materials and making them incapable of becoming airborne during demolition. Wax also shows significant promise for stabilization of waste residuals that may be contained in buildings undergoing demolition. Some of the building materials that have been tested to date include concrete, wood, sheet-rock, fiber insulation, lime, rock, and paper. Protective clothing, clay, sand, sulfur, and bentonite clay havemore » been tested as surrogates for certain waste materials that may be encountered during building demolition. The paper describes several potential applications of molten wax for dust control in demolition of radioactive contaminated facilities. As a case-study, this paper describes a research test performed for a pipeline closure project being completed by the Idaho Cleanup Project at the Idaho National Laboratory. The project plans to excavate and remove a section of buried Duriron drain piping containing highly radioactive and friable and 'flighty' waste residuals. A full-scale pipeline mockup containing simulated waste was buried in sand to simulate the direct-buried subsurface condition of the subject piping. The pipeline was pre-heated by drawing hot air through the line with a HEPA vacuum blower unit. Molten wax was pumped into the line and allowed to cool. The line was then broken apart in various places to evaluate the permeation performance of the wax. The wax fully permeated all the surrogate materials rendering them non-friable with a consistency similar to modeling clay. Based on the performance during the mockup, it is anticipated that the wax will be highly effective in controlling the spread of radiological contamination during pipe demolition activities. A larger test was completed this year to simulate the work in more realistic conditions. (authors)« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARD CONTRACT FOR DISPOSAL OF SPENT NUCLEAR FUEL AND/OR HIGH-LEVEL RADIOACTIVE WASTE General § 961.1... fuel (SNF) and high-level radioactive waste (HLW) as provided in section 302 of the Nuclear Waste... title to, transport, and dispose of spent nuclear fuel and/or high-level radioactive waste delivered to...
78 FR 53793 - Request To Amend a License To Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-30
... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Export Radioactive Waste Pursuant to... total of 5,500 ``Ultimate Foreign XW012/04 radioactive tons of low- Consignee(s).'' No other 11005699 waste). level waste). changes to the existing license which authorizes the export of non-conforming...
76 FR 58543 - Draft Policy Statement on Volume Reduction and Low-Level Radioactive Waste Management
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-21
...-Level Radioactive Waste Management AGENCY: Nuclear Regulatory Commission. ACTION: Reopening of comment... for public comment a draft Policy Statement on Volume Reduction and Low-Level Radioactive Waste Management that updates the 1981 Policy Statement on Low-Level Waste Volume Reduction. The revised Policy...
Transporting Radioactive Waste: An Engineering Activity. Grades 5-12.
ERIC Educational Resources Information Center
HAZWRAP, The Hazardous Waste Remedial Actions Program.
This brochure contains an engineering activity for upper elementary, middle school, and high school students that examines the transportation of radioactive waste. The activity is designed to inform students about the existence of radioactive waste and its transportation to disposal sites. Students experiment with methods to contain the waste and…
Prudic, David E.; Dennehy, Kevin F.; Bedinger, Marion S.; Stevens, Peter R.
1990-01-01
Engineering practices, including the excavation of trenches, placement of waste, nature of waste forms, backfilling procedures and materials, and trench-cover construction and materials at low-level radioactive-waste repository sites greatly affect the geohydrology of the sites. Engineering practices are dominant factors in eventual stability and isolation of the waste. The papers presented relating to Topic I were discussions of the hydrogeologic setting at existing low-level radioactive-waste repository sites and changes in the hydrology induced by site operations. Papers summarizing detailed studies presented at this workshop include those at sites near Sheffield, Ill.; Oak Ridge National Laboratory, Tenn.; West Valley, N.Y.; Maxey Flats, Ky.; Barnwell, S.C.; and Beatty, Nev.
[Investigation of radioactivity measurement of medical radioactive waste].
Koizumi, Kiyoshi; Masuda, Kazutaka; Kusakabe, Kiyoko; Kinoshita, Fujimi; Kobayashi, Kazumi; Yamamoto, Tetsuo; Kanaya, Shinichi; Kida, Tetsuo; Yanagisawa, Masamichi; Iwanaga, Tetsuo; Ikebuchi, Hideharu; Kusama, Keiji; Namiki, Nobuo; Okuma, Hiroshi; Fujimura, Yoko; Horikoshi, Akiko; Tanaka, Mamoru
2004-11-01
To explore the possibility of which medical radioactive wastes could be disposed as general wastes after keeping them a certain period of time and confirming that their radioactivity reach a background level (BGL), we made a survey of these wastes in several nuclear medicine facilities. The radioactive wastes were collected for one week, packed in a box according to its half-life, and measured its radioactivity by scintillation survey meter with time. Some wastes could reach a BGL within 10 times of half-life, but 19% of the short half-life group (group 1) including 99mTc and 123I, and 8% of the middle half-life group (group 2) including 67Ga, (111)In, and 201Tl did not reach a BGL within 20 times of half-life. A reason for delaying the time of reaching a BGL might be partially attributed to high initial radiation dose rate or heavy package weight. However, mixing with the nuclides of longer half-life was estimated to be the biggest factor affecting this result. When disposing medical radioactive wastes as general wastes, it is necessary to avoid mixing with radionuclide of longer half-life and confirm that it reaches a BGL by actual measurement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-12-31
This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.
78 FR 9746 - Request To Amend a License To Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-11
... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Export Radioactive Waste Pursuant to... radioactive disposition. Amend which was imported mixed waste) in to: 1) add four from Canada under NRC a....; docket No. country Diversified Scientific Class A radioactive Up to a maximum Return of non- Canada...
76 FR 53980 - Request for a License To Import Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-30
... NUCLEAR REGULATORY COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR... Hitachi Nuclear Energy, LLC. Radioactive waste Up to 210 Cobalt- Recycling, China August 1, 2011, August 5, consisting of 60 sealed forensic testing 2011, IW030. used Cobalt-60 sources. or storage and radioactive...
75 FR 76054 - Detroit Edison Company Fermi, Unit 2; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-07
... licensee anticipates using rail to ship radioactive waste. From the licensee's experience with radioactive..., section III.E, to investigate and file a report to the NRC if shipments of low-level radioactive waste are... exemption would extend the time period that can elapse during shipments of low-level radioactive waste...
DWPF Safely Dispositioning Liquid Waste
None
2018-06-21
The only operating radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid radioactive waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called âvitrification,â as the preferred option for treating liquid radioactive waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spence, R.D.; Godbee, H.W.; Tallent, O.K.
1989-01-01
The analysis of leaching data using analytical solutions based on mass transport theory and empiricism is presented. The waste forms leached to generate the data used in this analysis were prepared with a simulated radioactive waste slurry with traces of potassium ion, manganese ions, carbonate ions, phosphate ions, and sulfate ions solidified with several blends of cementitious materials. Diffusion coefficients were estimated from the results of ANS - 16.1 tests. Data of fraction leached versus time is presented and discussed.
Robertson, J.B.
1974-01-01
Industrial and low-level radioactive liquid wastes at the National Reactor Testing Station (NRTS) in Idaho have been disposed to the Snake River Plain aquifer since 1952. Monitoring studies have indicated that tritium and chloride have dispersed over a 15-square mile (39-square kilometer) area of the aquifer in low but detectable concentrations and have only migrated as far as 5 miles (8 kilometers) downgradient from discharge points. The movement of cationic waste solutes, particularly 90Sr and 137Cs, has been significantly retarded due to sorption phenomena, principally ion exchange. 137Cs has shown no detectable migration in the aquifer and 90Sr has migrated only about 1.5 miles (2 kilometers) from the Idaho Chemical Processing Plant (ICPP) discharge well, and is detectable over an area of only 1.5 square miles ( 4 square kilometers) of the aquifer. Digital modeling techniques have been applied successfully to the analysis of the complex waste-transport system by utilizing numerical solution of the coupled equations of groundwater motion and mass transport. The model includes the effects of convective transport, flow divergence, two-dimensional hydraulic dispersion, radioactive decay, and reversible linear sorption. The hydraulic phase of the model uses the iterative, alternating direction, implicit finite-difference scheme to solve the groundwater flow equations, while the waste-transport phase uses a modified method of characteristics to solve the solute transport equations simulated by the model. The modeling results indicate that hydraulic dispersion (especially transverse) is a much more significant influence than previously suggested by earlier studies. The model has been used to estimate future waste migration patterns for varied assumed hydrological and waste conditions up through the year 2000. The hydraulic effects of recharge from the Big Lost River have an important (but not predominant) influence on the simulated future migration patterns. For the assumed conditions, the model indicates that detectable concentrations of waste chloride and tritium could move as much as 15 miles (24 kilometers) downgradient from the original discharge points by the year 2000. However, the model shows 90Sr moving only 2 to 3 miles (3 to 5 kilometers) downgradient in the same time. The model may also be used to estimate the effects of the various future waste disposal practices and hydrologic conditions on subsequent migration of waste products.
Watanabe, Hiroshi; Yamaguchi, Ichiro; Kida, Tetsuo; Hiraki, Hitoshi; Fujibuchi, Toshioh; Maehara, Yoshiaki; Tsukamoto, Atsuko; Koizumi, Mitsue; Kimura, Yumi; Horitsugi, Genki
2013-03-01
Decay-in-storage for radioactive waste including that of nuclear medicine has not been implemented in Japan. Therefore, all medical radioactive waste is collected and stored at the Japan Radioisotope Association Takizawa laboratory, even if the radioactivity has already decayed out. To clarify the current situation between Takizawa village and Takizawa laboratory, we investigated the radiation management status and risk communication activities at the laboratory via a questionnaire and site visiting survey in June 2010. Takizawa laboratory continues to maintain an interactive relationship with local residents. As a result, Takizawa village permitted the acceptance of new medical radioactive waste containing Sr-89 and Y-90. However, the village did not accept any non-medical radioactive waste such as waste from research laboratories. To implement decay-in-storage in Japan, it is important to obtain agreement with all stakeholders. We must continue to exert sincere efforts to acquire the trust of all stakeholders.
Kansas State Briefing Book on low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-07-01
The Kansas State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Kansas. The profile is the result of a survey of radioactive material licensees in Kansas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developedmore » through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Kansas.« less
EXAFS/XANES studies of plutonium-loaded sodalite/glass waste forms
NASA Astrophysics Data System (ADS)
Richmann, Michael K.; Reed, Donald T.; Kropf, A. Jeremy; Aase, Scott B.; Lewis, Michele A.
2001-09-01
A sodalite/glass ceramic waste form is being developed to immobilize highly radioactive nuclear wastes in chloride form, as part of an electrochemical cleanup process. Two types of simulated waste forms were studied: where the plutonium was alone in an LiCl/KCl matrix and where simulated fission-product elements were added representative of the electrometallurgical treatment process used to recover uranium from spent nuclear fuel also containing plutonium and a variety of fission products. Extended X-ray absorption fine structure spectroscopy (EXAFS) and X-ray absorption near-edge spectroscopy (XANES) studies were performed to determine the location, oxidation state, and particle size of the plutonium within these waste form samples. Plutonium was found to segregate as plutonium(IV) oxide with a crystallite size of at least 4.8 nm in the non-fission-element case and 1.3 nm with fission elements present. No plutonium was observed within the sodalite in the waste form made from the plutonium-loaded LiCl/KCl eutectic salt. Up to 35% of the plutonium in the waste form made from the plutonium-loaded simulated fission-product salt may be segregated with a heavy-element nearest neighbor other than plutonium or occluded internally within the sodalite lattice.
Choudri, B S; Charabi, Yassine; Baawain, Mahad; Ahmed, Mushtaque
2017-10-01
Papers reviewed herein present a general overview of radioactive waste related activities around the world in 2016. The current reveiw include studies related to safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation. Further, the review highlights on management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in ecosystem, water and soil alongwith other progress made in the management of radioactive wastes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osmanlioglu, Ahmet Erdal
Pre-treatment of radioactive waste is the first step in waste management program that occurs after waste generation from various applications in Turkey. Pre-treatment and characterization practices are carried out in Radioactive Waste Management Unit (RWMU) at Cekmece Nuclear Research and Training Center (CNRTC) in Istanbul. This facility has been assigned to take all low-level radioactive wastes generated by nuclear applications in Turkey. The wastes are generated from research and nuclear applications mainly in medicine, biology, agriculture, quality control in metal processing and construction industries. These wastes are classified as low- level radioactive wastes. Pre-treatment practices cover several steps. In thismore » paper, main steps of pre-treatment and characterization are presented. Basically these are; collection, segregation, chemical adjustment, size reduction and decontamination operations. (author)« less
78 FR 26812 - Request To Amend a License To Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-08
... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Export Radioactive Waste Pursuant to...; XW012/03; 11005699. A radioactive total of 5,500 Energy of Canada waste). tons of low- Limited facilities as level waste). ``Ultimate Foreign Consignee(s).'' No other changes to the existing license which...
78 FR 26813 - Request To Amend a License To Import Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-08
... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Import Radioactive Waste Pursuant to..., 2013, April 23, material (Class to a maximum the licensee name 2013, IW022/03, 11005700. A radioactive total of 5,500 from ``Perma-Fix waste). tons of low- Environmental level waste). Services, Inc.'' to...
10 CFR 62.12 - Contents of a request for emergency access: General information.
Code of Federal Regulations, 2010 CFR
2010-01-01
... EMERGENCY ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission... the person(s) or company(ies) generating the low-level radioactive waste for which the determination...) Certification that the radioactive waste for which emergency access is requested is low-level radioactive waste...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
... High-Level Radioactive Waste AGENCY: U.S. Nuclear Regulatory Commission. ACTION: Public meeting... Nuclear Fuel, High-Level Radioactive Waste, and Reactor-Related Greater Than Class C Waste,'' and 73... Spent Nuclear Fuel (SNF) and High-Level Radioactive Waste (HLW) storage facilities. The draft regulatory...
Radioactive Waste Management in A Hospital
Khan, Shoukat; Syed, AT; Ahmad, Reyaz; Rather, Tanveer A.; Ajaz, M; Jan, FA
2010-01-01
Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations. PMID:21475524
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, E.E.; Welty, B.D.
Molten wax shows considerable promise as a fixative and dust control agent in demolition of radioactively contaminated facilities. Sticky molten wax, modified with special surfactants and wetting agents, is capable of not only coating materials but also penetrating into friable or dusty materials and making them incapable of becoming airborne during demolition. Wax also shows significant promise for stabilization of waste residuals that may be contained in buildings undergoing demolition. Some of the building materials that have been tested to date include concrete, wood, sheet rock, fiber insulation, lime, rock, and paper. Protective clothing, clay, sand, sulfur, and bentonite claymore » have been tested as surrogates for certain waste materials that may be encountered during building demolition. The paper describes several potential applications of molten wax for dust control in demolition of radioactive contaminated facilities. As a case-study, this paper describes a research test performed for a pipeline closure project being completed by the Idaho Cleanup Project at the Idaho National Laboratory. The project plans to excavate and remove a section of buried Duriron drain piping containing highly radioactive and friable and 'flighty' waste residuals. A full-scale pipeline mockup containing simulated waste was buried in sand to simulate the direct buried subsurface condition of the subject piping. The pipeline was pre-heated by drawing hot air through the line with a HEPA vacuum blower unit. Molten wax was pumped into the line and allowed to cool. The line was then broken apart in various places to evaluate the permeation performance of the wax. The wax fully permeated all the surrogate materials rendering them non-friable with a consistency similar to modeling clay. Based on the performance during the mockup, it is anticipated that the wax will be highly effective in controlling the spread of radiological contamination during pipe demolition activities. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobi, Lawrence R.
2012-07-01
In 1979, radioactive waste disposal was an important national issue. State governors were closing the gates on the existing low-level radioactive waste disposal sites and the ultimate disposition of spent fuel was undecided. A few years later, the United States Congress thought they had solved both problems by passing the Low-Level Radioactive Waste Policy Act of 1981, which established a network of regional compacts for low-level radioactive waste disposal, and by passing the Nuclear Waste Policy Act of 1982 to set out how a final resting place for high-level waste would be determined. Upon passage of the acts, State, Regionalmore » and Federal officials went to work. Here we are some 30 years later with little to show for our combined effort. The envisioned national repository for high-level radioactive waste has not materialized. Efforts to develop the Yucca Mountain high-level radioactive waste disposal facility were abandoned after spending $13 billion on the failed project. Recently, the Blue Ribbon Commission on America's Nuclear Future issued its draft report that correctly concludes the existing policy toward high-level nuclear waste is 'all but completely broken down'. A couple of new low-level waste disposal facilities have opened since 1981, but neither were the result of efforts under the act. What the Act has done is interject a system of interstate compacts with a byzantine interstate import and export system to complicate the handling of low-level radioactive waste, with attendant costs. As this paper is being written in the fourth-quarter of 2011, after 30 years of political and bureaucratic turmoil, a new comprehensive low-level waste disposal facility at Andrews Texas is approaching its initial operating date. The Yucca Mountain project might be completed or it might not. The US Nuclear Regulatory Commission is commencing a review of their 1981 volume reduction policy statement. The Department of Energy after 26 years has yet to figure out how to implement its obligations under the 1985 amendments to the Low-Level Radioactive Waste Policy Act. But, the last three decades have not been a total loss. A great deal has been learned about radioactive waste disposal since 1979 and the efforts of the public and private sector have shaped and focused the work to be done in the future. So, this lecturer asks the question: 'What have we wrought?' to which he provides his perspective and his recommendations for radioactive waste management policy for the next 30 years. (author)« less
Status of the waste assay for nonradioactive disposal (WAND) project
NASA Astrophysics Data System (ADS)
Arnone, Gaetano L.; Foster, Lynn A.; Foxx, Charles L.; Hagan, Roland C.; Martin, E. R.; Myers, Steven C.; Parker, Jack L.
1999-01-01
The WAND (Waste Assay for Nonradioactive Disposal) system scans thought-to-be-clean, low-density waste (mostly paper and plastics) to verify the absence of radioactive contaminants at very low-levels. Much of the low-density waste generated in radiologically controlled areas, formally considered `suspect' radioactive, is now disposed more cheaply at the Los Alamos County Landfill as opposed to the LANL Radioactive Waste Landfill.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mollah, A.S.
Low level radioactive waste (LLW) is generated from various nuclear applications in Bangladesh. The major sources of radioactive waste in the country are at present: (a) the 3 MW TRIGA Mark-II research reactor; (b) the radioisotope production facility; (c) the medical, industrial and research facilities that use radionuclides; and (d) the industrial facility for processing monazite sands. Radioactive waste needs to be safely managed because it is potentially hazardous to human health and the environment. According to Nuclear Safety and Radiation Control Act-93, the Bangladesh Atomic Energy Commission (BAEC) is the governmental body responsible for the receipt and final disposalmore » of radioactive wastes in the whole country. Waste management policy has become an important environmental, social, and economical issue for LLW in Bangladesh. Policy and strategies will serve as a basic guide for radioactive waste management in Bangladesh. The waste generator is responsible for on-site collection, conditioning and temporary storage of the waste arising from his practice. The Central Waste Processing and Storage Unit (CWPSU) of BAEC is the designated national facility with the requisite facility for the treatment, conditioning and storage of radioactive waste until a final disposal facility is established and becomes operational. The Regulatory Authority is responsible for the enforcement of compliance with provisions of the waste management regulation and other relevant requirements by the waste generator and the CWPSU. The objective of this paper is to present, in a concise form, basic information about the radioactive waste management infrastructure, regulations, policies and strategies including the total inventory of low level radioactive waste in the country. For improvement and strengthening in terms of operational capability, safety and security of RW including spent radioactive sources and overall security of the facility (CWPSF), the facility is expected to serve waste management need in the country and, in the course of time, the facility may be turned into a regional level training centre. It is essential for safe conduction and culture of research and application in nuclear science and technology maintaining the relevant safety of man and environment and future generations to come. (authors)« less
Done, L; Tugulan, L C; Dragolici, F; Alexandru, C
2014-05-01
The Radioactive Waste Management Department from IFIN-HH, Bucharest, performs the conditioning of the institutional radioactive waste in concrete matrix, in 200 l drums with concrete shield, for final disposal at DNDR - Baita, Bihor county, in an old exhausted uranium mine. This paper presents a gamma-ray spectrometry method for the characterization of the radioactive waste drums' radionuclides content, for final disposal. In order to study the accuracy of the method, a similar concrete matrix with Portland cement in a 200 l drum was used. © 2013 The Authors. Published by Elsevier Ltd All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigrey, P.J.; Dickens, T.G.; Dickman, P.T.
1997-08-01
Based on regulatory requirements for Type A and B radioactive material packaging, a Testing Program was developed to evaluate the effects of mixed wastes on plastic materials which could be used as liners and seals in transportation containers. The plastics evaluated in this program were butadiene-acrylonitrile copolymer (Nitrile rubber), cross-linked polyethylene, epichlorohydrin, ethylene-propylene rubber (EPDM), fluorocarbons, high-density polyethylene (HDPE), butyl rubber, polypropylene, polytetrafluoroethylene, and styrene-butadiene rubber (SBR). These plastics were first screened in four simulant mixed wastes. The liner materials were screened using specific gravity measurements and seal materials by vapor transport rate (VTR) measurements. For the screening of linermore » materials, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals. The tests also indicated that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture waste, none of the seal materials met the screening criteria. Those materials which passed the screening tests were subjected to further comprehensive testing in each of the simulant wastes. The materials were exposed to four different radiation doses followed by exposure to a simulant mixed waste at three temperatures and four different exposure times (7, 14, 28, 180 days). Materials were tested by measuring specific gravity, dimensional, hardness, stress cracking, VTR, compression set, and tensile properties. The second phase of this Testing Program involving the comprehensive testing of plastic liner has been completed and for seal materials is currently in progress.« less
An industry perspective on commercial radioactive waste disposal conditions and trends.
Romano, Stephen A
2006-11-01
The United States is presently served by Class-A, -B and -C low-level radioactive waste and naturally-occurring and accelerator-produced radioactive material disposal sites in Washington and South Carolina; a Class-A and mixed waste disposal site in Utah that also accepts naturally-occurring radioactive material; and hazardous and solid waste facilities and uranium mill tailings sites that accept certain radioactive materials on a site-specific basis. The Washington site only accepts low-level radioactive waste from 11 western states due to interstate Compact restrictions on waste importation. The South Carolina site will be subject to geographic service area restrictions beginning 1 July 2008, after which only three states will have continued access. The Utah site dominates the commercial Class-A and mixed waste disposal market due to generally lower state fees than apply in South Carolina. To expand existing commercial services, an existing hazardous waste site in western Texas is seeking a Class-A, -B and -C and mixed waste disposal license. With that exception, no new Compact facilities are proposed. This fluid, uncertain situation has inspired national level rulemaking initiatives and policy studies, as well as alternative disposal practices for certain low-activity materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, Peter Andrew
The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomicmore » scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.« less
The safe disposal of radioactive wastes
Kenny, A. W.
1956-01-01
A comprehensive review is given of the principles and problems involved in the safe disposal of radioactive wastes. The first part is devoted to a study of the basic facts of radioactivity and of nuclear fission, the characteristics of radioisotopes, the effects of ionizing radiations, and the maximum permissible levels of radioactivity for workers and for the general public. In the second part, the author describes the different types of radioactive waste—reactor wastes and wastes arising from the use of radioisotopes in hospitals and in industry—and discusses the application of the maximum permissible levels of radioactivity to their disposal and treatment, illustrating his discussion with an account of the methods practised at the principal atomic energy establishments. PMID:13374534
Fischer, John N.
1986-01-01
In the United States, low-level radioactive waste is disposed of by shallow land burial. Commercial low-level radioactive waste has been buried at six sites, and low-level radioactive waste generated by the Federal Government has been buried at nine major and several minor sites. Several existing low-level radioactive waste sites have not provided expected protection of the environment. These shortcomings are related, at least in part, to an inadequate understanding of site hydrogeology at the time the sites were selected. To better understand the natural systems and the effect of hydrogeologic factors on long-term site performance, the U.S. Geological Survey has conducted investigations at five of the six commercial low-level radioactive waste sites and at three Federal sites. These studies, combined with those of other Federal and State agencies, have identified and confirmed important hydrogeologic factors in the effective disposal of low-level radioactive waste by shallow land burial. These factors include precipitation, surface drainage, topography, site stability, geology, thickness of the host soil-rock horizon, soil and sediment permeability, soil and water chemistry, and depth to the water table.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaelen, Gunter van; Verheyen, Annick
2007-07-01
The management of radioactive waste in Belgium is undertaken by the national agency for radioactive waste and enriched fissile materials, ONDRAF/NIRAS, and its industrial partner Belgoprocess. ONDRAF/NIRAS has set up a management system designed to guarantee that the general public and the environment are protected against the potential hazards arising from radioactive waste. Belgoprocess is a private company, founded in 1984 and located in Dessel, Belgium. It is a subsidiary of ONDRAF/NIRAS and its activities focus on the safe processing and storage of radioactive waste. The management system of ONDRAF/NIRAS includes two aspects: a) an integrated system and b) anmore » acceptance system. The integrated system covers all aspects of management ranging from the origin of waste to its transport, processing, interim storage and long-term management. The safety of radioactive waste management not only depends on the quality of the design and construction of the processing, temporary storage or disposal infrastructure, but also on the quality of the waste accepted by ONDRAF/NIRAS. In order to be manage d safely, both in the short and the long term, the waste transferred to ONDRAF/NIRAS must meet certain specific requirements. To that end, ONDRAF/NIRAS has developed an acceptance system. (authors)« less
The Use of Induction Melting for the Treatment of Metal Radioactive Waste - 13088
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zherebtsov, Alexander; Pastushkov, Vladimir; Poluektov, Pavel
2013-07-01
The aim of the work is to assess the efficacy of induction melting metal for recycling radioactive waste in order to reduce the volume of solid radioactive waste to be disposed of, and utilization of the metal. (authors)
Mineral assemblage transformation of a metakaolin-based waste form after geopolymer encapsulation
NASA Astrophysics Data System (ADS)
Williams, Benjamin D.; Neeway, James J.; Snyder, Michelle M. V.; Bowden, Mark E.; Amonette, James E.; Arey, Bruce W.; Pierce, Eric M.; Brown, Christopher F.; Qafoku, Nikolla P.
2016-05-01
Mitigation of hazardous and radioactive waste can be improved through conversion of existing waste to a more chemically stable and physically robust waste form. One option for waste conversion is the fluidized bed steam reforming (FBSR) process. The resulting FBSR granular material was encapsulated in a geopolymer matrix referred to here as Geo-7. This provides mechanical strength for ease in transport and disposal. However, it is necessary to understand the phase assemblage evolution as a result of geopolymer encapsulation. In this study, we examine the mineral assemblages formed during the synthesis of the multiphase ceramic waste form. The FBSR granular samples were created from waste simulant that was chemically adjusted to resemble Hanford tank waste. Another set of samples was created using Savannah River Site Tank 50 waste simulant in order to mimic a blend of waste collected from 68 Hanford tank. Waste form performance tests were conducted using the product consistency test (PCT), the Toxicity Characteristic Leaching Procedure (TCLP), and the single-pass flow-through (SPFT) test. X-ray diffraction analyses revealed the structure of a previously unreported NAS phase and indicate that monolith creation may lead to a reduction in crystallinity as compared to the primary FBSR granular product.
Radioactive waste material melter apparatus
Newman, D.F.; Ross, W.A.
1990-04-24
An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.
Radioactive waste material melter apparatus
Newman, Darrell F.; Ross, Wayne A.
1990-01-01
An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.
Radioactive Waste Management in Non-Nuclear Countries - 13070
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubelka, Dragan; Trifunovic, Dejan
2013-07-01
This paper challenges internationally accepted concepts of dissemination of responsibilities between all stakeholders involved in national radioactive waste management infrastructure in the countries without nuclear power program. Mainly it concerns countries classified as class A and potentially B countries according to International Atomic Energy Agency. It will be shown that in such countries long term sustainability of national radioactive waste management infrastructure is very sensitive issue that can be addressed by involving regulatory body in more active way in the infrastructure. In that way countries can mitigate possible consequences on the very sensitive open market of radioactive waste management services,more » comprised mainly of radioactive waste generators, operators of end-life management facilities and regulatory body. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, Louis
2014-12-02
This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. There was one shipment of two drums sent for offsite treatment and disposal. This report summarizes the 4th quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annualmore » summaries for FY 2014.« less
NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA, JUNE 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE
This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.
Nevada Test Site Waste Acceptance Criteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office
This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.
Perovskite-Ni composite: a potential route for management of radioactive metallic waste.
Mahadik, Pooja Sawant; Sengupta, Pranesh; Halder, Rumu; Abraham, G; Dey, G K
2015-04-28
Management of nickel - based radioactive metallic wastes is a difficult issue. To arrest the release of hazardous material to the environment it is proposed to develop perovskite coating for the metallic wastes. Polycrystalline BaCe0.8Y0.2O3-δ perovskite with orthorhombic structure has been synthesized by sol-gel route. Crystallographic analyses show, the perovskite belong to orthorhombic Pmcn space group at room temperature, and gets converted to orthorhombic Incn space group at 623K, cubic Pm3m space group (with a=4.434Å) at 1173K and again orthorhombic Pmcn space group at room temperature after cooling. Similar observations have been made from micro-Raman study as well. Microstructural studies of BaCe0.8Y0.2O3-δ-NiO/Ni composites showed absence of any reaction product at the interface. This suggests that both the components (i.e. perovskite and NiO/Ni) of the composite are compatible to each other. Interaction of BaCe0.8Y0.2O3-δ-NiO/Ni composites with simulated barium borosilicate waste glass melt also did not reveal any reaction product at the interfaces. Importantly, uranium from the waste glass melt was found to be partitioned within BaCe0.8Y0.2O3-δ perovskite structure. It is therefore concluded that BaCe0.8Y0.2O3-δ can be considered as a good coating material for management of radioactive Ni based metallic wastes. Copyright © 2015 Elsevier B.V. All rights reserved.
Runoff and erosion response of simulated waste burial covers in a semi-arid environment
Bent, G.C.; Goff, B.F.; Rightmire, K.G.; Sidle, R.C.
1999-01-01
Control of runoff (reducing infiltration) and erosion at shallow land burials is necessary in order to assure environmentally safe disposal of low-level radioactive-waste and other waste products. This study evaluated the runoff and erosion response of two perennial grass species on simulated waste burial covers at Idaho National Engineering and Environmental Laboratory (INEEL). Rainfall simulations were applied to three plots covered by crested wheatgrass [Agropyron desertorum (Fischer ex Link) Shultes], three plots covered by streambank wheatgrass [Elymus lanceolatus (Scribner and Smith) Gould spp. lanceolatus], and one bare plot. Average total runoff for rainfall simulations in 1987, 1989, and 1990 was 42 percent greater on streambank wheatgrass plots than on crested wheatgrass plots. Average total soil loss for rainfall simulations in 1987 and 1990 was 105 percent greater on streambank wheatgrass plots than on crested wheatgrass plots. Total runoff and soil loss from natural rainfall and snowmelt events during 1987 were 25 and 105 percent greater, respectively, on streambank wheatgrass plots than on crested wheatgrass plots. Thus, crested wheatgrass appears to be better suited in revegetation of waste burial covers at INEEL than streambank wheatgrass due to its much lower erosion rate and only slightly higher infiltration rate (lower runoff rate).
Effective structural descriptors for natural and engineered radioactive waste confinement barriers
NASA Astrophysics Data System (ADS)
Lemmens, Laurent; Rogiers, Bart; De Craen, Mieke; Laloy, Eric; Jacques, Diederik; Huysmans, Marijke; Swennen, Rudy; Urai, Janos L.; Desbois, Guillaume
2017-04-01
The microstructure of a radioactive waste confinement barrier strongly influences its flow and transport properties. Numerical flow and transport simulations for these porous media at the pore scale therefore require input data that describe the microstructure as accurately as possible. To date, no imaging method can resolve all heterogeneities within important radioactive waste confinement barrier materials as hardened cement paste and natural clays at the micro scale (nm-cm). Therefore, it is necessary to merge information from different 2D and 3D imaging methods using porous media reconstruction techniques. To qualitatively compare the results of different reconstruction techniques, visual inspection might suffice. To quantitatively compare training-image based algorithms, Tan et al. (2014) proposed an algorithm using an analysis of distance. However, the ranking of the algorithm depends on the choice of the structural descriptor, in their case multiple-point or cluster-based histograms. We present here preliminary work in which we will review different structural descriptors and test their effectiveness, for capturing the main structural characteristics of radioactive waste confinement barrier materials, to determine the descriptors to use in the analysis of distance. The investigated descriptors are particle size distributions, surface area distributions, two point probability functions, multiple point histograms, linear functions and two point cluster functions. The descriptor testing consists of stochastically generating realizations from a reference image using the simulated annealing optimization procedure introduced by Karsanina et al. (2015). This procedure basically minimizes the differences between pre-specified descriptor values associated with the training image and the image being produced. The most efficient descriptor set can therefore be identified by comparing the image generation quality among the tested descriptor combinations. The assessment of the quality of the simulations will be made by combining all considered descriptors. Once the set of the most efficient descriptors is determined, they can be used in the analysis of distance, to rank different reconstruction algorithms in a more objective way in future work. Karsanina MV, Gerke KM, Skvortsova EB, Mallants D (2015) Universal Spatial Correlation Functions for Describing and Reconstructing Soil Microstructure. PLoS ONE 10(5): e0126515. doi:10.1371/journal.pone.0126515 Tan, Xiaojin, Pejman Tahmasebi, and Jef Caers. "Comparing training-image based algorithms using an analysis of distance." Mathematical Geosciences 46.2 (2014): 149-169.
10 CFR 1800.10 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NORTHEAST INTERSTATE LOW-LEVEL RADIOACTIVE WASTE COMMISSION DECLARATION OF PARTY STATE ELIGIBILITY FOR NORTHEAST INTERSTATE LOW-LEVEL RADIOACTIVE WASTE COMPACT § 1800.10 Purpose and scope. Pursuant to Articles IV.i.(1), (7), (15), and VII.e. of the Northeast Interstate Low-Level Radioactive Waste Compact...
10 CFR 1800.10 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-01-01
... NORTHEAST INTERSTATE LOW-LEVEL RADIOACTIVE WASTE COMMISSION DECLARATION OF PARTY STATE ELIGIBILITY FOR NORTHEAST INTERSTATE LOW-LEVEL RADIOACTIVE WASTE COMPACT § 1800.10 Purpose and scope. Pursuant to Articles IV.i.(1), (7), (15), and VII.e. of the Northeast Interstate Low-Level Radioactive Waste Compact...
NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE
This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.
Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carilli, Jhon T.; Krenzien, Susan K.
2013-07-01
The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)
Immobilization of organic radioactive and non-radioactive liquid waste in a composite matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galkin, Anatoliy; Gelis, Artem V.; Castiglioni, Andrew J.
A method for immobilizing liquid radioactive waste is provided, the method having the steps of mixing waste with polymer to form a non-liquid waste; contacting the non-liquid waste with a solidifying agent to create a mixture, heating the mixture to cause the polymer, waste, and filler to irreversibly bind in a solid phase, and compressing the solid phase into a monolith. The invention also provides a method for immobilizing liquid radioactive waste containing tritium, the method having the steps of mixing liquid waste with polymer to convert the liquid waste to a non-liquid waste, contacting the non-liquid waste with amore » solidifying agent to create a mixture, heating the mixture to form homogeneous, chemically stable solid phase, and compressing the chemically stable solid phase into a final waste form, wherein the polymer comprises approximately a 9:1 weight ratio mixture of styrene block co-polymers and cross linked co-polymers of acrylamides.« less
Radioactive waste management in Poland status and strategy for the future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wlodarski, J.
1995-12-01
Site selection for a new radioactive waste repository in Poland has been started. The repository will contain low- and intermediate-level radioactive wastes and spent fuel. Superficial, shallow underground and deep underground disposal options were considered; 39 potential sites have been selected. Issues to be resolved regarding waste management in Poland are also outlined in this paper.
NCRP Program Area Committee 5: Environmental Radiation and Radioactive Waste Issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S. Y.; Napier, Bruce
Program Area Committee 5 of the National Council on Radiation Protection and Measurements (NCRP) focuses its activities on environmental radiation and radioactive waste issues. Historically this Committee addressed emerging issues of the nation pertaining to radioactivity or radiation in the environment or radioactive waste issues due either to natural origins or to manmade activities. The Committee continues to identify such issues in the future.
Maine State Briefing Book on low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-08-01
The Maine State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Maine. The profile is the result of a survey of radioactive material licensees in Maine. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested partices including industry, government, the media, and interest groups. The assessment was developedmore » through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant goverment agencies and activities, all of which may impact management practices in Maine.« less
High-Level Radioactive Waste: Safe Storage and Ultimate Disposal.
ERIC Educational Resources Information Center
Dukert, Joseph M.
Described are problems and techniques for safe disposal of radioactive waste. Degrees of radioactivity, temporary storage, and long-term permanent storage are discussed. Included are diagrams of estimated waste volumes to the year 2000 and of an artist's conception of a permanent underground disposal facility. (SL)
Nuclear Waste: Increasing Scale and Sociopolitical Impacts
ERIC Educational Resources Information Center
La Porte, Todd R.
1978-01-01
Discusses the impact of radioactive waste management system on social and political development. The article also presents (1) types of information necessary to estimate the costs and consequences of radioactive waste management; and (2) an index of radioactive hazards to improve the basis for policy decisions. (HM)
40 CFR 147.3005 - Radioactive waste injection wells.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Radioactive waste injection wells. 147.3005 Section 147.3005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... the Navajo, Ute Mountain Ute, and All Other New Mexico Tribes § 147.3005 Radioactive waste injection...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Applicable to Proceedings for the Issuance of Licenses for the Receipt of High-Level Radioactive Waste at a... construction authorization for a high-level radioactive waste repository at a geologic repository operations...-level radioactive waste at a geologic repository operations area under parts 60 or 63 of this chapter...
40 CFR 147.3005 - Radioactive waste injection wells.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Radioactive waste injection wells. 147... PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL PROGRAMS Lands of the Navajo, Ute Mountain Ute, and All Other New Mexico Tribes § 147.3005 Radioactive waste injection...
40 CFR 147.3005 - Radioactive waste injection wells.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Radioactive waste injection wells. 147... PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL PROGRAMS Lands of the Navajo, Ute Mountain Ute, and All Other New Mexico Tribes § 147.3005 Radioactive waste injection...
40 CFR 147.3005 - Radioactive waste injection wells.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Radioactive waste injection wells. 147... PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL PROGRAMS Lands of the Navajo, Ute Mountain Ute, and All Other New Mexico Tribes § 147.3005 Radioactive waste injection...
Raman lidar for hydrogen gas concentration monitoring and future radioactive waste management.
Liméry, Anasthase; Cézard, Nicolas; Fleury, Didier; Goular, Didier; Planchat, Christophe; Bertrand, Johan; Hauchecorne, Alain
2017-11-27
A multi-channel Raman lidar has been developed, allowing for the first time simultaneous and high-resolution profiling of hydrogen gas and water vapor. The lidar measures vibrational Raman scattering in the UV (355 nm) domain. It works in a high-bandwidth photon counting regime using fast SiPM detectors and takes into account the spectral overlap between hydrogen and water vapor Raman spectra. Measurement of concentration profiles of H 2 and H 2 O are demonstrated along a 5-meter-long open gas cell with 1-meter resolution at 85 meters. The instrument precision is investigated by numerical simulation to anticipate the potential performance at longer range. This lidar could find applications in the French project Cigéo for monitoring radioactive waste disposal cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.
2011-02-01
This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs,more » and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onishi, Y.; Recknagle, K.P.
The purpose of this study was to confirm the adequacy of a single mixer pump to fully mix the wastes that will be stored in Tanks 241-AP-102 and -104. These Hanford double-shell tanks (DSTs) will be used as staging tanks to receive low-activity wastes from other Hanford storage tanks and, in turn, will supply the wastes to private waste vitrification facilities for eventual solidification. The TEMPEST computer code was applied to Tanks AP-102 and -104 to simulate waste mixing generated by the 60-ft/s rotating jets and to determine the effectiveness of the single rotating pump to mix the waste. TEMPESTmore » simulates flow and mass/heat transport and chemical reactions (equilibrium and kinetic reactions) coupled together. Section 2 describes the pump jet mixing conditions the authors evaluated, the modeling cases, and their parameters. Section 3 reports model applications and assessment results. The summary and conclusions are presented in Section 4, and cited references are listed in Section 5.« less
Waste separation and pretreatment using crystalline silicotitanate ion exchangers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tadros, M.E.; Miller, J.E.; Anthony, R.G.
1997-10-01
A new class of inorganic ion exchangers called crystalline silicotitanates (CSTs) has been developed jointly by Sandia National Laboratories and Texas A&M University to selectively remove Cs and other radionuclides from a wide spectrum of radioactive defense wastes. The CST exhibits high selectivity and affinity for Cs and Sr under a wide range of conditions. Tests show it can remove part-per-million concentrations of Cs{sup +} from highly alkaline, high-sodium simulated radioactive waste solutions modeled after those at Hanford, Oak Ridge, and Savannah River. The materials exhibit ion exchange properties based on ionic size selectivity. Specifically, crystalline lattice spacing is controlledmore » to be highly selective for Cs ions even in waste streams containing very high (5 to 10 M) concentrations of sodium. The CST technology is being demonstrated with actual waste at several DOE facilities. The use of inorganic ion exchangers. The inorganics are more resistant to chemical, thermal, and radiation degradation. Their high selectivities result in more efficient operations offering the possibility of a simple single-pass operation. In contrast, regenerable organic ion exchangers require additional processing equipment to handle the regeneration liquids and the eluant with the dissolved Cs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, Louis
2015-02-20
This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 1st quarter of Fiscal Year (FY) 2015 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments tomore » and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report include minor volumes of non-radioactive classified waste/material that were approved for disposal (non-radioactive classified or nonradioactive classified hazardous). Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to rounding conventions for volumetric conversions from cubic meters to cubic feet.« less
New Jersey State Briefing Book for low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The New Jersey state Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in New Jersey. The profile is the result of a survey of NRC licensees in New Jersey. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessmentmore » was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in New Jersey.« less
Mississippi State Briefing Book for low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Mississippi State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state an federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Mississippi. The profile is the result of a survey of NRC licensees in Mississippi. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed throughmore » personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Mississippi.« less
North Carolina State Briefing Book for low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The North Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Carolina. The profile is the result of a survey of NRC licensees in North Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessmentmore » was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Carolina.« less
Wyoming State Briefing Book for low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed throughmore » personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming.« less
Puerto Rico State Briefing Book for low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Puerto Rico State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Puerto Rico. The profile is the result of a survey of NRC licensees in Puerto Rico. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessmentmore » was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Puerto Rico.« less
Ohio State Briefing Book for low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Ohio State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Ohio. The profile is the result of a survey of NRC licensees in Ohio. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed throughmore » personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Ohio.« less
Massachusetts State Briefing Book for low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-03-12
The Massachusetts State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Massachusetts. The profile is the result of a survey of NRC licensees in Massachusetts. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed throughmore » personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Massachusetts.« less
Vermont State Briefing Book on low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-07-01
The Vermont State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Vermont. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Vermont. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment wasmore » developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Vermont.« less
77 FR 73054 - Application for a License To Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-07
... NUCLEAR REGULATORY COMMISSION Application for a License To Export Radioactive Waste Pursuant to 10 CFR 110.70(b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear..., October 25, 2012, XW020, radioactive 1178 pounds disposal by the 11006061. waste in the (approximately...
76 FR 56489 - Request for a License To Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-13
... NUCLEAR REGULATORY COMMISSION Request for a License To Export Radioactive Waste Pursuant to 10 CFR... quantity End use country Duratek Services, Inc., August Class A radioactive Radionuclide Non-conforming Canada. 17, 2011, August 18, 2011, waste in the form reallocation: materials XW010/02, 11005620. of...
78 FR 9747 - Request To Amend A License To Import; Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-11
... NUCLEAR REGULATORY COMMISSION Request To Amend A License To Import; Radioactive Waste Pursuant to... Country from application no.; docket no. Diversified Scientific Class A radioactive Up to 378,000 Volume reduction...... Canada Services, Inc.; January 10, mixed waste kilograms. Amend to: (1) add four 2013...
75 FR 74104 - Request for a License To Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-30
... NUCLEAR REGULATORY COMMISSION Request for a License To Export Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear..., August 27, Radioactive waste Not to exceed Return to two Germany. 2010, November 3, 2010, XW018...
75 FR 74107 - Request for a License To Import Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-30
... NUCLEAR REGULATORY COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR 110.70(b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear.... EnergySolutions, August 27, Radioactive waste 1,000 tons Incineration for Germany. 2010, November 3, 2010...
Code of Federal Regulations, 2010 CFR
2010-01-01
... ENERGY STANDARD CONTRACT FOR DISPOSAL OF SPENT NUCLEAR FUEL AND/OR HIGH-LEVEL RADIOACTIVE WASTE General... means any person who has title to spent nuclear fuel or high-level radioactive waste. Purchaser means... (42 U.S.C. 2133, 2134) or who has title to spent nuclear fuel or high level radioactive waste and who...
77 FR 20078 - Request for a License To Import Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-03
... NUCLEAR REGULATORY COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear.... docket No. Perma-Fix Northwest Richland, Radioactive waste Up to 500 tons of Thermal Mexico. Inc...
75 FR 27842 - Request for a License to Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-18
... NUCLEAR REGULATORY COMMISSION Request for a License to Export Radioactive Waste Pursuant to 10 CFR... Duratek Services, Inc. (a Class A Approximately 680 Storage or Canada. subsidiary of radioactive pounds (53 cubic disposal by the EnergySolutions), April 19, waste in the feet) of dry original 2010, April...
75 FR 68840 - Request for a License To Import Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-09
... NUCLEAR REGULATORY COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear.... Oregon Specialty Metals......... Radioactive Waste 186,000 kilograms Return of U.S. Canada August 30...
77 FR 25760 - Low-Level Radioactive Waste Management and Volume Reduction
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-01
... NUCLEAR REGULATORY COMMISSION [NRC-2011-0183] Low-Level Radioactive Waste Management and Volume.... Nuclear Regulatory Commission (NRC or the Commission) is revising its 1981 Policy Statement on Low-Level..., the NRC staff issued SECY-10-0043, ``Blending of Low-Level Radioactive Waste'' (ADAMS Accession No...
Assessment of public perception of radioactive waste management in Korea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trone, Janis R.; Cho, SeongKyung; Whang, Jooho
2011-11-01
The essential characteristics of the issue of radioactive waste management can be conceptualized as complex, with a variety of facets and uncertainty. These characteristics tend to cause people to perceive the issue of radioactive waste management as a 'risk'. This study was initiated in response to a desire to understand the perceptions of risk that the Korean public holds towards radioactive waste and the relevant policies and policy-making processes. The study further attempts to identify the factors influencing risk perceptions and the relationships between risk perception and social acceptance.
Maringer, F J; Suráň, J; Kovář, P; Chauvenet, B; Peyres, V; García-Toraño, E; Cozzella, M L; De Felice, P; Vodenik, B; Hult, M; Rosengård, U; Merimaa, M; Szücs, L; Jeffery, C; Dean, J C J; Tymiński, Z; Arnold, D; Hinca, R; Mirescu, G
2013-11-01
In 2011 the joint research project Metrology for Radioactive Waste Management (MetroRWM)(1) of the European Metrology Research Programme (EMRP) started with a total duration of three years. Within this project, new metrological resources for the assessment of radioactive waste, including their calibration with new reference materials traceable to national standards will be developed. This paper gives a review on national, European and international strategies as basis for science-based metrological requirements in clearance and acceptance of radioactive waste. © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-01
The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecastedmore » is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barariu, G.
2008-07-01
The paper presents the progress of the Decontamination Plan and Radioactive Waste Management Plan which accompanies the Decommissioning Plan for research reactor VVR-S located in Magurele, Ilfov, near Bucharest, Romania. The new variant of the Decommissioning Plan was elaborated taking into account the IAEA recommendation concerning radioactive waste management. A new feasibility study for VVR-S decommissioning was also elaborated. The preferred safe management strategy for radioactive wastes produced by reactor decommissioning is outlined. The strategy must account for reactor decommissioning, as well as rehabilitation of the existing Radioactive Waste Treatment Plant and the upgrade of the Radioactive Waste Disposal Facilitymore » at Baita-Bihor. Furthermore, the final rehabilitation of the laboratories and reusing of cleaned reactor building is envisaged. An inventory of each type of radioactive waste is presented. The proposed waste management strategy is selected in accordance with the IAEA assistance. Environmental concerns are a part of the radioactive waste management strategy. In conclusion: The current version 8 of the Draft Decommissioning Plan which include the Integrated concept of Decontamination and Decommissioning and Radwaste Management, reflects the substantial work that has been incorporated by IFIN-HH in collaboration with SITON, which has resulted in substantial improvement in document The decommissioning strategy must take into account costs for VVR-S Reactor decommissioning, as well as costs for much needed refurbishments to the radioactive waste treatment plant and the Baita-Bihor waste disposal repository. Several improvements to the Baita-Bihor repository and IFIN-HH waste treatment facility were proposed. The quantities and composition of the radioactive waste generated by VVR-S Reactor dismantling were again estimated by streams and the best demonstrated practicable processing solution was proposed. The estimated quantities of materials to be managed in the near future raise some issues that need to be solved swiftly, such as treatment of aluminum and lead and graphite management. It is envisaged that these materials to be treated to Subsidiary for Nuclear Research (SCN) Pitesti. (authors)« less
10 CFR 60.135 - Criteria for the waste package and its components.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Section 60.135 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES... for the waste package and its components. (a) High-level-waste package design in general. (1) Packages... package's permanent written records. (c) Waste form criteria for HLW. High-level radioactive waste that is...
10 CFR 72.120 - General considerations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... waste, and/or high level waste including possible reaction with water during wet loading and unloading... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor...
10 CFR 72.120 - General considerations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... waste, and/or high level waste including possible reaction with water during wet loading and unloading... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor...
Real-time alpha monitoring of a radioactive liquid waste stream at Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, J.D.; Whitley, C.R.; Rawool-Sullivan, M.
1995-12-31
This poster display concerns the development, installation, and testing of a real-time radioactive liquid waste monitor at Los Alamos National Laboratory (LANL). The detector system was designed for the LANL Radioactive Liquid Waste Treatment Facility so that influent to the plant could be monitored in real time. By knowing the activity of the influent, plant operators can better monitor treatment, better segregate waste (potentially), and monitor the regulatory compliance of users of the LANL Radioactive Liquid Waste Collection System. The detector system uses long-range alpha detection technology, which is a nonintrusive method of characterization that determines alpha activity on themore » liquid surface by measuring the ionization of ambient air. Extensive testing has been performed to ensure long-term use with a minimal amount of maintenance. The final design was a simple cost-effective alpha monitor that could be modified for monitoring influent waste streams at various points in the LANL Radioactive Liquid Waste Collection System.« less
Simulation of radioelement volatility during the vitrification of radioactive wastes by arc plasma.
Ghiloufi, Imed
2009-04-15
A computer model is used to simulate the volatility of some radioelements cesium ((137)Cs), cobalt ((60)Co), and ruthenium ((106)Ru) during the radioactive wastes vitrification by thermal plasma. This model is based on the calculation of system composition using the free enthalpy minimization method, coupled with the equation of mass transfer at the reactional interface. The model enables the determination of the effects of various parameters (e.g., temperature, plasma current, and matrix composition) on the radioelement volatility. The obtained results indicate that any increase in molten bath temperature causes an increase in the cobalt volatility; while ruthenium has a less obvious behavior. It is also found that the oxygen flux in the carrier gas supports the radioelement incorporations in the containment matrix, except in the case of the ruthenium which is more volatile under an oxidizing atmosphere. For electrolyses effects, an increase in the plasma current considerably increases both the vaporization speed and the vaporized quantities of (137)Cs and (60)Co. The increase of silicon percentage in the containment matrix supports the incorporation of (60)Co and (137)Cs in the matrix. The simulation results are compared favorably to the experimental measurements obtained by emission spectroscopy.
Kalb, Paul D.; Colombo, Peter
1999-07-20
The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.
Kalb, Paul D.; Colombo, Peter
1998-03-24
The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.
Kalb, Paul D.; Colombo, Peter
1997-01-01
The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.
Field, Erin K.; D'Imperio, Seth; Miller, Amber R.; VanEngelen, Michael R.; Gerlach, Robin; Lee, Brady D.; Apel, William A.; Peyton, Brent M.
2010-01-01
Low-level-radioactive-waste (low-level-waste) sites, including those at various U.S. Department of Energy sites, frequently contain cellulosic waste in the form of paper towels, cardboard boxes, or wood contaminated with heavy metals and radionuclides such as chromium and uranium. To understand how the soil microbial community is influenced by the presence of cellulosic waste products, multiple soil samples were obtained from a nonradioactive model low-level-waste test pit at the Idaho National Laboratory. Samples were analyzed using 16S rRNA gene clone libraries and 16S rRNA gene microarray (PhyloChip) analyses. Both methods revealed changes in the bacterial community structure with depth. In all samples, the PhyloChip detected significantly more operational taxonomic units, and therefore relative diversity, than the clone libraries. Diversity indices suggest that diversity is lowest in the fill and fill-waste interface (FW) layers and greater in the wood waste and waste-clay interface layers. Principal-coordinate analysis and lineage-specific analysis determined that the Bacteroidetes and Actinobacteria phyla account for most of the significant differences observed between the layers. The decreased diversity in the FW layer and increased members of families containing known cellulose-degrading microorganisms suggest that the FW layer is an enrichment environment for these organisms. These results suggest that the presence of the cellulosic material significantly influences the bacterial community structure in a stratified soil system. PMID:20305022
Geohydrologic aspects for siting and design of low-level radioactive-waste disposal
Bedinger, M.S.
1989-01-01
The objective for siting and design of low-level radioactive-waste repository sites is to isolate the waste from the biosphere until the waste no longer poses an unacceptable hazard as a result of radioactive decay. Low-level radioactive waste commonly is isolated at shallow depths with various engineered features to stabilize the waste and to reduce its dissolution and transport by ground water. The unsaturated zone generally is preferred for isolating the waste. Low-level radioactive waste may need to be isolated for 300 to 500 years. Maintenance and monitoring of the repository site are required by Federal regulations for only the first 100 years. Therefore, geohydrology of the repository site needs to provide natural isolation of the waste for the hazardous period following maintenance of the site. Engineering design of the repository needs to be compatible with the natural geohydrologic conditions at the site. Studies at existing commercial and Federal waste-disposal sites provide information on the problems encountered and the basis for establishing siting guidelines for improved isolation of radioactive waste, engineering design of repository structures, and surveillance needs to assess the effectiveness of the repositories and to provide early warning of problems that may require remedial action.Climate directly affects the hydrology of a site and probably is the most important single factor that affects the suitability of a site for shallow-land burial of low-level radioactive waste. Humid and subhumid regions are not well suited for shallow isolation of low-level radioactive waste in the unsaturated zone; arid regions with zero to small infiltration from precipitation, great depths to the water table, and long flow paths to natural discharge areas are naturally well suited to isolation of the waste. The unsaturated zone is preferred for isolation of low-level radioactive waste. The guiding rationale is to minimize contact of water with the waste and to minimize transport of waste from the repository. The hydrology of a flow system containing a repository is greatly affected by the engineering of the repository site. Prediction of the performance of the repository is a complex problem, hampered by problems of characterizing the natural and manmade features of the flow system and by the limitations of models to predict flow and geochemical processes in the saturated and unsaturated zones. Disposal in low-permeability unfractured clays in the saturated zone may be feasible where the radionuclide transport is controlled by diffusion rather than advection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
STALLINGS, MARY
This report presents findings from tests investigating the dissolution of simulated and radioactive Savannah River Site sludges with 4 per cent oxalic acid and mixtures of oxalic and citric acid previously recommended by a Russian team from the Khlopin Radium Institute and the Mining and Chemical Combine (MCC). Testing also included characterization of the simulated and radioactive waste sludges. Testing results showed the following: Dissolution of simulated HM and PUREX sludges with oxalic and citric acid mixtures at SRTC confirmed general trends reported previously by Russian testing. Unlike the previous Russian testing six sequential contacts of a mixture of oxalicmore » acid citric acids at a 2:1 ratio (v/w) of acid to sludge did not produce complete dissolution of simulated HM and PUREX sludges. We observed that increased sludge dissolution occurred at a higher acid to sludge ratio, 50:1 (v/w), compared to the recommended ratio of 2:1 (v/w). We observed much lower dissolution of aluminum in a simulated HM sludge by sodium hydroxide leaching. We attribute the low aluminum dissolution in caustic to the high fraction of boehmite present in the simulated sludge. Dissolution of HLW sludges with 4 per cent oxalic acid and oxalic/citric acid followed general trends observed with simulated sludges. The limited testing suggests that a mixture of oxalic and citric acids is more efficient for dissolving HM and PUREX sludges and provides a more homogeneous dissolution of HM sludge than oxalic acid alone. Dissolution of HLW sludges in oxalic and oxalic/citric acid mixtures produced residual sludge solids that measured at higher neutron poison to equivalent 235U weight ratios than that in the untreated sludge solids. This finding suggests that residual solids do not present an increased nuclear criticality safety risk. Generally the neutron poison to equivalent 235U weight ratios of the acid solutions containing dissolved sludge components are lower than those in the untreated sludge solids. We recommend that these results be evaluated further to determine if these solutions contain sufficient neutron poisons. We observed low general corrosion rates in tests in which carbon steel coupons were contacted with solutions of oxalic acid, citric acid and mixtures of oxalic and citric acids. Wall thinning can be minimized by maintaining short contact times with these acid solutions. We recommend additional testing with oxalic and oxalic/citric acid mixtures to measure dissolution performance of sludges that have not been previously dried. This testing should include tests to clearly ascertain the effects of total acid strength and metal complexation on dissolution performance. Further work should also evaluate the downstream impacts of citric acid on the SRS High-Level Waste System (e.g., radiochemical separations in the Salt Waste Processing Facility and addition of organic carbon in the Saltstone and Defense Waste Processing facilities).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Chul-Woo; Chun, Jaehun; Um, Wooyong
2013-04-01
Cast stone is a cementitious waste form, a viable option to immobilize secondary nuclear liquid wastes generated from Hanford vitrification plant. While the strength and radioactive technetium leaching of different waste form candidates have been reported, no study has been performed to understand the flow and stiffening behavior of Cast Stone, which is essential to ensure the proper workability, especially considering necessary safety as a nuclear waste form in a field scale application. The rheological and ultrasonic wave reflection (UWR) measurements were used to understand the setting and stiffening Cast Stone batches. X-ray diffraction (XRD) was used to find themore » correlation between specific phase formation and the stiffening of the paste. Our results showed good correlation between rheological properties of the fresh Cast Stone mixture and phase formation during hydration of Cast Stone. Secondary gypsum formation originating from blast furnace slag was observed in Cast Stone made with low concentration simulants. The formation of gypsum was suppressed in high concentration simulants. It was found that the stiffening of Cast Stone was strongly dependent on the concentration of simulant. A threshold concentration for the drastic change in stiffening was found at 1.56 M Na concentration.« less
Final repository for Denmark's low- and intermediate level radioactive waste
NASA Astrophysics Data System (ADS)
Nilsson, B.; Gravesen, P.; Petersen, S. S.; Binderup, M.
2012-12-01
Bertel Nilsson*, Peter Gravesen, Stig A. Schack Petersen, Merete Binderup Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, 1350 Copenhagen, Denmark, * email address bn@geus.dk The Danish Parliament decided in 2003 that the temporal disposal of the low- and intermediate level radioactive waste at the nuclear facilities at Risø should find another location for a final repository. The Danish radioactive waste must be stored on Danish land territory (exclusive Greenland) and must hold the entire existing radioactive waste, consisting of the waste from the decommissioning of the nuclear facilities at Risø, and the radioactive waste produced in Denmark from hospitals, universities and industry. The radioactive waste is estimated to a total amount of up to 10,000 m3. The Geological Survey of Denmark and Greenland, GEUS, is responsible for the geological studies of suitable areas for the repository. The task has been to locate and recognize non-fractured Quaternary and Tertiary clays or Precambrian bedrocks with low permeability which can isolate the radioactive waste from the surroundings the coming more than 300 years. Twenty two potential areas have been located and sequential reduced to the most favorable two to three locations taking into consideration geology, hydrogeology, nature protection and climate change conditions. Further detailed environmental and geology investigations will be undertaken at the two to three potential localities in 2013 to 2015. This study together with a study of safe transport of the radioactive waste and an investigation of appropriate repository concepts in relation to geology and safety analyses will constitute the basis upon which the final decision by the Danish Parliament on repository concept and repository location. The final repository is planned to be established and in operation at the earliest 2020.
Deep Borehole Field Test Conceptual Design Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardin, Ernest L.
This report documents conceptual design development for the Deep Borehole Field Test (DBFT), including test packages (simulated waste packages, not containing waste) and a system for demonstrating emplacement and retrieval of those packages in the planned Field Test Borehole (FTB). For the DBFT to have demonstration value, it must be based on conceptualization of a deep borehole disposal (DBD) system. This document therefore identifies key options for a DBD system, describes an updated reference DBD concept, and derives a recommended concept for the DBFT demonstration. The objective of the DBFT is to confirm the safety and feasibility of the DBDmore » concept for long-term isolation of radioactive waste. The conceptual design described in this report will demonstrate equipment and operations for safe waste handling and downhole emplacement of test packages, while contributing to an evaluation of the overall safety and practicality of the DBD concept. The DBFT also includes drilling and downhole characterization investigations that are described elsewhere (see Section 1). Importantly, no radioactive waste will be used in the DBFT, nor will the DBFT site be used for disposal of any type of waste. The foremost performance objective for conduct of the DBFT is to demonstrate safe operations in all aspects of the test.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dragolici, F.; Turcanu, C. N.; Rotarescu, G.
2003-02-25
The proper application of the nuclear techniques and technologies in Romania started in 1957, once with the commissioning of the Research Reactor VVR-S from IFIN-HH-Magurele. During the last 45 years, appear thousands of nuclear application units with extremely diverse profiles (research, biology, medicine, education, agriculture, transport, all types of industry) which used different nuclear facilities containing radioactive sources and generating a great variety of radioactive waste during the decommissioning after the operation lifetime is accomplished. A new aspect appears by the planning of VVR-S Research Reactor decommissioning which will be a new source of radioactive waste generated by decontamination, disassemblingmore » and demolition activities. By construction and exploitation of the Radioactive Waste Treatment Plant (STDR)--Magurele and the National Repository for Low and Intermediate Radioactive Waste (DNDR)--Baita, Bihor county, in Romania was solved the management of radioactive wastes arising from operation and decommissioning of small nuclear facilities, being assured the protection of the people and environment. The present paper makes a review of the present technical status of the Romanian waste management facilities, especially raising on treatment capabilities of ''problem'' wastes such as Ra-266, Pu-238, Am-241 Co-60, Co-57, Sr-90, Cs-137 sealed sources from industrial, research and medical applications. Also, contain a preliminary estimation of quantities and types of wastes, which would result during the decommissioning project of the VVR-S Research Reactor from IFIN-HH giving attention to some special category of wastes like aluminum, graphite and equipment, components and structures that became radioactive through neutron activation. After analyzing the technical and scientific potential of STDR and DNDR to handle big amounts of wastes resulting from the decommissioning of VVR-S Research Reactor and small nuclear facilities, the necessity of up-gradation of these nuclear objectives before starting the decommissioning plan is revealed. A short presentation of the up-grading needs is also presented.« less
Nagaoka, Hiroaki; Watanabe, Hiroshi; Yamaguchi, Ichiro; Fujibuchi, Toshioh; Kida, Tetsuo; Tanaka, Shinji
2009-12-20
A clearance system for medical radioactive solid waste has not yet been implemented in Japan. Since 2004 new regulations have allowed institutions using positron emission tomography(PET)to handle totally decayed radioactive waste as non-radioactive waste after decay-in-storage. It was expected that this new regulation would mediate the installation of clearance systems in Japan. In order to assess the current situation of radiation safety management in PET institutions, we conducted a nationwide survey. The study design was a cross-sectional descriptive study conducted by questionnaire. The subjects of this survey were all the PET institutions in Japan. Among 224 institutes, 128 institutes are equipped with cyclotrons and 96 institutes are not. The number of returned questionnaires was 138. Among institutes that are using delivered radiopharmaceuticals, 80% treat their waste as non-radioactive according to the new regulation. The impact of new regulations for reducing radioactive waste in PET institutes without a cyclotron was estimated at about $400 thousand per year. The main concern of medical institutes was assessment of the contamination caused by by-products of radioactive nuclides generated in target water during the operation of a cyclotron. It was thought that a rational rule based on scientific risk management should be established because these by-products of radioactive nuclides are negligible for radiation safety. New regulation has had a good influence on medical PET institutes, and it is expected that a clearance system for medical radioactive waste will be introduced in the near future, following these recent experiences in PET institutes.
Semi-Tomographic Gamma Scanning Technique for Non-Destructive Assay of Radioactive Waste Drums
NASA Astrophysics Data System (ADS)
Gu, Weiguo; Rao, Kaiyuan; Wang, Dezhong; Xiong, Jiemei
2016-12-01
Segmented gamma scanning (SGS) and tomographic gamma scanning (TGS) are two traditional detection techniques for low and intermediate level radioactive waste drum. This paper proposes one detection method named semi-tomographic gamma scanning (STGS) to avoid the poor detection accuracy of SGS and shorten detection time of TGS. This method and its algorithm synthesize the principles of SGS and TGS. In this method, each segment is divided into annual voxels and tomography is used in the radiation reconstruction. The accuracy of STGS is verified by experiments and simulations simultaneously for the 208 liter standard waste drums which contains three types of nuclides. The cases of point source or multi-point sources, uniform or nonuniform materials are employed for comparison. The results show that STGS exhibits a large improvement in the detection performance, and the reconstruction error and statistical bias are reduced by one quarter to one third or less for most cases if compared with SGS.
Low-Activity Radioactive Wastes
In 2003 EPA published an Advance Notice of Proposed Rulemaking (ANPR) to collect public comment on alternatives for disposal of waste containing low concentrations of radioactive material ('low-activity' waste).
2012-01-01
This paper describes a modification of the basic directions of state accounting and control of radioactive substances and radioactive waste products, whose implementation will significantly improve the efficiency of its operation at the regional level. Selected areas are designed to improve accounting and control system for the submission of the enterprises established by the reporting forms, the quality of the information contained in them, as well as structures of information and process for collecting, analyzing and data processing concerning radioactive substances and waste products.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-02
... the Independent Storage of Spent Nuclear Fuel, High-Level Radioactive Waste and Reactor-Related... receive, transfer, package and possess power reactor spent fuel, high-level waste, and other radioactive..., package, and possess power reactor spent fuel and high-level radioactive waste, and other associated...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-29
... DOE to carry out a high-level radioactive waste management demonstration project at the Western New... solidification of high-level radioactive waste for disposal in a Federal repository for permanent disposal. The... and other facilities where the solidified high-level radioactive waste was stored, the facilities used...
75 FR 70707 - Detroit Edison Company; Environmental Assessment and Finding of No Significant Impact
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-18
... extend the time period that can elapse during shipments of low-level radioactive waste before the... extend the time period for the licensee to receive acknowledgment that the low-level radioactive waste...-level radioactive waste are not acknowledged by the intended recipient within 20 days after transfer to...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-29
... Accidental Releases of Radioactive Materials From Liquid Waste Tanks in Ground and Surface Waters for... Radioactive Materials from Liquid Waste Tanks in Ground and Surface Waters for Combined License Applications... Radioactive Materials from Liquid Waste Tanks in Ground and Surface Waters for Combined License Applications...
Watanabe, Hiroshi; Nagaoka, Hiroaki; Yamaguchi, Ichiro; Horiuchi, Shoji; Imoto, Atsushi
2009-07-20
In order to realize the rational management and disposal of radioactive waste like DIS or its clearance as performed in Europe, North America, and Japan, we investigated the situation of medical radioactive waste in Korea and its enforcement. We visited three major Korean facilities in May 2008 and confirmed details of the procedure being used by administering a questionnaire after our visit. From the results, we were able to verify that the governmental agency had established regulations for the clearance of radioactive waste as self-disposal based on the clearance level of IAEA in Korea and that the medical facilities performed suitable management and disposal of radioactive waste based on the regulations and superintendence of a radiation safety officer. The type of nuclear medicine was almost the same as that in Japan, and the half-life of all radiopharmaceuticals was 60 days or less. While performing regulatory adjustment concerning the rational management and disposal of radioactive waste in Korea for reference also in this country, it is important to provide an enforcement procedure with quality assurance in the regulations.
Ceramics in nuclear waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chikalla, T D; Mendel, J E
1979-05-01
Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, B.A.
1984-07-01
Since their inception, the DOE facilities on the Oak Ridge Reservation have been the source of a variety of airborne, liquid, and solid wastes which are characterized as nonhazardous, hazardous, and/or radioactive. The major airborne releases come from three primary sources: steam plant emissions, process discharge, and cooling towers. Liquid wastes are handled in various manners depending upon the particular waste, but in general, major corrosive waste streams are neutralized prior to discharge with the discharge routed to holding or settling ponds. The major solid wastes are derived from construction debris, sanitary operation, and radioactive processes, and the machining operationsmore » at Y-12. Nonradioactive hazardous wastes are disposed in solid waste storage areas, shipped to commercial disposal facilities, returned in sludge ponds, or sent to radioactive waste burial areas. The radioactive-hazardous wastes are treated in two manners: storage of the waste until acceptable disposal options are developed, or treatment of the waste to remove or destroy one of the components prior to disposal. 5 references, 4 figures, 13 tables.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, HakSoo; Chung, SungHwan; Maeng, SungJun
2013-07-01
The amount of radioactive wastes from decommissioning of a nuclear power plant varies greatly depending on factors such as type and size of the plant, operation history, decommissioning options, and waste treatment and volume reduction methods. There are many methods to decrease the amount of decommissioning radioactive wastes including minimization of waste generation, waste reclassification through decontamination and cutting methods to remove the contaminated areas. According to OECD/NEA, it is known that the radioactive waste treatment and disposal cost accounts for about 40 percentage of the total decommissioning cost. In Korea, it is needed to reduce amount of decommissioning radioactivemore » waste due to high disposal cost, about $7,000 (as of 2010) per a 200 liter drum for the low- and intermediate-level radioactive waste (LILW). In this paper, cutting methods to minimize the radioactive waste of activated concrete were investigated and associated decommissioning cost impact was assessed. The cutting methods considered are cylindrical and volume reductive cuttings. The study showed that the volume reductive cutting is more cost-effective than the cylindrical cutting. Therefore, the volume reductive cutting method can be effectively applied to the activated bio-shield concrete. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bissani, M; Fischer, R; Kidd, S
2006-04-03
The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility,more » waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, J.R.; Danneels, J.; Kenagy, W.D.
The Al Tuwaitha nuclear complex near Baghdad contains a significant number of nuclear facilities from Saddam Hussein's dictatorship. Because of past military operations, lack of upkeep and looting there is now an enormous radioactive waste problem at Al Tuwaitha. Al Tuwaitha contains uncharacterised radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals. The current security situation in Iraq hampers all aspects of radioactive waste management. Further, Iraq has never had a radioactive waste disposal facility, which means that ever increasing quantities of radioactive waste and material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposalmore » Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS has funded the International Atomic Energy Agency (IAEA) to provide technical assistance to the GOI via a Technical Cooperation Project. Program coordination will be provided by the DOS, consistent with U.S. and GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and for providing waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for the vast majority of the implementation of the NDs Program. (authors)« less
ERIC Educational Resources Information Center
Blaylock, B. G.
1978-01-01
Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)
Industrial Technology of Decontamination of Liquid Radioactive Waste in SUE MosSIA 'Radon' - 12371
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamovich, Dmitry V.; Neveykin, Petr P.; Karlin, Yuri V.
SUE MosSIA 'RADON' - this enterprise was created more than 50 years ago, which deals with the recycling of radioactive waste and conditioning of spent sources of radiation in stationary and mobile systems in the own factory and operating organizations. Here is represented the experience SUE MosSIA 'Radon' in the field of the management with liquid radioactive waste. It's shown, that the activity of SUE MosSIA 'RADON' is developing in three directions - improvement of technical facilities for treatment of radioactive waters into SUE MosSIA 'RADON' development of mobile equipment for the decontamination of radioactive waters in other organizations, developmentmore » of new technologies for decontamination of liquid radioactive wastes as part of various domestic Russian and international projects including those related to the operation of nuclear power and nuclear submarines. SUE MosSIA 'RADON' has processed more than 270 thousand m{sup 3} of radioactive water, at that more than 7000 m{sup 3} in other organizations for more than 50 years. It is shown that a number of directions, particularly, the development of mobile modular units for decontamination of liquid radioactive waste, SUE MosSIA 'RADON' is a leader in the world. (authors)« less
Solidification of radioactive waste resins using cement mixed with organic material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laili, Zalina, E-mail: liena@nm.gov.my; Waste and Environmental Technology Division, Malaysian Nuclear Agency; Yasir, Muhamad Samudi
2015-04-29
Solidification of radioactive waste resins using cement mixed with organic material i.e. biochar is described in this paper. Different percentage of biochar (0%, 5%, 8%, 11%, 14% and 18%) was investigated in this study. The characteristics such as compressive strength and leaching behavior were examined in order to evaluate the performance of solidified radioactive waste resins. The results showed that the amount of biochar affect the compressive strength of the solidified resins. Based on the data obtained for the leaching experiments performed, only one formulation showed the leached of Cs-134 from the solidified radioactive waste resins.
Glass Development for Treatment of LANL Evaporator Bottoms Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
DE Smith; GF Piepel; GW Veazey
1998-11-20
Vitrification is an attractive treatment option for meeting the stabilization and final disposal requirements of many plutonium (Pu) bearing materials and wastes at the Los Alamos National Laboratory (LANL) TA-55 facility, Rocky Flats Environmental Technology Site (RFETS), Hanford, and other Department of Energy (DOE) sites. The Environmental Protection Agency (EPA) has declared that vitrification is the "best demonstrated available technology" for high- level radioactive wastes (HLW) (Federal Register 1990) and has produced a handbook of vitriilcation technologies for treatment of hazardous and radioactive waste (US EPA, 1992). This technology has been demonstrated to convert Pu-containing materials (Kormanos, 1997) into durablemore » (Lutze, 1988) and accountable (Forsberg, 1995) waste. forms with reduced need for safeguarding (McCulhun, 1996). The composition of the Evaporator Bottoms Waste (EVB) at LANL, like that of many other I%-bearing materials, varies widely and is generally unpredictable. The goal of this study is to optimize the composition of glass for EVB waste at LANL, and present the basic techniques and tools for developing optimized glass compositions for other Pu-bearing materials in the complex. This report outlines an approach for glass formulation with fixed property restrictions, using glass property-composition databases. This approach is applicable to waste glass formulation for many variable waste streams and vitrification technologies.. Also reported are the preliminary property data for simulated evaporator bottom glasses, including glass viscosity and glass leach resistance using the Toxicity Characteristic Leaching Procedure (TCLP).« less
NASA Astrophysics Data System (ADS)
Mauerhofer, E.; Havenith, A.; Carasco, C.; Payan, E.; Kettler, J.; Ma, J. L.; Perot, B.
2013-04-01
The Forschungszentrum Jülich GmbH (FZJ), together with the Aachen University Rheinisch-Westfaelische Technische Hochschule (RWTH) and the French Alternative Energies and Atomic Energy Commission (CEA Cadarache) are involved in a cooperation aiming at characterizing toxic and reactive elements in radioactive waste packages by means of Prompt Gamma Neutron Activation Analysis (PGNAA) [1]. The French and German waste management agencies have indeed defined acceptability limits concerning these elements in view of their projected geological repositories. A first measurement campaign was performed in the new Prompt Gamma Neutron Activation Analysis (PGNAA) facility called MEDINA, at FZJ, to assess the capture gamma-ray signatures of some elements of interest in large samples up to waste drums with a volume of 200 liter. MEDINA is the acronym for Multi Element Detection based on Instrumental Neutron Activation. This paper presents MCNP calculations of the MEDINA facility and quantitative comparison between measurement and simulation. Passive gamma-ray spectra acquired with a high purity germanium detector and calibration sources are used to qualify the numerical model of the crystal. Active PGNAA spectra of a sodium chloride sample measured with MEDINA then allow for qualifying the global numerical model of the measurement cell. Chlorine indeed constitutes a usual reference with reliable capture gamma-ray production data. The goal is to characterize the entire simulation protocol (geometrical model, nuclear data, and postprocessing tools) which will be used for current measurement interpretation, extrapolation of the performances to other types of waste packages or other applications, as well as for the study of future PGNAA facilities.
Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, Yasser T.
The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Centermore » has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)« less
10 CFR 72.120 - General considerations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor... be designed to store spent fuel and/or solid reactor-related GTCC waste. (1) Reactor-related GTCC...
10 CFR 72.120 - General considerations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor-related GTCC waste in an MRS must include the design criteria for the proposed storage installation. These...
10 CFR 72.120 - General considerations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor-related GTCC waste in an MRS must include the design criteria for the proposed storage installation. These...
NASA Astrophysics Data System (ADS)
Mattie, P. D.; Knowlton, R. G.; Arnold, B. W.; Tien, N.; Kuo, M.
2006-12-01
Sandia National Laboratories (Sandia), a U.S. Department of Energy National Laboratory, has over 30 years experience in radioactive waste disposal and is providing assistance internationally in a number of areas relevant to the safety assessment of radioactive waste disposal systems. International technology transfer efforts are often hampered by small budgets, time schedule constraints, and a lack of experienced personnel in countries with small radioactive waste disposal programs. In an effort to surmount these difficulties, Sandia has developed a system that utilizes a combination of commercially available codes and existing legacy codes for probabilistic safety assessment modeling that facilitates the technology transfer and maximizes limited available funding. Numerous codes developed and endorsed by the United States Nuclear Regulatory Commission and codes developed and maintained by United States Department of Energy are generally available to foreign countries after addressing import/export control and copyright requirements. From a programmatic view, it is easier to utilize existing codes than to develop new codes. From an economic perspective, it is not possible for most countries with small radioactive waste disposal programs to maintain complex software, which meets the rigors of both domestic regulatory requirements and international peer review. Therefore, re-vitalization of deterministic legacy codes, as well as an adaptation of contemporary deterministic codes, provides a creditable and solid computational platform for constructing probabilistic safety assessment models. External model linkage capabilities in Goldsim and the techniques applied to facilitate this process will be presented using example applications, including Breach, Leach, and Transport-Multiple Species (BLT-MS), a U.S. NRC sponsored code simulating release and transport of contaminants from a subsurface low-level waste disposal facility used in a cooperative technology transfer project between Sandia National Laboratories and Taiwan's Institute of Nuclear Energy Research (INER) for the preliminary assessment of several candidate low-level waste repository sites. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE AC04 94AL85000.
Kalb, P.D.; Colombo, P.
1997-07-15
The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.
Kalb, P.D.; Colombo, P.
1998-03-24
The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.
Kalb, P.D.; Colombo, P.
1999-07-20
The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a clean'' polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.
Task 3 - Pyrolysis of Plastic Waste. Semiannual report, November 1, 1996--March 31, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ness, Robert O.; Aulich, Ted R.
1997-12-31
Over the last 50 years, the U.S. Department of Energy (DOE) has produced a wide variety of radioactive wastes from activities associated with nuclear defense and nuclear power generation. These wastes include low-level radioactive solid wastes, mixed wastes, and transuranic (TRU) wastes. A portion of these wastes consists of high- organic-content materials, such as resins, plastics, and other polymers; synthetic and natural rubbers; cellulosic-based materials; and oils, organic solvents, and chlorinated organic solvents. Many of these wastes contain hazardous and/or pyrophoric materials in addition to radioactive species. Physical forms of the waste include ion-exchange resins used to remove radioactive elementsmore » from nuclear reactor cooling water, lab equipment and tools (e.g., measurement and containment vessels, hoses, wrappings, equipment coverings and components, and countertops), oil products (e.g., vacuum pump and lubrication oils), bags and other storage containers (for liquids, solids, and gases), solvents, gloves, lab coats and anti-contamination clothing, and other items. Major polymer and chemical groups found in high-organic-content radioactive wastes include polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP), Teflon(TM), polystyrene (PS), nylon, latex, polyethylene terephthalate (PET), vinyl, high-density polyethylene (HDPE), polycarbonate, nitriles, Tygon(R), butyl, and Tyvec(R).« less
Species removal from aqueous radioactive waste by deep-bed filtration.
Dobre, Tănase; Zicman, Laura Ruxandra; Pârvulescu, Oana Cristina; Neacşu, Elena; Ciobanu, Cătălin; Drăgolici, Felicia Nicoleta
2018-05-26
Performances of aqueous suspension treatment by deep-bed sand filtration were experimentally studied and simulated. A semiempirical deterministic model and a stochastic model were used to predict the removal of clay particles (20 μm) from diluted suspensions. Model parameters, which were fitted based on experimental data, were linked by multiple linear correlations to the process factors, i.e., sand grain size (0.5 and 0.8 mm), bed depth (0.2 and 0.4 m), clay concentration in the feed suspension (1 and 2 kg p /m 3 ), suspension superficial velocity (0.015 and 0.020 m/s), and operating temperature (25 and 45 °C). These relationships were used to predict the bed radioactivity determined by the deposition of radioactive suspended particles (>50 nm) from low and medium level aqueous radioactive waste. A deterministic model based on mass balance, kinetic, and interface equilibrium equations was developed to predict the multicomponent sorption of 60 Co, 137 Cs, 241 Am, and 3 H radionuclides (0.1-0.3 nm). A removal of 98.7% of radioactive particles was attained by filtering a radioactive wastewater volume of 10 m 3 (0.5 mm sand grain size, 0.3 m bed depth, 0.223 kg p /m 3 suspended solid concentration in the feed suspension, 0.003 m/s suspension superficial velocity, and 25 °C operating temperature). Predicted results revealed that the bed radioactivity determined by the sorption of radionuclides (0.01 kBq/kg b ) was significantly lower than the bed radioactivities caused by the deposition of radioactive particles (0.5-1.8 kBq/kg b ). Copyright © 2018 Elsevier Ltd. All rights reserved.
Mineral assemblage transformation of a metakaolin-based waste form after geopolymer encapsulation
Williams, Benjamin D.; Neeway, James J.; Snyder, Michelle M. V.; ...
2015-12-23
We can improve mitigation of hazardous and radioactive waste through conversion of existing waste to a more chemically stable and physically robust waste form. One option for waste conversion is the fluidized bed steam reforming (FBSR) process. The resulting FBSR granular material was encapsulated in a geopolymer matrix referred to here as Geo-7. This provides mechanical strength for ease in transport and disposal. But, it is necessary to understand the phase assemblage evolution as a result of geopolymer encapsulation. In this study, we examine the mineral assemblages formed during the synthesis of the multiphase ceramic waste form. The FBSR granularmore » samples were created from waste simulant that was chemically adjusted to resemble Hanford tank waste. Another set of samples was created using Savannah River Site Tank 50 waste simulant in order to mimic a blend of waste collected from 68 Hanford tank. Waste form performance tests were conducted using the product consistency test (PCT), the Toxicity Characteristic Leaching Procedure (TCLP), and the single-pass flow-through (SPFT) test. Finally, X-ray diffraction analyses revealed the structure of a previously unreported NAS phase and indicate that monolith creation may lead to a reduction in crystallinity as compared to the primary FBSR granular product.« less
Disposal of low-level radioactive waste. Impact on the medical profession
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brill, D.R.; Allen, E.W.; Lutzker, L.G.
1985-11-01
During 1985, low-level radioactive waste disposal has become a critical concern. The issue has been forced by the threatened closure of the three commercial disposal sites. The medical community has used radioactive isotopes for decades in nuclear medicine, radiation therapy, radioimmunoassay, and biomedical research. Loss of disposal capacity for radioactive wastes generated by these activities, by the suppliers of radioisotopes, and by pharmaceutical companies will have a profound impact on the medical profession.
25 CFR 170.903 - Who notifies tribes of the transport of radioactive waste?
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false Who notifies tribes of the transport of radioactive waste? 170.903 Section 170.903 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER... § 170.903 Who notifies tribes of the transport of radioactive waste? The Department of Energy (DOE) has...
25 CFR 170.903 - Who notifies tribes of the transport of radioactive waste?
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 1 2011-04-01 2011-04-01 false Who notifies tribes of the transport of radioactive waste? 170.903 Section 170.903 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER... § 170.903 Who notifies tribes of the transport of radioactive waste? The Department of Energy (DOE) has...
Radioactive waste disposal package
Lampe, Robert F.
1986-11-04
A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.
Radioactive waste disposal package
Lampe, Robert F.
1986-01-01
A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.
Radionuclide transport behavior in a generic geological radioactive waste repository.
Bianchi, Marco; Liu, Hui-Hai; Birkholzer, Jens T
2015-01-01
We performed numerical simulations of groundwater flow and radionuclide transport to study the influence of several factors, including the ambient hydraulic gradient, groundwater pressure anomalies, and the properties of the excavation damaged zone (EDZ), on the prevailing transport mechanism (i.e., advection or molecular diffusion) in a generic nuclear waste repository within a clay-rich geological formation. By comparing simulation results, we show that the EDZ plays a major role as a preferential flowpath for radionuclide transport. When the EDZ is not taken into account, transport is dominated by molecular diffusion in almost the totality of the simulated domain, and transport velocity is about 40% slower. Modeling results also show that a reduction in hydraulic gradient leads to a greater predominance of diffusive transport, slowing down radionuclide transport by about 30% with respect to a scenario assuming a unit gradient. In addition, inward flow caused by negative pressure anomalies in the clay-rich formation further reduces transport velocity, enhancing the ability of the geological barrier to contain the radioactive waste. On the other hand, local high gradients associated with positive pressure anomalies can speed up radionuclide transport with respect to steady-state flow systems having the same regional hydraulic gradients. Transport behavior was also found to be sensitive to both geometrical and hydrogeological parameters of the EDZ. Results from this work can provide useful knowledge toward correctly assessing the post-closure safety of a geological disposal system. © 2014, National Ground Water Association.
ONDRAF/NIRAS and high-level radioactive waste management in Belgium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Decamps, F.
1993-12-31
The National Agency for Radioactive Waste and Enriched Fissile Materials, ONDRAF/NIRAS, is a public body with legal personality in charge of managing all radioactive waste on Belgian territory, regardless of its origin and source. It is also entrusted with tasks related to the management of enriched fissile materials, plutonium containing materials and used or unused nuclear fuel, and with certain aspects of the dismantling of closed down nuclear facilities. High-level radioactive waste management comprises essentially and for the time being the storage of high-level liquid waste produced by the former EUROCHEMIC reprocessing plant and of high-level and very high-level heatmore » producing waste resulting from the reprocessing in France of Belgian spent fuel, as well as research and development (R and D) with regard to geological disposal in clay of this waste type.« less
Sugiyama, Daisuke; Hattori, Takatoshi
2013-01-01
In environmental remediation after nuclear accidents, radioactive wastes have to be appropriately managed in existing exposure situations with contamination resulting from the emission of radionuclides by such accidents. In this paper, a framework of radiation protection from radioactive waste management in existing exposure situations for application to the practical and reasonable waste management in contaminated areas, referring to related ICRP recommendations was proposed. In the proposed concept, intermediate reference levels for waste management are adopted gradually according to the progress of the reduction in the existing ambient dose in the environment on the basis of the principles of justification and optimisation by taking into account the practicability of the management of radioactive waste and environmental remediation. It is essential to include the participation of relevant stakeholders living in existing exposure situations in the selection of reference levels for the existing ambient dose and waste management.
Sugiyama, Daisuke; Hattori, Takatoshi
2013-01-01
In environmental remediation after nuclear accidents, radioactive wastes have to be appropriately managed in existing exposure situations with contamination resulting from the emission of radionuclides by such accidents. In this paper, a framework of radiation protection from radioactive waste management in existing exposure situations for application to the practical and reasonable waste management in contaminated areas, referring to related ICRP recommendations was proposed. In the proposed concept, intermediate reference levels for waste management are adopted gradually according to the progress of the reduction in the existing ambient dose in the environment on the basis of the principles of justification and optimisation by taking into account the practicability of the management of radioactive waste and environmental remediation. It is essential to include the participation of relevant stakeholders living in existing exposure situations in the selection of reference levels for the existing ambient dose and waste management. PMID:22719047
An overview of radioactive waste disposal procedures of a nuclear medicine department
Ravichandran, R.; Binukumar, J. P.; Sreeram, Rajan; Arunkumar, L. S.
2011-01-01
Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the I-131 solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP) of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of I-131 much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented. PMID:21731225
An overview of radioactive waste disposal procedures of a nuclear medicine department.
Ravichandran, R; Binukumar, J P; Sreeram, Rajan; Arunkumar, L S
2011-04-01
Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the I-131 solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP) of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of I-131 much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented.
LANL OPERATING EXPERIENCE WITH THE WAND AND HERCULES PROTOTYPE SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. M. GRUETZMACHER; C. L. FOXX; S. C. MYERS
2000-09-01
The Waste Assay for Nonradioactive Disposal (WAND) and the High Efficiency Radiation Counters for Ultimate Low Emission Sensitivity (HERCULES) prototype systems have been operating at Los Alamos National Laboratory's (LANL's) Solid Waste Operation's (SWO'S) non-destructive assay (NDA) building since 1997 and 1998, respectively. These systems are the cornerstone of the verification program for low-density Green is Clean (GIC) waste at the Laboratory. GIC waste includes all non-regulated waste generated in radiological controlled areas (RCAS) that has been actively segregated as clean (i.e., nonradioactive) through the use of waste generator acceptable knowledge (AK). The use of this methodology alters LANL's pastmore » practice of disposing of all room trash generated in nuclear facilities in radioactive waste landfills. Waste that is verified clean can be disposed of at the Los Alamos County Landfill. It is estimated that 50-90% of the low-density room trash from radioactive material handling areas at Los Alamos might be free of contamination. This approach avoids the high cost of disposal of clean waste at a radioactive waste landfill. It also reduces consumption of precious space in the radioactive waste landfill where disposal of this waste provides no benefit to the public or the environment. Preserving low level waste (LLW) disposal capacity for truly radioactive waste is critical in this era when expanding existing radioactive waste landfills or permitting new ones is resisted by regulators and stakeholders. This paper describes the operating experience with the WAND and HERCULES since they began operation at SWO. Waste for verification by the WAND system has been limited so far to waste from the Plutonium Facility and the Solid Waste Operations Facility. A total of461 ft3 (13.1 m3) of low-density shredded waste and paper have been verified clean by the WAND system. The HERCULES system has been used to verify waste from four Laboratory facilities. These are the Solid Waste Operations Facility, the TA-48 Chemistry Facility, the Shops Facility, and the Environmental Facility. A total of 3150 ft3 (89.3 m3) of low-density waste has been verified clean by the HERCULES system.« less
Studies of the mobility of uranium and thorium in Nevada Test Site tuff
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wollenberg, H.A.; Flexser, S.; Smith, A.R.
1991-06-01
Hydro-geochemical processes must be understood if the movement of radionuclides away from a breached radioactive waste canister is to be modeled and predicted. In this respect, occurrences of uranium and thorium in hydrothermal systems are under investigation in tuff and in rhyolitic tuff that was heated to simulate the effects of introduction of radioactive waste. In these studies, high-resolution gamma spectrometry and fission-track radiography are coupled with observations of alteration mineralogy and thermal history to deduce the evidence of, or potential for movement of, U and Th in response to the thermal environment. Observations to date suggest that U wasmore » mobile in the vicinity of the heater but that localized reducing environments provided by Fe-Ti-Mn-oxide minerals concentrated U and thus attenuated its migration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bossong, C.R.; Karlinger, M.R.; Troutman, B.M.
1999-10-01
Technical and practical aspects of applying geostatistics are developed for individuals involved in investigation at hazardous-, toxic-, and radioactive-waste sites. Important geostatistical concepts, such as variograms and ordinary, universal, and indicator kriging, are described in general terms for introductory purposes and in more detail for practical applications. Variogram modeling using measured ground-water elevation data is described in detail to illustrate principles of stationarity, anisotropy, transformations, and cross validation. Several examples of kriging applications are described using ground-water-level elevations, bedrock elevations, and ground-water-quality data. A review of contemporary literature and selected public domain software associated with geostatistics also is provided, asmore » is a discussion of alternative methods for spatial modeling, including inverse distance weighting, triangulation, splines, trend-surface analysis, and simulation.« less
Ion exchangers in radioactive waste management: natural Iranian zeolites.
Nilchi, A; Maalek, B; Khanchi, A; Ghanadi Maragheh, M; Bagheri, A; Savoji, K
2006-01-01
Five samples of natural zeolites from different parts of Iran were chosen for this study. In order to characterize and determine their structures, X-ray diffraction and infrared spectrometry were carried out for each sample. The selective absorption properties of each zeolite were found by calculating the distribution coefficient (K(d)) of various simulated wastes which were prepared by spiking the radionuclides with (131)I, (99)Mo, (153)Sm, (140)La and (147)Nd. All the zeolite samples used in this study had extremely high absorption value towards (140)La; clinoptolite from Mianeh and analsite from Ghalehkhargoshi showed good absorption for (147)Nd; clinoptolite from Semnan and clinoptolite from Firozkoh showed high absorption for (153)Sm; mesolite from Arababad Tabas showed good absorption for (99)Mo; and finally mesolite from Arababad Tabas, clinoptolite from Semnan and clinoptolite from Firozkoh could be used to selectively absorb (131)I from the stimulated waste which was prepared. The natural zeolites chosen for these studies show a similar pattern to those synthetic ion exchangers in the literature and in some cases an extremely high selectivity towards certain radioactive elements. Hence the binary separation of radioactive elements could easily be carried out. Furthermore, these zeolites, which are naturally occurring ion exchangers, are viable economically and extremely useful alternatives in this industry.
Natural diatomite process for removal of radioactivity from liquid waste.
Osmanlioglu, Ahmet Erdal
2007-01-01
Diatomite has a number of unique physical properties and has found diversified industrial utilization. The filtration characteristics are particularly significant in the purification of liquids. The purpose of this study was to test natural diatomaceous earth (diatomite) as an alternative material that could be used for removal of radioactivity from liquid waste. A pilot-scale column-type device was designed. Natural diatomite samples were ground, sieved and prepared to use as sorption media. In this study, real waste liquid was used as radioactive liquid having special conditions. The liquid waste contained three radionuclides (Cs-137, Cs-134 and Co-60). Following the treatment by diatomite, the radioactivity of liquid waste was reduced from the initial 2.60 Bq/ml to less than 0.40 Bq/ml. The results of this study show that most of the radioactivity was removed from the solution by processing with diatomite.
Radioactive waste from decommissioning of fast reactors (through the example of BN-800)
NASA Astrophysics Data System (ADS)
Rybin, A. A.; Momot, O. A.
2017-01-01
Estimation of volume of radioactive waste from operating and decommissioning of fast reactors is introduced. Preliminary estimation has shown that the volume of RW from decommissioning of BN-800 is amounted to 63,000 cu. m. Comparison of the amount of liquid radioactive waste derived from operation of different reactor types is performed. Approximate costs of all wastes disposal for complete decommissioning of BN-800 reactor are estimated amounting up to approx. 145 million.
10 CFR 72.8 - Denial of licensing by Agreement States.
Code of Federal Regulations, 2010 CFR
2010-01-01
... SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General... the storage of spent fuel and reactor-related GTCC waste in an ISFSI or the storage of spent fuel, high-level radioactive waste, and reactor-related GTCC waste in an MRS. [66 FR 51839, Oct. 11, 2001] ...
10 CFR 72.8 - Denial of licensing by Agreement States.
Code of Federal Regulations, 2011 CFR
2011-01-01
... SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General... the storage of spent fuel and reactor-related GTCC waste in an ISFSI or the storage of spent fuel, high-level radioactive waste, and reactor-related GTCC waste in an MRS. [66 FR 51839, Oct. 11, 2001] ...
ERIC Educational Resources Information Center
Hayden, Howard C.
1995-01-01
Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…
NCRP Program Area Committee 5: Environmental Radiation and Radioactive Waste Issues.
Chen, S Y; Napier, Bruce
2016-02-01
Program Area Committee 5 of the National Council on Radiation Protection and Measurements (NCRP) focuses its activities on environmental radiation and radioactive waste issues. The Committee completed a number of reports in these subject areas, most recently NCRP Report No. 175, Decision Making for Late-Phase Recovery from Major Nuclear or Radiological Incidents. Historically this Committee addressed emerging issues of the nation pertaining to radioactivity or radiation in the environment or radioactive waste issues due either to natural origins or to manmade activities.
SELF SINTERING OF RADIOACTIVE WASTES
McVay, T.N.; Johnson, J.R.; Struxness, E.G.; Morgan, K.Z.
1959-12-29
A method is described for disposal of radioactive liquid waste materials. The wastes are mixed with clays and fluxes to form a ceramic slip and disposed in a thermally insulated container in a layer. The temperature of the layer rises due to conversion of the energy of radioactivity to heat boillng off the liquid to fomn a dry mass. The dry mass is then covered with thermal insulation, and the mass is self-sintered into a leach-resistant ceramic cake by further conversion of the energy of radioactivity to heat.
Apparatus and method for radioactive waste screening
Akers, Douglas W.; Roybal, Lyle G.; Salomon, Hopi; Williams, Charles Leroy
2012-09-04
An apparatus and method relating to screening radioactive waste are disclosed for ensuring that at least one calculated parameter for the measurement data of a sample falls within a range between an upper limit and a lower limit prior to the sample being packaged for disposal. The apparatus includes a radiation detector configured for detecting radioactivity and radionuclide content of the of the sample of radioactive waste and generating measurement data in response thereto, and a collimator including at least one aperture to direct a field of view of the radiation detector. The method includes measuring a radioactive content of a sample, and calculating one or more parameters from the radioactive content of the sample.
Code of Federal Regulations, 2012 CFR
2012-01-01
... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent... proposed ISFSI or MRS must be evaluated with respect to the potential impact on the environment of the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-03-01
Development of this handbook began in 1982 at the request of the Radhealth Branch of the California Department of Health Services. California Assembly Bill 1513 directed the DHS to ''evaluate the technical and economic feasibility of (1) reducing the volume, reactivity, and chemical and radioactive hazard of (low-level radioactive) waste and (2) substituting nonradioactive or short-lived radioactive materials for those radionuclides which require long-term isolation from the environment. A contract awarded to the University of California at Irvine-UCI (California Std. Agreement 79902), to develop a document focusing on methods for decreasing low-level radioactive waste (LLW) generation in institutions was amore » result of that directive. In early 1985, the US Department of Energy, through EG and G Idaho, Inc., contracted with UCI to expand, update, and revise the California text for national release.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C.; Crawford, C.; Cozzi, A.
The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the Savannah River National Laboratory (SRNL) to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of I-125/129 and Tc-99 to chemically resemble WTP-SW. Ninety six grams of radioactive product were made for testing. The second campaign commenced using SRS LAW chemically trimmed to look like Hanford's LAW. Six hundred grams of radioactive product were made for extensive testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, Gregory
This special analysis (SA) evaluates whether the Materials and Energy Corporation (M&EC) Sealed Source waste stream (PERM000000036, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the M&EC Sealed Source waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The M&EC Sealed Source waste stream is recommended for acceptance without conditions.
The status of LILW disposal facility construction in Korea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Min-Seok; Chung, Myung-Sub; Park, Kyu-Wan
2013-07-01
In this paper, we discuss the experiences during the construction of the first LILW disposal facility in South Korea. In December 2005, the South Korean Government designated Gyeongju-city as a host city of Low- and Intermediate-Level Radioactive Waste(LILW) disposal site through local referendums held in regions whose local governments had applied to host disposal facility in accordance with the site selection procedures. The LILW disposal facility is being constructed in Bongilri, Yangbuk-myeon, Gyeongju. The official name of the disposal facility is called 'Wolsong Low and Intermediate Level Radioactive Waste Disposal Center (LILW Disposal Center)'. It can dispose of 800,000 drumsmore » of radioactive wastes in a site of 2,100,000 square meters. At the first stage, LILW repository of underground silo type with disposal capacity of 100,000 drums is under construction expected to be completed by June of 2014. The Wolsong Low and Intermediate Level Radioactive Waste Disposal Center consists of surface facilities and underground facilities. The surface facilities include a reception and inspection facility, an interim storage facility, a radioactive waste treatment building, and supporting facilities such as main control center, equipment and maintenance shop. The underground facilities consist of a construction tunnel for transport of construction equipment and materials, an operation tunnel for transport of radioactive waste, an entrance shaft for workers, and six silos for final disposal of radioactive waste. As of Dec. 2012, the overall project progress rate is 93.8%. (authors)« less
Radioactive Liquid Waste Treatment Facility: Environmental Information Document
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haagenstad, H.T.; Gonzales, G.; Suazo, I.L.
1993-11-01
At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end ofmore » its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.« less
Radioactive and mixed waste - risk as a basis for waste classification. Symposium proceedings No. 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The management of risks from radioactive and chemical materials has been a major environmental concern in the United states for the past two or three decades. Risk management of these materials encompasses the remediation of past disposal practices as well as development of appropriate strategies and controls for current and future operations. This symposium is concerned primarily with low-level radioactive wastes and mixed wastes. Individual reports were processed separately for the Department of Energy databases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choung, Sungwook; Um, Wooyong; Pacific Northwest National Laboratory
Permanent disposal of low- and intermediate-level radioactive wastes in the subterranean environment has been the preferred method of many countries, including Korea. A safety issue after the closure of a geological repository is that biodegradation of organic materials due to microbial activities generates gases that lead to overpressure of the waste containers in the repository and its disintegration with the release of radionuclides. As part of an ongoing large-scale in situ experiment using organic wastes and groundwater to simulate geological radioactive waste repository conditions, we investigated the geochemical alteration and microbial activities at an early stage (~63 days) intended tomore » be representative of the initial period after repository closure. The increased numbers of both aerobes and facultative anaerobes in waste effluents indicate that oxygen content could be the most significant parameter to control biogeochemical conditions at very early periods of reaction (<35 days). Accordingly, the values of dissolved oxygen and redox potential were decreased. The activation of anaerobes after 35 days was supported by the increased concentration to ~50 mg L-1 of ethanol. These results suggest that the biogeochemical conditions were rapidly altered to more reducing and anaerobic conditions within the initial 2 months after repository closure. Although no gases were detected during the study, activated anaerobic microbes will play more important role in gas generation over the long term.« less
Canister arrangement for storing radioactive waste
Lorenzo, D.K.; Van Cleve, J.E. Jr.
1980-04-23
The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.
Canister arrangement for storing radioactive waste
Lorenzo, Donald K.; Van Cleve, Jr., John E.
1982-01-01
The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.
Journey to the Nevada Test Site Radioactive Waste Management Complex
None
2018-01-16
Journey to the Nevada Test Site Radioactive Waste Management Complex begins with a global to regional perspective regarding the location of low-level and mixed low-level waste disposal at the Nevada Test Site. For decades, the Nevada National Security Site (NNSS) has served as a vital disposal resource in the nation-wide cleanup of former nuclear research and testing facilities. State-of-the-art waste management sites at the NNSS offer a safe, permanent disposal option for U.S. Department of Energy/U.S. Department of Defense facilities generating cleanup-related radioactive waste.
Tank 19F Folding Crawler Final Evaluation, Rev. 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nance, T.
2000-10-25
The Department of Energy (DOE) is committed to removing millions of gallons of high-level radioactive waste from 51 underground waste storage tanks at the Savannah River Site (SRS). The primary radioactive waste constituents are strontium, plutonium,and cesium. It is recognized that the continued storage of this waste is a risk to the public, workers, and the environment. SRS was the first site in the DOE complex to have emptied and operationally closed a high-level radioactive waste tank. The task of emptying and closing the rest of the tanks will be completed by FY28.
Fisher, Jeffrey M.; Bedinger, Marion S.; Stevens, Peter R.
1990-01-01
Shallow-land burial in arid areas is considered the best method for isolating low-level radioactive waste from the environment (Nichols and Goode, this report; Mercer and others, 1983). A major threat to waste isolation in shallow trenches is ground-water percolation. Repository sites in arid areas are believed to minimize the risk of ground-water contamination because such sites receive minimal precipitation and are underlain by thick unsaturated zones. Unfortunately, few data are available on rates of water percolation in an arid environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, Gregory
This special analysis (SA) evaluates whether the Idaho National Laboratory (INL) Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) waste stream (INEL167203QR1, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the INL Waste Associated with the Unirradiated LWBR waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The INL Waste Associated with the Unirradiated LWBR waste stream is recommended for acceptance with the conditionmore » that the total uranium-233 ( 233U) inventory be limited to 2.7E13 Bq (7.2E2 Ci).« less
Texas State Briefing Book for low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-08-01
The Texas State Briefing Book is one of a series of state briefing books on low-level radioactivee waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Texas. The profile is the result of a survey of NRC licensees in Texas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed throughmore » personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Texas.« less
Chemical Technology Division annual technical report, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battles, J.E.; Myles, K.M.; Laidler, J.J.
1993-06-01
In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7)more » processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less
Waste Information Record Keeping System (WIRKS) in Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dogaru, D.M.; Raducea, D.; Dogaru, G.
2006-07-01
In Romania there is no common national WIRKS used by all waste management organizations. Each waste management organization uses an own WIRKS. The regulatory authority approves the WIRKS of each radioactive waste facility and checks the recordings during the process of authorization. This paper summarizes the regulatory requirements regarding to WIRKS, the types of the waste generators, facilities and their waste classification of radioactive waste. Also the paper summarizes the WIRKS applied to the most important waste generators. (authors)
Regulatory basis for the Waste Isolation Pilot Plant performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
HOWARD,BRYAN A.; CRAWFORD,M.B.; GALSON,D.A.
2000-05-22
The Waste Isolation Pilot Plant (WIPP) is the first operational repository designed for the safe disposal of transuranic (TRU) radioactive waste from the defense programs of the US Department of Energy (DOE). The US Environmental Protection Agency (EPA) is responsible for certifications and regulation of the WIPP facility for the radioactive components of the waste. The EPA has promulgated general radioactive waste disposal standards at 40 CFR Part 191. and WIPP-specific criteria to implement and interpret the generic disposal standards at 40 CFR Part 194. In October 1996. the DOE submitted its Compliance Certification Application (CCA) to the EPA tomore » demonstrate compliance with the disposal standards at Subparts B and C of 40 CFR Part 191. This paper summarizes the development of the overall legal framework for radioactive waste disposal at the WIPP, the parallel development of the WIPP performance assessment (PA), and how the EPA disposal standards and implementing criteria formed the basis for the CCA WIPP PA. The CCA resulted in a certification in May 1998 by the EPA of the WIPP'S compliance with the EPA's disposal standard, thus enabling the WIPP to begin radioactive waste disposal.« less
A review and overview of nuclear waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, R.L.
1984-12-31
An understanding of the status and issues in the management of radioactive wastes is based on technical information on radioactivity, radiation, biological hazard of radiation exposure, radiation standards, and methods of protection. The fission process gives rise to radioactive fission products and neutron bombardment gives activation products. Radioactive wastes are classified according to source: defense, commercial, industrial, and institutional; and according to physical features: uranium mill tailings, high-level, transuranic, and low-level. The nuclear fuel cycle, which contributes a large fraction of annual radioactive waste, starts with uranium ore, includes nuclear reactor use for electrical power generation, and ends with ultimatemore » disposal of residues. The relation of spent fuel storage and reprocessing is governed by technical, economic, and political considerations. Waste has been successfully solidified in glass and other forms and choices of the containers for the waste form are available. Methods of disposal of high-level waste that have been investigated are transmutation by neutron bombardment, shipment to Antartica, deep-hole insertion, subseabed placement, transfer by rocket to an orbit in space, and disposal in a mined cavity. The latter is the favored method. The choices of host geological media are salt, basalt, tuff, and granite.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stritar, A.
Slovenia is a relatively small European country with only one operating nuclear power plant, one operating research reactor and one Central Interim Storage for Radioactive Waste from small producers. There are also a uranium mine and mill at Zirovski vrh, both in the decommissioning stage. The Slovenian Government, its public and neighboring countries are most interested in the managing of radioactive waste in the safest possible way by carefully utilizing best practices and existing human and financial resources. In order to achieve this goal the tight connection with the international community in the area of radioactive waste management is essential.more » Slovenia was among those countries involved in the process of preparation of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (Joint Convention) from the very beginning and was also among first ratifiers. Slovenia had prepared the first report under the Convention and took part in the first Review Meeting in November 2003. The preparation of this report was not regarded only as a fulfillment of obligation toward Joint Convention, but was considered primarily as a kind of self appraisal of the national radioactive management program. Therefore the preparation of the report primarily contributed to the improvements in the field of radioactive waste management and consequently enhanced the safety of our public. For the preparation of the second report for the review meeting in 2006 it was decided to follow the structure of the first report. Only updates were introduced and eventual changes in the area of radioactive waste management were reflected. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Z.; Gu, D.; Anthony, R.G.
1995-06-01
Polzer et al.`s method combined with Bromley`s method for estimating activity coefficients and a Langmuir isotherm for cesium in a simple simulated waste solution containing 5.1 M NaNO{sub 3} and 0.6 M NaOH was used to estimate distribution coefficients for cesium in a complex simulated waste solution characteristic of the radioactive tank wastes at Hanford and other US Department of energy sites. The ion exchange material was a hydrous sodium crystalline silicotitanate, labeled TAM-5, which is being developed by Texas A and M University, Sandia National Laboratories, and UOP Associates. Cesium distribution coefficients collected by Bray et al. on amore » NCAW simulated waste solution were predicted with deviations of less than 25% for solutions containing 1 M, 3 M, and 5 M Na{sup +} and Na:Cs ratios of 10{sup 3}--10{sup 8}. The deviations were less than 5% for the solutions with 1 M Na{sup +}. Cesium distribution coefficients were also predicted and compared with values measured by Egan et al. for TAM-5 and for a storage tank supernate and a newly generated waste solution. Excellent results were obtained for the newly generated waste simulated solution, which did not contain potassium or rubidium.The predictions for the other simulated waste solution were significantly greater than the measured values, because of the presence of large concentrations of potassium or rubidium. The effect of competitive ion exchange between Cs, Rb, and K was not included in the theory. However, the effect of competitive ion exchange between Cs, Rb, and K was not included in the theory. However, the effect of competitive exchange of Cs, Rb, and K appears to be greater for the Oak Ridge simulated waste solution than for the NCAW waste.« less
Source term evaluation model for high-level radioactive waste repository with decay chain build-up.
Chopra, Manish; Sunny, Faby; Oza, R B
2016-09-18
A source term model based on two-component leach flux concept is developed for a high-level radioactive waste repository. The long-lived radionuclides associated with high-level waste may give rise to the build-up of activity because of radioactive decay chains. The ingrowths of progeny are incorporated in the model using Bateman decay chain build-up equations. The model is applied to different radionuclides present in the high-level radioactive waste, which form a part of decay chains (4n to 4n + 3 series), and the activity of the parent and daughter radionuclides leaching out of the waste matrix is estimated. Two cases are considered: one when only parent is present initially in the waste and another where daughters are also initially present in the waste matrix. The incorporation of in situ production of daughter radionuclides in the source is important to carry out realistic estimates. It is shown that the inclusion of decay chain build-up is essential to avoid underestimation of the radiological impact assessment of the repository. The model can be a useful tool for evaluating the source term of the radionuclide transport models used for the radiological impact assessment of high-level radioactive waste repositories.
Current situation and future plans in radioactive waste management in Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, H.; Jimenez, M.
1992-01-01
A brief introduction is offered in this document in order to explain the importance which is given in Mexico to the safe management of radioactive wastes. The Secretaria de Energia, Minas e Industria Paraestatal is the organization responsible for this issue. Also, a brief historical background is offered so as to understand the evolution of these activities since they were originated. This background allows us to describe the present situation, which consists in a substantial change in the volume of produced radioactive wastes; in other words, before the present situation only the, nuclear wastes from the application of radioisotopes weremore » generated whereas currently, with the starting of commercial operation of the first unit of Laguna Verde Nuclear Power Plant (LVNPP), large volumes of industrial radioactive wastes are being generated. A mention is given as well of the acquired experience during more than 20 years of waste management and of the technologies which have been applied or practiced in the use and disposal of such wastes. Finally, some general trends in relation to the future planning are indicated, which essentially consist in the siting and characterization of a site so as to, design and construct a permanent disposal facility in order to dispose the operational radioactive wastes from LVNPP.« less
[Problems of safety regulation under radioactive waste management in Russia].
Monastyrskaia, S G; Kochetkov, O A; Barchukov, V G; Kuznetsova, L I
2012-01-01
Analysis of the requirements of Federal Law N 190 "About radioactive waste management and incorporation of changes into some legislative acts of the Russian Federation", as well as normative-legislative documents actual and planned to be published related to provision of radiation protection of the workers and the public have been done. Problems of safety regulation raised due to different approaches of Rospotrebnadzor, FMBA of Russia, Rostekhnadzor and Minprirody with respect to classification and categorization of the radioactive wastes, disposal, exemption from regulatory control, etc. have been discussed in the paper. Proposals regarding improvement of the system of safety regulation under radioactive waste management and of cooperation of various regulatory bodies have been formulated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, Louis
2014-09-20
This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 3rd quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014 in Tables 4 and 5. Tabular summaries are provided which includemore » the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report do not include minor volumes of non-radioactive materials that were approved for disposal. Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to differing rounding conventions.« less
Safety evaluation for packaging (onsite) concrete-lined waste packaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romano, T.
1997-09-25
The Pacific Northwest National Laboratory developed a package to ship Type A, non-transuranic, fissile excepted quantities of liquid or solid radioactive material and radioactive mixed waste to the Central Waste Complex for storage on the Hanford Site.
Improved low-level radioactive waste management practices for hospitals and research institutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-07-01
This report provides a general overview and a compendium of source material on low-level radioactive waste management practices in the institutional sector. Institutional sector refers to hospitals, universities, clinics, and research facilities that use radioactive materials in scientific research and the practice of medicine, and the manufacturers of radiopharmaceuticals and radiography devices. This report provides information on effective waste management practices for institutional waste to state policymakers, regulatory agency officials, and waste generators. It is not intended to be a handbook for actual waste management, but rather a sourcebook of general information, as well as a survey of the moremore » detailed analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauerhofer, E.; Havenith, A.; Kettler, J.
The Forschungszentrum Juelich GmbH (FZJ), together with the Aachen University Rheinisch-Westfaelische Technische Hochschule (RWTH) and the French Alternative Energies and Atomic Energy Commission (CEA Cadarache) are involved in a cooperation aiming at characterizing toxic and reactive elements in radioactive waste packages by means of Prompt Gamma Neutron Activation Analysis (PGNAA). The French and German waste management agencies have indeed defined acceptability limits concerning these elements in view of their projected geological repositories. A first measurement campaign was performed in the new Prompt Gamma Neutron Activation Analysis (PGNAA) facility called MEDINA, at FZJ, to assess the capture gamma-ray signatures of somemore » elements of interest in large samples up to waste drums with a volume of 200 liter. MEDINA is the acronym for Multi Element Detection based on Instrumental Neutron Activation. This paper presents MCNP calculations of the MEDINA facility and quantitative comparison between measurement and simulation. Passive gamma-ray spectra acquired with a high purity germanium detector and calibration sources are used to qualify the numerical model of the crystal. Active PGNAA spectra of a sodium chloride sample measured with MEDINA then allow for qualifying the global numerical model of the measurement cell. Chlorine indeed constitutes a usual reference with reliable capture gamma-ray production data. The goal is to characterize the entire simulation protocol (geometrical model, nuclear data, and postprocessing tools) which will be used for current measurement interpretation, extrapolation of the performances to other types of waste packages or other applications, as well as for the study of future PGNAA facilities.« less
NASA Astrophysics Data System (ADS)
Yudintsev, S. V.; Mal'kovsky, V. I.; Mokhov, A. V.
2016-05-01
The interaction of aluminophosphate glass with water at 95°C for 35 days results in glass heterogenization and in the appearance of a gel layer and various phases. The leaching rate of elements is low owing to the formation of a protective layer on the glass surface. It is shown that over 80% of uranium leached from the glass matrix occurs as colloids below 450 nm in size characterized by high migration ability in the geological environment. To determine the composition of these colloids is a primary task for further studies. Water vapor is a crystallization factor for glasses. The conditions as such may appear even at early stages of glass storage because of the failure of seals on containers of high-level radioactive wastes. The examination of water resistance of crystallized matrices and determination of the fraction of radionuclide in colloids are also subjects for further studies.
Solidification Technologies for Radioactive and Chemical Liquid Waste Treatment - Final CRADA Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castiglioni, Andrew J.; Gelis, Artem V.
This project, organized under DOE/NNSA's Global Initiatives for Proliferation Prevention program, joined Russian and DOE scientists in developing more effective solidification and storage technologies for liquid radioactive waste. Several patent applications were filed by the Russian scientists (Russia only) and in 2012, the technology developed was approved by Russia's Federal State Unitary Enterprise RADON for application throughout Russia in cleaning up and disposing of radioactive waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Department of Energy`s (DOE) Rocky Flats Environmental Technology Site (the Site), formerly known as the Rocky Flats Plant, has generated radioactive, hazardous, and mixed waste (waste with both radioactive and hazardous constituents) since it began operations in 1952. Such wastes were the byproducts of the Site`s original mission to produce nuclear weapons components. Since 1989, when weapons component production ceased, waste has been generated as a result of the Site`s new mission of environmental restoration and deactivation, decontamination and decommissioning (D&D) of buildings. It is anticipated that the existing onsite waste storage capacity, which meets the criteria for low-levelmore » waste (LL), low-level mixed waste (LLM), transuranic (TRU) waste, and TRU mixed waste (TRUM) would be completely filled in early 1997. At that time, either waste generating activities must cease, waste must be shipped offsite, or new waste storage capacity must be developed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louvat, D.; Lacoste, A.C.
The Joint Convention on the Safety of Spent Fuel management and on the Safety of Radioactive Waste Management is the first legal instrument to directly address the safety of spent fuel and radioactive waste management on a global scale. The Joint Convention entered into force in 2001. This paper describes its process and its main achievements to date. The perspectives to establish of a Global Waste Safety Regime based on the Joint Convention are also discussed. (authors)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, John Russell
The Al Tuwaitha nuclear complex near Baghdad contains a number of facilities from Saddam Hussan's nuclear weapons program. Past military operations, lack of upkeep and looting have created an enormous radioactive waste problem at the Al Tuwaitha complex, which contains various, uncharacterized radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals that must be constantly guarded. Iraq has never had a radioactive waste disposal facility and the lack of a disposal facility means that ever increasing quantities of radioactive material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has beenmore » initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS is funding the IAEA to provide technical assistance via Technical Cooperation projects. Program coordination will be provided by the DOS, consistent with GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for implementation of the NDs Program.« less
10 CFR 61.11 - General information.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61...) Plans for use of the land disposal facility for purposes other than disposal of radioactive wastes; and..., and first emplacement of waste at the proposed land disposal facility. ...
10 CFR 61.11 - General information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61...) Plans for use of the land disposal facility for purposes other than disposal of radioactive wastes; and..., and first emplacement of waste at the proposed land disposal facility. ...
10 CFR 61.11 - General information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61...) Plans for use of the land disposal facility for purposes other than disposal of radioactive wastes; and..., and first emplacement of waste at the proposed land disposal facility. ...
10 CFR 61.11 - General information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61...) Plans for use of the land disposal facility for purposes other than disposal of radioactive wastes; and..., and first emplacement of waste at the proposed land disposal facility. ...
10 CFR 61.11 - General information.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61...) Plans for use of the land disposal facility for purposes other than disposal of radioactive wastes; and..., and first emplacement of waste at the proposed land disposal facility. ...
Radioactive waste disposal in the marine environment
NASA Astrophysics Data System (ADS)
Anderson, D. R.
In order to find the optimal solution to waste disposal problems, it is necessary to make comparisons between disposal media. It has become obvious to many within the scientific community that the single medium approach leads to over protection of one medium at the expense of the others. Cross media comparisons are being conducted in the Department of Energy ocean disposal programs for several radioactive wastes. Investigations in three areas address model development, comparisons of laboratory tests with field results and predictions, and research needs in marine disposal of radioactive waste. Tabulated data are included on composition of liquid high level waste and concentration of some natural radionuclides in the sea.
PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duignan, M.; Nash, C.; Poirier, M.
2011-01-12
In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has themore » advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed several tests to demonstrate increases in filter performance. With the proper use of filter flow conditions and filter enhancers, filter flow rates can be increased over rates currently realized today.« less
Inhibiting localized corrosion during storage of dilute SRP wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oblath, S.B.; Congdon, J.W.
1986-01-01
High-level radioactive waste will be incorporated in borosilicate glass in the Defense Waste Processing Facility (DWPF) at the Savannah River Plant (SRP). As part of this process, large volumes of inorganic salt wastes will be decontaminated for disposal as low-level waste. The principal contaminants, /sup 137/Cs and /sup 90/Sr, are removed by treatment with sodium tetraphenylborate and sodium titanate. The resulting solids will be slurried with a dilute salt solution and stored in existing carbon steel tanks for several years prior to processing and disposal. Initial tests indicated a tendency for localized corrosion of the tanks. An investigation, using nonradioactivemore » simulants for the expected solution compositions, identified inhibitors which would protect the steel. Changes in solution compositions over time, due to radiolytic effects, were also accounted for by the simulants. Six inhibitors were identified which would protect the steel tanks. The effects these inhibitors would have on later processing steps in the DWPF were then evaluated. After this process, only sodium nitrite remained as an inhibitor that was both effective and compatible with the DWPF. The use of this inhibitor has been demonstrated on a real waste slurry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Some of the major technical questions associated with the burial of radioactive high-level wastes in geologic formations are related to the thermal environments generated by the waste and the impact of this dissipated heat on the surrounding environment. The design of a high level waste storage facility must be such that the temperature variations that occur do not adversely affect operating personnel and equipment. The objective of this investigation was to assist OWI by determining the thermal environment that would be experienced by personnel and equipment in a waste storage facility in salt. Particular emphasis was placed on determining themore » maximum floor and air temperatures with and without ventilation in the first 30 years after waste emplacement. The assumed facility design differs somewhat from those previously analyzed and reported, but many of the previous parametric surveys are useful for comparison. In this investigation a number of 2-dimensional and 3-dimensional simulations of the heat flow in a repository have been performed on the HEATING5 and TRUMP heat transfer codes. The representative repository constructs used in the simulations are described, as well as the computational models and computer codes. Results of the simulations are presented and discussed. Comparisons are made between the recent results and those from previous analyses. Finally, a summary of study limitations, comparisons, and conclusions is given.« less
Feasibility of space disposal of radioactive nuclear waste. 2: Technical summary
NASA Technical Reports Server (NTRS)
1974-01-01
The feasibility of transporting radioactive waste produced in the process of generating electricity in nuclear powerplants into space for ultimate disposal was investigated at the request of the AEC as a NASA in-house effort. The investigation is part of a broad AEC study of methods for long-term storage or disposal of radioactive waste. The results of the study indicate that transporting specific radioactive wastes, particularly the actinides with very long half-lives, into space using the space shuttle/tug as the launch system, appears feasible from the engineering and safety viewpoints. The space transportation costs for ejecting the actinides out of the solar system would represent less than a 5-percent increase in the average consumer's electric bill.
El Afifi, E M; Attallah, M F; Borai, E H
2016-01-01
Potential utilization of hematite as a natural material for immobilization of long-lived radionuclides from radioactive liquid waste was investigated. Hematite ore has been characterized by different analytical tools such as Fourier transformer infrared (FTIR), X-ray fluorescence (XRF), powder X-ray diffraction (XRD), thermogravimetry (TG) and differential thermal (DT) analysis, scanning electron microscopy (SEM) and BET-surface area. In this study, europium was used as REEs(III) and as a homolog of Am(III)-isotopes (such as (241)Am of 432.6 y, (242m)Am of 141 y and (243)Am of 7370 y). Micro particles of the hematite ore were used for treatment of radioactive waste containing (152+154)Eu(III). The results indicated that 96% (4.1 × 10(4) Bq) of (152+154)Eu(III) was efficiently retained onto hematite ore. Kinetic experiments indicated that the processes could be simulated by a pseudo-second-order model and suggested that the process may be chemisorption in nature. The applicability of Langmuir, Freundlich and Temkin models was investigated. It was found that Langmuir isotherm exhibited the best fit with the experimental results. It can be concluded that hematite is an economic and efficient reactive barrier for immobilization of long-lived radio isotopes of actinides and REEs(III). Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seitz, Roger; Kumano, Yumiko; Bailey, Lucy
2014-01-09
The principal approaches for management of radioactive waste are commonly termed ‘delay and decay’, ‘concentrate and contain’ and ‘dilute and disperse’. Containing the waste and isolating it from the human environment, by burying it, is considered to increase safety and is generally accepted as the preferred approach for managing radioactive waste. However, this approach results in concentrated sources of radioactive waste contained in one location, which can pose hazards should the facility be disrupted by human action in the future. The International Commission on Radiological Protection (ICRP), International Atomic Energy Agency (IAEA), and Organization for Economic Cooperation and Development/Nuclear Energymore » Agency (OECD/NEA) agree that some form of inadvertent human intrusion (HI) needs to be considered to address the potential consequences in the case of loss of institutional control and loss of memory of the disposal facility. Requirements are reflected in national regulations governing radioactive waste disposal. However, in practice, these requirements are often different from country to country, which is then reflected in the actual implementation of HI as part of a safety case. The IAEA project on HI in the context of Disposal of RadioActive waste (HIDRA) has been started to identify potential areas for improved consistency in consideration of HI. The expected outcome is to provide recommendations on how to address human actions in the safety case in the future, and how the safety case may be used to demonstrate robustness and optimize siting, design and waste acceptance criteria within the context of a safety case.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barariu, Gheorghe
2013-07-01
According to IAEA classification, Romania with two nuclear research centres, with 2 Nuclear Power Units in operation at Cernavoda Town and with 2 new Units envisaged to be in operation soon, can be considered as a country with an average nuclear activity. In Romania there was an extensive interest in management of radioactive wastes generated by the use of nuclear technology in industry and research. Using the most advanced technologies in the mentioned time periods, Romania successfully accomplished to solve all management issues related to radioactive wastes being addressed all safety concerns. Every step of nuclear activity development was accompaniedmore » by the suitable waste management facilities. So that, in order to improve the existing treatment and disposal capacities for institutional waste, the existing Radioactive Waste Treatment Facility (STDR) and the National Repository Radioactive Wastes (DNDR) at Baita, Bihor, will be improved to actual requirements on the occasion of VVR-S Research Reactor decommissioning. This activity is in development into the frame of a National funded project related to disposal galleries filling improvement and repository closure for DNDR Baita, Bihor. All improvements will be approved by Environmental Protection Authority and Regulatory Body, being a guaranty of human and environmental protection. Also, in accordance with national specific and international policies and taking into account decommissioning activities related to the present operating NPPs, all necessary measures were considered in order to avoid unnecessary generation of radioactive wastes, to minimize, as much as possible, waste production and accumulation and the necessity to develop optimum solutions for a new repository with the assurance of improved nuclear safety. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kot, Wing K.; Pegg, Ian L.; Brandys, Marek
One of the primary roles of waste pretreatment at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is to separate the majority of the radioactive components from the majority of the nonradioactive components in retrieved tank wastes, producing a high level waste (HLW) stream and a low activity waste (LAW) stream. This separation process is a key element in the overall strategy to reduce the volume of HLW that requires vitrification and subsequent disposal in a national deep geological repository for high level nuclear waste. After removal of the radioactive constituents, the LAW stream, which has a much largermore » volume but smaller fraction of radioactivity than the HLW stream, will be immobilized and disposed of in near surface facilities at the Hanford site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, Bill Walter; Chang, Fu-lin; Mattie, Patrick D.
2006-02-01
Sandia National Laboratories (SNL) and Taiwan's Institute for Nuclear Energy Research (INER) have teamed together to evaluate several candidate sites for Low-Level Radioactive Waste (LLW) disposal in Taiwan. Taiwan currently has three nuclear power plants, with another under construction. Taiwan also has a research reactor, as well as medical and industrial wastes to contend with. Eventually the reactors will be decomissioned. Operational and decommissioning wastes will need to be disposed in a licensed disposal facility starting in 2014. Taiwan has adopted regulations similar to the US Nuclear Regulatory Commission's (NRC's) low-level radioactive waste rules (10 CFR 61) to govern themore » disposal of LLW. Taiwan has proposed several potential sites for the final disposal of LLW that is now in temporary storage on Lanyu Island and on-site at operating nuclear power plants, and for waste generated in the future through 2045. The planned final disposal facility will have a capacity of approximately 966,000 55-gallon drums. Taiwan is in the process of evaluating the best candidate site to pursue for licensing. Among these proposed sites there are basically two disposal concepts: shallow land burial and cavern disposal. A representative potential site for shallow land burial is located on a small island in the Taiwan Strait with basalt bedrock and interbedded sedimentary rocks. An engineered cover system would be constructed to limit infiltration for shallow land burial. A representative potential site for cavern disposal is located along the southeastern coast of Taiwan in a tunnel system that would be about 500 to 800 m below the surface. Bedrock at this site consists of argillite and meta-sedimentary rocks. Performance assessment analyses will be performed to evaluate future performance of the facility and the potential dose/risk to exposed populations. Preliminary performance assessment analyses will be used in the site-selection process and to aid in design of the disposal system. Final performance assessment analyses will be used in the regulatory process of licensing a site. The SNL/INER team has developed a performance assessment methodology that is used to simulate processes associated with the potential release of radionuclides to evaluate these sites. The following software codes are utilized in the performance assessment methodology: GoldSim (to implement a probabilistic analysis that will explicitly address uncertainties); the NRC's Breach, Leach, and Transport - Multiple Species (BLT-MS) code (to simulate waste-container degradation, waste-form leaching, and transport through the host rock); the Finite Element Heat and Mass Transfer code (FEHM) (to simulate groundwater flow and estimate flow velocities); the Hydrologic Evaluation of Landfill performance Model (HELP) code (to evaluate infiltration through the disposal cover); the AMBER code (to evaluate human health exposures); and the NRC's Disposal Unit Source Term -- Multiple Species (DUST-MS) code (to screen applicable radionuclides). Preliminary results of the evaluations of the two disposal concept sites are presented.« less
Developing a model for moisture in saltcake waste tanks: Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, C.S.; Aimo, N.; Fayer, M.J.
1997-07-01
This report describes a modeling effort to provide a computer simulation capability for estimating the distribution and movement of moisture in the saltcake-type waste contained in Hanford`s single-shell radioactive waste storage tanks. This moisture model goes beyond an earlier version because it describes water vapor movement as well as the interstitial liquid held in a saltcake waste. The work was performed by Pacific Northwest National Laboratory to assist Duke Engineering and Services Hanford with the Organic Tank Safety Program. The Organic Tank Safety Program is concerned whether saltcake waste, when stabilized by jet pumping, will retain sufficient moisture near themore » surface to preclude any possibility of an accidental ignition and propagation of burning. The nitrate/nitrite saltcake, which might also potentially include combustible organic chemicals might not always retain enough moisture near the surface to preclude any such accident. Draining liquid from a tank by pumping, coupled with moisture evaporating into a tank`s head space, may cause a dry waste surface that is not inherently safe. The moisture model was devised to help examine this safety question. The model accounts for water being continually cycled by evaporation into the head space and returned to the waste by condensation or partly lost through venting to the external atmosphere. Water evaporation occurs even in a closed tank, because it is driven by the transfer to the outside of the heat load generated by radioactivity within the waste. How dry a waste may become over time depends on the particular hydraulic properties of a saltcake, and the model uses those properties to describe the capillary flow of interstitial liquid as well as the water vapor flow caused by thermal differences within the porous waste.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, John A.; Burke, Kevin J.; Looman, Marc R.
2012-07-01
This paper describes the development, testing and validation of a waste measurement instrument for characterising active remote handled radioactive waste arising from the operation of Magnox reactors in the United Kingdom. Following operation in UK Magnox gas cooled reactors and a subsequent period of cooling, parts of the magnesium-aluminium alloy cladding were removed from spent fuel and the uranium fuel rods with the remaining cladding were removed to Sellafield for treatment. The resultant Magnox based spent fuel element debris (FED), which constitutes active intermediate level waste (ILW) has been stored in concrete vaults at the reactor sites. As part ofmore » the decommissioning of the FED vaults the FED must be removed, measured and characterised and placed in intermediate storage containers. The present system was developed for use at the Trawsfynydd nuclear power station (NPS), which is in the decommissioning phase, but the approach is potentially applicable to FED characterisation at all of the Magnox reactors. The measurement system consists of a heavily shielded and collimated high purity Germanium (HPGe) detector with electromechanical cooling and a high count-rate preamplifier and digital multichannel pulse height analyser. The HPGe based detector system is controlled by a software code, which stores the measurement result and allows a comprehensive analysis of the measured FED data. Fuel element debris is removed from the vault and placed on a tray to a uniform depth of typically 10 cm for measurement. The tray is positioned approximately 1.2 meters above the detector which views the FED through a tungsten collimator with an inverted pyramid shape. At other Magnox sites the positions may be reversed with the shielded and collimated HPGe detector located above the tray on which the FED is measured. A comprehensive Monte Carlo modelling and analysis of the measurement process has been performed in order to optimise the measurement geometry and eliminate interferences from radioactive sources and FED in the immediate vicinity of the measurement position. The detector system has been calibrated and high activity radioactive sources of Cs-137, Co-60 and Na-22 have been used to validate the measurement process. The data acquisition and analysis software code has been tested and validated in keeping with the software quality assurance requirements of both ISO:9001-2008 - TICK-IT in the UK and NQA-1. The measurement and analysis system has been comprehensively tested with high activity sources, is flexible and may be applicable to a wide range of remote handled radioactive waste measurement applications. It is due to be installed at Trawsfynydd NPS later this year. This paper describes the Waste Tray Assay System (WTAS) that has been developed for the measurement of Magnox FED waste. The WTAS has been tested with a range of radioactive sources and its operation has been simulated with benchmarked MCNP Monte Carlo calculations. The measurement software has been validated as has the operation of the system for a range of strong radioactive sources. A system based on the design is due for installation and operation in 2012. The system has application to the measurement of Magnox Fuel Element Debris (FED) waste at other Magnox reactor sites. The major design objective of the WTAS that has been achieved is the ability of the assay system to determine the content of Cs-137, and in turn to enable the fissile burden to be assessed using a radionuclide fingerprint, in the presence of higher and highly variable quantities of Co-60, typically from nimonic springs. The approach can be used in other Magnox FED waste configurations where the detector is located above the FED waste sorting tray and where the collimation is fixed below the detector and at a distance above the tray. In this case, which has also been investigated, there are different shielding problems and mechanical support issues. The extensive use of MCNP Monte Carlo modelling to simulate the geometry of the sorting cell and the distribution of radioactive sources has helped to ensure that all of the detector shielding requirements are addressed and suitable Cs-137 and Co-60 discrimination can be achieved. The WTAS in its present form or in other configurations has relevance to the measurement of other active ILW and highly active RH waste. Examples include high activity RH LLW and RH TRU (Transuranic) waste as defined in the United States arising from both commercial nuclear and Department of Energy (DOE) operations. The analysis is able to analyse a range of radionuclides beyong those expected in the Magnox FED cases. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salgado, M.M.; Benitez, J.C.; Pernas, R.
2007-07-01
The Center for Radiation Protection and Hygiene (CPHR) is the institution responsible for the management of radioactive wastes generated from nuclear applications in medicine, industry and research in Cuba. Radioactive Waste Management Service is provided at a national level and it includes the collection and transportation of radioactive wastes to the Centralized Waste Management Facilities, where they are characterized, segregated, treated, conditioned and stored. A Quality Management System, according to the ISO 9001 Standard has been implemented for the RWM Service at CPHR. The Management System includes the radiation safety requirements established for RWM in national regulations and in themore » Licence's conditions. The role of the Regulatory Body and the Radiation Protection Officer in the Quality Management System, the authorization of practices, training and personal qualification, record keeping, inspections of the Regulatory Body and internal inspection of the Radiation Protection Officer, among other aspects, are described in this paper. The Quality Management System has shown to be an efficient tool to demonstrate that adequate measures are in place to ensure the safety in radioactive waste management activities and their continual improvement. (authors)« less
78 FR 7818 - Request To Amend a License To Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-04
... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Export Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear... Recipient country application no.; docket No. Eastern Technologies, Inc.; Class A radioactive The total...
76 FR 56490 - Request for a License To Import Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-13
... No., docket No. Duratek Services, Inc., August Class A radioactive Radionuclide For recycle and Canada. 17, 2011, August 18, 2011, waste in the form reallocation: beneficial reuse IW017/02, 11005621. of radioactively Amend to: to the greatest contaminated (1) Reduce the possible extent, materials...
HIGH TEMPERATURE TREATMENT OF INTERMEDIATE-LEVEL RADIOACTIVE WASTES - SIA RADON EXPERIENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobolev, I.A.; Dmitriev, S.A.; Lifanov, F.A.
2003-02-27
This review describes high temperature methods of low- and intermediate-level radioactive waste (LILW) treatment currently used at SIA Radon. Solid and liquid organic and mixed organic and inorganic wastes are subjected to plasma heating in a shaft furnace with formation of stable leach resistant slag suitable for disposal in near-surface repositories. Liquid inorganic radioactive waste is vitrified in a cold crucible based plant with borosilicate glass productivity up to 75 kg/h. Radioactive silts from settlers are heat-treated at 500-700 0C in electric furnace forming cake following by cake crushing, charging into 200 L barrels and soaking with cement grout. Variousmore » thermochemical technologies for decontamination of metallic, asphalt, and concrete surfaces, treatment of organic wastes (spent ion-exchange resins, polymers, medical and biological wastes), batch vitrification of incinerator ashes, calcines, spent inorganic sorbents, contaminated soil, treatment of carbon containing 14C nuclide, reactor graphite, lubricants have been developed and implemented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, Carol M.; Lee, William E.; Ojovan, Michael I.
The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of lowmore » level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and encapsulate wastes are also discussed. The various processing technologies are cross-referenced to the various types of wasteforms since often a particular type of wasteform can be made by a variety of different processing technologies.« less
Mineral assemblage transformation of a metakaolin-based waste form after geopolymer encapsulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Benjamin D.; Neeway, James J.; Snyder, Michelle M. V.
2016-05-01
Current plans for nuclear waste vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) lack the capacity to treat all of the low activity waste (LAW) that is not encapsulated in the vitrified product. Fluidized Bed Steam Reforming (FBSR) is one of the supplemental technologies under consideration to fill this gap. The FBSR process results in a granular product mainly composed of feldspathoid mineral phases that encapsulate the LAW and other contaminants of concern (COCs). In order to better understand the characteristics of the FBSR product, characterization testing has been performed on the granular product as well asmore » the granular product encapsulated in a monolithic geopolymer binder. The non-radioactive simulated tank waste samples created for use in this study are the result of a 2008 Department of Energy sponsored Engineering Scale Technology Demonstration (ESTD) in 2008. These samples were created from waste simulant that was chemically shimmed to resemble actual tank waste, and rhenium has been used as a substitute for technetium. Another set of samples was created by the Savannah River Site Bench-Scale Reformer (BSR) using a chemical shim of Savannah River Site Tank 50 waste in order to simulate a blend of 68 Hanford tank wastes. This paper presents results from coal and moisture removal tests along with XRD, SEM, and BET analyses showing that the major mineral components are predominantly sodium aluminosilicate minerals and that the mineral product is highly porous. Results also show that the materials pass the short-term leach tests: the Toxicity Characteristic Leaching Procedure (TCLP) and Product Consistency Test (PCT).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Zhiling; Wei, Wei; Turlapaty, Anish
2012-07-01
At the United States Army's test sites, fired penetrators made of Depleted Uranium (DU) have been buried under ground and become hazardous waste. Previously, we developed techniques for detecting buried radioactive targets. We also developed approaches for locating buried paramagnetic metal objects by utilizing the electromagnetic induction (EMI) sensor data. In this paper, we apply data fusion techniques to combine results from both the radiation detection and the EMI detection, so that we can further distinguish among DU penetrators, DU oxide, and non- DU metal debris. We develop a two-step fusion approach for the task, and test it with surveymore » data collected on simulation targets. In this work, we explored radiation and EMI data fusion for detecting DU, oxides, and non-DU metals. We developed a two-step fusion approach based on majority voting and a set of decision rules. With this approach, we fuse results from radiation detection based on the RX algorithm and EMI detection based on a 3-step analysis. Our fusion approach has been tested successfully with data collected on simulation targets. In the future, we will need to further verify the effectiveness of this fusion approach with field data. (authors)« less
Conservaton and retrieval of information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, M.
This is a summary of the findings of a Nordic working group formed in 1990 and given the task of establishing a basis for a common Nordic view of the need for information conservation for nuclear waste repositories by investigating the following: (1) the type of information that should be conserved; (2) the form in which the information should be kept; (3) the quality of the information as regards both type and form; and (4) the problems of future retrieval of information, including retrieval after very long periods of time. High-level waste from nuclear power generation will remain radioactive formore » very long times even though the major part of the radioactivity will have decayed within 1000 yr. Certain information about the waste must be kept for long time periods because future generations may-intentionally or inadvertently-come into contact with the radioactive waste. Current day waste management would benefit from an early identification of documents to be part of an archive for radioactive waste repositories. The same reasoning is valid for repositories for other toxic wastes.« less
Performance Assessments of Generic Nuclear Waste Repositories in Shale
NASA Astrophysics Data System (ADS)
Stein, E. R.; Sevougian, S. D.; Mariner, P. E.; Hammond, G. E.; Frederick, J.
2017-12-01
Simulations of deep geologic disposal of nuclear waste in a generic shale formation showcase Geologic Disposal Safety Assessment (GDSA) Framework, a toolkit for repository performance assessment (PA) whose capabilities include domain discretization (Cubit), multiphysics simulations (PFLOTRAN), uncertainty and sensitivity analysis (Dakota), and visualization (Paraview). GDSA Framework is used to conduct PAs of two generic repositories in shale. The first considers the disposal of 22,000 metric tons heavy metal of commercial spent nuclear fuel. The second considers disposal of defense-related spent nuclear fuel and high level waste. Each PA accounts for the thermal load and radionuclide inventory of applicable waste types, components of the engineered barrier system, and components of the natural barrier system including the host rock shale and underlying and overlying stratigraphic units. Model domains are half-symmetry, gridded with Cubit, and contain between 7 and 22 million grid cells. Grid refinement captures the detail of individual waste packages, emplacement drifts, access drifts, and shafts. Simulations are run in a high performance computing environment on as many as 2048 processes. Equations describing coupled heat and fluid flow and reactive transport are solved with PFLOTRAN, an open-source, massively parallel multiphase flow and reactive transport code. Additional simulated processes include waste package degradation, waste form dissolution, radioactive decay and ingrowth, sorption, solubility, advection, dispersion, and diffusion. Simulations are run to 106 y, and radionuclide concentrations are observed within aquifers at a point approximately 5 km downgradient of the repository. Dakota is used to sample likely ranges of input parameters including waste form and waste package degradation rates and properties of engineered and natural materials to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. SAND2017- 8305 A
Extended methods using thick-targets for nuclear reaction data of radioactive isotopes
NASA Astrophysics Data System (ADS)
Ebata, Shuichiro; Aikawa, Masayuki; Imai, Shotaro
2017-09-01
The nuclear transmutation is a technology to dispose of radioactive wastes. However, we do not have enough basic data for its developments, such as thick-target yields (TTY) and the interaction cross sections for radioactive material. We suggest two methods to estimate the TTY using inverse kinematics and to obtain the excitation function of the interaction cross sections which is named the thick-target transmission (T3) method. We deduce the energy-dependent conversion relation between the TTYs of the original system and its inverse kinematics, which can be replaced to a constant coefficient in the high energy region. Furthermore we show the usefulness of the T3 method to investigate the excitation function of the 12C + 27Al reaction in the simulation.
NASA Astrophysics Data System (ADS)
Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, U. N.
2017-11-01
The verification of the FENIA finite element code on some problems and an example of its application are presented in the paper. The code is being developing for 3D modelling of thermal, mechanical and hydrodynamical (THM) problems related to the functioning of deep geological repositories. Verification of the code for two analytical problems has been performed. The first one is point heat source with exponential heat decrease, the second one - linear heat source with similar behavior. Analytical solutions have been obtained by the authors. The problems have been chosen because they reflect the processes influencing the thermal state of deep geological repository of radioactive waste. Verification was performed for several meshes with different resolution. Good convergence between analytical and numerical solutions was achieved. The application of the FENIA code is illustrated by 3D modelling of thermal state of a prototypic deep geological repository of radioactive waste. The repository is designed for disposal of radioactive waste in a rock at depth of several hundred meters with no intention of later retrieval. Vitrified radioactive waste is placed in the containers, which are placed in vertical boreholes. The residual decay heat of radioactive waste leads to containers, engineered safety barriers and host rock heating. Maximum temperatures and corresponding times of their establishment have been determined.
Midwest Interstate Low-Level Radioactive Waste Commission annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-08-01
In 1980, Congress passed the Low-Level Radioactive Waste Policy Act. This Act provided for a new approach to the disposal of low-level radioactive waste. It assigned each state responsibility for the disposal of low-level radioactive waste generated within its borders, and it authorized states to enter into compacts for the purpose of operating regional disposal facilities. It also authorized compacts to restrict the use of regional disposal facilities to only member states. To meet their obligations under the Act, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio and Wisconsin formed the Midwest Interstate Low-Level Radioactive Waste Compact. The Compact was ratified bymore » each of the state legislatures and by Congress. The Compact established the Midwest Interstate Low-Level Radioactive Waste Commission, composed on one representative appointed by the Governor or Legislature of each member state. Article 3 of the compact requires that the Commission prepare an annual report regarding the activities and actions of the Commission. It also requires that the annual report be distributed to the Governors and legislative leaders in the member states. The Commission's Bylaw Article 12 requires the annual report to cover the preceding fiscal year, and to be distributed in August of each year. The Bylaw also requires that an annual audit, prepared by a certified public accountant, be included as part of the annual report. 3 figs.« less
Row erupts over US firm's plan to import nuclear waste
NASA Astrophysics Data System (ADS)
Gwynne, Peter
2008-06-01
A controversy is brewing in the US over a plan by a firm in Utah to import, process and dispose of 20 000 tonnes of low-level radioactive waste from decommissioned nuclear reactors built in Italy by American companies. EnergySolutions intends to recycle some of this waste at a site near Oak Ridge, Tennessee, so that it can be re-used as shielding blocks in nuclear plants. The firm then wants to dispose of the remaining radioactive material at a site in Clive, Utah, where over 90% of low-level radioactive waste generated in the US is currently buried.
Uncertainty quantification applied to the radiological characterization of radioactive waste.
Zaffora, B; Magistris, M; Saporta, G; Chevalier, J-P
2017-09-01
This paper describes the process adopted at the European Organization for Nuclear Research (CERN) to quantify uncertainties affecting the characterization of very-low-level radioactive waste. Radioactive waste is a by-product of the operation of high-energy particle accelerators. Radioactive waste must be characterized to ensure its safe disposal in final repositories. Characterizing radioactive waste means establishing the list of radionuclides together with their activities. The estimated activity levels are compared to the limits given by the national authority of the waste disposal. The quantification of the uncertainty affecting the concentration of the radionuclides is therefore essential to estimate the acceptability of the waste in the final repository but also to control the sorting, volume reduction and packaging phases of the characterization process. The characterization method consists of estimating the activity of produced radionuclides either by experimental methods or statistical approaches. The uncertainties are estimated using classical statistical methods and uncertainty propagation. A mixed multivariate random vector is built to generate random input parameters for the activity calculations. The random vector is a robust tool to account for the unknown radiological history of legacy waste. This analytical technique is also particularly useful to generate random chemical compositions of materials when the trace element concentrations are not available or cannot be measured. The methodology was validated using a waste population of legacy copper activated at CERN. The methodology introduced here represents a first approach for the uncertainty quantification (UQ) of the characterization process of waste produced at particle accelerators. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characterization of Class A low-level radioactive waste 1986--1990. Volume 6: Appendices G--J
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehmel, J.C.; Loomis, D.; Mauro, J.
1994-01-01
Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the wastemore » from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueth, Joachim
The Paul Scherrer Institut (PSI) is the largest national research centre in Switzerland. Its multidisciplinary research is dedicated to a wide field in natural science and technology as well as particle physics. In this context, PSI is operating, amongst others, a large proton accelerator facility since more than 30 years. In two cyclotrons, protons are accelerated to high speeds and then guided along roughly 100 m of beam line to three different target stations to produce secondary particles like mesons and neutrons for experiments and a separately beam line for UCN. The protons induce spallation processes in the target materials,more » and also at other beam loss points along the way, with emission of protons, neutrons, hydrogen, tritium, helium, heavier fragments and fission processes. In particular the produced neutrons, due to their large penetration depth, will then interact also with the surrounding materials. These interactions of radiation with matter lead to activation and partly to contamination of machine components and the surrounding infrastructures. Maintenance, operation and decommissioning of installations generate inevitably substantial amounts of radioactive operational and dismantling waste like targets, magnets, collimators, shielding (concrete, steel) and of course secondary waste. To achieve an optimal waste management strategy for interim storage or final disposal, radioactive waste has to be characterized, sorted and treated. This strategy is based on radiation protection demands, raw waste properties (size, material, etc.), and requirements to reduce the volume of waste, mainly for legal and economical reasons. In addition, the radiological limitations for transportation of the waste packages to a future disposal site have to be taken into account, as well as special regulatory demands. The characterization is a task of the waste producer. The conditioning processes and quality checks for radioactive waste packages are part of an accredited waste management process of PSI, especially of the Section Dismantling and Waste Management. Strictly proven and accepted methods needed to be developed and enhanced for safe treatment, transport, conditioning and storage. But in the field of waste from research activities, individual and new solutions have to be found in an increasingly growing administrative environment. Furthermore, a wide variety of components, with a really large inventory of radioactive nuclides, has to be handled. And there are always surprising challenges concerning the unusual materials or the nuclide inventory. In case of the operational and dismantling radioactive accelerator waste, the existing conditioning methods are in the process of a continuous enhancement - technically and administratively. The existing authorized specifications of conditioning processes have to be extended to optimize and fully describe the treatment of the inevitably occurring radioactive waste from the accelerator facility. Additional challenges are the changes with time concerning the legal and regulatory requirements - or do we have to consider it as business as usual? This paper gives an overview of the current practices in radioactive waste management and decommissioning of the existing operational accelerator waste. (authors)« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... ENERGY STANDARD CONTRACT FOR DISPOSAL OF SPENT NUCLEAR FUEL AND/OR HIGH-LEVEL RADIOACTIVE WASTE General... owns or generates spent nuclear fuel or high-level radioactive waste, of domestic origin, generated in... part will commit DOE to accept title to, transport, and dispose of such spent fuel and waste. In...
10 CFR 62.11 - Filing and distribution of a determination request.
Code of Federal Regulations, 2010 CFR
2010-01-01
... radioactive waste disposal facilities, to the Compact Commissions with operating regional low-level radioactive waste disposal facilities, and to the Governors of the States in the Compact Commissions with... ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission...
ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, B.; Waltz, R.
2009-06-11
Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2008 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report.
75 FR 29786 - Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-27
... plans for managing spent nuclear fuel and high-level radioactive waste. Pursuant to its authority under... of Energy (DOE) plans for managing spent nuclear fuel (SNF) and high-level radioactive waste (HLW... the packaging and movement of the waste, how the recent decision to terminate the Yucca Mountain...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barariu, G.; Giumanca, R.
2006-07-01
Pre-feasibility and feasibility studies were performed for decommissioning of the water-cooled water-moderated research reactor (WWER) located in Bucharest - Magurele, Romania. Using these studies as a starting point, the preferred safe management strategy for radioactive wastes produced by reactor decommissioning is outlined. The strategy must account for reactor decommissioning, as well as for the rehabilitation of the existing Radioactive Waste Treatment Plant and for the upgrade of the Radioactive Waste Disposal Facility at Baita-Bihor. Furthermore, the final rehabilitation of the laboratories and ecological reconstruction of the grounds need to be provided for, in accordance with national and international regulations. Inmore » accordance with IAEA recommendations at the time, the pre-feasibility study proposed three stages of decommissioning. However, since then new ideas have surfaced with regard to decommissioning. Thus, taking into account the current IAEA ideology, the feasibility study proposes that decommissioning of the WWER be done in one stage to an unrestricted clearance level of the reactor building in an Immediate Dismantling option. Different options and the corresponding derived preferred option for waste management are discussed taking into account safety measures, but also considering technical, logistical and economic factors. For this purpose, possible types of waste created during each decommissioning stage are reviewed. An approximate inventory of each type of radioactive waste is presented. The proposed waste management strategy is selected in accordance with the recommended international basic safety standards identified in the previous phase of the project. The existing Radioactive Waste Treatment Plant (RWTP) from the Horia Hulubei Institute for Nuclear Physics and Engineering (IFIN-HH), which has been in service with no significant upgrade since 1974, will need refurbishing due to deterioration, as well as upgrading in order to ensure the plant complies with current safety standards. This plant will also need to be adapted to treat wastes generated by WWER dismantling. The Baita-Bihor National Radioactive Waste Disposal Facility consists of two galleries in an abandoned uranium mine located in the central-western part of the Bihor Mountains in Transylvania. The galleries lie at a depth of 840 m. The facility requires a considerable overhaul. Several steps recommended for the upgrade of the facility are explored. Environmental concerns have lately become a crucial part of the radioactive waste management strategy. As such, all decisions must be made with great regard for land utilization around nuclear objectives. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usher, Sam
2007-07-01
Integrating Natural and Social Sciences to Inspire Public Confidence in Radioactive Waste Policy Case Study: Committee on Radioactive Waste Management Implementing effective long-term radioactive waste management policy is challenging, and both UK and international experience is littered with policy and programme failures. Policy must not only be underpinned by sound science and technical rationale, it must also inspire the confidence of the public and other stakeholders. However, in today's modern society, communities will not simply accept the word of scientists for setting policy based purely on technical grounds. This is particularly so in areas where there are significant social andmore » ethical issues, such as radioactive waste disposal. To develop and implement effective policy, governments, waste owners and implementing bodies must develop processes which effectively integrate both complex technical and scientific issues, with equally challenging social and ethical concerns. These integrating processes must marry often intricate technical issues with broad public and stakeholder engagement programmes, in programmes which can expect the highest levels of public scrutiny, and must invariably be delivered within challenging time and budget constraints. This paper considers a model for how such integrating processes can be delivered. The paper reviews, as a case study, how such challenges were overcome by the Committee on Radioactive Waste Management (CoRWM), which, in July 2006, made recommendations to the UK government for the establishment of a long-term radioactive waste policy. Its recommendations were underpinned by sound science, but also engendered public confidence through undertaking the largest and most significant deliberative public and stakeholder engagement programme on a complex policy issue in the UK. Effective decision-making was enabled through the integration of both proven and bespoke methodologies, including Multi-criteria Decision Analysis and Holistic assessments, coupled with an overarching deliberative approach. How this was managed and delivered to programme demonstrates how important effective integration of different issues, interests and world views can be achieved, and the paper looks forward to how the continued integration of both natural and social sciences is essential if public confidence is to be maintained through implementation stages. This paper will be particularly relevant to governments, waste owners and implementing bodies who are responsible for developing and implementing policy. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolshov, L.A.; Linge, I.I.; Kovalchuk, V.D.
This year the Federal Law 'On Radioactive Waste management' was adopted in the Russian Federation. The law significantly changes the existing radioactive waste management regulatory system and assigns a lot of new tasks in order to implement new principles and overcome inevitable respective difficulties. Nuclear Safety Institute was largely involved in the process of the development of the law as well as its further co-ordination among the stakeholders, during which some important initial provisions were excluded. In the paper special features of the Russian safety regulation system for radioactive waste management are analyzed. Most significant requirements adopted by the lawmore » as well as tasks and expected difficulties related to its implementation are discussed. (authors)« less
DOT National Transportation Integrated Search
1976-07-01
This report covers the results of a study utilizing a radioactive tracer technique to determine wear effects on the upper compression rings of a two-stroke cycle diesel engine burning mixtures of waste lube oil in fuel oil. The radioactive tracer tec...
Design and fabrication of a glovebox for the Plasma Hearth Process radioactive bench-scale system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahlquist, D.R.
This paper presents some of the design considerations and fabrication techniques for building a glovebox for the Plasma Hearth Process (PHP) radioactive bench-scale system. The PHP radioactive bench-scale system uses a plasma torch to process a variety of radioactive materials into a final vitrified waste form. The processed waste will contain plutonium and trace amounts of other radioactive materials. The glovebox used in this system is located directly below the plasma chamber and is called the Hearth Handling Enclosure (HHE). The HHE is designed to maintain a confinement boundary between the processed waste and the operator. Operations that take placemore » inside the HHE include raising and lowering the hearth using a hydraulic lift table, transporting the hearth within the HHE using an overhead monorail and hoist system, sampling and disassembly of the processed waste and hearth, weighing the hearth, rebuilding a hearth, and sampling HEPA filters. The PHP radioactive bench-scale system is located at the TREAT facility at Argonne National Laboratory-West in Idaho Falls, Idaho.« less
77 FR 34229 - Idaho: Final Authorization of State Hazardous Waste Management Program; Revision
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-11
... capability for the disposal of remote-handled low-level radioactive waste ((LLW) generated at the Idaho... (FONSI), for the Remote-Handled Low-Level Radioactive Waste Onsite Disposal (RHLLWOD) on an Environmental... regulating phosphate (mineral processing) plants within the state. In response to this commenter's concerns...
10 CFR 72.6 - License required; types of licenses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General... the receipt, handling, storage, and transfer of reactor-related GTCC are specific licenses. Any... hereby issued to receive title to and own spent fuel, high-level radioactive waste, or reactor-related...
10 CFR 72.6 - License required; types of licenses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General... the receipt, handling, storage, and transfer of reactor-related GTCC are specific licenses. Any... hereby issued to receive title to and own spent fuel, high-level radioactive waste, or reactor-related...
10 CFR 62.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (42 U.S.C. 2021) to any non-Federal or regional low-level radioactive waste (LLW) disposal facility or... regional or non-Federal low-level radioactive waste disposal facilities and who submit a request to the... LOW-LEVEL WASTE DISPOSAL FACILITIES General Provisions § 62.1 Purpose and scope. (a) The regulations...
Process for solidifying high-level nuclear waste
Ross, Wayne A.
1978-01-01
The addition of a small amount of reducing agent to a mixture of a high-level radioactive waste calcine and glass frit before the mixture is melted will produce a more homogeneous glass which is leach-resistant and suitable for long-term storage of high-level radioactive waste products.
Method for solidifying liquid radioactive wastes
Berreth, Julius R.
1976-01-01
The quantity of nitrous oxides produced during the solidification of liquid radioactive wastes containing nitrates and nitrites can be substantially reduced by the addition to the wastes of a stoichiometric amount of urea which, upon heating, destroys the nitrates and nitrites, liberating nontoxic N.sub.2, CO.sub.2 and NH.sub.3.
Code of Federal Regulations, 2010 CFR
2010-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.... Disposal site means that portion of a land disposal facility which is used for disposal of waste. It... facility means a land disposal facility in which radioactive waste is disposed of in or within the upper 30...
Code of Federal Regulations, 2014 CFR
2014-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.... Disposal site means that portion of a land disposal facility which is used for disposal of waste. It... facility means a land disposal facility in which radioactive waste is disposed of in or within the upper 30...
Code of Federal Regulations, 2013 CFR
2013-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.... Disposal site means that portion of a land disposal facility which is used for disposal of waste. It... facility means a land disposal facility in which radioactive waste is disposed of in or within the upper 30...
Code of Federal Regulations, 2012 CFR
2012-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.... Disposal site means that portion of a land disposal facility which is used for disposal of waste. It... facility means a land disposal facility in which radioactive waste is disposed of in or within the upper 30...
Code of Federal Regulations, 2011 CFR
2011-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.... Disposal site means that portion of a land disposal facility which is used for disposal of waste. It... facility means a land disposal facility in which radioactive waste is disposed of in or within the upper 30...
The Public and Technological Decisions.
ERIC Educational Resources Information Center
Abrams, Nancy E.; Primack, Joel R.
1980-01-01
Discussed is the pragmatic basis for involving the public in radioactive waste decisions. A model approach to involving the public in preparation of a national radioactive waste disposal plan is outlined. (RE)
AMS measurements of 14C and 129I in seawater around radioactive waste dump sites
NASA Astrophysics Data System (ADS)
Povinec, P. P.; Oregioni, B.; Jull, A. J. T.; Kieser, W. E.; Zhao, X.-L.
2000-10-01
According to a recent IAEA compilation of inventories of radioactive wastes dumped in the world ocean, a total of 85 PBq of radioactive wastes were dumped, in the Atlantic (45 PBq), the Pacific (1.4 PBq) and the Arctic (38 PBq) Oceans and their marginal seas between 1946 and 1993, mostly in the form of low-level wastes. 3H, and 14C formed an important part of the beta-activity of these dumped wastes. Because of its long half-life, 14C will be the main constituent in possible leakages from the wastes in the future. On the other hand, 14C and 129I are important radioactive tracers which have been artificially introduced into the oceans. Small amounts of 14C and 129I can be easily measured by accelerator mass spectrometry (AMS) on mg-size samples of carbon and iodine extracted from 500 ml seawater samples. The high analytical sensitivity enables one therefore to find even trace amounts of 14C and 129I which could be released from radioactive wastes, and to compare the measured levels with the global distribution of these radionuclides. The IAEAs Marine Environment Laboratory (IAEA-MEL) has been engaged in an assessment program related to radioactive waste dumping in the oceans since 1992 and has participated in several expeditions to the Atlantic, Arctic, Indian and Pacific Oceans to sample seawater, biota and sediment for radiological assessment studies. In the present paper, we report on methods of 14C and 129I measurements in seawater by AMS and present data on the NE Atlantic, the Arctic and the NW Pacific Ocean dumping sites. A small increase of 14C was observed at the NE Atlantic dumping site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, Will E.; Mehta, Sunil
The updated Hanford Site Composite Analysis will provide an all-pathways dose projection to a hypothetical future member of the public from all planned low-level radioactive waste disposal facilities and potential contributions from all other projected end-state sources of radioactive material left at Hanford following site closure. Its primary purpose is to support the decision-making process of the U.S. Department of Energy (DOE) under DOE O 435.1-1, Radioactive Waste Management (DOE, 2001), related to managing low-level waste disposal facilities at the Hanford Site.
Thirteenth annual U.S. DOE low-level radioactive waste management conference: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1991-12-31
The 40 papers in this document comprise the proceedings of the Department of Energy`s Thirteenth Annual Low-Level Radioactive Waste Management Conference that was held in Atlanta, Georgia, on November 19--21, 1991. General subjects addressed during the conference included: disposal facility design; greater-than-class C low-level waste; public acceptance considerations; waste certification; site characterization; performance assessment; licensing and documentation; emerging low-level waste technologies; waste minimization; mixed waste; tracking and transportation; storage; and regulatory changes. Papers have been processed separately for inclusion on the data base.
NASA Astrophysics Data System (ADS)
Perdrial, Nicolas; Thompson, Aaron; O'Day, Peggy A.; Steefel, Carl I.; Chorover, Jon
2014-09-01
Portions of the Hanford Site (WA, USA) vadose zone were subjected to weathering by caustic solutions during documented releases of high level radioactive waste (containing Sr, Cs and I) from leaking underground storage tanks. Previous studies have shown that waste-sediment interactions can promote variable incorporation of contaminants into neo-formed mineral products (including feldspathoids and zeolites), but processes regulating the subsequent contaminant release from these phases into infiltrating background pore waters remain poorly known. In this paper, reactive transport experiments were conducted with Hanford sediments previously weathered for one year in simulated hyper-alkaline waste solutions containing high or low 88Sr, 127I, and 133Cs concentrations, with or without CO2(aq). These waste-weathered sediments were leached in flow-through column experiments with simulated background pore water (characteristic of meteoric recharge) to measure contaminant release from solids formed during waste-sediment interaction. Contaminant sorption-desorption kinetics and mineral transformation reactions were both monitored using continuous-flow and wet-dry cycling regimes for ca. 300 pore volumes. Less than 20% of contaminant 133Cs and 88Sr mass and less than 40% 127I mass were released over the course of the experiment. To elucidate molecular processes limiting contaminant release, reacted sediments were studied with micro- (TEM and XRD) and molecular- (Sr K-edge EXAFS) scale methods. Contaminant dynamics in column experiments were principally controlled by rapid dissolution of labile solids and competitive exchange reactions. In initially feldspathoidic systems, time-dependent changes in the local zeolitic bonding environment observed with X-ray diffraction and EXAFS are responsible for limiting contaminant release. Linear combination fits and shell-by-shell analysis of Sr K-edge EXAFS data revealed modification in Sr-Si/Al distances within the zeolite cage. Wet-dry cycling did not affect significantly molecular-scale transformations relative to continuous-flow controls. Results indicate that contaminants bound to the solid phase in distinct micro- and molecular-scale coordinative environments can generate similar macro-scale release behaviors, highlighting the need for multi-scale interrogations to constrain mechanisms of reactive transport. Data also indicate that weathering-induced change in ion exchange selectivity coefficients should be incorporated in simulations of contaminant release from caustic high-level radioactive waste impacted sediments.
Nancarrow, D J; White, M M
2004-03-01
A short study has been carried out of the potential radioactive waste disposal issues associated with the proposed extension of Part IIA of the Environmental Protection Act 1990 to include radioactively contaminated land, where there is no other suitable existing legislation. It was found that there is likely to be an availability problem with respect to disposal at landfills of the radioactive wastes arising from remediation. This is expected to be principally wastes of high volume and low activity (categorised as low level waste (LLW) and very low level waste (VLLW)). The availability problem results from a lack of applications by landfill operators for authorisation to accept LLW wastes for disposal. This is apparently due to perceived adverse publicity associated with the consultation process for authorisation coupled with uncertainty over future liabilities. Disposal of waste as VLLW is limited both by questions over volumes that may be acceptable and, more fundamentally, by the likely alpha activity of wastes (originating from radium and thorium operations). Authorised on-site disposal has had little attention in policy and guidance in recent years, but may have a part to play, especially if considered commercially attractive. Disposal at BNFL's near surface disposal facility for LLW at Drigg is limited to wastes for which there are no practical alternative disposal options (and preference has been given to operational type wastes). Therefore, wastes from the radioactively contaminated land (RCL) regime are not obviously attractive for disposal to Drigg. Illustrative calculations have been performed based on possible volumes and activities of RCL arisings (and assuming Drigg's future volumetric disposal capacity is 950,000 m3). These suggest that wastes arising from implementing the RCL regime, if all disposed to Drigg, would not represent a significant fraction of the volumetric capacity of Drigg, but could have a significant impact on the radiological capacity with respect to 226Ra plus 232Th. The government's decision-making programme for managing solid radioactive wastes in the UK may possibly achieve a general consensus that the use of landfill for LLW from the RCL regime has a fundamental role to play. However, this is unlikely to change the situation within the next few years. No new national facility arising from this programme is likely to be available during the first decade of the operation of a new RCL regime. Hence it appears that Drigg will need to play an important role for some years to come.
Radioactive Waste Management and Environmental Contamination Issues at the Chernobyl Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Napier, Bruce A.; Schmieman, Eric A.; Voitsekhovitch, Oleg V.
2007-11-01
The destruction of the Unit 4 reactor at the Chernobyl Nuclear Power Plant resulted in the generation of radioactive contamination and radioactive waste at the site and in the surrounding area (referred to as the Exclusion Zone). In the course of remediation activities, large volumes of radioactive waste were generated and placed in temporary near surface waste-storage and disposal facilities. Trench and landfill type facilities were created from 1986 to 1987 in the Chernobyl Exclusion Zone at distances 0.5 to 15 km from the NPP site. This large number of facilities was established without proper design documentation, engineered barriers, ormore » hydrogeological investigations and they do not meet contemporary waste-safety requirements. Immediately following the accident, a Shelter was constructed over the destroyed reactor; in addition to uncertainties in stability at the time of its construction, structural elements of the Shelter have degraded as a result of corrosion. The main potential hazard of the Shelter is a possible collapse of its top structures and release of radioactive dust into the environment. A New Safe Confinement (NSC) with a 100-years service life is planned to be built as a cover over the existing Shelter as a longer-term solution. The construction of the NSC will enable the dismantlement of the current Shelter, removal of highly radioactive, fuel-containing materials from Unit 4, and eventual decommissioning of the damaged reactor. More radioactive waste will be generated during NSC construction, possible Shelter dismantling, removal of fuel containing materials, and decommissioning of Unit 4. The future development of the Exclusion Zone depends on the future strategy for converting Unit 4 into an ecologically safe system, i.e., the development of the NSC, the dismantlement of the current Shelter, removal of fuel containing material, and eventual decommissioning of the accident site. To date, a broadly accepted strategy for radioactive waste management at the reactor site and in the Exclusion Zone, and especially for high-level and long-lived waste, has not been developed.« less
Evaluation of americium-241 toxicity influence on the microbial growth of organic wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takehiro Marumo, Julio; Padua Ferreira, Rafael Vicente de; Keiko Isiki, Vera Lucia
2007-07-01
Available in abstract form only. Full text of publication follows: Since the licenses for using radioactive sources in radioactive lightning rods were lifted by the Brazilian national nuclear authority, in 1989, the radioactive devices have been replaced by Franklin type and collected as radioactive waste. However, only 20 percent of the estimated total number of installed rods was delivered to Brazilian Nuclear Commission. This situation causes concern, due to, first, the possibility of the rods being disposed as domestic waste, and second, the americium, the most commonly employed radionuclide, is classified as a high-toxicity element. In the present study, Am-241more » migration experiments were performed by a lysimeter system, in order to evaluate the risk of contamination caused by radioactive lightning rods disposed as a common solid waste. Besides the risk evaluation, it is important to know the mechanism of the Am-241 release or retention in waste as well as its influence in the waste decomposition processes. Many factors are involved, but microorganisms present in the waste play an important role in its degradation, which control the physical and chemical processes. The objective of this work was to evaluate the Am-241 influence on the microbial population by counting number of cells in lysimeters leachate. Preliminary results suggest that americium may influence significantly the bacteria growth in organic waste, evidenced by culture under aerobiosis and an-aerobiosis and the antimicrobial resistance test. (authors)« less
Recent Improvement Of The Institutional Radioactive Waste Management System In Slovenia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sueiae, S.; Fabjan, M.; Hrastar, U.
2008-07-01
The task of managing institutional radioactive waste was assigned to the Slovenian National Agency for Radwaste Management by the Governmental Decree of May 1999. This task ranges from the collection of waste at users' premises to the storage in the Central Storage Facility in (CSF) and afterwards to the planned Low and Intermediate Level Waste (LILW) repository. By this Decree ARAO also became the operator of the CSF. The CSF has been in operation since 1986. Recent improvements of the institutional radioactive waste management system in Slovenia are presented in this paper. ARAO has been working on the reestablishment ofmore » institutional radioactive waste management since 1999. The Agency has managed to prepare the most important documents and carry out the basic activities required by the legislation to assure a safe and environmentally acceptable management of the institutional radioactive waste. With the aim to achieve a better organized operational system, ARAO took the advantage of the European Union Transition Facility (EU TF) financing support and applied for the project named 'Improvement of the management of institutional radioactive waste in Slovenia via the design and implementation of an Information Business System'. Through a public invitation for tenders one of the Slovenian largest software company gained the contract. Two international radwaste experts from Belgium were part of their project team. The optimization of the operational system has been carried out in 2007. The project was executed in ten months and it was divided into two phases. The first phase of the project was related with the detection of weaknesses and implementation of the necessary improvements in the current ARAO operational system. With the evaluation of the existing system, possible improvements were identified. In the second phase of the project the software system Information Business System (IBS) was developed and implemented by the group of IT experts. As a software development life-cycle methodology the Waterfall methodology was used. The reason for choosing this methodology lied in its simple approach: analyze the problem, design the solution, implement the code, test the code, integrate and deploy. ARAO's institutional radioactive waste management process was improved in the way that it is more efficient, better organized, allowing traceability and availability of all documents and operational procedures within the field of institutional radioactive waste. The tailored made IBS system links all activities of the institutional radioactive waste management process: collection, transportation, takeover, acceptance, storing, treatment, radiation protection, etc. into one management system. All existing and newly designed evidences, operational procedures and other documents can be searched and viewed via secured Internet access from different locations. (authors)« less
Numerical Modeling of Thermal-Hydrology in the Near Field of a Generic High-Level Waste Repository
NASA Astrophysics Data System (ADS)
Matteo, E. N.; Hadgu, T.; Park, H.
2016-12-01
Disposal in a deep geologic repository is one of the preferred option for long term isolation of high-level nuclear waste. Coupled thermal-hydrologic processes induced by decay heat from the radioactive waste may impact fluid flow and the associated migration of radionuclides. This study looked at the effects of those processes in simulations of thermal-hydrology for the emplacement of U. S. Department of Energy managed high-level waste and spent nuclear fuel. Most of the high-level waste sources have lower thermal output which would reduce the impact of thermal propagation. In order to quantify the thermal limits this study concentrated on the higher thermal output sources and on spent nuclear fuel. The study assumed a generic nuclear waste repository at 500 m depth. For the modeling a representative domain was selected representing a portion of the repository layout in order to conduct a detailed thermal analysis. A highly refined unstructured mesh was utilized with refinements near heat sources and at intersections of different materials. Simulations looked at different values for properties of components of the engineered barrier system (i.e. buffer, disturbed rock zone and the host rock). The simulations also looked at the effects of different durations of surface aging of the waste to reduce thermal perturbations. The PFLOTRAN code (Hammond et al., 2014) was used for the simulations. Modeling results for the different options are reported and include temperature and fluid flow profiles in the near field at different simulation times. References:G. E. Hammond, P.C. Lichtner and R.T. Mills, "Evaluating the Performance of Parallel Subsurface Simulators: An Illustrative Example with PFLOTRAN", Water Resources Research, 50, doi:10.1002/2012WR013483 (2014). Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7510 A
Conditioning Procedure for Spent Cs-137 Sealed Sources in Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, Y.T.; Hasan, M.A.; Lasheen, Y.F.
2006-07-01
It is the duty of the Hot Laboratories and Waste Management Center, Egyptian Atomic Energy Authority to mange the radioactive waste generated from any user for radioactive materials in Egypt. The most hazardous or dangerous radioactive waste we collect is spent radioactive sealed sources that have to be managed safely to protect human, workers and environment from any undue burden for radiation. Through the Integrated Management Program Of Radioactive Sealed Sources In Egypt, IMPRSS all spent Cs-137 sources with low activity will be retrievable conditioned in 200 L drum with special lead shield to keep the surface dose rate lowermore » than 200 merm/h according to US regulations and IAEA guidelines. Using this procedure the EAEA will condition about 243 sources in 9 drums. (authors)« less
Discussions about safety criteria and guidelines for radioactive waste management.
Yamamoto, Masafumi
2011-07-01
In Japan, the clearance levels for uranium-bearing waste have been established by the Nuclear Safety Commission (NSC). The criteria for uranium-bearing waste disposal are also necessary; however, the NSC has not concluded the discussion on this subject. Meanwhile, the General Administrative Group of the Radiation Council has concluded the revision of its former recommendation 'Regulatory exemption dose for radioactive solid waste disposal', the dose criteria after the institutional control period for a repository. The Standardization Committee on Radiation Protection in the Japan Health Physics Society (The Committee) also has developed the relevant safety criteria and guidelines for existing exposure situations, which are potentially applicable to uranium-bearing waste disposal. A new working group established by The Committee was initially aimed at developing criteria and guidelines specifically for uranium-bearing waste disposal; however, the aim has been shifted to broader criteria applicable to any radioactive wastes.
Fiber reinforced concrete: An advanced technology for LL/ML radwaste conditioning and disposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tchemitcheff, E.; Verdier, A.
Radioactive waste immobilization is an integral part of operations in nuclear facilities. The goal of immobilization is to contain radioactive materials in a waste form which can maintain its integrity over very long periods of time, thus effectively isolating the materials from the environment and hence from the public. This is true regardless of the activity of the waste, including low-, and medium-level waste (LLW, MLW). A multiple-year research effort by Cogema culminated in the development of a new process to immobilize nuclear waste in concrete containers reinforced with metal fibers. The fiber concrete containers satisfy all French safety requirementsmore » relating to waste immobilization and disposal, and have been certified by ANDRA, the national radioactive waste management agency. The fiber concrete containers have been fabricated on a production scale since July 1990 by Sogefibre, a jointly-owned subsidiary of SGN and Compagnie Generale des Eaux.« less
Wilson, James C; Thorne, Michael C; Towler, George; Norris, Simon
2011-12-01
Many countries have a programme for developing an underground geological disposal facility for radioactive waste. A case study is provided herein on the illustrative assessment of human health issues arising from the potential release of chemotoxic and radioactive substances from a generic geological disposal facility (GDF) for radioactive waste. The illustrative assessment uses a source-pathway-receptor methodology and considers a number of human exposure pathways. Estimated exposures are compared with authoritative toxicological assessment criteria. The possibility of additive and synergistic effects resulting from exposures to mixtures of chemical contaminants or a combination of radiotoxic and chemotoxic substances is considered. The case study provides an illustration of how to assess human health issues arising from chemotoxic species released from a GDF for radioactive waste and highlights potential difficulties associated with a lack of data being available with which to assess synergistic effects. It also highlights how such difficulties can be addressed.
Radioactive waste handling and disposal at King Faisal Specialist Hospital and Research Centre.
Al-Haj, Abdalla N; Lobriguito, Aida M; Al Anazi, Ibrahim
2012-08-01
King Faisal Specialist Hospital & Research Centre (KFSHRC) is the largest specialized medical center in Saudi Arabia. It performs highly specialized diagnostic imaging procedures with the use of various radionuclides required by sophisticated dual imaging systems. As a leading institution in cancer research, KFSHRC uses both long-lived and short-lived radionuclides. KFSHRC established the first cyclotron facility in the Middle East, which solved the in-house high demand for radionuclides and the difficulty in importing them. As both user and producer of high standard radiopharmaceuticals, KFSHRC generates large volumes of low and high level radioactive wastes. An old and small radioactive facility that was used for storage of radioactive waste was replaced with a bigger warehouse provided with facilities that will reduce radiation exposure of the staff, members of the public, and of the environment in the framework of "as low as reasonably achievable." The experiences and the effectiveness of the radiation protection program on handling and storage of radioactive wastes are presented.
2nd Quarter Transportation Report FY 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, L.
2014-07-01
This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the second quarter of fiscal year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014 in Tables 4 and 5. Tabular summaries are provided which includemore » the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report do not include minor volumes of non-radioactive materials that were approved for disposal. Volume reports showing cubic feet (ft3) generated using the Low-Level Waste Information System may vary slightly due to differing rounding conventions.« less
Rees, T.F.; Cleveland, J.M.; Nash, K.L.
1985-01-01
The leachability of a radioactive waste glass formulated to Battelle Pacific Northwest Laboratory specification 80-270 has been studied using eight actual groundwaters with a range of chemical compositions as leachants. Waters collected from the Grande Ronde Basalt (Washington State) and from alluvial deposits in the Hualapai Valley (Arizona) were the most effective at removing plutonium from this glass. Leaching was shown to be incongruent; plutonium was removed from the glass more slowly than the overall glass matrix. The results of these experiments indicate the need to study the leachability of actual waste forms using the actual projected groundwaters that are most likely to come into contact with the waste should a radioactive waste repository be breached.
Commentary: Radioactive Wastes and Damage to Marine Communities
ERIC Educational Resources Information Center
Wallace, Bruce
1974-01-01
Discusses the effects of radioactive wastes on marine communities, with particular reference to the fitness of populations and the need for field and laboratory studies to provide evidence of ecological change. (JR)
Bonded carbon or ceramic fiber composite filter vent for radioactive waste
Brassell, Gilbert W.; Brugger, Ronald P.
1985-02-19
Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouzounian, G.
2007-07-01
In 2005, new developments on radioactive-waste management in France were marked mostly by the preparation of the 2006 milestone specified in the act of 30 December 1991. A bill on radioactive waste management has been prepared by the Government at the beginning of 2006 and passed to the French Parliament on 15 June 2006. The Planning Act on the sustainable management of radioactive materials and wastes has been drawn from the results of the 15 years of research performed by ANDRA and the CEA on 'partitioning and transmutation of long-lived radionuclides', 'deep geological disposal' and 'conditioning and long term interimmore » storage'. Major milestones during those two last years are presented, including reviews of the Dossier 2005, official reports, the Public Debate, and finally the Planning Act. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paiva, Isabel; Trindade, Romao B.
Council Directive 2011/70/EURATOM of 19 July 2011, establishing a Community framework for the responsible and safe management of spent fuel and radioactive waste will enter in force August 2013 in all EU Member States. Portugal has already started preparing its legislative framework to accommodate the new legislative piece. However, the first report of Portugal to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management of the IAEA, in Vienna, 2012, has shown that Portugal still has many steps to overcome to establish a successful and effective basic regulatory framework. The existencemore » of many competent authorities related to the radiological protection area and a newly independent commission that is still looking on how to fulfill its regulator role in other areas such as the radioactive waste management makes quite challenging the full application of the new directive as well as compliance that Portugal will have to show in the next Joint Convention review meeting in order to meet the obligations of the Convention. In this paper, the reality of the regulatory Portuguese framework on radiological protection, nuclear safety and radioactive waste management is presented. Discussion of the future impact of the new legislation and its consequences such as the need to setup the national program on radioactive waste management is critical discussed. (authors)« less
10 CFR 72.22 - Contents of application: General and financial information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN... of spent fuel, high-level radioactive waste, and/or reactor-related GTCC waste from storage. (f) Each applicant for a license under this part to receive, transfer, and possess power reactor spent fuel, power...
10 CFR 62.13 - Contents of a request for emergency access: Alternatives.
Code of Federal Regulations, 2010 CFR
2010-01-01
... radioactive waste in a licensed storage facility; (3) Obtaining access to a disposal facility by voluntary... disposal at a Federal low-level radioactive waste disposal facility in the case of a Federal or defense... EMERGENCY ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission...
An Improvement to Low-Level Radioactive Waste Vitrification Processes.
1986-05-01
waste stream. 3 9 Sodium and Potassium tetraphenyl borates are both cited in the literature as having high cesium selectivity. 23 The thermal... Ferrate (II) Impregnated Zeolite for Cesium Removal from Radioactive Waste," Nuc. Tech., 58, p.242, ANS, La Grange Park, Illinois, (1982T. 29. F.V
Process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes
Colombo, Peter; Kalb, Paul D.; Heiser, III, John H.
1997-11-14
The present invention provides a method for encapsulating and stabilizing radioactive, hazardous and mixed wastes in a modified sulfur cement composition. The waste may be incinerator fly ash or bottom ash including radioactive contaminants, toxic metal salts and other wastes commonly found in refuse. The process may use glass fibers mixed into the composition to improve the tensile strength and a low concentration of anhydrous sodium sulfide to reduce toxic metal solubility. The present invention preferably includes a method for encapsulating radioactive, hazardous and mixed wastes by combining substantially anhydrous wastes, molten modified sulfur cement, preferably glass fibers, as well as anhydrous sodium sulfide or calcium hydroxide or sodium hydroxide in a heated double-planetary orbital mixer. The modified sulfur cement is preheated to about 135.degree..+-.5.degree. C., then the remaining substantially dry components are added and mixed to homogeneity. The homogeneous molten mixture is poured or extruded into a suitable mold. The mold is allowed to cool, while the mixture hardens, thereby immobilizing and encapsulating the contaminants present in the ash.
Modeling of transport phenomena in concrete porous media.
Plecas, Ilija
2014-02-01
Two fundamental concerns must be addressed when attempting to isolate low-level waste in a disposal facility on land. The first concern is isolating the waste from water, or hydrologic isolation. The second is preventing movement of the radionuclides out of the disposal facility, or radionuclide migration. Particularly, we have investigated here the latter modified scenario. To assess the safety for disposal of radioactive waste-concrete composition, the leakage of 60Co from a waste composite into a surrounding fluid has been studied. Leakage tests were carried out by the original method, developed at the Vinča Institute. Transport phenomena involved in the leaching of a radioactive material from a cement composite matrix are investigated using three methods based on theoretical equations. These are: the diffusion equation for a plane source: an equation for diffusion coupled to a first-order equation, and an empirical method employing a polynomial equation. The results presented in this paper are from a 25-y mortar and concrete testing project that will influence the design choices for radioactive waste packaging for a future Serbian radioactive waste disposal center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
no author on report
2014-06-01
The Toxic Substances Control Act, 40 CFR 761.65(a)(1) provides an exemption from the one year storage time limit for PCB/radioactive waste. PCB/radioactive waste may exceed the one year time limit provided that the provisions at 40 CFR 761.65(a)(2)(ii) and 40 CFR 761.65(a)(2)(iii) are followed. These two subsections require, (ii) "A written record documenting all continuing attempts to secure disposal is maintained until the waste is disposed of" and (iii) "The written record required by subsection (ii) of this section is available for inspection or submission if requested by EPA." EPA Region 10 has requested the Department of Energy (DOE) tomore » submit an inventory of radioactive-contaminated PCB waste in storage at the Idaho National Laboratory (INL) for the previous calendar year. The annual inventory is separated into two parts, INL without Advanced Mixed Waste Treatment Project (AMWTP) (this includes Battelle Energy Alliance, LLC, CH2M-WG Idaho, LLC, and the Naval Reactors Facility), and AMWTP.« less
Radioactive waste management treatments: A selection for the Italian scenario
DOE Office of Scientific and Technical Information (OSTI.GOV)
Locatelli, G.; Mancini, M.; Sardini, M.
2012-07-01
The increased attention for radioactive waste management is one of the most peculiar aspects of the nuclear sector considering both reactors and not power sources. The aim of this paper is to present the state-of-art of treatments for radioactive waste management all over the world in order to derive guidelines for the radioactive waste management in the Italian scenario. Starting with an overview on the international situation, it analyses the different sources, amounts, treatments, social and economic impacts looking at countries with different industrial backgrounds, energetic policies, geography and population. It lists all these treatments and selects the most reasonablemore » according to technical, economic and social criteria. In particular, a double scenario is discussed (to be considered in case of few quantities of nuclear waste): the use of regional, centralized, off site processing facilities, which accept waste from many nuclear plants, and the use of mobile systems, which can be transported among multiple nuclear sites for processing campaigns. At the end the treatments suitable for the Italian scenario are presented providing simplified work-flows and guidelines. (authors)« less
Naturally occurring radioactive materials (NORM): a matter of wide societal implication.
Pescatore, C; Menon, S
2000-12-01
Naturally occurring radioactive materials are ubiquitous on Earth and their radioactivity may become concentrated as a result of human activities. Numerous industries produce concentrated radioactivity in their by-products: the coal industry, petroleum extraction and processing, water treatment, etc. The present reference system of radiation protection does not provide a complete framework for the coherent management of all types of radioactively contaminated materials. Inconsistencies in waste management policy and practice can be noted across the board, and especially vis-à-vis the management of radioactive waste from the nuclear industry. This article reviews the present societal approach to manage materials that are radioactive but are often not recognised as being such, and place the management of radioactive materials from the nuclear industry in perspective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, Carol; Herman, Connie; Crawford, Charles
One of the immobilization technologies under consideration as a Supplemental Treatment for Hanford’s Low Activity Waste (LAW) is Fluidized Bed Steam Reforming (FBSR). The FBSR technology forms a mineral waste form at moderate processing temperatures thus retaining and atomically bonding the halides, sulfates, and technetium in the mineral phases (nepheline, sodalite, nosean, carnegieite). Additions of kaolin clay are used instead of glass formers and the minerals formed by the FBSR technology offers (1) atomic bonding of the radionuclides and constituents of concern (COC) comparable to glass, (2) short and long term durability comparable to glass, (3) disposal volumes comparable tomore » glass, and (4) higher Na2O and SO{sub 4} waste loadings than glass. The higher FBSR Na{sub 2}O and SO{sub 4} waste loadings contribute to the low disposal volumes but also provide for more rapid processing of the LAW. Recent FBSR processing and testing of Hanford radioactive LAW (Tank SX-105 and AN-103) waste is reported and compared to previous radioactive and non-radioactive LAW processing and testing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, J.W.; Thacker, M.S.; DeWitt, C.B.
In the area of environmental restoration, one of the most challenging problems is the task of remediating mixed waste-contaminated sites. This paper discusses a successful Interim Corrective Measure (ICM) performed at a mixed waste-contaminated site on Kirtland Air Force Base (AFB) in Albuquerque, New Mexico. The site, known as RW-68, Cratering Area and Radium Dump/Slag Piles, was used during the late 1940s and early 1950s for the destruction and incineration of captured World War II aircraft. It contained 19 slag piles totaling approximately 150 tons of slag, ash, refractory brick, and metal debris. The piles were contaminated with radium-226 andmore » RCRA-characteristic levels of heavy metals. Therefore, the piles were considered mixed waste. To eliminate the threat to human health and the environment, an ICM of removal, segregation, stabilization, and disposal was conducted from October through December 1996. Approximately 120 cubic yards (cu yds) of mixed waste, 188 cu yds of low-level radioactive-contaminated soil, 1 cu yd of low-level radioactive-contaminated debris, 5 cu yds of RCRA-characteristic hazardous waste, and 45 tons of nonhazardous debris were stabilized and disposed of during the ICM. To render the RCRA metals and radionuclides insoluble, stabilization was performed on the mixed and RCRA-characteristic waste streams. All stabilized material was subjected to TCLP analysis to verify it no longer exhibited RCRA-characteristic properties. Radiological and geophysical surveys were conducted concurrently with site remediation activities. These surveys provided real-time documentation of site conditions during each phase of the ICM and confirmed successful cleanup of the site. The three radioactive waste streams, stabilized mixed waste, low-level radioactive-contaminated soil, and low-level radioactive-contaminated debris, were disposed of at the Envirocare low-level radioactive disposal facility.« less
Management of Disused Radioactive Sealed Sources in Egypt - 13512
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, Y.T.; Hasan, M.A.; Lasheen, Y.F.
The future safe development of nuclear energy and progressive increasing use of sealed sources in medicine, research, industry and other fields in Egypt depends on the safe and secure management of disused radioactive sealed sources. In the past years have determined the necessity to formulate and apply the integrated management program for radioactive sealed sources to assure harmless and ecological rational management of disused sealed sources in Egypt. The waste management system in Egypt comprises operational and regulatory capabilities. Both of these activities are performed under legislations. The Hot Laboratories and Waste Management Center HLWMC, is considered as a centralizedmore » radioactive waste management facility in Egypt by law 7/2010. (authors)« less
Use of petrophysical data for siting of deep geological repository of radioactive waste
NASA Astrophysics Data System (ADS)
Petrenko, Liliana; Shestopalov, Vyacheslav
2017-11-01
The paper is devoted to analyzing the petrophysical properties and petrographical characteristics of Volyn region with the view to choosing the least permeable and so the most suitable geological formation for the radioactive waste disposal. On a basis of the petrophysical estimations of the granitoids properties the argumentation of permeability has been developed for the petrotypes of Volyn region. Also method of classification of the petrotypes with their relative rate of suitability for radioactive waste disposal was developed. As a result of studying the perspectives were shown of the zhytomyr and korosten types of the granitoids as host rock for the radioactive waste disposal. According to the results of investigations performed by Swedish researchers a comparative analysis of rocks based on the age of formation, composition, structural features and some petrophysical properties of granitoids as host rocks for repository of radioactive waste was performed. Detail comparison the data of the granitoids of the Forsmark site in Sweden and the data of the granitoids of the Volyn megablock can be one of the next steps in researching the host rocks for the development of the RW disposal system in Ukraine.
Togawa, O; Povinec, P P; Pettersson, H B
1999-09-30
IAEA-MEL has been engaged in an assessment programme related to radioactive waste dumping by the former USSR and other countries in the western North Pacific Ocean and its marginal seas. This paper focuses on the Sea of Japan and on estimation of collective doses from liquid radioactive wastes. The results from the Japanese-Korean-Russian joint expeditions are summarized, and collective doses for the Japanese population by the marine food pathway are estimated from liquid radioactive wastes dumped in the Sea of Japan and compared with those from global fallout and natural radionuclides. The collective effective dose equivalents by the annual intake of marine products caught in each year show a maximum a few years after the disposals. The total dose from all radionuclides reaches a maximum of 0.8 man Sv in 1990. Approximately 90% of the dose derives from 137Cs, most of which is due to consumption of fish. The total dose from liquid radioactive wastes is approximately 5% of that from global fallout, the contribution of which is below 0.1% of that of natural 210Po.
Radioactive liquid wastes discharged to ground in the 200 Areas during 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirabella, J.E.
An overall summary is presented giving the radioactive liquid wastes discharged to ground during 1976 and since startup (for both total and decayed depositions) within the Production and Waste Management Division control zone (200 Area plateau). Overall summaries are also presented for 200 East Area and for 200 West Area. The data contain an estimate of the radioactivity discharged to individual ponds, cribs and specific retention sites within the Production and Waste Management Division during 1976 and from startup through December 31, 1976; an estimate of the decayed activities from startup through 1976; the location and reference drawings of eachmore » disposal site; and the usage dates of each disposal site. The estimates for the radioactivity discharged and for decayed activities dicharged from startup through December 31, 1976 are based upon Item 4 of the Bibliography. The volume of liquid discharged to the ponds also includes major nonradioactive streams. The wastes discharged during 1976 to each active disposal site are detailed on a month-to-month basis, along with the monthly maximum concentration and average concentration data. An estimate of the radioactivity discharged to each active site along with the remaining decayed activities is given.« less
Management of low-level radioactive waste in Israel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shabtai, B.; Brenner, S.; Ne`eman, E.
1995-12-31
Radioactive materials are used extensively in Israel in many areas and applications for medicine, industry, agriculture, research and development and others. Israel`s primary concern in waste management is population safety and environmental protection. The Ministry of The Environment (MOE), in cooperation with the Israeli Atomic Energy Commission (IAEC), supervise over the disposal system, and ensure an effective control. The MOE is responsible for the granting of permits to users of radioactive elements in about 300 plants and institutes, with about 2,200 installations. The MOE operates a computerized database management system (DBMS) on radioactive materials, with data on licensing, import andmore » distribution, waste disposal and transportation. Supervision over the disposal of LLRW has deepened recently, and periodic reports, based on the number of drums containing LLRW, which were transferred from all institutes in Israel to the NRWDS, were prepared. Draft regulations on the disposal of LLRW from institutes of research and education, hospitals, medical laboratories and other, have been recently prepared. These regulations include instructions on the disposal of solid and liquid LLRW as well as radioactive gases and vapors. As a general rule, no LLRW of any sort will be disposed of through the ordinary waste system or general sewage. However, in some extraordinary cases, residues of liquid LLRW are allowed to be disposed in this manner, if the requirements for disposal are satisfied. There are some conditions, in which solid LLRW might be treated as a conventional waste, as well as for safe emission of radioactive gases and aerosols. In light of these considerations, a new and more specific approach to radiation protection organizations and management of low-level radioactive waste problems, supervision and optimization is presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, A.A.; Olson, R.A.; Tennis, P.D.
1995-04-01
Portland cement blended with fly ash and attapulgite clay was mixed with high-alkaline solution simulating low-level radioactive waste stream at a one-to-one weight ratio. Mixtures were adiabatically and isothermally cured at various temperatures and analyzed for phase composition, total alkalinity, pore solution chemistry, and transport properties as measured by impedance spectroscopy. Total alkalinity is characterized by two main drops. The early one corresponds to a rapid removal of phosphorous, aluminum, sodium, and to a lesser extent potassium solution. The second drop from about 10 h to 3 days is mainly associated with the removal of aluminum, silicon, and sodium. Thereafter,more » the total alkalinity continues descending, but at a lower rate. All pastes display a rapid flow loss that is attributed to an early precipitation of hydrated products. Hemicarbonate appears as early as one hour after mixing and is probably followed by apatite precipitation. However, the former is unstable and decomposes at a rate that is inversely related to the curing temperature. At high temperatures, zeolite appears at about 10 h after mixing. At 30 days, the stabilized crystalline composition Includes zeolite, apatite and other minor amounts of CaCO{sub 3}, quartz, and monosulfate Impedance spectra conform with the chemical and mineralogical data. The normalized conductivity of the pastes shows an early drop, which is followed by a main decrease from about 12 h to three days. At three days, the permeability of the cement-based waste as calculated by Katz-Thompson equation is over three orders of magnitude lower than that of ordinary portland cement paste. However, a further decrease in the calculated permeability is questionable. Chemical stabilization is favorable through incorporation of waste species into apatite and zeolite.« less
Successes and Techniques Associated with Teaching the Chemistry of Radioactive Wastes.
ERIC Educational Resources Information Center
Williams, Donald H.
1995-01-01
Describes a chemistry course that is built around the topic of radioactive waste and encompasses a large number of chemistry concepts including redox, equilibrium, kinetics, nuclear energy, and the periodic chart. (JRH)
ERIC Educational Resources Information Center
Zeller, E. J.; And Others
1973-01-01
Describes need for creating permanent disposal of high-level radioactive wastes accumulating in different countries. Possibilities of establishing facilities for this purpose in Antarctic ice cap are examined. (PS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faybishenko, Boris; Birkholzer, Jens; Persoff, Peter
2016-08-01
An important issue for present and future generations is the final disposal of spent nuclear fuel. Over the past over forty years, the development of technologies to isolate both spent nuclear fuel (SNF) and other high-level nuclear waste (HLW) generated at nuclear power plants and from production of defense materials, and low- and intermediate-level nuclear waste (LILW) in underground rock and sediments has been found to be a challenging undertaking. Finding an appropriate solution for the disposal of nuclear waste is an important issue for protection of the environment and public health, and it is a prerequisite for the futuremore » of nuclear power. The purpose of a deep geological repository for nuclear waste is to provide to future generations, protection against any harmful release of radioactive material, even after the memory of the repository may have been lost, and regardless of the technical knowledge of future generations. The results of a wide variety of investigations on the development of technology for radioactive waste isolation from 19 countries were published in the First Worldwide Review in 1991 (Witherspoon, 1991). The results of investigations from 26 countries were published in the Second Worldwide Review in 1996 (Witherspoon, 1996). The results from 32 countries were summarized in the Third Worldwide Review in 2001 (Witherspoon and Bodvarsson, 2001). The last compilation had results from 24 countries assembled in the Fourth Worldwide Review (WWR) on radioactive waste isolation (Witherspoon and Bodvarsson, 2006). Since publication of the last report in 2006, radioactive waste disposal approaches have continued to evolve, and there have been major developments in a number of national geological disposal programs. Significant experience has been obtained both in preparing and reviewing cases for the operational and long-term safety of proposed and operating repositories. Disposal of radioactive waste is a complex issue, not only because of the nature of the waste, but also because of the detailed regulatory structure for dealing with radioactive waste, the variety of stakeholders involved, and (in some cases) the number of regulatory entities involved.« less
NASA Astrophysics Data System (ADS)
Yoshimura, K.; Sakashita, S.; Okubo, S.; Yamane, K.
2006-12-01
Radioactive Waste Management Funding and Research Center of Japan has recently conducted a program to develop an electromagnetic (EM) technology for investigating the subsurface to the depths of 1,000m below the seafloor in the near-shore environment. Potential applications include structural studies for geological disposal of radioactive wastes. The system includes both natural field by magnetotellurics and controlled source EM data was collected to evaluate the feasibility of the methods and instrumentation. The shallow water environment is challenging because of high water currents and wave motion effects contaminating the data. We demonstrate the performance test of the new type of instrument, and the field experiment that was carried out in the Monterey Bay of California, USA, in 2003 and 2004. In this paper we describe the instrumentation developed, shows some examples from field trial and finally provide some inversion results using collected and simulated data. The system consists of EM transmitter deployed on the beach in combination with a series of offshore based multicomponent receivers. Field data collected near Monterey California revealed some of the challenges associated with this type of system. Collected data showed the influence of wave and cultural noise as well. In site of these difficulties we were able to accumulate a sufficient quantity of good quality records to interpret results. We show 2-D inversion results which image the "Navy Fault zone" which strikes NW-SE offshore Monterey bay in water depths of 10 to 40m.
NASA Astrophysics Data System (ADS)
Birkholzer, J. T.
2017-12-01
This presentation provides an overview of an international research and model comparison collaboration (DECOVALEX) for advancing the understanding and modeling of coupled thermo-hydro-mechanical-chemical (THMC) processes in geological systems. Prediction of these coupled effects is an essential part of the performance and safety assessment of geologic disposal systems for radioactive waste and spent nuclear fuel, and is also relevant for a range of other sub-surface engineering activities. DECOVALEX research activities have been supported by a large number of radioactive-waste-management organizations and regulatory authorities. Research teams from more than a dozen international partner organizations have participated in the comparative modeling evaluation of complex field and laboratory experiments in the UK, Switzerland, Japan, France and Sweden. Together, these tasks (1) have addressed a wide range of relevant issues related to engineered and natural system behavior in argillaceous, crystalline and other host rocks, (2) have yielded in-depth knowledge of coupled THM and THMC processes associated with nuclear waste repositories and wider geo-engineering applications, and (3) have advanced the capability, as well as demonstrated the suitability, of numerical simulation models for quantitative analysis.
NASA Astrophysics Data System (ADS)
Farina, S.; Schulz Rodriguez, F.; Duffó, G.
2013-07-01
The present work is a study of the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins contaminated with different types and concentrations of aggressive species. A special type of specimen was manufactured to simulate the cemented ion-exchange resins in the drum. The evolution of the corrosion potential and the corrosion rate of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 900 days. The aggressive species studied were chloride ions (the main ionic species of concern) and sulphate ions (produced during radiolysis of the cationic exchange-resins after cementation). The work was complemented with an analysis of the corrosion products formed on the steel in each condition, as well as the morphology of the corrosion products. When applying the results obtained in the present work to estimate the corrosion depth of the steel drumscontaining the cemented radioactive waste after a period of 300 years (foreseen durability of the Intermediate Level Radioactive Waste facility in Argentina) , it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums.
Pump station for radioactive waste water
Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.
2003-11-18
A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shea, M.
1995-09-01
The proper isolation of radioactive waste is one of today`s most pressing environmental issues. Research is being carried out by many countries around the world in order to answer critical and perplexing questions regarding the safe disposal of radioactive waste. Natural analogue studies are an increasingly important facet of this international research effort. The Pocos de Caldas Project represents a major effort of the international technical and scientific community towards addressing one of modern civilization`s most critical environmental issues - radioactive waste isolation.
Liu, Xinhua; Wei, Fangxin; Xu, Chunyan; Liao, Yunxuan; Jiang, Jing
2015-09-01
The proper classification of radioactive waste is the basis upon which to define its disposal method. In view of differences between waste containing artificial radionuclides and waste with naturally occurring radionuclides, the scientific definition of the properties of waste arising from the front end of the uranium fuel cycle (UF Waste) is the key to dispose of such waste. This paper is intended to introduce briefly the policy and practice to dispose of such waste in China and some foreign countries, explore how to solve the dilemma facing such waste, analyze in detail the compositions and properties of such waste, and finally put forward a new concept of classifying such waste as waste with naturally occurring radionuclides.
SUBGRADE MONOLITHIC ENCASEMENT STABILIZATION OF CATEGORY 3 LOW LEVEL WASTE (LLW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
PHILLIPS, S.J.
2004-02-03
A highly efficient and effective technology has been developed and is being used for stabilization of Hazard Category 3 low-level waste at the U.S. Department of Energy's Hanford Site. Using large, structurally interconnected monoliths, which form one large monolith that fills a waste disposal trench, the patented technology can be used for final internment of almost any hazardous, radioactive, or toxic waste or combinations of these waste materials packaged in a variety of sizes, shapes, and volumes within governmental regulatory limits. The technology increases waste volumetric loading by 100 percent, area use efficiency by 200 percent, and volumetric configuration efficiencymore » by more than 500 percent over past practices. To date, in excess of 2,010 m{sup 3} of contact-handled and remote-handled low-level radioactive waste have been interned using this patented technology. Additionally, in excess of 120 m{sup 3} of low-level radioactive waste requiring stabilization in low-diffusion coefficient waste encasement matrix has been disposed using this technology. Greater than five orders of magnitude in radiation exposure reduction have been noted using this method of encasement of Hazard Category 3 waste. Additionally, exposure monitored at all monolith locations produced by the slip form technology is less than 1.29 x E-07 C {center_dot} kg{sup -1}. Monolithic encasement of Hazard Category 3 low-level waste and other waste category materials may be successfully accomplished using this technology at nominally any governmental or private sector waste disposal facility. Additionally, other waste materials consisting of hazardous, radioactive, toxic, or mixed waste materials can be disposed of using the monolithic slip form encasement technology.« less
NASA Astrophysics Data System (ADS)
Huang, W. H.; Chang, H. C.
2017-12-01
The disposal of low- and intermediate-level radioactive wastes requires use of multi-barriers for isolation of the wastes from the biosphere. Typically, the engineered barriers are composed of a concrete vault, buffer and backfill materials. Zhishin clay and Black Hill bentonite were used as raw clay material in making buffer and backfill materials in this study. These clays were compacted to make buffer material, or mixed with Taitung area argillite to produce backfill material for potential application as barriers for the disposal of low- and intermediate-level radioactive wastes. The interaction between concrete barrier and the buffer/backfill material is simulated by an accelerated migration test to investigate the effect of contacting concrete on the expected functions of buffer/backfill material. The results show buffer material close to the contact with concrete exhibits significant change in the ratio of calcium/sodium exchange capacity, due to the move of calcium ions released from the concrete. The shorter the distance from the contacting interface, the ratio of the calcium/sodium concentration in buffer/backfill materials increases. The longer the distance from the interface, the effect of the contact on alteration in clays become less significant. Also, some decreases in swelling capacity in the buffer/backfill material near the concrete-backfill interface are noted. Finally, a comparison is made between Zhisin clay and Balck Hill bentonite on the interaction between concrete and the two clays. Black Hill bentonite was found to be influenced more by the interaction, because of the higher content of montmorillonite. On the other hand, being a mixture of clay and sand, backfill material is less affected by the decalsification of concrete at the contact than buffer material.
Radioactive waste storage issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunz, Daniel E.
1994-08-15
In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal)more » of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.« less
Laser decontamination of the radioactive lightning rods
NASA Astrophysics Data System (ADS)
Potiens, A. J.; Dellamano, J. C.; Vicente, R.; Raele, M. P.; Wetter, N. U.; Landulfo, E.
2014-02-01
Between 1970 and 1980 Brazil experienced a significant market for radioactive lightning rods (RLR). The device consists of an air terminal with one or more sources of americium-241 attached to it. The sources were used to ionize the air around them and to increase the attraction of atmospheric discharges. Because of their ineffectiveness, the nuclear regulatory authority in Brazil suspended the license for manufacturing, commerce and installation of RLR in 1989, and determined that the replaced RLR were to be collected to a centralized radioactive waste management facility for treatment. The first step for RLR treatment is to remove the radioactive sources. Though they can be easily removed, some contaminations are found all over the remaining metal scrap that must decontaminated for release, otherwise it must be treated as radioactive waste. Decontamination using various chemicals has proven to be inefficient and generates large amounts of secondary wastes. This work shows the preliminary results of the decontamination of 241Am-contaminated metal scrap generated in the treatment of radioactive lightning rods applying laser ablation. A Nd:YAG nanoseconds laser was used with 300 mJ energy leaving only a small amount of secondary waste to be treated.
U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1986-1990
Trask, N.J.; Stevens, P.R.
1991-01-01
The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research efforts are categorized according to whether they are related most directly to: (1) high-level wastes, (2) transuranic wastes, (3) low-level and mixed low-level and hazardous wastes, or (4) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, to development of techniques and methods for characterizing disposal sites, and to studies of geologic and hydrologic processes related to the transport and/or retention of waste radionuclides.
10 CFR 62.13 - Contents of a request for emergency access: Alternatives.
Code of Federal Regulations, 2011 CFR
2011-01-01
... EMERGENCY ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission... following: (1) Storage of low-level radioactive waste at the site of generation; (2) Storage of low-level... disposal at a Federal low-level radioactive waste disposal facility in the case of a Federal or defense...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marietta, Melvin Gary; Anderson, D. Richard; Bonano, Evaristo J.
2011-11-01
Sandia National Laboratories (SNL) is the world leader in the development of the detailed science underpinning the application of a probabilistic risk assessment methodology, referred to in this report as performance assessment (PA), for (1) understanding and forecasting the long-term behavior of a radioactive waste disposal system, (2) estimating the ability of the disposal system and its various components to isolate the waste, (3) developing regulations, (4) implementing programs to estimate the safety that the system can afford to individuals and to the environment, and (5) demonstrating compliance with the attendant regulatory requirements. This report documents the evolution of themore » SNL PA methodology from inception in the mid-1970s, summarizing major SNL PA applications including: the Subseabed Disposal Project PAs for high-level radioactive waste; the Waste Isolation Pilot Plant PAs for disposal of defense transuranic waste; the Yucca Mountain Project total system PAs for deep geologic disposal of spent nuclear fuel and high-level radioactive waste; PAs for the Greater Confinement Borehole Disposal boreholes at the Nevada National Security Site; and PA evaluations for disposal of high-level wastes and Department of Energy spent nuclear fuels stored at Idaho National Laboratory. In addition, the report summarizes smaller PA programs for long-term cover systems implemented for the Monticello, Utah, mill-tailings repository; a PA for the SNL Mixed Waste Landfill in support of environmental restoration; PA support for radioactive waste management efforts in Egypt, Iraq, and Taiwan; and, most recently, PAs for analysis of alternative high-level radioactive waste disposal strategies including repositories deep borehole disposal and geologic repositories in shale and granite. Finally, this report summarizes the extension of the PA methodology for radioactive waste disposal toward development of an enhanced PA system for carbon sequestration and storage systems. These efforts have produced a generic PA methodology for the evaluation of waste management systems that has gained wide acceptance within the international community. This report documents how this methodology has been used as an effective management tool to evaluate different disposal designs and sites; inform development of regulatory requirements; identify, prioritize, and guide research aimed at reducing uncertainties for objective estimations of risk; and support safety assessments.« less
Simmons, Ardyth M.; Stuckless, John S.; with a Foreword by Abraham Van Luik, U.S. Department of Energy
2010-01-01
Natural analogues are defined for this report as naturally occurring or anthropogenic systems in which processes similar to those expected to occur in a nuclear waste repository are thought to have taken place over time periods of decades to millennia and on spatial scales as much as tens of kilometers. Analogues provide an important temporal and spatial dimension that cannot be tested by laboratory or field-scale experiments. Analogues provide one of the multiple lines of evidence intended to increase confidence in the safe geologic disposal of high-level radioactive waste. Although the work in this report was completed specifically for Yucca Mountain, Nevada, as the proposed geologic repository for high-level radioactive waste under the U.S. Nuclear Waste Policy Act, the applicability of the science, analyses, and interpretations is not limited to a specific site. Natural and anthropogenic analogues have provided and can continue to provide value in understanding features and processes of importance across a wide variety of topics in addressing the challenges of geologic isolation of radioactive waste and also as a contribution to scientific investigations unrelated to waste disposal. Isolation of radioactive waste at a mined geologic repository would be through a combination of natural features and engineered barriers. In this report we examine analogues to many of the various components of the Yucca Mountain system, including the preservation of materials in unsaturated environments, flow of water through unsaturated volcanic tuff, seepage into repository drifts, repository drift stability, stability and alteration of waste forms and components of the engineered barrier system, and transport of radionuclides through unsaturated and saturated rock zones.
77 FR 52072 - Request To Amend a License to Import Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-28
..., 2012 IW022/ radioactive total of 5,500 beneficial reuse 02 11005700. waste including tons or about and... thermal and non- paper, cloth, activity thermal concrete, material, and treatment. rubber, plastic, 500...
Composite analysis E-area vaults and saltstone disposal facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, J.R.
1997-09-01
This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potentialmore » sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.« less
Geoscience parameter data base handbook: granites and basalts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-12-01
The Department of Energy has the responsibility for selecting and constructing Federal repositories for radioactive waste. The Nuclear Regulatory Commission must license such repositories prior to construction. The basic requirement in the geologic disposal of radioactive waste is stated as: placement in a geologic host whereby the radioactive waste is not in mechanical, thermal or chemical equilibrium with the object of preventing physical or chemical migration of radionuclides into the biosphere or hydrosphere in hazardous concentration (USGS, 1977). The object of this report is to document the known geologic parameters of large granite and basalt occurrences in the coterminous Unitedmore » States, for future evaluation in the selection and licensing of radioactive waste repositories. The description of the characteristics of certain potential igneous hosts has been limited to existing data pertaining to the general geologic character, geomechanics, and hydrology of identified occurrences. A description of the geochemistry is the subject of a separate report.« less
NASA Technical Reports Server (NTRS)
Thompson, R. L.; Ramler, J. R.; Stevenson, S. M.
1974-01-01
A feasibility study of extraterrestrial disposal of radioactive waste is reported. This report covers the initial work done on only one part of the NASA study, that evaluates and compares possible space destinations and space transportation systems. The currently planned space shuttle was found to be more cost effective than current expendable launch vehicles by about a factor of 2. The space shuttle requires a third stage to perform the waste disposal missions. Depending on the particular mission, this third stage could be either a reusable space tug or an expendable stage such as a Centaur.
A Feasibility Study on Reactor Based Fission Neutron Radiography of 200-l Waste Packages
NASA Astrophysics Data System (ADS)
Bücherl, T.; Kalthoff, O.; von Gostomski, Ch. Lierse
This feasibility study investigates the applicability of fission neutrons for the non-destructive characterization of radioactive waste packages by means of neutron radiography. Based on a number of mock-up drums of different non-radioactive matrices, but being typical for radioactive waste generated in Europe, radiography measurements at the NECTAR and the ITS facility using fission neutrons and 60Co-gamma-rays, respectively, are performed. The resulting radiographs are compared and qualitatively assessed. In addition, a first approach for the stitching of the fission neutron radiographs to visualize the complete area of 200-l waste drums is performed. While the feasibility of fission neutrons is demonstrated successfully, fields for further improvements are identified.
Process for disposal of aqueous solutions containing radioactive isotopes
Colombo, Peter; Neilson, Jr., Robert M.; Becker, Walter W.
1979-01-01
A process for disposing of radioactive aqueous waste solutions whereby the waste solution is utilized as the water of hydration to hydrate densified powdered portland cement in a leakproof container; said waste solution being dispersed without mechanical inter-mixing in situ in said bulk cement, thereafter the hydrated cement body is impregnated with a mixture of a monomer and polymerization catalyst to form polymer throughout the cement body. The entire process being carried out while maintaining the temperature of the components during the process at a temperature below 99.degree. C. The container containing the solid polymer-impregnated body is thereafter stored at a radioactive waste storage dump such as an underground storage dump.
Korean Waste Management Law, Presidential Decree Number 13480, and Prime Minister Order Number 397
1994-06-01
radioactive waste or substances that are contaminated by radioactivity and medical waste (which is regulated by Medical Law), wastewater (which is regulated...be exceeded when the domestic waste is disposed a. In case where water polutant , pursuant to Table 1 of toe Enforcement Regulaton in the Water...combustion burner and extra burner * Normal operation of safety facilities • Normal operation of preventive facilities * Density of polutant out of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, T.W.
1991-09-01
This report is volume 3, part B, of the program to satisfy the allocated requirements of the Office of Civilian Radioactive Waste Management Program, in the development of the nuclear waste management system. The report is divided into the following sections: regulatory compliance; external relations; international programs; strategic and contingency planning; contract business management; and administrative services. (CS)
NASA Astrophysics Data System (ADS)
Eun, H. C.; Cho, Y. Z.; Son, S. M.; Lee, T. K.; Yang, H. C.; Kim, I. T.; Lee, H. S.
2012-01-01
Recycling of LiCl-KCl eutectic salt wastes containing radioactive rare earth oxychlorides or oxides was studied to recover renewable salts from the salt wastes and to minimize the radioactive wastes by using a vacuum distillation method. Vaporization of the LiCl-KCl eutectic salt was effective above 900 °C and at 5 Torr. The condensations of the vaporized salt were largely dependent on temperature gradient. Based on these results, a recycling system of the salt wastes as a closed loop type was developed to obtain a high efficiency of the salt recovery condition. In this system, it was confirmed that renewable salt was recovered at more than 99 wt.% from the salt wastes, and the changes in temperature and pressure in the system could be utilized to understand the present condition of the system operation.
NASA Astrophysics Data System (ADS)
Ortega, Luis Humberto
The Advanced Fuel Cycle Initiative (AFCI) is a Department of Energy (DOE) program, that has been investigating technologies to improve fuel cycle sustainability and proliferation resistance. One of the program's goals is to reduce the amount of radioactive waste requiring repository disposal. Cesium and strontium are two primary heat sources during the first 300 years of spent nuclear fuel's decay, specifically isotopes Cs-137 and Sr-90. Removal of these isotopes from spent nuclear fuel will reduce the activity of the bulk spent fuel, reducing the heat given off by the waste. Once the cesium and strontium are separated from the bulk of the spent nuclear fuel, the isotopes must be immobilized. This study is focused on a method to immobilize a cesium- and strontium-bearing radioactive liquid waste stream. While there are various schemes to remove these isotopes from spent fuel, this study has focused on a nitric acid based liquid waste. The waste liquid was mixed with the bentonite, dried then sintered. To be effective sintering temperatures from 1100 to 1200°C were required, and waste concentrations must be at least 25 wt%. The product is a leach resistant ceramic solid with the waste elements embedded within alumino-silicates and a silicon rich phase. The cesium is primarily incorporated into pollucite and the strontium into a monoclinic feldspar. The simulated waste was prepared from nitrate salts of stable ions. These ions were limited to cesium, strontium, barium and rubidium. Barium and rubidium will be co-extracted during separation due to similar chemical properties to cesium and strontium. The waste liquid was added to the bentonite clay incrementally with drying steps between each addition. The dry powder was pressed and then sintered at various temperatures. The maximum loading tested is 32 wt. percent waste, which refers to 13.9 wt. percent cesium, 12.2 wt. percent barium, 4.1 wt. percent strontium, and 2.0 wt. percent rubidium. Lower loadings of waste were also tested. The final solid product was a hard dense ceramic with a density that varied from 2.12 g/cm3 for a 19% waste loading with a 1200°C sintering temperature to 3.03 g/cm 3 with a 29% waste loading and sintered at 1100°C. Differential Scanning Calorimetry and Thermal Gravimetric Analysis (DSC-TGA) of the loaded bentonite displayed mass loss steps which were consistent with water losses in pure bentonite. Water losses were complete after dehydroxylation at ˜650°C. No mass losses were evident beyond the dehydroxylation. The ceramic melts at temperatures greater than 1300°C. Light flash analysis found heat capacities of the ceramic to be comparable to those of strontium and barium feldspars as well as pollucite. Thermal conductivity improved with higher sintering temperatures, attributed to lower porosity. Porosity was minimized in 1200°C sinterings. Ceramics with waste loadings less than 25 wt% displayed slump, the lowest waste loading, 15 wt% bloated at a 1200°C sintering. Waste loading above 25 wt% produced smooth uniform ceramics when sintered >1100°C. Sintered bentonite may provide a simple alternative to vitrification and other engineered radioactive waste-forms.
Waste Information Management System with 2012-13 Waste Streams - 13095
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, H.; Quintero, W.; Lagos, L.
2013-07-01
The Waste Information Management System (WIMS) 2012-13 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that wouldmore » be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colglazier, E.W. Jr.
1982-01-01
In November of 1979, the Program in Science, Technology and Humanism and the Energy Committee of the Aspen Institute organized a conference on resolving the social, political, and institutional conflicts over the permanent siting of radioactive wastes. This book was written as a result of this conference. The chapters provide a comprehensive and up-to-date overview of the governance issues connected with radioactive waste management as well as a sampling of the diverse views of the interested parties. Chapter 1 looks in depth of radioactive waste management in the United States, with special emphasis on the events of the Carter Administrationmore » as well as on the issues with which the Reagen administration must deal. Chapter 2 compares waste management policies and programs among the industralized countries. Chapter 3 examines the factional controversies in the last administration and Congress over nuclear waste issues. Chapter 4 examines the complex legal questions involved in the federal-state conflicts over nuclear waste management. Chapter 5 examines the concept of consultation and concurrence from the perspectives of a host state that is a candidate for a repository and an interested state that has special concerns regarding the demonstration of nuclear waste disposal technology. Chapter 6 examines US and European perspectives concerning public participation in nuclear waste management. Chapter 7 discusses propaganda in the issues. The epilogue attempts to assess the prospects for consensus in the United States on national policies for radioactive waste management. All of the chapter in this book should be interpreted as personal assessments. (DP)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vieth, Donald L.; Voegele, Michael D.
2013-07-01
Congress has had a dual role with regard to high level radioactive waste, being involved in both its creation and its disposal. A significant amount of time has passed between the creation of the nation's first high level radioactive waste and the present day. The pace of addressing its remediation has been highly irregular. Congress has had to consider the technical, regulatory, and political issues and all have had specific difficulties. It is a true odyssey framed by an imperative and accountability, by a sense of urgency, by an ability or inability to finish the job and by consequences. Congressmore » had set a politically acceptable course by 1982. However, President Obama intervened in the process after he took office in January 2009. Through the efforts of his Administration, by the end of 2012, the US government has no program to dispose of high level radioactive waste and no reasonable prospect of a repository for high level radioactive waste. It is not obvious how the US government program will be reestablished or who will assume responsibility for leadership. The ultimate criteria for judging the consequences are 1) the outcome of the ongoing NRC's Nuclear Waste Confidence Rulemaking and 2) the concomitant permissibility of nuclear energy supplying electricity from operating reactors in the US. (authors)« less
Method for storing radioactive combustible waste
Godbee, H.W.; Lovelace, R.C.
1973-10-01
A method is described for preventing pressure buildup in sealed containers which contain radioactively contaminated combustible waste material by adding an oxide getter material to the container so as to chemically bind sorbed water and combustion product gases. (Official Gazette)
NASA Astrophysics Data System (ADS)
Shu, Zhongbin
In recent years, it has been recognized that there is a need for a general philosophic policy to guide the regulation of societal activities that involve long-term and very long-term risks. Theses societal activities not only include the disposal of high-level radioactive wastes and global warming, but also include the disposal of non-radioactive carcinogens that never decay, such as arsenic, nickel, etc. In the past, attention has been focused on nuclear wastes. However, there has been international recognition that large quantities of non-radioactive wastes are being disposed of with little consideration of their long-term risks. The objectives of this dissertation are to present the significant long-term risks posed by non-radioactive carcinogens through case studies; develop the conceptual decision framework for setting the long-term risk policy; and illustrate that certain factors, such as discount rate, can significantly influence the results of long-term risk analysis. Therefore, the proposed decision-making framework can be used to systematically study the important policy questions on long-term risk regulations, and then subsequently help the decision-maker to make informed decisions. Regulatory disparities between high-level radioactive wastes and non-radioactive wastes are summarized. Long-term risk is rarely a consideration in the regulation of disposal of non-radioactive hazardous chemicals; and when it is, the matter has been handled in a somewhat perfunctory manner. Case studies of long-term risks are conducted for five Superfund sites that are contaminated with one or more non-radioactive carcinogens. Under the same assumptions used for the disposal of high-level radioactive wastes, future subsistence farmers would be exposed to significant individual risks, in some cases with lifetime fatality risk equal to unity. The important policy questions on long-term risk regulation are identified, and the conceptual decision-making framework to regulate long-term risk is presented. The results of decision tree analysis of cleanup alternatives for the Crystal Chemical site indicate that discount rate has profound impact on the results of the analysis and significant implication with regard to intergenerational equity. It is expected that other policy factors could have similar impacts. There is a need to use the proposed decision-making framework to systemically study those factors and make rational policy decisions accordingly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wegener, Dirk; Kluth, Thomas
2012-07-01
During maintenance of nuclear power plants, and during their decommissioning period, a large quantity of radioactive metallic waste will accrue. On the other hand the capacity for final disposal of radioactive waste in Germany is limited as well as that in the US. That is why all procedures related to this topic should be handled with a maximum of efficiency. The German model of consistent recycling of the radioactive metal scrap within the nuclear industry therefore also offers high capabilities for facilities in the US. The paper gives a compact overview of the impressive results of melting treatment, the currentmore » potential and further developments. Thousands of cubic metres of final disposal capacity have been saved. The highest level of efficiency and safety by combining general surface decontamination by blasting and nuclide specific decontamination by melting associated with the typical effects of homogenization. An established process - nationally and internationally recognized. Excellent connection between economy and ecology. (authors)« less
AmeriFlux US-ADR Amargosa Desert Research Site (ADRS)
Moreo, Michael [U.S. Geological Survey
2018-01-01
This is the AmeriFlux version of the carbon flux data for the site US-ADR Amargosa Desert Research Site (ADRS). Site Description - This tower is located at the Amargosa Desert Research Site (ADRS). The U.S. Geological Survey (USGS) began studies of unsaturated zone hydrology at ADRS in 1976. Over the years, USGS investigations at ADRS have provided long-term "benchmark" information about the hydraulic characteristics and soil-water movement for both natural-site conditions and simulated waste-site conditions in an arid environment. The ADRS is located in a creosote-bush community adjacent to disposal trenches for low-level radioactive waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barber, F.H.; Borek, T.T.; Christopher, J.Z.
1997-12-01
Analytical and Process Chemistry (A&PC) support is essential to the high-level waste vitrification campaign at the West Valley Demonstration Project (WVDP). A&PC characterizes the waste, providing information necessary to formulate the recipe for the target radioactive glass product. High-level waste (HLW) samples are prepared and analyzed in the analytical cells (ACs) and Sample Storage Cell (SSC) on the third floor of the main plant. The high levels of radioactivity in the samples require handling them in the shielded cells with remote manipulators. The analytical hot cells and third floor laboratories were refurbished to ensure optimal uninterrupted operation during the vitrificationmore » campaign. New and modified instrumentation, tools, sample preparation and analysis techniques, and equipment and training were required for A&PC to support vitrification. Analytical Cell Mockup Units (ACMUs) were designed to facilitate method development, scientist and technician training, and planning for analytical process flow. The ACMUs were fabricated and installed to simulate the analytical cell environment and dimensions. New techniques, equipment, and tools could be evaluated m in the ACMUs without the consequences of generating or handling radioactive waste. Tools were fabricated, handling and disposal of wastes was addressed, and spatial arrangements for equipment were refined. As a result of the work at the ACMUs the remote preparation and analysis methods and the equipment and tools were ready for installation into the ACs and SSC m in July 1995. Before use m in the hot cells, all remote methods had been validated and four to eight technicians were trained on each. Fine tuning of the procedures has been ongoing at the ACs based on input from A&PC technicians. Working at the ACs presents greater challenges than had development at the ACMUs. The ACMU work and further refinements m in the ACs have resulted m in a reduction m in analysis turnaround time (TAT).« less
Low-Level Waste Forum notes and summary reports for 1994. Volume 9, Number 3, May-June 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-06-01
This issue includes the following articles: Vermont ratifies Texas compact; Pennsylvania study on rates of decay for classes of low-level radioactive waste; South Carolina legislature adjourns without extending access to Barnwell for out-of-region generators; Southeast Compact Commission authorizes payments for facility development, also votes on petitions, access contracts; storage of low-level radioactive waste at Rancho Seco removed from consideration; plutonium estimates for Ward Valley, California; judgment issued in Ward Valley lawsuits; Central Midwest Commission questions court`s jurisdiction over surcharge rebates litigation; Supreme Court decides commerce clause case involving solid waste; parties voluntarily dismiss Envirocare case; appellate court affirms dismissal ofmore » suit against Central Commission; LLW Forum mixed waste working group meets; US EPA Office of Radiation and Indoor Air rulemakings; EPA issues draft radiation site cleanup regulation; EPA extends mixed waste enforcement moratorium; and NRC denies petition to amend low-level radioactive waste classification regulations.« less
Waste certification program plan for Oak Ridge National Laboratory. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orrin, R.C.
1997-05-01
This document defines the waste certification program developed for implementation at Oak Ridge National Laboratory (ORNL). The document describes the program structure, logic, and methodology for certification of ORNL wastes. The purpose of the waste certification program is to provide assurance that wastes are properly characterized and that the Waste Acceptance Criteria (WAC) for receiving facilities are met. The program meets the waste certification requirements outlined in US Department of Energy (DOE) Order 5820.2A, Radioactive Waste Management, and ensures that 40 CFR documentation requirements for waste characterization are met for mixed (both radioactive and hazardous) and hazardous (including polychlorinated biphenyls)more » waste. Program activities will be conducted according to ORNL Level 1 document requirements.« less
Flowsheets and source terms for radioactive waste projections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, C.W.
1985-03-01
Flowsheets and source terms used to generate radioactive waste projections in the Integrated Data Base (IDB) Program are given. Volumes of each waste type generated per unit product throughput have been determined for the following facilities: uranium mining, UF/sub 6/ conversion, uranium enrichment, fuel fabrication, boiling-water reactors (BWRs), pressurized-water reactors (PWRs), and fuel reprocessing. Source terms for DOE/defense wastes have been developed. Expected wastes from typical decommissioning operations for each facility type have been determined. All wastes are also characterized by isotopic composition at time of generation and by general chemical composition. 70 references, 21 figures, 53 tables.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Shaoping; Stauffer, Philip H.; Birdsell, Kay Hanson
The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility.
ERIC Educational Resources Information Center
Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.
This guide is Unit 2 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to convey factual information relevant to radioactivity and radiation and relate that information both to the personal lives of students…
Code of Federal Regulations, 2010 CFR
2010-01-01
... transferred to a Federal repository no later than 10 years following separation of fission products from the.... Disposal of high-level radioactive fission product waste material will not be permitted on any land other... of the policy stated above with respect to high-level radioactive fission product wastes generated...
Code of Federal Regulations, 2011 CFR
2011-01-01
... transferred to a Federal repository no later than 10 years following separation of fission products from the.... Disposal of high-level radioactive fission product waste material will not be permitted on any land other... of the policy stated above with respect to high-level radioactive fission product wastes generated...
Applying Separations Science to Waste Problems.
1998-01-01
inert cathode. Centrifugal Contactor for Processing Liquid Radioactive Waste We have developed an annular centrifugal contactor for use in liquid...radioactive waste. The CMT-designed centrifugal contactor has several advantages over other solvent-extraction equipment currently in use. It requires less...Y-12 Plant, Savannah River Site, and Oak Ridge National Laboratory. The benefits that make the centrifugal contactor the equipment of choice in the
Guidance for Low-Level Radioactive Waste (LLRW) and Mixed Waste (MW) Treatment and Handling
1997-06-30
7-2 7-1 Excavation of Contaminated Soils . . . . . . . . 7-3 7-1 Excavation of Contaminated Sediments...becomes only as radioactive as natural soil . By comparison, many other potential y hazardous, but nonradioactive, chemical wastes like lead, silver...solutions and cleanup materials, engine oils and grease, epoxies and resins, laser dyes, paint residues, photo- graphic materials, soils , asphalts
Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. D. Staiger
2007-06-01
This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, H.
1986-11-01
This report provides a detailed, section-by-section analysis of the Low-Level Radioactive Waste Policy Amendments Act of 1985. Appendices include lists of relevant law and legislation, relevant Congressional committees, members of Congress mentioned in the report, and exact copies of the 1980 and 1985 Acts. (TEM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osmanlioglu, Ahmet Erdal
Available in abstract form only. Full text of publication follows: Naturally occurring radioactive material (NORM) in concentrated forms arises both in industry and in nature where natural radioisotopes accumulate at particular sites. Technically enhanced naturally occurring radioactive materials (TE-NORM) often occurs in an acidic environment where precipitates containing radionuclides plate out onto pipe walls, filters, tank linings, etc. Because of the radionuclides are selectively deposited at these sites, radioactivity concentration is extremely higher than the natural concentration. This paper presents characterization and related considerations of TE-NORM wastes in Turkey. Generally, accumulation conditions tend to favour the build-up of radium. Asmore » radium is highly radio-toxic, handling, treatment, storage and disposal of such material requires careful management. Turkey has the only low level waste processing and storage facility (WPSF) in Istanbul. This facility has interim storage buildings and storage area for storage of packaged radioactive waste which are containing artificial radioisotopes, but there is an increasing demand for the storage to accept bulk concentrated TE-NORM wastes from iron-steel and related industries. Most of these wastes generated from scrap metal piles which are imported from other countries. These wastes generally contain radium. (authors)« less
Schultheisz, Daniel J; Czyscinski, Kenneth S; Klinger, Adam D
2006-11-01
Radioactive waste disposal in the United States is marked by a fragmented regulatory system, with requirements that often focus on the origin or statutory definition of the waste, rather than the hazard of the material in question. It may be possible to enhance public protection by moving toward a system that provides disposal options appropriate for the hazard presented by the waste in question. This paper summarizes aspects of an approach focusing on the potential use, with appropriate conditions, of Resource Conservation and Recovery Act Subtitle-C hazardous waste landfills for disposal of "low-activity" wastes and public comments on the suggested approach.
NASA Technical Reports Server (NTRS)
Hyland, R. E.; Wohl, M. L.; Finnegan, P. M.
1973-01-01
A preliminary study was conducted of the feasibility of space disposal of the actinide class of radioactive waste material. This waste was assumed to contain 1 and 0.1 percent residual fission products, since it may not be feasible to completely separate the actinides. The actinides are a small fraction of the total waste but they remain radioactive much longer than the other wastes and must be isolated from human encounter for tens of thousands of years. Results indicate that space disposal is promising but more study is required, particularly in the area of safety. The minimum cost of space transportation would increase the consumer electric utility bill by the order of 1 percent for earth escape and 3 percent for solar escape. The waste package in this phase of the study was designed for normal operating conditions only; the design of next phase of the study will include provisions for accident safety. The number of shuttle launches per year required to dispose of all U.S. generated actinide waste with 0.1 percent residual fission products varies between 3 and 15 in 1985 and between 25 and 110 by 2000. The lower values assume earth escape (solar orbit) and the higher values are for escape from the solar system.
NASA Astrophysics Data System (ADS)
Latynova, N. E.
2010-03-01
The spatial-temporal features of the radioactive contamination of terrestrial ecosystem components caused by the deterioration of the multibarrier protection of regional radioactive waste storages of the State Research Center of the Russian Federation-Leipunskii Institute of Physics and Power Engineering at the input of radionuclides into the soil and ground water were studied. The composition of the radioactive contamination was determined, and the hydrological and geochemical processes resulting in the formation of large radioactive sources were described. The natural features of the radioactive waste storage areas favoring the entry of 90Sr, 137Cs, and 226Ra into the soils and their inclusion in the biological turnover were characterized. The directions of the horizontal migration of 90Sr, 137Cs, and 226Ra and the sites of their accumulation within the superaquatic and aquatic landscapes of a near-terrace depression were studied; the factors of the 90Sr accumulation in plants and cockles were calculated. The results of the studies expand the theoretical concepts of the mechanisms, processes, and factors controlling the behavior of radionuclides at the deterioration of the multibarrier protection of radioactive waste storages. The presented experimental data can be used for solving practical problems related to environmental protection in the areas of industrial nuclear complexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, S.
During the period from fiscal year (FY) 2009 to FY 2011, there were a total of 21 incidents involving radioactively contaminated shipment trailers and 9 contaminated waste packages received at the Nevada National Security Site (NNSS) Area 5 Radioactive Waste Management Site (RWMS). During this time period, the EnergySolutions (ES) Clive, Utah, disposal facility had a total of 18 similar incidents involving trailer and package contamination issues. As a result of the increased occurrence of such incidents, DOE Environmental Management Headquarters (EM/HQ) Waste Management organization (EM-30) requested that the Energy Facility Contractors’ Group (EFCOG) Waste Management Working Group (WMWG) conductmore » a detailed review of these incidents and report back to EM-30 regarding the results of this review, including providing any recommendations formulated as a result of the evaluation of current site practices involving handling and management of radioactive material and waste shipments.« less
10 CFR 60.71 - Records and reports.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Records... the Energy Reorganization Act. (b) Records of the receipt, handling, and disposition of radioactive waste at a geologic repository operations area shall contain sufficient information to provide a...
Radiation Spill at Hanford: The Anatomy of an Accident
ERIC Educational Resources Information Center
Gillette, Robert
1973-01-01
Describes the circumstances leading to a recent spill of radioactive wastes at the Atomic Energy Commission's Hanford Reservation in Washington. Also briefly discusses previous accidental leaks and plans for safer storage of radioactive waste materials in the future. (JR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paknahad, Elham; Grosvenor, Andrew P.
Glass-ceramic composite materials have been investigated for nuclear waste sequestration applications due to their ability to incorporate large amounts of radioactive waste elements. A key property that needs to be understood when developing nuclear waste sequestration materials is how the structure of the material responds to radioactive decay of nuclear waste elements, which can be simulated by high energy ion implantation. Borosilicate glass-ceramic composites containing brannerite-type (CeTi2O6) or zirconolite-type (CaZrTi2O7) oxides were synthesized at different annealing temperatures and investigated after being implanted with high-energy Au ions to mimic radiation induced structural damage. Backscattered electron (BSE) images were collected to investigatemore » the interaction of the brannerite crystallites with the glass matrix before and after implantation and showed that the morphology of the crystallites in the composite materials were not affected by radiation damage. Surface sensitive Ti K-edge glancing angle XANES spectra collected from the implanted composite materials showed that the structures of the CeTi2O6 and CaZrTi2O7 ceramics were damaged as a result of implantation; however, analysis of Si L2,3-edge XANES spectra indicated that the glass matrix was not affected by ion implantation.« less
NASA Astrophysics Data System (ADS)
Paknahad, Elham; Grosvenor, Andrew P.
2017-12-01
Glass-ceramic composite materials have been investigated for nuclear waste sequestration applications due to their ability to incorporate large amounts of radioactive waste elements. A key property that needs to be understood when developing nuclear waste sequestration materials is how the structure of the material responds to radioactive decay of nuclear waste elements, which can be simulated by high energy ion implantation. Borosilicate glass-ceramic composites containing brannerite-type (CeTi2O6) or zirconolite-type (CaZrTi2O7) oxides were synthesized at different annealing temperatures and investigated after being implanted with high-energy Au ions to mimic radiation induced structural damage. Backscattered electron (BSE) images were collected to investigate the interaction of the brannerite crystallites with the glass matrix before and after implantation and showed that the morphology of the crystallites in the composite materials were not affected by radiation damage. Surface sensitive Ti K-edge glancing angle XANES spectra collected from the implanted composite materials showed that the structures of the CeTi2O6 and CaZrTi2O7 ceramics were damaged as a result of implantation; however, analysis of Si L2,3-edge XANES spectra indicated that the glass matrix was not affected by ion implantation.
Solvent for the simultaneous recovery of radionuclides from liquid radioactive wastes
Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.
2002-01-01
The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.
Method for the simultaneous recovery of radionuclides from liquid radioactive wastes using a solvent
Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.
2001-01-01
The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.
Analysis of local acceptance of a radioactive waste disposal facility.
Chung, Ji Bum; Kim, Hong-Kew; Rho, Sam Kew
2008-08-01
Like many other countries in the world, Korea has struggled to site a facility for radioactive waste for almost 30 years because of the strong opposition from local residents. Finally, in 2005, Gyeongju was established as the first Korean site for a radioactive waste facility. The objectives of this research are to verify Gyeongju citizens' average level of risk perception of a radioactive waste disposal facility as compared to other risks, and to explore the best model for predicting respondents' acceptance level using variables related to cost-benefit, risk perception, and political process. For this purpose, a survey is conducted among Gyeongju residents, the results of which are as follows. First, the local residents' risk perception of an accident in a radioactive waste disposal facility is ranked seventh among a total of 13 risks, which implies that nuclear-related risk is not perceived very highly by Gyeongju residents; however, its characteristics are still somewhat negative. Second, the comparative regression analyses show that the cost-benefit and political process models are more suitable for explaining the respondents' level of acceptance than the risk perception model. This may be the result of the current economic depression in Gyeongju, residents' familiarity with the nuclear industry, or cultural characteristics of risk tolerance.
Plasma Heating: An Advanced Technology
NASA Technical Reports Server (NTRS)
1994-01-01
The Mercury and Apollo spacecraft shields were designed to protect astronauts from high friction temperatures (well over 2,000 degrees Fahrenheit) when re-entering the Earth's atmosphere. It was necessary to test and verify the heat shield materials on Earth before space flight. After exhaustive research and testing, NASA decided to use plasma heating as a heat source. This technique involves passing a strong electric current through a rarefied gas to create a plasma (ionized gas) that produces an intensely hot flame. Although NASA did not invent the concept, its work expanded the market for commercial plasma heating systems. One company, Plasma Technology Corporation (PTC), was founded by a member of the team that developed the Re-entry Heating Simulator at Ames Research Center (ARC). Dr. Camacho, President of PTC, believes the technology has significant environmental applications. These include toxic waste disposal, hydrocarbon, decomposition, medical waste disposal, asbestos waste destruction, and chemical and radioactive waste disposal.
Rout, Simon P; Radford, Jessica; Laws, Andrew P; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J; Humphreys, Paul N
2014-01-01
The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2) hr(-1) (SE ± 2.9 × 10(-3)). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bardal, M.A.; Darwen, N.J.
2008-07-01
Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification.more » Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance functional and timing studies throughout the design process. Since no humans can go in or out of the cell, there are several recovery options that have been designed into the system including jack-down wheels for the bridge and trolley, recovery drums for the manipulator hoist, and a wire rope cable cutter for the slewer jib hoist. If the entire crane fails in cell, the large diameter cable reel that provides power, signal, and control to the crane can be used to retrieve the crane from the cell into the crane maintenance area. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, John Russell; Danneels, Jeffrey John
2009-03-01
Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraqmore » Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21-25, 2008. As noted in the report, there was significant teaming between the various participants to best help the GOI. On-the-ground progress is the focus of the Iraq NDs Program and much of the work is a transfer of technical and practical skills and knowledge that Sandia uses day-to-day. On-the-ground progress was achieved in July of 2008 when the GOI began the physical cleanup and dismantlement of the Active Metallurgical Testing Laboratory (LAMA) facility at Al Tuwaitha, near Baghdad.« less
CEM V based special cementitious materials investigated by means of SANS method. Preliminary results
NASA Astrophysics Data System (ADS)
Dragolici, A. C.; Balasoiu, M.; Orelovich, O. L.; Ionascu, L.; Nicu, M.; Soloviov, D. V.; Kuklin, A. I.; Lizunov, E. I.; Dragolici, F.
2017-05-01
The management of the radioactive waste assume the conditioning in a cement matrix as an embedding, stable, disposal material. Cement matrix is the first and most important engineering barrier against the migration in the environment of the radionuclides contained in the waste packages. Knowing how the microstructure develops is therefore desirable in order to assess the compatibility of radioactive streams with cement and predict waste form performance during storage and disposal. For conditioning wastes containing radioactive aluminum new formulas of low basicity cements, using coatings as a barrier between the metal and the conditioning environment or introducing a corrosion inhibitor in the matrix system are required. Preliminary microstructure investigation of such improved CEM V based cement matrix is reported.
Fischer, Jeffrey M.
1992-01-01
A commercial disposal facility for low-level radioactive waste has been in operation near Beatty, Nevada, since 1962. The facility is in the arid Amargosa Desert where wastes are buried in trenches excavated into unsaturated alluvial sediments. Thick unsaturated zones in arid environments offer many potential advantages for disposal of radioactive wastes, but little is known about the natural movement of water near such facilities. Thus, a study was begun in 1982 to better define the direction and rates of water movement through the unsaturated zone in undisturbed sediments near the disposal facility. This report discusses the analyses of data collected between 1983 and 1988.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, M.A.; Selim, Y.T.; Lasheen, Y.F.
2013-07-01
The application of radioisotopes and radiation sources in medical diagnosis and therapy is an important issue. Physicians can use radioisotopes to diagnose and treat diseases. Methods of treatment, conditioning and management of low level radioactive wastes from the use of radiation sources and radioisotopes in hospitals and nuclear medicine application, are described. Solid Radioactive waste with low-level activity after accumulation, minimization, segregation and measurement, are burned or compressed in a compactor according to the international standards. Conditioned drums are transported to the interim storage site at the Egyptian Atomic Energy Authority (EAEA) represented in Hot Labs and Waste Management Centermore » (HLWMC) for storage and monitoring. (authors)« less
Public attitudes about radioactive waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisconti, A.S.
Public attitudes about radioactive waste are changeable. That is my conclusion from eight years of social science research which I have directed on this topic. The fact that public attitudes about radioactive waste are changeable is well-known to the hands-on practitioners who have opportunities to talk with the public and respond to their concerns-practitioners like Ginger King, who is sharing the podium with me today. The public`s changeability and open-mindedness are frequently overlooked in studies that focus narrowly on fear and dread. Such studies give the impression that the outlook for waste disposal solutions is dismal. I believe that impressionmore » is misleading, and I`d like to share research findings with you today that give a broader perspective.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehmel, J.C.; Loomis, D.; Mauro, J.
Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the wastemore » from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.« less
Applications of fiber reinforced concrete containers in France and in Slovakia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verdier, A.; Delgrande, J.; Remias, V.
Radioactive waste immobilization is an integral part of operations in nuclear facilities. The goal of immobilization is to contain radioactive materials in a waste form which can maintain its integrity over very long periods of time, thus effectively isolating the materials from the environment and hence from the public. This is true regardless of the activity of the waste, including low-, and medium-level waste (LLW, MLW). A multiple-year research effort by COGEMA culminated in the development of a new process to immobilize nuclear waste in concrete containers reinforced with metal fibers. The fiber reinforced concrete containers satisfy all French safetymore » requirements relating to waste immobilization and disposal, and have been certified by ANDRA, the national radioactive waste management agency. The fiber reinforced concrete containers have been fabricated on a production scale since July 1990 by Sogefibre, a jointly-owned subsidiary of SGN and Campaign Generale des Eaux. This technology is being transferred to Slovenske Elektrarne (Slovak Power Plant) to intern the waste produced by Bohunice and Mochovce power plants in cubical fiber reinforced concrete containers.« less
DISPOSAL OF LIQUID WASTE IN THE DURANGO-TYPE URANIUM MILLING FLOWSHEET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tame, K.E.; Valdez, E.G.; Rosenbaum, J.B.
1961-01-01
Possible modifications were studied in conventional uraniuum ore- processing steps to confine and permit controlled disposal of radioactive wastes. Surveys of Ra/sup 226/ contamination of liquid wastes from uranium mills indicated that the Vanadium Corporation of America plant at Durango, Colo., had one of the more urgent problems. A possible procedure for minimizing the waste disposal problem was to reuse the waste solution in the mill-in effect, erasing the need for disposal of liquid waste. In examining this possibility, interlocked bench-scale leaching and solvent extraction tests simulating the Durango fiowsheet were made. The simulated reuse of barren raffinate for leachingmore » and washing was carried through three separate campaigns of 9, 12, and 35 cycles each. An attempt to expedite the test work by using agitation leaching during the first campaign resulted in pregnant solutions of varying turbidity, giving a discordant pattern of radioactivity analyses. Percolation leaching and washing patterned more nearly after the Durango flowsheet was used in the second and third campaigns and consistently gave solutions of satisfactory clarity. The radioactivity was somewhat variable but did not build up with prolonged recycling of the raffinate. The buildup of other impurities in the pregnant solution had little noticeabIe effect on the operation of the percolation leach column. Operational difficulties from slow phase disengagement and entrainment in the solvent extraction stripping and scrubbing units occurred during the first two campaigns. In the third campaign slow phase disengagement and aqueous entrainment in the strippers were practically eliminated by heating the last stage to about 40 deg C and operating with the aqueous phase continuous. Increased mixing time in the scrubbing section was successful in reducing entrainment of aqueous in the organic from the settlers. Also, the concentrations of active reagents in the solvent extraction system were increased during the third campaign to correspond to an increase made at the Durango plant. The recovery of uranium and vanadium from the acid leach solution was excellent, averaging 99.7 and 95.6%, respectively. During the test work the Durango plant made several changes in tailing disposal procedures to minimize the waste problem. The most important comprised impounding all barren raffinate in two large lagoons. This was a successful temporary solution to the problem. However, as evaporation is relied upon to eliminate the water, it is estimated that 40 acres of area will be needed. The use of barren raffinate for washing in the Durango process would greatly diminish the quantity of solution to be disposed of by solar evaporation and the conjunctive need for a large disposal area. (auth)« less
NASA Astrophysics Data System (ADS)
Rugger, B.; Templeton, W. L.; Gurbutt, P.
1983-05-01
Sea dumping operations of certain types of packaged low and medium level radioactive wastes have been carried out since 1967 in the North-East Atlantic under the auspices of the OECD Nuclear Energy Agency. On the occasion of the 1980 review of the continued suitability of the North-East Atlantic site used for the disposal of radioactive waste, it was recommended that an effort should be made to increase the scientific data base relating to the oceanographic and biological characteristics of the dumping area. In particular, it was suggested that a site specific model of the transfer of radionuclides in the marine environment be developed, which would permit a better assessment of the potential radiation doses to man from the dumping of radioactive waste. To fulfill these objectives a research and environmental surveillance program related to sea disposal of radioactive waste was set up in 1981 with the participation of thirteen Member countries and the International Laboratory for Marine Radioactivity of the IAEA in Monaco. The research program is focused on five research areas which are directly relevant to the preparation of more site specific assessments in the future. They are: model development; physical oceanography; geochemistry; biology; and radiological surveillance. Promising results have already been obtained and more are anticipated in the not too distant future. An interim description of the NEA dumping site has been prepared which provides an excellent data base for this area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Himmerkus, Felix; Rittmeyer, Cornelia
2012-07-01
The data management system KADABRA was designed according to the purposes of the Cen-tral Decontamination Department (HDB) of the Wiederaufarbeitungsanlage Karlsruhe Rueckbau- und Entsorgungs-GmbH (WAK GmbH), which is specialized in the treatment and conditioning of radioactive waste. The layout considers the major treatment processes of the HDB as well as regulatory and legal requirements. KADABRA is designed as an SAG ADABAS application on IBM system Z mainframe. The main function of the system is the data management of all processes related to treatment, transfer and storage of radioactive material within HDB. KADABRA records the relevant data concerning radioactive residues, interimmore » products and waste products as well as the production parameters relevant for final disposal. Analytical data from the laboratory and non destructive assay systems, that describe the chemical and radiological properties of residues, production batches, interim products as well as final waste products, can be linked to the respective dataset for documentation and declaration. The system enables the operator to trace the radioactive material through processing and storage. Information on the actual sta-tus of the material as well as radiological data and storage position can be gained immediately on request. A variety of programs accessed to the database allow the generation of individual reports on periodic or special request. KADABRA offers a high security standard and is constantly adapted to the recent requirements of the organization. (authors)« less
Ground Penetrating Radar as a Contextual Sensor for Multi-Sensor Radiological Characterisation
Ukaegbu, Ikechukwu K.; Gamage, Kelum A. A.
2017-01-01
Radioactive sources exist in environments or contexts that influence how they are detected and localised. For instance, the context of a moving source is different from a stationary source because of the effects of motion. The need to incorporate this contextual information in the radiation detection and localisation process has necessitated the integration of radiological and contextual sensors. The benefits of the successful integration of both types of sensors is well known and widely reported in fields such as medical imaging. However, the integration of both types of sensors has also led to innovative solutions to challenges in characterising radioactive sources in non-medical applications. This paper presents a review of such recent applications. It also identifies that these applications mostly use visual sensors as contextual sensors for characterising radiation sources. However, visual sensors cannot retrieve contextual information about radioactive wastes located in opaque environments encountered at nuclear sites, e.g., underground contamination. Consequently, this paper also examines ground-penetrating radar (GPR) as a contextual sensor for characterising this category of wastes and proposes several ways of integrating data from GPR and radiological sensors. Finally, it demonstrates combined GPR and radiation imaging for three-dimensional localisation of contamination in underground pipes using radiation transport and GPR simulations. PMID:28387706
NASA Astrophysics Data System (ADS)
Kim, Ki-Soo; Cho, Seong-Kyu
2015-07-01
The FBG sensor has globally been commercialized in various fields that is actively applied in Korea as well. Especially it is widely used as a structural monitoring sensor in civil engineering and construction structures due to its advantages including electrical stability, chemical stability and multiplexing. This report aims to introduce safety inspection of the FBG sensor in respect of radioactivity which has been applied to a silo structure for radioactive waste disposal as an example.
WASTE CONDITIONING FOR TANK HEEL TRANSFER
DOE Office of Scientific and Technical Information (OSTI.GOV)
M.A. Ebadian, Ph.D.
1999-01-01
This report summarizes the research carried out at Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) for the fiscal year 1998 (FY98) under the Tank Focus Area (TFA) project ''Waste Conditioning for Tank Slurry Transfer.'' The objective of this project is to determine the effect of chemical and physical properties on the waste conditioning process and transfer. The focus of this research consisted in building a waste conditioning experimental facility to test different slurry simulants under different conditions, and analyzing their chemical and physical properties. This investigation would provide experimental data and analysis results that can make the tankmore » waste conditioning process more efficient, improve the transfer system, and influence future modifications to the waste conditioning and transfer system. A waste conditioning experimental facility was built in order to test slurry simulants. The facility consists of a slurry vessel with several accessories for parameter control and sampling. The vessel also has a lid system with a shaft-mounted propeller connected to an air motor. In addition, a circulation system is connected to the slurry vessel for simulant cooling and heating. Experimental data collection and analysis of the chemical and physical properties of the tank slurry simulants has been emphasized. For this, one waste slurry simulant (Fernald) was developed, and another two simulants (SRS and Hanford) obtained from DOE sites were used. These simulants, composed of water, soluble metal salts, and insoluble solid particles, were used to represent the actual radioactive waste slurries from different DOE sites. The simulants' chemical and physical properties analyzed include density, viscosity, pH, settling rate, and volubility. These analyses were done to samples obtained from different experiments performed at room temperature but different mixing time and strength. The experimental results indicate that the viscosity of the slurries follow the Bingham plastic model, especially when the solids concentration is increased. At low concentrations slurries may behave as Newtonian fluids. The three simulants follow a similar settling rate behavior. This behavior can be explained as a combination of one or more decreasing exponential curves. This means that the particle settling rate of the simulants decreases exponentially as time increases. The pH range for the three simulants was from 8 to 13 at all concentrations. The SRS simulant showed the highest pH, around 12; the other two simulants, Hanford and Fernald, had about the same pH range, from 3 to 9. When comparing volubility of the three simulants at the same concentration, SRS simulant showed higher volubility, followed by the Hanford simulant and the Fernald simulant, in that order. Further work is scheduled for next year (FY99) in this project, when other parameters like simulants particle size distribution, particle shape, and crystallization behavior will be studied. The same tests performed this period also will be performed at different temperatures for data comparison.« less
Long-term high-level waste technology. Composite report
NASA Astrophysics Data System (ADS)
Cornman, W. R.
1981-12-01
Research and development studies on the immobilization of high-level wastes from the chemical reprocessing of nuclear reactor fuels are summarized. The reports are grouped under the following tasks: (1) program management and support; (2) waste preparation; (3) waste fixation; and (4) final handling. Some of the highlights are: leaching properties were obtained for titanate and tailored ceramic materials being developed at ICPP to immobilize zirconia calcine; comparative leach tests, hot-cell tests, and process evaluations were conducted of waste form alternatives to borosilicate glass for the immobilization of SRP high-level wastes, experiments were run at ANL to qualify neutron activation analysis and radioactive tracers for measuring leach rates from simulated waste glasses; comparative leach test samples of SYNROC D were prepared, characterized, and tested at LLNL; encapsulation of glass marbles with lead or lead alloys was demonstrated on an engineering scale at PNL; a canister for reference Commercial HLW was designed at PNL; a study of the optimization of salt-crete was completed at SRL; a risk assessment showed that an investment for tornado dampers in the interim storage building of the DWPF is unjustified.
77 FR 40817 - Low-Level Radioactive Waste Regulatory Management Issues
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-11
...-2011-0012] RIN-3150-AI92 Low-Level Radioactive Waste Regulatory Management Issues AGENCY: Nuclear... Materials and Environmental Management Programs, U.S. Nuclear Regulatory Commission, Washington, DC 20555... State Materials and Environmental Management Programs, U.S. Nuclear Regulatory Commission, Washington...
Nuclear Power and the Environment.
ERIC Educational Resources Information Center
Dukert, Joseph M.
Described are the major environmental effects resulting from the production of electricity by nuclear power plants. Discussed are effects of waste heat, radioactivity, radioactive waste elimination, costs, and future prospects. Included are diagrams illustrating cooling tower operation, effects of thermal discharge into water systems, radioactive…
High-level radioactive waste management alternatives
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1974-05-01
A summary of a comprehensive overview study of potential alternatives for long-term management of high-level radioactive waste is presented. The concepts studied included disposal in geologic formations, disposal in seabeds, disposal in ice caps, disposal into space, and elimination by transmutation. (TFD)
10 CFR 61.1 - Purpose and scope.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.1 Purpose and scope. (a) The regulations in this part establish, for land disposal of radioactive waste, the procedures, criteria, and terms and conditions upon which the Commission issues...
10 CFR 61.3 - License required.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.3 License required. (a) No person may receive, possess, and dispose of radioactive waste containing source, special nuclear, or byproduct material at a land disposal facility unless authorized by a...
10 CFR 61.59 - Institutional requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.59 Institutional requirements. (a) Land ownership. Disposal of radioactive waste received from other persons may be permitted only on land owned in fee by the...
10 CFR 61.1 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.1 Purpose and scope. (a) The regulations in this part establish, for land disposal of radioactive waste, the procedures, criteria, and terms and conditions upon which the Commission issues...
Code of Federal Regulations, 2011 CFR
2011-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.7 Concepts. (a) The disposal facility. (1) Part 61 is intended to apply to land disposal of... specific technical requirements for near-surface disposal of radioactive waste, a subset of land disposal...
10 CFR 61.1 - Purpose and scope.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.1 Purpose and scope. (a) The regulations in this part establish, for land disposal of radioactive waste, the procedures, criteria, and terms and conditions upon which the Commission issues...
Code of Federal Regulations, 2012 CFR
2012-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.7 Concepts. (a) The disposal facility. (1) Part 61 is intended to apply to land disposal of... specific technical requirements for near-surface disposal of radioactive waste, a subset of land disposal...
10 CFR 61.1 - Purpose and scope.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.1 Purpose and scope. (a) The regulations in this part establish, for land disposal of radioactive waste, the procedures, criteria, and terms and conditions upon which the Commission issues...
10 CFR 61.3 - License required.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.3 License required. (a) No person may receive, possess, and dispose of radioactive waste containing source, special nuclear, or byproduct material at a land disposal facility unless authorized by a...
10 CFR 61.59 - Institutional requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.59 Institutional requirements. (a) Land ownership. Disposal of radioactive waste received from other persons may be permitted only on land owned in fee by the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.7 Concepts. (a) The disposal facility. (1) Part 61 is intended to apply to land disposal of... specific technical requirements for near-surface disposal of radioactive waste, a subset of land disposal...
10 CFR 61.3 - License required.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.3 License required. (a) No person may receive, possess, and dispose of radioactive waste containing source, special nuclear, or byproduct material at a land disposal facility unless authorized by a...
10 CFR 61.3 - License required.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.3 License required. (a) No person may receive, possess, and dispose of radioactive waste containing source, special nuclear, or byproduct material at a land disposal facility unless authorized by a...
Code of Federal Regulations, 2013 CFR
2013-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.7 Concepts. (a) The disposal facility. (1) Part 61 is intended to apply to land disposal of... specific technical requirements for near-surface disposal of radioactive waste, a subset of land disposal...
10 CFR 61.3 - License required.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.3 License required. (a) No person may receive, possess, and dispose of radioactive waste containing source, special nuclear, or byproduct material at a land disposal facility unless authorized by a...
10 CFR 61.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.1 Purpose and scope. (a) The regulations in this part establish, for land disposal of radioactive waste, the procedures, criteria, and terms and conditions upon which the Commission issues...