Science.gov

Sample records for radiocarbon 14c determination

  1. Determination of 14C/ 12C of acetaldehyde in indoor air by compound specific radiocarbon analysis

    NASA Astrophysics Data System (ADS)

    Kato, Yoshimi; Shinohara, Naohide; Yoshinaga, Jun; Uchida, Masao; Matsuda, Ayuri; Yoneda, Minoru; Shibata, Yasuyuki

    A method of compound-specific radiocarbon analysis (CSRA) for acetaldehyde in indoor air was established for the source apportionment purpose and the methodology was applied to indoor air samples. Acetaldehyde in indoor air samples was collected using the conventional 2,4-dinitrophenylhydrazine (DNPH) derivatization method. Typically 24-h air sampling at 5-10 L min -1 allowed collection of adequate amount of acetaldehyde for radiocarbon analysis by accelerator mass spectrometry (AMS). The 14C abundance of acetaldehyde in indoor air was measured by AMS after solvent extraction of derivatized acetaldehyde and sequential purification by a preparative liquid chromatography system and a preparative capillary gas chromatography system. The recovery and purity of the derivatized acetaldehyde was satisfactory for 14C analysis by AMS. 14C abundance of acetaldehyde was calculated by considering that of derivatizing agent DNPH. Our preliminary survey showed that percent modern carbon (pMC) values of acetaldehyde isolated from indoor air sampled in newly built, unoccupied housings ( n=5) in the suburb of Tokyo ranged from 49.4 to 67.0. This result indicated that contribution of anthropogenic source was greater than previously expected.

  2. Effect of anthropogenic activities on atmospheric 14C content and radiocarbon chronologies of the future.

    NASA Astrophysics Data System (ADS)

    Hajdas, Irka

    2017-04-01

    Radiocarbon (14C) is a naturally produced radioactive isotope of carbon (T1/2=5700 yrs), which is continuously produced in the atmosphere. This occur in a reaction of thermal neutrons, which are secondary particles, products of cosmic rays reactions with the atmosphere, with nitrogen that is commonly present in the atmosphere. Until the mid 19th century the natural concentration showed temporal variability around the mean value (14C / 12C ratio =1.8 x 10-12). However anthropogenic activity created 2 types effects that are changing the 14C concentration of the atmosphere. Industrial revolution triggered adding 14C free (old) carbon that originates from the burning of fossil fuels (Suess effect). This in the late 19th century and early 20th century atmosphere was becoming older. The nuclear tests in the 1950ties caused additional production of radiocarbon atoms (artificial). The effect has been almost double of the natural production and created an excess 14C activity in the atmosphere and in terrestrial carbon bearing materials. The bomb produced 14C has been identified soon after the tests started but the peak (ca. 100% above the normal levels) reached its maximum in 1963 in the northern Hemisphere where most of the tests took place. In the southern Hemisphere the bomb peak reached lower values (ca. 80 % of normal level) and was delayed by ca. 2 years. After the ban on nuclear tests the atmospheric 14C content began to decrease mainly due to the uptake by the ocean but also due to the above mentioned addition old carbon. Continuous monitoring of the atmospheric 14C ratio during the years that followed the nuclear tests, provide basis for environmental studies. Applications range from studies of ocean circulation, CO2 uptake, carbon storage in soils and peat, root turn over time to the medical, forensic and detection of forgeries. However, the so called ' 14C bomb peak' nearly disappeared due to the combined effect of ocean uptake of CO2 and an input to the

  3. A low cost optical radiocarbon (14C) sensor for greenhouse gas source attribution

    NASA Astrophysics Data System (ADS)

    Long, D.; Fleisher, A. J.; Liu, Q.; Hodges, J. T.

    2015-12-01

    Radiocarbon (14C) provides a convenient means for the attribution of atmospheric greenhouse gases between anthropogenic and biogenic sources. Unfortunately, routine measurements are costly and require extensive sample preparation to meet sensitivity goals only achievable at large accelerator mass spectrometer facilities. We describe an alternate approach in which a laser is used to selectively record the absorption signatures of the 14C isotope of CO2. The designed instrument will allow for bench-top measurements of 14CO2 at and below ambient levels (~1.2 parts-per-trillion). The use of a commercially available mid-infrared quantum cascade laser as the optical source greatly reduces the cost of the instrument over more complicated sources and should allow for routine inline measurements.

  4. Towards 1‰ AMS 14C measurement precision at the Rafter Radiocarbon Laboratory

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Baisden, T. T.; Zondervan, A.; Kaiser, J.; Brailsford, G.; Moss, R.

    2012-12-01

    The radiocarbon content of atmospheric CO2 (Δ14CO2) is an increasingly important tracer used to quantify the different sources of CO2 in the atmosphere. Due to the absence of 14C in fossil fuels, 14CO2 is perhaps the best way to quantify recently added fossil fuel CO2 in the atmosphere. The sea-air CO2 flux also has Δ14C different from the atmosphere, so Δ14CO2 observations can be used to examine the one-way gross CO2 flux out of the oceans. Each one part per million (ppm) of fossil fuel CO2 added to the atmosphere decreases Δ14CO2 by about 2.6‰, and fossil fuel CO2 enhancements are typically in the range of a few ppm. The detection capability is therefore strongly influenced by the precision of 14C measurements. The World Meteorological Organization recommends a goal of 1‰ 14C precision, and Δ14CO2 measurements can currently be made to slightly better than 2‰ at several facilities. New Zealand has a long history of atmospheric Δ14CO2 measurements, starting in Wellington in 1955. Rafter lab recently obtained a new accelerator mass spectrometer (AMS) and developed a new graphitization system. A major focus emerging from the upgrade is the opportunity to expand the high precision atmospheric Δ14CO2 capability. Results from the first year of measurements indicate 1.3‰ repeatability on modern atmospheric CO2 in samples as small as one liter of whole air, a significant improvement over previously reported AMS 14C repeatability. We use new measurements from the long-term Baring Head Δ14CO2 record demonstrate the utility of this new high precision capability in interpreting atmospheric signals. We will report on development of graphitization procedures and AMS methodology which allow us to achieve this precision. Progress towards 1‰ precision will be discussed.

  5. Growth rate determinations from radiocarbon in bamboo corals (genus Keratoisis)

    NASA Astrophysics Data System (ADS)

    Farmer, Jesse R.; Robinson, Laura F.; Hönisch, Bärbel

    2015-11-01

    Radiocarbon (14C) measurements are an important tool for determining growth rates of bamboo corals, a cosmopolitan group of calcitic deep-sea corals. Published growth rate estimates for bamboo corals are highly variable, with potential environmental or ecological drivers of this variability poorly constrained. Here we systematically investigate the application of 14C for growth rate determinations in bamboo corals using 55 14C dates on the calcite and organic fractions of six bamboo corals (identified as Keratoisis sp.) from the western North Atlantic Ocean. Calcite 14C measurements on the distal surface of these corals and five previously published bamboo corals exhibit a strong one-to-one relationship with the 14C of dissolved inorganic carbon (DI14C) in ambient seawater (r2=0.98), confirming the use of Keratoisis sp. calcite 14C as a proxy for seawater 14C activity. Radial growth rates determined from 14C age-depth regressions, 14C plateau tuning and bomb 14C reference chronologies range from 12 to 78 μm y-1, in general agreement with previously published radiometric growth rates. We document potential biases to 14C growth rate determinations resulting from water mass variability, bomb radiocarbon, secondary infilling (ontogeny), and growth rate nonlinearity. Radial growth rates for Keratoisis sp. specimens do not correlate with ambient temperature, suggesting that additional biological and/or environmental factors may influence bamboo coral growth rates.

  6. Toward Radiocarbon Measurement of Individual Amino Acids in Marine Dissolved Organic Matter (DOM): Δ14C Blank Quantification for an HPLC Purification Method.

    NASA Astrophysics Data System (ADS)

    Bour, A. L.; Broek, T.; Walker, B. D.; Mccarthy, M. D.

    2014-12-01

    The presence of much of the marine dissolved organic nitrogen (DON) pool as uncharacterized, biologically recalcitrant molecules is a central mystery in the marine nitrogen cycle. Radiocarbon14C) isotopic measurements have been perhaps the most important data constraining the cycling of dissolved organic matter (DOM), but little Δ14C data specific to DON is available. Amino acids (AAs) are the major component of DON that can be isolated on a molecular level. Δ14C measurements for the operational "protein-like" fraction of DOM in the deep ocean indicate that this compound class has radiocarbon ages greater than several ocean mixing cycles, suggesting remarkable preservation of labile AAs exported from the surface. However, it is possible that the previously defined operational "protein-like" fraction may also contain non-AA material. Radiocarbon measurement of purified individual AAs would provide a more direct and reliable proxy for DON Δ14C age and cycling rate. We present here Δ14C blank characterization of an AA purification method based on HPLC, with on-line fraction collection. This method allows the recovery of unmodified AAs, but accurate measurement of small AA samples that can be extracted from DOM requires a system with extremely low Δ 14C blanks. Here we assess the impact of HPLC purification on the Δ14C age of known amino acids standards. Individual AA standards with contrasting (modern vs. dead) and well- characterized Δ14C ages were processed in a range of sample sizes. The eluted peaks were collected and dried, and measurement of their post-chromatography Δ14C content allowed for determination of the Δ14C blank by method of additions. The same protocol was applied to a mixture of six AA standards, to evaluate tailing effects in consecutive AA peaks of contrasting Δ14C age. AA standards were selected to include both Δ14C modern and dead AAs that elute both early and late in the chromatographic solvent program. We discuss implications

  7. 14C determination in different bio-based products

    NASA Astrophysics Data System (ADS)

    Santos Arévalo, Francisco-Javier; Gómez Martínez, Isabel; Agulló García, Lidia; Reina Maldonado, María-Teresa; García León, Manuel

    2015-10-01

    Radiocarbon determination can be used as a tool to investigate the presence of biological elements in different bio-based products, such as biodiesel blends. These products may also be produced from fossil materials obtaining the same final molecules, so that composition is chemically indistinguishable. The amount of radiocarbon in these products can reveal how much of these biological elements have been used, usually mixed with petrol derived components, free of 14C. Some of these products are liquid and thus the handling at the laboratory is not as straightforward as with solid samples. At Centro Nacional de Aceleradores (CNA) we have tested the viability of these samples using a graphitization system coupled to an elemental analyzer used for combustion of the samples, thus avoiding any vacuum process. Samples do not follow any chemical pre-treatment procedure and are directly graphitized. Specific equipment for liquid samples related to the elemental analyzer was tested. Measurement of samples was performed by low-energy AMS at the 1 MV HVEE facility at CNA, paying special attention to background limits and reproducibility during sample preparation.

  8. Contemporary 14C radiocarbon levels of oxygenated polybrominated diphenyl ethers (O-PBDEs) isolated in sponge–cyanobacteria associations

    PubMed Central

    Guitart, Carlos; Slattery, Marc; Ankisetty, Sridevi; Radwan, Mohamed; Ross, Samir J.; Letcher, Robert J.; Reddy, Christopher M.

    2016-01-01

    Considerable debate surrounds the sources of oxygenated polybrominated diphenyl ethers (O-PBDEs) in wildlife as to whether they are naturally produced or result from anthropogenic industrial activities. Natural radiocarbon (14C) abundance has proven to be a powerful tool to address this problem as recently biosynthesized compounds contain contemporary (i.e. modern) amounts of atmospheric radiocarbon; whereas industrial chemicals, mostly produced from fossil fuels, contain no detectable 14C. However, few compounds isolated from organisms have been analyzed for their radiocarbon content. To provide a baseline, we analyzed the 14C content of four O-PBDEs. These compounds, 6-OH-BDE47, 2′-OHBDE68, 2′,6-diOH-BDE159, and a recently identified compound, 2′-MeO-6-OH-BDE120, were isolated from the tropical marine sponges Dysidea granulosa and Lendenfeldia dendyi. The modern radiocarbon content of their chemical structures (i.e. diphenyl ethers, C12H22O) indicates that they are naturally produced. This adds to a growing baseline on, at least, the sources of these unusual compounds. PMID:21276990

  9. Contemporary 14C radiocarbon levels of oxygenated polybrominated diphenyl ethers (O-PBDEs) isolated in sponge-cyanobacteria associations.

    PubMed

    Guitart, Carlos; Slattery, Marc; Ankisetty, Sridevi; Radwan, Mohamed; Ross, Samir J; Letcher, Robert J; Reddy, Christopher M

    2011-03-01

    Considerable debate surrounds the sources of oxygenated polybrominated diphenyl ethers (O-PBDEs) in wildlife as to whether they are naturally produced or result from anthropogenic industrial activities. Natural radiocarbon ((14)C) abundance has proven to be a powerful tool to address this problem as recently biosynthesized compounds contain contemporary (i.e. modern) amounts of atmospheric radiocarbon; whereas industrial chemicals, mostly produced from fossil fuels, contain no detectable (14)C. However, few compounds isolated from organisms have been analyzed for their radiocarbon content. To provide a baseline, we analyzed the (14)C content of four O-PBDEs. These compounds, 6-OH-BDE47, 2'-OH-BDE68, 2',6-diOH-BDE159, and a recently identified compound, 2'-MeO-6-OH-BDE120, were isolated from the tropical marine sponges Dysidea granulosa and Lendenfeldia dendyi. The modern radiocarbon content of their chemical structures (i.e. diphenyl ethers, C(12)H(22)O) indicates that they are naturally produced. This adds to a growing baseline on, at least, the sources of these unusual compounds.

  10. Accumulation of Sellafield-derived radiocarbon ((14)C) in Irish Sea and West of Scotland intertidal shells and sediments.

    PubMed

    Tierney, Kieran M; Muir, Graham K P; Cook, Gordon T; MacKinnon, Gillian; Howe, John A; Heymans, Johanna J; Xu, Sheng

    2016-01-01

    The nuclear energy industry produces radioactive waste at various stages of the fuel cycle. In the United Kingdom, spent fuel is reprocessed at the Sellafield facility in Cumbria on the North West coast of England. Waste generated at the site comprises a wide range of radionuclides including radiocarbon ((14)C) which is disposed of in various forms including highly soluble inorganic carbon within the low level liquid radioactive effluent, via pipelines into the Irish Sea. This (14)C is rapidly incorporated into the dissolved inorganic carbon (DIC) reservoir and marine calcifying organisms, e.g. molluscs, readily utilise DIC for shell formation. This study investigated a number of sites located in Irish Sea and West of Scotland intertidal zones. Results indicate (14)C enrichment above ambient background levels in shell material at least as far as Port Appin, 265 km north of Sellafield. Of the commonly found species (blue mussel (Mytilus edulis), common cockle (Cerastoderma edule) and common periwinkle (Littorina littorea)), mussels were found to be the most highly enriched in (14)C due to the surface environment they inhabit and their feeding behaviour. Whole mussel shell activities appear to have been decreasing in response to reduced discharge activities since the early 2000s but in contrast, there is evidence of continuing enrichment of the carbonate sediment component due to in-situ shell erosion, as well as indications of particle transport of fine (14)C-enriched material close to Sellafield.

  11. RADIOCARBON 14C MEASUREMENTS ON ATMOSPHERIC SAMPLES OF PARTICULATE MATTER (& VOLATILE ORGANIC COMPOUNDS)

    EPA Science Inventory

    Following a brief history of radiocarbon work at EPA since the 1980's, the presentation focuses on recent non-winter measurements for PM-2.5 in the Southeastern U.S. (Houston, TX; Nashville, TN; and particularly, Tampa, FL) and what the measurements suggest about the importance o...

  12. RADIOCARBON 14C MEASUREMENTS ON ATMOSPHERIC SAMPLES OF PARTICULATE MATTER (& VOLATILE ORGANIC COMPOUNDS)

    EPA Science Inventory

    Following a brief history of radiocarbon work at EPA since the 1980's, the presentation focuses on recent non-winter measurements for PM-2.5 in the Southeastern U.S. (Houston, TX; Nashville, TN; and particularly, Tampa, FL) and what the measurements suggest about the importance o...

  13. Reassessment of the 13C/12C and 14C/12C isotopic fractionation ratio and its impact on high-precision radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Fahrni, Simon M.; Southon, John R.; Santos, Guaciara M.; Palstra, Sanne W. L.; Meijer, Harro A. J.; Xu, Xiaomei

    2017-09-01

    The vast majority of radiocarbon measurement results (14C/12C isotopic ratios or sample activities) are corrected for isotopic fractionation processes (measured as 13C/12C isotopic ratios) that occur in nature, in sample preparation and measurement. In 1954 Harmon Craig suggested a value of 2.0 for the fractionation ratio b that is used to correct 14C/12C ratios for shifts in the 13C/12C ratios and this value has been applied by the radiocarbon community ever since. While theoretical considerations suggest moderate deviations of b from 2.0, some measurements have suggested larger differences (e.g. b = 2.3, measured by Saliège and Fontes in 1984). With the high precision attained in radiocarbon measurements today (±2‰), even a relatively small deviation of b from 2.0 can impact the accuracy of radiocarbon data, and it is, therefore, of interest to re-evaluate the fractionation corrections. In the present study, the fractionation ratio b was determined by independent experiments on the chemical reduction of carbon dioxide (CO2) to elemental carbon (graphitization reaction) and on the photosynthetic uptake of CO2 by C3 and C4 plants. The results yielded b = 1.882 ± 0.019 for the reduction of CO2 to solid graphite and b = 1.953 ± 0.025 for the weighted mean of measurements involving C3 and C4 photosynthesis pathways. In addition, the analysis of over 9600 full-sized OX-I and OX-II normalizing standards measured between 2002 and 2012 confirms b values lower than 2.0. The obtained values are in good agreement with quantum mechanical estimates of the equilibrium fractionation and classic kinetic fractionation as well as with results from other light three-isotope systems (oxygen, magnesium, silicon and sulfur). While the value of the fractionation ratio varies with the relative importance of kinetic and equilibrium fractionation, the values obtained in the present study cluster around b = 1.9. Our findings suggest that a significant fraction of all samples

  14. 14C in a stalagmite from NE India: preliminary results of dating near the limit of radiocarbon time scale

    NASA Astrophysics Data System (ADS)

    Hajdas, I.; Breitenbach, S. F. M.; Gierga, M.; Haug, G. H.; Adkins, J. F.; Biechele, C.; Bonani, G.; Maurer, M.; Wacker, L.

    2012-04-01

    The radiocarbon time scale covers the last 50,000 years and is being used in many applications. Old records close to the dating limit that can provide additional information about 14C variability are rare. Stalagmite MAW-3 has been collected in 2006 from Mawmluh Cave, Meghalaya, NE India and subsequently U-series dated at Caltech. Stable isotopes (delC13 and delO18) were measured at the Geological Institute of the ETH Zurich. MAW-3 grew through a large part of Marine Isotope Stage 3 and stable isotope results clearly show millennial scale climatic fluctuations known as Dansgaard-Oeschger events. U-series dating shows that our sample which grew during the time interval corresponding to the geomagnetic low intensity interval, called Laschamp Event at ca. 40 ka BP. Therefore, we test its usefulness for studies of potential 14C variability at the time. Samples for 14C dating were taken following the method of Hoffman et al. (2010). After preparation of a slab from the centre of the stalagmite small sub-samples for 14C and U-series analysis were cut with a wire saw. Samples containing ca. 10 mg of carbonate were dissolved in concentrated (85%) phosphoric acid and graphitized prior to AMS analysis at the ETH AMS facility. Preliminary results indicate that despite of the very high correction for the dead carbon fraction DCF (ca. 6000 14C yrs) and close proximity to the limit of the 14C dating method, we are still able to measure reliable 14C ages of this portion of MAW-3. We argue that, based on available results, fluctuations of DCF could be reconstructed. DCF changes show a correlation with stable isotope changes (delO18), i.e. precipitation patterns in the region.

  15. Biocomponent determination in vinegars with the help of 14C measured by liquid scintillation counting.

    PubMed

    Tudyka, Konrad; Pawlyta, Jacek

    2014-02-15

    This article presents a method of carbon extraction from vinegar used in preparation of liquid scintillation counting cocktails for measurements of low (14)C radioactivity. The presented method is relatively fast and can be used to produce liquid scintillation cocktails e.g., via benzene synthesis. In this work we present specific radiocarbon radioactivity determinations and based on them estimation of bio product content for five commercially available vinegars. All investigated vinegars are likely produced from plants in fermentation process.

  16. Radiocarbon

    NASA Astrophysics Data System (ADS)

    Broecker, W. S.

    2003-12-01

    Willard Libby's invention of the radiocarbon dating method revolutionized the fields of archeology and Quaternary geology because it brought into being a means to correlate events that occurred during the past 3.5×104 years on a planet-wide scale (Libby et al., 1949). This contribution was recognized with the award of the Nobel Prize for Chemistry. In addition, radiocarbon measurements have been a boon to the quantification of many processes taking place in the environment, to name a few: the rate of "ventilation" of the deep ocean, the turnover time of humus in soils, the rate of growth of cave deposits, the source of carbon-bearing atmospheric particulates, the rates of gas exchange between the atmosphere and water bodies, the replacement time of carbon atoms in human tissue, and depths of bioturbation in marine sediment. Some of these applications have been greatly aided by the creation of excess 14C atoms as the result of nuclear tests conducted in the atmosphere. Since the 1960s, this so-called bomb radiocarbon has made its way into all of the Earth's active carbon reservoirs. To date, tens of thousands of radiocarbon measurements have been made in laboratories throughout the world.

  17. Year of Birth Determination Using Radiocarbon Dating of Dental Enamel

    SciTech Connect

    Buchholz, B A; Spalding, K L

    2009-03-10

    Radiocarbon dating is typically an archaeological tool rather than a forensic one. Recently however, we have shown that the amount of radiocarbon present in tooth enamel, as a result of nuclear bomb testing during the cold war, is a remarkably accurate indicator of when a person is born. Enamel isolated from human teeth is processed to form graphite and carbon-14 ({sup 14}C) levels are measured using accelerator mass spectrometry. Since there is no turnover of enamel after it is formed, {sup 14}C levels in the enamel represent {sup 14}C levels in the atmosphere at the time of its formation. In this paper we describe the strategy used to determine the date of birth of an individual based on radiocarbon levels in tooth enamel, focusing on the methodology of this strategy. Year of birth information can significantly assist police investigators when the identity of a deceased individual is unknown. In such cases police will try to match particulars of the unidentified individual (which is often only gender and/or an estimate of age), with particulars from missing persons lists.

  18. Year of birth determination using radiocarbon dating of dental enamel.

    PubMed

    Buchholz, B A; Spalding, K L

    2010-05-01

    Radiocarbon dating is typically an archaeological tool rather than a forensic one. Recently however, we have shown that the amount of radiocarbon present in tooth enamel, as a result of nuclear bomb testing during the cold war, is a remarkably accurate indicator of when a person is born. Enamel isolated from human teeth is processed to form graphite and carbon-14 ((14)C) levels are measured using accelerator mass spectrometry. Since there is no turnover of enamel after it is formed, (14)C levels in the enamel represent (14)C levels in the atmosphere at the time of its formation. In this paper we describe the strategy used to determine the date of birth of an individual based on radiocarbon levels in tooth enamel, focusing on the methodology of this strategy. Year of birth information can significantly assist police investigators when the identity of a deceased individual is unknown. In such cases police will try to match particulars of the unidentified individual (which is often only gender and/or an estimate of age), with particulars from missing persons lists.

  19. Quantity of dates trumps quality of dates for dense Bayesian radiocarbon sediment chronologies - Gas ion source 14C dating instructed by simultaneous Bayesian accumulation rate modeling

    NASA Astrophysics Data System (ADS)

    Rosenheim, B. E.; Firesinger, D.; Roberts, M. L.; Burton, J. R.; Khan, N.; Moyer, R. P.

    2016-12-01

    Radiocarbon (14C) sediment core chronologies benefit from a high density of dates, even when precision of individual dates is sacrificed. This is demonstrated by a combined approach of rapid 14C analysis of CO2 gas generated from carbonates and organic material coupled with Bayesian statistical modeling. Analysis of 14C is facilitated by the gas ion source on the Continuous Flow Accelerator Mass Spectrometry (CFAMS) system at the Woods Hole Oceanographic Institution's National Ocean Sciences Accelerator Mass Spectrometry facility. This instrument is capable of producing a 14C determination of +/- 100 14C y precision every 4-5 minutes, with limited sample handling (dissolution of carbonates and/or combustion of organic carbon in evacuated containers). Rapid analysis allows over-preparation of samples to include replicates at each depth and/or comparison of different sample types at particular depths in a sediment or peat core. Analysis priority is given to depths that have the least chronologic precision as determined by Bayesian modeling of the chronology of calibrated ages. Use of such a statistical approach to determine the order in which samples are run ensures that the chronology constantly improves so long as material is available for the analysis of chronologic weak points. Ultimately, accuracy of the chronology is determined by the material that is actually being dated, and our combined approach allows testing of different constituents of the organic carbon pool and the carbonate minerals within a core. We will present preliminary results from a deep-sea sediment core abundant in deep-sea foraminifera as well as coastal wetland peat cores to demonstrate statistical improvements in sediment- and peat-core chronologies obtained by increasing the quantity and decreasing the quality of individual dates.

  20. Ramped PyrOx 14C With a Twist: Improving Radiocarbon Chronologies on Highly Detrital Marginal Antarctic Sediments

    NASA Astrophysics Data System (ADS)

    Subt, C.; Yoon, H.; Yoo, K. C.; Lee, J. I.; Domack, E. W.; Rosenheim, B. E.

    2016-02-01

    Highly detrital sediments can be difficult to date when the detritus includes material similar to that from which dates are sought. For radiocarbon dating, samples with a high degree of pre-aged detrital carbon contamination necessitate measurement of a very small portion of the sample to remove that contamination from the targeted component, even when using advanced techniques such as Ramped PyrOx (RP) 14C dating. Here we present three case studies of alternative RP approaches, producing accurate and precise chronologies for highly detrital sediments near the Larsen C ice shelf, near the Drygalski Ice Tongue in Ross Sea, and in Lapeyrère Bay, Anvers Island. For sediments where the proportion of organic carbon that was modern at the time of deposition is too small for a traditional AMS analysis after RP treatment, we have developed an innovative multiple RP analyses approach to minimize the cost in precision from using smaller temperature intervals, while maximizing the benefit in accuracy. Resulting sub ice-shelf chronologies show vastly improved dates down-core, significantly younger than the equivalent 14C chronology from the bulk acid insoluble organic (AIO) carbon with increasing ages down-core. By comparison, bulk AIO 14C dates in the study areas are not only older, but are subject to age reversals and nearly constant ages that make sedimentation rates impossible to resolve. Using our new approaches, we can reduce pre-aged carbon contamination in Lapeyrère Bay, and date sediments within layers of siliceous mud and ooze in the Ross Sea, and near the Larsen C ice shelf. Improved accuracy for 14C dates of highly detrital sediments can sometimes require the incorporation of a larger blank correction to account for multiple analyses, decreasing the precision. Application of this method refines ages of hard-to-date sediments, removing limits on what to include in a regional approach to chronicle ice shelf collapse.

  1. Ancient dissolved methane in inland waters at low concentrations revealed by a new collection method for radiocarbon (^{14}C) analysis

    NASA Astrophysics Data System (ADS)

    Dean, Joshua F.; Billett, Michael F.; Murray, Callum; Garnett, Mark H.

    2017-04-01

    Methane (CH4) is a powerful greenhouse gas and is released to the atmosphere from freshwater systems in numerous biomes globally. Radiocarbon (14C) analysis of methane can provide unique information about its age, source and rate of cycling in natural environments. Methane is often released from aquatic sediments in bubbles (ebullition), but dissolved methane is also present in lakes and streams at lower concentrations, and may not be of the same age or source. Obtaining sufficient non-ebullitive aquatic methane for 14C analysis remains a major technical challenge. Previous studies have shown that freshwater methane, in both dissolved and ebullitive form, can be significantly older than other forms of aquatic carbon (C), and it is therefore important to characterise this part of the terrestrial C balance. We present a novel method to capture sufficient amounts of dissolved methane from freshwater environments for 14C analysis by circulating water across a hydrophobic, gas-permeable membrane and collecting the methane in a large collapsible vessel. The results of laboratory and field tests show that reliable dissolved δ13CH4 and 14CH4 samples can be readily collected over short time periods (˜4 to 24 hours), at relatively low cost and from a variety of surface water types. The initial results further support previous findings that dissolved methane can be significantly older than other forms of aquatic C, especially in organic-rich catchments, and is currently unaccounted for in many terrestrial C balances and models. This method is suitable for use in remote locations, and could potentially be used to detect the leakage of unique 14CH4 signatures from point sources into waterways, e.g. coal seam gas and landfill gas.

  2. Determination of chemical forms of (14)C in liquid discharges from nuclear power plants.

    PubMed

    Svetlik, I; Fejgl, M; Povinec, P P; Kořínková, T; Tomášková, L; Pospíchal, J; Kurfiřt, M; Striegler, R; Kaufmanová, M

    2017-10-01

    Developments of radioanalytical methods for determination of radiocarbon in wastewaters from nuclear power plants (NPP) with pressurized light water reactors, which would distinguish between the dissolved organic and inorganic forms have been carried out. After preliminary tests, the method was used to process pilot samples from wastewater outlets from the Temelín and Dukovany NPPs (Czech Republic). The results of analysis of pilot water samples collected in 2015 indicate that the instantaneous (14)C releases into the water streams would be about 7.10(-5) (Temelín) and 4.10(-6) (Dukovany) of the total quantity of the (14)C liberated into the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. New insights into the radiocarbon calibration based on 14C and U-Th dating of corals drilled offshore Tahiti (IODP Expedition #310)

    NASA Astrophysics Data System (ADS)

    Durand, Nicolas; Deschamps, Pierre; Bard, Edouard; Hamelin, Bruno; Camoin, Gilbert; Thomas, Alexander L.; Henderson, Gideon M.; Yokoyama, Yusuke

    2010-05-01

    Beyond the high-precision tree-ring calibration, the fossil corals are the most reliable archive that can be used to calibrate the radiocarbon time scale. In this contribution, we present a new radiocarbon dataset based on paired 14C and U-Th dating of fossil shallow-water tropical corals drilled offshore Tahiti during the IODP Expedition 310 'Tahiti Sea-Level'. Before 14C and U-Th analyses, rigorous screening criteria have been applied in order to select pristine aragonitic coral skeletons and avoid those displaying any post-mortem diagenesis that alters original ages. In particular, we made a significant effort to improve detection and quantification of very small amount of secondary calcite in the aragonitic coral lattice using X-ray diffraction measurements [1]. In addition, we apply a strict screening criterion based on δ234U. However, the new Tahiti dataset allow to refine the previous tolerance ranges previously adopted. More than 60 radiocarbon dates were processed at the Laboratoire de Mesure du Carbone 14 (Saclay, France) with the ARTEMIS AMS facility. This new Tahiti record provides new data to the radiocarbon calibration for two distinct time windows: for the interval between 29,200 and 36,200 years BP and for the last deglaciation period, with especially, a higher resolution (40 data) for the 14,000 - 16,000 years BP time interval. These new data extend the previous Tahiti record beyond 13,900 years BP which was the oldest U-Th age obtained on cores drilled onshore in the modern Tahiti barrier reef [2, 3]. These new results are compared with 14C chronologies from other corals, those of Barbados [4, 5] and those from other Pacific islands (Mururoa, Vanuatu, Marquesas, Christmas), and from the Cariaco Basin sediment [6, 7], the Iberian Margin sediment [8, 9] and the Bahamian speleothem [10] records. The new 14C dataset from the corals drilled offshore Tahiti allows to validate the precision and accuracy of other records either directly dated by U-Th or

  4. Year-round probing of soot carbon and secondary organic carbon contributions and sources to the South Asian Atmospheric Brown Cloud using radiocarbon (14C) measurements

    NASA Astrophysics Data System (ADS)

    Kirillova, Elena; Sheesley, Rebecca J.; Andersson, August; Krusâ, Martin; Safai, P. D.; Budhavant, Krishnakant; Rao, P. S. P.; Praveen, P. S.; Gustafsson, Örjan

    2010-05-01

    South Asia is one region of vital importance for assessing human impact on radiative forcing by atmospheric aerosols. Previous research in the region has indicated that black carbon is a significant component of the regional aerosol load. In contrast, there is more ambiguous information regarding the contribution of secondary organic aerosols (SOA) to the total carbonaceous (TC) aerosol composition. Here we primarily address the SOA component of the South Asian Atmospheric Brown Cloud (ABC) by a combination of measurements of SOA concentrations and the 14C signature of TC. Atmospheric particulate matter was collected during fourteen-month continuous sampling campaigns Jan 2008 - March 2009 at both the Maldives Climate Observatory at Hannimaadho (MCO-H) and at the Sinhagad hilltop sampling site of the Indian Institute of Tropical Meteorology (SIN) in central-western India. The radiocarbon method is an ideal approach to identify fossil sources (14C "dead") compared to biogenic and biomass combustion products (with a contemporary 14C signal). The radiocarbon source apportionment of TC revealed very similar contribution from biogenic/biomass combustion (60-70%) for Indian SIN site and the MCOH receptor regions for much of the year. However, during the summer monsoon season biomass contribution to TC at the Indian Ocean site increases to 70-80%, while it decreases to 40-50% at the Indian site. Source apportionment of a soot carbon (SC) isolate (CTO-375 method; a tracer of black carbon) shows a similar trend. According to preliminary data in summer biomass contribution is higher at the MCOH receptor site (70%) compared to the SIN background site (45%). These unique year-round 14C data will be interpreted in view of the SOA concentration and the varying origin of the air masses.

  5. Ancient dissolved methane in inland waters revealed by a new collection method at low field concentrations for radiocarbon ((14)C) analysis.

    PubMed

    Dean, Joshua F; Billett, Michael F; Murray, Callum; Garnett, Mark H

    2017-05-15

    Methane (CH4) is a powerful greenhouse gas that plays a prominent role in the terrestrial carbon (C) cycle, and is released to the atmosphere from freshwater systems in numerous biomes globally. Radiocarbon ((14)C) analysis can indicate both the age and source of CH4 in natural environments. In contrast to CH4 present in bubbles released from aquatic sediments (ebullition), dissolved CH4 in lakes and streams can be present in low concentrations compared to carbon dioxide (CO2), and therefore obtaining sufficient aquatic CH4 for radiocarbon ((14)C) analysis remains a major technical challenge. Previous studies have shown that freshwater CH4, in both dissolved and ebullitive form, can be significantly older than other forms of aquatic C, and it is therefore important to characterise this part of the terrestrial C balance. This study presents a novel method to capture sufficient amounts of dissolved CH4 for (14)C analysis in freshwater environments by circulating water across a hydrophobic, gas-permeable membrane and collecting the CH4 in a large headspace volume. The results of laboratory and field tests show that reliable dissolved δ(13)CH4 and (14)CH4 samples can be readily collected over short time periods (∼4-24 h), at relatively low cost and from a variety of surface water types. The initial results further support previous findings that dissolved CH4 may be significantly older than other forms of aquatic C, and is currently unaccounted for in many terrestrial C balances and models. This method is suitable for use in remote locations, and could potentially be used to detect the leakage of unique (14)CH4 signatures from point sources into waterways, e.g. coal seam gas and landfill gas. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Use of uranium-thorium dating to determine past 14C reservoir effects in lakes: examples from Antarctica

    NASA Astrophysics Data System (ADS)

    Hall, Brenda L.; Henderson, Gideon M.

    2001-12-01

    The chronologies of many lacustrine records suffer from radiocarbon reservoir effects due to the presence of dissolved 'dead' carbon or to slow air-water exchange. Here we use the TIMS uranium-thorium disequilibrium method, in conjunction with AMS radiocarbon dating, to determine the age of lacustrine carbonates and to quantify the past radiocarbon reservoir effect in two Antarctic lakes with differing characteristics. By correcting a single-sample U/Th age for detrital contamination, a 14C offset of ˜18 000 yr was obtained for carbonates from the former grounding line of the Ross Sea ice sheet in Glacial Lake Trowbridge. This large reservoir effect is believed to result from the direct input of old CO 2 from glacial meltwater. In the second example, an isochron approach on coeval samples formed at the bottom of Lake Vida (now exposed due to lower lake level) yielded an age of 9550±340 yr B.P. and a radiocarbon reservoir age of 3600 yr. This offset was probably the result of lack of aeration due to perennial ice cover and/or strong density stratification. This evidence for long-term isolation of the lake bottom indicates another level of hardship for life in the Dry Valley lacustrine environment - an environment studied as an analogue for extreme periods of Earth history, as well as for exobiological implications. The success of the U/Th technique on these two examples indicates that TIMS U/Th dating will be of widespread use in dating the important climate information recorded in the Dry Valleys both within and beyond the 14C age range.

  7. Sources and Cycling of Dissolved Organic Carbon in the Gulf of Mexico: Insights from Stable (δ13C) and Radiocarbon14C) Signatures

    NASA Astrophysics Data System (ADS)

    Walker, B. D.; Druffel, E. R. M.; Griffin, S.; Kolasinski, J.; Roberts, B. J.; Xu, X.; Muller-Karger, F. E.; Rosenheim, B. E.

    2016-02-01

    Understanding the production and remineralization of marine dissolved organic carbon (DOC; 662 GtC) is of primary importance to the global carbon cycle. Together, DOC concentrations, stable (δ13C) and radiocarbon14C) isotopic measurements provide a powerful toolset for evaluating DOC sources and cycling in aquatic environments. However, to date the Δ14C and δ13C composition of total DOC in both the Mississippi River and the Gulf of Mexico (GOM) basin remains largely unconstrained. This has precluded our basic understanding of DOC biogeochemistry, its persistence and contribution to the base of the marine food web in an economically important U.S. ocean region. The Deepwater Horizon (DWH) spill event in 2010 further exemplified the need for understanding the baseline biogeochemistry of DOM across the terrestrial-marine interface in the Northern GOM. In particular, the relative persistence (e.g. biodegradation) and contribution of DWH oil to the DOC reservoir remains largely unknown. Here we present the first DOC Δ14C and δ13C depth profiles taken from five stations in the Northern GOM: 1) the Mississippi River mouth, 2) the shelf bound, aged river plume, 3) the shelf/slope near the Macondo Well site, 4) offshore in the Loop Current and 5) a nearshore mesoscale eddy. We will discuss these DOC Δ14C and δ13C data with three goals in mind. First, we will attempt to disentangle the complex interplay between riverine, coastal, open and deep ocean DOC cycling. Second we will compare these offshore data to a recently measured DOC Δ14C profile from waters feeding the GOM from the Caribbean in order to evaluate DOC cycling and residence time in the deep GOM basin. Finally, we will discuss results suggesting 10-16% of DWH oil has been incorporated into the marine DOC reservoir.

  8. Can UK fossil fuel emissions be determined by radiocarbon measurements?

    NASA Astrophysics Data System (ADS)

    Wenger, Angelina; O'Doherty, Simon; Rigby, Matthew; Manning, Alistair; Palmer, Paul

    2016-04-01

    The GAUGE project evaluates different methods to estimate UK emissions. However, estimating carbon dioxide emissions as a result of fossil fuel burning is challenging as natural fluxes in and out of the atmosphere are very large. Radiocarbon (14C) measurements offer a way to specifically measure the amount of recently added carbon dioxide from fossil fuel burning. This is possible as, due to their age, all the radiocarbon in fossil fuels has decayed. Hence the amount of recently added CO2 from fossil fuel burning can be measured as a depletion of the 14C content in air. While this method has been successfully applied by several groups on a city or a regional scale, this is the first attempt at using the technique for a national emission estimate. Geographically the UK, being an island, is a good location for such an experiment. But are 14CO2 measurements the ideal solution for estimating fossil fuel emissions as they are heralded to be? Previous studies have shown that 14CO2emissions from the nuclear industry mask the 14C depletion caused by fossil fuel burning and result in an underestimation of the fossil fuel CO2. While this might not be a problem in certain regions around the world, many countries like the UK have a substantial nuclear industry. A correction for this enhancement from the nuclear industry can be applied but are invariably difficult as 14CO2emissions from nuclear power plants have a high temporal variability. We will explain how our sampling strategy was chosen to minimize the influence form the nuclear industry and why this proved to be challenging. In addition we present the results from our ground based measurements to show why trying to estimate national emissions using radiocarbon measurements was overambitious, and how practical the technique is for the UK in general.

  9. Determination of microbial carbon sources and cycling during remediation of petroleum hydrocarbon impacted soil using natural abundance (14)C analysis of PLFA.

    PubMed

    Cowie, Benjamin R; Greenberg, Bruce M; Slater, Gregory F

    2010-04-01

    In a petroleum impacted land-farm soil in Sarnia, Ontario, compound-specific natural abundance radiocarbon analysis identified biodegradation by the soil microbial community as a major pathway for hydrocarbon removal in a novel remediation system. During remediation of contaminated soils by a plant growth promoting rhizobacteria enhanced phytoremediation system (PEPS), the measured Delta(14)C of phospholipid fatty acid (PLFA) biomarkers ranged from -793 per thousand to -897 per thousand, directly demonstrating microbial uptake and utilization of petroleum hydrocarbons (Delta(14)C(PHC) = -1000 per thousand). Isotopic mass balance indicated that more than 80% of microbial PLFA carbon was derived from petroleum hydrocarbons (PHC) and a maximum of 20% was obtained from metabolism of more modern carbon sources. These PLFA from the contaminated soils were the most (14)C-depleted biomarkers ever measured for an in situ environmental system, and this study demonstrated that the microbial community in this soil was subsisting primarily on petroleum hydrocarbons. In contrast, the microbial community in a nearby uncontaminated control soil maintained a more modern Delta(14)C signature than total organic carbon (Delta(14)C(PLFA) = +36 per thousand to -147 per thousand, Delta(14)C(TOC) = -148 per thousand), indicating preferential consumption of the most modern plant-derived fraction of soil organic carbon. Measurements of delta(13)C and Delta(14)C of soil CO(2) additionally demonstrated that mineralization of PHC contributed to soil CO(2) at the contaminated site. The CO(2) in the uncontaminated control soil exhibited substantially more modern Delta(14)C values, and lower soil CO(2) concentrations than the contaminated soils, suggesting increased rates of soil respiration in the contaminated soils. In combination, these results demonstrated that biodegradation in the soil microbial community was a primary pathway of petroleum hydrocarbon removal in the PEPS system. This study

  10. Determination and Radiocarbon Dating of Marine Mollusc Fossils in Ancient Sea Shelf of Central Java Indonesia

    NASA Astrophysics Data System (ADS)

    Aisyah, S.; Pringgenies, D.; Hartoko, A.; Sumantyo, J. T. S.; Matsuzaki, H.

    2017-02-01

    Mollusc phylum is one of the most adaptive animal groups on Earth. They occupy and thrive in incredibly diverse habitats. Their distribution in the fossil record is equally diverse. Indonesia is one of the country with marine mollusc fossil variety, such as in the archaeological site of Sangiran, Patiayam (Ancient Muria Strait) and Grobogan – Central Java. Radiocarbon Dating is the method for dating analysis using 14C. By measuring 14C content, we can estimate how long ago the fossils died. Radiocarbon dating is an extremely useful technique for determining the ages of geological materials (that have some organic-derived carbon in them). Field sampling had found variety of marine mollusc fossils such us 1) Sangiran: Dosinia sp., Telescopium telescopium, Anadara sp., and Dosinia insularum; 2) Patiayam (Ancient Muria Strait): Pseudodon vondenbuschianus, Elongaria orientalis, Conus (Pionoconus) sp., Ampullina bandongensis, Anadara pilula and Filopaludina javanica; 3) Grobogan: Antigona chemnitzii, Cultelus dilatatus, Plotia scabra and Tibia modesta. Mollusc fossils sample was analysed using Accelerator Mass Spectrometer (AMS) radiocarbon system. It is a good method for dating specific samples. The result showed that Sangiran as an ancient deepsea has fossils age 38710 – 31947 years, then Patiayam (Ancient Muria Strait) with fossils age 26248 – 11994. Mollusc fossils from Grobogan was the youngest area has fossils age 25692 – 6479 years.

  11. A simple method to determine mineralization of (14) C-labeled compounds in soil.

    PubMed

    Myung, Kyung; Madary, Michael W; Satchivi, Norbert M

    2014-06-01

    Degradation of organic compounds in soil is often determined by measuring the decrease of the parent compound and analyzing the occurrence of its metabolites. However, determining carbon species as end products of parent compound dissipation requires using labeled materials that allow more accurate determination of the environmental fate of the compound of interest. The current conventional closed system widely used to monitor degradation of (14) C-labeled compounds in soil is complex and expensive and requires a specialized apparatus and facility. In the present study, the authors describe a simple system that facilitates measurement of mineralization of (14) C-labeled compounds applied to soil samples. In the system, soda lime pellets to trap mineralized (14) C-carbon species, including carbon dioxide, were placed in a cup, which was then inserted above the treated soil sample in a tube. Mineralization of [(14) C]2,4-D applied to soil samples in the simple system was compared with that in the conventional system. The simple system provided an equivalent detection of (14) C-carbon species mineralized from the parent compound. The results demonstrate that this cost- and space-effective simple system is suitable for examining degradation and mineralization of (14) C-labeled compounds in soil and could potentially be used to investigate their mineralization in other biological matrices. © 2014 SETAC.

  12. PRIME Lab Radiocarbon Measurements

    NASA Astrophysics Data System (ADS)

    Hillegonds, D. J.; Mueller, K. A.; Ma, X.; Lipschutz, M. E.

    1996-03-01

    The Purdue Rare Isotope Measurement Laboratory (PRIME Lab) is one of three NSF national facilities for accelerator mass spectrometry (AMS), and is the only one capable of determining six cosmogenic radionuclides: 10Be, 14C, 26Al, 36Cl, 41Ca, and 129I. This abstract describes the current status of the radiocarbon analysis program at PRIME Lab.

  13. Dating ivory by determination of 14C, 90Sr and 228/232Th.

    PubMed

    Schmied, Stefanie A K; Brunnermeier, Matthias J; Schupfner, Robert; Wolfbeis, Otto S

    2012-09-10

    A method is described to determine the time of death of elephants. This is accomplished by analysis of the radionuclides 14C, 90Sr and 228/232Th in known samples of ivory, and in samples of unknown age. The reliability of this method is considerably increased by multi nuclide analysis.

  14. Radiocarbon content of pre-bomb marine mollusks and variations in the 14C Reservoir age for coastal areas of the Barents and Kara Seas, Russia

    NASA Astrophysics Data System (ADS)

    Forman, Steven L.; Polyak, Leonid

    Fourteen mollusks, collected alive between 1900 and 1945 from the Russian Barents and Kara seas, were analyzed by AMS 14C dating to evaluate variations in the 14C marine reservoir for arctic coastal sites, which is important for correcting ages in paleoenvironmental time-series and advancing understanding of the exchange of carbon. The 14C ages on the mollusks reveal a range of marine reservoir values (R(t)) from 159 14C yr to 764 14C yr. The oldest R(t) values of 764 to 620 14C yr are for the bivalve Portlandia arctica, which often inhabit cold and low salinity waters and muddy substrates. The depleted 14C content for this bivalve reflects possibly the incorporation of old carbon from freshwater inputs and/or the consumption of old organic matter from the underlying sediments and pore waters. Other mollusks with sessile habitats and pelagic food sources gave significantly lower R(t) values between 159 and 344 14C yr. The youngest R(t) values indicate enrichment in 14C and may partially reflect enhanced transfer of 14C-enriched CO2 from the atmosphere to the ocean surface with wind-generated wave agitation. This study underscores that a variety of processes can lead to variable 14C depletion and enrichment of surface waters yielding a ca. 600 year age span for contemporaneous arctic mollusks. There may be added uncertainty in the 14C reservoir correction for deposit-feeder species such as Portlandia sp. and perhaps for certain benthic foraminifera (e.g. Nonion labradoricum) because these taxa often incorporate old organic matter from the substrate. A reservoir correction of ≥700 years may be more appropriate for infaunal, deposit-eater species, particularly in glacier-dominated environments. Mollusks and foraminifera with sessile habits and pelagic food sources should be selected preferentially for 14C dating, because their shells may more closely reflect the 14C content of the global-ocean mixed layer.

  15. Use of a 700 MHz NMR Microcryoprobe for the Identification and Quantification of Exogenous Carbon in Compounds Purified by Preparative Capillary Gas Chromatography for Radiocarbon Determinations.

    PubMed

    Casanova, Emmanuelle; Knowles, Timothy D J; Williams, Christopher; Crump, Matthew P; Evershed, Richard P

    2017-07-05

    Preparative capillary gas chromatography (PCGC) is the central technique used for the purification of volatile or semivolatile organic compounds for radiocarbon analysis using accelerator mass spectrometry (AMS). While thicker film columns offer efficient separations, cyclic poly(dimethylsiloxanes) (PDMS) derived from the column's stationary phase have been highlighted as a potential source of contaminant carbon in "trapped" compounds. The PDMS CH3 groups are of "infinite" radiocarbon age due to the fossil carbon origin of the feedstock used in production. Hence, column bleed, if present at sufficiently high concentrations, would shift the radiocarbon ages of trapped compounds to older ages. Quantification of the column bleed in trapped samples, however, is extremely challenging and up to now has only been achieved through indirect (14)C determinations of chromatographic blanks, which are used for post (14)C determination "corrections". As part of wider investigations aimed at better understanding the chemical nature of contamination in compound-specific (14)C determinations, herein, we report a rigorous approach to column bleed identification and quantification. Using reference fatty acid methyl esters (FAMEs), (1)H nuclear magnetic resonance spectroscopy (NMR), employing a 700 MHz instrument equipped with a 1.7 mm microcryoprobe optimized for (1)H observation, was able to detect low submicrogram amounts of low molecular weight compounds (<500 Da). Direct quantification of PCGC "trapped" FAMEs was achieved based on the recorded (1)H NMR spectra. Gravimetrically prepared calibration mixtures of cyclic PMDSs and FAMEs showed column bleed abundance to be below 0.03% w/w of the "trapped" FAMEs, which would lead to a maximum shift in radiocarbon age of <3 years toward older values. We therefore conclude that column bleed contamination has a negligible effect on the (14)C determination of FAMEs prepared using the chromatographic method described. The (1)H NMR analysis

  16. Determination of the weak magnetism matrix element in {sup 14}C beta decay

    SciTech Connect

    Zeuli, A.R.; Ahmad, I.; Coulter, K.P.; Greene, J.P.; Schiffer, J.P.; Freedman, S.J.; Fujikawa, B.K.; Mortara, J.L.

    1993-10-01

    Higher order beta decay matrix elements, such as weak magnetism, will introduce small departures (a shape factor) from the allowed beta decay electron energy spectrum. The value of the weak magnetism matrix element is predicted by the Conserved Vector Current (CVC) hypothesis and an experimental determination of the weak magnetism matrix element can be interpreted as a test of CVC. We have determined the weak magnetism matrix element from the {sup 14}C shape factor, which was measured using an apparatus incorporating a high resolution solid state detector and a super conducting solenoid. The results of our measurement will be presented.

  17. Phyllotactic transitions in the vascular system of Populus deltoides bartr. as determined by (14)C labeling.

    PubMed

    Larson, P R

    1977-01-01

    Populus deltoides seedlings progress through 2/5, 3/8, and 5/13 orders of phyllotaxis in attaining Plastochron Index 16 (PI 16). The manner in which the vascular system was reoriented during these phyllotactic transitions was determined by anatomical analysis of serial microsections, whereas the positions of the transitions were determined by (14)C labeling. The midvein at the tip of leaves representing plants of different PI and leaves of different Leaf Plastochron Index (LPI) was fed (14)CO2 photosynthetically, and primordia LPI 0 through LPI-9 were dissected from the buds and analyzed for (14)C. By combining the labeling data with the anatomical observations it was possible to reconstruct the vascular system of a plant of PI 16 and to locate the phyllotactic transitions. Both the anatomical and the labeling data showed a high degree of reproducibility among plants suggesting that the phyllotactic pattern to which the vascular system conforms may be programmed in the plant and transmitted acropetally through the developing leaves and procambial strands. The origin of new primordia and the concepts of orthostichy, ontogenetic helix, and Fibonacci sequence are discussed as they apply to the vascular system of P. deltoides.

  18. Radiocarbon Dating

    SciTech Connect

    Buchholz, B A

    2007-12-20

    Radiocarbon dating can be used to determine the age of objects that contain components that were once alive. In the case of human remains, a radiocarbon date can distinguish between a crime scene and an archeological site. Documents, museum artifacts and art objects can be dated to determine if their age is correct for the historical context. A radiocarbon date does not confirm authenticity, but it can help identify a forgery.

  19. Forensic applications of 14C at CIRCE

    NASA Astrophysics Data System (ADS)

    Marzaioli, F.; Fiumano, V.; Capano, M.; Passariello, I.; Cesare, N. De.; Terrasi, F.

    2011-12-01

    The decreasing trend of the radiocarbon pulse produced during the atmospheric tests of nuclear weapons (bomb-carbon) coupled with high sensitivity accelerator mass spectrometry (AMS) measurements, drastically increased the precision of radiocarbon age determinations since the second part of the sixties, allowing the application of radiocarbon AMS to a wide range of studies previously not directly involving conventional radiocarbon dating (i.e. food authenticity, forensic, biochemistry). In the framework of authenticity evaluation of artworks, high precision radiocarbon ( 14C) AMS measurements (Δ R/ R < 0.3%) reduce the conventional uncertainty of the dating to few decades, allowing precise age estimation of materials containing carbon (C). The Centre for Isotopic Research on Cultural and Environmental heritage (CIRCE) during its activity on AMS 14C dating achieved high precision measurements opening the opportunity to these kinds of applications. This paper presents the main results obtained from radiocarbon measurements on a set of bone samples analyzed for the determination of the post-mortem interval in the framework of an unsolved case investigated by the Rome prosecutor office. The chronological characterization of the wooden support of the "Acerenza portrait" is also presented with the aim to evaluate its age and to further investigate the possibility to attribute this artwork to Leonardo da Vinci. Bomb- 14C dating on the lipid and collagen fractions of bones allows the evaluation of the year of the death of the individuals by means of ad hoc calibration data sheet with the typical few years precision and difference between collagen apparent age and the year of death appeared in agreement with the age of one individual estimated by dating of tooth collagen. Conventional radiocarbon dating on both wood and wood extracted cellulose leads to an estimation of the portrait wood board age (2σ) of 1459-1524 AD (57% relative probability), 1571-1631 AD interval (42

  20. Decoloration and solubilization of plant tissue prior to determination of 3H, 14C, and 35S by liquid scintillation.

    PubMed

    Smith, I K; Lang, A L

    1987-08-01

    A method is described for the decoloration and partial solubilization of plant tissue with 2% sodium hypochlorite. Following treatment of the digest with ammonia, the samples are suitable for the determination of 3H, 14C, and 35S by liquid scintillation counting. The color quenching is negligible and counting efficiencies are high: 30-40% for 3H and 90-95% for 14C.

  1. Holocene age of the Yuha burial: Direct radiocarbon determinations by accelerator mass spectrometry

    USGS Publications Warehouse

    Stafford, Thomas W.; Jull, A.J.T.; Zabel, T.H.; Donahue, D.J.; Duhamel, R.C.; Brendel, K.; Haynes, C.V.; Bischoff, J.L.; Payen, L.A.; Taylor, R.E.

    1984-01-01

    The view that human populations may not have arrived in the Western Hemisphere before about 12,000 radiocarbon yr BP1,2 has been challenged by claims of much greater antiquity for a small number of archaeological sites and human skeleton samples. One such site is the Homo sapiens sapiens cairn burial excavated in 1971 from the Yuha desert, Imperial County, California3-5. Radiocarbon analysis of caliche coating one of the bones of the skeleton yielded a radiocarbon age of 21,500??1,000 yr BP4, while radiocarbon and uranium series analyses of caliche coating a cairn boulder yielded ages of 22,125??400 and 19,000??3,000 yr BP, respectively5. The late Pleistocene age assignment to the Yuha burial has been challenged by comparing the cultural context of the burial with other cairn burials in the same region6, on the basis of the site's geomorphological context and from radiocarbon analyses of soil caliches. 7,8 In rebuttal, arguments in defence of the original age assignment have been presented9,10 as well as an amino acid racemization analysis on the Yuha skeleton indicating an age of 23,600??2,600 yr BP11. The tandem accelerator mass spectrometer at the University of Arizona has now been used to measure the ratio of 14C/13C in several organic and inorganic fractions of post-cranial bone from the Yuha H. sapiens sapiens skeleton. Isotope ratios from six chemical fractions all yielded radiocarbon ages for the skeleton of less than 4,000 yr BP. These results indicate that the Yuha skeleton is of Holocene age, in agreement with the cultural context of the burial, and in disagreement with the previously assigned Pleistocene age of 19,000-23,000 yr. ?? 1984 Nature Publishing Group.

  2. Determining the biomass fraction of mixed waste fuels: A comparison of existing industry and {sup 14}C-based methodologies

    SciTech Connect

    Muir, G.K.P.; Hayward, S.; Tripney, B.G.; Cook, G.T.; Naysmith, P.; Herbert, B.M.J.; Garnett, M.H; Wilkinson, M.

    2015-01-15

    Highlights: • Compares industry standard and {sup 14}C methods for determining bioenergy content of MSW. • Differences quantified through study at an operational energy from waste plant. • Manual sort and selective dissolution are unreliable measures of feedstock bioenergy. • {sup 14}C methods (esp. AMS) improve precision and reliability of bioenergy determination. • Implications for electricity generators and regulators for award of bio-incentives. - Abstract: {sup 14}C analysis of flue gas by accelerator mass spectrometry (AMS) and liquid scintillation counting (LSC) were used to determine the biomass fraction of mixed waste at an operational energy-from-waste (EfW) plant. Results were converted to bioenergy (% total) using mathematical algorithms and assessed against existing industry methodologies which involve manual sorting and selective dissolution (SD) of feedstock. Simultaneous determinations using flue gas showed excellent agreement: 44.8 ± 2.7% for AMS and 44.6 ± 12.3% for LSC. Comparable bioenergy results were obtained using a feedstock manual sort procedure (41.4%), whilst a procedure based on selective dissolution of representative waste material is reported as 75.5% (no errors quoted). {sup 14}C techniques present significant advantages in data acquisition, precision and reliability for both electricity generator and industry regulator.

  3. Radiocarbon dating of terrestrial carbonates

    USGS Publications Warehouse

    Pigati, Jeffrey S.; Rink, W. Jack; Thompson, Jeroen

    2014-01-01

    Terrestrial carbonates encompass a wide range of materials that potentially could be used for radiocarbon (14C) dating. Biogenic carbonates, including shells and tests of terrestrial and aquatic gastropods, bivalves, ostracodes, and foraminifera, are preserved in a variety of late Quaternary deposits and may be suitable for 14C dating. Primary calcareous deposits (marls, tufa, speleothems) and secondary carbonates (rhizoliths, fracture fill, soil carbonate) may also be targeted for dating when conditions are favorable. This chapter discusses issues that are commonly encountered in 14C dating of terrestrial carbonates, including isotopic disequilibrium and open-system behavior, as well as methods used to determine the reliability of ages derived from these materials. Recent methodological advancements that may improve the accuracy and precision of 14C ages of terrestrial carbonates are also highlighted.

  4. Complexities in the Use of Bomb-Curve Radiocarbon to Determine Time Since Death of Human Skeletal Remains

    SciTech Connect

    Ubelaker, D H; Buchholz, B A

    2005-04-26

    Atmospheric testing of nuclear weapons during the 1950s and early 1960s doubled the level of radiocarbon ({sup 14}C) in the atmosphere. From the peak in 1963, the level of {sup 14}CO{sub 2} has decreased exponentially with a mean life of about 16 years, not due to radioactive decay, but due to mixing with large marine and terrestrial carbon reservoirs. Since radiocarbon is incorporated into all living things, the bomb-pulse is an isotopic chronometer of the past half century. The absence of bomb radiocarbon in skeletonized human remains generally indicates a date of death before 1950. Comparison of the radiocarbon values with the post 1950 bomb-curve may also help elucidate when in the post 1950 era, the individual was still alive. Such interpretation however, must consider the age at death of the individual and the type of tissue sampled.

  5. Determination of transfer rate and nature of the residue(s) in milk from {sup 14}C-atrazine cows

    SciTech Connect

    Thalacker, F.W.; Ash, S.G.; Simoneaux, B.J.

    1996-10-01

    In order to determine the rate of transfer and the nature of the atrazine residues present in milk, lactating dairy cattle were treated with atrazine at three concentrations, 0.764 ppm, 0.0747 ppm and 0.0085 ppm (dry weight of food consumed). The concentrations were selected to bridge the gap between the concentration used for EPA metabolism studies (10 ppm) and the potential exposure level of dairy cattle to atrazine and its chlorotriazine metabolites through feed. The cattle were dosed following the morning milking for nine consecutive days with a single capsule bolus of {sup 14}C-atrazine. Milk was collected twice daily and aliquots of each milking and the individual cow`s daily pool of milk were analyzed by liquid scinitllation counting (LSC). The concentrations of {sup 14}C-residues in the milk plateaued on approximately day 3 and the mean {sup 14}C-atrazine levels in milk were 11.2 ppb, 1.13 ppb and 0.152 ppb for the high, middle and low dosed animals, respectively. The transfer of radioactive level of exposure to {sup 14}C-atrazine. The nature of the residues in milk were determined by extracting milk samples and analysis by HPLC, TLC or Aminex chromatography. Diaminchlorotriazine was the only chlorinated metabolite in the milk, constituting approximately 65% to 75% of the total radioactive residues (TRR).

  6. Determination of radiocarbon in stratospheric CO2, obtained through AirCore sampling.

    NASA Astrophysics Data System (ADS)

    Paul, Dipayan; Chen, Huilin; Been, Henk A.; Kivi, Rigel; Meijer, Harro A. J.

    2016-04-01

    The concentration of Greenhouse Gases (GHG), with carbon dioxide as the most prominent example, has been and still is increasing, predominantly due to emissions from fossil fuel combustion. CO2 is also the most important component of the global carbon cycle. Among other tracers, radiocarbon (Carbon-14) is a unique and an important atmospheric tracer used in the understanding of the global carbon cycle. Radiocarbon is a naturally occurring isotope (radioactive, t 1/2 = 5730 ± 40 years) of carbon produced through the interaction of thermalized neutrons and nitrogen in the upper atmosphere. Generally, for performing atmospheric radiocarbon measurements in the higher atmosphere, large samples (few liters of air) were collected using aircrafts and balloons. However, collecting stratospheric samples on a regular basis for radiocarbon analysis is extremely expensive. Here we describe the determination of radiocarbon concentrations in stratospheric CO2, collected using AirCore sampling. AirCore is an innovative sampling technique for obtaining vertical atmospheric profiles and, in Europe, is done on a regular basis at Sodankylä, Finland for CO2, CH4 and CO. The stratospheric parts of two such AirCore profiles were used in this study as a proof-of-principle. CO2 from the stratospheric air samples were extracted and converted to elemental carbon, which were then measured at the Accelerator Mass Spectrometric (AMS) facility of the Centre for Isotope Research (CIO) at the University of Groningen. The stratospheric part of the AirCore profile was divided into six sections, each contained approximately 10 μg C. A detailed description of the extraction, graphitization, AMS analysis and the derivation of the stratospheric radiocarbon profile will be the main focus. Through our results, we will show that AirCore is a viable sampling method for performing high-precision radiocarbon measurements of stratospheric CO2 with reasonably good spatial resolution on a regular basis

  7. Forensic applications of 14C bomb-pulse dating

    NASA Astrophysics Data System (ADS)

    Zoppi, U.; Skopec, Z.; Skopec, J.; Jones, G.; Fink, D.; Hua, Q.; Jacobsen, G.; Tuniz, C.; Williams, A.

    2004-08-01

    After a brief review of the basics of 14C bomb-pulse dating, this paper presents two unique forensic applications. Particular attention is dedicated to the use of the 14C bomb-pulse to establish the time of harvest of illicit drugs such as heroin and opium. Preliminary measurements of 14C concentrations in milligram samples taken from seized drugs are presented. 14C bomb-pulse dating can determine whether drug distribution originates from stockpiles or recent manufacture, and support the action of law enforcement authorities against criminal organisations involved in drug trafficking. In addition, we describe the dating of wine vintages for a number of authenticated single label vintage red wines from the Barossa Valley - South Australia. Our results show that radiocarbon dating can be used to accurately determine wine vintages and therefore reveal the addition of unrelated materials of natural and synthetic origin.

  8. Determining the biomass fraction of mixed waste fuels: A comparison of existing industry and (14)C-based methodologies.

    PubMed

    Muir, G K P; Hayward, S; Tripney, B G; Cook, G T; Naysmith, P; Herbert, B M J; Garnett, M H; Wilkinson, M

    2015-01-01

    (14)C analysis of flue gas by accelerator mass spectrometry (AMS) and liquid scintillation counting (LSC) were used to determine the biomass fraction of mixed waste at an operational energy-from-waste (EfW) plant. Results were converted to bioenergy (% total) using mathematical algorithms and assessed against existing industry methodologies which involve manual sorting and selective dissolution (SD) of feedstock. Simultaneous determinations using flue gas showed excellent agreement: 44.8 ± 2.7% for AMS and 44.6 ± 12.3% for LSC. Comparable bioenergy results were obtained using a feedstock manual sort procedure (41.4%), whilst a procedure based on selective dissolution of representative waste material is reported as 75.5% (no errors quoted). (14)C techniques present significant advantages in data acquisition, precision and reliability for both electricity generator and industry regulator. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Determination of glycation crosslinking by the sugar-dependent incorporation of [14C]lysine into protein.

    PubMed

    Prabhakaram, M; Ortwerth, B J

    1994-02-01

    A simple, quantitative assay has been established to determine the glycation-dependent crosslinking ability of any sugar by measuring the incorporation of [14C]-lysine into protein. The assay was shown to be both sugar-dependent and protein-dependent and was completely inhibited by sodium cyanoborohydride, 2-aminoguanidine, and semicarbazide. A typical 1.0-ml reaction mixture contained 5 mg lysozyme, 20 mumol threose, and 5 microCi of [14C]lysine and exhibited an incorporation of 8 x 10(5) cpm (1.6 nmol of lysine) after 7 days of incubation. A comparison of the crosslinking ability of a variety of sugars showed glyceraldehyde and dihydroxyacetone to be twice as active as erythrose and threose and eight times more reactive than ribose. Little or no crosslinking could be demonstrated with three different hexoses as well as their phosphorylated derivatives. The dicarbonyl sugars 3-deoxyglucosone and xylosone were at least as effective as ribose in crosslinking, as were the oxidation products of ascorbic acid. Several amine-containing compounds were tested as inhibitors of crosslinking; however, 2-aminoguanidine was the most effective. The rate of synthesis of Lys-Lys, Lys-Arg, and Lys-His crosslinks was determined by measuring the incorporation of [14C]lysine into specific amino acid homopolymers. The relative incorporation was polylysine > polyarginine > polyhistidine with threose, but polyarginine > polyhistidine > polylysine with dehydroascorbic acid, suggesting a different crosslinking mechanism for these two compounds.

  10. 14C Analysis via Intracavity Optogalvanic Spectroscopy

    PubMed Central

    Murnick, Daniel; Dogru, Ozgur; Ilkmen, Erhan

    2010-01-01

    A new ultra sensitive laser-based analytical technique, intracavity optogalvanic spectroscopy (ICOGS), allowing extremely high sensitivity for detection of 14C-labeled carbon dioxide has recently been demonstrated. Capable of replacing accelerator mass spectrometers (AMS) for many applications, the technique quantifies zeptomoles of 14C in sub micromole CO2 samples. Based on the specificity of narrow laser resonances coupled with the sensitivity provided by standing waves in an optical cavity, and detection via impedance variations, limits of detection near 10−15 14C/12C ratios have been obtained with theoretical limits much lower. Using a 15 W 14CO2 laser, a linear calibration with samples from 5 × 10−15 to >1.5 × 10−12 in 14C/12C ratios, as determined by AMS, was demonstrated. Calibration becomes non linear over larger concentration ranges due to interactions between CO2 and buffer gas, laser saturation effects and changes in equilibration time constants. The instrument is small (table top), low maintenance and can be coupled to GC or LC input. The method can also be applied to detection of other trace entities. Possible applications include microdosing studies in drug development, individualized sub therapeutic tests of drug metabolism, carbon dating and real time monitoring of atmospheric radiocarbon. PMID:20448803

  11. Changes in the radiocarbon reservoir age in Lake Xingyun, Southwestern China during the Holocene.

    PubMed

    Zhou, Aifeng; He, Yuxin; Wu, Duo; Zhang, Xiaonan; Zhang, Can; Liu, Zhonghui; Yu, Junqing

    2015-01-01

    Chronology is a necessary component of paleoclimatology. Radiocarbon dating plays a central role in determining the ages of geological samples younger than ca. 50 ka BP. However, there are many limitations for its application, including radiocarbon reservoir effects, which may cause incorrect chronology in many lakes. Here we demonstrate temporal changes in the radiocarbon reservoir age of Lake Xingyun, Southwestern China, where radiocarbon ages based on bulk organic matter have been reported in previous studies. Our new radiocarbon ages, determined from terrestrial plant macrofossils suggest that the radiocarbon reservoir age changed from 960 to 2200 years during the last 8500 cal a BP years. These changes to the reservoir effect were associated with inputs from either pre-aged organic carbon or 14C-depleted hard water in Lake Xingyun caused by hydrological change in the lake system. The radiocarbon reservoir age may in return be a good indicator for the carbon source in lake ecosystems and depositional environment.

  12. Changes in the Radiocarbon Reservoir Age in Lake Xingyun, Southwestern China during the Holocene

    PubMed Central

    Zhou, Aifeng; He, Yuxin; Wu, Duo; Zhang, Xiaonan; Zhang, Can; Liu, Zhonghui; Yu, Junqing

    2015-01-01

    Chronology is a necessary component of paleoclimatology. Radiocarbon dating plays a central role in determining the ages of geological samples younger than ca. 50 ka BP. However, there are many limitations for its application, including radiocarbon reservoir effects, which may cause incorrect chronology in many lakes. Here we demonstrate temporal changes in the radiocarbon reservoir age of Lake Xingyun, Southwestern China, where radiocarbon ages based on bulk organic matter have been reported in previous studies. Our new radiocarbon ages, determined from terrestrial plant macrofossils suggest that the radiocarbon reservoir age changed from 960 to 2200 years during the last 8500 cal a BP years. These changes to the reservoir effect were associated with inputs from either pre-aged organic carbon or 14C-depleted hard water in Lake Xingyun caused by hydrological change in the lake system. The radiocarbon reservoir age may in return be a good indicator for the carbon source in lake ecosystems and depositional environment. PMID:25815508

  13. Si-Traceable Scale for Measurements of Radiocarbon Concentration

    NASA Astrophysics Data System (ADS)

    Hodges, Joseph T.; Fleisher, Adam J.; Liu, Qingnan; Long, David A.

    2017-06-01

    Radiocarbon (^{14}C) dating of organic materials is based on measuring the ^{14}C/^{12}C atomic fraction relative to the nascent value that existed when the material was formed by photosynthetic conversion of carbon dioxide present in the atmosphere. This field of measurement has numerous applications including source apportionment of anthropogenic and biogenic fuels and combustion emissions, carbon cycle dynamics, archaeology, and forensics. Accelerator mass spectrometry (AMS) is the most widely used method for radiocarbon detection because it can measure extremely small amounts of radiocarbon (background of nominally 1.2 parts-per-trillion) with high relative precision (0.4 %). AMS measurements of radiocarbon are typically calibrated by reference to standard oxalic-acid (C_2H_2O_4) samples of known radiocativity that are derived from plant matter. Specifically, the internationally accepted absolute dating reference for so-called "modern-equivalent" radiocarbon is 95 % of the specific radioactivity in AD 1950 of the National Bureau of Standards (NBS) oxalic acid standard reference material and normalized to δ^{13}C_{VPDB} = 19 per mil. With this definition, a "modern-equivalent" corresponds to 1.176(70) parts-per-trillion of ^{14}C relative to total carbon content. As an alternative radiocarbon scale, we propose an SI-traceable method to determine ^{14}C absolute concentration which is based on linear Beer-Lambert-law absorption measurements of selected ^{14}C^{16}O_2 ν_3-band line areas. This approach is attractive because line intensities of chosen radiocarbon dioxide transitions can be determined by ab initio calculations with relative uncertainties below 0.5 %. This assumption is justified by the excellent agreement between theoretical values of line intensities and measurements for stable isotopologues of CO_2. In the case of cavity ring-down spectroscopy (CRDS) measurements of ^{14}C^{16}O_2 peak areas, we show that absolute, SI-traceable concentrations of

  14. Radiocarbon Determinations for Estimating Groundwater Flow Velocities in Central Florida.

    PubMed

    Hanshaw, B B; Back, W; Rubin, M

    1965-04-23

    Carbon-14 activity was determined from HCO(3)(-) in samples of groundwater obtained from the principal artesian aquifer in Florida. From these data the "age" of water obtained from a series of wells, each progressively farther down gradient on the piezometric surface, was established. Relative carbon-14 ages indicated a velocity of groundwater movement of 23 feet (7 meters) per year for about 85 miles (137 kilometers) of travel. A velocity of 23 feet per year was calculated independently from Darcy's law.

  15. 14C/C measurements support Andreev's internode method to determine lichen growth rates in Cladina stygia (Fr.) Ahti

    SciTech Connect

    Holt, E; Bench, G

    2007-12-05

    Growth rates and the ability to date an organism can greatly contribute to understanding its population biology and community dynamics. 1n 1954, Andreev proposed a method to date Cladina, a fruticose lichen, using total thallus length and number of internodes. No research, however, has demonstrated the reliability of this technique or compared its estimates to those derived by other means. In this study, we demonstrate the utility of {sup 14}C/C ratios to determine lichen age and growth rate in Cladina stygia (Fr.) Ahti collected from northwestern Alaska, USA. The average growth rate using {sup 14}C/C ratios was 6.5 mm {center_dot} yr{sup -1}, which was not significantly different from growth rates derived by Andreev's internode method (average = 6.2 mm {center_dot} yr{sup -1}); thus, suggesting the reliability of Andreev's simple field method for dating lichens. In addition, we found lichen growth rates appeared to differ with geographic location, yet did not seem related to ambient temperature and total precipitation.

  16. 14C analysis via intracavity optogalvanic spectroscopy

    NASA Astrophysics Data System (ADS)

    Murnick, Daniel; Dogru, Ozgur; Ilkmen, Erhan

    2010-04-01

    A new ultra sensitive laser-based analytical technique, intracavity optogalvanic spectroscopy (ICOGS), allowing extremely high sensitivity for detection of 14C-labeled carbon dioxide has recently been demonstrated. Capable of replacing accelerator mass spectrometers (AMS) for many applications, the technique quantifies zeptomoles of 14C in sub micromole CO 2 samples. Based on the specificity of narrow laser resonances coupled with the sensitivity provided by standing waves in an optical cavity, and detection via impedance variations, limits of detection near 10 -1514C/ 12C ratios have been obtained with theoretical limits much lower. Using a 15 W 14CO 2 laser, a linear calibration with samples from 5 × 10 -15 to >1.5 × 10 -12 in 14C/ 12C ratios, as determined by AMS, was demonstrated. Calibration becomes non-linear over larger concentration ranges due to interactions between CO 2 and buffer gas, laser saturation effects and changes in equilibration time constants. The instrument is small (table top), low maintenance and can be coupled to GC or LC input. The method can also be applied to detection of other trace entities. Possible applications include microdosing studies in drug development, individualized sub-therapeutic tests of drug metabolism, carbon dating and real time monitoring of atmospheric radiocarbon.

  17. Determination of the Prebomb Southern (Antartic) Ocean Radiocarbon in Organic Matter

    SciTech Connect

    Guilderson, T P

    2001-02-26

    The Southern Hemisphere is an important and unique region of the world's oceans for water-mass formation and mixing, upwelling, nutrient utilization, and carbon export. In fact, one of the primary interests of the oceanographic community is to decipher the climatic record of these processes in the source or sink terms for Southern Ocean surface waters in the CO{sub 2} balance of the atmosphere. Current coupled ocean-atmosphere modeling efforts to trace the input of CO{sub 2} into the ocean imply a strong sink of anthropogenic CO{sub 2} in the southern ocean. However, because of its relative inaccessibility and the difficulty in directly measuring CO{sub 2} fluxes in the Southern Ocean, these results are controversial at best. An accepted diagnostic of the exchange of CO{sub 2} between the atmosphere and ocean is the prebomb distribution of radiocarbon in the ocean and its time-history since atmospheric nuclear testing. Such histories of {sup 14}C in the surface waters of the Southern Ocean do not currently exist, primarily because there are few continuous biological archives (e.g., in corals) such as those that have been used to monitor the {sup 14}C history of the tropics and subtropics. One of the possible long-term archives is the scallop Adamussium collbecki. Although not independently confirmed, relatively crude growth rate estimates of A. collbecki indicate that it has the potential to provide continuous 100 year time-series. We are exploring the suitability of this potential archive.

  18. RADIOCARBON ANALYSIS OF PM 2.5 AMBIENT AEROSOL

    EPA Science Inventory

    The radiocarbon (14C) content of an ambient aerosol sample can be directly related to the fraction of the sample's total carbon mass contributed by natural (biogenic) sources. Such knowledge is difficult to determine by other means, and important for devising ambient PM contro...

  19. RADIOCARBON ANALYSIS OF PM 2.5 AMBIENT AEROSOL

    EPA Science Inventory

    The radiocarbon (14C) content of an ambient aerosol sample can be directly related to the fraction of the sample's total carbon mass contributed by natural (biogenic) sources. Such knowledge is difficult to determine by other means, and important for devising ambient PM contro...

  20. Abundance of (14)C in biomass fractions of wastes and solid recovered fuels.

    PubMed

    Fellner, Johann; Rechberger, Helmut

    2009-05-01

    In recent years thermal utilization of mixed wastes and solid recovered fuels has become of increasing importance in European waste management. Since wastes or solid recovered fuels are generally composed of fossil and biogenic materials, only part of the CO(2) emissions is accounted for in greenhouse gas inventories or emission trading schemes. A promising approach for determining this fraction is the so-called radiocarbon method. It is based on different ratios of the carbon isotopes (14)C and (12)C in fossil and biogenic fuels. Fossil fuels have zero radiocarbon, whereas biogenic materials are enriched in (14)C and reflect the (14)CO(2) abundance of the ambient atmosphere. Due to nuclear weapons tests in the past century, the radiocarbon content in the atmosphere has not been constant, which has resulted in a varying (14)C content of biogenic matter, depending on the period of growth. In the present paper (14)C contents of different biogenic waste fractions (e.g., kitchen waste, paper, wood), as well as mixtures of different wastes (household, bulky waste, and commercial waste), and solid recovered fuels are determined. The calculated (14)C content of the materials investigated ranges between 98 and 135pMC.

  1. Abundance of {sup 14}C in biomass fractions of wastes and solid recovered fuels

    SciTech Connect

    Fellner, Johann Rechberger, Helmut

    2009-05-15

    In recent years thermal utilization of mixed wastes and solid recovered fuels has become of increasing importance in European waste management. Since wastes or solid recovered fuels are generally composed of fossil and biogenic materials, only part of the CO{sub 2} emissions is accounted for in greenhouse gas inventories or emission trading schemes. A promising approach for determining this fraction is the so-called radiocarbon method. It is based on different ratios of the carbon isotopes {sup 14}C and {sup 12}C in fossil and biogenic fuels. Fossil fuels have zero radiocarbon, whereas biogenic materials are enriched in {sup 14}C and reflect the {sup 14}CO{sub 2} abundance of the ambient atmosphere. Due to nuclear weapons tests in the past century, the radiocarbon content in the atmosphere has not been constant, which has resulted in a varying {sup 14}C content of biogenic matter, depending on the period of growth. In the present paper {sup 14}C contents of different biogenic waste fractions (e.g., kitchen waste, paper, wood), as well as mixtures of different wastes (household, bulky waste, and commercial waste), and solid recovered fuels are determined. The calculated {sup 14}C content of the materials investigated ranges between 98 and 135 pMC.

  2. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century.

    PubMed

    Graven, Heather D

    2015-08-04

    Radiocarbon analyses are commonly used in a broad range of fields, including earth science, archaeology, forgery detection, isotope forensics, and physiology. Many applications are sensitive to the radiocarbon ((14)C) content of atmospheric CO2, which has varied since 1890 as a result of nuclear weapons testing, fossil fuel emissions, and CO2 cycling between atmospheric, oceanic, and terrestrial carbon reservoirs. Over this century, the ratio (14)C/C in atmospheric CO2 (Δ(14)CO2) will be determined by the amount of fossil fuel combustion, which decreases Δ(14)CO2 because fossil fuels have lost all (14)C from radioactive decay. Simulations of Δ(14)CO2 using the emission scenarios from the Intergovernmental Panel on Climate Change Fifth Assessment Report, the Representative Concentration Pathways, indicate that ambitious emission reductions could sustain Δ(14)CO2 near the preindustrial level of 0‰ through 2100, whereas "business-as-usual" emissions will reduce Δ(14)CO2 to -250‰, equivalent to the depletion expected from over 2,000 y of radioactive decay. Given current emissions trends, fossil fuel emission-driven artificial "aging" of the atmosphere is likely to occur much faster and with a larger magnitude than previously expected. This finding has strong and as yet unrecognized implications for many applications of radiocarbon in various fields, and it implies that radiocarbon dating may no longer provide definitive ages for samples up to 2,000 y old.

  3. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century

    PubMed Central

    Graven, Heather D.

    2015-01-01

    Radiocarbon analyses are commonly used in a broad range of fields, including earth science, archaeology, forgery detection, isotope forensics, and physiology. Many applications are sensitive to the radiocarbon (14C) content of atmospheric CO2, which has varied since 1890 as a result of nuclear weapons testing, fossil fuel emissions, and CO2 cycling between atmospheric, oceanic, and terrestrial carbon reservoirs. Over this century, the ratio 14C/C in atmospheric CO2 (Δ14CO2) will be determined by the amount of fossil fuel combustion, which decreases Δ14CO2 because fossil fuels have lost all 14C from radioactive decay. Simulations of Δ14CO2 using the emission scenarios from the Intergovernmental Panel on Climate Change Fifth Assessment Report, the Representative Concentration Pathways, indicate that ambitious emission reductions could sustain Δ14CO2 near the preindustrial level of 0‰ through 2100, whereas “business-as-usual” emissions will reduce Δ14CO2 to −250‰, equivalent to the depletion expected from over 2,000 y of radioactive decay. Given current emissions trends, fossil fuel emission-driven artificial “aging” of the atmosphere is likely to occur much faster and with a larger magnitude than previously expected. This finding has strong and as yet unrecognized implications for many applications of radiocarbon in various fields, and it implies that radiocarbon dating may no longer provide definitive ages for samples up to 2,000 y old. PMID:26195757

  4. Determination of radiocarbon reservoir age of Lake Van by mineral magnetic and geochemical analysis

    NASA Astrophysics Data System (ADS)

    Makaroglu, Ozlem; Namik Cagatay, M.; Pesonen, Lauri J.; Orbay, Naci

    2017-04-01

    Lake Van is the largest soda lake in the world, located on the east Anatolian Plateau in Turkey. Its varved sediments provide an excellent archive of high-resolution paleoclimate record for the Near East. Varve counting and radiocarbon methods are therefore important dating techniques for investigating the Lake Van sedimentary paleoclimate record. In here we present detailed magnetic and geochemical record of Lake Van. We have studied 4.56 m (core VP0801) and 4.70 m (core VP0807) long cores recovered from 80 m and 65 m water depths located in SE and SW of Lake Van, respectively. Here, we have benefited from magnetic properties with associated remanent magnetization of the sediments from Lake Van to correlate the cores which contain of tephra layers. The cores cover the last 8.4 ka and lithologically include three laminated sedimentary units. From top to the bottom, the units were dated 4.2 ka BP-present, 5.4-4.2 ka BP and older than 5.4 ka BP. We identified tephra layers previously dated by varve counting, and used the varve ages to obtain age models for the cores. We also obtained a total of eight Accelerator Mass Spectrometry (AMS) 14C dates from total organic carbon (TOC) in the two cores, close to the tephra layers. Comparison of the varve ages of the AMS 14C dated samples with their corresponding AMS 14C dates indicates large differences, suggesting significant reservoir ages that range from 2.8 to 2.5 ka for 3.0-2.4 varve ka BP and from 2.8 to 3.3 ka for 8.0-5.9 varve ka BP. The results suggest that the reservoir age of the organic matter increases with the varve age of the sediments. This increase is mainly related to the rate of supply of "dead" carbon from the old carbonate rocks in the watershed of Lake Van, which was relatively higher during 8.4-5.9 ka than during 3.0-2.4 ka BP because of the higher atmospheric precipitation and higher rate of biochemical weathering during the former period.

  5. Re-investigating the isotopic fractionation corrections in radiocarbon measurements

    NASA Astrophysics Data System (ADS)

    Fahrni, S.; Santos, G. M.; Xu, X.; Southon, J. R.

    2012-12-01

    By convention (Stuiver and Polach, 1977), 14C data has to be corrected for any isotopic fractionation occurring in nature, during the sample preparation or the measurement. The fractionation factor b = 2.0 used to correct the 14C/12C ratio for shifts in the 13C/12C ratio has been proposed in 1954 (Craig, 1954) and has been applied ever since. While theoretical considerations have suggested moderate deviations of b from 2.0, some measurements have suggested larger differences (e.g. Saliege and Fontes, 1984). With the increasing precision of radiocarbon measurements, potential deviations of b from 2.0 become more significant, since these could cause shifts of several decades in some radiocarbon dates (Southon, 2011). It is therefore of great interest for the radiocarbon community to re-evaluate the fractionation corrections. We present approaches for the experimental determination of b and discuss results and their effects on radiocarbon dating. Stuiver M., Polach H.A., 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355-63. Saliege J.F., Fontes J.C., 1984. Essai de détermination expérimentale du fractionnement des isotopes 13C et 14C du carbone au cours de processus naturels. International Journal of Applied Radiation and Isotopes 35(1):55-62. Craig H., 1954. Carbon 13 in plants and the relationships between carbon 13 and carbon 14 in nature. Journal of Geology 62(2):115-49. Southon J., 2011. Are the Fractionation Corrections Correct: Are the Isotopic Shifts for 14C/12C Ratios in Physical Processes and Chemical Reactions Really Twice Those for 13C/12C? Radiocarbon 53(4):691-704.

  6. Determination of Glucose Utilization Rates in Cultured Astrocytes and Neurons with [(14)C]deoxyglucose: Progress, Pitfalls, and Discovery of Intracellular Glucose Compartmentation.

    PubMed

    Dienel, Gerald A; Cruz, Nancy F; Sokoloff, Louis; Driscoll, Bernard F

    2017-01-01

    2-Deoxy-D-[(14)C]glucose ([(14)C]DG) is commonly used to determine local glucose utilization rates (CMRglc) in living brain and to estimate CMRglc in cultured brain cells as rates of [(14)C]DG phosphorylation. Phosphorylation rates of [(14)C]DG and its metabolizable fluorescent analog, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), however, do not take into account differences in the kinetics of transport and metabolism of [(14)C]DG or 2-NBDG and glucose in neuronal and astrocytic cells in cultures or in single cells in brain tissue, and conclusions drawn from these data may, therefore, not be correct. As a first step toward the goal of quantitative determination of CMRglc in astrocytes and neurons in cultures, the steady-state intracellular-to-extracellular concentration ratios (distribution spaces) for glucose and [(14)C]DG were determined in cultured striatal neurons and astrocytes as functions of extracellular glucose concentration. Unexpectedly, the glucose distribution spaces rose during extreme hypoglycemia, exceeding 1.0 in astrocytes, whereas the [(14)C]DG distribution space fell at the lowest glucose levels. Calculated CMRglc was greatly overestimated in hypoglycemic and normoglycemic cells because the intracellular glucose concentrations were too high. Determination of the distribution space for [(14)C]glucose revealed compartmentation of intracellular glucose in astrocytes, and probably, also in neurons. A smaller metabolic pool is readily accessible to hexokinase and communicates with extracellular glucose, whereas the larger pool is sequestered from hexokinase activity. A new experimental approach using double-labeled assays with DG and glucose is suggested to avoid the limitations imposed by glucose compartmentation on metabolic assays.

  7. Radiocarbon Dating, Memories, and Hopes

    DOE R&D Accomplishments Database

    Libby, W. F.

    1972-10-01

    The history of radiocarbon dating from 1939 to the present is reviewed. The basic principles of radiocarbon dating are that cosmic rays make living things radioactive with {sup 14}C to a certain level fixed by the environment and that at death the intake of food stops so no replenishment of the {sup 14}C steadily lost by the immutable decay occurs. Therefore measurement of the degree of decay gives the time lapse since death, i.e., the radiocarbon age. The equipment developed and experiments performed to measure the specific activity of specimens to be dated are described. The results obtained by world-wide experimenters are discussed. These showed that on simultaneity radiocarbon dating is apparently reliable but that absolute dates may be incorrect by as much as 600 to 700 y. The value of radiocarbon dating to archaeologists, geologists, climatologists, and historians is stressed. (LCL)

  8. 14C age determination for human bones during the Yayoi period - the calibration ambiguity around 2400 BP and the marine reservoir effect

    NASA Astrophysics Data System (ADS)

    Mihara, S.; Miyamoto, K.; Nakamura, T.; Koike, H.

    2004-08-01

    14C ages for Japanese prehistoric samples from the Latest Jomon period to the early Yayoi period have a calibration ambiguity for dates around 2400 BP. It is also necessary to correct for the marine reservoir effect on 14C ages of human bone samples from people who consumed marine food as a protein source. The Ohtomo site in western Japan, is a cemetery site used from the end of the Latest Jomon period to the Kofun period, provide a useful archaeological chronology. Human bones found in dolmen burials, jar burials and cist burials. In this study, we determined the 14C ages of human bone samples and calculated the marine reservoir effect, using diet analysis based on carbon and nitrogen stable isotopes. Diet analysis showed that these people obtained from 40% to 60% of their protein from marine sources. Their 14C ages with calibration and marine reservoir correction were serially matched with the archaeological chronology.

  9. Determination of biogenic component in liquid fuels by the 14C direct LSC method by using quenching properties of modern liquids for calibration

    NASA Astrophysics Data System (ADS)

    Bronić, Ines Krajcar; Barešić, Jadranka; Horvatinčić, Nada; Sironić, Andreja

    2017-08-01

    The fraction of biogenic component within various types of materials that can be used as fuels for energy production and transport can be determined by measuring their 14C activity. The method is based on different 14C signatures of the biogenic and the fossil components: while the biogenic component reflects the modern atmospheric 14C activity, no 14C is present in fossil fuels. A direct measurement of the 14C content in liquid fuel by liquid scintillation counter is a simple and fast technique but has a main disadvantage: different liquid colors cause different quenching properties and affect the measurement efficiency. We propose a new evaluation technique that uses liquids of different colors to construct modern and background calibration curves. Various binary mixtures of biogenic liquids have been used to verify the relation between the count rate and the quenching parameter. Mixtures of a biogenic and a 14C-free liquid demonstrated the potential of the proposed technique for determining the biogenic fraction of a mixture.

  10. Respiratory strategy is a major determinant of [3H]water and [14C]chlorpyrifos uptake in aquatic insects

    USGS Publications Warehouse

    Buchwalter, D.B.; Jenkins, J.J.; Curtis, L.R.

    2002-01-01

    Despite the extensive use of aquatic insects to evaluate freshwater ecosystem health, little is known about the underlying factors that result in sensitivity differences between taxa. Organismal characteristics (respiratory strategy and body size) were used to explore the rates of [3H]H2O and [14)C]chlorpyrifos accumulation in aquatic insects. Ten aquatic insect taxa, including ephemeropteran, trichopteran, dipteran, hemipteran, and coleopteran species, were exposed to [14C]chlorpyrifos (240 ng??L-1) and [3H]H2O for up to 12 h. Because exchange epithelial surfaces on the)integument are permeable to water, [3H]H2O was used as a quantitative surrogate for exposed cellular surface area.) [14C]Chlorpyrifos uptake rates were highly correlated with water permeability in all 10 taxa tested and largely covaried with body size and respiratory strategy. Rates were highest among smaller organisms on a per-weight basis and in taxa with relatively large external cellular surfaces such as gills. Air-breathing taxa were significantly less permeable to both [3)HH20 and [14C)C]chlorpyrifos. A method for labeling exposed epithelial surfaces with a fluorescent dye was developed. This technique allowed discrimination between exchange epithelium and barrier tissue on the integument. Fluorescent dye distributions on the body surface provided a rapid method for estimating exposed epithelium consistent with [3H]H2O and [14)C]chlorpyrifos accumulation.

  11. Examination of Surface Deposits on Oldbury Reactor Core Graphite to Determine the Concentration and Distribution of 14C.

    PubMed

    Payne, Liam; Heard, Peter J; Scott, Thomas B

    2016-01-01

    Pile Grade A graphite was used as a moderator and reflector material in the first generation of UK Magnox nuclear power reactors. As all of these reactors are now shut down there is a need to examine the concentration and distribution of long lived radioisotopes, such as 14C, to aid in understanding their behaviour in a geological disposal facility. A selection of irradiated graphite samples from Oldbury reactor one were examined where it was observed that Raman spectroscopy can distinguish between underlying graphite and a surface deposit found on exposed channel wall surfaces. The concentration of 14C in this deposit was examined by sequentially oxidising the graphite samples in air at low temperatures (450°C and 600°C) to remove the deposit and then the underlying graphite. The gases produced were captured in a series of bubbler solutions that were analysed using liquid scintillation counting. It was observed that the surface deposit was relatively enriched with 14C, with samples originating lower in the reactor exhibiting a higher concentration of 14C. Oxidation at 600°C showed that the remaining graphite material consisted of two fractions of 14C, a surface associated fraction and a graphite lattice associated fraction. The results presented correlate well with previous studies on irradiated graphite that suggest there are up to three fractions of 14C; a readily releasable fraction (corresponding to that removed by oxidation at 450°C in this study), a slowly releasable fraction (removed early at 600°C in this study), and an unreleasable fraction (removed later at 600°C in this study).

  12. Examination of Surface Deposits on Oldbury Reactor Core Graphite to Determine the Concentration and Distribution of 14C

    PubMed Central

    Payne, Liam; Heard, Peter J.; Scott, Thomas B.

    2016-01-01

    Pile Grade A graphite was used as a moderator and reflector material in the first generation of UK Magnox nuclear power reactors. As all of these reactors are now shut down there is a need to examine the concentration and distribution of long lived radioisotopes, such as 14C, to aid in understanding their behaviour in a geological disposal facility. A selection of irradiated graphite samples from Oldbury reactor one were examined where it was observed that Raman spectroscopy can distinguish between underlying graphite and a surface deposit found on exposed channel wall surfaces. The concentration of 14C in this deposit was examined by sequentially oxidising the graphite samples in air at low temperatures (450°C and 600°C) to remove the deposit and then the underlying graphite. The gases produced were captured in a series of bubbler solutions that were analysed using liquid scintillation counting. It was observed that the surface deposit was relatively enriched with 14C, with samples originating lower in the reactor exhibiting a higher concentration of 14C. Oxidation at 600°C showed that the remaining graphite material consisted of two fractions of 14C, a surface associated fraction and a graphite lattice associated fraction. The results presented correlate well with previous studies on irradiated graphite that suggest there are up to three fractions of 14C; a readily releasable fraction (corresponding to that removed by oxidation at 450°C in this study), a slowly releasable fraction (removed early at 600°C in this study), and an unreleasable fraction (removed later at 600°C in this study). PMID:27706228

  13. Assay of prolyl 4-hydroxylase by the chromatographic determination of [14C]succinic acid on ion-exchange minicolumns.

    PubMed Central

    Cunliffe, C J; Franklin, T J; Gaskell, R M

    1986-01-01

    An assay for prolyl 4-hydroxylase (EC 1.14.11.2) is described which measures succinic acid produced during the decarboxylation of 2-oxoglutaric acid in the presence of poly(L-Pro-Gly-L-Pro). [1-14C]Succinic acid was separated from its precursor 2-oxo[5-14C]glutaric acid by using ion-exchange minicolumns. The contamination of succinic acid by 2-oxoglutaric acid was approx. 1%, and the recovery of succinic acid was 100%. Kinetic parameters of prolyl 4-hydroxylase measured by the assay showed good agreement with published values. Our experience indicates that the measurement of prolyl 4-hydroxylase by the production of succinic acid is especially suited to investigations involving large numbers of assays. PMID:3028379

  14. Youngest radiocarbon age for Jefferson's ground sloth, Megalonyx jeffersonii (Xenarthra, Megalonychidae)

    NASA Astrophysics Data System (ADS)

    Gregory McDonald, H.; Stafford, Thomas W.; Gnidovec, Dale M.

    2015-03-01

    A partial skeleton of the extinct ground sloth, Megalonyx jeffersonii, recovered from a farm near Millersburg, Ohio in 1890, was radiocarbon dated for the first time. The ungual dated is part of a skeleton mounted for exhibit at the Orton Geological Museum at Ohio State University and was the first mounted skeleton of this animal. From its initial discovery the bones were treated with multiple organic compounds that had the potential to compromise the radiocarbon age and the specimen required special treatments in order to obtain a valid radiocarbon age. The 14C measurement on the ungual from this skeleton (11,235 ± 40 14C yr BP = 13,180-13,034 cal yr BP) is the youngest 14C age presently determined for M. jeffersonii.

  15. Optical Detection and Quantification of Radiocarbon Dioxide (^{14}CO_{2}) at and Below Ambient Levels

    NASA Astrophysics Data System (ADS)

    Long, David A.; Fleisher, Adam J.; Liu, Qingnan; Hodges, Joseph T.

    2017-06-01

    Due to their age, fossil fuels and their byproducts are almost entirely depleted in radiocarbon (^{14}C). As a result, measurements of radiocarbon provide a unique tracer for determining the origin of products and emissions. Recent efforts at NIST have applied mid-infrared cavity ring-down spectroscopy to measurements of radiocarbon dioxide to allow for more rapid and less expensive measurements than are possible with traditional techniques such as accelerator mass spectrometry. I will discuss our present measurement detection limits and precision as well as discuss limiting noise sources and plans to further improve the instrument's stability and reproducibility.

  16. The value of radiocarbon analysis in determining the forensic interest of human skeletal remains found in unusual circumstances.

    PubMed

    Cardoso, Hugo F V; Puentes, Katerina; Soares, António Monge; Santos, Agostinho; Magalhães, Teresa

    2012-02-01

    The case under analysis refers to the remains of a young adult female found in a shallow grave during the construction work of a hospital in Northern Portugal. The forensic interest of the finding could not be ruled out since distinguishing features pointing to an archaeological grave were lacking. For example, absence of archaeological artefacts could not establish its forensic significance with certainty, together with the absence of modern objects, such as remnants of clothing or personal objects. In addition, although the remains were badly preserved, the condition may not have resulted from a long post-depositional period, but instead could be explained by the geology of the site and the presence of plant roots. The radiocarbon analysis of the remains was meant to establish the death of the individual to before or after the mid-1950s, from comparison with bomb-curve content values. A value of 0.9789 ± 0.0044 for F(14)C (pmC = 97.19 ± 0.44% Modern or Δ(14)C = -28.1 ± 4.4‰) was obtained, which placed the death of the individual in the pre-mod-1950s period. This report illustrates the use of radiocarbon analysis in establishing whether the human remains are contemporary or not and describes evidence for what appears to be an historic clandestine grave.

  17. Application of compound-specific radiocarbon dating for Antarctic margin sediments

    NASA Astrophysics Data System (ADS)

    Ohkouchi, N.; Koizumi, M.; Anderson, J. B.; Eglinton, T. I.; Miura, H.; Yokoyama, Y.

    2008-12-01

    Radiocarbon dating has been extensively applied for the development of chronologies of Antarctic margin sediments deposited during the late Quaternary. However, the problems are 1) the DIC reservoir age in the surface mixed layer is much older than that of the other oceans, 2) Antarctic margin sediments generally lack calcareous foraminifera conventionally used for radiocarbon dating and as stratigraphic tool, and 3) the sediments are subjected to significant "contamination" of relict organic matter eroded from the Antarctic continent, leading to substantially older radiocarbon ages of bulk sedimentary organic matter. Ohkouchi et al. (2003) first applied compound-specific radiocarbon dating to the surface sediments collected from Ross Sea, Antarctica for resolving the problem. They reported that the radiocarbon ages of solvent-extractable, short-chain (C14, C16, and C18) fatty acids are consistent with the modern DIC reservoir age (Pre-bomb: 14C -150, Post-bomb: 14C -100). Furthermore, the radiocarbon ages of these fatty acids at five down-core intervals progressively increase with the core depth. These results clearly show a utility of the compound- specific radiocarbon dating for developing sediment chronologies in Antarctic margin sediments. We also determined radiocarbon ages of the fatty acids from a core recovered in the NW Ross Sea to reconstruct sediment chronologies. Furthermore, we determined hydrogen isotopic compositions of sedimentary biomarkers in the core. Around 6.8, 5.7, 4.1, 2.5, and 1.5 kyr ago, the reconstructed D values of paleo- seawater were -200 or lower, suggesting a large amount of meltwater influx to the Ross Sea. Currently, we are applying the method to more sediment samples collected from wider area of Ross Sea to investigate the timing and pattern of retreat of West Antarctic Ice Sheet in the Holocene. I will present the up-dated results in my talk.

  18. Radiocarbon age of waters in the deep Atlantic revisited

    SciTech Connect

    Broecker, W.S.; Virgilio, A. ); Peng, T.H. )

    1991-01-01

    The authors use a simple box model to evaluate the impact of temporal changes of the atmosphere's {sup 14}C/C on ventilation fluxes for the deep Atlantic calculated from radiocarbon measurements. The conclusion is that despite the fact that over the 300 year period from 1650 to 1950 the atmosphere's radiocarbon content declined at the same rate as radiocarbon decays, this temporal change has a relatively small impact (10-15%) on radiocarbon-based estimates of the ventilation rate of the deep Atlantic. The reason is that the radiocarbon content of the source waters for deep Atlantic are reasonably well buffered against changes in atmospheric {sup 14}C/C.

  19. Deglacial 14C plateau suites recalibrated by Suigetsu atmospheric 14C record - Revised 14C reservoir ages from three ocean basins corroborate extreme surface water variations

    NASA Astrophysics Data System (ADS)

    Sarnthein, M.; Balmer, S.; Grootes, P. M.

    2013-12-01

    Radiocarbon (14C) reservoir/ventilation ages (Δ14C) provide unique insights into the dynamics of ocean water masses over LGM and deglacial times. The 14C plateau-tuning technique enables us to derive both an absolute chronology for marine sediment records and a high-resolution record of changing Δ14C values for deglacial surface and deep waters (Sarnthein et al., 2007; AGU Monogr. 173, 175). We designate as 14C plateau a sediment section in the age-depth profile with several almost constant planktic 14C ages - variation less than ×100 to ×300 yr - which form a plateau-shaped scatter band that extends over ~5 to 50 and up to 200 cm in sediment cores with sedimentation rates of >10 cm/ky. Previously, a suite of >15 plateau boundary ages were calibrated to a joint reference record of U/Th-dated 14C time series measured on coral samples, the Cariaco sediment record, and speleothems (Fairbanks et al., 2005, QSR 24; Hughen et al., 2006, QSR 25; Beck et al., 2001, Science 292). We now used the varve-counted atmospheric 14C record of Lake Suigetsu (Ramsey et al., 2012, Science 338, 370) to recalibrate the boundary ages and average ages of 14C plateaus and apply the amended plateau-tuning technique to a dozen Δ14C records from the Atlantic and Indo-Pacific. Main results are: (1) The Suigetsu atmospheric 14C record reflects all 14C plateaus, their internal structures and relative length previously identified, but implies a rise in the average plateau age by <200 14C yr during the LGM, >700 yr at its end, and <200 yr in the Bølling-Allerød. (2) Based on different 14C ages of coeval atmospheric and planktic 14C plateaus surface water Δ14C may have temporarily dropped to an equivalent of 200 yr in low-latitude stratified waters, such as off northwestern South America, and in turn reached values corresponding to an age difference of >2500 14C yr in stratified subpolar regions and upwelled waters such as in the South China Sea, values that differ significantly from a

  20. Determination of Natural 14C Abundances in Dissolved Organic Carbon in Organic-Rich Marine Sediment Porewaters by Thermal Sulfate Reduction

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Komada, T.

    2010-12-01

    The abundances of natural 14C in dissolved organic carbon (DOC) in the marine environment hold clues regarding the processes that influence the biogeochemical cycling of this large carbon reservoir. At present, UV irradiation is the widely accepted method for oxidizing seawater DOC for determination of their 14C abundances. This technique yields precise and accurate values with low blanks, but it requires a dedicated vacuum line, and hence can be difficult to implement. As an alternative technique that can be conducted on a standard preparatory vacuum line, we modified and tested a thermal sulfate reduction method that was previously developed to determine δ13C values of marine DOC (Fry B. et al., 1996. Analysis of marine DOC using a dry combustion method. Mar. Chem., 54: 191-201.) to determine the 14C abundances of DOC in marine sediment porewaters. In this method, the sample is dried in a 100 ml round-bottom Pyrex flask in the presence of excess oxidant (K2SO4) and acid (H3PO4), and combusted at 550 deg.C. The combustion products are cryogenically processed to collect and quantify CO2 using standard procedures. Materials we have oxidized to date range from 6-24 ml in volume, and 95-1500 μgC in size. The oxidation efficiency of this method was tested by processing known amounts of reagent-grade dextrose and sucrose (as examples of labile organic matter), tannic acid and humic acid (as examples of complex natural organic matter), and porewater DOC extracted from organic-rich nearshore sediments. The carbon yields for all of these materials averaged 99±4% (n=18). The 14C abundances of standard materials IAEA C-6 and IAEA C-5 processed by this method using >1mgC aliquots were within error of certified values. The size and the isotopic value of the blank were determined by a standard dilution technique using IAEA C-6 and IAEA C-5 that ranged in size from 150 to 1500 μgC (n=4 and 2, respectively). This yielded a blank size of 6.7±0.7 μgC, and a blank isotopic

  1. Utility of radiocarbon-dated stratigraphy in determining late Holocene earthquake recurrence intervals, upper Cook Inlet region, Alaska

    USGS Publications Warehouse

    Bartsch-Winkler, S.; Schmoll, H.R.

    1992-01-01

    During the great 1964 earthquake, parts of coastal southern Alaska subsided tectonically as much as 2 m, and this led to burial of high-intertidal organic-rich marshes by low-intertidal and tidal silt. In the tectonically active parts of upper Cook Inlet, the presence of stratigraphic sections containing numerous prehistoric interbedded layers of peat and silt suggests that such stratigraphy resulted when marshes and forests were similarly inundated and buried by intertidal and tidal sediment as a result of great, prehistoric earthquakes. This study tests the feasibility of using buried, radiocarbon-dated, late Holocene peat layers that are exposed in the intertidal zone of upper Cook Inlet to determine earthquake recurrence intervals. Because of problems associated with conventional radiocarbon dating, the complex stratigraphy of the study area, the tectonic setting, and regional changes in sea level, conclusions from the study do not permit precise identification of the timing and recurrence of paleoseismic events. -from Authors

  2. Radiocarbon Dating.

    PubMed

    Van Strydonck, Mark

    2016-04-01

    Although most historians and art historians consider the radiocarbon dating technique not to be very precise by their criteria, the method has gained much importance over the last decades. Radiocarbon dating is increasingly used in the field of textile research and old polychrome statues, but also objects made of ivory, stucco, paper, and parchment are dated with the technique. Especially after the introduction of the AMS technique, a boom of this type of research has been noticed.

  3. Preventing and Removing Contamination in a Natural Radiocarbon Sample Preparation Laboratory

    SciTech Connect

    Zermeno, P; Kurdyla, D K; Buchholz, B A; Heller, S J; Frantz, B R; Brown, T A; Kashgarian, M

    2002-10-25

    The introduction of elevated {sup 14}C contamination into a natural radiocarbon sample preparation laboratory can occur through many different pathways. The most difficult to control is the introduction of contaminated samples from outside labs. Laboratories can remain {sup 14}C contaminated as a result of earlier tracer based research, even if ''hot'' work has not occurred in the laboratories in decades. Prior to accepting samples from outside collaborators, it is recommended that the collaborators test their labs for {sup 14}C contamination. Any surface in a lab that has high use by multiple people has the potential to be contaminated. The standard procedure for determining whether a collaborator's lab is contaminated consists of swiping lab surfaces with small glass fiber filters wetted with alcohol and measuring them for {sup 14}C content using AMS. Volatile {sup 14}C can be detected by using aerosol monitors consisting of fine soot that is depleted in {sup 14}C. These monitors can be set out in the laboratory in question to check for volatile {sup 14}C contamination. In the event that a hot sample is introduced in the natural radiocarbon sample prep laboratory, all sample submission should be stopped until the lab is declared clean. Samples already being processed should be completed along with {sup 14}C depleted material and measured by AMS. This will help determine if the contaminated samples have affected other samples in the laboratory. After a contamination event, the laboratory and associated equipment requires cleaning or disposal. All surfaces and equipment should be wiped down with acetone or ethanol. All chemicals in use should be disposed of in the appropriate waste containers and those waste containers removed from the lab. Once the natural radiocarbon laboratory has been thoroughly ''cleaned'', several background samples consisting of {sup 14}C depleted material should be processed through the lab and measured by AMS before unknown samples are

  4. Extraction of in situ cosmogenic 14C from olivine

    USGS Publications Warehouse

    Pigati, J.S.; Lifton, N.A.; Timothy, Jull A.J.; Quade, Jay

    2010-01-01

    Chemical pretreatment and extraction techniques have been developed previously to extract in situ cosmogenic radiocarbon (in situ 14C) from quartz and carbonate. These minerals can be found in most environments on Earth, but are usually absent from mafic terrains. To fill this gap, we conducted numerous experiments aimed at extracting in situ 14C from olivine ((Fe,Mg)2SiO4). We were able to extract a stable and reproducible in situ 14C component from olivine using stepped heating and a lithium metaborate (LiBO2) flux, following treatment with dilute HNO3 over a variety of experimental conditions. However, measured concentrations for samples from the Tabernacle Hill basalt flow (17.3 ?? 0.3 ka4) in central Utah and the McCarty's basalt flow (3.0 ?? 0.2 ka) in western New Mexico were significantly lower than expected based on exposure of olivine in our samples to cosmic rays at each site. The source of the discrepancy is not clear. We speculate that in situ 14C atoms may not have been released from Mg-rich crystal lattices (the olivine composition at both sites was ~Fo65Fa35). Alternatively, a portion of the 14C atoms released from the olivine grains may have become trapped in synthetic spinel-like minerals that were created in the olivine-flux mixture during the extraction process, or were simply retained in the mixture itself. Regardless, the magnitude of the discrepancy appears to be inversely proportional to the Fe/(Fe+Mg) ratio of the olivine separates. If we apply a simple correction factor based on the chemical composition of the separates, then corrected in situ 14C concentrations are similar to theoretical values at both sites. At this time, we do not know if this agreement is fortuitous or real. Future research should include measurement of in situ 14C concentrations in olivine from known-age basalt flows with different chemical compositions (i.e. more Fe-rich) to determine if this correction is robust for all olivine-bearing rocks. ?? 2010 by the Arizona

  5. Radiocarbon dating of fossil mollusk shells in the Yucca Mountain region

    SciTech Connect

    Brennan, R.; Quade, J.

    1995-12-01

    Fossil mollusk shells from late Quaternary deposits in Southern Nevada were radiocarbon dated to determine the age of paleogroundwater discharge events and to establish minimum {sup 14}C ages of paleogroundwater. Shells of the terrestrial taxa Vallonia sp. and Succineidae returned {sup 14}C dates consistent with those on organic material in the same stratigraphic position. The aquatic taxa Gyraulus parvus and Gyraulus circumstratus returned the oldest dates within each unit samples. These results show that (1) fossil Vallonia and Succineidae are useful in dating deposits in which no other radiocarbon-datable material is available, and (2) Gyraulus sp. select micro habitats with the most {sup 14}C deficient water, providing minimum ages of groundwater in the area during the last glacial period.

  6. 14C Analysis of protein extracts from Bacillus spores.

    PubMed

    Cappuccio, Jenny A; Falso, Miranda J Sarachine; Kashgarian, Michaele; Buchholz, Bruce A

    2014-07-01

    Investigators of bioagent incidents or interdicted materials need validated, independent analytical methods that will allow them to distinguish between recently made bioagent samples versus material drawn from the archives of a historical program. Heterotrophic bacteria convert the carbon in their food sources, growth substrate or culture media, into the biomolecules they need. The F(14)C (fraction modern radiocarbon) of a variety of media, Bacillus spores, and separated proteins from Bacillus spores was measured by accelerator mass spectrometry (AMS). AMS precisely measures F(14)C values of biological materials and has been used to date the synthesis of biomaterials over the bomb pulse era (1955 to present). The F(14)C of Bacillus spores reflects the radiocarbon content of the media in which they were grown. In a survey of commercial media we found that the F(14)C value indicated that carbon sources for the media were alive within about a year of the date of manufacture and generally of terrestrial origin. Hence, bacteria and their products can be dated using their (14)C signature. Bacillus spore samples were generated onsite with defined media and carbon free purification and also obtained from archived material. Using mechanical lysis and a variety of washes with carbon free acids and bases, contaminant carbon was removed from soluble proteins to enable accurate (14)C bomb-pulse dating. Since media is contemporary, (14)C bomb-pulse dating of isolated soluble proteins can be used to distinguish between historical archives of bioagents and those produced from recent media.

  7. Improved radiocarbon analyses of modern human hair to determine the year-of-death by cross-flow nanofiltered amino acids: common contaminants, implications for isotopic analysis, and recommendations.

    PubMed

    Santos, Guaciara M; De La Torre, Hector A Martinez; Boudin, Mathieu; Bonafini, Marco; Saverwyns, Steven

    2015-10-15

    In forensic investigation, radiocarbon ((14)C) measurements of human tissues (i.e., nails and hair) can help determine the year-of-death. However, the frequent use of cosmetics can bias hair (14)C results as well as stable isotope values. Evidence shows that hair exogenous impurities percolate beyond the cuticle layer, and therefore conventional pretreatments are ineffective in removing them. We conducted isotopic analysis ((14)C, δ(13)C, δ(15)N and C/N) of conventionally treated and cross-flow nanofiltered amino acid (CFNAA)-treated samples (scalp- and body-hair) from a single female subject using fingernails as a reference. The subject studied frequently applies a permanent dark-brown dye kit to her scalp-hair and uses other care products for daily cleansing. We also performed pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) analyses of CFNAA-treated scalp-hair to identify contaminant remnants that could possibly interfere with isotopic analyses. The conventionally treated scalp- and body-hair showed (14)C offsets of ~21‰ and ~9‰, respectively. These offsets confirm the contamination by petrochemicals in modern human hair. A single CFNAA extraction reduced those offsets by ~34%. No significant improvement was observed when sequential extractions were performed, as it appears that the procedure introduced some foreign contaminants. A chromatogram of the CFNAA scalp-hair pyrolysis products showed the presence of petroleum and plant/animal compound residues, which can bias isotopic analyses. We have demonstrated that CFNAA extractions can partially remove cosmetic contaminants embedded in human hair. We conclude that fingernails are still the best source of keratin protein for year-of-death determinations and isotopic analysis, with body-hair and/or scalp-hair coupled with CFNAA extraction a close second. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Influence of matrix diffusion and exchange reactions on radiocarbon ages in fissured carbonate aquifers

    SciTech Connect

    Maloszewski, P. ); Zuber, A. )

    1991-08-01

    The parallel fissure model coupled with the equation of diffusion into the matrix and with exchange reaction equations has been used to derive a simple formula for estimating the influence of matrix porosity and reaction parameters on the determination of radiocarbon ages in fissured carbonate rocks. Examples of evidently too great radiocarbon ages in carbonate formations, which are not explainable by models for the initial {sup 14}C corrections, can easily be explained by this formula. Parameters obtained for a chalk formation from a known multitracer experiment combined with a pumping test suggest a possibility of {sup 14}C ages more than three orders of magnitude greater than the ages which would be observed if the radiocarbon transport took place only in the mobile water in the fissures. It is shown that contrary to the solute movement on a small scale and with a variable input, the large-scale movement, characteristic for the {sup 14}C dating, does not necessarily require the knowledge of kinetic parameters, because they may be replaced by the distribution coefficient. Discordant tritium and {sup 14}C concentrations are commonly interpreted as a proof of mixing either in the aquifer or at the discharge site. For fissured carbonate formations, however, an alternative explanation is given by the derived model showing a considerable delay of {sup 14}C with respect to nonsorbable tracers.

  9. 14C Marine Reservoir Age 14.2 to 12.8 kyr cal BP

    NASA Astrophysics Data System (ADS)

    Kromer, B.; Friedrich, M.; Hughen, K. A.; Kaiser, F. K.

    2001-12-01

    We constructed several floating pine tree-ring chronologies from sites in Eastern and Southern Germany, Switzerland and Northern Italy, dated by 14C to the Late Glacial [Friedrich et al., 2001]. While still floating they cannot be used to determine the magnitude of the marine 14C reservoir age, but as the tree-ring time scale is annual, decadal 14C analyses of these chronologies allow to check if the 14C reservoir age of the tropical warm pool was constant in time, by comparing high-precision (+- 25 yr) tree-ring based 14C series to the high-resolution marine 14C data set obtained from the Cariaco basin [Hughen et al., 2000]. For the time interval between 14.2 and 13.2 k cal BP the marine reservoir age appears to have been essentially constant, with variations of 100 yr or less. Furthermore, a hemisphere-wide cooling event (G1d in the GRIP ice core, grey-scale minimum in the Cariaco varves) is seen, within the 14C time window defined by the Cariaco data set and our tree-ring 14C analyses, to occur as a drastic growth reduction in the European tree-ring sections. Using this event as an anchor, we can determine the magnitude of the marine reservoir age over the common time interval. Between 14.2 and 13.9 k our tree-ring based 14C data confirm the value of ca. 420 yr marine reservoir age. However, during the final two centuries prior to the YD the marine reservoir age of the tropical warm pool increases to ca. 600 yr. Based on carbon cycle models we discuss the implications of our findings in terms of solar and oceanic forcing of the radiocarbon budgets. Friedrich, M., B. Kromer, K.F. Kaiser, M. Spurk, K.A. Hughen, and S.J. Johnsen, High resolution climate signals in the Boelling/Alleroed Interstadial as reflected in European tree-ring chronologies compared to marine varves and ice-core records., Quaternary Science Reviews, Vol. 20 (11), 1223-1232, 2001. Hughen, K.A., J.R. Southon, S.J. Lehman, and J.T. Overpeck, Synchronous Radiocarbon and Climate Shifts During the

  10. Shake-flask test for determination of biodegradation rates of (14)C-labeled chemicals at low concentrations in surface water systems.

    PubMed

    Ingerslev, F; Nyholm, N

    2000-03-01

    A simple shake-flask surface water biodegradability die away test with (14)C-labeled chemicals added to microgram per liter concentrations (usually 1-100 microg/L) is described and evaluated. The aim was to provide information on biodegradation behavior and kinetic rates at environmental (low) concentrations in surface water systems. The basic principle of measurement was to determine evolved CO(2) indirectly from measurements of total organic activity in subsamples after stripping off their content of CO(2). Used with surface water alone the test simulates a pelagic environment and amended with sediments (0.1-1 dry weight/L) the test is intended to simulate a water environment with suspended solids (e.g., resuspended sediments). A protocol of the test used with the (14)C technique or with specific chemical analysis was recently developed by the International Organization for Standardization. Practical experience with the method is presented for a set of reference substances. These substances could be ranked in five groups of decreasing biodegradability: aniline>p-nitrophenol, 2, 4-dichlorophenoxyacetic acid>4-chloroaniline>maleic hydrazide, pentachlorophenol>atrazine. It was found that degradation rates and lag periods varied considerably among sampling sites and sometimes also among samples from the same site. No significant correlation could be established between degradation rates and microbial biomass estimates. Even small portions of added sediments greatly enhanced biodegradation of the absorbable compound pentachlorophenol, probably by providing sites for microbial attachment. Repeated tests indicated consistent degradation behavior for the readily degradable substances, whereas degradation sometimes stopped or failed with the more recalcitrant substances. A preadaptation step involving regular reinoculation with freshly collected surface water could, however, overcome the problems of false-negative results.

  11. Reconstructing Ocean Circulation using Coral (triangle)14C Time Series

    SciTech Connect

    Kashgarian, M; Guilderson, T P

    2001-02-23

    We utilize monthly {sup 14}C data derived from coral archives in conjunction with ocean circulation models to address two questions: (1) how does the shallow circulation of the tropical Pacific vary on seasonal to decadal time scales and (2) which dynamic processes determine the mean vertical structure of the equatorial Pacific thermocline. Our results directly impact the understanding of global climate events such as the El Nino-Southern Oscillation (ENSO). To study changes in ocean circulation and water mass distribution involved in the genesis and evolution of ENSO and decadal climate variability, it is necessary to have records of climate variables several decades in length. Continuous instrumental records are limited because technology for continuous monitoring of ocean currents (e.g. satellites and moored arrays) has only recently been available, and ships of opportunity archives such as COADS contain large spatial and temporal biases. In addition, temperature and salinity in surface waters are not conservative and thus can not be independently relied upon to trace water masses, reducing the utility of historical observations. Radiocarbon in sea water is a quasi-conservative water mass tracer and is incorporated into coral skeletal material, thus coral {sup 14}C records can be used to reconstruct changes in shallow circulation that would be difficult to characterize using instrumental data. High resolution {Delta}{sup 14}C timeseries such as ours, provide a powerful constraint on the rate of surface ocean mixing and hold great promise to augment one time oceanographic surveys. {Delta}{sup 14}C timeseries such as these, not only provide fundamental information about the shallow circulation of the Pacific, but can also be directly used as a benchmark for the next generation of high resolution ocean models used in prognosticating climate. The measurement of {Delta}{sup 14}C in biological archives such as tree rings and coral growth bands is a direct record of

  12. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1985-01-01

    The author built and tested a low energy cyclotron for radiocarbon dating similar to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. The author found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. The author shows how a conventional carbon negative ion source located outside the cyclotron magnet, would produce sufficient beam and provide for quick sample changing to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  13. Radiocarbon in otoliths of yelloweye rockfish (Sebastes ruberrimus): a reference time series for the coastal waters of southeast Alaska

    SciTech Connect

    Kerr-Ferrey, L A; Andrews, A H; Frantz, B R; Coale, K H; Brown, T A; Cailliet, G M

    2003-10-14

    Atmospheric testing of thermonuclear devices during the 1950s and 1960s created a global radiocarbon ({sup 14}C) signal in the environment that has provided a useful tracer and chronological marker in oceanic systems and organisms. The bomb-generated {sup 14}C signal retained in fish otoliths can be used as a permanent, time-specific recorder of the 14C present in ambient seawater, making it a useful tool in age validation of fishes. The goal of this study was to determine {sup 14}C levels in otoliths of the age-validated yelloweye rockfish (Sebastes ruberrimus) to establish a reference time series for the coastal waters of southeast Alaska. Radiocarbon values from the first year's growth of 43 yelloweye rockfish otoliths were plotted against estimated birth year to produce a 14C time series for these waters spanning 1940 to 1990. The time series shows the initial rise of bomb 14C occurred in 1958 in coastal southeast Alaskan waters and {sup 14}C levels rose relatively rapidly to peak {Delta}{sup 14}C values (60-70%) between 1966 and 1971, with a subsequent declining trend through the end of the record in 1990 (-3.2%). In addition, the radiocarbon data, independent of the radiometric study, confirms the longevity of the yelloweye rockfish up to a minimum of 44 years and strongly supports higher age estimates. The yelloweye rockfish record provides a {sup 14}C chronology that will be useful for the interpretation of {sup 14}C accreted in biological samples from these waters and in future rockfish age validation studies.

  14. Study of the formation of biogenic speleothems found in submarine caves at the cape of Otranto, Italy, by 14C AMS

    NASA Astrophysics Data System (ADS)

    D'Elia, M.; Quarta, G.; Calcagnile, L.; Belmonte, G.

    2007-06-01

    Submarine caves at the Cape of Otranto, Italy, contain eccentric stalactites that were recently identified as entirely biogenic. One of these stalactites was sectioned along its longitudinal axis in order to select samples for radiocarbon dating. 14C AMS measurements provided fundamental information for the interpretation of the biogenic process and revealed that the formation of the stalactite continued for approximately 5000 years with a decrease in the longitudinal growth rate over time. Measurements of modern organisms were performed to assess the accuracy of the radiocarbon determinations, calibrated in calendar years by measuring the local marine reservoir age.

  15. Long-term sampling of CO(2) from waste-to-energy plants: (14)C determination methodology, data variation and uncertainty.

    PubMed

    Fuglsang, Karsten; Pedersen, Niels Hald; Larsen, Anna Warberg; Astrup, Thomas Fruergaard

    2014-02-01

    A dedicated sampling and measurement method was developed for long-term measurements of biogenic and fossil-derived CO(2) from thermal waste-to-energy processes. Based on long-term sampling of CO(2) and (14)C determination, plant-specific emission factors can be determined more accurately, and the annual emission of fossil CO(2) from waste-to-energy plants can be monitored according to carbon trading schemes and renewable energy certificates. Weekly and monthly measurements were performed at five Danish waste incinerators. Significant variations between fractions of biogenic CO(2) emitted were observed, not only over time, but also between plants. From the results of monthly samples at one plant, the annual mean fraction of biogenic CO(2) was found to be 69% of the total annual CO(2) emissions. From weekly samples, taken every 3 months at the five plants, significant seasonal variations in biogenic CO(2) emissions were observed (between 56% and 71% biogenic CO(2)). These variations confirmed that biomass fractions in the waste can vary considerably, not only from day to day but also from month to month. An uncertainty budget for the measurement method itself showed that the expanded uncertainty of the method was ± 4.0 pmC (95 % confidence interval) at 62 pmC. The long-term sampling method was found to be useful for waste incinerators for determination of annual fossil and biogenic CO(2) emissions with relatively low uncertainty.

  16. Measurement of fecal /sup 14/C excretion

    SciTech Connect

    Kumaran, K.A.; Wiener, N.S.; Katz, J.B.

    1982-11-01

    Simultaneous measurements of fecal /sup 14/C and expired /sup 14/CO/sub 2/ in the breath are necessary to evaluate patients with various ileal abnormalities and bile salt malabsorption. Following the oral ingestion of the labeled bile acid, glycine-(I-/sup 14/C)cholic acid, detection of increased fecal /sup 14/C without abnormal expiration of /sup 14/CO/sub 2/ identifies patients with ileal resection. This contrasts with the normal fecal /sup 14/C content and abnormal expired /sup 14/CO/sub 2/ found in patients with bacterial overgrowth. Fecal /sup 14/C content was determined by utilizing Van Slyke combustion of the specimen and trapping the liberated /sup 14/CO/sub 2/ with Scintisorb C. The method is simple, rapid, and accurate, and expands the diagnostic usefulness of the bile salt absorption test.

  17. No evidence for a deglacial intermediate water Δ14C anomaly in the SW Atlantic

    NASA Astrophysics Data System (ADS)

    Sortor, R. N.; Lund, D. C.

    2010-12-01

    Reconstructions of Δ14C from the eastern tropical Pacific show that severe depletions in 14C occurred at intermediate depths during the last deglaciation (Marchitto et al. 2007; Stott et al. 2009). Marchitto et al. (2007) suggested that old radiocarbon from an isolated abyssal reservoir was injected via the Southern Ocean, and that this anomaly was then carried by Antarctic Intermediate Water (AAIW) to the tropical Pacific. However, a core from the southeastern Pacific Ocean near Chile, which is in the direct path of modern-day AAIW, does not exhibit the excursion and therefore casts doubts upon the AAIW mechanism (De Pol-Holz et al. 2010). Here we evaluate whether or not a deglacial 14C anomaly similar to that in the eastern tropical Pacific occurred at intermediate depths in the South Atlantic. We reconstructed Δ14C using planktonic and benthic foraminifera from core KNR159-5-36GGC on the Brazil Margin (27○31’S and 46○28’W, 1268 m depth). In the modern ocean, the hydrography near this core site is heavily influenced by AAIW (Oppo & Horowitz, 2000). Benthic Δ14C values were determined using raw benthic 14C ages and calendar-calibrated planktonic ages. The deglacial benthic Δ14C trend at this site is similar to the atmospheric Δ14C trend, and is consistent with U/Th-dated corals from intermediate depths on the Brazil Margin (Mangini et al. 2010). The amplitude and timing of Δ14C changes in the foraminiferal and coral records are especially congruous during the Mystery Interval. We find no evidence in the southwestern Atlantic of a ~300‰ decrease in intermediate water Δ14C beginning at 18 kyr BP. Changes in reservoir age of ~1000 years are required to create a Baja-like Δ14C anomaly off Brazil, an implausible increase for a subtropical gyre location. Furthermore, the resulting sedimentation rates would be up to ~145 cm/kyr during the deglaciation, an order of magnitude higher than the average sedimentation rate for 36GGC. When our results are

  18. A 150 year record of annual Bristlecone Pine 14C from the second millennium BC

    NASA Astrophysics Data System (ADS)

    Pearson, Charlotte; Salzer, Matthew; Brewer, Peter; Hodgins, Gregory; Jull, A. J. Timothy; Lange, Todd; Cruz, Richard; Brown, David; Boswijk, Gretel

    2017-04-01

    The Interdisciplinary Chronology of Civilizations Project (ICCP) at the University of Arizona (UA) aims to resolve longstanding chronological issues for Aegean and Near Eastern archaeology. A central component of this work is the production of annual resolution sequences of 14C from securely anchored tree-ring chronologies. Contemporary growth rings from Northern and Southern Hemisphere locations will be tested against a dataset of consecutive annual resolution 14C measurements from tree-rings of securely dated North American bristlecone pine (Pinus longaeva D.K. Bailey). These data will be used in a number of ways: to investigate potential issues with the current IntCal dataset due to interpolation, smoothing, or the inclusion of annual scale rapid changes in 14C; to identify 14C off-sets; to evaluate whether annual determinations of 14C present sufficient advantages for dating to justify the substantial costs involved in creating an annual resolution calibration curve; to explore whether the degree of reproducibility between species and growth locations justifies the construction of regional curves or allows us to pioneer 'annual resolution wigglematching' to anchor substantial floating tree-ring chronologies from Mediterranean archaeological contexts, and; if new rapid changes in 14C (aka 'spikes') are discovered, to use these to achieve this same goal. The initial focus of the project is the first and second millennium BC. From this period we present 150 annual 14C determinations from bristlecone pine and explore preliminary findings based on comparisons with the existing IntCal dataset, decadal data from the Mediterranean, and some contemporary years from Irish Oak (Quercus spp.) and New Zealand Kauri (Agathis australis (D. Don) Lindl.). This work, in combination with results from another UA project team (see abstract by Jull et al.) helps confirm the potential of the bristlecone pine archive for high resolution radiocarbon research.

  19. Radiocarbon variability in modern deep-sea bamboo coral skeletons from the North Atlantic

    NASA Astrophysics Data System (ADS)

    Farmer, J. R.; Hoenisch, B.; Robinson, L. F.

    2013-12-01

    Geochemical records from modern and recent deep-sea corals can provide new opportunities for understanding how changes in intermediate to deep ocean chemistry and circulation relate to climatic changes during the Common Era. Of critical importance for such comparisons are well-constrained coral growth rates (and hence chronology). Bamboo coral specimens of the genus Keratoisis are widely distributed in the modern oceans, but their calcitic skeletons exhibit open system U-Th behavior and many specimens show obscure growth banding, limiting available techniques for growth rate determinations. We measured radial transects of radiocarbon across the skeletons of six Keratoisis specimens that were live-collected in the northwestern North Atlantic Ocean between 1879 and 2005. Initial results show that Δ14C from the outer surface of three modern corals is within error of seawater Δ14C estimates at the site of coral collection from GLODAP. Most specimens show increasing 14C age toward the coral center, implying near-linear growth rates of 40 to 60 μm/14C year that are consistent with growth rates for North Atlantic Keratoisis specimens established by skeletal 210Pb and organic (gorgonian) 14C measurements. However, other specimens show radiocarbon variability that precludes accurate growth rate determinations for parts of the skeleton. In particular, multiple specimens exhibit systematic radiocarbon age reversals within 1-3 mm of the central growth axis, which is assumed to be the ontogenetically oldest part of the skeleton. This observation is consistent with previously published records of elevated unsupported 210Pb around the central growth axis of some North Atlantic Keratoisis specimens. We discuss potential physical and biological causes for the observed radiocarbon variability and implications for accurate growth rate determinations for bamboo coral skeletons.

  20. Age validation of quillback rockfish (Sebastes maliger) using bomb radiocarbon

    SciTech Connect

    Kerr, L A; Andrews, A H; Munk, K; Coale, K H; Frantz, B R; Cailliet, G M; Brown, T A

    2005-01-05

    Rockfishes (Sebastes spp.) support one of the most economically important fisheries of the Pacific Northwest and it is essential for sustainable management that age estimation procedures be validated for these species. Atmospheric testing of thermonuclear devices during the 1950s and 1960s created a global radiocarbon ({sup 14}C) signal in the ocean environment that scientists have identified as a useful tracer and chronological marker in natural systems. In this study, we first demonstrated that fewer samples are necessary for age validation using the bomb-generated {sup 14}C signal by emphasizing the utility of the time-specific marker created by the initial rise of bomb-{sup 14}C. Second, the bomb-generated {sup 14}C signal retained in fish otoliths was used to validate the age and age estimation methodology of the quillback rockfish (Sebastes maliger) in the waters of southeast Alaska. Radiocarbon values from the first year's growth of quillback rockfish otoliths were plotted against estimated birth year producing a {sup 14}C time series spanning 1950 to 1985. The initial rise of bomb-{sup 14}C from pre-bomb levels ({approx} -90 {per_thousand}) occurred in 1959 {+-} 1 year and {sup 14}C levels rose relatively rapidly to peak {Delta}{sup 14}C values in 1967 (+105.4 {per_thousand}), with a subsequent declining trend through the end of the record in 1985 (+15.4 {per_thousand}). The agreement between the year of initial rise of {sup 14}C levels from the quillback rockfish record and the chronometer determined for the waters of southeast Alaska from yelloweye rockfish (S. ruberrimus) otoliths validated the ageing methodology for the quillback rockfish. The concordance of the entire quillback rockfish {sup 14}C record with the yelloweye rockfish time series demonstrated the effectiveness of this age validation technique, confirmed the longevity of the quillback rockfish up to a minimum of 43 years, and strongly supports higher age estimates of up to 90 years.

  1. New Radiocarbon Dates on Upper Mid-West Proboscideans: Determining Date Robustness

    NASA Astrophysics Data System (ADS)

    Hodgins, G.; Widga, C.; Lengyel, S. N.; Saunders, J.; Walker, J. D.

    2013-12-01

    With the objective of refining the picture of Megafaunal extinction patterns in the upper Midwest in the terminal Pleistocene, we have assembled for radiocarbon dating specimens from more than 80 distinct Mammut and Mammuthus remains from potentially late sites. So far, we have measurements for 65 bones, tusks and teeth, nearly double the extant number of published dates . These new specimens were all from museums rather than excavation sites, and 60% were known to be coated with a consolidant. The predominant consolidant was Butvar B-76, however shellac, Elmer's Glue, Glyptol were also noted in the conservation records, or deduced from knowledge of a particular museum's practices. Given the objective of the project is to identify extinction patterns, coupled with the wide prevalence of consolidants amongst the specimen set, it was imperative that testing be carried out to confirm that radiocarbon laboratory protocols removed the consolidants, so that ultimately the dates can be considered robust. To this end, key specimens were dated three times using different sample preparation protocols. These were 1) a solvent extraction followed by a modified Longin-plus -Base continuous flow collagen extraction method used in the NSF-Arizona AMS facility, 2) the solvent/modified Longin method plus ultrafiltration, and 3) solvent/modified Longin method plus hydroxyproline single amino acid dating. Among the specimens subjected to triplicate testing were some of the youngest late Wisconsin proboscidean specimens from the Upper Midwest Region. The data reveal general agreement between the different protocols, and suggested either limited penetration of consolidants into the specimens, or that the standard laboratory cleaning protocols were sufficient to remove traces from deep within bone, tooth or tusk tissue. The preservation of each specimen, recorded in terms of collagen content, C/N ratio and stable isotope values, indicated that most were actually well preserved, implying

  2. Suitability of biogenic carbonate of Lithospermum fruits for 14C dating

    NASA Astrophysics Data System (ADS)

    Pustovoytov, Konstantin; Riehl, Simone

    2006-05-01

    Lithospermum (Boraginaceae) belongs to a small group of plant taxa that accumulate biogenic carbonate in their fruits. In this genus, carbonate incrustations form in the cells of the epidermis and sclerenchyma of the pericarp. Fossil Lithospermum fruits (nutlets) with well-preserved calcified tissues commonly occur in Quaternary sediments and cultural layers. We tested the suitability of biogenic carbonate of Lithospermum fruits for radiocarbon dating using a total of 15 AMS measurement results from four modern and 11 fossil samples. The 14C data from modern samples suggest that Lithospermum utilises only atmospheric carbon to synthesise calcite in the nutlets. In general, the ages determined through 14C dating of fossil fruitscorresponded well with the absolute-age intervals for archaeological sites over the last 5000 yr. Biogenic carbonate of Lithospermum fruits, like that of Celtis, represents a new source of chronological information for late Quaternary studies.

  3. Radiocarbon: nature's tracer for carbonaceous pollutants

    SciTech Connect

    Currie, L.A.; Klouda, G.A.; Gerlach, R.W.

    1982-01-01

    Recent developments in radiocarbon dating techniques have made it feasible to determine /sup 14/C//sup 12/C ratios in samples containing milligram or even microgram quantities of carbon. As a result, it has become practicable to apply these techniques to the study of trace gases and particles in the atmosphere, as a means of resolving anthropogenic from natural source components. Interpretation of /sup 14/C data is straightforward: biospheric carbon (such as vegetation) is alive with a /sup 14/C//sup 12/C ratio of about 1.5 x 10 to the 12th power, whereas fossil carbon is dead. Beyond this dichotomous classification it becomes very interesting to combine the isotopic data with concurrent chemical data, as well as spatial and temporal distributions, in order to infer the strengths of specific sources of carbonaceous pollutants. A brief review will be presented of program on atmospheric gases and carbonaceous particles. For the latter, the authors have assayed individual chemical and size fractions, and samples collected in urban, rural, and remote locales. The biogenic carbon fraction -- presumably from wood-burning -- ranged from 10 to 100% for the urban samples analyzed.

  4. Grass material as process standard for compound-specific radiocarbon analysis

    NASA Astrophysics Data System (ADS)

    Cisneros-Dozal, Malu; Xu, Xiaomei; Bryant, Charlotte; Pearson, Emma; Dungait, Jennifer

    2015-04-01

    Compound-specific radiocarbon analysis (CSRA) is a powerful tool to study the carbon cycle and/or as a dating technique in paleoclimate reconstructions. The radiocarbon value of individual compounds can provide insight into turnover times, organic matter sources and in specific cases can be used to establish chronologies when traditional dating materials (e.g. macrofossils, pollen, charcoal) are not available. The isolation of compounds (or group of compounds) from parent material (e.g. soil, plant) for radiocarbon analysis can, however, introduce carbon contamination through chemical separation steps and preparative capillary gas chromatography (PCGC). In addition, the compounds of interest are often in low abundance which amplifies the contamination effect. The extraneous carbon can be of modern 14C age and/or 14C -free and its amount and 14C value must be determined for a given system/isolation procedure in order to report accurate 14C values. This can be achieved by using adequate standard materials but, by contrast with traditional radiocarbon dating, there are not established reference standards for CSRA work, in part because the type of standard material depends on the compounds of interest and the isolation procedure. Here we evaluate the use of n-alkanes extracted from single-year growth grass as modern process standard material for CSRA using PCGC isolation. The grass material has a known 14C value of 1.224 ± 0.006 fraction modern (FM) and the individual n-alkanes are expected to have a similar 14C value. In order to correct for the addition of extraneous carbon during PCGC isolation of the n-alkanes, we used commercially available compounds of modern 14C content and 14C -free (adipic acid, FM= 0.0015 ± 0.0001 and docosane, FM=1.059 ± 0.003) to evaluate our PCGC procedure. The corrected 14C values of the isolated n-alkanes extracted from the modern grass are within one sigma of the grass bulk 14C value for n-C29 and within two sigma for n-C23-C27, C31

  5. High-performance liquid chromatographic method for simultaneous determination of [1-methyl-14C]caffeine and its eight major metabolites in rat urine.

    PubMed

    Schrader, E; Klaunick, G; Jorritsma, U; Neurath, H; Hirsch-Ernst, K I; Kahl, G F; Foth, H

    1999-04-16

    A selective and sensitive reversed-phase liquid chromatographic method was developed for the simultaneous analysis of [1-Me-14C]caffeine and its eight major radiolabelled metabolites in rat urine. The separation of the complex mixture of caffeine metabolites was achieved by gradient elution with a dual solvent system using an endcapped C18 reversed-phase column, which in contrast to commonly used C18 reversed-phase columns also allows the separation of the two isomers of 6-amino-5-(N-formylmethylamino)-1,3-dimethyluracil (1,3,7-DAU), a caffeine metabolite of quantitative importance predominantly occurring in rat. As caffeine is metabolised primarily by members of the cytochrome P450 1A (CYP1A) subfamiliy, determination of the pattern of caffeine metabolites in rat urine enables analysis of activities of this important enzyme subfamily in vivo. Since CYP1A is suggested to be involved in the detoxification of bilirubin, the assay may be applied to search for untoxic inducers of CYP1A which might be of pharmacological interest in the treatment of hyperbilirubinaemia.

  6. 14C-carbaryl residues in hazelnut.

    PubMed

    Yücel, Ulkü; Ilim, Murat; Aslan, Nazife

    2006-01-01

    A hazelnut ocak (shrub growing form) in the field in Black Sea region of Turkey was treated with commercial carbaryl insecticide spiked with 14C-carbaryl. Three months later, the harvested hazelnuts were separated into husk, shell, and kernel components, then homogenized and analyzed. The total and unextractable (bound) 14C-residues were determined by combustion and the extractable 14C-residues were obtained by extracting the samples with methanol. Concentrated extracts were first analyzed by thin layer chromatography (TLC). The extracts were also subjected to a series of liquid-liquid extraction procedures for clean-up and the final extracts were analyzed by high performance liquid chromatography (HPLC). Crude hazelnut oil was also extracted with hexane and analyzed for total 14C-residue. A total of 1.3% of applied radioactivity was recovered from the total nut harvested, with 0.04%, 0.06%, and 1.2% present in shell, kernel, and husk, respectively. The results show that the inedible husk and shell contained 95.7% 14C, whereas the edible kernel contained 4.3% of the total 14C recovered. The terminal 14C-residue in hazelnut kernel and oil did not contain carbaryl and/or its metabolite naphthol.

  7. A simplified In Situ cosmogenic 14C extraction system

    USGS Publications Warehouse

    Pigati, J.S.; Lifton, N.A.; Timothy, Jull A.J.; Quade, Jay

    2010-01-01

    We describe the design, construction, and testing of a new, simplified in situ radiocarbon extraction system at the University of Arizona. Blank levels for the new system are low ((234 ?? 11) ?? 103 atoms (1 ??; n = 7)) and stable. The precision of a given measurement depends on the concentration of 14C, but is typically <5% for concentrations of 100 ?? 103 atoms g-1 or more. The new system is relatively small and easy to construct, costs significantly less than the original in situ 14C extraction system at Arizona, and lends itself to future automation. ?? 2010 by the Arizona Board of Regents on behalf of the University of Arizona.

  8. Extraneous carbon assessment in ultra-microscale radiocarbon analysis using benzene polycarboxylic acids (BPCA)

    NASA Astrophysics Data System (ADS)

    Hanke, Ulrich M.; McIntyre, Cameron P.; Schmidt, Michael W. I.; Wacker, Lukas; Eglinton, Timothy I.

    2016-04-01

    Measurements of the natural abundance of radiocarbon (14C) concentrations in inorganic and organic carbon-containing materials can be used to investigate their date of origin. Particularly, the biogeochemical cycling of specific compounds in the environment may be investigated applying molecular marker analyses. However, the isolation of specific molecules from environmental matrices requires a complex processing procedure resulting in small sample sizes that often contain less than 30 μg C. Such small samples are sensitive to extraneous carbon (Cex) that is introduced during the purification of the compounds (Shah and Pearson, 2007). We present a thorough radiocarbon blank assessment for benzene polycarboxylic acids (BPCA), a proxy for combustion products that are formed during the oxidative degradation of condensed polyaromatic structures (Wiedemeier et al, in press). The extraneous carbon assessment includes reference material for (1) chemical extraction, (2) preparative liquid chromatography (3) wet chemical oxidation which are subsequently measured with gas ion source AMS (Accelerator Mass Spectrometer, 5-100 μg C). We always use pairs of reference materials, radiocarbon depleted (14Cfossil) and modern (14Cmodern) to determine the fraction modern (F14C) of Cex.Our results include detailed information about the quantification of Cex in radiocarbon molecular marker analysis using BPCA. Error propagation calculations indicate that ultra-microscale samples (20-30 μg) are feasible with uncertainties of less than 10 %. Calculations of the constant contamination reveal important information about the source (F14C) and mass (μg) of Cex (Wacker and Christl, 2011) for each sub procedure. An external correction of compound specific radiocarbon data is essential for robust results that allow for a high degree of confidence in the 14C results. References Shah and Pearson, 2007. Ultra-microscale (5-25μg C) analysis of individual lipids by 14C AMS: Assessment and

  9. Determination of the post mortem interval in skeletal remains by the comparative use of different physico-chemical methods: Are they reliable as an alternative to (14)C?

    PubMed

    Amadasi, Alberto; Cappella, Annalisa; Cattaneo, Cristina; Cofrancesco, Pacifico; Cucca, Lucia; Merli, Daniele; Milanese, Chiara; Pinto, Andrea; Profumo, Antonella; Scarpulla, Valentina; Sguazza, Emanuela

    2017-05-01

    The determination of the post-mortem interval (PMI) of skeletal remains is a challenging aspect in the forensic field. Previous studies focused their attention on different macroscopic and morphological aspects but a thorough and complete evaluation of the potential of chemical and physical analyses in this field of research has not been performed. In addition to luminol test and Oxford histology index (OHI) reported in a recent paper, widely spread and accessible methods based on physical aspect and chemical characteristics of skeletal remains have been investigated as potential alternatives to dating by determination of (14)C. The investigation was performed on a total of 24 archeological and forensic bone samples with known PMI, with inductively coupled plasma optical emission spectrometer (ICP-OES), inductively coupled plasma quadruple mass spectrometry (ICP-MS), Fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-ray analysis (EDX), powder X-ray diffraction analysis (XRPD) and scanning electron microscopy (SEM). Finally, the feasibility of such alternative methods was discussed. Some results such as carbonates/phosphates ratio from FT-IR, the amounts of organic and inorganic matter by EDX, crystallite sizes with XRPD, and surface morphology obtained by SEM, showed significant trends along with PMI. Though, from a chemical point of view cut-off values and gold-standard methods still present challenges, and rather different techniques together can provide useful information toward the assessment of the PMI of skeletal remains. It is however clear that in a hypothetical flowchart those methods may be placed practically at the same level and a choice should always consider the evaluation of results by each technique, execution times and a costs/benefits relationship. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Whole Ecosystem Low-level 14C Pulse Labeling and CO2 Flux Measurements in a Boreal Forest

    NASA Astrophysics Data System (ADS)

    Carbone, M.; Trumbore, S.; Czimczik, C.; McDuffee, K.; McMillan, A.

    2004-12-01

    We developed a large volume, low level, 14C pulse-chase, field labeling method to determine the timing and contribution of recent photosynthetic products to total ecosystem respiration in a poorly drained black spruce forest stand in Manitoba, Canada. The site is part of a chronosequence of black spruce stands located in the BOREAS Northern Study Area (55N, 98W), and time since fire is 40 years. The radiocarbon addition was designed to produce a 14C signature of ~1500 times Modern for CO2 at ambient levels inside the ~37,000 L volume light chamber. At this level of labeling, the radioactivity in our 14C source (acidified sodium bicarbonate solution with specific activity of ~30 nCi/g) and in the chamber were well below levels that are regulated. We labeled two chambers in August 2004. The vegetation inside the first (37,000 L) chamber included black spruce trees (ranging from seedlings to 4 m tall) with feather moss and shrub understory. A second 14CO2 label was applied in a smaller chamber (500 L) containing only feather mosses. Both chambers were constructed from polyethylene plastic that allowed for 70 percent transmission of PAR. For seven days following the label, we measured the quantity and 14C content of soil respiration with small (10 L) dark chambers, above-ground respiration with branch bags, and total ecosystem respiration with a dark chamber. Live root and moss 14C content were measured by field incubations. Additionally, soil gas 14C content at two depths within the moss/organic layer was measured. Radiocarbon measurements are made using Accelerator Mass Spectrometry, which allows us to easily distinguish the presence of the label in small amounts (mg) of material. We will report the radiocarbon (delta 14C) signature of individual respiration sources. Preliminary results show that we can use these isotopic signatures to follow the labeled contribution of respiration from individual sources (moss, root/root exudates, and needle) to total ecosystem

  11. Anomalous elevated radiocarbon measurements of PM2.5

    NASA Astrophysics Data System (ADS)

    Buchholz, Bruce A.; Fallon, Stewart J.; Zermeño, Paula; Bench, Graham; Schichtel, Bret A.

    2013-01-01

    Two-component models are often used to determine the contributions made by fossil fuel and natural sources of carbon in airborne particulate matter (PM). The models reduce thousands of actual sources to two end members based on isotopic signature. Combustion of fossil fuels produces PM free of carbon-14 (14C). Wood or charcoal smoke, restaurant fryer emissions, and natural emissions from plants produce PM with the contemporary concentration of 14C approximately 1.2 × 10-1214C/C. Such data can be used to estimate the relative contributions of fossil fuels and biogenic aerosols to the total aerosol loading and radiocarbon analysis is becoming a popular source apportionment method. Emissions from incinerators combusting medical or biological wastes containing tracer 14C can skew the 14C/C ratio of PM, however, so critical analysis of sampling sites for possible sources of elevated PM needs to be completed prior to embarking on sampling campaigns. Results are presented for two ambient monitoring sites in different areas of the United States where 14C contamination is apparent. Our experience suggests that such contamination is uncommon but is also not rare (∼10%) for PM sampling sites.

  12. 14C dating of bone using (gamma) Carboxyglutamic Acid and Carboxyglycine (Aminomalonate)

    SciTech Connect

    Southon, J R; Burky, R T; Kirner, D L; Taylor, R E; Hare, P E

    1999-04-27

    Radiocarbon determinations have been obtained on {gamma}-carboxyglutamic acid [Gla] and {alpha}-carboxyglycine (aminomalonate) [Am] as well as acid- and base-hydrolyzed total amino acids isolated from a series of fossil bones. As far as they are aware, Am has not been reported previously in fossil bone and neither Gla nor Am {sup 14}C values have been measured previously. Interest in Gla, an amino acid found in the non-collagen proteins osteocalcin and matrix Gla-protein (MGP), proceeds from the suggestion that it may be preferentially retained and more resistant to diagenetic contamination affecting {sup 14}C values in bones exhibiting low and trace amounts of collagen. The data do not support these suggestions. The suite of bones examined showed a general tendency for total amino acid and Gla concentrations to decrease in concert. Even for bones retaining significant amounts of collagen, Gla (and Am extracts) can yield {sup 14}C values discordant with their expected age and with {sup 14}C values obtained on total amino-acid fractions isolated from the same bone sample.

  13. Determination of the Tissue Distribution and Excretion by Accelerator Mass Spectrometry of the Nonadecapeptide 14C-Moli1901 in Beagle dogs after Intratracheal Instillation

    SciTech Connect

    Rickert, D E; Dingley, K H; Ubick, E; Dix, K J; Molina, L

    2004-07-02

    Administration of {sup 14}C-Moli1901 (duramycin, 2622U90), a 19 amino acid polycyclic peptide by intratracheal instillation (approximately 100 {micro}g) into the left cranial lobe of the lung of beagle dogs resulted in retention of 64% of the dose in the left cranial lobe for up to 28 days. In this study, we used accelerator mass spectrometry (AMS) to quantify Moli901 following administration of only 0.045 {micro}Ci of {sup 14}C-Moli901 per dog. Limits of quantitation of AMS were 0.03 (urine) to 0.3 (feces) ng equiv. Moli1901/g. Whole blood and plasma concentrations of {sup 14}C were <5ng/ml at all times after the dose. Concentrations of {sup 14}C in whole blood and plasma declined over the first day after the dose and rose thereafter, with the rise in plasma concentrations lagging behind those in whole blood. During the first 3 days after the dose, plasma accounted for the majority of {sup 14}C in whole blood, but after that time, plasma accounted for only 25-30% of the {sup 14}C in whole blood. Tissue (left and right caudal lung lobe, liver, kidney, spleen, brain) and bile concentrations were low, always less than 0.25% the concentrations found in the left cranial lung lobe. Approximately 13% of the dose was eliminated in urine and feces in 28 days, with fecal elimination accounting for about 10% of the dose. The data presented here are consistent with that obtained in other species. Moli1901 is slowly absorbed and excreted from the lung, and it does not accumulate in other tissues. Moli1901 is currently in the clinic and has proven to be safe in single dose studies in human volunteers and cystic fibrosis patients by the inhalation route. No information on the disposition of the compound in humans is available. This study in dogs demonstrates the feasibility of obtaining that information using {sup 14}C-Moli1901 and AMS.

  14. Radiocarbon-based source apportionment of black carbon (BC) in PM 10 aerosols from residential area of suburban Tokyo

    NASA Astrophysics Data System (ADS)

    Uchida, Masao; Kumata, Hidetoshi; Koike, Yasuyo; Tsuzuki, Mikio; Uchida, Tatsuya; Fujiwara, Kitao; Shibata, Yasuyuki

    2010-04-01

    The AMS technique was applied to analyse black carbon (BC), total organic carbon (TOC), and previously reported polycyclic aromatic hydrocarbons (PAHs) in PM 10 aerosols from a residential area, suburban Tokyo, to determine natural abundance of radiocarbon ( 14C), an ideal tracer to distinguish fossil fuel ( 14C-free) from modern biomass combustion sources of pyrolytic products. The 14C concentrations in BC, isolated using the CTO-375 method, were 42% and 30% pMC (in terms of percent Modern Carbon: pMC) in summer and winter, respectively. The 14C concentrations in BC were also compared with those of compound-class specific 14C content of PAHs previously reported for the same samples: they were 45% and 33% pMC in summer and winter, respectively. The 14C signals of BC were identical to those of high molecular weight (MW ⩾ 226, 5-6 rings) PAHs. The resemblance between 14C signals of BC and PAHs can be referred as a 'certificate' for the validity of the BC isolation method employed in this study. Also, it suggests that 14C-BC approach can be a surrogate for PAHs specific 14C analyses to monitor seasonal source variation of combustion-derived pyrolytic products. On the other hand, 14C contents of total organic carbon in 2004 were 61% and 42% pMC in summer and winter, respectively. This is likely attributed to higher contribution of plant activity in summer.

  15. 14C Analysis of Protein Extracts from Bacillus Spores

    PubMed Central

    Cappucio, Jenny A.; Sarachine Falso, Miranda J.; Kashgarian, Michaele; Buchholz, Bruce A.

    2014-01-01

    Investigators of bioagent incidents or interdicted materials need validated, independent analytical methods that will allow them to distinguish between recently made bioagent samples versus material drawn from the archives of a historical program. Heterotrophic bacteria convert the carbon in their food sources, growth substrate or culture media, into the biomolecules they need. The F14C (fraction modern radiocarbon) of a variety of media, Bacillus spores, and separated proteins from Bacillus spores was measured by accelerator mass spectrometry (AMS). AMS precisely measures F14C values of biological materials and has been used to date the synthesis of biomaterials over the bomb pulse era (1955 to present). The F14C of Bacillus spores reflects the radiocarbon content of the media in which they were grown. In a survey of commercial media we found that the F14C value indicated that carbon sources for the media were alive within about a year of the date of manufacture and generally of terrestrial origin. Hence, bacteria and their products can be dated using their 14C signature. Bacillus spore samples were generated onsite with defined media and carbon free purification and also obtained from archived material. Using mechanical lysis and a variety of washes with carbon free acids and bases, contaminant carbon was removed from soluble proteins to enable accurate 14C bomb-pulse dating. Since media is contemporary, 14C bomb-pulse dating of isolated soluble proteins can be used to distinguish between historical archives of bioagents and those produced from recent media. PMID:24814329

  16. Regulated partitioning of fixed carbon ((14)C), sodium (Na(+)), potassium (K(+)) and glycine betaine determined salinity stress tolerance of gamma irradiated pigeonpea [Cajanus cajan (L.) Millsp].

    PubMed

    Kumar, Pankaj; Sharma, Vasundhara; Atmaram, Chobhe Kapil; Singh, Bhupinder

    2017-03-01

    Soil salinity is a major constraint that limits legume productivity. Pigeonpea is a salt sensitive crop. Seed gamma irradiation at a very low dose (2.5 Gy) is known to enhance seedling establishment, plant growth and yield of cereals and other crops. The present study conducted using two genetically diverse varieties of pigeonpea viz., Pusa-991 and Pusa-992 aimed at establishing the role of pre-sowing seed gamma irradiation at 0, 0.0025, 0.005, 0.01, 0.02, 0.05 and 0.1 kGy on plant growth, seed yield and seed quality under salt stress at 0, 80 and 100 mM NaCl (soil solution EC equivalent 1.92, 5.86 and 8.02 dS/m, respectively) imposed right from the beginning of the experiment. Changes in carbon flow dynamics between shoot and root and concentration of osmolyte, glycine betaine, plant uptake and shoot and root partitioning of Na(+) and K(+) and activity of protein degrading enzyme protease were measured under the combined effect of gamma irradiation and salt stress. Positive affect of pre-sowing exposure of seed to low dose of gamma irradiation (<0.01 kGy) under salt stress was evident in pigeonpea. Pigeonpea variety, Pusa-992 showed a better salt tolerance response than Pusa-991 and that the radiated plants performed better than the unirradiated plants even at increasing salinity level. Seed yield and seed protein and iron content were also positively affected by the low dose gamma irradiation under NaCl stress. Multiple factors interacted to determine physiological salt tolerance response of pigeonpea varieties. Gamma irradiation caused a favourable alteration in the source-sink (shoot-root) partitioning of recently fixed carbon ((14)C) under salt stress in pigeonpea. Gamma irradiation of seeds prior to sowing enhanced glycine betaine content and reduced protease activity at 60-day stage under various salt stress regimes. Lower partitioning of Na(+)and relatively higher accumulation of K(+) under irradiation treatment was the other important determinants

  17. Radiocarbon dating of VIRI bone samples using ultrafiltration

    NASA Astrophysics Data System (ADS)

    Minami, Masayo; Yamazaki, Kana; Omori, Takayuki; Nakamura, Toshio

    2013-01-01

    Ultrafiltration can effectively remove low-molecular-weight (LMW) contaminants from bone gelatin to extract high-molecular-weight (HMW) proteins that are derived from original bone collagen, though it cannot remove HMW collagen crosslinked with humic acids. Therefore, ultrafiltration is often used to obtain more accurate 14C dates of bones. However, ultrafiltration may introduce new contaminants to bone gelatins, mainly from ultrafilters used. To study the effects of ultrafiltration on 14C age, we analyzed the C/N ratio, δ13CPDB and δ15NAIR values, and 14C ages of acid-soluble bone collagen obtained by decalcification, gelatin extracted from acid-insoluble bone collagen, and the HMW gelatin and LMW fractions produced during ultrafiltration of the extracted gelatin. Bone samples from the Fifth International Radiocarbon Intercomparison (VIRI) were used: VIRI-E (mammoth), -F (horse), -G (human), and -I (whale). In this study, carbon and nitrogen content and gelatin yields were used to evaluate collagen preservation in the VIRI bone samples. Radiocarbon ages, δ13CPDB and δ15NAIR values of unfiltered and HMW gelatins were obtained and compared with the published consensus values. The LMW fraction was found to exhibit different values from those of the other fractions, indicating the possible presence of extraneous contamination. The Vivaspin™ 6 ultrafilters used in this study were analyzed and radiocarbon dated both before and after cleaning. We present evidence to suggest that LMW fraction contaminants could be derived from the ultrafilters rather than humic substances. Excessively long ultrafiltration time was suspected to have contaminated the bone samples with material from the ultrafilter, because those samples exhibited older 14C ages than did those filtered for shorter durations. The results in this study indicate that 14C ages of unfiltered gelatin extracted from well-preserved bones can be sufficiently accurate, and that care should be taken not to

  18. Carbonates in leaching reactions in context of 14C dating

    NASA Astrophysics Data System (ADS)

    Michalska, Danuta; Czernik, Justyna

    2015-10-01

    Lime mortars as a mixture of binder and aggregate may contain carbon of various origins. If the mortars are made of totally burnt lime, radiocarbon dating of binder yields the real age of building construction. The presence of carbonaceous aggregate has a significant influence on the 14C measurements results and depending on the type of aggregate and fraction they may cause overaging. Another problem, especially in case of hydraulic mortars that continue to be chemically active for a very long time, is the recrystallization usually connected with rejuvenation of the results but also, depending on local geological structures, with so called reservoir effect yielding apparent ages. An attempt in separating the binder from other carbonaceous components successfully was made for samples from Israel by Nawrocka-Michalska et al. (2007). The same preparation procedure, after taking into account the petrographic composition, was used for samples coming from Poland, Nawrocka et al. (2009). To verify the procedure used previously for non-hydraulic samples determination an experimental tests on carbonaceous mortars with crushed bricks from Novae in Bulgaria were made. Additionally, to identify different carbonaceous structures and their morphology, a cathodoluminescence and scanning electron microscope with electron dispersive spectrometer were applied. The crushed bricks and brick dust used in mortars production process have been interpreted as an alternative use to other pozzolanic materials. The reaction between lime and pozzolanic additives take place easily and affects the rate and course of carbonates decomposition in orthophosphric acid, during the samples pretreatment for dating. The composition of the Bulgarian samples together with influence of climate conditions on mortar carbonates do not allow for making straightforward conclusions in chronology context, but gives some new guidelines in terms of hydraulic mortars application for dating. This work has mainly

  19. A Brief Review of the Application of 14C in Terrestrial Carbon Cycle Studies

    SciTech Connect

    Guilderson, T; Mcfarlane, K

    2009-10-22

    An over-arching goal of the DOE TCP program is to understand the mechanistic controls over the fate, transport, and residence time of carbon in the terrestrial biosphere. Many of the modern process and modeling studies focus on seasonal to interannual variability. However, much of the carbon on the landscape and in soils is in separate reservoirs with turnover times that are multi-decadal to millennial. It is the controls on these longer term pools or reservoirs that is a critical unknown in the face of rising GHGs and climate change and uncertainties of the terrestrial biosphere as a future global sink or source of atmospheric CO{sub 2} [eg., Friedlingstein et al., 2006; Govindasamy et al., 2005; Thompson et al., 2004]. Radiocarbon measurements, in combination with other data, can provide insight into, and constraints on, terrestrial carbon cycling. Radiocarbon (t{sub 1/2} 5730yrs) is produced naturally in the stratosphere when secondary neutrons generated by cosmic rays collide with {sup 14}N atoms [Libby 1946; Arnold and Libby, 1949]. Upon formation, {sup 14}C is rapidly oxidized to CO and then to CO{sub 2}, and is incorporated into the carbon cycle. Due to anthropogenic activities, the amount of {sup 14}C in the atmosphere doubled in the mid/late 1950s and early 1960s from its preindustrial value of {sup 14}C/{sup 12}C ratio of 1.18 x 10{sup -12} [eg., Nydal and Lovseth, 1983]. Following the atmospheric weapons test ban in 1963, the {sup 14}C/{sup 12}C ratio, has decreased due to the net isotopic exchange between the ocean and terrestrial biosphere [eg., Levin and Hessheimer, 2000] and a dilution effect due to the burning of {sup 14}C-free fossil fuel carbon, the 'Suess Effect' [Suess, 1955]. In the carbon cycle literature, radiocarbon measurements are generally reported as {Delta}{sup 14}C, which includes a correction for mass dependent fractionation [Stuiver and Polach, 1977]. In the context of carbon cycle studies radiocarbon measurements can be used to

  20. Effects of polyacrylamide, biopolymer, and biochar on decomposition of soil organic matter and 14C-labeled plant residues as determined by enzyme activities

    NASA Astrophysics Data System (ADS)

    Mahmoud Awad, Yasser; Ok, Young Sik; Kuzyakov, Yakov

    2014-05-01

    Application of polymers for the improvement of aggregate structure and reduction of soil erosion may alter the availability and decomposition of plant residues. In this study, we assessed the effects of anionic polyacrylamide (PAM), synthesized biopolymer (BP), and biochar (BC) on the decomposition of 14C-labeled maize residue in sandy and sandy loam soils. Specifically, PAM and BP with or without 14C-labeled plant residue were applied at 400 kg ha-1, whereas BC was applied at 5000 kg ha-1, after which the soils were incubated for 80 days at 22 oC. Initially, plant residue decomposition was much higher in untreated sandy loam soil than in sandy soil. Nevertheless, the stimulating effects of BP and BC on the decomposition of plant residue were more pronounced in sandy soil, where it accounted for 13.4% and 23.4% of 14C input, respectively, whereas in sandy loam soil, the acceleration of plant residue decomposition by BP and BC did not exceed 2.6% and 14.1%, respectively, compared to untreated soil with plant residue. The stimulating effects of BP and BC on the decomposition of plant residue were confirmed based on activities of β-cellobiohydrolase, β-glucosidase, and chitinase in both soils. In contrast to BC and BP, PAM did not increase the decomposition of native or added C in both soils.

  1. Limitations in the use of /sup 14/C-glycocholate breath and stool bile acid determinations in patients with chronic diarrhea

    SciTech Connect

    Ferguson, J.; Walker, K.; Thomson, A.B.

    1986-06-01

    Analysis of a modified /sup 14/C-glycocholate breath test on 165 consecutive in-patients being investigated for chronic diarrhea showed that the measurement of /sup 14/CO/sub 2/ between 3 and 6 h after oral dosing of 5 microCi of /sup 14/C-glycocholic acid was of only limited use to distinguish between patients with Crohn's disease (CD), idiopathic bile salt wastage (IBW), or ileal resection (IR) from those with the irritable bowel syndrome (IBS). Continuing /sup 14/CO/sub 2/ collections for up to 24 h was of little more help in establishing the presence of bacterial overgrowth syndrome (BOS) and in distinguishing between BOS and CD. Stool bile acid measurements were of use in differentiating between IBW and IBS, but did not distinguish between CD and BOS or between CD and IR. Since the range of normal values was defined by measurements in the IBS group, a positive test was specific for an organic cause of chronic diarrhea. Even so, the sensitivity of the test was relatively low: CD, 53%; IR, 23%; IBW, /sup 14/%; and BOS, 10%. We believe that the 24-h /sup 14/C-glycocholic breath test combined with the measurement of stool bile acids represents a screening test of only limited use for the identification of organic causes of chronic diarrhea.

  2. Measuring Carbon-based Contaminant Mineralization Using Combined CO2 Flux and Radiocarbon Analyses

    PubMed Central

    Boyd, Thomas J.; Montgomery, Michael T.; Cuenca, Richard H.; Hagimoto, Yutaka

    2016-01-01

    A method is described which uses the absence of radiocarbon in industrial chemicals and fuels made from petroleum feedstocks which frequently contaminate the environment. This radiocarbon signal — or rather the absence of signal — is evenly distributed throughout a contaminant source pool (unlike an added tracer) and is not impacted by biological, chemical or physical processes (e.g., the 14C radioactive decay rate is immutable). If the fossil-derived contaminant is fully degraded to CO2, a harmless end-product, that CO2 will contain no radiocarbon. CO2 derived from natural organic matter (NOM) degradation will reflect the NOM radiocarbon content (usually <30,000 years old). Given a known radiocarbon content for NOM (a site background), a two end-member mixing model can be used to determine the CO2 derived from a fossil source in a given soil gas or groundwater sample. Coupling the percent CO2 derived from the contaminant with the CO2 respiration rate provides an estimate for the total amount of contaminant degraded per unit time. Finally, determining a zone of influence (ZOI) representing the volume from which site CO2 is collected allows determining the contaminant degradation per unit time and volume. Along with estimates for total contaminant mass, this can ultimately be used to calculate time-to-remediate or otherwise used by site managers for decision-making. PMID:27805601

  3. Measuring Carbon-based Contaminant Mineralization Using Combined CO2 Flux and Radiocarbon Analyses.

    PubMed

    Boyd, Thomas J; Montgomery, Michael T; Cuenca, Richard H; Hagimoto, Yutaka

    2016-10-21

    A method is described which uses the absence of radiocarbon in industrial chemicals and fuels made from petroleum feedstocks which frequently contaminate the environment. This radiocarbon signal - or rather the absence of signal - is evenly distributed throughout a contaminant source pool (unlike an added tracer) and is not impacted by biological, chemical or physical processes (e.g., the (14)C radioactive decay rate is immutable). If the fossil-derived contaminant is fully degraded to CO2, a harmless end-product, that CO2 will contain no radiocarbon. CO2 derived from natural organic matter (NOM) degradation will reflect the NOM radiocarbon content (usually <30,000 years old). Given a known radiocarbon content for NOM (a site background), a two end-member mixing model can be used to determine the CO2 derived from a fossil source in a given soil gas or groundwater sample. Coupling the percent CO2 derived from the contaminant with the CO2 respiration rate provides an estimate for the total amount of contaminant degraded per unit time. Finally, determining a zone of influence (ZOI) representing the volume from which site CO2 is collected allows determining the contaminant degradation per unit time and volume. Along with estimates for total contaminant mass, this can ultimately be used to calculate time-to-remediate or otherwise used by site managers for decision-making.

  4. Rapid, high-resolution 14C chronology of ooids

    NASA Astrophysics Data System (ADS)

    Beaupré, Steven R.; Roberts, Mark L.; Burton, Joshua R.; Summons, Roger E.

    2015-06-01

    Ooids are small, spherical to ellipsoidal grains composed of concentric layers of CaCO3 that could potentially serve as biogeochemical records of the environments in which they grew. Such records, however, must be placed in the proper temporal context. Therefore, we developed a novel acidification system and employed an accelerator mass spectrometer (AMS) with a gas accepting ion source to obtain radiocarbon (14C) chronologies extending radially through ooids within one 8-h workday. The method was applied to ooids from Highborne Cay, Bahamas and Shark Bay, Australia, yielding reproducible 14C chronologies, as well as constraints on the rates and durations of ooid growth and independent estimates of local 14C reservoir ages.

  5. Blade-order-dependent radiocarbon variability in brown seaweed (Undaria pinnatifida) reflected a cold Oyashio water intrusion event in an embayment of the Sanriku coast, northeastern Japan

    NASA Astrophysics Data System (ADS)

    Satoh, N.; Fukuda, H.; Miyairi, Y.; Yokoyama, Y.; Nagata, T.

    2015-12-01

    Radiocarbon in dissolved inorganic carbon (DIC) in seawater varies greatly, both geographically and with depth. This "reservoir effect" is thought to be reflected in the radiocarbon content (∆14C) of marine organisms, via DIC fixation by primary producers and subsequent trophic transfer. The ∆14C of marine organismal soft tissues might thus provide unique information about their habitats, diets, migration and other environmental histories. However, the effectiveness of this approach has yet to be extensively explored, with data on ∆14C variability in soft tissues of marine organisms being markedly limited. Here we examined whether ∆14C values of individual pinnate blades (leaf-like structures) of brown seaweed (Undaria pinnatifida) reflect the ∆14C of DIC in the water current prevailing at the time of blade formation. The study was conducted in Otsuchi Bay located in the Sanriku coastal region, northeastern Japan, where 14C-depleted cold Oyashio current and warm Tsugaru current (high ∆14C) converge, affecting the physiology and growth of marine organisms growing there. U. pinnatifida individuals cultured in the bay (length of saprophytes, 140-215 cm) were harvested in April 2014 and ∆14C of blades were determined by accelerator mass spectrometry. Younger blades formed after the Oyashio water intrusion had significantly lower ∆14C values compared to older blades formed before the event. The ∆14C values of younger and older blades were generally consistent with the ∆14C of DIC in Oyashio (-60.5 ‰) and Tsugaru (24.9 ‰) waters, respectively. Thus, despite possible turnover of organic carbon in seaweed soft tissues, blade-order-dependent ∆14C variability appeared to strongly reflect the Oyashio intrusion event (radiocarbon shift) in the bay.

  6. Dose determinations for waterborne 2,5,2',5'-(/sup 14/C)tetrachlorobiphenyl and related pharmacokinetics in two species of trout (Salmo gairdneri and Salvelinus fontinalis): a mass-balance approach

    SciTech Connect

    McKim, J.M.; Heath, E.M.

    1983-04-01

    A mass-balance study was undertaken to evaluate the accuracy of dose determinations of waterborne 2,5,2',5'-(/sup 14/C)tetrachlorobiphenyl (TCB) made on transected brook trout (Salvelinus fontinalis) and rainbow trout (Salmo gairdneri) and to determine any pharmacokinetic differences between the two species. The total calculated (/sup 14/C)TCB absorbed by brook (17.8 micrograms) and rainbow (24.5 micrograms) trout was compared to the actual body burden measurements of (/sup 14/C)TCB for brook (17.4 micrograms) and rainbow (25.6 micrograms) trout; the latter measurements also included excretory losses through the urine, feces, and across the gill surface. Approximately 1% of the total dose was excreted of which 75% was in the urine and 25% in the feces. The agreement between the whole body burden measurements of (/sup 14/C)TCB and the total calculated micrograms of (/sup 14/C)TCB absorbed was within 10% in both species. Mass-balance measurements were converted to dose by dividing by fish weight. Mean calculated and measured doses were 31.4 and 30.4 micrograms/kg/48 hr for brook trout and 32.3 and 33.6 micrograms/kg/48 hr for rainbow trout. No species differences were seen in either calculated or measured doses or in total radioactivity excreted. Respiratory function between the two species was similar except for a significantly higher mean ventilation rate for brook trout (84 +/- 14/min) than for rainbow trout (65 +/- 4/min). There were also no fluctuations noted in either respiratory function of (/sup 14/C)TCB uptake efficiency across the gills over the 48-hr exposure period. These studies demonstrated the ability to accurately calculate a water dose in micrograms per kilogram per hour for individual fish that could be directly compared to other fish species or to mammals.

  7. Reconstructing the Vertical 14C Gradient of the Baja Margin during the Last Deglaciation

    NASA Astrophysics Data System (ADS)

    Lindsay, C. M.; Lehman, S. J.; Marchitto, T. M.; Ortiz, J. D.; van Geen, A.

    2011-12-01

    The radiocarbon activity (Δ14C) of the atmosphere decreased in two steps during the last deglaciation, coinciding with the well-known Heinrich 1 (H1) and Younger Dryas (YD) stadials. A leading explanation for these periods of decline involves the release of 14C-depleted carbon from a deep, isolated ocean reservoir- a mechanism that may also help to explain the deglacial rise in atmospheric CO2. Reconstructions of intermediate water Δ14C near Baja California, Mexico (Marchitto et al., 2007 Science) and in the Arabian Sea (Bryan et al., 2010 Earth Planet. Sci. Lett.) document two intervals of extreme depletion relative to the coeval atmosphere during H1 and the YD that are interpreted as evidence of the return of this aged carbon from the deep reservoir to the upper ocean and atmosphere. Here we report on 14C measurements in additional cores from the Baja margin that expand the depth range of our observations and enable reconstruction of the vertical Δ14C gradient. Calendar ages were determined by (1) correlation of diffuse spectral reflectance (DSR, a proxy related to local productivity) with the layer-counted age model in the GISP2 ice core and (2) correlation of raw planktic G. ruber 14C ages to new measurements in core PC08 previously studied by Marchitto et al. (2007). Together these provide a common and consistent calendar age model for margin core PCO8 (depth 705 m), core PC13 from Soledad Basin (sill depth 290 m) and margin core GC38 (depth 1270 m). In preliminary results, G. ruber Δ14C data from PC08 exhibit a record of deglacial depletion events that is consistent with partial upward mixing of the intermediate-depth signal to the surface. Δ14C at 1270 meters showed relatively little change during H1 and YD, indicating that anomalously depleted water did not penetrate to this depth. The vertical gradient collapsed to within observational uncertainties at the start of the Bølling-Allerød/Antarctic Climate Reversal. Taken together the results support

  8. Determination of shell deposition rates of Arctica islandica from the New York Bight using natural /sup 228/Ra and /sup 228/Th and bomb-produced /sup 14/C

    SciTech Connect

    Turekian, K.K.; Cochran, J.K.; Nozaki, Y.; Thompson, I.; Jones, D.S.

    1982-01-01

    Shell deposition rates of specimens of Arctica islandica (Mollusca: Bivalvia) from the New York Bight were determined using natural /sup 228/Ra and /sup 228/Th and bomb /sup 14/C. The specimens from deep (>55 m) offshore waters show annual growth banding. A shell obtained from the inner bight at <30-m depth seems to be younger than indicated by band counting.

  9. A novel tertiary prep-HPLC method for the isolation of single amino acids for AMS-radiocarbon measurement.

    PubMed

    Fernandes, Ricardo; Koudelka, Tomas; Tholey, Andreas; Dreves, Alexander

    2017-07-15

    AMS-radiocarbon measurements of amino acids can potentially provide more reliable radiocarbon dates than bulk collagen analysis. Nonetheless, the applicability of such an approach is often limited by the low-throughput of existing isolation methods and difficulties in determining the contamination introduced during the separation process. A novel tertiary prep-HPLC amino acid isolation method was developed that relies on the combustion of eluted material without requiring any additional chemical steps. Amino acid separation was carried out using a gradient mix of pure water and phosphoric acid with an acetonitrile step in-between runs to remove hydrophobic molecules from the separation column. The amount of contaminant carbon and its (14)C content were determined from two-point measurements of collagen samples of known (14)C content. The amount of foreign carbon due to the isolation process was estimated at 4±1μg and its (14)C content was 0.43±0.01 F(14)C. Radiocarbon values corrected for carbon contamination have only a minor increase in uncertainties. For Holocene samples, this corresponds to an added uncertainty typically smaller than 10 (14)Cyears. The developed method can be added to routine AMS measurements without implying significant operational changes and offers a level of measurement uncertainty that is suitable for many archaeological, ecological, environmental, and biological applications. Copyright © 2017. Published by Elsevier B.V.

  10. Strategy of valid 14C dates choice in syngenetic permafrost

    NASA Astrophysics Data System (ADS)

    Vasil'chuk, Y. K.; Vasil'chuk, A. C.

    2014-11-01

    The main problem of radiocarbon dating within permafrost is the uncertain reliability of the 14C dates. Syngenetic sediments contain allochthonous organic deposit that originated at a distance from its present position. Due to the very good preservation of organic materials in permafrost conditions and numerous re-burials of the fossils from ancient deposits into younger ones the dates could be both younger and older than the true age of dated material. The strategy for the most authentic radiocarbon date selection for dating of syncryogenic sediments is considered taking into account the fluvial origin of the syngenetic sediments. The re-deposition of organic material is discussed in terms of cyclic syncryogenic sedimentation and also the possible re-deposition of organic material in subaerial-subaqueous conditions. The advantages and the complications of dating organic micro-inclusions from ice wedges by the accelerator mass spectrometry (AMS) method are discussed applying to true age of dated material search. Radiocarbon dates of different organic materials from the same samples are compared. The younger age of the yedoma from cross-sections of Duvanny Yar in Kolyma River and Mamontova Khayata in the mouth of Lena River is substantiated due to the principle of the choice of the youngest 14C date from the set.

  11. Radiocarbon application in environmental science and archaeology in Croatia

    NASA Astrophysics Data System (ADS)

    Krajcar Bronić, I.; Obelić, B.; Horvatinčić, N.; Barešić, J.; Sironić, A.; Minichreiter, K.

    2010-07-01

    Radiocarbon is a cosmogenic radioisotope equally distributed throughout the troposphere and biosphere. This fact enables its most common application—radiocarbon dating. Natural equilibrium of radiocarbon has been disturbed by diverse anthropogenic activities during the last ˜150 years, enabling also the use of 14C in various environmental applications. Here we present three types of studies by using 14C that were performed in the Zagreb Radiocarbon Laboratory. 14C in atmospheric CO 2 has been monitored at several sites with various anthropogenic influences and the difference between the clean-air sites, the industrial city and the vicinity of a nuclear power plant has been established. 14C has been applied in geochronology of karst areas, especially in dating of tufa, speleothems and lake sediments, as well as in studies of geochemical carbon cycle. 14C has been used in various archaeological studies, among which the dating of the early Neolithic settlements in Croatia is presented. In these studies 14C was measured by radiometric techniques, i.e., by gas proportional counting and more recently by liquid scintillation counting (LSC). Two sample preparation techniques for LSC measurement were used: benzene synthesis for archaeological dating and other applications that require better precision, and direct absorption of CO 2 for monitoring purposes. The presented results show that various studies by using 14C can be successfully performed by the LSC technique, providing a large enough sample (>1 g of carbon).

  12. Towards 14C-free liquid scintillator

    NASA Astrophysics Data System (ADS)

    Enqvist, T.; Barabanov, I. R.; Bezrukov, L. B.; Gangapshev, A. M.; Gavrilyuk, Y. M.; Grishina, V. Yu; Gurentsov, V. I.; Hissa, J.; Joutsenvaara, J.; Kazalov, V. V.; Krokhaleva, S.; Kutuniva, J.; Kuusiniemi, P.; Kuzminov, V. V.; Kurlovich, A. S.; Loo, K.; Lubsandorzhiev, B. K.; Lubsandorzhiev, S.; Morgalyuk, V. P.; Novikova, G. Y.; Pshukov, A. M.; Sinev, V. V.; lupecki, M. S.; Trzaska, W. H.; Umerov, Sh I.; Veresnikova, A. V.; Virkajärvi, A.; Yanovich, Y. A.; Zavarzina, V. P.

    2017-09-01

    A series of measurements has been started where the 14C concentration is determined from several liquid scintillator samples. A dedicated setup has been designed and constructed with the aim of measuring concentrations smaller than 10‑18. Measurements take place in two underground laboratories: in the Baksan Neutrino Observatory, Russia, and in the new Callio Lab in the Pyhäsalmi mine, Finland. Low-energy neutrino detection with a liquid scintillator requires that the intrinsic 14C concentration in the liquid is extremely low. In the Borexino CTF detector the concentration of 2 × 10‑18 has been achieved being the lowest value ever measured. In principle, the older the oil or gas source that the liquid scintillator is derived from and the deeper it situates, the smaller the 14C concentration is supposed to be. This, however, is not generally the case and the concentration is probably due to the U and Th content of the local environment.

  13. Determining the bio-based content of bio-plastics used in Thailand by radiocarbon analysis

    NASA Astrophysics Data System (ADS)

    Ploykrathok, T.; Chanyotha, S.

    2017-06-01

    Presently, there is an increased interest in the development of bio-plastic products from agricultural materials which are biodegradable in order to reduce the problem of waste disposal. Since the amount of modern carbon in bio-plastics can indicate how much the amount of agricultural materials are contained in the bio-plastic products, this research aims to determine the modern carbon in bio-plastic using the carbon dioxide absorption method. The radioactivity of carbon-14 contained in the sample is measured by liquid scintillation counter (Tri-carb 3110 TR, PerkinElmer). The percentages of bio-based content in the samples were determined by comparing the observed modern carbon content with the values contained in agricultural raw materials. The experimental results show that only poly(lactic acid) samples have the modern carbon content of 97.4%, which is close to the agricultural materials while other bio-plastics types are found to have less than 50% of the modern carbon content. In other words, most of these bio-plastic samples were mixed with other materials which are not agriculturally originated.

  14. Comment on "Radiocarbon Calibration Curve Spanning 0 to 50,000 Years B.P. Based on Paired 230Th/234U/238U and 14C Dates on Pristine Corals" by R.G. Fairbanks, R. A. Mortlock, T.-C. Chiu, L. Cao, A. Kaplan, T. P. Guilderson, T. W. Fairbanks, A. L. Bloom, P

    SciTech Connect

    Reimer, P J; Baillie, M L; Bard, E; Beck, J W; Blackwell, P G; Buck, C E; Burr, G S; Edwards, R L; Friedrich, M; Guilderson, T P; Hogg, A G; Hughen, K A; Kromer, B; McCormac, G; Manning, S; Reimer, R W; Southon, J R; Stuiver, M; der Plicht, J v; Weyhenmeyer, C E

    2005-10-02

    Radiocarbon calibration curves are essential for converting radiocarbon dated chronologies to the calendar timescale. Prior to the 1980's numerous differently derived calibration curves based on radiocarbon ages of known age material were in use, resulting in ''apples and oranges'' comparisons between various records (Klein et al., 1982), further complicated by until then unappreciated inter-laboratory variations (International Study Group, 1982). The solution was to produce an internationally-agreed calibration curve based on carefully screened data with updates at 4-6 year intervals (Klein et al., 1982; Stuiver and Reimer, 1986; Stuiver and Reimer, 1993; Stuiver et al., 1998). The IntCal working group has continued this tradition with the active participation of researchers who produced the records that were considered for incorporation into the current, internationally-ratified calibration curves, IntCal04, SHCal04, and Marine04, for Northern Hemisphere terrestrial, Southern Hemisphere terrestrial, and marine samples, respectively (Reimer et al., 2004; Hughen et al., 2004; McCormac et al., 2004). Fairbanks et al. (2005), accompanied by a more technical paper, Chiu et al. (2005), and an introductory comment, Adkins (2005), recently published a ''calibration curve spanning 0-50,000 years''. Fairbanks et al. (2005) and Chiu et al. (2005) have made a significant contribution to the database on which the IntCal04 and Marine04 calibration curves are based. These authors have now taken the further step to derive their own radiocarbon calibration extending to 50,000 cal BP, which they claim is superior to that generated by the IntCal working group. In their papers, these authors are strongly critical of the IntCal calibration efforts for what they claim to be inadequate screening and sample pretreatment methods. While these criticisms may ultimately be helpful in identifying a better set of protocols, we feel that there are also several erroneous and misleading

  15. Radiocarbon dating accuracy improved

    NASA Astrophysics Data System (ADS)

    Scientists have extended the accuracy of carbon-14 (14C) dating by correlating dates older than 8,000 years with uranium-thorium dates that span from 8,000 to 30,000 years before present (ybp, present = 1950). Edouard Bard, Bruno Hamelin, Richard Fairbanks and Alan Zindler, working at Columbia University's Lamont-Doherty Geological Observatory, dated corals from reefs off Barbados using both 14C and uranium-234/thorium-230 by thermal ionization mass spectrometry techniques. They found that the two age data sets deviated in a regular way, allowing the scientists to correlate the two sets of ages. The 14C dates were consistently younger than those determined by uranium-thorium, and the discrepancy increased to about 3,500 years at 20,000 ybp.

  16. Investigating bomb radiocarbon transport in the southern Pacific Ocean with otolith radiocarbon

    NASA Astrophysics Data System (ADS)

    Grammer, G. L.; Fallon, S. J.; Izzo, C.; Wood, R.; Gillanders, B. M.

    2015-08-01

    To explore the transport of carbon into water masses from the surface ocean to depths of ∼ 1000 m in the southwest Pacific Ocean, we generated time series of radiocarbon14C) from fish otoliths. Otoliths (carbonate earstones) from long-lived fish provide an indirect method to examine the "bomb pulse" of radiocarbon that originated in the 1950s and 1960s, allowing identification of changes to distributions of 14C that has entered and mixed within the ocean. We micro-sampled ocean perch (Helicolenus barathri) otoliths, collected at ∼ 400- 500 m in the Tasman Sea, to obtain measurements of Δ14C for those depths. We compared our ocean perch Δ14C series to published otolith-based marine surface water Δ14C values (Australasian snapper (Chrysophrys auratus) and nannygai (Centroberyx affinis)) and to published deep-water values (800-1000 m; orange roughy (Hoplostethus atlanticus)) from the southwest Pacific to establish a mid-water Δ14C series. The otolith bomb 14C results from these different depths were consistent with previous water mass results in the upper 1500 m of the southwest Pacific Ocean (e.g. World Ocean Circulation Experiment and Geochemical Ocean Sections Study). A comparison between the initial Δ14C bomb pulse rise at 400-500 m suggested a ventilation lag of 5 to 10 yr, whereas a comparison of the surface and depths of 800-1000 m detailed a 10 to 20 yr lag in the time history of radiocarbon invasion at this depth. Pre-bomb reservoir ages derived from otolith 14C located in Tasman Sea thermocline waters were ∼ 530 yr, while reservoir ages estimated for Tasman Antarctic intermediate water were ∼ 730 yr.

  17. A Column Experiment To Determine Black Shale Degradation And Colonization By Means of δ13C and 14C Analysis Of Phospholipid Fatty Acids And DNA Extraction

    NASA Astrophysics Data System (ADS)

    Seifert, A.; Gleixner, G.

    2008-12-01

    We investigated the degradation of black shale organic matter by microbial communities. We inoculated two columns respectively, with the fungi Schizophyllum commune, the gram-positive bacterium Pseudomonas putida and the gram-negative bacteria Streptomyces griseus and Streptomyces chartreusis. These microorganisms are known to degrade a wide variety of organic macromolecules. Additionally, we had two sets of control columns. To one set the same nutrient solution was added as to the inoculated columns and to the other set only sterile deionised water was supplied. All columns contained 1.5 kg of freshly crushed not autoclaved black shale material with a particle size of 0.63-2 mm. The columns were incubated at 28° C and 60% humidity in the dark. The aim was to investigate, which microorganisms live on black shales and if these microorganisms are able to degrade ancient organic matter. We used compound specific stable isotope measurement techniques and compound specific 14C-dating methods. After 183 days PLFAs were extracted from the columns to investigate the microbial community, furthermore we extracted on one hand total-DNA of column material and on the other hand DNA from pure cultures isolates which grew on Kinks-agar B, Starch-casein-nitrate-agar (SCN) and on complete-yeast-medium-agar (CYM). According to the PLFA analysis bacteria dominated in the columns, whereas in pure cultures more fungi were isolated. A principal component analysis revealed differences between the columns in accordance with the inoculation, but it seems that the inoculated microorganisms were replaced by the natural population. For AMS measurements palmitic acid (C 16:0) was re-isolated from total-PLFA-extract with a preparative fraction collector (PFC). Preliminary results of the study revealed that microorganisms are able to degrade black shale material and that PLFA analysis are useful methods to be combined with analysis of stable isotope and 14C measurements to study microbial

  18. Microscale radiocarbon dating of paintings

    NASA Astrophysics Data System (ADS)

    Hendriks, Laura; Hajdas, Irka; McIntyre, Cameron; Küffner, Markus; Scherrer, Nadim C.; Ferreira, Ester S. B.

    2016-03-01

    In this paper, radiocarbon dating of paintings using minimal sample sizes has been investigated, in an effort to address the problem of limited access to sample material in paintings. 14C analyses were conducted on signed and dated paintings from two Swiss artists of the twentieth century. The selected paintings dated from the 1930s and 1960s, provided the opportunity to evaluate the dating accuracy on paintings realized before and after 1950 AD when the 14C bomb peak was created, as a result of the nuclear tests conducted in the 1950/1960s. The work focused on the one hand on minimizing the size of the canvas sample required for accelerator mass spectrometer radiocarbon measurement on the gas ion source of the MICADAS and, on the other hand, on testing the possibility of dating the organic binder of the paint. Following careful characterization of the paint composition by X-ray fluorescence spectroscopy, Fourier transformed infrared spectroscopy, and Raman spectroscopy, paints containing no other carbon source than the natural organic binder were identified and dated.

  19. Constraint on radiocarbon age correction in Lake Biwa environment from the middle to late Holocene

    NASA Astrophysics Data System (ADS)

    Miyata, Y.; Minami, M.; Onbe, S.; Sakamoto, M.; Nakamura, T.; Imamura, M.

    2013-01-01

    Using data from previous studies and newly collected data, we compared the measured radiocarbon ages of molluscan shells, common reed (Phragmites australis) and pine needles (Pinus thunbergii) collected in 1966, 1970, 1990 and 2008 at Lake Biwa in Japan, and of archaeological samples, to examine radiocarbon reservoir effects at Lake Biwa. We also tested for differences in the radiocarbon reservoir effect between species and locations in the lake. The effects of nuclear bomb tests conducted in the 1950s and 1960s are clear, the offset between atmospheric 14C and the Lake Biwa freshwater 14C is larger for this period because the atmospheric 14C is so high. The semiclosed Lake Biwa system is in dynamic equilibrium with the atmosphere, resulting in the 14C content of the water following the changes in atmospheric 14C caused by nuclear testing. The shells collected after 1990 had radiocarbon ages that were 330-450 14C years older than those of the coeval atmosphere. The apparent differences in radiocarbon age (about 300 14C years) between shell fossils and wood samples excavated from the same layer of the submerged Awazu shell midden at Lake Biwa suggest that the radiocarbon reservoir effect also existed in the middle Holocene (the Middle Jomon period, about 5000 years ago). Because the present-day average residence time of Lake Biwa water is 3-6 years, its direct influence on the radiocarbon reservoir effect is small, which suggests that old carbon has been supplied into Lake Biwa.

  20. Pyrolysis-combustion 14C dating of soil organic matter

    USGS Publications Warehouse

    Wang, Hongfang; Hackley, Keith C.; Panno, S.V.; Coleman, D.D.; Liu, J.C.-L.; Brown, J.

    2003-01-01

    Radiocarbon (14C) dating of total soil organic matter (SOM) often yields results inconsistent with the stratigraphic sequence. The onerous chemical extractions for SOM fractions do not always produce satisfactory 14C dates. In an effort to develop an alternative method, the pyrolysis-combustion technique was investigated to partition SOM into pyrolysis volatile (Py-V) and pyrolysis residue (Py-R) fractions. The Py-V fractions obtained from a thick glacigenic loess succession in Illinois yielded 14C dates much younger but more reasonable than the counterpart Py-R fractions for the soil residence time. Carbon isotopic composition (??13C) was heavier in the Py-V fractions, suggesting a greater abundance of carbohydrate- and protein-related constituents, and ??13C was lighter in the Py-R fractions, suggesting more lignin- and lipid-related constituents. The combination of 14C dates and ??13C values indicates that the Py-V fractions are less biodegradation resistant and the Py-R fractions are more biodegradation resistant. The pyrolysis-combustion method provides a less cumbersome approach for 14C dating of SOM fractions. With further study, this method may become a useful tool for analyzing unlithified terrestrial sediments when macrofossils are absent. ?? 2003 University of Washington. Published by Elsevier Inc. All rights reserved.

  1. Radiocarbon ages of pre-bomb clams and the hard-water effect in Lakes Michigan and Huron

    USGS Publications Warehouse

    Rea, David K.; Colman, Steven M.

    1995-01-01

    Five radiocarbon ages, all determined by accelerator mass spectrometry, have been obtained for two pre-bomb bivalves from Lake Michigan and one from Lake Huron. After correcting those ages for the fractionation of14C in calcite and for the radioactively inert CO2 in the atmosphere, we find residual ages, caused by the hard water effect, of about 250 years for Lake Michigan and 440 years for Lake Huron.

  2. The impact of soil organic matter and soil sterilisation on the bioaccessibility of 14C-azoxystrobin determined by desorption kinetics.

    PubMed

    Clegg, Helen; Riding, Matthew J; Oliver, Robin; Jones, Kevin C; Semple, Kirk T

    2014-08-15

    As soils represent a major sink for most pesticides, factors influencing pesticide degradation are essential in identifying their potential environmental risk. Desorption of (14)C-azoxystrobin was investigated over time in two soils under sterile and non-sterile conditions using exhaustive (solvent) and non-exhaustive (aqueous) methods. Desorption data were fitted to a two-compartment model, differentiating between fast and slow desorbing fractions. With increased ageing, rapid desorption (Frap) (bioaccessibility) decreased with corresponding increases in slowly desorbing fractions (F(slow)). The rapid desorption rate constant (k(fast)) was not affected by ageing, sterility or extraction solvent. The non-exhaustive extractions had similar desorption profiles; whereas exhaustive extractions in aged soils had the highest F(rap). In non-sterile soil, F(rap) was lower resulting in higher F(slow), while desorption rates remained unaffected. Organic matter (OM) reduces F(rap); but not desorption rates. Microorganisms and OM enhanced ageing effects, reducing the fraction of fast desorbing chemicals and potentially the bioaccessibility of pesticides in soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Establishing chronologies for loess records within 40 ka by AMS 14C-dating of small mollusc shells

    NASA Astrophysics Data System (ADS)

    Ujvari, Gabor; Molnar, Mihaly; Novothny, Agnes; Kovacs, Janos

    2014-05-01

    The key objective of the INTIMATE project is to determine whether abrupt climatic changes during the period of 60 to 8 ka, as reflected in a range of proxy records, were regionally synchronous or whether there were significant 'leads' and 'lags' between the atmospheric, marine, terrestrial and cryospheric realms. Such goals require precisely dated records of paleoenvironmental change for this period. Although wind-blown loess deposits are regarded as key terrestrial archives of millennial or even centennial scale environmental changes, these records are mostly poorly dated and/or their age-depth models have uncertainties of millennial magnitude. This prevents us from addressing issues like synchroneity of abrupt climatic/environmental events on millennial time scales. Two different means of dating are commonly applied for loess sequences: luminescence and radiocarbon dating. Major problems are low precision of luminescence ages and the general lack of organic macrofossils (e.g. charcoal) in loess that can reliably be dated using 14C. Other datable phases in loess are mollusc shells, rhizoliths and organic matter. While organic matter 14C ages are often seriously compromised by rejuvenation in loess sequences, rhizolites consistently yield very young ages as first demonstrated in German loess profiles. Indeed, hypocatings (rhizolites) gave Holocene ages from three different depths (4.00 m: 9744-10156 2σ age range in cal yr BP, 5.00 m: 8013-8167 cal yr BP and 6.00 m: 9534-9686 cal yr BP) in the Dunaszekcső loess record we investigated. Mollusc shells are the only remaining phases for dating, but these are usually regarded as unreliable material for 14C-dating, as they may incorporate 14C-deficient (or dead) carbon from the local carbonate-rich substrate during shell formation, thereby producing anomalously old ages by up to 3000 years. Recent studies, however, indicated that reliable ages can be obtained by radiocarbon dating of molluscs having comparatively small (

  4. May 14C be used to date contemporary art?

    NASA Astrophysics Data System (ADS)

    Fedi, M. E.; Caforio, L.; Mandò, P. A.; Petrucci, F.; Taccetti, F.

    2013-01-01

    The use of radiocarbon in forensics is by now widespread, thanks to the so-called bomb peak, which makes it possible to perform high-precision dating. Since 1955, 14C concentration in the atmosphere had strongly increased due to nuclear explosions, reaching its maximum value in 1963-1965. After the Nuclear Test Ban Treaty, 14C started to decrease as a consequence of the exchanges between atmosphere and the other natural carbon reservoirs. Nowadays, it is still slightly above the pre-bomb value. The work presented in this paper is based on the idea of exploiting the bomb peak to “precisely” date works of contemporary art, with the aim at identifying possible fakes. We analysed two kinds of materials from the 20th century: newspapers and painting canvases. Newspaper samples were taken because they might in principle be considered to represent dated samples (considering the date on the issues). Our data (28 samples) show a trend similar to atmospheric data in the literature, although with some differences; the paper peak is flatter and shifted towards more recent years (about five years) with respect to the atmospheric data. This can be explained by taking paper manufacturing processes into account. As to the canvas samples, the measured 14C concentrations were generally reasonably consistent with the expected concentrations (based on the year on the paintings). However, this does not indicate that the interpretation of the results is simpler and more straightforward. Obviously, we only measure the 14C concentration of the fibre used for the canvas, which does not necessarily measure the date the painting was manufactured. In this paper, sample preparation and experimental results will be discussed, in order to show the potential as well as the limitations of radiocarbon to date contemporary art.

  5. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1984-12-01

    The measurement of naturally occurring radioisotopes whose half lives are less than a few hundred million years but more than a few years provides information about the temporal behavior of geologic and climatic processes, the temporal history of meteoritic bodies as well as the production mechanisms of these radioisotopes. A new extremely sensitive technique for measuring these radioisotopes at tandem Van de Graaff and cyclotron facilities has been very successful though the high cost and limited availability have been discouraging. We have built and tested a low energy cyclotron for radiocarbon dating similar in size to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. We found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. We show how a conventional carbon negative ion source, located outside the cyclotron magnet, would produce sufficient beam and provide for quick sampling to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  6. Compound specific radiocarbon content of lignin oxidation products from the Altamaha river and Coastal Georgia

    NASA Astrophysics Data System (ADS)

    Culp, Randy

    2013-01-01

    Compound-specific isotope analysis (CSIA) is a powerful tool in organic geochemistry by providing detailed information about an individual organic compound’s history with regard to its source and process of formation. Most CSIA involves measurement of the stable isotope ratio of carbon (13C/12C) and hydrogen (D/H) following separation by gas or liquid chromatography. New applications are being developed using compound-specific radiocarbon (14C) content for delineating age of materials, rates of decomposition and residence time in various environments. This paper details the isotopic work on specific lignin monomers derived from terrestrial plants transported and deposited within the Altamaha River, estuary and off-shore Georgia in the Atlantic Ocean. By using gas chromatographic separation and identification of selected lignin oxidation products (LOP), the harvesting of these compounds using preparative fraction collection, and measurement of their 14C content using accelerator mass spectrometry, details of the age and presence of specific biomarkers unique to a given terrestrial source are revealed. Radiocarbon ages determined from water-column particulate organic carbon and sediment LOPs indicate a range of ages from modern to well over 5,000 years for the former and latter respectively. Transport mechanisms and particle size associations on mineral grains may play a significant role in 14C distribution in estuary and near-shore coastal environments. This data indicates higher than modern 14C activities in large particle-size sediment fractions in contrast to older LOP 14C ages found associated with the same coarse grain sediments. Individual LOP ages substantiate older terrestrial materials persist in the off-shore environment even though in the presence of modern marine 14C sources.

  7. Developing inorganic carbon-based radiocarbon chronologies for Holocene lake sediments in arid NW China

    NASA Astrophysics Data System (ADS)

    Zhang, Jiawu; Ma, Xueyang; Qiang, Mingrui; Huang, Xiaozhong; Li, Shuang; Guo, Xiaoyan; Henderson, Andrew C. G.; Holmes, Jonathan A.; Chen, Fahu

    2016-07-01

    Inorganic carbonates are often used to establish radiocarbon (14C) chronologies for lake sediments when terrestrial plant remains (TPR) are rare or when bulk organic matter is insufficient for dating, a problem that is common for many lakes in arid regions. However, the reservoir effect (RE), as well as old carbon contributed from the lakes catchment make it difficult to establish reliable chronologies. Here we present a systematic study of inorganic 14C ages of two lake-sediment sequences, one from a small-enclosed saline lake - Lake Gahai in Qaidam Basin, and the other from a large freshwater lake - Lake Bosten in Xinjiang. Modern dissolved inorganic carbon (DIC) of the lakes, paleo-lake sediments exposed in the catchment, and mollusk shells in core sediments from Lake Gahai were dated to assess the RE and the contribution of pre-aged carbon to the old ages in the cores. We propose a statistical regression to assess more than one RE for the 14C carbonate ages within our sedimentary sequences. Old radiocarbon ages contributed by detrital carbonates were assessed by comparing the ages of mollusk shells with those of carbonates at the same sediment depths. We established the RE of the authigenic component and assessed detrital old carbon contributions to our two sites, and this was used to correct the 14C ages. Based on this approach, we developed age models for both cores, and tested them using 210Pb ages in both cores and TPR-based 14C-ages recovered from Lake Bosten. We further tested our age models by comparing carbonate-based oxygen isotope (δ18O) records from both lakes to an independently-dated regional speleothem δ18O record. Our results suggest if sedimentary sequences are densely dated and the RE and the contribution of old carbon from detrital carbonates can be ascertained, robust chronological frameworks based on carbonate-based 14C determinations can be established.

  8. Age estimation in forensic sciences: Application of combined aspartic acid racemization and radiocarbon analysis

    SciTech Connect

    Alkass, K; Buchholz, B A; Ohtani, S; Yamamoto, T; Druid, H; Spalding, S L

    2009-11-02

    Age determination of unknown human bodies is important in the setting of a crime investigation or a mass disaster, since the age at death, birth date and year of death, as well as gender, can guide investigators to the correct identity among a large number of possible matches. Traditional morphological methods used by anthropologists to determine age are often imprecise, whereas chemical analysis of tooth dentin, such as aspartic acid racemization has shown reproducible and more precise results. In this paper we analyze teeth from Swedish individuals using both aspartic acid racemization and radiocarbon methodologies. The rationale behind using radiocarbon analysis is that above-ground testing of nuclear weapons during the cold war (1955-1963) caused an extreme increase in global levels of carbon-14 ({sup 14}C) which have been carefully recorded over time. Forty-four teeth from 41 individuals were analyzed using aspartic acid racemization analysis of tooth crown dentin or radiocarbon analysis of enamel and ten of these were split and subjected to both radiocarbon and racemization analysis. Combined analysis showed that the two methods correlated well (R2=0.66, p < 0.05). Radiocarbon analysis showed an excellent precision with an overall absolute error of 0.6 {+-} 04 years. Aspartic acid racemization also showed a good precision with an overall absolute error of 5.4 {+-} 4.2 years. Whereas radiocarbon analysis gives an estimated year of birth, racemization analysis indicates the chronological age of the individual at the time of death. We show how these methods in combination can also assist in the estimation of date of death of an unidentified victim. This strategy can be of significant assistance in forensic casework involving dead victim identification.

  9. Age estimation in forensic sciences: application of combined aspartic acid racemization and radiocarbon analysis.

    PubMed

    Alkass, Kanar; Buchholz, Bruce A; Ohtani, Susumu; Yamamoto, Toshiharu; Druid, Henrik; Spalding, Kirsty L

    2010-05-01

    Age determination of unknown human bodies is important in the setting of a crime investigation or a mass disaster because the age at death, birth date, and year of death as well as gender can guide investigators to the correct identity among a large number of possible matches. Traditional morphological methods used by anthropologists to determine age are often imprecise, whereas chemical analysis of tooth dentin, such as aspartic acid racemization, has shown reproducible and more precise results. In this study, we analyzed teeth from Swedish individuals using both aspartic acid racemization and radiocarbon methodologies. The rationale behind using radiocarbon analysis is that aboveground testing of nuclear weapons during the cold war (1955-1963) caused an extreme increase in global levels of carbon-14 ((14)C), which has been carefully recorded over time. Forty-four teeth from 41 individuals were analyzed using aspartic acid racemization analysis of tooth crown dentin or radiocarbon analysis of enamel, and 10 of these were split and subjected to both radiocarbon and racemization analysis. Combined analysis showed that the two methods correlated well (R(2) = 0.66, p < 0.05). Radiocarbon analysis showed an excellent precision with an overall absolute error of 1.0 +/- 0.6 years. Aspartic acid racemization also showed a good precision with an overall absolute error of 5.4 +/- 4.2 years. Whereas radiocarbon analysis gives an estimated year of birth, racemization analysis indicates the chronological age of the individual at the time of death. We show how these methods in combination can also assist in the estimation of date of death of an unidentified victim. This strategy can be of significant assistance in forensic casework involving dead victim identification.

  10. Calibration of the radiocarbon time scale at 37ka BP

    SciTech Connect

    Southon, J.R.; Deino, A.L.; Orsi, G.

    1995-12-01

    Results from radiocarbon and U-Th measurements on corals have provided a radiocarbon calibration beyond the range covered by tree ring series, but the uncertainties in the measurements beyond 20ka BP are very large. We have obtained new calibration data from radiocarbon dates on material associated with the catastrophic Campanian Ignimbrite eruption from the Phlegrean Fields near Naples. The eruption has been well dated by {sup 40}Ar/{sup 39}Ar to 37ka BP. Radiocarbon measurements were carried out on charcoal from a carbonized branch exposed within the ignimbrite tuff on the wall of an active quarry. The sample was split and analyzed at both the Naples and Lawrence Livermore AMS facilities. The offset between the Ar-Ar data and the radiocarbon results (recalculated using the true 5730-year half life for {sup 14}C) is consistent with predictions from paleomagnetic data and carbon cycle modeling.

  11. Late Holocene Radiocarbon Variability in Northwest Atlantic Slope Waters

    SciTech Connect

    Sherwood, O; Edinger, E; Guilderson, T P; Ghaleb, B; Risk, M J; Scott, D B

    2008-08-15

    Deep-sea gorgonian corals secrete a 2-part skeleton of calcite, derived from dissolved inorganic carbon at depth, and gorgonin, derived from recently fixed and exported particulate organic matter. Radiocarbon contents of the calcite and gorgonin provide direct measures of seawater radiocarbon at depth and in the overlying surface waters, respectively. Using specimens collected from Northwest Atlantic slope waters, we generated radiocarbon records for surface and upper intermediate water layers spanning the pre- and post bomb-{sup 14}C eras. In Labrador Slope Water (LSW), convective mixing homogenizes the pre-bomb {Delta}{sup 14}C signature (-67 {+-} 4{per_thousand}) to at least 1000 m depth. Surface water bomb-{sup 14}C signals were lagged and damped (peaking at {approx} +45{per_thousand} in the early 1980s) relative to other regions of the northwest Atlantic, and intermediate water signals were damped further. Off southwest Nova Scotia, the vertical gradient in {Delta}{sup 14}C is much stronger. In surface water, pre-bomb {Delta}{sup 14}C averaged -75 {+-} 5{per_thousand}. At 250-475 m depth, prebomb {Delta}{sup 14}C oscillated quasi-decadally between -80 and -100{per_thousand}, likely reflecting interannual variability in the presence of Labrador Slope Water vs. Warm Slope Water (WSW). Finally, subfossil corals reveal no systematic changes in vertical {Delta}{sup 14}C gradients over the last 1200 years.

  12. Radiocarbon dating of twentieth century works of art

    NASA Astrophysics Data System (ADS)

    Petrucci, F.; Caforio, L.; Fedi, M.; Mandò, P. A.; Peccenini, E.; Pellicori, V.; Rylands, P.; Schwartzbaum, P.; Taccetti, F.

    2016-11-01

    The atmospheric tests of nuclear weapons caused a sudden increase in the radiocarbon concentration in the atmosphere from 1955, reaching its maximum value in 1963-1965. Once the nuclear tests in the atmosphere were halted, the 14C concentration started to decrease. This behavior of the radiocarbon concentration is called the "Bomb Peak", and it has successfully been used as a tool for high-precision radiocarbon measurements, in forensic sciences and biology. In the art field, the possibility of dating canvas, wood and paper, widely used as supports for paintings, may be an invaluable tool in modern art studies.

  13. Watershed storage and riverine particulate organic radiocarbon

    NASA Astrophysics Data System (ADS)

    Blair, N. E.; Leithold, E. L.

    2011-12-01

    Lateral movement of carbon and other materials across landscapes is punctuated with periods of storage and reaction. Though we understand basic principles concerning transport and storage effects on the nature of some materials, an adequate understanding is lacking of the cumulative impacts of those processes as material migrates across the biogeochemical landscape. This is essential to the interpretation of geochemical soil and sedimentary records of the past as well as to predicting future responses of systems to perturbations in climate or landuse. Sources of organic carbon exported from watersheds can be broadly defined as those recently derived for extant ecosystems, those derived from materials aged and altered in storage (aged soil OC), and fossil material associated with sedimentary bedrock. Separately, these materials are easy to recognize based on isotopic and molecular compositions and each could in principle be linked to specific mass transport processes such as sheet wash, shallow landsliding or gullying. The blending and alteration of original source signatures during storage appear to attenuate the variability of the exported signal within a system and complicate source identification. Riverine particulate organic carbon 14C-compositions reveal robust relationships between radiocarbon content, suspended load concentrations and % organic C. These are explained as a result of mixing of the 14C-free fossil C from sedimentary rocks with 14C-containing material derived from extant ecosystems and soils. In essence, the 14C-content of riverine POC inversely correlates with the muddiness of the system. Whereas one might predict that POC radiocarbon content might decrease with increased storage or residence time in watersheds, no obvious relationship exists between bulk 14C-content observations and watershed size. Instead, the hypothetical watershed size effect is obscured by precipitation- and discharge-driven variations in the mixture of the fossil and non

  14. Using Methane 14C to Determine the Origin of the Rapid Methane Rise at the End of the Younger Dryas 11,600 Years Ago: Increased Wetland Production or Methane Hydrates? A Progress Report.

    NASA Astrophysics Data System (ADS)

    Petrenko, V. V.; Severinghaus, J.; Brook, E.; Reeh, N.

    2002-12-01

    The atmospheric methane concentration rose from about 500 parts per billion (ppb) to about 750 ppb over a period of just 150 years at the termination of the Younger Dryas cold period 11,600 years ago, as indicated by Greenland ice core records. The start of this rapid methane increase was synchronous with an even more rapid climate warming -- Greenland ice core nitrogen and argon isotope records indicate that temperatures rose 5 - 10 ?C over just a few decades. There has been considerable debate about the source of this methane rise. Currently, the two main hypotheses attribute the methane rise either to increased bacterial methane production in wetlands, or to the dissociation of large quantities of methane hydrates on the ocean floor. Here we describe the progress of a project whose aim is to determine the origin of this methane rise. Our approach involves using 14C of ancient methane (derived from air bubbles in glacial ice) to determine its source. Methane hydrates are hundreds of thousands to millions of years old, and should contain virtually no 14C, whereas wetland-derived methane will have 14C content identical to that of atmospheric CO2 at the time of production. Obtaining enough ancient methane for a 14C measurement requires very large samples -- about 2 cubic meters. We have been able to locate a site on the western margin of the Greenland ice sheet where large amounts of uncontaminated ancient ice are available at the surface. Furthermore, our measurements of oxygen isotopes in the ice, as well as measurements of methane and oxygen and nitrogen isotopes in the air trapped in this ice have allowed us to date the ice and precisely locate the ice that contains the end-of-Younger-Dryas methane increase signal. Our data also demonstrate that the methane record in this ice is uncontaminated and suitable for methane 14C analysis. During the past year, we also constructed and are testing a device for melting and extracting air from large volumes of glacial ice.

  15. Significant human beta-cell turnover is limited to the first three decades of life as determined by in vivo thymidine analog incorporation and radiocarbon dating.

    PubMed

    Perl, S; Kushner, J A; Buchholz, B A; Meeker, A K; Stein, G M; Hsieh, M; Kirby, M; Pechhold, S; Liu, E H; Harlan, D M; Tisdale, J F

    2010-10-01

    Diabetes mellitus results from an absolute or relative deficiency of insulin-producing pancreatic β-cells. The turnover rate of adult human β-cells remains unknown. We employed two techniques to examine adult human islet β-cell turnover and longevity in vivo. Subjects enrolled in National Institutes of Health clinical trials received thymidine analogs [iododeoxyuridine (IdU) or bromodeoxyuridine (BrdU)] 8 d to 4 yr prior to death. Archival autopsy samples from 10 patients (aged 17-74 yr) were employed to assess β-cell turnover by scoring nuclear analog labeling within insulin-staining cells. Human adult β-cell longevity was determined by estimating the cells' genomic DNA integration of atmospheric (14)C. DNA was purified from pancreatic islets isolated from cadaveric donors; whole islet prep DNA was obtained from a 15-yr-old donor, and purified β-cell DNA was obtained from two donors (ages 48 and 80 yr). (14)C levels were then determined using accelerator mass spectrometry. Cellular "birth date" was determined by comparing the subject's DNA (14)C content relative to a well-established (14)C atmospheric prevalence curve. In the two subjects less than 20 yr of age, 1-2% of the β-cell nuclei costained for BrdU/IdU. No β-cell nuclei costained in the eight patients more than 30 yr old. Consistent with the BrdU/IdU turnover data, β-cell DNA (14)C content indicated that the "birth date" of cells occurred within the subject's first 30 yr of life. Under typical circumstances, human β-cells and their cellular precursors are established by young adulthood.

  16. Adult Human Pancreatic Islet Beta-Cells Display Limited Turnover and Long Lifespan as Determined by In-Vivo Thymidine Analog Incorporation and Radiocarbon Dating

    SciTech Connect

    Perl, S; Kushner, J A; Buchholz, B A; Meeker, A K; Stein, G M; Hsieh, M; Kirby, M; Pechhold, S; Liu, E H; Harlan, D M; Tisdale, J F

    2010-03-15

    Diabetes mellitus results from an absolute or relative deficiency of insulin producing pancreatic beta-cells. The adult human beta-cell's turnover rate remains unknown. We employed novel techniques to examine adult human islet beta-cell turnover and longevity in vivo. Subjects enrolled in NIH clinical trials received thymidine analogues [iododeoxyuridine (IdU) or bromodeoxyuridine (BrdU)] 8-days to 4-years prior to death. Archival autopsy samples from ten patients (aged 17-74 years) were employed to assess beta-cell turnover by scoring nuclear analog labeling within insulin staining cells. Human adult beta-cell longevity was determined by estimating the cells genomic DNA integration of atmospheric carbon-14 ({sup 14}C). DNA was purified from pancreatic islets isolated from cadaveric donors; whole islet prep DNA was obtained from a 15 year old donor, and purified beta-cell DNA was obtained from two donors (age 48 and 80 years). {sup 14}C levels were then determined using accelerator mass spectrometry (AMS). Cellular 'birth date' was determined by comparing the subject's DNA {sup 14}C content relative to a well-established {sup 14}C atmospheric prevalence curve. In the two subjects less than age 20 years, 1-2% of the beta-cell nuclei co-stained for BrdU/IdU. No beta-cell nuclei co-stained in the eight patients more than 30 years old. Consistent with the BrdU/IdU turnover data, beta-cell DNA {sup 14}C content indicated the cells 'birth date' occurred within the subject's first 30 years of life. Under typical circumstances, adult human beta-cells and their cellular precursors are established by young adulthood.

  17. Natural abundance 13C and 14C analysis of water-soluble organic carbon in atmospheric aerosols.

    PubMed

    Kirillova, Elena N; Sheesley, Rebecca J; Andersson, August; Gustafsson, Örjan

    2010-10-01

    Water-soluble organic carbon (WSOC) constitutes a large fraction of climate-forcing organic aerosols in the atmosphere, yet the sources of WSOC are poorly constrained. A method was developed to measure the stable carbon isotope (δ(13)C) and radiocarbon (Δ(14)C) composition of WSOC for apportionment between fossil fuel and different biogenic sources. Synthetic WSOC test substances and ambient aerosols were employed to investigate the effect of both modern and fossil carbon contamination and any method-induced isotope fractionation. The method includes extraction of aerosols collected on quartz filters followed by purification and preparation for off-line δ(13)C and Δ(14)C determination. The preparative freeze-drying step for isotope analysis yielded recoveries of only ∼70% for ambient aerosols and WSOC probes. However, the δ(13)C of the WSOC isolates were in agreement with the δ(13)C of the unprocessed starting material, even for the volatile oxalic acid probe (6.59 ± 0.37‰ vs 6.33 ± 0.31‰; 2 sd). A (14)C-fossil phthalic acid WSOC probe returned a fraction modern biomass of <0.008 whereas a (14)C-modern sucrose standard yielded a fraction modern of >0.999, indicating the Δ(14)C-WSOC method to be free of both fossil and contemporary carbon contamination. Application of the δ(13)C/Δ(14)C-WSOC method to source apportion climate-affecting aerosols was illustrated be constraining that WSOC in ambient Stockholm aerosols were 88% of contemporary biogenic C3 plant origin.

  18. Bomb-curve radiocarbon measurement of recent biologic tissues and applications to wildlife forensics and stable isotope (paleo)ecology

    PubMed Central

    Uno, Kevin T.; Quade, Jay; Fisher, Daniel C.; Wittemyer, George; Douglas-Hamilton, Iain; Andanje, Samuel; Omondi, Patrick; Litoroh, Moses; Cerling, Thure E.

    2013-01-01

    Above-ground thermonuclear weapons testing from 1952 through 1962 nearly doubled the concentration of radiocarbon (14C) in the atmosphere. As a result, organic material formed during or after this period may be radiocarbon-dated using the abrupt rise and steady fall of the atmospheric 14C concentration known as the bomb-curve. We test the accuracy of accelerator mass spectrometry radiocarbon dating of 29 herbivore and plant tissues collected on known dates between 1905 and 2008 in East Africa. Herbivore samples include teeth, tusks, soft tissue, hair, and horn. Tissues formed after 1955 are dated to within 0.3–1.3 y of formation, depending on the tissue type, whereas tissues older than ca. 1955 have high age uncertainties (>17 y) due to the Suess effect. 14C dating of tissues has applications to stable isotope (paleo)ecology and wildlife forensics. We use data from 41 additional samples to determine growth rates of tusks, molars, and hair, which improve interpretations of serial stable isotope data for (paleo)ecological studies. 14C dating can also be used to calculate the time interval represented in periodic histological structures in dental tissues (i.e., perikymata), which in turn may be used as chronometers in fossil teeth. Bomb-curve 14C dating of confiscated animal tissues (e.g., ivory statues) can be used to determine whether trade of the item is legal, because many Convention of International Trade of Endangered Species restrictions are based on the age of the tissue, and thus can serve as a powerful forensic tool to combat illegal trade in animal parts. PMID:23818577

  19. Bomb-curve radiocarbon measurement of recent biologic tissues and applications to wildlife forensics and stable isotope (paleo)ecology.

    PubMed

    Uno, Kevin T; Quade, Jay; Fisher, Daniel C; Wittemyer, George; Douglas-Hamilton, Iain; Andanje, Samuel; Omondi, Patrick; Litoroh, Moses; Cerling, Thure E

    2013-07-16

    Above-ground thermonuclear weapons testing from 1952 through 1962 nearly doubled the concentration of radiocarbon ((14)C) in the atmosphere. As a result, organic material formed during or after this period may be radiocarbon-dated using the abrupt rise and steady fall of the atmospheric (14)C concentration known as the bomb-curve. We test the accuracy of accelerator mass spectrometry radiocarbon dating of 29 herbivore and plant tissues collected on known dates between 1905 and 2008 in East Africa. Herbivore samples include teeth, tusks, soft tissue, hair, and horn. Tissues formed after 1955 are dated to within 0.3-1.3 y of formation, depending on the tissue type, whereas tissues older than ca. 1955 have high age uncertainties (>17 y) due to the Suess effect. (14)C dating of tissues has applications to stable isotope (paleo)ecology and wildlife forensics. We use data from 41 additional samples to determine growth rates of tusks, molars, and hair, which improve interpretations of serial stable isotope data for (paleo)ecological studies. (14)C dating can also be used to calculate the time interval represented in periodic histological structures in dental tissues (i.e., perikymata), which in turn may be used as chronometers in fossil teeth. Bomb-curve (14)C dating of confiscated animal tissues (e.g., ivory statues) can be used to determine whether trade of the item is legal, because many Convention of International Trade of Endangered Species restrictions are based on the age of the tissue, and thus can serve as a powerful forensic tool to combat illegal trade in animal parts.

  20. Bomb-curve radiocarbon measurement of recent biologic tissues and applications to wildlife forensics and stable isotope (paleo)ecology

    NASA Astrophysics Data System (ADS)

    Uno, Kevin T.; Quade, Jay; Fisher, Daniel C.; Wittemyer, George; Douglas-Hamilton, Iain; Andanje, Samuel; Omondi, Patrick; Litoroh, Moses; Cerling, Thure E.

    2013-07-01

    Above-ground thermonuclear weapons testing from 1952 through 1962 nearly doubled the concentration of radiocarbon (14C) in the atmosphere. As a result, organic material formed during or after this period may be radiocarbon-dated using the abrupt rise and steady fall of the atmospheric 14C concentration known as the bomb-curve. We test the accuracy of accelerator mass spectrometry radiocarbon dating of 29 herbivore and plant tissues collected on known dates between 1905 and 2008 in East Africa. Herbivore samples include teeth, tusks, soft tissue, hair, and horn. Tissues formed after 1955 are dated to within 0.3-1.3 y of formation, depending on the tissue type, whereas tissues older than ca. 1955 have high age uncertainties (>17 y) due to the Suess effect. 14C dating of tissues has applications to stable isotope (paleo)ecology and wildlife forensics. We use data from 41 additional samples to determine growth rates of tusks, molars, and hair, which improve interpretations of serial stable isotope data for (paleo)ecological studies. 14C dating can also be used to calculate the time interval represented in periodic histological structures in dental tissues (i.e., perikymata), which in turn may be used as chronometers in fossil teeth. Bomb-curve 14C dating of confiscated animal tissues (e.g., ivory statues) can be used to determine whether trade of the item is legal, because many Convention of International Trade of Endangered Species restrictions are based on the age of the tissue, and thus can serve as a powerful forensic tool to combat illegal trade in animal parts.

  1. The direct absorption method of 14C assay—historical perspective and future potential

    NASA Astrophysics Data System (ADS)

    Vita-Finzi, Claudio; Leaney, Fred

    2006-05-01

    Radiocarbon dating by liquid scintillation counting of 14CO 2 absorbed into an alkaline liquid was first developed for groundwater research. In the 1980s it was applied to molluscs, barnacles, corals and other carbonates, and yielded dependable results within a few hours, with standard errors of ˜10% for ages <14 000 yr, at about 1/200 the price of commercial 14C dates. Although its cost has risen fivefold, the first-order approach remains useful in coastal neotectonics, where numerous low-precision determinations are often more useful than a few high-precision dates. Direct absorption (DA) 14C dating has now been improved and extended to include wood and charcoal samples, and provides ages in a variety of environments with standard errors similar to those reported by conventional radiometric laboratories and for ages spanning the last 30 000 years. The unit cost for a 'state of the art' DA determination is close to 50% of that by benzene synthesis, but the method is favoured in many hydrological and archaeological applications because it is robust and rapid.

  2. Chlorophyll a-specific Δ14C, δ13C and δ15N values in stream periphyton: implications for aquatic food web studies

    NASA Astrophysics Data System (ADS)

    Ishikawa, N. F.; Yamane, M.; Suga, H.; Ogawa, N. O.; Yokoyama, Y.; Ohkouchi, N.

    2015-11-01

    Periphytic algae attached to a streambed substrate (periphyton) are an important primary producer in stream ecosystems. We determined the isotopic composition of chlorophyll a in periphyton collected from a stream flowing on limestone bedrock in the Seri River, central Japan. Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) and natural radiocarbon abundances (Δ14C) were measured in chlorophyll a (δ13Cchl, δ15Nchl and Δ14Cchl) and bulk (δ13Cbulk, δ15Nbulk and Δ14Cbulk) for periphyton, a pure aquatic primary producer (Cladophora sp.) and a terrestrial primary producer (Quercus glauca). Periphyton δ13Cbulk and δ13Cchl values did not necessarily correspond to δ13Cbulk for an algal-grazing specialist (Epeorus latifolium). Periphyton Δ14Cchl values (-258 ‰ in April and -190 ‰ in October) were slightly lower than Δ14Cbulk values (-228 ‰ in April and -179 ‰ in October) but were close to the Δ14C value for dissolved inorganic carbon (DIC; -217 ± 31 ‰), which is a mixture of weathered carbonates (Δ14C = -1000 ‰), CO2 derived from aquatic and terrestrial organic matters (variable Δ14C) and dissolved atmospheric CO2 (Δ14C approximately +30 ‰ in 2013). Δ14Cchl values were also close to Δ14Cbulk for E. latifolium (-215 ‰ in April and -199 ‰ in October) and Cladophora sp. (-210 ‰), whereas the Δ14Cbulk value for Q. glauca (+27 ‰) was closer to Δ14C for atmospheric CO2. Although the bulk isotopic composition of periphyton is recognised as a surrogate for the photosynthetic algal community, natural periphyton is a mixture of aquatic and terrestrial organic materials. Our results indicate that the bulk periphyton matrix at the study site consists of 89 to 95 % algal carbon (derived from 14C-depleted DIC) and 5 to 11 % terrestrial organic carbon (derived from 14C-enriched atmospheric CO2).

  3. Comparison of red blood cell survival in sheep determined using red blood cells labeled with either biotin at multiple densities or [14C]cyanate: validation of a model to study human physiology and disease

    PubMed Central

    Mock, Donald M.; Matthews, Nell I.; Zhu, Shan; Strauss, Ronald G.; Schmidt, Robert L.; Zimmerman, M. Bridget; Nalbant, Demet; Freise, Kevin J.; Saleh, Mohammad; Veng-Pedersen, Peter; Widness, John A.

    2013-01-01

    BACKGROUND Measurement of red blood cell (RBC) survival (RCS) is important for investigating pathophysiology and treatment of anemia. Our objective was to validate the multidensity biotin method for RCS determination in sheep, a commonly used model of RBC physiology. [14C]Cyanate served as the reference method for long-term RCS because the 51Cr method (the reference method for humans) is not reliable in sheep. STUDY DESIGN AND METHODS Aliquots of autologous RBCs from eight adult sheep were labeled with [14C]cyanate and four separate densities of biotin (BioRBCs) and reinfused. Short-term RCS was assessed by posttransfusion recovery at 24 hours (PTR24); long-term RCS was assessed by the time to 50% survival (T50) and mean potential life span (MPL). RESULTS Values for PTR24 of the four BioRBC densities were not different. Values for RCS as reflected by T50 and MPL were nearly identical for [14C]cyanate and the two intermediate-density BioRBC populations. In contrast, the lowest-density BioRBC population survived slightly longer (p < 0.01), but with a difference of no clinical significance. The highest-density BioRBC population importantly shortened RCS (p < 0.01 compared to the two intermediate densities). CONCLUSION This study provides evidence that BioRBCs labeled at four biotin densities can be used to independently and simultaneously measure short-term RCS and that BioRBCs labeled at the three lowest biotin densities can be used to accurately and simultaneously measure long-term RCS. Because the sheep RBC model is comparable to humans, this nonradioactive method has promise for use in RBC kinetic studies in neonates and pregnant women. PMID:22229348

  4. Sea Water Radiocarbon Evolution in the Gulf of Alaska: 2002 Observations

    SciTech Connect

    Guilderson, T P; Roark, E B; Quay, P D; Flood-Page, S R; Moy, C

    2005-04-08

    Oceanic uptake and transport of bomb radiocarbon as {sup 14}CO{sub 2} created by atmospheric nuclear weapons testing in the 1950s and 1960s has been a useful diagnostic to determine the carbon transfer between the ocean and atmosphere. In addition, the distribution of radiocarbon in the ocean can be used as a tracer of oceanic circulation. Results obtained from samples collected in the Gulf of Alaska in the summer of 2002 provide a direct comparison with results in the 1970s during GEOSECS and in the early 1990s during WOCE. The open gyre values are 20-40{per_thousand} more negative than those documented in 1991 and 1993 (WOCE) although the general trends as a function of latitude are reproduced. Surface values are still significantly higher than pre-bomb levels ({approx}-105{per_thousand} or lower). In the central gyre, we observe {Delta}{sup 14}C-values that are lower in comparison to GEOSECS (stn 218) and WOCE P16/P17 to a density of {approx}26.8{sigma}t. This observation is consistent with the overall decrease in surface {Delta}{sup 14}C values, and reflects the erosion of the bomb-{sup 14}C transient. We propose that erosion of the bomb-{sup 14}C transient is accomplished by entrainment of low {sup 14}C water via vertical exchange within the Gulf of Alaska and replenishment of surface and sub-thermocline waters with waters derived from the far northwest Pacific.

  5. Calibration of radiocarbon dates: tables based on the consensus data of the workshop on calibrating the radiocarbon time scale

    SciTech Connect

    Klein, J.; Lerman, J.C.; Damon, P.E.; Ralph, E.K.

    1982-01-01

    A calibration is presented for conventional radiocarbon ages ranging from 10 to 7240 years BP and thus covering a calendric range of 8000 years from 6050 BC to AD 1950. Distinctive features of this calibration include: (1) an improved data set consisting of 1154 radiocarbon measurements on samples of known age, (2) an extended range over which radiocarbon ages may be calibrated (an additional 530 years), (3) separate 95% confidence intervals (in tubular form) for six different radiocarbon uncertainties (20, 50, 100, 150, 200, 300 years), and (4) an estimate of the non-Poisson errors related to radiocarbon determinations, including an estimate of the systematic errors between laboratories.

  6. VOC RADIOCARBON MEASUREMENTS DURING SCOS97 AND EMISSIONS INVENTORY VALIDATION

    EPA Science Inventory

    Radiocarbon (14C) measurements provide an estimate of the fraction of carbon in a sample that is biogenic. In September 1997 during SCOS97 a series of 3-h canister samples of ambient air were collected at the Azusa air monitoring station during morning and afternoon periods. ...

  7. RADIOCARBON MEASUREMENTS ON PM-2.5 AMBIENT AEROSOL

    EPA Science Inventory

    Radiocarbon (14C) measurements provide an estimate of the fraction of carbon in a sample that is biogenic. The methodology has been extensively used in past wintertime studies to quantify the contribution of wood smoke to ambient aerosol. In summertime such measurements can p...

  8. VOC RADIOCARBON MEASUREMENTS DURING SCOS97 AND EMISSIONS INVENTORY VALIDATION

    EPA Science Inventory

    Radiocarbon (14C) measurements provide an estimate of the fraction of carbon in a sample that is biogenic. In September 1997 during SCOS97 a series of 3-h canister samples of ambient air were collected at the Azusa air monitoring station during morning and afternoon periods. ...

  9. Simple determination of the CO sub 2 /O sub 2 specificity of Ribulose-1,5-bisphosphate carboxylase/oxygenase by the specific radioactivity of ( sup 14 C) glycerate 3-phosphate

    SciTech Connect

    Genhai Zhu; Jensen, R.G.; Hallick, R.B.; Wildner, G.F. )

    1992-02-01

    A new method is presented for measurement of the CO{sub 2}/O{sub 2} specificity factor of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The ({sup 14}C)3-phosphoglycerate (PGA) from the Rubisco carboxylase reaction and its dilution by the Rubisco oxygenase reaction was monitored by directly measuring the specific radioactivity of PGA. {sup 14}CO{sub 2} fixation with Rubisco occurred under two reaction conditions: carboxylase with oxygenase with 40 micromolar CO{sub 2} in O{sub 2}-saturated water and carboxylase only with 160 micromolar CO{sub 2} under N{sub 2}. Detection of the specific radioactivity used the amount of PGA as obtained from the peak area, which was determined by pulsed amperometry following separation by high-performance anion exchange chromatography and the radioactive counts of the ({sup 14}C)PGA in the same peak. The specificity factor of Rubisco from spinach (Spinacia oleracea L.) (93 {plus minus} 4), from the green alga Chlamydomonas reinhardtii (66 {plus minus} 1), and from the photosynthetic bacterium Rhodospirillum rubrum (13) were comparable with the published values measured by different methods.

  10. Decadally resolved Lateglacial radiocarbon evidence from New Zealand kauri

    NASA Astrophysics Data System (ADS)

    Hogg, Alan; Southon, John; Turney, Chris; Palmer, Jonathan; Bronk Ramsey, Christopher; Fenwick, Pavla; Boswijk, Gretel; Büntgen, Ulf; Friedrich, Michael; Helle, Gerhard; Hughen, Konrad; Jones, Richard; Kromer, Bernd; Noronha, Alexandra; Reinig, Frederick; Reynard, Linda; Staff, Richard; Wacker, Lukas

    2017-04-01

    The Last Glacial-Interglacial Transition (LGIT; 15,000 - 11,000 cal BP) was characterised by complex spatiotemporal patterns of climate change, with numerous studies requiring accurate chronological control to decipher leads from lags in global palaeoclimatic, -environmental and archaeological records. However, close scrutiny of the few available tree-ring chronologies and radiocarbon-dated sequences composing the IntCal13 radiocarbon (14C) calibration curve, indicates significant weakness in 14C calibration across key periods of the LGIT. Here, we present a decadally-resolved atmospheric 14C record derived from New Zealand kauri spanning Greenland Stadial 1 (GS-1; 12,900 - 11,650 cal BP). Two floating kauri 14C time series, curve-matched to IntCal13, serve as a radiocarbon backbone through GS-1. Floating Northern Hemisphere (NH) 14C datasets are matched against the new kauri data, forming a robust NH 14C time series to 14,200 cal BP. Our results show that IntCal13 is questionable from 12,200 - 11,900 cal BP and the 10,400 BP 14C plateau is approximately five decades too short. By precisely aligning Southern and Northern Hemisphere tree-ring 14C records with marine 14C sequences, we document two relatively short periods of North Atlantic Meridional Overturning Circulation (AMOC) collapse during GS-1. Hence, sustained North Atlantic cooling across GS-1 was not driven by a prolonged AMOC reduction but was probably due to an equatorward migration of the Polar Front.

  11. Radiocarbon Content of Intermediate Waters off West Sumatra During the Last 45,000 Years

    NASA Astrophysics Data System (ADS)

    De Pol-Holz, R.; Mohtadi, M.; Southon, J. R.

    2014-12-01

    Radiocarbon content of intermediate waters originating from the Southern Ocean is held as a likely smoking gun of the events that triggered the atmospheric CO2 rise and its radiocarbon decline during the last glacial-interglacial transition. Late Glacial depleted radiocarbon water masses have been found at intermediate depths off the coast of Baja California, the Galapagos, the Arabian Sea, but not unequivocally elsewhere. Knowing the route of the old water is therefore central for the required mechanistic linkage of Southern Ocean processes and the atmospheric response. A common approach to search for the old water reservoir is the radiocarbon difference between planktonic and benthic foraminifera or 'apparent ventilation age'. Caveats of this approach are due to the fact that it relies strongly on the knowledge of the surface water reservoir age. In this study, we present a high-resolution radiocarbon difference between surface and intermediate depth waters off west Sumatra in the attempt to elucidate a possible route of the old water from its hypothetical source in the high latitudes near Antarctica on its way to the lower latitude sites where it has been observed. Samples come from core SO189-39KL (0°47'S, 99°55'E, 517 m), a 1350 cm hemipelagic sedimentary sequence that spans the last 45,000 years. Radiocarbon determinations were made at centennial time resolution on both planktonic and benthic species. Calibration of the planktonic radiocarbon as age control points allowed us to infer the Δ14C of the intermediate waters. Our results show that throughout the LGM and the entire deglaciation, radiocarbon content of intermediate depths in the area remained with an almost constant age difference with the contemporaneous atmosphere. Unless we have grossly underestimated the local planktonic reservoir age, our results discard this area as a probable route for the spreading of the old water along its way to northern latitudes. In light of recent evidence from the

  12. Fate of (/sup 14/C)xanthotoxin (8-methoxypsoralen) in a goat and in bovine ruminal fluid

    SciTech Connect

    Ivie, G.W.; Beier, R.C.; Bull, D.L.; Oertli, E.H.

    1986-04-01

    A lactating Nubian goat was treated with (/sup 14/C)xanthotoxin, a photosensitizing psoralen that occurs naturally in some phototoxic range plants, as a single oral dose equivalent to 10.0 mg of xanthotoxin/kg of body weight. The radiochemical was rapidly absorbed, metabolized, and excreted. Although expired air was not monitored for the presence of volatile radiocarbon, the data indicated that greater than 50% of the administered (/sup 14/C)xanthotoxin was metabolized by cleavage of the O-(/sup 14/C)methyl moiety, with subsequent loss of the label as, presumably, (/sup 14/C)CO/sub 2/. Studies with bovine ruminal fluid in vitro indicated that cleavage of the O-methyl moiety of xanthotoxin could occur rapidly in the rumen. In the goat, nonmetabolized xanthotoxin was not excreted in urine, and of several metabolites in urine extracts, 3 were identified as resulting from opening of the furan or lactone ring. Only about 2% of the dose was recovered in the feces, and this consisted mainly of unmetabolized xanthotoxin. Although appreciable amounts of radiocarbon were secreted into milk, this radiocarbon was not in the form of xanthotoxin or any identifiable metabolites. The radiocarbon in milk likely resulted from the biosynthetic incorporation of (/sup 14/C)CO/sub 2/ into normal milk components.

  13. Analysis of 14C and 13C in teeth provides precise birth dating and clues to geographical origin

    PubMed Central

    K, Alkass; BA, Buchholz; H, Druid; KL, Spalding

    2011-01-01

    The identification of human bodies in situations when there are no clues as to the person’s identity from circumstantial data, poses a difficult problem to investigators. The determination of age and sex of the body can be crucial in order to limit the search to individuals that are a possible match. We analyzed the proportion of bomb pulse derived carbon-14 (14C) incorporated in the enamel of teeth from individuals from different geographical locations. The ‘bomb pulse’ refers to a significant increase in 14C levels in the atmosphere caused by above ground test detonations of nuclear weapons during the cold war (1955-1963). By comparing 14C levels in enamel with 14C atmospheric levels systematically recorded over time, high precision birth dating of modern biological material is possible. Above ground nuclear bomb testing was largely restricted to a couple of locations in the northern hemisphere, producing differences in atmospheric 14C levels at various geographical regions, particularly in the early phase. Therefore, we examined the precision of 14C birth dating of enamel as a function of time of formation and geographical location. We also investigated the use of the stable isotope 13C as an indicator of geographical origin of an individual. Dental enamel was isolated from 95 teeth extracted from 84 individuals to study the precision of the 14C method along the bomb spike. For teeth formed before 1955 (N = 17), all but one tooth showed negative Δ14C values. Analysis of enamel from teeth formed during the rising part of the bomb-spike (1955-1963, N = 12) and after the peak (>1963, N = 66) resulted in an average absolute date of birth estimation error of 1.9 ±1.4 and 1.3 ± 1.0 years, respectively. Geographical location of an individual had no adverse effect on the precision of year of birth estimation using radiocarbon dating. In 46 teeth, measurement of 13C was also performed. Scandinavian teeth showed a substantially greater depression in average δ13C

  14. Analysis of 14C and 13C in teeth provides precise birth dating and clues to geographical origin.

    PubMed

    Alkass, K; Buchholz, B A; Druid, H; Spalding, K L

    2011-06-15

    The identification of human bodies in situations when there are no clues as to the person's identity from circumstantial data, poses a difficult problem to the investigators. The determination of age and sex of the body can be crucial in order to limit the search to individuals that are a possible match. We analyzed the proportion of bomb pulse derived carbon-14 ((14)C) incorporated in the enamel of teeth from individuals from different geographical locations. The 'bomb pulse' refers to a significant increase in (14)C levels in the atmosphere caused by above ground test detonations of nuclear weapons during the cold war (1955-1963). By comparing (14)C levels in enamel with (14)C atmospheric levels systematically recorded over time, high precision birth dating of modern biological material is possible. Above ground nuclear bomb testing was largely restricted to a couple of locations in the northern hemisphere, producing differences in atmospheric (14)C levels at various geographical regions, particularly in the early phase. Therefore, we examined the precision of (14)C birth dating of enamel as a function of time of formation and geographical location. We also investigated the use of the stable isotope (13)C as an indicator of geographical origin of an individual. Dental enamel was isolated from 95 teeth extracted from 84 individuals to study the precision of the (14)C method along the bomb spike. For teeth formed before 1955 (N=17), all but one tooth showed negative Δ(14)C values. Analysis of enamel from teeth formed during the rising part of the bomb-spike (1955-1963, N=12) and after the peak (>1963, N=66) resulted in an average absolute date of birth estimation error of 1.9±1.4 and 1.3±1.0 years, respectively. Geographical location of an individual had no adverse effect on the precision of year of birth estimation using radiocarbon dating. In 46 teeth, measurement of (13)C was also performed. Scandinavian teeth showed a substantially greater depression in

  15. Source and age of carbon in peatland surface waters: new insights from 14C analysis

    NASA Astrophysics Data System (ADS)

    Billett, Michael; Garnett, Mark; Dinsmore, Kerry; Leith, Fraser

    2013-04-01

    Peatlands are a significant source of carbon to the aquatic environment which is increasingly being recognised as an important flux pathway (both lateral and vertical) in total landscape carbon budgets. Determining the source and age of the carbon (in its various forms) is a key step to understanding the stability of peatland systems as well as the connectivity between the soil carbon pool and the freshwater environment. Novel analytical and sampling methods using molecular sieves have been developed for (1) within-stream, in situ sampling of CO2 in the field and (2) for the removal/separation of CO2 in the laboratory prior to 14C analysis of CH4. Here we present dual isotope (δ13C and 14C) data from freshwater systems in UK and Finnish peatlands to show that significant differences exist in the source and age of CO2, DOC (dissolved organic carbon) and POC (particulate organic carbon). Individual peatlands clearly differ in terms of their isotopic freshwater signature, suggesting that carbon cycling may be "tighter" in some systems compared to others. We have also measured the isotopic signature of different C species in peatland pipes, which appear to be able to tap carbon from different peat depths. This suggests that carbon cycling and transport within "piped-peatlands" may be more complex than previously thought. Some of our most recent work has focussed on the development of a method to measure the 14C component of CH4 in freshwaters. Initial results suggest that CH4 in peatland streams is significantly older than CO2 and derived from a much deeper source. We have also shown that the age (but not the source) of dissolved CO2 changes over the hydrological year in response to seasonal changes in discharge and temperature. Radiocarbon measurements in the peat-riparian-stream system suggest that a significant degree of connectivity exists in terms of C transport and cycling, although the degree of connectivity differs for individual C species. In summary, 14C

  16. Insights into soil carbon dynamics across climatic and geologic gradients from time-series and fraction-specific radiocarbon analysis

    NASA Astrophysics Data System (ADS)

    van der Voort, Tessa Sophia; Hagedorn, Frank; Zell, Claudia; McIntyre, Cameron; Eglinton, Tim

    2016-04-01

    Understanding the interaction between soil organic matter (SOM) and climatic, geologic and ecological factors is essential for the understanding of potential susceptibility and vulnerability to climate and land use change. Radiocarbon constitutes a powerful tool for unraveling SOM dynamics and is increasingly used in studies of carbon turnover. The complex and inherently heterogeneous nature of SOM renders it challenging to assess the processes that govern SOM stability by solely looking at the bulk signature on a plot-scale level. This project combines bulk radiocarbon measurements on a regional-scale spanning wide climatic and geologic gradients with a more in-depth approach for a subset of locations. For this subset, time-series and carbon pool-specific radiocarbon data has been acquired for both topsoil and deeper soils. These well-studied sites are part of the Long-Term Forest Ecosystem Research (LWF) program of the Swiss Federal Institute for Forest, Snow and Landscape research (WSL). Statistical analysis was performed to examine relationships of radiocarbon signatures with variables such as temperature, precipitation and elevation. Bomb-curve modeling was applied determine carbon turnover using time-series data. Results indicate that (1) there is no significant correlation between Δ14C signature and environmental conditions except a weak positive correlation with mean annual temperature, (2) vertical gradients in Δ14C signatures in surface and deeper soils are highly similar despite covering disparate soil-types and climatic systems, and (3) radiocarbon signatures vary significantly between time-series samples and carbon pools. Overall, this study provides a uniquely comprehensive dataset that allows for a better understanding of links between carbon dynamics and environmental settings, as well as for pool-specific and long-term trends in carbon (de)stabilization.

  17. Understanding the production and retention of in situ cosmogenic 14C in polar firn

    NASA Astrophysics Data System (ADS)

    Hmiel, B.; Petrenko, V. V.; Dyonisius, M.; Smith, A.; Schmitt, J.; Buizert, C.; Place, P., Jr.; Harth, C. M.; Beaudette, R.; Hua, Q.; Yang, B.; Vimont, I.; Kalk, M.; Weiss, R. F.; Severinghaus, J. P.; Brook, E.; White, J. W. C.

    2016-12-01

    Radiocarbon in CO2, CO and CH4 trapped in polar ice is of interest for dating of ice cores, studies of past solar activity and cosmic ray flux, as well as studies of the paleoatmospheric CH4 budget. The major difficulty with interpreting 14C measurements in ice cores stems from the fact that the measured 14C represents a combination of trapped paleoatmospheric 14C and 14C that is produced within the firn and ice lattice by secondary cosmic ray particles. This in situ cosmogenic 14C component in ice is at present poorly understood. Prior ice core 14C studies show conflicting results with regard to the retention of in situ cosmogenic 14C in polar firn and partitioning of this 14C among CO2, CO and CH4. Our study aims to comprehensively characterize the 14C of CO2, CO, and CH4 in both the air and the ice matrix throughout the firn column at Summit, Greenland. We will present preliminary measurements of 14C in Summit firn air and the firn matrix, along with initial interpretations with regard to in situ cosmogenic 14C retention. Preliminary results from firn air indicate a 14CO increase with depth in the lock-in zone resulting from in situ production by muons, as well as a lock-in zone 14CO2 bomb peak originating from nuclear testing in the late 1950s and early 1960s. A decrease in 14CH4 with depth is observed in the lock-in zone that is in agreement with observations of increasing atmospheric 14CH4 over the past several decades. We observe that only a small fraction of in-situ produced 14CO, 14CH4 and 14CO2 is retained in the firn matrix. Additionally, we describe progress in the development of a field-portable sublimation apparatus for extraction of CO2 from firn and ice for 14C measurements.

  18. Chlorophyll a specific Δ14C, δ13C and δ15N values in stream periphyton: implications for aquatic food web studies

    NASA Astrophysics Data System (ADS)

    Ishikawa, N. F.; Yamane, M.; Suga, H.; Ogawa, N. O.; Yokoyama, Y.; Ohkouchi, N.

    2015-07-01

    We determined the isotopic composition of chlorophyll a in periphytic algae attached to a streambed substrate (periphyton). The samples were collected from a stream flowing on limestone bedrock in the Seri River, central Japan. Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) and natural radiocarbon abundances (Δ14C) were measured in chlorophyll a (δ13Cchl, δ15Nchl and Δ14Cchl) and bulk (δ13Cbulk, δ15Nbulk and Δ14Cbulk) for periphyton, pure aquatic primary producer (Cladophora sp.) and terrestrial primary producer (Quercus glauca). Periphyton δ13Cbulk and δ13Cchl values did not necessarily correspond to δ13Cbulk for an algal-grazing specialist (Mayfly larva, Epeorus latifolium), suggesting that periphyton δ13C values do not faithfully trace carbon transfer between primary producers and primary consumers. Periphyton Δ14Cchl values (-258 ‰ in April and -190 ‰ in October) were slightly lower than Δ14Cbulk values (-228 ‰ in April and -179 ‰ in October), but were close to the Δ14C value for dissolved inorganic carbon (DIC) (-217 ± 31 ‰), which is a mixture of weathered carbonates (Δ14C = -1000 ‰) and dissolved atmospheric CO2 (Δ14C approximately +30 ‰ in 2013). Δ14Cchl values were also close to Δ14Cbulk for E. latifolium (-215 ‰ in April and -199 ‰ in October) and Cladophora sp. (-210 ‰), whereas the Δ14Cbulk value for Q. glauca (+27 ‰) was closer to Δ14C for atmospheric CO2. Although the bulk isotopic composition of periphyton is recognised as a surrogate for the photosynthetic algal community, natural periphyton is a mixture of aquatic and terrestrial organic materials. Our results indicate that the bulk periphyton matrix at the study site consists of 89 to 95 % algal carbon (derived from 14C-depleted DIC) and 5 to 11 % terrestrial organic carbon (derived from 14C-enriched atmospheric CO2).

  19. The radiocarbon hydroxyl technique

    NASA Technical Reports Server (NTRS)

    Campbell, Malcolm J.; Sheppard, John C.

    1994-01-01

    The Radiocarbon Technique depends upon measuring the rate of oxidation of CO in an essentially unperturbed sample of air. The airborne technique is slightly different. Hydroxyl concentrations can be calculated directly; peroxyl concentrations can be obtained by NO doping.

  20. The radiocarbon hydroxyl technique

    NASA Technical Reports Server (NTRS)

    Campbell, Malcolm J.; Sheppard, John C.

    1994-01-01

    The Radiocarbon Technique depends upon measuring the rate of oxidation of CO in an essentially unperturbed sample of air. The airborne technique is slightly different. Hydroxyl concentrations can be calculated directly; peroxyl concentrations can be obtained by NO doping.

  1. Constraining the shallow subtropical overturning circulation with archived radiocarbon records

    NASA Astrophysics Data System (ADS)

    Rosenheim, B. E.; Swart, P. K.; Thorrold, S. R.; Roberts, M. L.

    2007-12-01

    Archived radiocarbon records in accretionary skeletons can be used to constrain the shallow overturning subtropical cells (STC's) that transport significant amounts of tropical heat poleward in the world's oceans. Radiocarbon values of DIC in the world's oceans reflect a continuum between waters residing on the surface over long periods (high Δ14C due to equilibration with "modern" atmosphere) and waters decoupled from the atmosphere in the abyss (low Δ14C due to radioisotope decay), as well as mixtures between water masses of different ages. Thus, measurements of radiocarbon have demonstrated utility in assessing convective heat tranport such as the Meridional Overturning Circulation that is central to global climate. A prominent radiocarbon gradient is also present between the subsiding subtropical surface waters and the upwelling equatorial surface waters in the world's oceans due to the presence of STC's. These convection cells transport a major proportion of tropical heat in the Pacific and a significant proportion of tropical heat in the Atlantic towards the poles. Archived radiocarbon records in surface corals and subsurface sclerosponges constrain the N. Atlantic STC's on a centennial time scale. Published short records from Cape Verde corals indicate significant changes in radiocarbon content; this is potentially related to migration of the front between upwelled tropical waters and downwelled subtropical waters. An approach is outlined to estimate the proportion of tropical to subtropical waters at Cape Verde using as endmembers high-resolution sclerosponge radiocarbon records from Bahamas subsurface waters and coral radiocarbon records from São Tome and Principe in the Gulf of Guinea. Preliminary data from Bahamas sclerosponges indicate the need for high-resolution subsampling of the skeletons. Initial novel AMS measurements from fine scale laser-decomposition of the skeletons are presented.

  2. Radiocarbon Releases from the 2011 Fukushima Nuclear Accident

    NASA Astrophysics Data System (ADS)

    Xu, Sheng; Cook, Gordon T.; Cresswell, Alan J.; Dunbar, Elaine; Freeman, Stewart P. H. T.; Hou, Xiaolin; Jacobsson, Piotr; Kinch, Helen R.; Naysmith, Philip; Sanderson, David C. W.; Tripney, Brian G.

    2016-11-01

    Radiocarbon activities were measured in annual tree rings for the years 2009 to 2015 from Japanese cedar trees (Cryptomeria japonica) collected at six sites ranging from 2.5-38 km northwest and north of the Fukushima Dai-ichi nuclear power plant. The 14C specific activity varied from 280.4 Bq kg-1 C in 2010 to 226.0 Bq kg-1 C in 2015. The elevated 14C activities in the 2009 and 2010 rings confirmed 14C discharges during routine reactor operations, whereas those activities that were indistinguishable from background in 2012-2015 coincided with the permanent shutdown of the reactors after the accident in 2011. High-resolution 14C analysis of the 2011 ring indicated 14C releases during the Fukushima accident. The resulted 14C activity decreased with increasing distance from the plant. The maximum 14C activity released during the period of the accident was measured 42.4 Bq kg-1 C above the natural ambient 14C background. Our findings indicate that, unlike other Fukushima-derived radionuclides, the 14C released during the accident is indistinguishable from ambient background beyond the local environment (~30 km from the plant). Furthermore, the resulting dose to the local population from the excess 14C activities is negligible compared to the dose from natural/nuclear weapons sources.

  3. Radiocarbon Releases from the 2011 Fukushima Nuclear Accident

    PubMed Central

    Xu, Sheng; Cook, Gordon T.; Cresswell, Alan J.; Dunbar, Elaine; Freeman, Stewart P. H. T.; Hou, Xiaolin; Jacobsson, Piotr; Kinch, Helen R.; Naysmith, Philip; Sanderson, David C. W.; Tripney, Brian G.

    2016-01-01

    Radiocarbon activities were measured in annual tree rings for the years 2009 to 2015 from Japanese cedar trees (Cryptomeria japonica) collected at six sites ranging from 2.5–38 km northwest and north of the Fukushima Dai-ichi nuclear power plant. The 14C specific activity varied from 280.4 Bq kg−1 C in 2010 to 226.0 Bq kg−1 C in 2015. The elevated 14C activities in the 2009 and 2010 rings confirmed 14C discharges during routine reactor operations, whereas those activities that were indistinguishable from background in 2012–2015 coincided with the permanent shutdown of the reactors after the accident in 2011. High-resolution 14C analysis of the 2011 ring indicated 14C releases during the Fukushima accident. The resulted 14C activity decreased with increasing distance from the plant. The maximum 14C activity released during the period of the accident was measured 42.4 Bq kg−1 C above the natural ambient 14C background. Our findings indicate that, unlike other Fukushima-derived radionuclides, the 14C released during the accident is indistinguishable from ambient background beyond the local environment (~30 km from the plant). Furthermore, the resulting dose to the local population from the excess 14C activities is negligible compared to the dose from natural/nuclear weapons sources. PMID:27841312

  4. Foraminiferal radiocarbon record of northeast Pacific decadal subsurface variability

    NASA Astrophysics Data System (ADS)

    Roach, Lydia D.; Charles, Christopher D.; Field, David B.; Guilderson, Thomas P.

    2013-09-01

    The decadal dynamics of the subsurface North Pacific Ocean are largely inaccessible beyond sparse instrumental observations spanning the last 20 years. Here we present a ˜200 year long record of benthic foraminiferal radiocarbon14C), extracted at biennial resolution from the annually laminated sediments at the Santa Barbara Basin (SBB) depocenter (˜600 m). The close match between core top benthic foraminiferal Δ14C values and the Δ14C of seawater dissolved inorganic carbon (DIC) suggests that benthic foraminifera faithfully capture the bottom water radiocarbon concentrations, as opposed to that of the deeper (>0.5 cm) sediment porewater zone. The full time series of benthic foraminiferal Δ14C displays significant variability on decadal timescales, with excursions on the order of 40‰. These excursions are overprinted by a unidirectional trend over the late 20th century that likely reflects the sedimentary incorporation of bomb radiocarbon (via remineralized particulate organic carbon). We isolate this trend by means of a one-dimensional oxidation model, which considers the possible contribution of remineralized particles to the total ambient carbon pool. This oxidation model also considers the possible influence of carbon with a variety of sources (ages). Though variable oxidation of preaged carbon could exert a strong influence on benthic foraminiferal radiocarbon variability, the totality of evidence points to the vertical density structure along the Southern California Margin (SCM) as the primary driver of the SBB benthic foraminiferal Δ14C record. For example, intervals characterized by significantly lower Δ14C values correspond to periods of enhanced upwelling and subsurface equatorward flow along the SCM.

  5. TMEM14C is required for erythroid mitochondrial heme metabolism

    PubMed Central

    Yien, Yvette Y.; Robledo, Raymond F.; Schultz, Iman J.; Takahashi-Makise, Naoko; Gwynn, Babette; Bauer, Daniel E.; Dass, Abhishek; Yi, Gloria; Li, Liangtao; Hildick-Smith, Gordon J.; Cooney, Jeffrey D.; Pierce, Eric L.; Mohler, Kyla; Dailey, Tamara A.; Miyata, Non; Kingsley, Paul D.; Garone, Caterina; Hattangadi, Shilpa M.; Huang, Hui; Chen, Wen; Keenan, Ellen M.; Shah, Dhvanit I.; Schlaeger, Thorsten M.; DiMauro, Salvatore; Orkin, Stuart H.; Cantor, Alan B.; Palis, James; Koehler, Carla M.; Lodish, Harvey F.; Kaplan, Jerry; Ward, Diane M.; Dailey, Harry A.; Phillips, John D.; Peters, Luanne L.; Paw, Barry H.

    2014-01-01

    The transport and intracellular trafficking of heme biosynthesis intermediates are crucial for hemoglobin production, which is a critical process in developing red cells. Here, we profiled gene expression in terminally differentiating murine fetal liver-derived erythroid cells to identify regulators of heme metabolism. We determined that TMEM14C, an inner mitochondrial membrane protein that is enriched in vertebrate hematopoietic tissues, is essential for erythropoiesis and heme synthesis in vivo and in cultured erythroid cells. In mice, TMEM14C deficiency resulted in porphyrin accumulation in the fetal liver, erythroid maturation arrest, and embryonic lethality due to profound anemia. Protoporphyrin IX synthesis in TMEM14C-deficient erythroid cells was blocked, leading to an accumulation of porphyrin precursors. The heme synthesis defect in TMEM14C-deficient cells was ameliorated with a protoporphyrin IX analog, indicating that TMEM14C primarily functions in the terminal steps of the heme synthesis pathway. Together, our data demonstrate that TMEM14C facilitates the import of protoporphyrinogen IX into the mitochondrial matrix for heme synthesis and subsequent hemoglobin production. Furthermore, the identification of TMEM14C as a protoporphyrinogen IX importer provides a genetic tool for further exploring erythropoiesis and congenital anemias. PMID:25157825

  6. Intermediate Water Radiocarbon Anomalies During the Last Deglaciation

    NASA Astrophysics Data System (ADS)

    Bryan, S. P.; Lehman, S. J.; Marchitto, T. M.; Ninnemann, U. S.

    2011-12-01

    Several recent reconstructions of intermediate water radiocarbon activities (Δ14C) have revealed intervals of very low Δ14C during the last deglaciation [Bryan et al., 2010; Marchitto et al., 2007; Thornalley et al., 2011]. Anomalously low Δ14C values coincided with increases in atmospheric CO2 and decreases in atmospheric Δ14C. As such, these Δ14C anomalies have been interpreted as the transfer of 14C-depleted carbon from the deep ocean to the upper ocean and atmosphere. An important component of this interpretation is the transport of low-Δ14C waters from the Southern Ocean, where they presumably upwelled from the deep ocean, northward to the core sites via intermediate waters. However, contrary to expectations, anomalously low Δ14C values have not been found at intermediate water sites closer to the Southern Ocean [e.g., De Pol-Holz et al., 2009; Rose et al., 2010]. In this talk, we will present new intermediate water Δ14C measurements from ~53°S along the Chile Margin, reconstructed using sediment core MD07-3128. Consistent with other intermediate water records from the Southern Hemisphere, these measurements do not show anomalously low Δ14C during the deglaciation. Instead, these results indicate lower Δ14C values during the Last Glacial Maximum and a rapid increase in Δ14C at the start of the deglaciation. We interpret this change as a shift in the boundary between Circumpolar Deep Water and Antarctic Intermediate Water. These results along with the previously published records provide strong evidence that low-Δ14C waters were not transported by an intermediate water mass analogous to modern Antarctic Intermediate Water. We synthesize the currently available deglacial intermediate water Δ14C records and discuss possible changes to Southern Ocean intermediate water formation, which could reconcile the available data.

  7. Time since death and decay rate constants of Norway spruce and European larch deadwood in subalpine forests determined using dendrochronology and radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Petrillo, Marta; Cherubini, Paolo; Fravolini, Giulia; Marchetti, Marco; Ascher-Jenull, Judith; Schärer, Michael; Synal, Hans-Arno; Bertoldi, Daniela; Camin, Federica; Larcher, Roberto; Egli, Markus

    2016-03-01

    100 years in larch CWD. Consequently, the decay of Picea abies and Larix decidua is very low. Several uncertainties, however, remain: 14C dating of CWD from decay classes 4 and 5 and having a pre-bomb age is often difficult (large age range due to methodological constraints) and fall rates of both European larch and Norway spruce are missing.

  8. No evidence for a deglacial intermediate water Δ 14C anomaly in the SW Atlantic

    NASA Astrophysics Data System (ADS)

    Sortor, Rachel N.; Lund, David C.

    2011-10-01

    The last deglaciation was characterized by an increase in atmospheric pCO 2 and decrease in atmospheric radiocarbon activity. One hypothesis is that these changes were due to out-gassing of 14C-depleted carbon from the abyssal ocean. Reconstructions of foraminiferal Δ 14C from the eastern tropical Pacific, Arabian Sea, and high latitude North Atlantic show that severe depletions in 14C occurred at intermediate water depths during the last deglaciation. It has been suggested that 14C-depleted water from the abyss upwelled in the Southern Ocean and was then carried by Antarctic Intermediate Water (AAIW) to these sites. However, locations in the South Pacific in the direct path of modern-day AAIW do not exhibit the Δ 14C excursion and therefore cast doubt upon the AAIW mechanism ( De Pol-Holz et al., 2010; Rose et al., 2010). Here we evaluate whether or not a deglacial 14C anomaly occurred at intermediate depths in the Southwest Atlantic. We find that the deglacial benthic Δ 14C trend at our site is similar to the atmospheric Δ 14C trend. Our results are also largely consistent with results from U/Th-dated corals at shallower water depths on the Brazil Margin (Mangini et al., 2010). We find no evidence in the southwestern Atlantic of a ~ 300‰ decrease in intermediate water Δ 14C from 18 to 14 kyr BP like that observed in the eastern tropical Pacific ( Marchitto et al., 2007). When our results are paired with those from the South Pacific, it appears AAIW did not carry a highly 14C-depleted signal during the deglaciation. Another source of carbon is apparently required to explain the intermediate-depth Δ 14C anomalies in the North Atlantic, Indian, and Pacific Oceans.

  9. The fate of {sup 14}C-pyrene and {sup 14}C-chrysene in soils amended with a PAH mixture

    SciTech Connect

    Guthrie, E.; Thompkins, J.; Pfaender, F.

    1995-12-31

    Polycyclic Aromatic Hydrocarbons (PAH) are ubiquitous environmental contaminants at many hazardous waste sites. Microbial processes are known to influence the fate of PAH in soils and can effect PAH structure, toxicity, bioavailability, and association with soil organic matter (SOM). Experiments were conducted to determine the extent of {sup 14}C-pyrene or {sup 14}C-chrysene associations with soil organic matter (SOM) in soils amended with a PAH mixture and either a [4,5,9,10-{sup 14}C]pyrene or [5,6,11,12-{sup 14}C] chrysene tracer. Changes in microbial respiration ({sup 14}CO{sub 2} efflux), {sup 14}C-volatile organics, {sup 14}C-water soluble metabolites, and {sup 14}C-SOM were measured over time in continuously, aerated microcosms. The bioavailability of {sup 14}C-products in SOM fractions was determined using a mineralization endpoint assay. Extracts of {sup 14}C products in SOM fractions were tested for acute and chronic toxicity using Microtox{trademark}. The {sup 14}C-products associated with residual soil fractions were further extracted with HF/HCI and methylene chloride and then analyzed with LC-MS. The presence of a PAH mixture enhanced {sup 14}C-pyrene mineralization in non-adapted, pristine soils to a greater extent than {sup 14}C-pyrene mineralization observed in pristine soils amended with a known PAH-mineralizing, microbial community. Mineralization of {sup 14}C-chrysene in non-adapted, pristine soils was greater than NaN{sup 3} abiotic, control soils, but significantly less than {sup 14}C-chrysene mineralization in pristine soils amended with a known PAH-mineralizing, microbial community. The major fate of {sup 14}C-pyrene, {sup 14}C-chrysene, and PAH mixtures is association with SOM.

  10. Oceanic radiocarbon: Separation of the natural and bomb components

    NASA Astrophysics Data System (ADS)

    Broecker, Wallace S.; Sutherland, Stewart; Smethie, William; Peng, Tsung-Hung; Ostlund, Gote

    1995-06-01

    An improved method has been developed for the separation of the natural and bomb components of the radiocarbon in the ocean. The improvement involves the use of a very strong correlation between natural radiocarbon and dissolved silica. This method is applied to radiocarbon measurements made on samples collected during the Geochemical Ocean Sections Study (GEOSECS), Transient Tracers in the Ocean (TTO) and South Atlantic Ventilation Experiment (SAVE) expeditions. On the basis of this new separation we provide not only an estimate of the global inventory of bomb 14C at the time of the GEOSECS survey but also the distribution of bomb radiocarbon along four thermocline isopycnals in each ocean. We also document the evolution of the bomb 14C inventory and penetration along thermocline isopycnals in the North Atlantic Ocean between the times of the GEOSECS (1972-1973) and TTO (1980-1982) surveys and in the South Atlantic Ocean between the times of the GEOSECS (1973) and SAVE (1987-1989) surveys. In addition, we show that the bomb tritium to bomb 14C ratio (expressed in the tritium unit (TU) 81 units/100‰) for waters entering the thermocline of the northern hemisphere is about 9 times higher than for those entering the southern hemisphere thermocline. This contrast offers long-term potential as an indicator of inter-hemispheric transport of upper ocean waters.

  11. A complete terrestrial radiocarbon record for 11.2 to 52.8 kyr B.P.

    PubMed

    Bronk Ramsey, Christopher; Staff, Richard A; Bryant, Charlotte L; Brock, Fiona; Kitagawa, Hiroyuki; van der Plicht, Johannes; Schlolaut, Gordon; Marshall, Michael H; Brauer, Achim; Lamb, Henry F; Payne, Rebecca L; Tarasov, Pavel E; Haraguchi, Tsuyoshi; Gotanda, Katsuya; Yonenobu, Hitoshi; Yokoyama, Yusuke; Tada, Ryuji; Nakagawa, Takeshi

    2012-10-19

    Radiocarbon ((14)C) provides a way to date material that contains carbon with an age up to ~50,000 years and is also an important tracer of the global carbon cycle. However, the lack of a comprehensive record reflecting atmospheric (14)C prior to 12.5 thousand years before the present (kyr B.P.) has limited the application of radiocarbon dating of samples from the Last Glacial period. Here, we report (14)C results from Lake Suigetsu, Japan (35°35'N, 135°53'E), which provide a comprehensive record of terrestrial radiocarbon to the present limit of the (14)C method. The time scale we present in this work allows direct comparison of Lake Suigetsu paleoclimatic data with other terrestrial climatic records and gives information on the connection between global atmospheric and regional marine radiocarbon levels.

  12. Radiocarbon dating of open systems with bomb effect

    SciTech Connect

    McKay, C.P.; Long, A.; Friedmann, E.I.

    1986-03-10

    The application of radiocarbon dating is extended to include systems that are slowly exchanging carbon with the atmosphere. Simple formulae are derived that relate the true age and the exchange rate of carbon to the apparent radiocarbon age. A radiocarbon age determination does not give a unique true age and exchange rate but determines a locus of values bounded by a minimum age and a minimum exchange rate. It is found that for radiocarbon ages as large as 10,000 years it is necessary to correct for the anthropogenic radiocarbon produced in the atmosphere by nuclear weapons testing. A one-term exponential approximation, with an e-folding time of 14.43 years, is used to model this effect and is shown to be accurate to within 3% for exchange time constants of 100 years and greater. The approach developed here is not specific to radiocarbon and can be applied to other radioisotopes in open systems.

  13. Radiocarbon dating of open systems with bomb effect

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.; Long, A.; Friedmann, E. I.

    1986-01-01

    The application of radiocarbon dating is extended to include systems that are slowly exchanging carbon with the atmosphere. Simple formulae are derived that relate the true age and the exchange rate of carbon to the apparent radiocarbon age. A radiocarbon age determination does not give a unique true age and exchange rate but determines a locus of values bounded by a minimum age and a minimum exchange rate. It is found that for radiocarbon ages as large as 10,000 years it is necessary to correct for the anthropogenic radiocarbon produced in the atmosphere by nuclear weapons testing. A one-term exponential approximation, with an e-folding time of 14.43 years, is used to model this effect and is shown to be accurate to within 3 percent for exchange time constants of 100 years and greater. The approach developed here is not specific to radiocarbon and can be applied to other radioisotopes in open systems.

  14. Eastern North Atlantic deep-sea corals: tracing upper intermediate water Δ 14C during the Holocene

    NASA Astrophysics Data System (ADS)

    Frank, Norbert; Paterne, Martine; Ayliffe, Linda; van Weering, Tjeerd; Henriet, Jean-Pierre; Blamart, Dominique

    2004-03-01

    Paired 230Th/U and 14C dating were performed on deep-sea corals (Lophelia pertusa and Madrepora oculata) from the northeastern North Atlantic at ∼730 m bsl to investigate past changes of the thermohaline circulation. These were estimated using the Δ14C value of the upper intermediate waters, based on the 14C ages of the top and base of each coral, where possible, and the 230Th/U dating. The reliability of these estimates was checked by dating two very young corals of the species L. pertusa. One of these corals, collected alive in 1999 AD, gave a 230Th/U age of 1995±4 AD after correction for non-radiogenic 230Th. Another coral, the top of which dated to 1969±6 AD, recorded the atmospheric 14C/12C increase due to the nuclear tests in the early 1960s. The calculated Δ14C values from these two corals agree with those measured at GEOSECS Station 23 in 1972-1973 [Östlund et al., Earth Planet. Sci. Lett. 23 (1974) 69-86] and 1991-1992 [Nydal and Gisfelos, Radiocarbon 38 (1996) 389-406]. This, together with the 100% aragonite content and the δ234U and 230Th/232Th values of all the dated corals, indicates that none of the corals behaved as open systems with respect to their U-series nuclides and that they closely represent the water mass properties in which they lived. The pre-anthropogenic Δ14C value of the North Atlantic intermediate waters was estimated at -69±4‰. The reservoir age varies from ∼400 years to ∼600 years, and this variation is due to atmospheric 14C/12C changes. A reservoir age of 610±80 years, close to the pre-anthropogenic value, was determined from one coral dated at 10 430±120 cal yr BP, when the global sea level was approximately at -35 m [Bard et al., Nature 382 (1996) 241-244]. This suggests a modern-like pattern of the oceanic circulation prevailed in the Northeast Atlantic Ocean at this time although the deglaciation was not completely achieved.

  15. Kinetics of metabolism of organic and inorganic 14C compounds.

    PubMed

    Vasilenko IYa; Bugryshev, P F; Istomina, A G; Turova, V I

    1982-01-01

    Results of experimental studies on the dynamics of metabolism of various inorganic (NA2CO3, K2CO3, CaCO3) and organic (glucose, glycine, palmitic and succinic acids, ethanol and methanol) compounds of 14C after its single and long-term administration into the organism of rats are presented. The values of the corresponding rates of accumulation of 14C and the onset of the state of equilibrium after long-term administration of the radionuclide were elucidated for a number of compounds. Results of the studies can find practical application in norm-setting. The corresponding rate of accumulation in man of 14C taken in the diet was determined by extrapolation of the experimental data. It was found to be approximately 30. The state of practical 14C equilibrium in man occurs approximately 11/2 years after the beginning of the intake.

  16. Analysis and Characterization of Organic Carbon in Early Holocene Wetland Paleosols using Ramped Pyrolysis 14C and Biomarkers

    NASA Astrophysics Data System (ADS)

    Vetter, L.; Schreiner, K. M.; Fernandez, A.; Rosenheim, B. E.; Tornqvist, T. E.

    2014-12-01

    Radiocarbon analyses are a key tool for quantifying the dynamics of carbon cycling and storage in both modern soils and Quaternary paleosols. Frequently, bulk 14C dates of paleosol organic carbon provide ages older than the time of soil burial, and 14C dates of geochemical fractions such as alkali and acid extracts (operationally defined as humic acids) can provide anomalously old ages when compared to coeval plant macrofossil dates. Ramped pyrolysis radiocarbon analysis of sedimentary organic material has been employed as a tool for investigating 14C age spectra in sediments with multiple organic carbon sources. Here we combine ramped pyrolysis 14C analysis and biomarker analysis (lignin-phenols and other cupric oxide products) to provide information on the source and diagenetic state of the paleosol organic carbon. We apply these techniques to immature early Holocene brackish wetland entisols from three sediment cores in southeastern Louisiana, along with overlying basal peats. Surprisingly, we find narrow 14C age spectra across all thermal aliquots from both paleosols and peats. The weighted bulk 14C ages from paleosols and overlying peats are within analytical error, and are comparable to independently analyzed 14C AMS dates from charcoal fragments and other plant macrofossils from each peat bed. Our results suggest high turnover rates of carbon in soils relative to input of exogenous carbon sources. These data raise broader questions about processes within the active soil and during pedogenesis and burial of paleosols that can effectively homogenize radiocarbon content in soils across the thermochemical spectrum. The concurrence of paleosol and peat 14C ages also suggests that, in the absence of peats with identifiable plant macrofossils, ramped pyrolysis 14C analyses of paleosols may be used to provide ages for sea-level indicators.

  17. The 14C Record in Bristlecone Pine Wood of the past 8000 Years Based on the Dendrochronology of the Late C. W. Ferguson

    NASA Astrophysics Data System (ADS)

    Suess, H. E.; Linick, T. W.

    1990-04-01

    When, in 1950, Willard Libby and his coworkers obtained their first radiocarbon (14C) dates, C. W. Ferguson at the University of Arizona Tree Ring Laboratory was working on establishing a continuous tree ring series for the newly discovered bristlecone pine Pinus aristata. Before his untimely death in 1986, he had extended the series nearly 8000 years into the past. From the Ferguson series I obtained for 14C determinations wood samples grown at various times. Also, two other laboratories obtained such samples. For B.C. times in particular, our measured 14C-values that deviated consistently from those calculated from tree rings, and the deviations increased with age. This general trend was observed by other laboratories, but the presence of deviations from these trends, of the so-called `wiggles', was questioned by other workers. To me these wiggles indicated the existence of a most interesting geophysical parameter valid for the whole terrestrial atmosphere. Fourier spectra obtained at my request by Kruse in 1972, and by Neftel, demonstrated the consistency of the results, and supported my contention that the secular variations of 14C in atmospheric CO2 are related to variations of solar activity.

  18. Towards constraining the stratosphere-troposphere exchange of radiocarbon: strategies of stratospheric 14CO2 measurements using AirCore

    NASA Astrophysics Data System (ADS)

    Chen, Huilin; Paul, Dipayan; Meijer, Harro; Miller, John; Kivi, Rigel; Krol, Maarten

    2016-04-01

    Radiocarbon (14C) plays an important role in the carbon cycle studies to understand both natural and anthropogenic carbon fluxes, but also in atmospheric chemistry to constrain hydroxyl radical (OH) concentrations in the atmosphere. Apart from the enormous 14C emissions from nuclear bomb testing in the 1950s and 1960s, radiocarbon is primarily produced in the stratosphere due to the cosmogenic production. To this end, better understanding the stratospheric radiocarbon source is very useful to advance the use of radiocarbon for these applications. However, stratospheric 14C observations have been very limited so that there are large uncertainties on the magnitude and the location of the 14C production as well as the transport of radiocarbon from the stratosphere to the troposphere. Recently we have successfully made stratospheric 14C measurements using AirCore samples from Sodankylä, Northern Finland. AirCore is an innovative atmospheric sampling system, which passively collects atmospheric air samples into a long piece of coiled stainless steel tubing during the descent of a balloon flight. Due to the relatively low cost of the consumables, there is a potential to make such AirCore profiling in other parts of the world on a regular basis. In this study, we simulate the 14C in the atmosphere and assess the stratosphere-troposphere exchange of radiocarbon using the TM5 model. The Sodankylä radiocarbon measurements will be used to verify the performance of the model at high latitude. Besides this, we will also evaluate the influence of different cosmogenic 14C production scenarios and the uncertainties in the OH field on the seasonal cycles of radiocarbon and on the stratosphere-troposphere exchange, and based on the results design a strategy to set up a 14C measurement program using AirCore.

  19. RADIOCARBON MEASUREMENT OF THE BIOGENIC CONTRIBUTION TO SUMMERTIME PM 2.5 AMBIENT AEROSOL IN NASHVILLE, TN

    EPA Science Inventory

    Radiocarbon (14C) measurements performed on PM-2.5 samples collected near Nashville, TN from June 21 to July 13, 1999, showed high levels of modern carbon, ranging from 56 to 80% of the total carbon in the samples. Radiocarbon measurements performed on dichloromethane extracts of...

  20. Large 14C excursion in 5480 BC indicates an abnormal sun in the mid-Holocene

    NASA Astrophysics Data System (ADS)

    Miyake, Fusa; Jull, A. J. Timothy; Panyushkina, Irina P.; Wacker, Lukas; Salzer, Matthew; Baisan, Christopher H.; Lange, Todd; Cruz, Richard; Masuda, Kimiaki; Nakamura, Toshio

    2017-01-01

    Radiocarbon content in tree rings can be an excellent proxy of the past incoming cosmic ray intensities to Earth. Although such past cosmic ray variations have been studied by measurements of 14C contents in tree rings with ≥10-y time resolution for the Holocene, there are few annual 14C data. There is a little understanding about annual 14C variations in the past, with the exception of a few periods including the AD 774‑775 14C excursion where annual measurements have been performed. Here, we report the result of 14C measurements using the bristlecone pine tree rings for the period from 5490 BC to 5411 BC with 1- to 2-y resolution, and a finding of an extraordinarily large 14C increase (20‰) from 5481 BC to 5471 BC (the 5480 BC event). The 14C increase rate of this event is much larger than that of the normal grand solar minima. We propose the possible causes of this event are an unknown phase of grand solar minimum, or a combination of successive solar proton events and a normal grand solar minimum.

  1. Large 14C excursion in 5480 BC indicates an abnormal sun in the mid-Holocene.

    PubMed

    Miyake, Fusa; Jull, A J Timothy; Panyushkina, Irina P; Wacker, Lukas; Salzer, Matthew; Baisan, Christopher H; Lange, Todd; Cruz, Richard; Masuda, Kimiaki; Nakamura, Toshio

    2017-01-31

    Radiocarbon content in tree rings can be an excellent proxy of the past incoming cosmic ray intensities to Earth. Although such past cosmic ray variations have been studied by measurements of (14)C contents in tree rings with ≥10-y time resolution for the Holocene, there are few annual (14)C data. There is a little understanding about annual (14)C variations in the past, with the exception of a few periods including the AD 774-775 (14)C excursion where annual measurements have been performed. Here, we report the result of (14)C measurements using the bristlecone pine tree rings for the period from 5490 BC to 5411 BC with 1- to 2-y resolution, and a finding of an extraordinarily large (14)C increase (20‰) from 5481 BC to 5471 BC (the 5480 BC event). The (14)C increase rate of this event is much larger than that of the normal grand solar minima. We propose the possible causes of this event are an unknown phase of grand solar minimum, or a combination of successive solar proton events and a normal grand solar minimum.

  2. Large 14C excursion in 5480 BC indicates an abnormal sun in the mid-Holocene

    PubMed Central

    Miyake, Fusa; Jull, A. J. Timothy; Panyushkina, Irina P.; Wacker, Lukas; Salzer, Matthew; Baisan, Christopher H.; Lange, Todd; Cruz, Richard; Masuda, Kimiaki; Nakamura, Toshio

    2017-01-01

    Radiocarbon content in tree rings can be an excellent proxy of the past incoming cosmic ray intensities to Earth. Although such past cosmic ray variations have been studied by measurements of 14C contents in tree rings with ≥10-y time resolution for the Holocene, there are few annual 14C data. There is a little understanding about annual 14C variations in the past, with the exception of a few periods including the AD 774−775 14C excursion where annual measurements have been performed. Here, we report the result of 14C measurements using the bristlecone pine tree rings for the period from 5490 BC to 5411 BC with 1- to 2-y resolution, and a finding of an extraordinarily large 14C increase (20‰) from 5481 BC to 5471 BC (the 5480 BC event). The 14C increase rate of this event is much larger than that of the normal grand solar minima. We propose the possible causes of this event are an unknown phase of grand solar minimum, or a combination of successive solar proton events and a normal grand solar minimum. PMID:28100493

  3. The Distribution Coefficients and Gasification Ratios of [1,2-{sup 14}C] Sodium Acetate for Various Paddy Soils in Japan

    SciTech Connect

    Ishii, N.; Takeda, H.; Uchida, S.

    2008-07-01

    For appropriate safety assessment of the disposal of TRU waste, distribution coefficients (K{sub d}) and gasification ratios of {sup 14}C labeled [1, 2-{sup 14}C] sodium acetate ({sup 14}C-NaOAc) were determined by batch sorption tests for 85 Japanese paddy soil samples. The soil studied were from four soil types: Andsol; Gley; Gray lowland; and Yellow. The range of K{sub d} values for all soil samples was from 7.5 to 295.2 mL g{sup -1}, and the mean value was 105.6 mL g{sup -1}. This mean value was higher than that of previous study (1). The high K{sub d} values of the present study could be a result of the properties of the paddy soils. The comparison of K{sub d} values by each soil type revealed statistically significant difference between Andsol and Gray lowland soils (P < 0.05). The soil type was one of the factors affecting partitioning of {sup 14}C-NaOAc. Gasification ratios ranged from 29.1% to 83.3%, and its mean value was 66.4% of the total {sup 14}C-NaOAc added. These results suggest that most of the radiocarbon in {sup 14}C-NaOAc will be released from soil into the air as gases. The gasification ratio between soil types was also compared, but no statistically significant difference was found. Gas production may be controlled by other than physicochemical properties of soil, for example by factors such as bacterial community. In addition, both the K{sub d} values and the gasification ratios for Gley soil were decreased according to the increase in pH although the underlaying mechanisms for this observation are not clear. (authors)

  4. Radiocarbon Based Ages and Growth Rates: Hawaiian Deep Sea Corals

    SciTech Connect

    Roark, E B; Guilderson, T P; Dunbar, R B; Ingram, B L

    2006-01-13

    The radial growth rates and ages of three different groups of Hawaiian deep-sea 'corals' were determined using radiocarbon measurements. Specimens of Corallium secundum, Gerardia sp., and Leiopathes glaberrima, were collected from 450 {+-} 40 m at the Makapuu deep-sea coral bed using a submersible (PISCES V). Specimens of Antipathes dichotoma were collected at 50 m off Lahaina, Maui. The primary source of carbon to the calcitic C. secundum skeleton is in situ dissolved inorganic carbon (DIC). Using bomb {sup 14}C time markers we calculate radial growth rates of {approx} 170 {micro}m y{sup -1} and ages of 68-75 years on specimens as tall as 28 cm of C. secundum. Gerardia sp., A. dichotoma, and L. glaberrima have proteinaceous skeletons and labile particulate organic carbon (POC) is their primary source of architectural carbon. Using {sup 14}C we calculate a radial growth rate of 15 {micro}m y{sup -1} and an age of 807 {+-} 30 years for a live collected Gerardia sp., showing that these organisms are extremely long lived. Inner and outer {sup 14}C measurements on four sub-fossil Gerardia spp. samples produce similar growth rate estimates (range 14-45 {micro}m y{sup -1}) and ages (range 450-2742 years) as observed for the live collected sample. Similarly, with a growth rate of < 10 {micro}m y{sup -1} and an age of {approx}2377 years, L. glaberrima at the Makapuu coral bed, is also extremely long lived. In contrast, the shallow-collected A. dichotoma samples yield growth rates ranging from 130 to 1,140 {micro}m y{sup -1}. These results show that Hawaiian deep-sea corals grow more slowly and are older than previously thought.

  5. Radiocarbon dating and compositional analysis of pre-Columbian human bones

    NASA Astrophysics Data System (ADS)

    Andrade, E.; Solís, C.; Canto, C. E.; de Lucio, O. G.; Chavez, E.; Rocha, M. F.; Villanueva, O.; Torreblanca, C. A.

    2014-08-01

    Analysis of ancient human bones found in "El Cóporo", an archaeological site in Guanajuato, Mexico; were performed using a multi techniques scheme: 14C radiocarbon dating, IBA (Ion Beam Analysis), SEM-EDS (Scanning Electron Microscope Energy Dispersive X-ray Spectroscopy). We measured the elemental composition of the bones, especially some with a superficial black pigmentation. Soil samples collected from the burial place were also analyzed. The 14C dating was performed with a new High Voltage Europe 1 MV Tandentron Accelerator Mass Spectrometer (AMS) recently installed in the IFUNAM (Instituto de Física, Universidad Nacional Autónoma de México). The radiocarbon dating allowed us to determine the date of death of the individual in a period between the year 890 and 975 AD, which is consistent with the late period of the Cóporo civilization. The element sample analysis of bones with the surface black pigmentation show higher levels of Fe, Mn and Ba compared when bone's black surface was mechanically removed. These three elements were found in soil samples from the skeleton burial place. These results indicate more likely that the bone black coloration is due to a postmortem alteration occurring in the burial environment.

  6. Detection of radiocarbon in the cyclotrino

    SciTech Connect

    Bertsche, K.J.; Karadi, C.A.; Muller, R.A.; Paulson, G.C.

    1990-04-01

    A small low energy cyclotron (the cyclotrino''), which was proposed for direct detection of radiocarbon in 1980, has now detected radiocarbon at natural abundance. This device combines the suppression of background through the use of negative ions with the high intrinsic mass resolution of a cyclotron. A high current cesium sputter negative ion source generates a beam of carbon ions which is pre-separated with Wien filter and is transported to the cyclotron via a series of electrostatic lenses. Beam is injected radially into the cyclotron using electrostatic deflectors and an electrostatic mirror. Axial focusing is entirely electrostatic. A microchannel plate detector is used with a phase-gated output. Data is presented showing resolution of radiocarbon at natural abundance. In its present form the system is capable of improving the sensitivity of detecting {sup 14}C in some biomedical experiments by a factor of 10{sup 4}. Modifications are discussed which could bring about an additional factor of 100 in sensitivity, which is important for archaeological and geological applications. Possibilities for measurements of other isotopes are discussed. 16 refs., 7 figs.

  7. Blank corrections for ramped pyrolysis radiocarbon dating of sedimentary and soil organic carbon.

    PubMed

    Fernandez, Alvaro; Santos, Guaciara M; Williams, Elizabeth K; Pendergraft, Matthew A; Vetter, Lael; Rosenheim, Brad E

    2014-12-16

    Ramped pyrolysis (RP) targets distinct components of soil and sedimentary organic carbon based on their thermochemical stabilities and allows the determination of the full spectrum of radiocarbon ((14)C) ages present in a soil or sediment sample. Extending the method into realms where more precise ages are needed or where smaller samples need to be measured involves better understanding of the blank contamination associated with the method. Here, we use a compiled data set of RP measurements of samples of known age to evaluate the mass of the carbon blank and its associated (14)C signature, and to assess the performance of the RP system. We estimate blank contamination during RP using two methods, the modern-dead and the isotope dilution method. Our results indicate that during one complete RP run samples are contaminated by 8.8 ± 4.4 μg (time-dependent) of modern carbon (MC, fM ∼ 1) and 4.1 ± 5.5 μg (time-independent) of dead carbon (DC, fM ∼ 0). We find that the modern-dead method provides more accurate estimates of uncertainties in blank contamination; therefore, the isotope dilution method should be used with caution when the variability of the blank is high. Additionally, we show that RP can routinely produce accurate (14)C dates with precisions ∼100 (14)C years for materials deposited in the last 10,000 years and ∼300 (14)C years for carbon with (14)C ages of up to 20,000 years.

  8. Pre to Post-Bomb Seawater 14C History in the Gulf of Alaska Inferred From a Deep Sea Coral: Isididae sp.

    NASA Astrophysics Data System (ADS)

    Roark, B.; Guilderson, T. P.; Fallon, S.; Dunbar, R. B.; McCulloch, M.

    2006-12-01

    Deep-sea corals are an important archive of intermediate and deep-water variability, and provide the means to explore decadal to century-scale ocean dynamics in regions and time periods heretofore unexplored. We present a reconstruction of pre to post-bomb surface and interior water Δ14C based on analysis of deep-sea Isididae (bamboo) corals collected live at ~700 meters in June 2002 at Warwick Seamount, Gulf of Alaska. Concurrent isotope analyses of polyp/tissue and outermost portion of the hard horny proteinaceous gorgonin nodes compared with in situ dissolved inorganic carbon indicates that the gorgonin portion is derived exclusively from recently fixed/exported particulate organic carbon and thus a record of the surface water 14C/12C history. This is in contrast to the carbonate internode portion which is primarily derived from in situ dissolved inorganic carbon, and thus a record of the in situ 14C/12C. Radiocarbon analysis of gorgonin nodal sections captures the surface water D14C evolution. Pre-bomb values are -105‰ reaching a maximum of 100‰ before decreasing to collection values of 20‰. We anticipate that the post-bomb maximum will be in the early 1970s consistent with other mid to high latitude records and that the pre/post bomb transition initiates near 1956. If we utilize the gorgonin pre/post bomb transition as a tie-point and assume a linear growth rate the Isididae used in this study are 75- 125 years old. Carbonate Δ14C shows a 25‰ increase from -215 to -190‰ reflecting the penetration of bomb-14C in the sub-polar North Pacific. To place the carbonate time-series on a fixed timescale we determined the minor element chemistry and tested the inter-species reproducibility. The distribution of Sr is quite homogenous whereas Mg is not with higher Mg concentrations associated with centers of calcification. Age estimates using what appear to be annual Sr/Ca cycles, which we hypothesize are related to biomineralization cycles associated with a

  9. Radiocarbon dating of glacier ice: overview, optimisation, validation and potential

    NASA Astrophysics Data System (ADS)

    Uglietti, Chiara; Zapf, Alexander; Jenk, Theo Manuel; Sigl, Michael; Szidat, Sönke; Salazar, Gary; Schwikowski, Margit

    2016-12-01

    High-altitude glaciers and ice caps from midlatitudes and tropical regions contain valuable signals of past climatic and environmental conditions as well as human activities, but for a meaningful interpretation this information needs to be placed in a precise chronological context. For dating the upper part of ice cores from such sites, several relatively precise methods exist, but they fail in the older and deeper parts, where plastic deformation of the ice results in strong annual layer thinning and a non-linear age-depth relationship. If sufficient organic matter such as plant, wood or insect fragments were found, radiocarbon (14C) analysis would have thus been the only option for a direct and absolute dating of deeper ice core sections. However such fragments are rarely found and, even then, they would not be very likely to occur at the desired depth and resolution. About 10 years ago, a new, complementary dating tool was therefore introduced by our group. It is based on extracting the µg-amounts of the water-insoluble organic carbon (WIOC) fraction of carbonaceous aerosols embedded in the ice matrix for subsequent 14C dating. Since then this new approach has been improved considerably by reducing the measurement time and improving the overall precision. Samples with ˜ 10 µg WIOC mass can now be dated with reasonable uncertainty of around 10-20 % (variable depending on sample age). This requires about 300 to 800 g of ice for WIOC concentrations typically found in midlatitude and low-latitude glacier ice. Dating polar ice with satisfactory age precision is still not possible since WIOC concentrations are around 1 order of magnitude lower. The accuracy of the WIOC 14C method was validated by applying it to independently dated ice. With this method, the deepest parts of the ice cores from Colle Gnifetti and the Mt Ortles glacier in the European Alps, Illimani glacier in the Bolivian Andes, Tsambagarav ice cap in the Mongolian Altai, and Belukha glacier

  10. Radiocarbon Dating: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Fortine, Suellen

    This selective annotated bibliography covers various sources of information on the radiocarbon dating method, including journal articles, conference proceedings, and reports, reflecting the most important and useful sources of the last 25 years. The bibliography is divided into five parts--general background on radiocarbon, radiocarbon dating,…

  11. Radiocarbon Dating: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Fortine, Suellen

    This selective annotated bibliography covers various sources of information on the radiocarbon dating method, including journal articles, conference proceedings, and reports, reflecting the most important and useful sources of the last 25 years. The bibliography is divided into five parts--general background on radiocarbon, radiocarbon dating,…

  12. Constraining the Stratosphere-Troposphere Exchange of Radiocarbon using AirCore 14CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Chen, H.

    2016-12-01

    Radiocarbon (14C) plays an important role in the carbon cycle studies to understand both natural and anthropogenic carbon fluxes, but also in atmospheric chemistry to constrain hydroxyl radical (OH) concentrations in the atmosphere. Apart from the enormous 14C emissions from nuclear bomb testing in the 1950s and 1960s, radiocarbon is primarily produced in the upper atmosphere due to reactions of nitrogen nuclei with thermal neutrons that are induced by cosmic rays. 14C is quickly oxidized to 14CO, which is then further oxidized to 14CO2 by OH. To this end, better understanding the radiocarbon source is very useful to advance the use of radiocarbon for these applications. However, upper atmospheric 14C observations have been very sparse to constrain the magnitude and the location of the 14C production as well as the transport of radiocarbon from the stratosphere to the troposphere. Recently we have successfully made stratospheric 14CO2 measurements using AirCore samples from Sodankylä, Northern Finland, along with regular AirCore profiles of CO2, CH4, and CO since 2013. In this study, we calculate the stratosphere-troposphere exchange of 14C using the correlation between 14CO2 and N2O, and the estimated N2O loss rate. Besides this, we assess the impact of the mean age of air on 14CO2 profiles. Furthermore, we will evaluate the influence of different cosmogenic 14C production scenarios and the uncertainties in the OH field on the seasonal cycles of radiocarbon and on the stratosphere-troposphere exchange.

  13. From source to sink: Unravelling the complex in situ cosmogenic 10Be-14C signature in eroding bedrock surfaces and river sediment from the Bolivian Altiplano

    NASA Astrophysics Data System (ADS)

    Hippe, Kristina; Lupker, Maarten; Gordijn, Tiemen; Ivy-Ochs, Susan; Kober, Florian; Christl, Marcus; Wacker, Lukas; Hajdas, Irka; Wieler, Rainer

    2017-04-01

    Holocene. Using a simple model of a rapid, one-step denudation rate change, a minimum increase by a factor of 30-40 at about 4-6 ka ago is required to approach the measured in situ 14C-10Be concentrations. This corresponds to the Mid-Holocene shift towards wetter climate in the Eastern Andes as proposed from paleolake deposits [2]. Assuming that fluvial sediments inherit a complex 10Be-14C signal from the source area, the estimated duration of total sediment storage reduces to 1-5 ka and is, thus, much shorter than previously assumed. These time spans correlate well with ages of 2-3 ka obtained for fluvial terraces in the study area by radiocarbon and 10Be depth profile dating. Our data allows tracing the spatial pattern of sediment storage and quantify individual storage durations during source-to-sink sediment transfer through the catchment. We further highlight the potential of the in situ 14C-10Be chronometer to determine the magnitude and timing of changes in surface erosion in the past and, thus, to identify transience in eroding landscapes. [1] Hippe et al., 2012 - Geomorphology 179 - pp. 58-70. [2] Rigsby et al., 2005 - J Quaternary Sci 20 - pp. 671-691.

  14. Development of a nanofiltration method for bone collagen 14C AMS dating

    NASA Astrophysics Data System (ADS)

    Boudin, Mathieu; Boeckx, Pascal; Buekenhoudt, Anita; Vandenabeele, Peter; Van Strydonck, Mark

    2013-01-01

    Radiocarbon dating of bones is usually performed on the collagen fraction. However, this collagen can contain exogenous molecules, including humic substances (HSs) and/or other soil components that may have a different age than the bone. Incomplete removal can result in biased 14C dates. Ultrafiltration of collagen, dissolved as gelatin (molecular weight (MW) ∼100,000 Dalton), has received considerable attention to obtain more reliable dates. Ultrafiltration is an effective method of removal of low-molecular weight contaminants from bone collagen but it does not remove high-molecular weight contaminants, such as cross-linked humic collagen complexes. However, comparative dating studies have raised the question whether this cleaning step itself may introduce contamination with carbon from the filters used. In this study, a nanofiltration method was developed using a ceramic filter to avoid a possible extraneous carbon contamination introduced by the filter. This method should be applicable to various protein materials e.g. collagen, silk, wool, leather and should be able to remove low-molecular and high molecular weight HSs. In this study bone collagen was hot acid hydrolyzed to amino acids and nanofiltrated. A filter with a molecular weight cutoff (MWCO) of 450 Dalton was chosen in order to collect the amino acids in the permeate and the HSs in the retentate. Two pilot studies were set up. Two nanofiltration types were tested in pilot study 1: dead end and cross flow filtration. Humic substance (HS)-solutions with fossil carbon and modern hydrolyzed collagen contaminated with HSs were filtrated and analyzed with spectrofluorescence to determine the HS removal. Cross flow nanofiltration showed the most efficient HS removal. A second pilot study based upon these results was set up wherein only cross flow filtration was performed. 14C measurements of the permeates of hydrolyzed modern collagen contaminated with fossil HSs demonstrate a significant but incomplete

  15. Refined modeling and 14C plateau tuning reveal consistent patterns of glacial and deglacial 14C reservoir ages of surface waters in low-latitude Atlantic

    NASA Astrophysics Data System (ADS)

    Balmer, Sven; Sarnthein, Michael; Mudelsee, Manfred; Grootes, Pieter M.

    2016-08-01

    Modeling studies predict that changes in radiocarbon (14C) reservoir ages of surface waters during the last deglacial episode will reflect changes in both atmospheric 14C concentration and ocean circulation including the Atlantic Meridional Overturning Circulation. Tests of these models require the availability of accurate 14C reservoir ages in well-dated late Quaternary time series. We here test two models using plateau-tuned 14C time series in multiple well-placed sediment core age-depth sequences throughout the lower latitudes of the Atlantic Ocean. 14C age plateau tuning in glacial and deglacial sequences provides accurate calendar year ages that differ by as much as 500-2500 years from those based on assumed global reservoir ages around 400 years. This study demonstrates increases in local Atlantic surface reservoir ages of up to 1000 years during the Last Glacial Maximum, ages that reflect stronger trades off Benguela and summer winds off southern Brazil. By contrast, surface water reservoir ages remained close to zero in the Cariaco Basin in the southern Caribbean due to lagoon-style isolation and persistently strong atmospheric CO2 exchange. Later, during the early deglacial (16 ka) reservoir ages decreased to a minimum of 170-420 14C years throughout the South Atlantic, likely in response to the rapid rise in atmospheric pCO2 and Antarctic temperatures occurring then. Changes in magnitude and geographic distribution of 14C reservoir ages of peak glacial and deglacial surface waters deviate from the results of Franke et al. (2008) but are generally consistent with those of the more advanced ocean circulation model of Butzin et al. (2012).

  16. Direct dating of archaeological pottery by compound-specific 14C analysis of preserved lipids.

    PubMed

    Stott, Andrew W; Berstan, Robert; Evershed, Richard P; Bronk-Ramsey, Christopher; Hedges, Robert E M; Humm, Martin J

    2003-10-01

    A methodology is described demonstrating the utility of the compound-specific 14C technique as a direct means of dating archaeological pottery. The method uses automated preparative capillary gas chromatography employing wide-bore capillary columns to isolate individual compounds from lipid extracts of archaeological potsherds in high purity (>95%) and amounts (>200 microg) sufficient for radiocarbon dating using accelerator mass spectrometry (AMS). A protocol was developed and tested on n-alkanes and n-carboxylic acids possessing a broad range of 14C ages. Analytical blanks and controls allowed background 14C measurements to be assessed and potential sources of errors to be detected, i.e., contamination with modern or dead 14C, isotopic fraction effects, etc. A "Russian doll" method was developed to transfer isolated target compounds onto tin powder/capsules prior to combustion and AMS analyses. The major advantage of the compound-specific technique is that 14C dates obtained for individual compounds can be directly linked to the commodities processed in the vessels during their use, e.g., animal fats. The compound-specific 14C dating protocol was validated on a suite of ancient pottery whose predicted ages spanned a 5000-year date range. Initial results indicate that meaningful correlations can be obtained between the predicted date of pottery and that of the preserved lipids. These findings constitute an important step forward to the direct dating of archaeological pottery.

  17. Challenges faced when using radiocarbon measurements to estimate fossil fuel emissions in the UK.

    NASA Astrophysics Data System (ADS)

    Wenger, A.; O'Doherty, S.; Rigby, M. L.; Ganesan, A.; Manning, A.; Allen, G.

    2015-12-01

    Estimating the anthropogenic component of carbon dioxide emissions from direct atmospheric measurements is difficult, due to the large natural carbon dioxide fluxes. One way of determining the fossil fuel component of atmospheric carbon dioxide is the use of radiocarbon measurements. Whilst carbon reservoirs with a reasonably fast carbon exchange rate all have a similar radiocarbon content, fossil fuels are completely devoid of radiocarbon due to their age. Previous studies have 14CO2 (UK) this approach is compromised by the high density of 14CO2 emitting nuclear power plants. Of the 16 nuclear reactors in the UK, 14 are advanced gas cooled reactors, which have one of the highest 14CO2 emission rates of all reactor types. These radiocarbon emissions not only lead to a serious underestimation of the recently added fossil fuel CO2, by masking the depletion of 14C in CO2, but can in fact overshadow the depletion by a factor of 2 or more. While a correction for this enhancement can be applied, the emissions from the nuclear power plants are highly variable, and an accurate correction is therefore not straightforward. We present the first attempt to quantify UK fossil fuel CO2 emissions through the use of 14CO2. We employ a sampling strategy that makes use of a Lagrangian particle dispersion model, in combination with nuclear industry emission estimates, to forecast "good" sampling times, in an attempt to minimize the correction due to emissions from the nuclear industry. As part of the Greenhouse gAs Uk and Global Emissions (GAUGE) project, 14CO2measurements are performed at two measurement sites in the UK and Ireland, as well as during science flights around the UK. The measurement locations have been chosen with a focus on high emitting regions such as London and the Midlands. We discuss the unique challenges that face the determination of fossil fuel emissions through radiocarbon measurements in the UK and our sampling strategy to deal with them. In addition we

  18. Upper-ocean-to-atmosphere radiocarbon offsets imply fast deglacial carbon dioxide release.

    PubMed

    Rose, Kathryn A; Sikes, Elisabeth L; Guilderson, Thomas P; Shane, Phil; Hill, Tessa M; Zahn, Rainer; Spero, Howard J

    2010-08-26

    Radiocarbon in the atmosphere is regulated largely by ocean circulation, which controls the sequestration of carbon dioxide (CO(2)) in the deep sea through atmosphere-ocean carbon exchange. During the last glaciation, lower atmospheric CO(2) levels were accompanied by increased atmospheric radiocarbon concentrations that have been attributed to greater storage of CO(2) in a poorly ventilated abyssal ocean. The end of the ice age was marked by a rapid increase in atmospheric CO(2) concentrations that coincided with reduced (14)C/(12)C ratios (Delta(14)C) in the atmosphere, suggesting the release of very 'old' ((14)C-depleted) CO(2) from the deep ocean to the atmosphere. Here we present radiocarbon records of surface and intermediate-depth waters from two sediment cores in the southwest Pacific and Southern oceans. We find a steady 170 per mil decrease in Delta(14)C that precedes and roughly equals in magnitude the decrease in the atmospheric radiocarbon signal during the early stages of the glacial-interglacial climatic transition. The atmospheric decrease in the radiocarbon signal coincides with regionally intensified upwelling and marine biological productivity, suggesting that CO(2) released by means of deep water upwelling in the Southern Ocean lost most of its original depleted-(14)C imprint as a result of exchange and isotopic equilibration with the atmosphere. Our data imply that the deglacial (14)C depletion previously identified in the eastern tropical North Pacific must have involved contributions from sources other than the previously suggested carbon release by way of a deep Southern Ocean pathway, and may reflect the expanded influence of the (14)C-depleted North Pacific carbon reservoir across this interval. Accordingly, shallow water masses advecting north across the South Pacific in the early deglaciation had little or no residual (14)C-depleted signals owing to degassing of CO(2) and biological uptake in the Southern Ocean.

  19. The radiocarbon budget for Mono Lake: an unsolved mystery

    USGS Publications Warehouse

    Broecker, W.S.; Wanninkhof, R.; Mathieu, G.; Peng, T.-H.; Stine, S.; Robinson, S.; Herczeg, A.; Stuiver, M.

    1988-01-01

    Since 1957 the 14C C ratio of the dissolved inorganic carbon in Mono Lake has risen by about 60???. The magnitude of this increase is about four times larger than that expected from the invasion of bomb-produced 14C from the atmosphere. We have eliminated the following explanations: (1) measurement error, (2) an unusually high physical exchange rate for non-reactive gases, (3) inorganic enhancement of the CO2 exchange rate, and (4) biological enhancement of the CO2 exchange rate. Clandestine disposal of waste radiocarbon remains a dark-horse explanation. In the course of our investigations we have uncovered evidence for at least one episodic input of radiocarbon-free carbon to the lake over the last 1000 years. We speculate that this injection was related to a hydrothermal event resulting from sublacustrine volcanic activity. ?? 1988.

  20. Changes in Atmospheric 14C Between 55 and 42 ky BP Recorded in a Stalagmite From Socotra Island, Indian Ocean

    NASA Astrophysics Data System (ADS)

    Weyhenmeyer, C. E.; Burns, S. J.; Fleitmann, D.; Kramers, J. D.; Matter, A.; Waber, H. N.; Reimer, P. J.

    2003-12-01

    A record of atmospheric radiocarbon (14C) variations for a part of the last glacial period was obtained from a 1.7 m long stalagmite, M1-2, from Socotra Island in the Indian Ocean. The stalagmite radiocarbon values were corrected for 14C-free carbon added by water-rock interaction (dead carbon fraction), by using del 13C values of the calcite as a constraint. An age-depth model was developed from 25 high-precision U/Th measurements. The base of the stalagmite dates to 54.7 ky BP and it stopped growing around 42.2 ky BP. The difference between U/Th and 14C ages shows a smooth, steady increase from about 5,000 years at the base of the stalagmite to about 8,000 years at its top. Correspondingly, Delta 14C values increase from 500 per mil to about 1300 per mil, which indicates that concentrations of atmospheric 14C steadily increased between 55 and 42 yr BP. The record from Socotra Island does not show the large and rapid D14C changes previously recorded in a stalagmite from the Bahamas (Beck et al, Science 2001). The D14C values estimated from M1-2 are significantly higher than those estimated from a marine 14C record (foraminifera) from Cariaco Basin for the same time period (Hughen et al. in prep). In the latter, D14C values decrease to near 0 at about 44 ky BP. The most likely reason for this discrepancy are the two different time scales used; the Cariaco Basin is matched to the GISP2 timescale, which is approximately 5000 years younger than indicated by the stalagmite U/Th chronology (Burns et al, Science 2003). When the Cariaco basin record is adjusted to the M1-2 timescale, the D14C values for both datasets are similar.

  1. Online coupling of pure O2 thermo-optical methods - 14C AMS for source apportionment of carbonaceous aerosols

    NASA Astrophysics Data System (ADS)

    Agrios, Konstantinos; Salazar, Gary; Zhang, Yan-Lin; Uglietti, Chiara; Battaglia, Michael; Luginbühl, Marc; Ciobanu, Viorela Gabriela; Vonwiller, Matthias; Szidat, Sönke

    2015-10-01

    This paper reports on novel separation methods developed for the direct determination of 14C in organic carbon (OC) and elemental carbon (EC), two sub-fractions of total carbon (TC) of atmospheric air particulate matter. Until recently, separation of OC and EC has been performed off-line by manual and time-consuming techniques that relied on the collection of massive CO2 fractions. We present here two on-line hyphenated techniques between a Sunset OC/EC analyzer and a MICADAS (MIni radioCArbon DAting System) accelerator mass spectrometer (AMS) equipped with a gas ion source. The first implementation facilitates the direct measurement in the low sample size range (<10 μg C) with high throughput on a routine basis, while the second explores the potential for a continuous-flow real-time CO2 gas feed into the ion source. The performance achieved with reference materials and real atmospheric samples will be discussed to draw conclusions on the improvement offered in the field of 14C aerosol source apportionment.

  2. Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection.

    PubMed

    Galli, I; Bartalini, S; Borri, S; Cancio, P; Mazzotti, D; De Natale, P; Giusfredi, G

    2011-12-30

    Radiocarbon ((14)C) concentrations at a 43 parts-per-quadrillion level are measured by using saturated-absorption cavity ringdown spectroscopy by exciting radiocarbon-dioxide ((14)C(16)O(2)) molecules at the 4.5 μm wavelength. The ultimate sensitivity limits of molecular trace gas sensing are pushed down to attobar pressures using a comb-assisted absorption spectroscopy setup. Such a result represents the lowest pressure ever detected for a gas of simple molecules. The unique sensitivity, the wide dynamic range, the compactness, and the relatively low cost of this table-top setup open new perspectives for ^{14}C-tracing applications, such as radiocarbon dating, biomedicine, or environmental and earth sciences. The detection of other very rare molecules can be pursued as well thanks to the wide and continuous mid-IR spectral coverage of the described setup.

  3. Re-Emergence of Excess Bomb Radiocarbon in Upwelling Waters with High-Latitude Origins

    NASA Astrophysics Data System (ADS)

    Lindsay, C. M.; Lehman, S.

    2016-02-01

    The quantity of radiocarbon (14C) in the atmosphere was nearly doubled by nuclear weapons testing in the 1960s. Since then, the terrestrial biosphere and the ocean have absorbed most of the excess 14C from the atmosphere, although atmospheric radiocarbon activity (∆14C) continues to decline due to ongoing emissions of 14C-free CO2 from combustion of fossil fuels. The large transient decline in atmospheric ∆14C combined with gas exchange at the surface and spatially variable time scales of ocean mixing have led to large ∆14C gradients in the surface ocean between upwelling- and downwelling-dominated regions. These gradients continue to evolve over time. We examine the rate of change of surface ocean ∆14C between CLIVAR (2000-2011) and WOCE era (1990s) or other slightly earlier (1980s) datasets and find spatial patterns that reveal mixing between 14C-enriched mode waters, 14C-depleted deep waters and surface waters that are well-equilibrated with the atmosphere. The ∆14C of mode water reaching equatorial upwelling regions has increased between the WOCE and CLIVAR time periods, and the greater contribution of 14C to the low-latitude surface ocean appears to have significantly offset the ∆14C decline otherwise imparted by air-sea gas exchange with the atmosphere. Consequently, ∆14C gradients between low-latitude upwelling regions and gyre centers have weakened proportionally more than between gyre centers and regions where pre-industrial water still upwells, such as the Southern Ocean. Properly accounting for the re-emergence of water with post-industrial characteristics is important to constrain earth system models that seek to explain DIC, pH and other anthropogenically perturbed tracers in the surface ocean. Because of the history of ∆14C in the atmosphere, ocean ∆14C is a useful tracer for this purpose.

  4. Surface water processes in the Indonesian Throughflow as documented by a high-resolution coral (Delta)14C record

    SciTech Connect

    Fallon, S J; Guilderson, T P

    2008-04-23

    To explore the seasonal to decadal variability in surface water masses that contribute to the Indonesian Throughflow we have generated a 115-year bi-monthly coral-based radiocarbon time-series from a coral in the Makassar Straits. In the pre-bomb (pre-1955) era from 1890 to 1954, the radiocarbon time series occasionally displays a small seasonal signal (10-15{per_thousand}). After 1954 the radiocarbon record increases rapidly, in response to the increased atmospheric {sup 14}C content caused by nuclear weapons testing. From 1957 to 1986 the record displays clear seasonal variability from 15 to 60{per_thousand} and the post-bomb peak (163 per mil) occurred in 1974. The seasonal cycle of radiocarbon can be attributed to variations of surface waters passing through South Makassar Strait. Southern Makassar is under the influence of the Northwest Monsoon, which is responsible for the high Austral summer radiocarbon (North Pacific waters) and the Southeast Monsoon that flushes back a mixture of low (South Pacific and upwelling altered) radiocarbon water from the Banda Sea. The coral record also shows a significant {sup 14}C peak in 1955 due to bomb {sup 14}C water advected into this region in the form of CaCO{sub 3} particles (this implies that the particles were advected intact and then become entrapped in the coral skeleton--is this what we really mean? Wouldn't even fine particles settle out over the inferred transit time from Bikini to MAK?) or water particles with dissolved labeled CO{sub 2} produced during fallout from the Castle tests in 1954.

  5. Tracing the intrusion of fossil carbon into coastal Louisiana macrofauna using natural 14C and 13C abundances

    NASA Astrophysics Data System (ADS)

    Wilson, Rachel M.; Cherrier, Jennifer; Sarkodee-Adoo, Judith; Bosman, Samantha; Mickle, Alejandra; Chanton, Jeffrey P.

    2016-07-01

    The Deepwater Horizon oil spill released a large volume of 13C and radiocarbon depleted organic matter to the northern Gulf of Mexico. Evidence of petroleum-derived carbon entering the offshore planktonic foodweb, as well as widespread oiling of coastal areas documented in previous studies suggests that hydrocarbons could have entered the near shore foodweb. To test this hypothesis, we measured radiocarbon14C%) and stable carbon isotopes (δ13C) in an assortment of fish tissue, invertebrate tissue and shell samples collected within a year of the spill at seven sites from Louisiana to Florida USA across the northern Gulf of Mexico. We observed a west-east gradient with the most depleted radiocarbon values found in Terrebonne Bay, Louisana and increasingly enriched radiocarbon values in organisms collected at sites to the east. Depleted radiocarbon values as low as -10% in invertebrate soft tissue from Terrebonne suggest assimilation of fossil carbon (2.8±1.2%), consistent with the hypothesis that organic matter from petrochemical reservoirs released during the Deepwater Horizon spill entered the coastal food web to a limited extent. Further there was a significant correlation between radiocarbon and δ13C values in invertebrate tissue consistent with this hypothesis. Both oyster tissue and hard head catfish tissue collected in impacted areas of coastal Louisiana were significantly depleted in 14C and 13C relative to organisms collected in the unaffected Apalachicola Bay, Florida (p<0.014). Alternative explanations for these results include the influence of chronic hydrocarbon pollution along the western gulf coast or that the organisms ingest carbon derived from 14C depleted organic matter mobilized during the erosion of coastal marshes in southern Louisiana.

  6. Pharmacokinetics and metabolism of [(14)C]-tozadenant (SYN-115), a novel A2a receptor antagonist ligand, in healthy volunteers.

    PubMed

    Mancel, Valérie; Mathy, François-Xavier; Boulanger, Pierre; English, Stephen; Croft, Marie; Kenney, Christopher; Knott, Tarra; Stockis, Armel; Bani, Massimo

    2016-09-02

    1. This phase-I study (NCT02240290) was designed to investigate the human absorption, disposition and mass balance of (14)C-tozadenant, a novel A2a receptor antagonist in clinical development for Parkinson s disease. 2. Six healthy male subjects received a single oral dose of tozadenant (240 mg containing 81.47 KBq of [(14)C]-tozadenant). Blood, urine and feces were collected over 14 days. Radioactivity was determined by liquid scintillation counting or accelerator mass spectrometry (AMS). Tozadenant and metabolites were characterized using HPLC-MS/MS and HPLC-AMS with fraction collection. 3. At 4 h, the Cmax of tozadenant was 1.74 μg/mL and AUC(0-t) 35.0 h μg/mL, t1/2 15 h, Vz/F 1.82 L/kg and CL/F 1.40 mL/min/kg. For total [(14)C] radioactivity, the Cmax was 2.29 μg eq/mL at 5 h post-dose and AUC(0-t) 43.9 h μg eq/mL. Unchanged tozadenant amounted to 93% of the radiocarbon AUC(0-48h). At 312 h post-dose, cumulative urinary and fecal excretion of radiocarbon reached 30.5% and 55.1% of the dose, respectively. Unchanged tozadenant reached 11% in urine and 12% of the dose in feces. Tozadenant was excreted as metabolites, including di-and mono-hydroxylated metabolites, N/O dealkylated metabolites, hydrated metabolites. 4. The only identified species circulating in plasma was unchanged tozadenant. Tozadenant was primarily excreted in urine and feces in the form of metabolites.

  7. Radiocarbon Dating the Anthropocene

    NASA Astrophysics Data System (ADS)

    Chaput, M. A.; Gajewski, K. J.

    2015-12-01

    The Anthropocene has no agreed start date since current suggestions for its beginning range from Pre-Industrial times to the Industrial Revolution, and from the mid-twentieth century to the future. To set the boundary of the Anthropocene in geological time, we must first understand when, how and to what extent humans began altering the Earth system. One aspect of this involves reconstructing the effects of prehistoric human activity on the physical landscape. However, for global reconstructions of land use and land cover change to be more accurately interpreted in the context of human interaction with the landscape, large-scale spatio-temporal demographic changes in prehistoric populations must be known. Estimates of the relative number of prehistoric humans in different regions of the world and at different moments in time are needed. To this end, we analyze a dataset of radiocarbon dates from the Canadian Archaeological Radiocarbon Database (CARD), the Palaeolithic Database of Europe and the AustArch Database of Australia, as well as published dates from South America. This is the first time such a large quantity of dates (approximately 60,000) has been mapped and studied at a global scale. Initial results from the analysis of temporal frequency distributions of calibrated radiocarbon dates, assumed to be proportional to population density, will be discussed. The utility of radiocarbon dates in studies of the Anthropocene will be evaluated and potential links between population density and changes in atmospheric greenhouse gas concentrations, climate, migration patterning and fire frequency coincidence will be considered.

  8. Centuries of marine radiocarbon reservoir age variation within archaeological Mesodesma Donacium shells from Southern Peru

    USGS Publications Warehouse

    Jones, K.B.; Hodgins, G.W.L.; Etayo-Cadavid, M. F.; Andrus, C.F.T.; Sandweiss, D.H.

    2010-01-01

    Mollusk shells provide brief (<5 yr per shell) records of past marine conditions, including marine radiocarbon reservoir age (R) and upwelling. We report 21 14C ages and R calculations on small (~2 mg) samples from 2 Mesodesma donacium (surf clam) shells. These shells were excavated from a semi-subterranean house floor stratum 14C dated to 7625 ?? 35 BP at site QJ-280, Quebrada Jaguay, southern Peru. The ranges in marine 14C ages (and thus R) from the 2 shells are 530 and 170 14C yr; R from individual aragonite samples spans 130 ?? 60 to 730 ?? 170 14C yr. This intrashell 14C variability suggests that 14C dating of small (time-slice much less than 1 yr) marine samples from a variable-R (i.e. variable-upwelling) environment may introduce centuries of chronometric uncertainty. ?? 2010 by the Arizona Board of Regents on behalf of the University of Arizona.

  9. Linking high resolution 14C records to ice core time scales by means of Bayesian wiggle-matching

    NASA Astrophysics Data System (ADS)

    Adolphi, F.; Muscheler, R.; Friedrich, M.; Güttler, D.; Wacker, L.; Kromer, B.

    2014-12-01

    Radiocarbon dating is the key method for obtaining chronological information of paleoclimate records covering the last ~45,000 years. The wealth of paleoclimatic information reconstructed from Greenland and Antarctic ice cores are often used as blue-prints to place these radiocarbon dated records into a wider context. However, while layer counted ice core time scales from Greenland provide high precision on the duration of events, the absolute age uncertainty increases back in time. This poses limitations on the possible detail and robustness of comparisons between radiocarbon dated, and ice core records. Cosmogenic radionuclide records, i.e. based on 14C and 10Be, provide a unique tool for synchronizing different time scales from various archives. They carry the common production rate signal which is modulated by variations in the strength of the helio- and geo- magnetic fields, which are climate-independent processes and global. We will present a method for synchronizing radiocarbon and Greenland ice core time scales back to 16,000 years ago based on Bayesian wiggle matching of cosmogenic radionuclide records. The method utilizes the strength of the high relative precision of ice core time scales as well as the small absolute age uncertainty from tree-ring chronologies and U/Th dated speleothems. The method provides combined error estimates and allows testing i) the accuracy of ice core time scales, ii) the quality of 14C records underlying the radiocarbon calibration curve as well as iii) assumptions of synchronicity of rapid climate changes. Furthermore, we will illustrate how this method can be used for high-precision radiocarbon wiggle-match dating of floating tree ring chronologies beyond 14,000 years ago, and potentially improve the radiocarbon calibration curve.

  10. Insights from 14C into C loss pathways in degraded peatlands

    NASA Astrophysics Data System (ADS)

    Evans, Martin; Evans, Chris; Allott, Tim; Stimson, Andrew; Goulsbra, Claire

    2016-04-01

    Peatlands are important global stores of terrestrial carbon. Lowered water tables due to changing climate and direct or indirect human intervention produce a deeper aerobic zone and have the potential to enhance loss of stored carbon from the peat profile. The quasi continuous accumulation of organic matter in active peatlands means that the age of fluvial dissolved organic carbon exported from peatland systems is related to the source depth in the peat profile. Consequently 14C analysis of DOC in waters draining peatlands has the potential not only to tell us about the source of fluvial carbon and the stability of the peatland but also about the dominant hydrological pathways in the peatland system. This paper will present new radiocarbon determinations from peatland streams draining the heavily eroded peatlands of the southern Pennine uplands in the UK. These blanket peatland systems are highly degraded, with extensive bare peat and gully erosion resulting from air pollution during the industrial revolution, overgrazing, wildfire and climatic changes. Deep and extensive gullying has significantly modified the hydrology of these systems leading to local and more widespread drawdown of water table. 14C data from DOC in drainage waters are presented from two catchments; one with extensive gully erosion and the other with a combination of gully erosion and sheet erosion of the peat. At the gully eroded site DOC in drainage waters is as old as 160 BP but at the site with extensive sheet erosion dates of up to 1069 BP are amongst the oldest recorded from blanket peatland globally These data indicate significant degradation of stored carbon from the eroding peatlands. Initial comparisons of the 14C data with modelled water table for the catchments and depth-age curves for catchment peats suggests that erosion of the peat surface, allowing decomposition of exposed older organic material is a potential mechanism producing aged carbon from the eroded catchment. This

  11. Radiocarbon in the Weddell Sea as observed in a deep-sea coral and in krill

    SciTech Connect

    Michel, R.L.; Druffel, E.M.

    1983-03-01

    Radiocarbon mesurements were performed on krill and coral samples collected from the Weddell Sea during IWSOE '80. These are the first radiocarbon measurements available from this area since 1973. These data reveal carbon-14 levels for Weddell surface water and southern Weddell Shelf water. These data indicate that the radiocarbon levels in surface waters in 1980 were the same or slightly lower than those present in 1973. In addition, an unusually low ..delta../sup 14/C value for shelf water (from coral) at 500 m is evidence that Warm Deep Water (WDW) may penetrate much further and more frequently onto the shelf region than had previously been expected.

  12. Ventilation history of Nordic Seas overflows during the last (de)glacial period revealed by species-specific benthic foraminiferal 14C dates

    NASA Astrophysics Data System (ADS)

    Ezat, Mohamed M.; Rasmussen, Tine L.; Thornalley, David J. R.; Olsen, Jesper; Skinner, Luke C.; Hönisch, Bärbel; Groeneveld, Jeroen

    2017-02-01

    Formation of deep water in the high-latitude North Atlantic is important for the global meridional ocean circulation, and its variability in the past may have played an important role in regional and global climate change. Here we study ocean circulation associated with the last (de)glacial period, using water-column radiocarbon age reconstructions in the Faroe-Shetland Channel, southeastern Norwegian Sea, and from the Iceland Basin, central North Atlantic. The presence of tephra layer Faroe Marine Ash Zone II, dated to 26.7 ka, enables us to determine that the middepth (1179 m water depth) and shallow subsurface reservoir ages were 1500 and 1100 14C years, respectively, older during the late glacial period compared to modern, suggesting substantial suppression of the overturning circulation in the Nordic Seas. During the late Last Glacial Maximum and the onset of deglaciation ( 20-18 ka), Nordic Seas overflow was weak but active. During the early deglaciation ( 17.5-14.5 ka), our data reveal large differences between 14C ventilation ages that are derived from dating different benthic foraminiferal species: Pyrgo and other miliolid species yield ventilation ages >6000 14C years, while all other species reveal ventilation ages <2000 14C years. These data either suggest subcentennial, regional, circulation changes or that miliolid-based 14C ages are biased due to taphonomic or vital processes. Implications of each interpretation are discussed. Regardless of this "enigma," the onset of the Bølling-Allerød interstadial (14.5 ka) is clearly marked by an increase in middepth Nordic Seas ventilation and the renewal of a stronger overflow.

  13. Thermophilic Anaerobic Biodegradation of [14C]Lignin, [14C]Cellulose, and [14C]Lignocellulose Preparations

    PubMed Central

    Benner, Ronald; Hodson, Robert E.

    1985-01-01

    Thermophilic (55°C) anaerobic enrichment cultures were incubated with [14C-lignin]lignocellulose, [14C-polysaccharide]lignocellulose, and kraft [14C]lignin prepared from slash pine, Pinus elliottii, and 14C-labeled preparations of synthetic lignin and purified cellulose. Significant but low percentages (2 to 4%) of synthetic and natural pine lignin were recovered as labeled methane and carbon dioxide during 60-day incubations, whereas much greater percentages (13 to 23%) of kraft lignin were recovered as gaseous end products. Percentages of label recovered from lignin-labeled substrates as dissolved degradation products were approximately equal to percentages recovered as gaseous end products. High-pressure liquid chromatographic analyses of CuO oxidation products of sound and degraded pine lignin indicated that no substantial chemical modifications of the remaining lignin polymer, such as demethoxylation and dearomatization, occurred during biodegradation. The polysaccharide components of pine lignocellulose and purified cellulose were relatively rapidly mineralized to methane and carbon dioxide; 31 to 37% of the pine polysaccharides and 56 to 63% of the purified cellulose were recovered as labeled gaseous end products. An additional 10 to 20% of the polysaccharide substrates was recovered as dissolved degradation products. Overall, these results indicate that elevated temperatures can greatly enhance rates of anaerobic degradation of lignin and lignified substrates to methane and low-molecular-weight aromatic compounds. PMID:16346924

  14. Assessing open-system behavior of 14C in terrestrial gastropod shells

    USGS Publications Warehouse

    Rech, Jason A.; Pigati, Jeffrey S.; Lehmann, Sophie B.; McGimpsey, Chelsea N.; Grimley, David A.; Nekola, Jeffrey C.

    2011-01-01

    In order to assess open-system behavior of radiocarbon in fossil gastropod shells, we measured the 14C activity on 10 aliquots of shell material recovered from Illinoian (~190-130 ka) and pre-Illinoian (~800 ka) loess and lacustrine deposits in the Midwestern USA. Eight of the 10 aliquots yielded measurable 14C activities that ranged from 0.25 to 0.53 percent modern carbon (pMC), corresponding to apparent 14C ages between 48.2 and 42.1 ka. This small level of open-system behavior is common in many materials that are used for 14C dating (e.g. charcoal), and typically sets the upper practical limit of the technique. Two aliquots of gastropod shells from the Illinoian-aged Petersburg Silt (Petersburg Section) in central Illinois, USA, however, yielded elevated 14C activities of 1.26 and 1.71 pMC, which correspond to apparent 14C ages of 35.1 and 32.7 ka. Together, these results suggest that while many fossil gastropods shells may not suffer from major (>1%) open-system problems, this is not always the case. We then examined the mineralogy, trace element chemistry, and physical characteristics of a suite of fossil and modern gastropod shells to identify the source of contamination in the Petersburg shells and assess the effectiveness of these screening techniques at identifying samples suitable for 14C dating. Mineralogical (XRD) and trace element analyses were inconclusive, which suggests that these techniques are not suitable for assessing open-system behavior in terrestrial gastropod shells. Analysis with scanning electron microscopy (SEM), however, identified secondary mineralization (calcium carbonate) primarily within the inner whorls of the Petersburg shells. This indicates that SEM examination, or possibly standard microscope examination, of the interior of gastropod shells should be used when selecting fossil gastropod shells for 14C dating.

  15. Assessing open-system behavior of 14C in terrestrial gastropod shells

    USGS Publications Warehouse

    Rech, J.A.; Pigati, J.S.; Lehmann, S.B.; McGimpsey, C.N.; Grimley, D.A.; Nekola, J.C.

    2011-01-01

    In order to assess open-system behavior of radiocarbon in fossil gastropod shells, we measured the 14C activity on 10 aliquots of shell material recovered from Illinoian (~190-130 ka) and pre-Illinoian (~800 ka) loess and lacustrine deposits in the Midwestern USA. Eight of the 10 aliquots yielded measurable 14C activities that ranged from 0.25 to 0.53 percent modern carbon (pMC), corresponding to apparent 14C ages between 48.2 and 42.1 ka. This small level of open-system behavior is common in many materials that are used for 14C dating (e.g. charcoal), and typically sets the upper practical limit of the technique. Two aliquots of gastropod shells from the Illinoian-aged Petersburg Silt (Petersburg Section) in central Illinois, USA, however, yielded elevated 14C activities of 1.26 and 1.71 pMC, which correspond to apparent 14C ages of 35.1 and 32.7 ka. Together, these results suggest that while many fossil gastropods shells may not suffer from major (>1%) open-system problems, this is not always the case. We then examined the mineralogy, trace element chemistry, and physical characteristics of a suite of fossil and modern gastropod shells to identify the source of contamination in the Petersburg shells and assess the effectiveness of these screening techniques at identifying samples suitable for 14C dating. Mineralogical (XRD) and trace element analyses were inconclusive, which suggests that these techniques are not suitable for assessing open-system behavior in terrestrial gastropod shells. Analysis with scanning electron microscopy (SEM), however, identified secondary mineralization (calcium carbonate) primarily within the inner whorls of the Petersburg shells. This indicates that SEM examination, or possibly standard microscope examination, of the interior of gastropod shells should be used when selecting fossil gastropod shells for 14C dating. ?? 2011 by the Arizona Board of Regents on behalf of the University of Arizona.

  16. Improving 14C dating precision in dynamic, brackish waters by one order of magnitude: 87Sr/86Sr isotopes as a quantitative proxy for 14C reservoir age.

    NASA Astrophysics Data System (ADS)

    Lougheed, B.; Davies, G.; Filipsson, H. L.; van der Lubbe, J.; Snowball, I.

    2016-12-01

    Accurate geochronologies are crucial for reconstructing the sensitivity of brackish and estuarine environments to external impacts. A common geochronological method used for such studies is radiocarbon (14C) dating, but its application in brackish environments is severely limited by an inability to quantify spatiotemporal variations in 14C reservoir age, or R(t), due to dynamic interplay between river runoff and marine water in these environments. Additionally, old carbon effects and species-specific behavioural processes also influence 14C ages. Using the world's largest brackish water body (the estuarine Baltic Sea) as a test-bed, combined with a comprehensive approach that objectively excludes both old carbon and species-specific effects, we demonstrate that it is possible to use 87Sr/86Sr ratios to quantify R(t) in ubiquitous mollusc shell material, leading to an almost one order of magnitude increase in Baltic Sea 14C geochronological precision over the current state-of-the-art. We propose that this novel proxy method can be developed for other brackish water bodies worldwide, thereby improving geochronological control in these climate sensitive, near-coastal environments.

  17. Compound-specific radiocarbon analysis of polycyclic aromatic hydrocarbons (PAHs) in sediments from an urban reservoir

    NASA Astrophysics Data System (ADS)

    Kanke, Hirohide; Uchida, Masao; Okuda, Tomoaki; Yoneda, Minoru; Takada, Hideshige; Shibata, Yasuyuki; Morita, Masatoshi

    2004-08-01

    A quantitative apportionment of polycyclic aromatic hydrocarbons (PAHs) derived from fossil fuel combustion (14C-free) and biomass burning (contemporary 14C) was carried out using a recently developed compound-specific radiocarbon analysis (CSRA) method for a sediment core from an urban reservoir located in the central Tokyo metropolitan area, Japan. The 14C abundance of PAHs in the sediments was measured by accelerator mass spectrometry (AMS) after extraction and purification by three types of column chromatography, by high performance liquid chromatography (HPLC), and, subsequently, by a preparative capillary gas chromatography (PCGC) system. This method yielded a sufficient quantity of pure compounds and allowed a high degree of confidence in the determination of 14C. The fraction modern values (fM) of individual PAHs (phenanthrene, alkylphenanthrenes, fluoranthene, pyrene and benz[a]anthracene) in the sediments ranged from 0.06 to 0.21. These results suggest that sedimentary PAHs (those compounds mentioned above) were derived mostly from fossil fuel combustion. Three sectioned-downcore profiles (∼40 cm) of the 14C abundance in phenanthrene and alkylphenanthrenes showed a decreasing trend with depth, that was anti-correlated with the trend of ∑PAHs concentration. The fM values of phenanthrene were also larger than those of alkylphenanthrenes in each section of the core. This result indicates that phenanthrene received a greater contribution from biomass burning than alkylphenanthrenes throughout the core. This finding highlights the method used here as an useful approach to elucidate the source and origin of PAHs in the environment.

  18. Methane sources in gas hydrate-bearing cold seeps: Evidence from radiocarbon and stable isotopes

    USGS Publications Warehouse

    Pohlman, J.W.; Bauer, J.E.; Canuel, E.A.; Grabowski, K.S.; Knies, D.L.; Mitchell, C.S.; Whiticar, Michael J.; Coffin, R.B.

    2009-01-01

    Fossil methane from the large and dynamic marine gas hydrate reservoir has the potential to influence oceanic and atmospheric carbon pools. However, natural radiocarbon (14C) measurements of gas hydrate methane have been extremely limited, and their use as a source and process indicator has not yet been systematically established. In this study, gas hydrate-bound and dissolved methane recovered from six geologically and geographically distinct high-gas-flux cold seeps was found to be 98 to 100% fossil based on its 14C content. Given this prevalence of fossil methane and the small contribution of gas hydrate (??? 1%) to the present-day atmospheric methane flux, non-fossil contributions of gas hydrate methane to the atmosphere are not likely to be quantitatively significant. This conclusion is consistent with contemporary atmospheric methane budget calculations. In combination with ??13C- and ??D-methane measurements, we also determine the extent to which the low, but detectable, amounts of 14C (~ 1-2% modern carbon, pMC) in methane from two cold seeps might reflect in situ production from near-seafloor sediment organic carbon (SOC). A 14C mass balance approach using fossil methane and 14C-enriched SOC suggests that as much as 8 to 29% of hydrate-associated methane carbon may originate from SOC contained within the upper 6??m of sediment. These findings validate the assumption of a predominantly fossil carbon source for marine gas hydrate, but also indicate that structural gas hydrate from at least certain cold seeps contains a component of methane produced during decomposition of non-fossil organic matter in near-surface sediment.

  19. Geomagnetic field intensity, North Atlantic Deep Water circulation and atmospheric Δ 14C during the last 50 kyr

    NASA Astrophysics Data System (ADS)

    Laj, Carlo; Kissel, Catherine; Mazaud, Alain; Michel, Elisabeth; Muscheler, Raimund; Beer, Juerg

    2002-06-01

    We present simulated records of past changes in the atmospheric Δ 14C for the last 50 kyr due to changes in geomagnetic field intensity and in the strength of the North Atlantic Deep Water (NADW). A new geomagnetic record was used, largely based on the NAPIS-75 record [Laj et al., Phil. Trans. R. Soc. London A 358 (2000) 1009-1025] which has been extended for the 0-20 kyr interval using archeomagnetic and volcanic data. Past changes of the NADW were derived from a mineral magnetic study of the cores used in the construction of NAPIS-75. Two box models of different complexity (4 and 17 boxes) were used to simulate the carbon cycle. Calculated records of Δ 14C are consistent with experimental determinations for the last 24 kyr. For older ages, the records calculated with variable oceanic circulation conditions reach values as high as 600‰ (with an average of 500‰) between 20 and 40 kyr with maxima around 21, 30 and 38 kyr (GISP2 age model), while low values are observed prior to 42 kyr. Although large inconsistencies in experimental data preclude precise comparison, the average record simulated with the 17-box model is overall consistent with the Icelandic Sea record [Voelker et al., Radiocarbon 40 (1998) 517-534; 42 (2000) 437-452], except for the extremely high peak observed in this record at 40.5 kyr. On the other hand, the results recently reported from a stalagmite recovered from a submerged cave in the Bahamas [Beck et al., Science 292 (2001) 2453-2458] are inconsistent with all our model simulations. In the 20-45 kyr interval, the improved geomagnetic record combined with the new NADW profile allows us to give a modeled evaluation of the relative contribution of these factors to changes in atmospheric Δ 14C. The average simulation provides a first order modeled correction for conventional radiocarbon ages older than 25 kyr for which no calibration curve is available as yet.

  20. Wine ethanol 14C as a tracer for fossil fuel CO2 emissions in Europe: Measurements and model comparison

    NASA Astrophysics Data System (ADS)

    Palstra, Sanne W. L.; Karstens, Ute; Streurman, Harm-Jan; Meijer, Harro A. J.

    2008-11-01

    14C (radiocarbon) in atmospheric CO2 is the most direct tracer for the presence of fossil-fuel-derived CO2 (CO2-ff). We demonstrate the 14C measurement of wine ethanol as a way to determine the relative regional atmospheric CO2-ff concentration compared to a background site ("regional CO2-ff excess") for specific harvest years. The carbon in wine ethanol is directly back traceable to the atmospheric CO2 that the plants assimilate. An important advantage of using wine is that the atmosphere can be monitored annually back in time. We have analyzed a total of 165 wines, mainly from harvest years 1990-1993 and 2003-2004, among which is a semicontinuous series (1973-2004) of wines from one vineyard in southwest Germany. The results show clear spatial and temporal variations in the regional CO2-ff excess values. We have compared our measured regional CO2-ff excess values of 2003 and 2004 with those simulated by the REgional MOdel (REMO). The model results show a bias of almost +3 parts per million (ppm) CO2-ff compared with those of the observations. The modeled differences between 2003 and 2004, however, which can be used as a measure for the variability in atmospheric mixing and transport processes, show good agreement with those of the observations all over Europe. Correcting for interannual variations using modeled data produces a regional CO2-ff excess signal that is potentially useful for the verification of trends in regional fossil fuel consumption. In this fashion, analyzing 14C from wine ethanol offers the possibility to observe fossil fuel emissions back in time on many places in Europe and elsewhere.

  1. IntCal04: A New Consensus Radiocarbon Calibration Dataset from 0-26 ka BP

    NASA Astrophysics Data System (ADS)

    Reimer, P. J.; Baillie, M. G.; Bard, E.; Beck, J. W.; Buck, C. E.; Blackwell, P. G.; Burr, G. S.; Cutler, K. B.; Damon, P. E.; Edwards, R. L.; Fairbanks, R. G.; Friedrich, M.; Guilderson, T. P.; Hogg, A. G.; Hughen, K. A.; Kromer, B.; McCormac, G.; Ramsey, C. B.; Reimer, R. W.; Remmele, S.; Southon, J. R.; Stuiver, M.; Taylor, F. W.; van der Plicht, J.; Weyhenmeyer, C. E.

    2003-12-01

    Because atmosphere 14C levels have not been constant through time, it is necessary to calibrate radiocarbon dates with known age radiocarbon datasets in order to compare paleorecords based on 14C ages and those based on other timescales. The need for a consensus calibration dataset was acknowledged by the radiocarbon community as a way of preventing confusion and the subjective use of selected datasets (1). Since then, radiocarbon calibration datasets have been developed by international collaborations and presented for ratification at the International Radiocarbon Conference (2-4). The IntCal04 Radiocarbon Calibration/Comparison Working Group has put together a dataset which incorporates existing and new measurements of tree-ring records, foraminifera from varved sediments, and corals that meet a strict set of acceptance criteria (5). Uncertainties for both the calendar time scale and the radiocarbon ages have been quantified and included in the dataset combination using a statistical technique based on the ideas of Christen and Nicholls (6) and Gomez Portugal Aguilar (7). The IntCal04 dataset, which covers the range of 0 to 26 ka BP, was presented for ratification at the 19th International Radiocarbon Conference in Wellington, New Zealand, in September, 2003. This paper will highlight the differences between IntCal98 and the new IntCal04 dataset and give an example showing the effect on the calibrated age for a Younger Dryas age sample. 1. J. Klein, J. C. Lerman, P. E. Damon, E. K. Ralph, Radiocarbon 24, 103-150 (1982). 2. M. Stuiver, Radiocarbon 28, R2-R2 (1986). 3. M. Stuiver et al., Radiocarbon 40, 1041-1083 (1998). 4. M. Stuiver, P. J. Reimer, Radiocarbon 35, 215-230 (1993). 5. P. J. Reimer et al., Radiocarbon 44, 653-661. (2002). 6. J. A. Christen, G. Nicholls, "Random-walk radiocarbon calibration." (Mathematics Department, University of Auckland, 2000). 7.D. G. P. Aguilar, C. D. Litton, A. O'Hagan, Radiocarbon 44, 195-212 (2002).

  2. Tips and traps in the 14C Bio-AMS preparation laboratory (WSam 7)

    SciTech Connect

    Buchholz, B A; Haack, K W; Stewart, P H; Vogel, J S

    1999-10-12

    Maintaining a contamination free sample preparation lab for biological 14 C AMS requires the same or more diligence as a radiocarbon dating prep lab. Isotope ratios of materials routinely range over 4-8 orders of magnitude in a single experiment, dosing solutions contain thousands of DPM and gels used to separate proteins possess 14 C ratios of 1pMC. Radiocarbon contamination is a legacy of earlier tracer work in most biological laboratories, even if they were never hot labs. Removable surface contamination can be found and monitored using swipes. Contamination can be found on any surface routinely touched: door knobs, light switches, drawer handles, water faucets. In general, all surfaces routinely touched need to be covered with paper, foil, or plastic that can be changed frequently. Shared air supplies can also present problems by distributing hot aerosols throughout a building. Aerosols can be monitored for 14 C content using graphitized coal or fullerene soot mixed with metal powder as an absorber. The monitors can be set out in work spaces for 1-2 weeks and measured by AMS with regular samples. Frequent air changes help minimize aerosol contamination in many cases. Cross contamination of samples can be minimized by using disposable plastic or glassware in the prep lab, isolating samples from the air when possible and using positive displacement pipetters.

  3. Wiggles and the void: highly resolved temporal 14C dates during the Younger Dyras

    NASA Astrophysics Data System (ADS)

    Sookdeo, Adam; Wacker, Lukas; Adolphi, Florian; Beer, Jürg; Büntgen, Ulf; Friedrich, Micheal; Helle, Gerd; Kromer, Bernd; Muscheler, Raimund; Nievergelt, Daniel; Pauly, Maren; Reinig, Frederick

    2017-04-01

    The onset of the Younger Dyras (YD) around 12 900 BP is marked by an abrupt cooling event lasting over 1000 years before a warming to present day temperatures. The abrupt climate change during the YD could be a potential analog to modern day global climate change. To understand the YD, accurate and complete paleoclimate, paleoenvironmental and archaeological records are required. However, Northern Hemisphere absolute tree-ring chronologies extend back to only 12 325 BP and floating chronologies exist back to only 14 200 BP. Radiocarbon-dates for the absolute tree-chronologies and floating chronologies are decadal averages and are weakened as there are only 12 decadal dates for the absolute chronology between 12 325 - 11 900 BP. Here we present quinquennial radiocarbon dates that fill the void between 12 325 - 11 900 BP using German trees that are part of the absolute tree-ring chronology. In addition, we present annual and bi-annual 14C dates for floating chronologies between approx. 12 850 to 12 500 BP. These new 14C dates show more wiggles and structure that are not present in the decadal 14C dates of Intcal13. These wiggles could offer new insight into carbon cycle and/or solar variability during the YD.

  4. Characterization of 14C in Neutron-Irradiated Graphite

    NASA Astrophysics Data System (ADS)

    LaBrier, Daniel Patrick

    A long-term radiological concern regarding irradiated graphite waste is the presence of the radionuclide 14C. Recent studies suggest that a significant portion of 14C contamination present in reactor-irradiated graphite is concentrated on the surface and within near-surface layers. Methods for treating irradiated graphite waste (e.g. pyrolysis, oxidation) in order to remove 14C-bearing species from the bulk graphite are being investigated to lend guidance in optimizing long-term disposal strategies. Characterization studies were performed in order to determine the chemical nature of 14C on irradiated graphite surfaces. Samples of the nuclear-grade graphite NBG-25 were irradiated in a neutron flux of 10 14 n/cm2-s for 360 days at the Advanced Test Reactor (at the Idaho National Laboratory). Surface-sensitive analysis techniques (XPS, ToF-SIMS, SEM/EDS and Raman) were employed to determine the type, location and quantity of specific chemical species and bonds that were present on the surfaces of irradiated graphite samples. Several 14C precursor species were identified on the surfaces of irradiated NBG-25; the quantities of these species decrease at sub-surface depths, which, is consistent with the observation of high concentrations of 14C on the surfaces of graphite reactor components. The elevated presence of surface oxide complexes on irradiated NBG-25 surfaces was attributed directly to neutron irradiation. Pathways for the release of 14C were identified for irradiated NBG-25: carboxyls and lactones (14CO 2), and carbonyls, ethers and quinones (14CO). Increased amounts of C-O and C=O bonding were observed on irradiated NBG-25 surfaces (when compared to unirradiated samples) in the form of interlattice (e.g. ether) and dangling (e.g. carboxyl or quinone) bonds; the quantities of these bond types also decrease at sub-surface depths. The results of this study are consistent with thermal treatment studies that indicate that the primary candidates for the release of

  5. New and revised 14C dates for Hawaiian surface lava flows: Paleomagnetic and geomagnetic implications

    USGS Publications Warehouse

    Pressline, N.; Trusdell, F.A.; Gubbins, David

    2009-01-01

    Radiocarbon dates have been obtained for 30 charcoal samples corresponding to 27 surface lava flows from the Mauna Loa and Kilauea volcanoes on the Island of Hawaii. The submitted charcoal was a mixture of fresh and archived material. Preparation and analysis was undertaken at the NERC Radiocarbon Laboratory in Glasgow, Scotland, and the associated SUERC Accelerator Mass Spectrometry facility. The resulting dates range from 390 years B.P. to 12,910 years B.P. with corresponding error bars an order of magnitude smaller than previously obtained using the gas-counting method. The new and revised 14C data set can aid hazard and risk assessment on the island. The data presented here also have implications for geomagnetic modelling, which at present is limited by large dating errors. Copyright 2009 by the American Geophysical Union.

  6. Radiocarbon to calendar date conversion: Calendrical band widths as a function of radiocarbon precision

    SciTech Connect

    McCormac, F.G.; Baillie, M.G.L. )

    1993-01-01

    Accurate high-precision [sup 14]C dating (i.e., [plus minus] 20 yr precision or less on the [sup 14]C date) provides the narrowest calendrical band width and, hence, the best age range determination possible. However, because of the structure in the [sup 14]C calibration curve, the calendar age range for a given [sup 14]C precision is not constant throughout the calibration range. In this study, they quantify the calendar band widths for a range of [sup 14]C precisions throughout the calibration range. They show that an estimate of the likely calendar band width in years can be obtained from the expression: Band width (yr) = 2.12 x [sup 14]C precision (1 [sigma]) + 54.6. They also show that calendar band widths are widest around 4000 Bp at the start of the Bronze Age, and become narrow through the later Bronze Age and Iron Age and back into the Neolithic.

  7. Optical Measurement of Radiocarbon below Unity Fraction Modern by Linear Absorption Spectroscopy.

    PubMed

    Fleisher, Adam J; Long, David A; Liu, Qingnan; Gameson, Lyn; Hodges, Joseph T

    2017-09-21

    High-precision measurements of radiocarbon ((14)C) near or below a fraction modern (14)C of 1 (F(14)C ≤ 1) are challenging and costly. An accurate, ultrasensitive linear absorption approach to detecting (14)C would provide a simple and robust benchtop alternative to off-site accelerator mass spectrometry facilities. Here we report the quantitative measurement of (14)C in gas-phase samples of CO2 with F(14)C < 1 using cavity ring-down spectroscopy in the linear absorption regime. Repeated analysis of CO2 derived from the combustion of either biogenic or petrogenic sources revealed a robust ability to differentiate samples with F(14)C < 1. With a combined uncertainty of (14)C/(12)C = 130 fmol/mol (F(14)C = 0.11), initial performance of the calibration-free instrument is sufficient to investigate a variety of applications in radiocarbon measurement science including the study of biofuels and bioplastics, illicitly traded specimens, bomb dating, and atmospheric transport.

  8. Reconstructions of the 14C cosmogenic isotope content from natural archives after the last glacial termination

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, I. V.; Volobuev, D. M.; Dergachev, V. A.; Nagovitsyn, Yu. A.; Ogurtsov, M. G.

    2016-12-01

    Data on the content of the 14C cosmogenic isotope in tree rings, which were obtained as a result of laboratory measurements, are often used when solar activity (SA) is reconstructed for previous epochs, in which direct observations are absent. However, these data contain information not only about SA variations but also about changes in the Earth climatic parameters, such as the global temperature and the CO2 content in the Earth's atmosphere. The effect of these variations on the 14C isotope content in different natural reservoirs after the last glacial termination to the middle of the Holocene is considered. The global temperature and the CO2 content increased on this time interval. In this case the 14C absolute content in the atmosphere increased on this time interval, even though the 14C to 12C isotope concentration ratio (as described by the Δ14C parameter) decreased. These variations in the radiocarbon absolute content can be caused by its redistribution between natural reservoirs. It has been indicated that such a redistribution is possible only when the rate of carbon exchange between the ocean and atmosphere depends on temperature. The values of the corresponding temperature coefficient for the 17-10 ka BC time interval, which make it possible to describe the carbon redistribution between the ocean and atmosphere, have been obtained.

  9. The curved 14C vs. δ13C relationship in dissolved inorganic carbon: A useful tool for groundwater age- and geochemical interpretations

    USGS Publications Warehouse

    Han, Liang-Feng; Plummer, Niel; Aggarwal, Pradeep

    2014-01-01

    Determination of the 14C content of dissolved inorganic carbon (DIC) is useful for dating of groundwater. However, in addition to radioactive decay, the 14C content in DIC (14CDIC) can be affected by many geochemical and physical processes and numerous models have been proposed to refine radiocarbon ages of DIC in groundwater systems. Changes in the δ13C content of DIC (δ13CDIC) often can be used to deduce the processes that affect the carbon isotopic composition of DIC and the 14C value during the chemical evolution of groundwater. This paper shows that a curved relationship of 14CDIC vs. δ13CDIC will be observed for groundwater systems if (1) the change in δ13C value in DIC is caused by a first-order or pseudo-first-order process, e.g. isotopic exchange between DIC and solid carbonate, (2) the reaction/process progresses with the ageing of the groundwater, i.e. with decay of 14C in DIC, and (3) the magnitude of the rate of change in δ13C of DIC is comparable with that of 14C decay. In this paper, we use a lumped parameter method to derive a model based on the curved relationship between 14CDICand δ13CDIC. The derived model, if used for isotopic exchange between DIC and solid carbonate, is identical to that derived by Gonfiantini and Zuppi (2003). The curved relationship of 14CDIC vs. δ13CDIC can be applied to interpret the age of the DIC in groundwater. Results of age calculations using the method discussed in this paper are compared with those obtained by using other methods that calculate the age of DIC based on adjusted initial radiocarbon values for individual samples. This paper shows that in addition to groundwater age interpretation, the lumped parameter method presented here also provides a useful tool for geochemical interpretations, e.g. estimation of apparent rates of geochemical reactions and revealing the complexity of the geochemical environment.

  10. Radiocarbon signal of a low and intermediate level radioactive waste disposal facility in nearby trees.

    PubMed

    Janovics, R; Kelemen, D I; Kern, Z; Kapitány, S; Veres, M; Jull, A J T; Molnár, M

    2016-03-01

    Tree ring series were collected from the vicinity of a Hungarian radioactive waste treatment and disposal facility and from a distant control background site, which is not influenced by the radiocarbon discharge of the disposal facility but it represents the natural regional (14)C level. The (14)C concentration of the cellulose content of tree rings was measured by AMS. Data of the tree ring series from the disposal facility was compared to the control site for each year. The results were also compared to the (14)C data of the atmospheric (14)C monitoring stations at the disposal facility and to international background measurements. On the basis of the results, the excess radiocarbon of the disposal facility can unambiguously be detected in the tree from the repository site. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Radiocarbon-derived sedimentation rates in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Santschi, Peter H.; Rowe, Gilbert T.

    2008-12-01

    Sedimentation rates were determined for the northern Gulf of Mexico margin sediments at water depths ranging from 770 to 3560 m, using radiocarbon determinations of organic matter. Resulting sedimentation rates ranged from 3 to 15 cm/kyr, decreasing with increasing water depth. These rates agree with long-term sedimentation rates estimated previously using stratigraphic methods, and with estimates of sediment delivery rates by the Mississippi River to the northern Gulf of Mexico, but are generally higher by 1-2 orders of magnitude than those estimated by 210Pb xs methods. Near-surface slope sediments from 2737 m water depth in the Mississippi River fan were much older than the rest. They had minimum 14C ages of 16-27 kyr and δ13C values ranging from -24‰ to -26.5‰, indicating a terrestrial origin of organic matter. The sediments from this site were thus likely deposited by episodic mass wasting of slope sediment through the canyon, delineating the previously suggested main pathway of sediment and clay movement to abyssal Gulf sediments.

  12. Efficient Collection of Methane from Extremely Large Volumes of Water for Natural Radiocarbon Analysis

    NASA Astrophysics Data System (ADS)

    Sparrow, K. J.; Kessler, J. D.

    2014-12-01

    Collecting sufficient amounts of natural methane sample for a high precision radiocarbon (14C-CH4) analysis was previously unfeasible when sampling from low methane concentration waters like the open ocean. A new method incorporating dissolved gas extraction technology (Liqui-Cel® membrane contactors) has been developed to circumvent the challenges that natural 14C-CH4 sampling presents. With this method, adequate amounts of methane-carbon for a traditional 14C-accelerator mass spectrometry (AMS) analysis can be cleanly and efficiently extracted from 1000s L water in a few hours. This technique is currently being improved to enable sampling from > 11,000 L water in less than 1 hr. For transport from the field to the laboratory, each extracted gas sample is compressed into a small (1.68 L) high-pressure aluminum cylinder using an oil-free compressor pump. Due to the small size and portability of the sample cylinders, high resolution sampling plans composed of 30+ samples are possible even in remote locations. The laboratory preparation of these methane samples for 14C-AMS analyses is carried out on a new flow-through vacuum line. While the bulk water vapor and carbon dioxide (CO2) are removed before the sample is compressed in the field, the residual trace amounts of these constituents are cryogenically removed from the sample in the initial phase of the vacuum line. Carbon monoxide in the sample is quantitatively oxidized at 290°C to CO2 and cryogenically removed. Finally, the sample methane is quantitatively oxidized at 950°C to products CO2 and water and then cryogenically isolated. The new vacuum line technique achieves low blanks and purifies and oxidizes the methane contained in the extracted gas sample with high efficiency. At an AMS facility, an aliquot of the methane-produced CO2 is graphitized and analyzed for radiocarbon content using traditional 14C-AMS. Supporting dual-inlet isotope ratio mass spectrometry measurements are conducted to determine both

  13. The age of fine-root carbon in three forests of the eastern United States measured by radiocarbon.

    PubMed

    Gaudinski, J; Trumbore, S; Davidson, E; Cook, A; Markewitz, D; Richter, D

    2001-11-01

    Using a new approach involving one-time measurements of radiocarbon ((14)C) in fine (<2 mm diameter) root tissues we have directly measured the mean age of fine-root carbon. We find that the carbon making up the standing stock of fine roots in deciduous and coniferous forests of the eastern United States has a mean age of 3-18 years for live fine roots, 10-18 years for dead fine roots, and 3-18 years for mixed live+dead fine roots. These (14)C-derived mean ages represent the time C was stored in the plant before being allocated for root growth, plus the average lifespan (for live roots), plus the average time for the root to decompose (for dead roots and mixtures). Comparison of the (14)C content of roots known to have grown within 1 year with the (14)C of atmospheric CO2 for the same period shows that root tissues are derived from recently fixed carbon, and the storage time prior to allocation is <2 years and likely <1 year. Fine-root mean ages tend to increase with depth in the soil. Live roots in the organic horizons are made of C fixed 3-8 years ago compared with 11-18 years in the mineral B horizons. The mean age of C in roots increases with root diameter and also is related to branching order. Our results differ dramatically from previous estimates of fine-root mean ages made using mass balance approaches and root-viewing cameras, which generally report life spans (mean ages for live roots) of a few months to 1-2 years. Each method for estimating fine-root dynamics, including this new radiocarbon method, has biases. Root-viewing approaches tend to emphasize more rapidly cycling roots, while radiocarbon ages tend to reflect those components that persist longest in the soil. Our (14)C-derived estimates of long mean ages can be reconciled with faster estimates only if fine-root populations have varying rates of root mortality and decomposition. Our results indicate that a standard definition of fine roots, as those with diameters of <2 mm, is

  14. Vulcanism and Radiocarbon Dates

    DOE R&D Accomplishments Database

    Libby, L. M.; Libby, W. F.

    1972-10-01

    We consider whether the long term perturbation of radiocarbon dates, which is known to be approximately a sin function of period about 8000 years and amplitude of about 8% peak-to-peak, could have been caused in any major part by vulcanism. We conclude that this is not the case. On the contrary, present day volcanoes are a far less important source of inert CO{sub 2} (about 100 fold less) than is man's burning of fossil fuels which has caused the Suess dilution of about 2%. (auth)

  15. Evaluating the Paleoindian Radiocarbon Record at the Onset of the Younger Dryas: Sensitivity Analyses and Bayesian Chronology-Building

    NASA Astrophysics Data System (ADS)

    Culleton, B. J.; Kennett, D. J.

    2008-12-01

    The onset of the Younger Dryas (13.0-12.9 ka) in North America is marked in the archaeological record by the transition from Clovis to Folsom cultural assemblages, as well as the extinction of many megafauna species. The nature of the transition-gradual or abrupt, continuous or discontinuous, regionally uniform or variable - remains poorly understood because of: 1) low-precision and low-quality radiocarbon records; 2) concerns about the accuracy of the calibration curve before ca. 12.4 ka; and, 3) disagreement on the appropriate statistical models for chronology building. Here we evaluate two approaches to Paleoindian radiocarbon chronology, summed probability distributions and Bayesian phase/boundary models. Summed probability frequencies have been used as demographic proxies recently, but the effects of sample quality, density, and the variations in the calibration curve are largely unexplored. Sensitivity analyses were done by simulating radiocarbon ages at 10, 25, 50 and 100 cal yr intervals with varying measurement errors, which were calibrated and summed to obtain a probability distribution function for each run. We find that dense, high-precision radiocarbon records are necessary to detect gaps as small as 100 years in the record. Currently available radiocarbon databases for the Paleoindian period can at best be characterized as sparse and of low- to medium-precision, arguing against the use of summed probabilities as a proxy for human activity during that period. Bayesian statistical models incorporate a priori archaeological information (e.g., stratigraphic relationships, cultural assemblage) to constrain calibrated radiocarbon ages leading to more refined chronologies. Selected high-precision, reliable radiocarbon dates were used to build phase and boundary models for Clovis and post-Clovis periods, and to determine the likelihood of a gap between them consistent with depopulation consistent with an ET impact at the Younger Dryas boundary. Model results

  16. High-resolution regional modelling of natural and anthropogenic radiocarbon in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Ayache, Mohamed; Dutay, Jean-Claude; Mouchet, Anne; Tisnérat-Laborde, Nadine; Montagna, Paolo; Tanhua, Toste; Siani, Giuseppe; Jean-Baptiste, Philippe

    2017-03-01

    A high-resolution dynamical model (Nucleus for European Modelling of the Ocean, Mediterranean configuration - NEMO-MED12) was used to give the first simulation of the distribution of radiocarbon (14C) across the whole Mediterranean Sea. The simulation provides a descriptive overview of both the natural pre-bomb 14C and the entire anthropogenic radiocarbon transient generated by the atmospheric bomb tests performed in the 1950s and early 1960s. The simulation was run until 2011 to give the post-bomb distribution. The results are compared to available in situ measurements and proxy-based reconstructions. The radiocarbon simulation allows an additional and independent test of the dynamical model, NEMO-MED12, and its performance to produce the thermohaline circulation and deep-water ventilation. The model produces a generally realistic distribution of radiocarbon when compared with available in situ data. The results demonstrate the major influence of the flux of Atlantic water through the Strait of Gibraltar on the inter-basin natural radiocarbon distribution and characterize the ventilation of intermediate and deep water especially through the propagation of the anthropogenic radiocarbon signal. We explored the impact of the interannual variability on the radiocarbon distribution during the Eastern Mediterranean Transient (EMT) event. It reveals a significant increase in 14C concentration (by more than 60 ‰) in the Aegean deep water and at an intermediate level (value up to 10 ‰) in the western basin. The model shows that the EMT makes a major contribution to the accumulation of radiocarbon in the eastern Mediterranean deep waters.

  17. No evidence for a deglacial intermediate water Δ14C anomaly in the SW Atlantic

    NASA Astrophysics Data System (ADS)

    Sortor, R. N.; Lund, D. C.

    2011-12-01

    The last deglaciation was characterized by an increase in atmospheric pCO2 and decrease in atmospheric radiocarbon activity. One hypothesis is that these changes were due to out-gassing of 14C-depleted carbon from the abyssal ocean (Broecker and Barker, 2007). Reconstructions of foraminiferal Δ14C from the eastern tropical Pacific (Marchitto et al., 2007; Stott et al. 2009), Arabian Sea (Bryan et al., 2010), and high latitude North Atlantic (Thornalley et al., 2011) show that severe depletions in 14C occurred at intermediate water depths during the last deglaciation. It has been suggested that 14C-depleted water from the abyss upwelled in the Southern Ocean and was then carried by Antarctic Intermediate Water (AAIW) to these sites (Marchitto et al., 2007). On the South Icelandic Rise, Thornalley et al. (2011) find deglacial Δ14C values up to 600% lower than the atmosphere. Since North Atlantic deep waters are not believed to be old enough to cause such an anomaly (Robinson et al. 2005), one possible source is AAIW (Thornalley et al., 2011). Here we evaluate whether or not a large deglacial 14C anomaly occurred at intermediate depths in the Southwest Atlantic. We find that the deglacial Δ14C trend at our site is similar to the atmospheric Δ14C trend. Our results are also largely consistent with data from U/Th-dated corals at shallower water depths on the Brazil Margin (Mangini et al., 2010). We find no evidence in the southwestern Atlantic of large deglacial Δ14C anomalies like those observed in the high latitude North Atlantic (Thornalley et al., 2011). When our results are paired with those from the South Pacific (De Pol-Holz et al., 2010; Rose et al., 2010), it appears AAIW did not carry a highly 14C- depleted signal during the deglaciation. Another source of carbon is apparently required to explain the intermediate-depth Δ14C anomalies in the North Atlantic, Indian, and Pacific Oceans.

  18. Intermediate water 14C evidence for the mechanism of deglacial CO2 increase

    NASA Astrophysics Data System (ADS)

    Marchitto, T. M.; Lehman, S. J.; Ortiz, J. D.; van Geen, A.

    2006-12-01

    Carbon sequestration in the ocean is widely considered to be the proximate cause of glacial CO2 lowering. The 14C activity of the atmosphere during the last glacial period appears to have been too high to be explained by increased cosmogenic production alone, implying that exchange of CO2 with the deep ocean must have been reduced. In other words, there must have been a relatively isolated deep ocean carbon reservoir. Likewise there was a sharp drop in atmospheric 14C activity coincident with the Termination I atmospheric CO2 increase, suggesting that the deep isolated reservoir, and therefore the carbon released from the ocean, was extremely depleted in 14C. Both the CO2 and 14C changes occurred in step with Antarctic warming, implicating the Southern Ocean as the main locus of carbon release. We therefore hypothesize that 14C-depleted waters should have spread to the intermediate/upper ocean via Antarctic Intermediate Water and Subantarctic Mode Water during the last deglaciation. We show that at ~700 m water depth off of southern Baja California, very 14C-depleted waters appeared in two stages during the last deglaciation, closely coincident with the atmospheric CO2 rise. The spectral reflectance record from our sediment core bears a remarkable resemblance to Greenland ice δ 18O, allowing us to assign calendar ages to our samples. Radiocarbon activity of paleo-waters is then calculated by age-correcting our benthic foraminiferal 14C measurements. During most of the 40,000 year record, intermediate water activity was ~100-200‰ lower than the atmosphere (like today), but during deglaciation this depletion increased to as much as 450‰. We suggest that this transient drop reflects the mixing of `old' carbon to the Southern Ocean surface, with spreading to the North Pacific via Antarctic Intermediate Water.

  19. Metabolism of (14)C-octamethylcyclotetrasiloxane ([(14)C]D4) or (14)C-decamethylcyclopentasiloxane ([(14)C]D5) orally gavaged in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Domoradzki, Jeanne Y; Sushynski, Jacob M; Thackery, Lisa M; Springer, Timothy A; Ross, Timothy L; Woodburn, Kent B; Durham, Jeremy A; McNett, Debra A

    2017-04-21

    Critical factors (uptake, distribution, metabolism and elimination) for understanding the bioaccumulation/biomagnification potential of Octamethylcyclotetrasiloxane (D4) and Decamethylcyclopentasiloxane (D5) siloxanes in fish were investigated to address whether these chemicals meet the "B" criteria of the Persistent, Bioaccumulative, and Toxic (PBT) classification. A metabolism study was conducted in rainbow trout whereby a 15mg [(14)C]D4/kg bw or [(14)C]D5/kg bw as a single bolus oral dose was administered via gavage. Of the administered dose, 79% (D4) and 78% (D5) was recovered by the end of the study (96-h). Eighty-two percent and 25% of the recovered dose was absorbed based on the percentage of recovered dose in carcass (69% and 17%), tissues, bile and blood (12% and 8%) and urine (1%) for D4 and D5, respectively. A significant portion of the recovered dose (i.e. 18% for D4 and 75% for D5) was eliminated in feces. Maximum blood concentrations were 1.6 and 1.4μg D4 or D5/g blood at 24h post-dosing, with elimination half-lives of 39h (D4) and 70h (D5). Modeling of parent and metabolite blood concentrations resulted in estimated metabolism rate constants (km(blood)) of 0.15 (D4) and 0.17day(-1)(D5). Metabolites in tissues, bile, blood, and urine totaled a minimum of 2% (D4) and 14% (D5) of the absorbed dose. The highest concentration of (14)C-activity in the fish following D4 administration was in mesenteric fat followed by bile, but the opposite was true for D5. Metabolites were not detected in fat, only parent chemical. In bile, 94% (D4) and 99% (D5) of the (14)C-activity was due to metabolites. Metabolites were also detected in the digestive tract, liver and gonads. Approximately 40% of the (14)C-activity detected in the liver was due to the presence of metabolites. Urinary elimination represented a minor pathway, but all the (14)C-activity in the urine was associated with metabolites. Clearance may occur via enterohepatic circulation of metabolic products in

  20. Improved 14C dating of a tephra layer (AT tephra, Japan) using AMS on selected organic fractions

    NASA Astrophysics Data System (ADS)

    Miyairi, Y.; Yoshida, K.; Miyazaki, Y.; Matsuzaki, H.; Kaneoka, I.

    2004-08-01

    Tephra (volcanic ash) layers provide unique chronostratigraphic maker beds in geosciences, allowing ages to be transferred to adjacent units and across regions. Therefore, it is important to establish the application of radiocarbon dating of tephra layers with high levels of reliability. We have examined the reliability of radiocarbon dating by dating three samples of organic material associated with the Aira-Tn (AT) tephra layer. AT tephra, ≈25,000 14C BP, is one of the major widespread tephras in Japan. We demonstrate that by using detailed pre-treatment on samples, closely examined samples, measurements with higher precision are possible. New high precision 14C age for the AT tephra of 25,120 ± 270 BP is presented.

  1. Investigating the Impact of Past and Future CO2 Emissions on the Distribution of Radiocarbon in the Ocean

    NASA Astrophysics Data System (ADS)

    Khatiwala, S.; Payne, S.; Graven, H. D.; Heimbach, P.

    2015-12-01

    The ocean is a significant sink for carbon dioxide from fossil fuel burning, absorbing roughly a third of human CO2 emitted over the industrial period. This has implications not only for climate but also for the chemical and isotopic composition of the ocean. Human activities have increased the ocean radiocarbon content through nuclear bomb tests in the 1950s-60s, which released a large amount of radiocarbon (14C) into the atmosphere, but fossil fuel emissions are decreasing the radiocarbon content through the release of 14C-depleted CO2. Here, we use the ECCO-v4 ocean state estimate to examine the changing nature of the air-sea flux of radiocarbon and its spatial distribution in the ocean in response to past and future CO2 emissions, the latter taken from the the Representative Concentration Pathway (RCP) database used in IPCC simulations. In line with previous studies we find that the large air-sea gradient of 14C induced by nuclear bomb testing led to rapid accumulation of radiocarbon in the surface ocean. Surface fluxes of 14C have considerably weakened over the past several decades and in some areas 14C is being returned to the atmosphere. As fossil fuel emissions continue to reduce the atmospheric 14C/C ratio (∆14C), in most RCP scenarios the total ocean 14C inventory starts decreasing by 2030. With strong emissions, the Δ14C of surface waters is driven to increasingly negative values and in RCP 8.5 by 2100 much of the surface ocean has apparent radiocarbon ages in excess of 2000 years, with subtropical gyres more depleted in 14C than the Southern Ocean. Surface waters become significantly more negative in Δ14C than underlying waters. As a result, turning conventional tracer oceanography on its head, recently ventilated waters are characterized by more negative Δ14C values. Similar patterns can be expected for CFCs in the ocean as atmospheric concentrations decrease over the next several decades. Our results have a number of implications, notably for

  2. Marine radiocarbon reservoir age simulations for the past 50,000 years

    NASA Astrophysics Data System (ADS)

    Butzin, M.; Köhler, P.; Lohmann, G.

    2017-08-01

    Radiocarbon (14C) dating calibration for the last glacial period largely relies on cross-dated marine 14C records. However, marine reservoirs are isotopically depleted with respect to the atmosphere and therefore have to be corrected by the Marine Radiocarbon Ages of surface waters (MRAs), whose temporal variabilities are largely unknown. Here we present simulations of the spatial and temporal variability in MRAs using a three-dimensional ocean circulation model covering the past 50,000 years. Our simulations are compared to reconstructions of past surface ocean Δ14C. Running the model with different climatic boundary conditions, we find that low-latitude to midlatitude MRAs have varied between 400 and 1200 14C years, with values of about 780 14C years at the Last Glacial Maximum. Reservoir ages exceeding 2000 14C years are simulated in the polar oceans. Our simulation results can be used as first-order approximation of the MRA variability in future radiocarbon calibration efforts.

  3. A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater

    USGS Publications Warehouse

    Han, L. F; Plummer, Niel

    2016-01-01

    underlying assumptions on which the various models and approaches are based can result in a wide range of estimates of 14C0 and limit the usefulness of radiocarbon as a dating tool for groundwater. In each of the three generalized approaches (single-sample-based models, statistical approach, and geochemical mass-balance approach), successful application depends on scrutiny of the isotopic (14C and 13C) and chemical data to conceptualize the reactions and processes that affect the 14C content of DIC in aquifers. The recently developed graphical analysis method is shown to aid in determining which approach is most appropriate for the isotopic and chemical data from a groundwater system.

  4. Radiocarbon measurements of black carbon in aerosols and ocean sediments

    NASA Astrophysics Data System (ADS)

    Masiello, C. A.; Druffel, E. R. M.; Currie, L. A.

    2002-03-01

    Black carbon (BC) is the combustion-altered, solid residue remaining after biomass burning and fossil fuel combustion. Radiocarbon measurements of BC provide information on the residence time of BC in organic carbon pools like soils and sediments, and also provide information on the source of BC by distinguishing between fossil fuel and biomass combustion byproducts. We have optimized dichromate-sulfuric acid oxidation for the measurement of radiocarbon in BC. We also present comparisons of BC 14C measurements on NIST aerosol SRM 1649a with previously published bulk aromatic 14C measurements and individual polycyclic aromatic hydrocarbon (PAH) 14C measurements on the same NIST standard. Dichromate-sulfuric acid oxidation belongs to the chemical class of BC measurement methods, which rely on the resistance of some forms of BC to strong chemical oxidants. Dilute solutions of dichromate-sulfuric acid degrade BC and marine-derived carbon at characteristic rates from which a simple kinetic formula can be used to calculate concentrations of individual components (Wolbach and Anders, 1989). We show that: (1) dichromate-sulfuric acid oxidation allows precise, reproducible 14C BC measurements; (2) kinetics calculations give more precise BC yield information when performed on a % OC basis (vs. a % mass basis); (3) kinetically calculated BC concentrations are similar regardless of whether the oxidation is performed at 23°C or 50°C; and (4) this method yields 14C BC results consistent with previously published aromatic 14C data for an NIST standard. For the purposes of intercomparison, we report % mass and carbon results for two commercially available BC standards. We also report comparative data from a new thermal method applied to SRM 1649a, showing that thermal oxidation of this material also follows the simple kinetic sum of exponentials model, although with different time constants.

  5. Radiocarbon dates on bones of extinct birds from Hawaii

    SciTech Connect

    James, H.F.; Stafford, T.W. Jr.; Steadman, D.W.; Olson, S.L.; Martin, P.S.; Jull, A.J.; McCoy, P.C.

    1987-04-01

    Bones from a stratified sedimentary deposit in the Puu Naio Cave site on Maui, Hawaiian Islands, reveal the late Holocene extinction of 19 species of birds. The age of the sediment and associated fauna was determined by direct radiocarbon dating (tandem particle accelerator-mass spectrometer; TAMS) of amino acids extracted from bones weighing as little as 450 mg. The /sup 14/C dates indicate that sediment has been accumulating in the lava tube for at least the last 7750 years, a suitable time frame for testing the hypothesis that Holocene extinction on islands began after human colonization. Despite growing evidence that a worldwide wave of extinctions coincided with human colonization of oceanic islands, little radiometric data have been available to date the extinction of most small fossil vertebrates on islands. The TAMS technique of dating purified collagen from the bones of small vertebrates could lead to vastly improved chronologies of extinction for oceanic islands where catastrophic mid- to late-Holocene extinction is expected or known to have occurred. Chronologies derived from nonarcheological sites that show continuous sedimentation, such as the Puu Naio Cave deposit, may also yield key evidence on the timing of earliest human settlement of Oceania.

  6. Radiocarbon dates on bones of extinct birds from Hawaii.

    PubMed Central

    James, H F; Stafford, T W; Steadman, D W; Olson, S L; Martin, P S; Jull, A J; McCoy, P C

    1987-01-01

    Bones from a stratified sedimentary deposit in the Puu Naio Cave site on Maui, Hawaiian Islands, reveal the late Holocene extinction of 19 species of birds. The age of the sediment and associated fauna was determined by direct radiocarbon dating (tandem particle accelerator-mass spectrometer; TAMS) of amino acids extracted from bones weighing as little as 450 mg. The 14C dates indicate that sediment has been accumulating in the lava tube for at least the last 7750 years, a suitable time frame for testing the hypothesis that Holocene extinction on islands began after human colonization. Despite growing evidence that a worldwide wave of extinctions coincided with human colonization of oceanic islands, little radiometric data have been available to date the extinction of most small fossil vertebrates on islands. The TAMS technique of dating purified collagen from the bones of small vertebrates could lead to vastly improved chronologies of extinction for oceanic islands where catastrophic mid- to late-Holocene extinction is expected or known to have occurred. Chronologies derived from nonarcheological sites that show continuous sedimentation, such as the Puu Naio Cave deposit, may also yield key evidence on the timing of earliest human settlement of Oceania. Images PMID:3470800

  7. Changes in14c activity over time during vacuum distillation of carbon from rock pore water

    USGS Publications Warehouse

    Davidson, G.R.; Yang, I.C.

    1999-01-01

    The radiocarbon activity of carbon collected by vacuum distillation from a single partially saturated tuff began to decline after approximately 60% of the water and carbon had been extracted. Disproportionate changes in 14C activity and ??13C during distillation rule out simple isotopic fractionation as a causative explanation. Additional phenomena such as matrix diffusion and ion exclusion in micropores may play a role in altering the isotopic value of extracted carbon, but neither can fully account for the observed changes. The most plausible explanation is that distillation recovers carbon from an adsorbed phase that is depleted in 14C relative to DIC in the bulk pore water. ?? 1999 by the Arizona Board of Regents on behalf of the University of Arizona.

  8. The origin of war: new 14C dates from ancient Mexico.

    PubMed

    Flannery, Kent V; Marcus, Joyce

    2003-09-30

    New 14C dates from archaeological sites in Oaxaca, Mexico, support R. C. Kelly's observation that intervillage raiding may begin as soon as a region has segmentary societies. The oldest defensive palisade dates to 3260-3160 B.P. in conventional radiocarbon years, only a few centuries after village life was established. Over the next millennium raiding evolved into war, with residences and temples burned, captives killed, and populations moving to defensible hills. 14C dates are now available for the first use of hieroglyphic writing to record a captive's name, military victories leading to the consolidation of the Zapotec state, the first skull rack, and the building of a fortress in conquered territory.

  9. Comparison of sampling methods for radiocarbon dating of carbonyls in air samples via accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schindler, Matthias; Kretschmer, Wolfgang; Scharf, Andreas; Tschekalinskij, Alexander

    2016-05-01

    Three new methods to sample and prepare various carbonyl compounds for radiocarbon measurements were developed and tested. Two of these procedures utilized the Strecker synthetic method to form amino acids from carbonyl compounds with either sodium cyanide or trimethylsilyl cyanide. The third procedure used semicarbazide to form crystalline carbazones with the carbonyl compounds. The resulting amino acids and semicarbazones were then separated and purified using thin layer chromatography. The separated compounds were then combusted to CO2 and reduced to graphite to determine 14C content by accelerator mass spectrometry (AMS). All of these methods were also compared with the standard carbonyl compound sampling method wherein a compound is derivatized with 2,4-dinitrophenylhydrazine and then separated by high-performance liquid chromatography (HPLC).

  10. Determination of tritium and 14C concentration in two hydrostratigraphic units below the University of California, Davis, waste burial holes at the Laboratory for Energy-Related Health Research/South Campus Disposal Site (LEHR/SCDS).

    PubMed

    Pay, Stephen

    2003-08-01

    The Laboratory for Energy-Related Health Research site at the University of California at Davis was used as a disposal site for tritium and 14C waste generated by campus related research. This low-level radioactive waste was disposed of by shallow land burial from 1956 to 1974 in waste burial holes and resulted in extensive contamination of soils and groundwater at the LEHR/SCDS. In part, due to this contamination, the LEHR/SCDS was placed on the National Priority List in May of 1994. In 1999, soils in the vicinity of the waste burial holes were subject to a CERCLA Removal Action. To this day elevated tritium and 14C concentrations are found in two groundwater monitoring wells that are located down gradient from the waste burial holes. The Bioscreen, Natural Attenuation Decision Support System software program was used, along with site-specific hydrogeologic conditions, to estimate the maximum source zone concentrations in the water bearing intervals below the waste burial holes. The first order decay process, and assumptions of horizontal flow provided reasonably accurate estimates of contaminant concentrations in the unconfined portion of the water bearing interval, but results for the confined portion of the water bearing intervals were mixed. Dose estimates for the time period of maximum contaminant concentration in the aquifer below the waste burial holes, predicted by modeling, suggested that the 4 mrem drinking water standard had not been exceeded at this site.

  11. Coral Radiocarbon Records of Indian Ocean Water Mass Mixing and Wind-Induced Upwelling Along the Coast of Sumatra, Indonesia

    SciTech Connect

    Guilderson, T P; Grumet, N S; Abram, N J; Beck, J W; Dunbar, R B; Gagan, M K; Hantoro, W S; Suwargadi, B W

    2004-02-06

    Radiocarbon ({sup 14}C) in the skeletal aragonite of annually banded corals track radiocarbon concentrations in dissolved inorganic carbon (DIC) in surface seawater. As a result of nuclear weapons testing in the 1950s, oceanic uptake of excess {sup 14}C in the atmosphere has increased the contrast between surface and deep ocean {sup 14}C concentrations. We present accelerator mass spectrometric (AMS) measurements of radiocarbon isotope ({Delta}{sup 14}C) in Porites corals from the Mentawai Islands, Sumatra (0 S, 98 E) and Watamu, Kenya (3 S, 39 E) to document the temporal and spatial evolution of the {sup 14}C gradient in the tropical Indian Ocean. The rise in {Delta}{sup 14}C in the Sumatra coral, in response to the maximum in nuclear weapons testing, is delayed by 2-3 years relative to the rise in coral {Delta}{sup 14}C from the coast of Kenya. Kenya coral {Delta}{sup 14}C values rise quickly because surface waters are in prolonged contact with the atmosphere. In contrast, wind-induced upwelling and rapid mixing along the coast of Sumatra entrains {sup 14}C-depleted water from the subsurface, which dilutes the effect of the uptake of bomb-laden {sup 14}C by the surface-ocean. Bimonthly AMS {Delta}{sup 14}C measurements on the Mentawai coral reveal mainly interannual variability with minor seasonal variability. The interannual signal may be a response to changes in the Walker circulation, the development of easterly wind anomalies, shoaling of the eastern thermocline, and upwelling of {sup 14}C-depleted water along the coast of Sumatra. Singular spectrum analysis of the Sumatra coral {Delta}{sup 14}C record reveals a significant 3-year periodicity. The results lend support to the concept that ocean atmosphere interactions between the Pacific and Indian Oceans operate in concert with the El Ni{tilde n}o-Southern Oscillation (ENSO).

  12. 14C and δ13C in Mytilus californianus shells as a proxy of upwelling intensity

    NASA Astrophysics Data System (ADS)

    Ferguson, J. E.; Johnson, K. R.; Santos, G. M.; Meyer, L.; Acaylar, K.; Tripati, A. K.

    2010-12-01

    Along the west coast of North America, climate and marine productivity is strongly affected by seasonal to interannual changes in coastal upwelling intensity. Our understanding of the variability of upwelling on these timescales in the past is limited by the short duration of instrumental records. Changes in upwelling intensity are expected to affect the δ13C and radiocarbon (14C) content of seawater dissolved inorganic carbonate (DIC) due to the variable mixing of old, upwelled seawater into surface waters. If these seasonal variations in the carbon isotope composition of seawater DIC are recorded in marine bivalve shells then they have the potential to provide valuable information about the extent of upwelling in these regions in the past. However, bivalve shell carbon isotope compositions are complicated by a number of factors including the contribution of metabolic carbon. To examine whether the carbon isotope compositions of California mussel (Mytilus californianus) shells could be used to produce records of upwelling intensity we collected living mussels from Newport Beach, CA. Sequential samples were generated from the outer calcite layer of these shells and analyzed for stable isotopes, trace elements and radiocarbon. These geochemical profiles are compared with instrumental records and a nearby timeseries of seawater DIC δ13C and 14C. We show that seasonal Mytilus californianus shell 14C values agree well with seawater DIC 14C measurements. Interpretation of δ13C is more problematic with shell δ13C lower than measured seawater DIC δ13C by up to 1 ‰, consistent with what might be expected due to incorporation of metabolic carbon. Results are also presented from Mytilus californianus shells, collected from Mexico to Oregon following the strong El Niño event of 1997-1998. This event caused a collapse of upwelling and provides an ideal opportunity to examine whether the carbon isotope composition of Mytilus californianus shells show evidence of the

  13. The remarkable metrological history of 14C dating: From ancient Egyptian artifacts to particles of soot and grains of pollen

    NASA Astrophysics Data System (ADS)

    Currie, L. A.

    2003-01-01

    Radiocarbon dating would not have been possible if 14C had not had the “wrong” half-life—a fact that delayed its discovery [1]. Following the discovery of this 5730 year radionuclide in laboratory experiments by Ruben and Kamen, it became clear to W. F. Libby that 14C should exist in nature, and that it could serve as a quantitative means for dating artifacts and events marking the history of civilization. The search for natural radiocarbon was a metrological challenge; the level in the living biosphere [ca. 230 Bq/kg] lay far beyond the then current state of the measurement art. This article traces the metrological history of radiocarbon, from the initial breakthrough devised by Libby, to minor (evolutionary) and major (revolutionary) advances that have brought 14C measurement from a crude, bulk [8 g carbon] dating tool, to a refined probe for dating tiny amounts of precious artifacts, and for “molecular dating” at the 10 μg to 100 μg level. The metrological advances led to opportunities and surprises, such as the non-monotonic dendrochronological calibration curve and the “bomb effect,” that spawned new multidisciplinary areas of application, ranging from cosmic ray physics to oceanography to the reconstruction of environmental history.

  14. Application of 14C analyses to source apportionment of carbonaceous PM 2.5 in the UK

    NASA Astrophysics Data System (ADS)

    Heal, Mathew R.; Naysmith, Philip; Cook, Gordon T.; Xu, Sheng; Duran, Teresa Raventós; Harrison, Roy M.

    2011-05-01

    Determination of the radiocarbon ( 14C) content of airborne particulate matter yields insight into the proportion of the carbonaceous material derived from fossil and contemporary carbon sources. Daily samples of PM 2.5 were collected by high-volume sampler at an urban background site in Birmingham, UK, and the fraction of 14C in both the total carbon, and in the organic and elemental carbon fractions, determined by two-stage combustion to CO 2, graphitisation and quantification by accelerator mass spectrometry. OC and EC content was also determined by Sunset Analyzer. The mean fraction contemporary TC in the PM 2.5 samples was 0.50 (range 0.27-0.66, n = 26). There was no seasonality to the data, but there was a positive trend between fraction contemporary TC and magnitude of SOC/TC ratio and for the high values of these two parameters to be associated with air-mass back trajectories arriving in Birmingham from over land. Using a five-compartment mass balance model on fraction contemporary carbon in OC and EC, the following average source apportionment for the TC in these PM 2.5 samples was derived: 27% fossil EC; 20% fossil OC; 2% biomass EC; 10% biomass OC; and 41% biogenic OC. The latter category will comprise, in addition to BVOC-derived SOC, other non-combustion contemporary carbon sources such as biological particles, vegetative detritus, humic material and tyre wear. The proportion of total PM 2.5 at this location estimated to derive from BVOC-derived secondary organic aerosol was 9-29%. The findings from this work are consistent with those from elsewhere in Europe and support the conclusion of a significant and ubiquitous contribution from non-fossil biogenic sources to the carbon in terrestrial aerosol.

  15. Comparison of Radiocarbon Ages for Multiproxy Paleoclimate Reconstruction of the Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Nielson, K. E.; Bowen, G. J.; Eglinton, T. I.

    2008-12-01

    Multiproxy paleoclimate reconstructions from high sedimentation-rate systems offer promising opportunities to deconvolve multiple aspects climate system response to past forcing. However, the time-equivalence of proxies must be established before such reconstructions can be usefully interpreted. Differences in source ages, transport pathways, and surface residence times for substrates may lead to differences in lag times between proxy formation and deposition, compromising comparative analysis of data from multiple proxies. We used multi-substrate radiocarbon dating to investigate the potential for multi-proxy reconstruction of Holocene changes in the volume of the Great Salt Lake (GSL), Utah, based on the stable isotope composition of organic and inorganic substrates in lake sediment cores. Among potential substrates for this work are normal alkanes of vascular higher plant and algal origin, fossil cysts of lake-dwelling brine shrimp (Artemia), and micritic aragonite. Radiocarbon ages for all organic substrates (alkanes, cysts) sampled at any given core depth are concordant within analytical uncertainty and are similar to ages determined on land-plant debris and filamentous algae isolated from the sediment. Inorganic carbonate, in contrast, is depleted in 14C compare to the organic proxies, giving ages that were apparently 2000 to 3000 years older, likely due to winnowing and re-deposition of carbonate at the core site. These results suggest that the maximum temporal resolution achievable through analysis of mineral substrates is on the order of several millennia. Although the limited precision of the radiocarbon analysis precludes precise determination of the maximum potential resolution of organic-proxy based climate reconstructions, the relatively high sedimentation rates (50--150 cm/kyr) and age-equivalence of the substrates analyzed implies that sub- centennial scale resolution should be achievable throughout much of the Holocene portion of the GSL

  16. Radiocarbon calibration uncertainties during the last deglaciation: Insights from new floating tree-ring chronologies

    NASA Astrophysics Data System (ADS)

    Adolphi, Florian; Muscheler, Raimund; Friedrich, Michael; Güttler, Dominik; Wacker, Lukas; Talamo, Sahra; Kromer, Bernd

    2017-08-01

    Radiocarbon dating is the most commonly used chronological tool in archaeological and environmental sciences dealing with the past 50,000 years, making the radiocarbon calibration curve one of the most important records in paleosciences. For the past 12,560 years, the radiocarbon calibration curve is constrained by high quality tree-ring data. Prior to this, however, its uncertainties increase rapidly due to the absence of suitable tree-ring 14C data. Here, we present new high-resolution 14C measurements from 3 floating tree-ring chronologies from the last deglaciation. By using combined information from the current radiocarbon calibration curve and ice core 10Be records, we are able to absolutely date these chronologies at high confidence. We show that our data imply large 14C-age variations during the Bølling chronozone (Greenland Interstadial 1e) - a period that is currently characterized by a long 14C-age plateau in the most recent IntCal13 calibration record. We demonstrate that this lack of structure in IntCal13 may currently lead to erroneous calibrated ages by up to 500 years.

  17. Radiocarbon calibration uncertainties during the last deglaciation: Insights from new floating tree-ring chronologies

    NASA Astrophysics Data System (ADS)

    Adolphi, Florian; Muscheler, Raimund; Friedrich, Michael; Güttler, Dominik; Wacker, Lukas; Talamo, Sahra; Kromer, Bernd

    2017-04-01

    Radiocarbon dating is the most commonly used chronological tool in archaeological and environmental sciences dealing with the past 50,000 years, making the radiocarbon calibration curve one of the most important records in paleosciences. For the past 12,560 years, the radiocarbon calibration curve is constrained by high quality tree-ring data. Prior to this, however, its uncertainties increase rapidly due to the absence of suitable tree-ring 14C data. Here, we present high-resolution 14C measurements from 3 new floating tree-ring chronologies from the last deglaciation. By using combined information from the current radiocarbon calibration curve and ice core 10Be records, we are able to absolutely date these chronologies at high confidence. We show that our data imply large 14C-age variations during the Bølling chronozone (Greenland Interstadial GI-1e) - a period that is currently characterized by a long 14C-age plateau in the most recent IntCal13 calibration record. We demonstrate that this lack of structure in IntCal13 may currently lead to erroneous calibrated ages by up to 500 years.

  18. A new 14C calibration data set for the last deglaciation based on marine varves

    SciTech Connect

    Hughen, K A; Kashgarian, M; Lehman, S J; Overpeck, J T; Peterson, L C; Southon, J R

    1999-02-22

    Varved sediments of the tropical Cariaco basin provide a new {sup 14}C calibration data set for the period of deglaciation (10,000 to 14,500 years before present: 10-14.5 cal ka BP). Independent evaluations of the Cariasco Basin calendar and {sup 14}C chronologies were based on the agreement of varve ages with the GISP2 ice core layer chronology for similar high-resolution paleoclimate records, in addition to {sup 14}C age agreement with terrestrial {sup 14}C dates, even during large climatic changes. These assessments indicate that the Cariaco Basin {sup 14}C reservoir age remained stable throughout the Younger Dryas and late Alleroed climatic events and that the varve and {sup 14}C chronologies provide an accurate alternative to existing calibrations based on coral U/Th dates. The Cariaco Basin calibration generally agrees with coral-derived calibrations but is more continuous and resolves century-scale details of {sup 14}C change not seen in the coral records. {sup 14}C plateaus can be identified at 9.6, 11.4, and 11.7 {sup 14}C ka BP, in addition to a large, sloping plateau during the Younger Dryas ({approximately}10 to 11 {sup 14}C ka BP). Accounting for features such as these is crucial to determining the relative timing and rates of change during abrupt global climate changes of the last deglaciation.

  19. Observation-based global biospheric excess radiocarbon inventory 1963-2005

    NASA Astrophysics Data System (ADS)

    Naegler, Tobias; Levin, Ingeborg

    2009-09-01

    For the very first time, we present an observation-based estimate of the temporal development of the biospheric excess radiocarbon (14C) inventory IB14,E, i.e., the change in the biospheric 14C inventory relative to prebomb times (1940s). IB14,E was calculated for the period 1963-2005 with a simple budget approach as the difference between the accumulated excess 14C production by atmospheric nuclear bomb tests and the nuclear industry and observation-based reconstructions of the excess 14C inventories in the atmosphere and the ocean. IB14,E increased from the late 1950s onward to maximum values between 126 and 177 × 1026 atoms 14C between 1981 and 1985. In the early 1980s, the biosphere turned from a sink to a source of excess 14C. Consequently, IB14,E decreased to values of 108-167 × 1026 atoms 14C in 2005. The uncertainty of IB14,E is dominated by uncertainties in the total bomb 14C production and the oceanic excess 14C inventory. Unfortunately, atmospheric Δ14CO2 from the early 1980s lack the necessary precision to reveal the expected small change in the amplitude and phase of atmospheric Δ14C seasonal cycle due to the sign flip in the biospheric net 14C flux during that time.

  20. A graphical method to evaluate predominant geochemical processes occurring in groundwater systems for radiocarbon dating

    USGS Publications Warehouse

    Han, Liang-Feng; Plummer, L. Niel; Aggarwal, Pradeep

    2012-01-01

    A graphical method is described for identifying geochemical reactions needed in the interpretation of radiocarbon age in groundwater systems. Graphs are constructed by plotting the measured 14C, δ13C, and concentration of dissolved inorganic carbon and are interpreted according to specific criteria to recognize water samples that are consistent with a wide range of processes, including geochemical reactions, carbon isotopic exchange, 14C decay, and mixing of waters. The graphs are used to provide a qualitative estimate of radiocarbon age, to deduce the hydrochemical complexity of a groundwater system, and to compare samples from different groundwater systems. Graphs of chemical and isotopic data from a series of previously-published groundwater studies are used to demonstrate the utility of the approach. Ultimately, the information derived from the graphs is used to improve geochemical models for adjustment of radiocarbon ages in groundwater systems.

  1. Microflora distributions in paleosols: a method for calculating the validity of radiocarbon-dated surfaces

    SciTech Connect

    Mahaney, W.C.; Boyer, M.G.

    1986-08-01

    Microflora (bacteria and fungi) distributions in several paleosols from Mount Kenya, East Africa, provide important information about contamination of buried soil horizons dated by radiocarbon. High counts of bacteria and fungi in buried soils provide evidence for contamination by plant root effects or ground water movement. Profiles with decreasing counts versus depth appear to produce internally consistent and accurate radiocarbon dates. Profiles with disjunct or bimodal distributions of microflora at various depths produce internally inconsistent chronological sequences of radiocarbon-dated buried surfaces. Preliminary results suggest that numbers up to 5 x 10/sup 2/ g/sup -1/ for bacteria in buried A horizons do not appear to affect the validity of /sup 14/C dates. Beyond this threshold value, contamination appears to produce younger dates, the difference between true age and /sup 14/C age increasing with the amount of microflora contamination.

  2. Retrospective study of 14C concentration in the vicinity of NPP Jaslovské Bohunice using tree rings and the AMS technique

    NASA Astrophysics Data System (ADS)

    Ješkovský, Miroslav; Povinec, Pavel P.; Steier, Peter; Šivo, Alexander; Richtáriková, Marta; Golser, Robin

    2015-10-01

    Atmospheric radiocarbon has been monitored around the Nuclear Power Plant (NPP) Jaslovské Bohunice (Slovakia) using CO2 absorption in NaOH solution since 1969. In 2012, tree ring samples were collected from Tilia cordata using an increment borer at Žlkovce monitoring station situated close to the Bohunice NPP. Each tree ring was identified and graphite targets were produced for 14C analysis by accelerator mass spectrometry. The 14C concentrations obtained from the tree-ring samples have been in a reasonable agreement with the averaged annual 14C concentrations in atmospheric CO2.

  3. Status of mass spectrometric radiocarbon detection at ETHZ

    NASA Astrophysics Data System (ADS)

    Seiler, Martin; Maxeiner, Sascha; Wacker, Lukas; Synal, Hans-Arno

    2015-10-01

    A prototype of a mass spectrometric radiocarbon detection instrument without accelerator stage was built for the first time and set into operation at ETH Zurich. The system is designed as an experimental platform to optimize performance of 14C detection at low ion energies and to study the most relevant processes that may limit system performance. The optimized stripper unit incorporates differential pumping to maintain a low gas outflow and a revised tube design to better match the phase space volume of the ion beam at low energies. The system is fully operational and has demonstrated true radiocarbon dating capabilities. The overall beam transmission through the stripper tube is about 40% for the 1+ charge state. Radiocarbon analyses with an overall precision of 0.6% were obtained on a single sample under regular measurement conditions. By analyzing multiple targets of the same sample material an uncertainty level of 0.3% has been reached. The background level corresponds to a radiocarbon age of 40,000 years.

  4. Radiocarbon evidence for annual growth rings in a deep sea octocoral (Primnoa resedaeformis)

    SciTech Connect

    Sherwood, O A; Scott, D B; Risk, M J; Guilderson, T P

    2005-04-05

    The deep-sea gorgonian octocoral Primnoa resedaeformis is distributed throughout the Atlantic and Pacific Oceans at depths of 65-3200 m. It has a two-part skeleton of calcite and gorgonin. Towards the inside of the axial skeleton gorgonin and calcite are deposited in concentric growth rings, similar to tree rings. Colonies were collected from the Northeast Channel (northwest Atlantic Ocean, southwest of Nova Scotia, Canada) from depths of 250-475 m. Radiocarbon was measured in individual rings isolated from sections of each colony, after dissolution of calcite. Each {Delta}{sup 14}C measurement was paired with a ring age determined by three amateur ring counters. The precision of ring counts averaged better than {+-} 2 years. Accurate reconstruction of 20th century bomb-radiocarbon shows that (1) the growth rings are formed annually, (2) the gorgonin is derived from surface particulate organic matter (POM) and (3) useful environmental data are recorded in the organic endoskeletons of deep-sea octocorals. These results support the use of Primnoa resedaeformis as a long-term, high resolution monitor of surface ocean conditions, particularly in temperate and boreal environments where proxy data are lacking.

  5. Fossil and biogenic CO{sub 2} from waste incineration based on a yearlong radiocarbon study

    SciTech Connect

    Mohn, J.; Szidat, S.; Zeyer, K.; Emmenegger, L.

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Yearlong radiocarbon study on the share of biogenic CO{sub 2} from waste incineration. Black-Right-Pointing-Pointer Direct approach combining temporal integrating gas sampling and {sup 14}CO{sub 2} analysis by AMS. Black-Right-Pointing-Pointer Significant differences between incinerators with 43% and 54%Fos C. Black-Right-Pointing-Pointer No annual cycle of fossil CO{sub 2} for all, except one, of the included incinerators. - Abstract: We describe the first long-term implementation of the radiocarbon ({sup 14}C) method to study the share of biogenic (%Bio C) and fossil (%Fos C) carbon in combustion CO{sub 2}. At five Swiss incinerators, a total of 24 three-week measurement campaigns were performed over 1 year. Temporally averaged bag samples were analyzed for {sup 14}CO{sub 2} by accelerator mass spectrometry. Significant differences between the plants in the share of fossil CO{sub 2} were observed, with annual mean values from 43.4 {+-} 3.9% to 54.5 {+-} 3.1%. Variations can be explained by the waste composition of the respective plant. Based on our dataset, an average value of 48 {+-} 4%Fos C was determined for waste incineration in Switzerland. No clear annual trend in %Fos C was observed for four of the monitored incinerators, while one incinerator showed considerable variations, which are likely due to the separation and temporary storage of bulky goods.

  6. High-precision 14C and 40Ar/39Ar dating of the Campanian Ignimbrite (Y-5) reconciles the time-scales of climatic-cultural processes at 40 ka

    NASA Astrophysics Data System (ADS)

    Giacco, Biagio; Hajdas, Irka; Isaia, Roberto; Deino, Alan; Nomade, Sebastien

    2017-04-01

    The Campanian Ignimbrite (CI) super-eruption ( 40 ka, Southern Italy) is the largest known volcanic event of Mediterranean area. The CI tephra is widely dispersed through western Eurasia and occurs in close stratigraphic association with significant Late Pleistocene paleoclimatic and Paleolithic cultural events. This makes the CI tephra one of the most important tool for investigating several scientific issues ranging from volcanology, paleoclimatology to archaeology. Yet despite concerted attempts, the absolute age of the CI eruption is not well constrained. Here we present the first direct radiocarbon age for the CI obtained using accepted modern practices, from multiple 14C analyses of an exceptional large charred tree branch embedded in the lithified Yellow Tuff facies of the CI pyroclastic flow deposits, as well as new high-precision 40Ar/39Ar dating for the CI. These data substantially improve upon previous age determinations and permit fuller exploitation of the chronological potential of the CI tephra marker. Specifically, the results of our study are twofold: they provide (i) a robust pair of 14C and 40Ar/39Ar ages for refining both the radiocarbon calibration curve and the Late Pleistocene time-scale in the narrow, but significant time-span across CI event and (ii) compelling chronological evidence for the significance of the combined influence of the CI eruption and Heinrich Event 4 on European climate and potentially evolutionary processes of the Early Upper Palaeolithic.

  7. 14C content in aerosols in Mexico City

    NASA Astrophysics Data System (ADS)

    Gómez, V.; Solís, C.; Chávez, E.; Andrade, E.; Ortiz, M. E.; Huerta, A.; Aragón, J.; Rodríguez-Ceja, M.; Martínez, M. A.; Ortiz, E.

    2016-03-01

    14C-AMS of total carbon was determined in aerosols (PM10 fraction), collected in Mexico City during two weeks from 21 November to 3 December 2012. Other tracers such as total carbon (TC), organic carbon (OC), elemental carbon (EC) and trace element contents were also determined. F14C values varied from 0.39 to 0.48 with an average of 0.43. These values are slightly lower than those previously obtained for PM2.5 in 2003 and 2006 and reflect a high contribution of fossil CO2 to the carbonaceous matter in aerosols from Mexico City. In contrast, from 2006 to 2012 PM10 increased; EC, Ca, Ti and Fe concentrations remained constant, while OC, TC and K concentrations decreased. The use of potassium as an indicator of biomass burning showed that this source was negligible during this campaign. Combined analytical approaches allowed us to distinguish temporal variations of anthropogenic and natural inputs to the F14C.

  8. Bulk sediment 14C dating in an estuarine environment: How accurate can it be?

    NASA Astrophysics Data System (ADS)

    Lougheed, Bryan C.; Obrochta, Stephen P.; Lenz, Conny; Mellström, Anette; Metcalfe, Brett; Muscheler, Raimund; Reinholdsson, Maja; Snowball, Ian; Zillén, Lovisa

    2017-02-01

    Due to a lack of marine macrofossils in many sediment cores from the estuarine Baltic Sea, researchers are often forced to carry out 14C determinations on bulk sediment samples. However, ambiguity surrounding the carbon source pathways that contribute to bulk sediment formation introduces a large uncertainty into 14C geochronologies based on such samples, and such uncertainty may not have been fully considered in previous Baltic Sea studies. We quantify this uncertainty by analyzing bulk sediment 14C determinations carried out on densely spaced intervals in independently dated late-Holocene sediment sequences from two central Baltic Sea cores. Our results show a difference of 600 14C yr in median bulk sediment reservoir age, or R(t)bulk, between the two core locations ( 1200 14C yr for one core, 620 14C yr for the other), indicating large spatial variation. Furthermore, we also find large downcore (i.e., temporal) R(t)bulk variation of at least 200 14C yr for both cores. We also find a difference of 585 14C yr between two samples taken from the same core depth. We propose that studies using bulk sediment 14C dating in large brackish water bodies should take such spatiotemporal variation in R(t)bulk into account when assessing uncertainties, thus leading to a larger, but more accurate, calibrated age range.

  9. Marine radiocarbon reservoir age simulations for the past 50000 years

    NASA Astrophysics Data System (ADS)

    Butzin, Martin; Köhler, Peter; Lohmann, Gerrit

    2016-04-01

    We present simulations of marine radiocarbon reservoir ages using the ocean general circulation model LSG-HAMOCC2s, and evaluate the results with Marine13 raw data records. Our model considers various climatic background states. Radiocarbon cycle boundary conditions are atmospheric Δ14C values according to IntCal13, a recent atmospheric CO2 reconstruction, and spatially variable concentrations of dissolved inorganic carbon derived from marine carbon cycle simulations. Our model reasonably agrees with glacial marine Δ14C records but indicates reservoir ages varying with time, different to the invariant reservoir age corrections applied to the observations and to Marine13. Modelled global-mean reservoir ages are in the range 400-800 years compared to the invariant Marine13 value of 405 years. Self-consistent simulations involving the Cariaco Basin record (which is the most continuous marine record contributing to IntCal13 for periods prior to about 30 kyears) amplify the temporal reservoir age variability with global-mean values of about 350-850 years, and improve the agreement with Δ14C observations in some areas.

  10. A comparison of the Greenland Ice-Core and IntCal timescales through the Laschamp geomagnetic excursion, utilising new 14c data from Tenaghi Philippon, Greece

    NASA Astrophysics Data System (ADS)

    Staff, Richard A.; Hardiman, Mark; Bronk Ramsey, Christopher; Koutsodendris, Andreas; Pross, Jörg

    2016-04-01

    Cosmogenic radionuclides, such as 10Be and 14C, share a common production signal, with their formation in the Earth's upper atmosphere modulated by changes to the geomagnetic field, as well as variations in the intensity of the solar wind. Here, we present 54 new 14C measurements from a terrestrial fen peat core extracted from the classical site of Tenaghi Philippon, NE Greece, contiguously spanning the time period between ~48,000 and 39,000 cal. BP. Utilising the most pronounced cosmogenic production peak of the last 100,000 years - that associated with the Laschamp geomagnetic excursion circa 41,000 years ago - we exploit this common production signal, comparing Greenland 10Be with our Tenaghi Philippon 14C record, thereby providing a means to assess the concordance between the radiocarbon (IntCal) and Greenland ice-core (GICC05) timescales themselves for this, the oldest portion of the radiocarbon technique.

  11. Amount and identity of (/sup 14/C) residues in bluegills (Lepomis macrochirus) exposed to (/sup 14/C)triclopyr

    SciTech Connect

    Lickly, T.D.; Murphy, P.G.

    1987-01-01

    The level and identity of (/sup 14/C) residues in bluegills (Lepomis macrochirus) exposed to 2.5 mg/L (/sup 14/C) triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid) have been determined. The highest level of radioactivity observed in the flesh of a fish at any time point (0.13 mg/kg, calculated as equivalent mg triclopyr/kg fish) was less than 5% of the fish exposure level of 2.5 mg/L, while the maximum level in the remainder (head, skin, and viscera) was about 95% (2.33 mg/kg) of the fish exposure level, indicating no concentrating effect. The principal components observed in the fish tissues were triclopyr, 3,5,6-trichloro-2-pyridinol, 2-methoxy-3,5,6-trichloropyridine and a conjugate. These components accounted for greater than 75% of all the residues observed.

  12. Enhancing sample preparation capabilities for accelerator mass spectrometry radiocarbon and radiocalcium studies

    SciTech Connect

    Taylor, R E

    1991-08-20

    With support provided by the LLNL Accelerator Mass Spectrometry Laboratory, the UCR Radiocarbon Laboratory continued its studies involving sample pretreatment and target preparation for both AMS radiocarbon ({sup 14}C) and radiocalcium ({sup 41}Ca) involving applications to archaeologically -- and paleoanthropologically- related samples. With regard to AMS {sup 14}C-related studies, we have extended the development of a series of procedures which have, as their initial goal, the capability to combust several hundred microgram amounts of a chemically-pretreated organic sample and convert the resultant CO{sub 2} to graphitic carbon which will consistently yield relatively high {sup 13}C{sup {minus}} ion currents and blanks which will yield, on a consistent basis, {sup 14}C count rates at or below 0.20% modern, giving an 2 sigma age limit of >50,000 yr BP.

  13. Enhancing sample preparation capabilities for accelerator mass spectrometry radiocarbon and radiocalcium studies

    SciTech Connect

    Taylor, R.E.

    1991-08-20

    With support provided by the LLNL Accelerator Mass Spectrometry Laboratory, the UCR Radiocarbon Laboratory continued its studies involving sample pretreatment and target preparation for both AMS radiocarbon ({sup 14}C) and radiocalcium ({sup 41}Ca) involving applications to archaeologically -- and paleoanthropologically- related samples. With regard to AMS {sup 14}C-related studies, we have extended the development of a series of procedures which have, as their initial goal, the capability to combust several hundred microgram amounts of a chemically-pretreated organic sample and convert the resultant CO{sub 2} to graphitic carbon which will consistently yield relatively high {sup 13}C{sup {minus}} ion currents and blanks which will yield, on a consistent basis, {sup 14}C count rates at or below 0.20% modern, giving an 2 sigma age limit of >50,000 yr BP.

  14. Radiocarbon dating of archaeological samples (sambaqui) using CO(2) absorption and liquid scintillation spectrometry of low background radiation.

    PubMed

    Mendonça, Maria Lúcia T G; Godoy, José M; da Cruz, Rosana P; Perez, Rhoneds A R

    2006-01-01

    Sambaqui means, in the Tupi language, a hill of shells. The sambaquis are archaeological sites with remains of pre-historical Brazilian occupation. Since the sambaqui sites in the Rio de Janeiro state region are older than 10,000 years, the applicability of CO(2) absorption on Carbo-sorb and (14)C determination by counting on a low background liquid scintillation counter was tested. In the present work, sambaqui shells were treated with H(3)PO(4) in a closed vessel in order to generate CO(2). The produced CO(2) was absorbed on Carbo-sorb. On saturation about 0.6g of carbon, as CO(2), was mixed with commercial liquid scintillation cocktail (Permafluor), and the (14)C activity determined by counting on a low background counter, Packard Tricarb 3170 TR/SL, for a period of 1000 mins to enable detection of a radiocarbon age of 22,400 BP. But only samples with ages up to 3500 BP were submitted to the method because the samples had been collected in the municipality of Guapimirim, in archaeological sambaqui-type sites belonging to this age range. The same samples were sent to the (14)C Laboratory of the Centro de Energia Nuclear na Agricultura (CENA/USP) where similar results were obtained.

  15. New biomedical applications of radiocarbon

    SciTech Connect

    Davis, J.C.

    1990-12-01

    The potential of accelerator mass spectrometry (AMS) and radiocarbon in biomedical applications is being investigated by Lawrence Livermore National Laboratory (LLNL). A measurement of the dose-response curve for DNA damage caused by a carcinogen in mouse liver cells was an initial experiment. This demonstrated the sensitivity and utility of AMS for detecting radiocarbon tags and led to numerous follow-on experiments. The initial experiment and follow-on experiments are discussed in this report. 12 refs., 4 figs. (SM)

  16. Assessing screening criteria for the radiocarbon dating of bone mineral

    NASA Astrophysics Data System (ADS)

    Fernandes, Ricardo; Hüls, Matthias; Nadeau, Marie-Josée; Grootes, Pieter M.; Garbe-Schönberg, C.-Dieter; Hollund, Hege I.; Lotnyk, Andriy; Kienle, Lorenz

    2013-01-01

    Radiocarbon dating of bone mineral (carbonate in the apatite lattice) has been the target of sporadic research for the last 40 years. Results obtained by different decontamination protocols have, however, failed to provide a consistent agreement with reference ages. In particular, quality criteria to assess bone mineral radiocarbon dating reliability are still lacking. Systematic research was undertaken to identify optimal preservation criteria for bone mineral in archeological bones. Six human long bones, originating from a single site, were radiocarbon-dated both for collagen and apatite, with the level of agreement between the dates providing an indication of exogenous carbon contamination. Several techniques (Histology, FTIR, TEM, LA-ICP-MS) were employed to determine the preservation status of each sample. Research results highlight the importance of a micro-scale approach in establishing bone preservation, in particular the use of trace element concentration profiles demonstrated its potential use as a viable sample selection criterion for bone carbonate radiocarbon dating.

  17. Relative sea-level trends along the coast of Maine during the past 5,000 [sup 14]C years

    SciTech Connect

    Gehrels, W.R.; Belknap, D.F. . Dept. of Geological Sciences); Kelley, J.T. ); Gong, B.; Pearce, B.R. . Dept. of Civil Engineering)

    1993-03-01

    Holocene differential crustal movements in coastal regions are best inferred by comparing slopes of relative sea-level curves from different coastal localities. Sea-level indicators must have a narrow vertical range that is precisely established in the modern environment. Their age must be determined with the highest degree of certainty; Accelerator Mass Spectrometry (AMS) [sup 14]C dating of very small samples minimizes the changes of mixing older and younger materials. Finally, when indicators not related to Mean Tide Level are used, a correction should be applied to account for changes in paleotidal range. This study reports on sea-level chronologies from three salt marshes along the coast of Maine: Well(43[degree]17 minutes N, 70[degree]34 minutes W), Phippsburg (43[degree]45 minutes N, 69[degree]49 minutes W), and Machiasport (44[degree]41 minutes N, 67[degree]24 minutes W). Radiocarbon dates number 44 for Wells (23 new: 7 conventional basal, 2 AMS basal), 21 for Phippsburg (11 new: 5 conventional basal, 3 AMS basal), and 11 for Machiasport (all new: 7 conventional basal, 4 AMS basal). All newly collected [sup 14]C samples were analyzed for associated foraminiferal assemblages. These fossil assemblages were then compared with the modern vertical zonation of salt marsh foraminifera that was established along transects in each marsh. In agreement with earlier studies from Nova Scotia marshes, a 100% Trochammina macrescens zone occurs within a narrow (20 cm) vertical range along the edge of the marshes in Maine (level of Highest High Water). In addition, Tiphotrocha comprimata is abundantly observed in a 30 cm vertical zone between Mean High Water (MHW) and Mean Higher High Water. After elevations of sea-level indicators were adjusted to a common datum (MHW), a final correction was applied to account for changes in tidal range using a numerical tidal model for the Gulf of Maine.

  18. Microbially-mediated fate of {sup 14}C-pyrene in soil organic matter

    SciTech Connect

    Guthroe, E.A.; Pfaender, F.K.

    1995-12-31

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental contaminants that result from both natural and anthropogenic combustion processes. Several microbial processes are known to influence the fate of PAH in soil. Their effect on PAH structure and mobility can affect the potential health risk exposure to humans and indigenous organisms in soil. Microbial metabolism of PAHs can result in the accumulation of more polar by-products or the formation of by-products that may be further metabolized or mineralized by other microorganisms. A third possible fate is the incorporation of PAHs into soil organic matter via various sorption/binding processes. Experiments were conducted to determine the extent of {sup 14}C-pyrene associations with soil organic matter (SOM) in adapted and non-adapted soils. Changes in microbial respiration (CO{sub 2} efflux), {sup 14}C volatile organics, {sup 14}C water soluble metabolites and {sup 14}C SOM were measured in aerated soil systems treated individually with 100 mg/kg [4,5,9,10-{sup 14}C] pyrene over time. Mass balances were generated based on V products in water extracts, CO{sub 2} efflux. SOM, {sup 14}C-volatiles, and residual soil. The {sup 14}C products in SOM were further fractionated into humic acids (HA), fulvic acids (FA), and humin. The presence of an adapted, microbial community enhances {sup 14}C-pyrene mineralization and increases the {sup 14}C product accumulation in water extracts and fulvic acids (FA).

  19. Sources and transport of Δ14C in CO2 within the Mexico City Basin and vicinity

    NASA Astrophysics Data System (ADS)

    Vay, S. A.; Tyler, S. C.; Choi, Y.; Blake, D. R.; Blake, N. J.; Sachse, G. W.; Diskin, G. S.; Singh, H. B.

    2009-07-01

    Radiocarbon samples taken over Mexico City and the surrounding region during the MILAGRO field campaign in March 2006 exhibited an unexpected distribution: (1) relatively few samples (23%) were below the North American free tropospheric background value (57±2‰) despite the fossil fuel emissions from one of the world's most highly polluted environments; and (2) frequent enrichment well above the background value was observed. Correlate source tracer species and air transport characteristics were examined to elucidate influences on the radiocarbon distribution. Our analysis suggests that a combination of radiocarbon sources biased the "regional radiocarbon background" above the North American value thereby decreasing the apparent fossil fuel signature. Likely sources include the release of 14C-enhanced carbon from bomb 14C sequestered in plant carbon pools via the ubiquitous biomass burning in the region as well as the direct release of radiocarbon as CO2 from other "hot" sources. Plausible perturbations from local point "hot" sources include the burning of hazardous waste in cement kilns; medical waste incineration; and emissions from the Laguna Verde Nuclear Power Plant. These observations provide insight into the use of Δ14CO2 to constrain fossil fuel emissions in the megacity environment, indicating that underestimation of the fossil fuel contribution to the CO2 flux is likely wherever biomass burning coexists with urban emissions and is unaccounted for as a source of the elevated CO2 observed above local background. Our findings increase the complexity required to quantify fossil fuel-derived CO2 in source-rich environments characteristic of megacities, and have implications for the use of Δ14CO2 observations in evaluating bottom-up emission inventories and their reliability as a tool for validating national emission claims of CO2 within the framework of the Kyoto Protocol.

  20. Temporal and spatial variations in bomb-produced radiocarbon along BEAGLE2003 lines—Revisits of WHP P06, A10, and I03/I04 in the Southern Hemisphere Oceans

    NASA Astrophysics Data System (ADS)

    Kumamoto, Yuichiro; Murata, Akihiko; Watanabe, Shuichi; Fukasawa, Masao

    2011-04-01

    Radiocarbon ( 14C) in dissolved inorganic carbon was measured during revisit cruises along World Ocean Circulation Experiment-Hydrographic Programme (WHP) lines A10 in the South Atlantic, I03/I04 in the Indian, and P06 in the South Pacific Oceans from August 2003 to January 2004, during the Blue Earth Global Expedition 2003 (BEAGLE2003). Zonal means of the water-column inventory of bomb-produced 14C in 2003/2004 in the South Atlantic, Indian, and South Pacific Oceans were about 180, 128, and 159 × 10 12 atoms m -2, respectively. The smallest zonal inventory along the I03 line among the three lines was primarily due to a sampling bias, because the I03 line in the Indian Ocean was along 20°S, which is more equatorward than the other two lines along approximately 30°S in the South Atlantic and South Pacific Oceans. The I03 line in the Indian Ocean had the smallest zonal inventory of bomb-produced 14C and the largest of bomb-produced 137Cs, suggesting that the distribution of bomb 14C in the Indian Ocean is determined primarily by the thermocline ventilation within the Indian Ocean. The history of bomb 14C over time suggests that the bomb 14C inventory in the southern subtropical regions increased steadily up to the early 1990s. The rate of increase then slowed between the early 1990s and 2003/2004 because of a decrease in the bomb 14C influx from the atmosphere to the surface ocean. The highest bomb 14C inventory among the southern subtropical regions was in the subtropical Indian Ocean. However, the contribution of the Indonesian throughflow from the North Pacific and Indian Oceans to this large inventory in the Indian Ocean is not clear. The 14C data along the BEAGLE2003 lines in 2003/2004 were compared with those obtained during WHP in the 1990s and during the South Atlantic Ventilation Experiment in the late 1980s. The zonal averages of the decadal changes in 14C revealed that bomb 14C continued to increase between the late 1980s/1990s and 2003/2004 in the

  1. Discordant 14C ages from buried tidal-marsh soils in the Cascadia subduction zone, southern Oregon coast

    USGS Publications Warehouse

    Nelson, A.R.

    1992-01-01

    Peaty, tidal-marsh soils interbedded with estuarine mud in late Holocene stratigraphic sequences near Coos Bay, Oregon, may have been submerged and buried during great (M > 8) subduction earthquakes, smaller localized earthquakes, or by nontectonic processes. Radiocarbon dating might help distinguish among these alternatives by showing that soils at different sites were submerged at different times along this part of the Cascadia subduction zone. But comparison of conventional 14C ages for different materials from the same buried soils shows that they contain materials that differ in age by many hundreds of years. Errors in calibrated soil ages represent about the same length of time as recurrence times for submergence events (150-500 yr)-this similarity precludes using conventional 14C ages to distinguish buried soils along the southern Oregon coast. Accelerator mass spectrometer 14C ages of carefully selected macrofossils from the tops of peaty soils should provide more precise estimates of the times of submergence events. ?? 1992.

  2. Radiocarbon pollution and self-purification of humus in chernozems of the East-European plain in 1900-2008

    NASA Astrophysics Data System (ADS)

    Ivanov, I. V.; Khokhlova, O. S.; Galitskii, V. V.; Chichagova, O. A.; Zazovskaya, E. P.

    2012-08-01

    The dynamics of the 14C content in the humus of chernozems in 1900-2008 are considered. The elevated 14C content in the atmosphere because of nuclear weapons tests has led to the contamination of humus with bomb radiocarbon. In 1966-1968, the 14C reserves in the profiles of chernozems exceeded the background ones by 15%; in 1978, by 12%; and, in 1998, by 2%. By the year of 2008, its reserves became equal to the background ones. The 14C distribution along the soil profiles changed. By 1978, the 0- to 30-cm-thick soil layer became free from radiocarbon due to its self-purification; however, at depths of 40-70 and 100-115 cm, its weak accumulation was registered. By 2008, the whole soil profile was free from 14C. The main mechanism of the soil self-purification from radiocarbon is suggested to be the constant substitution of fragments of humus compound structures for those of fresh organic matter entering the soils with the 14C content being in equilibrium with the atmospheric one, i.e., due to the renewal of the carbon in the humus. The rate of the carbon renewal and its migration in the soils are assed based on the 14C concentrations in the humus.

  3. Cross-checking groundwater age by 4He and 14C dating in a granite, Tono area, central Japan

    NASA Astrophysics Data System (ADS)

    Hasegawa, Takuma; Nakata, Kotaro; Tomioka, Yuichi; Goto, Kazuyuki; Kashiwaya, Koki; Hama, Katsuhiro; Iwatsuki, Teruki; Kunimaru, Takanori; Takeda, Masaki

    2016-11-01

    Groundwater dating was performed simultaneously by the 4He and 14C methods in granite of the Tono area in central Japan. Groundwater was sampled at 30 packed-off sections of six 1000-m boreholes. 4He concentrations increased and 14C concentrations decreased along a groundwater flow path on a topographic gradient. 4He ages were calculated by using the in situ 4He production rate derived from the porosity, density, and U and Th content of the rock, neglecting external flux. 14C ages were calculated with a noncorrected model in which the initial 14C content was 100 percent of the modern radiocarbon level (Co = 100 pmC), a statistical model using the average 14C content of tritium-bearing samples (Co = 46.4 pmC), and a δ13C model based on the isotopic mass balance. Although the absolute 14C ages calculated by the models were different, the relative 14C ages were almost identical. The relative 14C ages were considered reliable because dissolved inorganic carbon has no significant geochemical reactions in granite. The relation between the 4He ages and the noncorrected 14C ages was [4He age] = 1.15 [14C age] + 7200 (R2 = 0.81), except in the discharge area. The slope of this relation was equivalent to unity, which indicates that the 4He accumulation rate is confirmed by the relative 14C ages. Moreover, the accumulated 3He/4He ratio was equivalent to that derived from the 6Li(α,n)3H reaction in granite. These results show that the accumulated He is of crustal origin, produced in situ without external flux, except in the discharge area. The intercept value of 7200 a implies that the 14C concentrations were diluted due to geochemical reactions. Tritium-bearing samples supported this result. Simultaneous measurements make it feasible to estimate the accumulation rate of 4He and initial dilution of 14C, which cannot be done with a single method. Cross-checking groundwater dating has the potential to provide more reliable groundwater ages. The circulation time of the

  4. Radiocarbon dating of the human eye lens crystallines reveal proteins without carbon turnover throughout life.

    PubMed

    Lynnerup, Niels; Kjeldsen, Henrik; Heegaard, Steffen; Jacobsen, Christina; Heinemeier, Jan

    2008-01-30

    Lens crystallines are special proteins in the eye lens. Because the epithelial basement membrane (lens capsule) completely encloses the lens, desquamation of aging cells is impossible, and due to the complete absence of blood vessels or transport of metabolites in this area, there is no subsequent remodelling of these fibers, nor removal of degraded lens fibers. Human tissue ultimately derives its (14)C content from the atmospheric carbon dioxide. The (14)C content of the lens proteins thus reflects the atmospheric content of (14)C when the lens crystallines were formed. Precise radiocarbon dating is made possible by comparing the (14)C content of the lens crystallines to the so-called bomb pulse, i.e. a plot of the atmospheric (14)C content since the Second World War, when there was a significant increase due to nuclear-bomb testing. Since the change in concentration is significant even on a yearly basis this allows very accurate dating. Our results allow us to conclude that the crystalline formation in the lens nucleus almost entirely takes place around the time of birth, with a very small, and decreasing, continuous formation throughout life. The close relationship may be further expressed as a mathematical model, which takes into account the timing of the crystalline formation. Such a life-long permanence of human tissue has hitherto only been described for dental enamel. In confront to dental enamel it must be held in mind that the eye lens is a soft structure, subjected to almost continuous deformation, due to lens accommodation, yet its most important constituent, the lens crystalline, is never subject to turnover or remodelling once formed. The determination of the (14)C content of various tissues may be used to assess turnover rates and degree of substitution (for example for brain cell DNA). Potential targets may be nervous tissues in terms of senile or pre-senile degradation, as well as other highly specialised structures of the eyes. The precision with

  5. Measurement of biocarbon in flue gases using 14C

    SciTech Connect

    Haemaelaeinen, K.M.; Jungner, H.; Antson, O.; Rasanen, J.; Tormonen, K.; Roine, J.

    2007-07-01

    A preliminary investigation of the biocarbon fraction in carbon dioxide emissions of power plants using both fossil- and biobased fuels is presented. Calculation of the biocarbon fraction is based on radiocarbon content measured in power plant flue gases. Samples were collected directly from the chimneys into plastic sampling bags. The C-14 content in CO{sub 2} was measured by accelerator mass spectrometry (AMS). Flue gases from power plants that use natural gas, coal, wood chips, bark, plywood residue, sludge from the pulp factory, peat, and recovered fuel were measured. Among the selected plants, there was one that used only fossil fuel and one that used only biofuel; the other investigated plants burned mixtures of fuels. The results show that C-14 measurement provides the possibility to determine the ratio of bio and fossil fuel burned in power plants.

  6. Strong carbon release from the deep ocean induced a major atmospheric 14C drop over Heinrich Stadial 1

    NASA Astrophysics Data System (ADS)

    Sarnthein, M.; Grootes, P. M.; Schneider, B.

    2012-12-01

    Using the modern global distributions of apparent 14C ventilation ages and DIC we established a transfer function to trace past changes in the carbon storage of ocean waters >2000 m water depth. On this basis we concluded that the LGM carbon inventory was approximately 730-980 Gt larger than during pre-industrial times. This amount compares well with an estimated glacial transfer of 530-700 Gt from both the atmosphere and terrestrial biosphere in addition to a major DIC relocation from ocean intermediate waters. We consider that the LGM atmosphere contained 190 ppm CO2 (~375 Gt C) with a 14C concentration 1.4 times higher than that of the standard modern atmosphere (fMC) (Reimer et al. 2009). The LGM deep ocean had an average reservoir age of 2100 yr, which means that its 14C concentration was 0.77 times that of the LGM atmosphere, 1.08 times that of the modern atmosphere (fMC). During the subsequent early deglac¬ial Heinrich Stadial 1, a large portion of this 14C depleted carbon was released to the atmosphere and terrestrial biosphere (Monnin et al. 2001; Ciais et al. 2012). Our estimates suggest that the ocean-atmosphere exchange, producing this deglacial transfer of deep-ocean carbon, was sufficient to account for a 190-permil drop in atmospheric 14C. Thus an alleged major 'mystery' of last deglacial times, the source of 14C-depleted additional atmospheric carbon, appears solved. -- Ciais, P., Tagliabue, A., Cuntz, M., Bopp, L., et al. (2012), Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum. Nature Geoscience 5, 74-79. Monnin, E., et al. (2001), Atmospheric CO2 concentrations over the last glacial termination. Science 291, 112-114. Reimer, P., et al. (2009), INTCAL09 and MARINE09 radiocarbon age calibration curves, 0-50,000 years cal. BP. Radiocarbon 51, 1111-1150.

  7. Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of [14C]-doxorubicin

    PubMed Central

    Masarudin, Mas Jaffri; Cutts, Suzanne M; Evison, Benny J; Phillips, Don R; Pigram, Paul J

    2015-01-01

    Development of parameters for the fabrication of nanosized vectors is pivotal for its successful administration in therapeutic applications. In this study, homogeneously distributed chitosan nanoparticles (CNPs) with diameters as small as 62 nm and a polydispersity index (PDI) of 0.15 were synthesized and purified using a simple, robust method that was highly reproducible. Nanoparticles were synthesized using modified ionic gelation of the chitosan polymer with sodium tripolyphosphate. Using this method, larger aggregates were mechanically isolated from single particles in the nanoparticle population by selective efficient centrifugation. The presence of disaggregated monodisperse nanoparticles was confirmed using atomic force microscopy. Factors such as anions, pH, and concentration were found to affect the size and stability of nanoparticles directly. The smallest nanoparticle population was ∼62 nm in hydrodynamic size, with a low PDI of 0.15, indicating high particle homogeneity. CNPs were highly stable and retained their monodisperse morphology in serum-supplemented media in cell culture conditions for up to 72 hours, before slowly degrading over 6 days. Cell viability assays demonstrated that cells remained viable following a 72-hour exposure to 1 mg/mL CNPs, suggesting that the nanoparticles are well tolerated and highly suited for biomedical applications. Cellular uptake studies using fluorescein isothiocyanate-labeled CNPs showed that cancer cells readily accumulate the nanoparticles 30 minutes posttreatment and that nanoparticles persisted within cells for up to 24 hours posttreatment. As a proof of principle for use in anticancer therapeutic applications, a [14C]-radiolabeled form of the anticancer agent doxorubicin was efficiently encapsulated within the CNP, confirming the feasibility of using this system as a drug delivery vector. PMID:26715842

  8. Metabolism of (2-14C)acetate and its use in assessing hepatic Krebs cycle activity and gluconeogenesis

    SciTech Connect

    Schumann, W.C.; Magnusson, I.; Chandramouli, V.; Kumaran, K.; Wahren, J.; Landau, B.R. )

    1991-04-15

    To examine the fate of the carbons of acetate and to evaluate the usefulness of labeled acetate in assessing intrahepatic metabolic processes during gluconeogenesis, (2-14C)acetate, (2-14C)ethanol, and (1-14C)ethanol were infused into normal subjects fasted 60 h and given phenyl acetate. Distributions of 14C in the carbons of blood glucose and glutamate from urinary phenylacetylglutamine were determined. With (2-14C)acetate and (2-14C)ethanol, carbon 1 of glucose had about twice as much 14C as carbon 3. Carbon 2 of glutamate had about twice as much 14C as carbon 1 and one-half to one-third as much as carbon 4. There was only a small amount in carbon 5. These distributions are incompatible with the metabolism of (2-14C)acetate being primarily in liver. Therefore, (2-14C)acetate cannot be used to study Krebs cycle metabolism in liver and in relationship to gluconeogenesis, as has been done. The distributions can be explained by: (a) fixation of 14CO2 from (2-14C)acetate in the formation of the 14C-labeled glucose and glutamate in liver and (b) the formation of 14C-labeled glutamate in a second site, proposed to be muscle. (1,3-14C)Acetone formation from the (2-14C)acetate does not contribute to the distributions, as evidenced by the absence of 14C in carbons 2-4 of glutamate after (1-14C)ethanol administration.

  9. Autoradiographic disposition of (1-methyl-/sup 14/C)- and (2-/sup 14/C)caffeine in mice

    SciTech Connect

    Lachance, M.P.; Marlowe, C.; Waddell, W.J.

    1983-11-01

    Male, C57B1/6J mice received either (1-methyl-14C)caffeine or (2-14C)caffeine via the tail vein at a dose of 0.7 or 11 mg/kg, respectively. At 0.1, 0.33, 1, 3, 9, and 24 hr after treatment, the mice were anesthetized with ether and frozen by immersion in dry ice/hexane. The mice were processed for whole-body autoradiography by the Ullberg technique; this procedure does not allow thawing or contact with solvents. All autoradiographs revealed some retention of radioactivity at early time intervals in the lacrimal glands, seminal vesicle fluid, nasal and olfactory epithelium, and retinal melanocytes. The remaining portion of the animal was densitometrically uniform except for the lower levels noted in the CNS and adipose tissues. Excretion of radioactivity by the liver and kidneys seems to be the major routes of elimination. Localization in the liver at late time intervals was confined principally to the centrilobular region. Late sites of retention, observed only after (1-methyl-14C)caffeine administration, included the pancreas, minor and major salivary glands, splenic red pulp, thymal cortex, bone marrow, and gastrointestinal epithelium. Sites of localization present in both studies included the olfactory epithelium, lacrimal glands, hair follicles, and retinal melanocytes. Further studies are needed to determine whether the localization at these various sites is due to metabolic degradation, active transport, or possibly a specific receptor interaction.

  10. 17 CFR 240.14c-101 - Schedule 14C. Information required in information statement.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...): No fee required Fee computed on table below per Exchange Act Rules 14c-5(g) and 0-11 (1) Title of... Act Rule 0-11 (set forth the amount on which the filing fee is calculated and state how it was... 0-11(a)(2) and identify the filing for which the offsetting fee was paid previously. Identify the...

  11. 17 CFR 240.14c-101 - Schedule 14C. Information required in information statement.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...): No fee required Fee computed on table below per Exchange Act Rules 14c-5(g) and 0-11 (1) Title of... Act Rule 0-11 (set forth the amount on which the filing fee is calculated and state how it was... 0-11(a)(2) and identify the filing for which the offsetting fee was paid previously. Identify the...

  12. 17 CFR 240.14c-101 - Schedule 14C. Information required in information statement.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...): No fee required Fee computed on table below per Exchange Act Rules 14c-5(g) and 0-11 (1) Title of... Act Rule 0-11 (set forth the amount on which the filing fee is calculated and state how it was... 0-11(a)(2) and identify the filing for which the offsetting fee was paid previously. Identify the...

  13. 17 CFR 240.14c-101 - Schedule 14C. Information required in information statement.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...): No fee required Fee computed on table below per Exchange Act Rules 14c-5(g) and 0-11 (1) Title of... Act Rule 0-11 (set forth the amount on which the filing fee is calculated and state how it was... 0-11(a)(2) and identify the filing for which the offsetting fee was paid previously. Identify the...

  14. 17 CFR 240.14c-101 - Schedule 14C. Information required in information statement.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Exchange Act Rules 14c-5(g) and 0-11 (1) Title of each class of securities to which transaction applies: (2... transaction computed pursuant to Exchange Act Rule 0-11 (set forth the amount on which the filing fee is... as provided by Exchange Act Rule 0-11(a)(2) and identify the filing for which the offsetting fee was...

  15. Reconciling Change in Oi-Horizon 14C With Mass Loss for an Oak Forest

    SciTech Connect

    Hanson, P J; Swanston, C W; Garten, Jr., C T; Todd, D E; Trumbore, S E

    2005-06-27

    First-year litter decomposition was estimated for an upland-oak forest ecosystem using enrichment or dilution of the {sup 14}C-signature of the Oi-horizon. These isotopically-based mass-loss estimates were contrasted with measured mass-loss rates from past litterbag studies. Mass-loss derived from changes in the {sup 14}C-signature of the Oi-horizon suggested mean mass loss over 9 months of 45% which was higher than the corresponding 9-month rate extrapolated from litterbag studies ({approx}35%). Greater mass loss was expected from the isotopic approach because litterbags are known to limit mass loss processes driven by soil macrofauna (e.g., fragmentation and comminution). Although the {sup 14}C-isotope approach offers the advantage of being a non-invasive method, it exhibited high variability that undermined its utility as an alternative to routine litterbag mass loss methods. However, the {sup 14}C approach measures the residence time of C in the leaf litter, rather than the time it takes for leaves to disappear; hence radiocarbon measures are subject to C immobilization and recycling in the microbial pool, and do not necessarily reflect results from litterbag mass loss. The commonly applied two-compartment isotopic mixing model was appropriate for estimating decomposition from isotopic enrichment of near-background soils, but it produced divergent results for isotopic dilution of a multi-layered system with litter cohorts having independent {sup 14}C-signatures. This discrepancy suggests that cohort-based models are needed to adequately capture the complex processes involved in carbon transport associated with litter mass-loss. Such models will be crucial for predicting intra- and interannual differences in organic horizon decomposition driven by scenarios of climatic change.

  16. Distribution of labeled products from (1-/sup 14/C), (U-/sup 14/C) and (16-/sup 14/C)-palmitate in isolated rat hepatocytes and liver mitochondria

    SciTech Connect

    Chatzidakis, C.; Otto, D.A.

    1986-05-01

    Fatty acids (FA) labeled in different carbon positions are used to study the distribution of labeled oxidation products. With rat hepatocytes (Hep) the authors observed significant differences in the distribution of label into products from (1-/sup 14/C) and (U-/sup 14/C)-palmitate (P). The total recovery of label in products (/sup 14/CO/sub 2/ + acid soluble fraction (ASF)) was identical between the two labeled FA. However, /sup 14/CO/sub 2/ production from (U-/sup 14/C)-P was only 40% of that from (1-/sup 14/C)-P. A recent report showed that approximately = 95% of succinate (Suc) utilized by Hep does not complete one full turn through the citric acid cycle. The authors observed that /sup 14/CO/sub 2/ evolution from (2,3-/sup 14/C)-Suc was approximately = 9% of that from (1,4-/sup 14/C)-Suc, indicating that the differences in label distribution between (1-/sup 14/C) and (U-/sup 14/C)-P are partially due to less /sup 14/CO/sub 2/ production from label in the even carbon positions of the FA with consequently more label remaining in the ASF. The /sup 14/CO/sub 2/ production from (16-/sup 14/C)-P was only 4% of that from (1-/sup 14/C)-P a value less than expected from the Suc experiments. Ketone bodies (KB) comprised 78% of total labeled products from (16-/sup 14/C)-P as compared to 28% from (1-/sup 14/C)-P and 41% from (U-/sup 14/C)-P, giving support to the previously reported preferential use of the omega-C/sub 2/ unit for KB synthesis without entry into the acetyl-CoA pool. Studies with isolated rat liver mitochondria gave results similar to those with Hep, indicating minimal involvement of perioxisomal ..beta..-oxidation.

  17. Comparative radiocarbon dating of terrestrial plant macrofossils and aquatic moss from the “ice-free corridor” of western Canada

    NASA Astrophysics Data System (ADS)

    MacDonald, G. M.; Beukens, R. P.; Kieser, W. E.; Vitt, D. H.

    1987-09-01

    In order to assess the reliability of aquatic moss for radiocarbon dating, 14C analyses were performed on a stratigraphic series of terrestrial plant macrofossils and samples of Drepanocladus crassicostatus from a small, hard-water lake (pH = 8.2) in the “ice-free corridor” of Alberta. All 14C dating was done by using accelerator mass spectrometry. Mazama Ash provided an independent chronological control. The aquatic bryophyte samples consistently produced 14C ages significantly older than the terrestrial macrofossils. The relation between the radiocarbon dates from the macrofossils and the moss was not linear, and age differences ranged from approximately 1400 to 6400 yr. The 14C content of D. crassicostatus growing in the lake at present was less than 85% modern. Despite the apparent inability to take up 14C-deficient carbon by the direct incorporation of bicarbonate, the bryophytes clearly do not provide reliable material for 14C dating. The 14C deficiency of aquatic mosses may be explained by the generation of 14C-deficient CO2 through isotopic exchange, the formation of CO2 from bicarbonate by chemical processes, and metabolic CO2 production. These results demonstrate the potential unreliability of 14C dates from aquatic mosses and raise serious concerns about the deglaciation dates from the ice-free corridor that were obtained from aquatic Drepanocladus.

  18. Comparative radiocarbon dating of terrestrial plant macrofossils and aquatic moss from the ice-free corridor of western Canada

    SciTech Connect

    MacDonald, G.M.; Beukens, R.P.; Kieser, W.E.; Vitt, D.H.

    1987-09-01

    In order to assess the reliability of aquatic moss for radiocarbon dating, /sup 14/C analyses were performed on a stratigraphic series of terrestrial plant macrofossils and samples of Drepanocladus crassicostatus from a small, hard-water lake (pH = 8.2) in the ice-free corridor of Alberta. All /sup 14/C dating was done by using accelerator mass spectrometry. Mazama Ash provided an independent chronological control. The aquatic bryophyte samples consistently produced /sup 14/C ages significantly older than the terrestrial macrofossils. The relation between the radiocarbon dates from the macrofossils and the moss was not linear, and age differences ranged from approximately 1400 to 6400 yr. The /sup 14/C content of D. crassicostatus growing in the lake at present was less than 85% modern. Despite the apparent inability to take up /sup 14/C-deficient carbon by the direct incorporation of bicarbonate, the bryophytes clearly do not provide reliable material /sup 14/C dating. The /sup 14/C deficiency of aquatic mosses may be explained by the generation of /sup 14/C-deficient CO/sub 2/ through isotopic exchange, the formation of CO/sub 2/ from bicarbonate by chemical processes, and metabolic CO/sub 2/ production. These results demonstrate the potential unreliability of /sup 14/C dates from aquatic mosses and raise serious concerns about the deglaciation dates from the ice-free corridor that were obtained from aquatic Drepanocladus.

  19. Radiocarbon dating of the Peruvian Chachapoya/Inca site at the Laguna de los Condores

    NASA Astrophysics Data System (ADS)

    Wild, Eva Maria; Guillen, Sonia; Kutschera, Walter; Seidler, Horst; Steier, Peter

    2007-06-01

    In 1997 a new archaeological site was discovered in the Peruvian tropical rain forest. The site is located in an area which has been occupied by the Chachapoya, a pre-Incan people, from about 800AD on. The site comprises a large funerary place with several mausoleums built in the cliffs next to the Laguna de los Condores. More than 200 human mummies and funerary bone-bundles together with numerous grave artefacts have been found there. Although the site has been ascribed to the Chachapoya, the mummification method used is very similar to the one applied by the Inca. As part of an ongoing multidisciplinary project to explore the history of this site and of the Chachapoya people, twenty-seven (27) 14C-AMS age determinations were performed. Samples, bones and textile wrappings as well as samples from a funerary bone bundle plus associated grave artefacts were dated. The 14C data show that the site originates from the Chachapoya pre-Inca period and that in addition, it was used as a funerary place during the subsequent Inca occupation era. The radiocarbon results indicate that the Chachapoya may have changed their burial tradition due to the colonization by the Inca.

  20. AMS radiocarbon age for fossil bone by XAD-2 chromatography method

    NASA Astrophysics Data System (ADS)

    Minami, Masayo; Nakamura, Toshio

    2000-10-01

    The XAD-2 chromatography method was examined for its ability to efficiently eliminate exogenous organic matter from fossil bones and to improve the accuracy of radiocarbon ( 14C) dating and stable isotope determinations on bone proteins. The fossil bones used in the experiment were animal fossil bones collected from the Awazu submarine archaeological site, Shiga, Japan. For comparison, the gelatin-extraction method was also applied to the same samples. It was found that the gelatin-extraction method is sufficient for 14C dating on well-preserved bones, but insufficient on poorly preserved bones, containing less than 1% extractable gelatin. The XAD-2 resin is useful for the clean up of proteins especially from poorly preserved bones. The carbon stable isotope fractionation of around 1‰ by XAD-2 treatment on modern collagen standards was larger than reported previously. The isotopic variation by sequential extraction of bones probably originates from changes in the amino acid composition and seems to be less sensitive to the indication of the removal of organic contamination.

  1. Bottom sediments of the Caspian Sea and Dnepr-Bug Liman with the use of radiocarbon analysis data

    SciTech Connect

    Karpychev, Yu.A.

    1987-11-01

    On the basis of the age determinations obtained they can judge the arrival of /sup 14/C and its distribution in sediments of the Caspian Sea and Dnepr-Bug liman. The age of the organic material being removed by rivers is 1500-2700 years for the Kura and Terek Rivers and 950-1200 years for the Dnepr and Southern Bug Rivers. The age of the carbonate of the Kura and Terek is in the range 13,000-14,000 years. The difference in the results of determining the age from the organic and carbonate fractions indicates the presence of a terrigenous component in the sediments. Slump phenomena and abrasion of the shores have a considerable effect on the distribution of radiocarbon in sediments. Despite the complexity of the process of sedimentogenesis, dating over the section makes it possible to calculate the sedimentation rates.

  2. Terrestrial model food chain and environmental chemicals. I. Transfer of sodium [14C]pentachlorophenate between springtails and carabids.

    PubMed

    Gruttke, H; Kratz, W; Weigmann, G; Haque, A

    1988-06-01

    A model soil food chain of a ruderal ecosystem has been constructed in order to study the uptake, transfer, and accumulation of [14C]pentachlorophenate (PCP-Na). The model was based on three food levels, viz. baker's yeast, collembola, and carabid beetles, and the contaminant chemical introduced was via initial food. Continuous exposure of the organisms to the test chemical resulted in a significant uptake and transfer of radiocarbon into the food chain elements. Bioaccumulation of radiocarbon in the body tissues of the organisms was low, as large amounts taken up were quickly eliminated through the excrements. The radiocarbon level of prey animals was about 100 times higher than that of their predators, but there was only small difference in concentration between collembolas and yeast. This was probably because of a faster excretion of the chemical by the beetles than by the collembolas. During the test period no conversion of [14C]PCP-Na took place in the yeast, but the collembolas and beetles metabolized 50 and 59%, respectively. Criteria are proposed for successful implementation of food chain models.

  3. Terrestrial model food chain and environmental chemicals. I. Transfer of sodium (/sup 14/C)pentachlorophenate between springtails and carabids

    SciTech Connect

    Gruttke, H.; Kratz, W.; Weigmann, G.; Haque, A.

    1988-06-01

    A model soil food chain of a ruderal ecosystem has been constructed in order to study the uptake, transfer, and accumulation of (/sup 14/C)pentachlorophenate (PCP-Na). The model was based on three food levels, viz. baker's yeast, collembola, and carabid beetles, and the contaminant chemical introduced was via initial food. Continuous exposure of the organisms to the test chemical resulted in a significant uptake and transfer of radiocarbon into the food chain elements. Bioaccumulation of radiocarbon in the body tissues of the organisms was low, as large amounts taken up were quickly eliminated through the excrements. The radiocarbon level of prey animals was about 100 times higher than that of their predators, but there was only small difference in concentration between collembolas and yeast. This was probably because of a faster excretion of the chemical by the beetles than by the collembolas. During the test period no conversion of (/sup 14/C)PCP-Na took place in the yeast, but the collembolas and beetles metabolized 50 and 59%, respectively. Criteria are proposed for successful implementation of food chain models.

  4. Methanogenesis in Peat Bogs - Insights from 14C Data Synthesis and Modeling

    NASA Astrophysics Data System (ADS)

    Hoyt, A.; Pangala, S. R.; Gandois, L.; Cobb, A.; Kai, F. M.; Xu, X.; Gauci, V.; Mahmud, Y.; Kamariah, A. S.; Eri, J. A.; Harvey, C. F.

    2015-12-01

    Depth profiles of Δ14C found in peat bogs are similar across latitudes. Solid peat radiocarbon ages increase with depth, young or modern DOC is found in porewater at all depths, and dissolved methane has an intermediate age. Using traditional mixing models, this pattern has been explained as methane produced from roughly half peat and half DOC. However, these models do not account for the advection and diffusion of dissolved gases, which plays an important role in peatlands. We develop a model that includes these transport pathways and individually models 12C, 13C and 14C during the transformation and transport of DOC, DIC, and methane. We test the model against existing data from several field sites, in bogs as disparate as the Glacial Lake Aggasiz Peatlands and Brunei Darussalam. Our model suggests that in bogs with typical Δ14C profiles, where the methane age is intermediate between that of peat and DOC, DOC advected from the surface does not contribute significantly to methane production. Instead, peat decomposition is the primary carbon source. The younger apparent ages of methane compared to peat at the same depth result from vertical advection of the dissolved gases, rather than consumption of DOC for methanogenesis. This is consistent with the finding that DOC found in these bogs is recalcitrant. The model reproduces vertical patterns of DOC, DIC and methane found in both tropical peatlands and northern bogs, emphasizing the similarities in hydrological and geochemical processes across latitudes.

  5. Pharmacokinetics of 14C CDP-choline.

    PubMed

    Dinsdale, J R; Griffiths, G K; Rowlands, C; Castelló, J; Ortiz, J A; Maddock, J; Aylward, M

    1983-01-01

    The absorption, metabolism and excretion of cytidine diphosphate choline (CDP-choline, citicoline, Somazina) were investigated in six adult healthy subjects after a single oral dose of 300 mg of the 14C-labelled compound. The compound was well tolerated by the subjects. Absorption was virtually complete with less than 1% of the dose being found in the faeces during the 5-day collection period. Two peaks were found in the plasma radioactivity time profile: the first at 1 h, and a second larger peak at 24 h post-dose. Elimination of the ingested dose occurred via respiratory CO2 and through urinary excretion; the former predominating, and both routes exhibited biphasic patterns characterized by an early phase followed by slower decline. It is postulated that in the healthy human subject CDP-choline is metabolized in the gut wall and in the liver; the products arising from the compound's extensive hepatic metabolism being subsequently available for diverse biosynthetic pathways, tissue metabolism, and excretion.

  6. Distribution of aged 14C-PCB and 14C-PAH residues in particle-size and humic fractions of an agricultural soil.

    PubMed

    Doick, Kieron J; Burauel, Peter; Jones, Kevin C; Semple, Kirk T

    2005-09-01

    Organic matter is considered to be the single most importantfactor limiting availability and mobility of persistent organic pollutants (POPs) in soil. This study aimed to characterize the distribution of 14C-PCB (congeners 28 and 52) and 14C-PAH (fluoranthene and benzo[a]pyrene) residues in an Orthic Luvisol soil obtained from two lysimeter studies initiated in 1990 at the Agrosphere Institute (Forschungszentrum Jülich GmbH, Germany). The lysimeter soils contained a low-density OM fraction, isolated during soil washing, which contained a significant fraction (3-12%) of the total 14C-activity. Soils were also fractionated according to three particle sizes: >20, 20-2, and <2 microm. Relative affinity values of 14C-activity for the different particle sizes varied in the order 20-2 microm > (<2 microm) approximately (>20 microm) for the PCBs. Relative affinity values of 14C-activity for the different particle sizes varied in the order 20-2 microm > (<2 microm) > (>20 microm) for the PAHs. The distribution of 14C-PCB or 14C-PAH residues in the organic and inorganic matrixes of the particle-size fractions was determined using methyl isobutyl ketone (MIBK). 14C-PCB and 14C-PAH-associated activities were primarily located in the humin fraction of the 20-2 and <2 microm particle-size fractions of the soil. A small fraction was associated with the fulvic and humic acid fractions; these were quantitatively more important for the PAHs than the PCBs. There appeared to be a high degree of association of 14C-activity with the mineral fraction following MIBK separation of the humic fractions, ranging between 8 and 52% for 14C-PCBs and 57-80% for 14C-PAHs. The mineral (inorganic) component of the soils apparently played a significant (previously unreported) role in the sequestration of both PCBs 28 and 52 and the PAHs fluoranthene and benzo[a]pyrene.

  7. Using accelerator mass spectrometry for radiocarbon dating of textiles

    SciTech Connect

    Jull, A.J.T.

    1997-12-01

    Since 1981 we have operated an NSF Accelerator Mass Spectrometry (AMS) Facility at the University of Arizona. The AMS method allows us to use very small samples of carbon, <1 mg for radiocarbon dating in contrast to earlier counting techniques. This has opened a vast array of applications of radiocarbon dating that was difficult to do before AMS because of sample size limitations of decay counting. Some of the many applications of AMS include paleoclimatic studies, archaeological research and the age of first settlement of North America by man, dating of art works and artifacts, fall times and terrestrial residence ages of meteorites, production of {sup 14}C in lunar samples by galactic and solar cosmic rays, studies of in situ {sup 14}C produced by cosmic ray spallation in rocks and ice, and studies of {sup 14}C in groundwater dissolved inorganic carbon and dissolved organic carbon. At our laboratory, we have also successfully applied AMS {sup 14}C to dating of many types of textiles, including silks and linens, art works, documents and artifacts fabricated from wood, parchment, ivory, and bone. The results for many of these samples are often important in questions of the authenticity of these works of art and artifacts. Our studies have encompassed a wide range of art works ranging from the Dead Sea Scrolls, the Shroud of Turin, and the Chinese silk trade to the works of Raphael, Rembrandt, and Picasso. Recently, we also dated the Vinland Map, a controversial document that shows the eastern coast of North America apparently using information from Viking voyages.

  8. On the isolation of OC and EC and the optimal strategy of radiocarbon-based source apportionment of carbonaceous aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Perron, N.; Ciobanu, V. G.; Zotter, P.; Minguillón, M. C.; Wacker, L.; Prévôt, A. S. H.; Baltensperger, U.; Szidat, S.

    2012-07-01

    Radiocarbon (14C) measurements of elemental carbon (EC) and organic carbon (OC) separately (as opposed to only total carbon, TC) allow an unambiguous quantification of their non-fossil and fossil sources and represent an improvement in carbonaceous aerosol source apportionment. Isolation of OC and EC for accurate 14C determination requires complete removal of interfering fractions with maximum recovery. To evaluate the extent of positive and negative artefacts during OC and EC separation, we performed sample preparation with a commercial Thermo-Optical OC/EC Analyser (TOA) by monitoring the optical properties of the sample during the thermal treatments. Extensive attention has been devoted to the set-up of TOA conditions, in particular, heating program and choice of carrier gas. Based on different types of carbonaceous aerosols samples, an optimised TOA protocol (Swiss_4S) with four steps is developed to minimise the charring of OC, the premature combustion of EC and thus artefacts of 14C-based source apportionment of EC. For the isolation of EC for 14C analysis, the water-extraction treatment on the filter prior to any thermal treatment is an essential prerequisite for subsequent radiocarbon; otherwise the non-fossil contribution may be overestimated due to the positive bias from charring. The Swiss_4S protocol involves the following consecutive four steps (S1, S2, S3 and S4): (1) S1 in pure oxygen (O2) at 375 °C for separation of OC for untreated filters, and water-insoluble organic carbon (WINSOC) for water-extracted filters; (2) S2 in O2 at 475 °C, followed by (3) S3 in helium (He) at 650 °C, aiming at complete OC removal before EC isolation and leading to better consistency with thermal-optical protocols like EUSAAR_2, compared to pure oxygen methods; and (4) S4 in O2 at 760 °C for recovery of the remaining EC. WINSOC was found to have a significantly higher fossil contribution than the water-soluble OC (WSOC). Moreover, the experimental results

  9. On the isolation of OC and EC and the optimal strategy of radiocarbon-based source apportionment of carbonaceous aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Perron, N.; Ciobanu, V. G.; Zotter, P.; Minguillón, M. C.; Wacker, L.; Prévôt, A. S. H.; Baltensperger, U.; Szidat, S.

    2012-11-01

    Radiocarbon (14C) measurements of elemental carbon (EC) and organic carbon (OC) separately (as opposed to only total carbon, TC) allow an unambiguous quantification of their non-fossil and fossil sources and represent an improvement in carbonaceous aerosol source apportionment. Isolation of OC and EC for accurate 14C determination requires complete removal of interfering fractions with maximum recovery. The optimal strategy for 14C-based source apportionment of carbonaceous aerosols should follow an approach to subdivide TC into different carbonaceous aerosol fractions for individual 14C analyses, as these fractions may differ in their origins. To evaluate the extent of positive and negative artefacts during OC and EC separation, we performed sample preparation with a commercial Thermo-Optical OC/EC Analyser (TOA) by monitoring the optical properties of the sample during the thermal treatments. Extensive attention has been devoted to the set-up of TOA conditions, in particular, heating program and choice of carrier gas. Based on different types of carbonaceous aerosols samples, an optimised TOA protocol (Swiss_4S) with four steps is developed to minimise the charring of OC, the premature combustion of EC and thus artefacts of 14C-based source apportionment of EC. For the isolation of EC for 14C analysis, the water-extraction treatment on the filter prior to any thermal treatment is an essential prerequisite for subsequent radiocarbon measurements; otherwise the non-fossil contribution may be overestimated due to the positive bias from charring. The Swiss_4S protocol involves the following consecutive four steps (S1, S2, S3 and S4): (1) S1 in pure oxygen (O2) at 375 °C for separation of OC for untreated filters and water-insoluble organic carbon (WINSOC) for water-extracted filters; (2) S2 in O2 at 475 °C followed by (3) S3 in helium (He) at 650 °C, aiming at complete OC removal before EC isolation and leading to better consistency with thermal-optical protocols

  10. Impacts of C-uptake by plants on the spatial distribution of (14)C accumulated in vegetation around a nuclear facility-Application of a sophisticated land surface (14)C model to the Rokkasho reprocessing plant, Japan.

    PubMed

    Ota, Masakazu; Katata, Genki; Nagai, Haruyasu; Terada, Hiroaki

    2016-10-01

    The impacts of carbon uptake by plants on the spatial distribution of radiocarbon ((14)C) accumulated in vegetation around a nuclear facility were investigated by numerical simulations using a sophisticated land surface (14)C model (SOLVEG-II). In the simulation, SOLVEG-II was combined with a mesoscale meteorological model and an atmospheric dispersion model. The model combination was applied to simulate the transfer of (14)CO2 and to assess the radiological impact of (14)C accumulation in rice grains during test operations of the Rokkasho reprocessing plant (RRP), Japan, in 2007. The calculated (14)C-specific activities in rice grains agreed with the observed activities in paddy fields around the RRP within a factor of four. The annual effective dose delivered from (14)C in the rice grain was estimated to be less than 0.7 μSv, only 0.07% of the annual effective dose limit of 1 mSv for the public. Numerical experiments of hypothetical continuous atmospheric (14)CO2 release from the RRP showed that the (14)C-specific activities of rice plants at harvest differed from the annual mean activities in the air. The difference was attributed to seasonal variations in the atmospheric (14)CO2 concentration and the growth of the rice plant. Accumulation of (14)C in the rice plant significantly increased when (14)CO2 releases were limited during daytime hours, compared with the results observed during the nighttime. These results indicated that plant growth stages and diurnal photosynthesis should be considered in predictions of the ingestion dose of (14)C for long-term chronic releases and short-term diurnal releases of (14)CO2, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Sun, Ocean, Nuclear Bombs, and Fossil Fuels: Radiocarbon Variations and Implications for High-Resolution Dating

    NASA Astrophysics Data System (ADS)

    Dutta, Koushik

    2016-06-01

    Radiocarbon, or 14C, is a radiometric dating method ideally suited for providing a chronological framework in archaeology and geosciences for timescales spanning the last 50,000 years. 14C is easily detectable in most common natural organic materials and has a half-life (5,730±40 years) relevant to these timescales. 14C produced from large-scale detonations of nuclear bombs between the 1950s and the early 1960s can be used for dating modern organic materials formed after the 1950s. Often these studies demand high-resolution chronology to resolve ages within a few decades to less than a few years. Despite developments in modern, high-precision 14C analytical methods, the applicability of 14C in high-resolution chronology is limited by short-term variations in atmospheric 14C in the past. This article reviews the roles of the principal natural drivers (e.g., solar magnetic activity and ocean circulation) and the anthropogenic perturbations (e.g., fossil fuel CO2 and 14C from nuclear and thermonuclear bombs) that are responsible for short-term 14C variations in the environment. Methods and challenges of high-resolution 14C dating are discussed.

  12. Radiolabelling of humic substances with (14)C by azo coupling [(14)C]phenyldiazonium ions.

    PubMed

    Mansel, A; Kupsch, H

    2007-07-01

    For the first time, natural and synthetic humic substances were radiolabelled by azo coupling [U-(14)C]phenyldiazonium ions onto the aromatic fragments of their macromolecules under mild reaction conditions. The radiolabelling procedure was optimized with respect to pH, reaction temperature and the molar ratio of the humic substance to the labelling compound. The labelled humic substances were purified by precipitation or ultrafiltration. The chemical yields were in the range between 23% and 95%, and the specific radioactivities varied between 68 and 206MBq (14)C per gram of the humic substance, depending on the origin of the humic substance and the purification method. With the (14)C-labelled humic compounds thus obtained, we were able to detect humic substances at concentrations as low as 5microg/L. These radiolabelled compounds can be used in long-term studies because, according to size exclusion chromatography data, there are no signs of their decomposition even after 5 months of storage.

  13. Export of pre-aged, labile DOM from a central California coastal upwelling system: Insights from D/L amino acids and Δ14C signatures

    NASA Astrophysics Data System (ADS)

    Walker, B. D.; Shen, Y.; Benner, R. H.; Druffel, E. R. M.

    2014-12-01

    Coastal upwelling zones are among the most productive regions in the world and play a major role in global carbon and nitrogen cycles. Recent research suggests that a substantial fraction of newly fixed organic matter is exported offshore in the form of dissolved organic matter (DOM). However, to date only a few studies have examined DOM composition in the context of production and export from upwelling systems. The ultimate fate and geochemical impact of coastal DOM exported to offshore and mesopelagic ecosystems also remains largely unknown. Between 2007-2009 we conducted a high-resolution biogeochemical time series at the Granite Canyon Marine Pollution Studies Lab in part to evaluate the seasonal production and export of DOM from the Central CA coast. Our previous work demonstrated substantial, albeit disparate, seasonal production of dissolved organic carbon and nitrogen (DOC, DON) - with high DON (and low C:N ratios) produced during upwelling and high DOC produced during summer/fall water column stratification (Walker and McCarthy, 2012). Here we present new total dissolved D/L amino acid (TDAA) and UV-oxidizable DOC radiocarbon14C) data with the goal of determining the relative sources (heterotrophic vs. autotrophic), bioavailability, microbial processing and 14C-ages of C-rich vs. N-rich DOM exported from this upwelling system. Our results suggest that C-rich DOM produced during water column stratification carries a large microbial signature (i.e. high D/L AA ratios and non-protein AA abundance), whereas N-rich DOM produced during upwelling appears to be fresh, autotrophic DOM (i.e. lowest D/L AA ratios and highest TDAA abundance). DOM Δ14C signatures also did not approximate in situ dissolved inorganic carbon (DIC), and instead were far more negative and highly correlated to water mass density. Together our results indicate a previously unrecognized source of highly labile yet pre-aged DOM potentially impacting offshore and mesopelagic ecosystems.

  14. Molecular 14-C analyses on lipid biomarkers in the water column and surface sediments reveal rapid aging of remobilized terrestrial organic carbon in a sub-Arctic basin

    NASA Astrophysics Data System (ADS)

    Vonk, J.; Gustafsson, Ö.; van Dongen, B.

    2009-04-01

    Riverine export of terrestrial organic carbon (terrOC) plays an important role in the global carbon cycle. Molecular composition, phase associations, transport and remineralization processes determine the fate of terrOC in the world's shelf areas, thereby potentially influencing climate through various carbon-climate feedback links. The vast sub-Arctic and Arctic terrestrial carbon pools, freeze-locked in northern peatlands, could be of particular interest in a warming climate scenario. The Kalix River, flowing into the Bothnian Bay in the northernmost Baltic Sea is one of Europe's largest unregulated rivers, draining sub-Arctic peatland prone to climate-warming effects. The Kalix is believed to resemble the great western Siberian-Arctic rivers that are far less accessible but draining similar, still partly frozen, high carbon content areas. Here we present compound-specific radiocarbon analysis (CSRA) on terrestrial lipid biomarkers in surface water particulate OC (POC) from the Kalix - Bothnian Bay system. In combination with bulk 14-C and CSRA on surface sediments from the same off-river transect this shows (1) a rapid apparent aging of long-chain n-alkanoic acids from water column to surface sediments and (2) long-chain n-alkane 14-C ages in surface sediments that are similar and even older than catchment peat basal ages. This combines with mass balance modelling results for this system to suggest a higher reactivity of remobilized recalcitrant terrOC than previously thought. We hypothesize that the terrOC is released from two different pools. Soil surface layers release humic-rich, easily degrading OC that mostly stays in suspension whereas OC that is coated to heavier mineral particles from deeper soil layers degrades slower and settles faster. Fraction modern 14-C signals in the range 0.18 - 0.47 of presumably mineral-bound terrestrial OC in surface sediments may indicate ongoing remobilization of ancient carbon reservoirs.

  15. Dating the time of birth: A radiocarbon calibration curve for human eye-lens crystallines

    NASA Astrophysics Data System (ADS)

    Kjeldsen, Henrik; Heinemeier, Jan; Heegaard, Steffen; Jacobsen, Christina; Lynnerup, Niels

    2010-04-01

    Radiocarbon bomb-pulse dating has been used to measure the formation age of human eye-lens crystallines. Lens crystallines are special proteins in the eye-lens that consist of virtually inert tissue. The experimental data show that the radiocarbon ages to a large extent reflect the time of birth, in accordance with expectations. Moreover, it has been possible to develop an age model for the formation of the eye-lens crystallines. From this model a radiocarbon calibration curve for lens crystallines has been calculated. As a consequence, the time of birth of humans can be determined with an accuracy of a few years by radiocarbon dating.

  16. Measurements and modeling of contemporary radiocarbon in the stratosphere

    NASA Astrophysics Data System (ADS)

    Kanu, A. M.; Comfort, L. L.; Guilderson, T. P.; Cameron-Smith, P. J.; Bergmann, D. J.; Atlas, E. L.; Schauffler, S.; Boering, K. A.

    2016-02-01

    Measurements of the 14C content of carbon dioxide in air collected by high-altitude balloon flights in 2003-2005 reveal the contemporary radiocarbon distribution in the northern midlatitude stratosphere, four decades after the Limited Test Ban Treaty restricted atmospheric testing of nuclear weapons. Comparisons with results from a 3-D chemical-transport model show that the 14CO2 distribution is now largely governed by the altitude/latitude dependence of the natural cosmogenic production rate, stratospheric transport, and propagation into the stratosphere of the decreasing radiocarbon trend in tropospheric CO2 due to fossil fuel combustion. From the observed correlation of 14CO2 with N2O mixing ratios, an annual global mean net flux of 14CO2 to the troposphere of 1.6(±0.4) × 1017‰ mol CO2 yr-1 and a global production rate of 2.2(±0.6) × 1026 atoms 14C yr-1 are empirically derived. The results also indicate that contemporary 14CO2 observations provide highly sensitive diagnostics for stratospheric transport and residence times in models.

  17. Measurements and modeling of contemporary radiocarbon in the stratosphere

    DOE PAGES

    Kanu, A. M.; Comfort, L. L.; Guilderson, T. P.; ...

    2016-01-29

    Measurements of the 14C content of carbon dioxide in air collected by high-altitude balloon flights in 2003–2005 reveal the contemporary radiocarbon distribution in the northern midlatitude stratosphere, four decades after the Limited Test Ban Treaty restricted atmospheric testing of nuclear weapons. Comparisons with results from a 3-D chemical-transport model show that the 14CO2 distribution is now largely governed by the altitude/latitude dependence of the natural cosmogenic production rate, stratospheric transport, and propagation into the stratosphere of the decreasing radiocarbon trend in tropospheric CO2 due to fossil fuel combustion. From the observed correlation of 14CO2 with N2O mixing ratios, an annualmore » global mean net flux of 14CO2 to the troposphere of 1.6(±0.4) × 1017‰ mol CO2 yr–1 and a global production rate of 2.2(±0.6) × 1026 atoms 14C yr–1 are empirically derived. Furthermore, the results also indicate that contemporary 14CO2 observations provide highly sensitive diagnostics for stratospheric transport and residence times in models.« less

  18. Vertebral bomb radiocarbon suggests extreme longevity in white sharks.

    PubMed

    Hamady, Li Ling; Natanson, Lisa J; Skomal, Gregory B; Thorrold, Simon R

    2014-01-01

    Conservation and management efforts for white sharks (Carcharodon carcharias) remain hampered by a lack of basic demographic information including age and growth rates. Sharks are typically aged by counting growth bands sequentially deposited in their vertebrae, but the assumption of annual deposition of these band pairs requires testing. We compared radiocarbon (Δ(14)C) values in vertebrae from four female and four male white sharks from the northwestern Atlantic Ocean (NWA) with reference chronologies documenting the marine uptake of (14)C produced by atmospheric testing of thermonuclear devices to generate the first radiocarbon age estimates for adult white sharks. Age estimates were up to 40 years old for the largest female (fork length [FL]: 526 cm) and 73 years old for the largest male (FL: 493 cm). Our results dramatically extend the maximum age and longevity of white sharks compared to earlier studies, hint at possible sexual dimorphism in growth rates, and raise concerns that white shark populations are considerably more sensitive to human-induced mortality than previously thought.

  19. The role of inter-comparisons in radiocarbon quality assurance

    NASA Astrophysics Data System (ADS)

    Scott, Marian; Cook, Gordon; Naysmith, Philip

    2016-04-01

    Radiocarbon dating is used widely in many geochronology projects as a basis for the creation and testing of chronological constructs. Radiocarbon measurements are by their nature complex and the degree of sample pre-treatment varies considerably depending on the material. Within the UK and Europe, there are a number of well-established laboratories and increasingly, scientists are not just commissioning new dates, but also using statistical modelling of assemblages of dates, perhaps measured in different laboratories, to provide formal date estimates for their investigations. The issue of comparability of measurements (and thus bias, accuracy and precision of measurement) from the diverse laboratories is one which has been the focus of some attention both within the 14C community and the wider user communities for some time. As a result of this but also as part of laboratory benchmarking and quality assurance, the 14C community has undertaken a wide-scale, far-reaching and evolving programme of inter-comparisons, to the benefit of laboratories and users alike. This paper presents the results from the most recent exercise SIRI. The objectives of SIRI included, through choice of material, to contribute to the discussion concerning laboratory offsets and error multipliers in the context of IntCal (the International Calibration Programme) and to gain a better understanding of differences in background derived from a range of infinite age material types.

  20. High-precision 14C and 40Ar/39Ar dating of the Campanian Ignimbrite (Y-5) reconciles the time-scales of climatic-cultural processes at 40 ka

    PubMed Central

    Giaccio, Biagio; Hajdas, Irka; Isaia, Roberto; Deino, Alan; Nomade, Sebastien

    2017-01-01

    The Late Pleistocene Campanian Ignimbrite (CI) super-eruption (Southern Italy) is the largest known volcanic event in the Mediterranean area. The CI tephra is widely dispersed through western Eurasia and occurs in close stratigraphic association with significant palaeoclimatic and Palaeolithic cultural events. Here we present new high-precision 14C (34.29 ± 0.09 14C kyr BP, 1σ) and 40Ar/39Ar (39.85 ± 0.14 ka, 95% confidence level) dating results for the age of the CI eruption, which substantially improve upon or augment previous age determinations and permit fuller exploitation of the chronological potential of the CI tephra marker. These results provide a robust pair of 14C and 40Ar/39Ar ages for refining both the radiocarbon calibration curve and the Late Pleistocene time-scale at ca. 40 ka. In addition, these new age constraints provide compelling chronological evidence for the significance of the combined influence of the CI eruption and Heinrich Event 4 on European climate and potentially evolutionary processes of the Early Upper Palaeolithic. PMID:28383570

  1. High-precision 14C and 40Ar/39Ar dating of the Campanian Ignimbrite (Y-5) reconciles the time-scales of climatic-cultural processes at 40 ka

    NASA Astrophysics Data System (ADS)

    Giaccio, Biagio; Hajdas, Irka; Isaia, Roberto; Deino, Alan; Nomade, Sebastien

    2017-04-01

    The Late Pleistocene Campanian Ignimbrite (CI) super-eruption (Southern Italy) is the largest known volcanic event in the Mediterranean area. The CI tephra is widely dispersed through western Eurasia and occurs in close stratigraphic association with significant palaeoclimatic and Palaeolithic cultural events. Here we present new high-precision 14C (34.29 ± 0.09 14C kyr BP, 1σ) and 40Ar/39Ar (39.85 ± 0.14 ka, 95% confidence level) dating results for the age of the CI eruption, which substantially improve upon or augment previous age determinations and permit fuller exploitation of the chronological potential of the CI tephra marker. These results provide a robust pair of 14C and 40Ar/39Ar ages for refining both the radiocarbon calibration curve and the Late Pleistocene time-scale at ca. 40 ka. In addition, these new age constraints provide compelling chronological evidence for the significance of the combined influence of the CI eruption and Heinrich Event 4 on European climate and potentially evolutionary processes of the Early Upper Palaeolithic.

  2. High-precision (14)C and (40)Ar/(39)Ar dating of the Campanian Ignimbrite (Y-5) reconciles the time-scales of climatic-cultural processes at 40 ka.

    PubMed

    Giaccio, Biagio; Hajdas, Irka; Isaia, Roberto; Deino, Alan; Nomade, Sebastien

    2017-04-06

    The Late Pleistocene Campanian Ignimbrite (CI) super-eruption (Southern Italy) is the largest known volcanic event in the Mediterranean area. The CI tephra is widely dispersed through western Eurasia and occurs in close stratigraphic association with significant palaeoclimatic and Palaeolithic cultural events. Here we present new high-precision (14)C (34.29 ± 0.09 (14)C kyr BP, 1σ) and (40)Ar/(39)Ar (39.85 ± 0.14 ka, 95% confidence level) dating results for the age of the CI eruption, which substantially improve upon or augment previous age determinations and permit fuller exploitation of the chronological potential of the CI tephra marker. These results provide a robust pair of (14)C and (40)Ar/(39)Ar ages for refining both the radiocarbon calibration curve and the Late Pleistocene time-scale at ca. 40 ka. In addition, these new age constraints provide compelling chronological evidence for the significance of the combined influence of the CI eruption and Heinrich Event 4 on European climate and potentially evolutionary processes of the Early Upper Palaeolithic.

  3. Carbon Isotopes Profiles of Human Whole Blood, Plasma, Red Blood Cells, Urine and Feces for Biological/Biomedical 14C-Accelerator Mass Spectrometry Applications

    PubMed Central

    Kim, Seung-Hyun; Chuang, Jennifer C.; Kelly, Peter B.; Clifford, Andrew J.

    2011-01-01

    Radiocarbon (14C) is an ideal tracer for in vivo human ADME (absorption, distribution, metabolism, elimination) and PBPK (physiological-based pharmacokinetic) studies. Living plants preferentially incorporate atmospheric 14CO2, vs 13CO2, vs 12CO2, which result in unique signature. Furthermore, plants and the food chains they support also have unique carbon isotope signatures. Humans, at the top of the food chain, consequently acquire isotopic concentrations in the tissues and body fluids depending on their dietary habits. In preparation of ADME and PBPK studies, 12 healthy subjects were recruited. The human baseline (specific to each individual and their diet) total carbon (TC) and carbon isotope 13C (δ13C) and 14C (Fm) were quantified in whole blood (WB), plasma, washed red blood cell (RBC), urine, and feces. TC (mg of C/100μL) in WB, plasma, RBC, urine, and feces were 11.0, 4.37, 7.57, 0.53, and 1.90, respectively. TC in WB, RBC, and feces was higher in men over women, P < 0.05. Mean δ13C were ranked low to high as follows, feces < WB = plasma = RBC = urine, P < 0.0001. δ13C was not affected by gender. Our analytic method shifted δ13C by only ± 1.0 ‰ ensuring our Fm measurements were accurate and precise. Mean Fm were ranked low to high as follows, plasma = urine < WB = RBC = feces, P < 0.05. Fm in feces was higher for men over women, P < 0.05. Only in WB, 14C levels (Fm) and TC were correlated with one another (r = 0.746, P < 0.01). Considering the lag time to incorporate atmospheric 14C into plant foods (vegetarian) and or then into animal foods (non-vegetarian), the measured Fm of WB in our population (recruited April 2009) was 1.0468 ± 0.0022 (mean±SD), the Fm of WB matched the (extrapolated) atmospheric Fm of 1.0477 in 2008. This study is important in presenting a procedure to determine a baseline for a study group for human ADME and PBPK studies using 14C as a tracer. PMID:21452856

  4. Carbon isotopes profiles of human whole blood, plasma, red blood cells, urine and feces for biological/biomedical 14C-accelerator mass spectrometry applications.

    PubMed

    Kim, Seung-Hyun; Chuang, Jennifer C; Kelly, Peter B; Clifford, Andrew J

    2011-05-01

    Radiocarbon ((14)C) is an ideal tracer for in vivo human ADME (absorption, distribution, metabolism, elimination) and PBPK (physiological-based pharmacokinetic) studies. Living plants peferentially incorporate atmospheric (14)CO(2) versus (13)CO(2) versus (12)CO(2), which result in unique signature. Furthermore, plants and the food chains they support also have unique carbon isotope signatures. Humans, at the top of the food chain, consequently acquire isotopic concentrations in the tissues and body fluids depending on their dietary habits. In preparation of ADME and PBPK studies, 12 healthy subjects were recruited. The human baseline (specific to each individual and their diet) total carbon (TC) and carbon isotope (13)C (δ(13)C) and (14)C (F(m)) were quantified in whole blood (WB), plasma, washed red blood cell (RBC), urine, and feces. TC (mg of C/100 μL) in WB, plasma, RBC, urine, and feces were 11.0, 4.37, 7.57, 0.53, and 1.90, respectively. TC in WB, RBC, and feces was higher in men over women, P < 0.05. Mean δ(13)C were ranked low to high as follows: feces < WB = plasma = RBC = urine, P < 0.0001. δ(13)C was not affected by gender. Our analytic method shifted δ(13)C by only ±1.0 ‰ ensuring our F(m) measurements were accurate and precise. Mean F(m) were ranked low to high as follows: plasma = urine < WB = RBC = feces, P < 0.05. F(m) in feces was higher for men over women, P < 0.05. Only in WB, (14)C levels (F(m)) and TC were correlated with one another (r = 0.746, P < 0.01). Considering the lag time to incorporate atmospheric (14)C into plant foods (vegetarian) and or then into animal foods (nonvegetarian), the measured F(m) of WB in our population (recruited April 2009) was 1.0468 ± 0.0022 (mean ± SD), and the F(m) of WB matched the (extrapolated) atmospheric F(m) of 1.0477 in 2008. This study is important in presenting a procedure to determine a baseline for a study group for human ADME and PBPK studies using (14)C as a tracer.

  5. Distribution of photosynthetically fixed /sup 14/C in perennial plant species of the northern Mojave Desert

    SciTech Connect

    Wallace, A.; Cha, J.W.; Romney, E.M.

    1980-01-01

    The distribution of photosynthate among plant parts subsequent to its production is needed to fully understand behavior of vegetation in any ecosystem. The present study, undertaken primarily to obtain information on transport of assimilates into roots of desert vegetation, was conducted in the northern Mojave Desert, where the mean annual rainfall is about 10 cm. Shoots of Ambrosia dumosa (A. Gray) Payne plants were exposed to /sup 14/CO/sub 2/ in 1971, and the distribution of /sup 14/C in roots, stems, and leaves was subsequently measured at 1 week, 2 months, and 5 months. Only about 12 percent of the /sup 14/C photosynthate was stored in the root. Much of that stored in stems was available for new leaf growth. Photosynthate was labeled with /sup 14/C for 24 plants representing eight species in 1972. Results showed that after 127 days the mean percentage of /sup 14/C in roots as compared with the estimate of that originally fixed was 11.8; the percentage in stems was 43.8. To check the validity of the /sup 14/C data, root growth of eight perennial desert plants grown in the glasshouse was followed as plants increased in size. The mean percent of the whole plant that was root for eight species was 17.7 percent. The mean proportion of the increase in plant weights that went below ground for the eight species was 19.5 percent. This value is higher than the fraction of /sup 14/C found below ground, and therefore the /sup 14/C technique underestimates the movement of C to roots. Results of an experiment designed to test the value of the /sup 14/C-pulse technique for determining current root growth for some perennial species from the desert indicated that the transition part of roots where root growth continued after exposure to /sup 14/C was highly labeled. Old growth contained less /sup 14/C than new growth.

  6. Disposition of 14C-β-carotene following delivery with autologous triacylglyceride-rich lipoproteins

    NASA Astrophysics Data System (ADS)

    Dueker, Stephen R.; Vuong, Le Thuy; Faulkner, Brian; Buchholz, Bruce A.; Vogel, John S.

    2007-06-01

    Following ingestion, a fraction of β-carotene is cleaved into vitamin A in the intestine, while another is absorbed intact and distributed among tissues and organs. The extent to which this absorbed β-carotene serves as a source of vitamin A is unknown in vivo. In the present study we use the attomole sensitivity of accelerator mass spectrometry (AMS) for 14C to quantify the disposition of 14C-β-carotene (930 ng; 60.4 nCi of activity) after intravenous injection with an autologous triacylglyceride-rich lipoprotein fraction in a single volunteer. Total 14C was quantified in serial plasma samples and also in triglyceride-rich, and low density lipoprotein, subfractions. The appearance of 14C-retinol, the circulating form of vitamin A in plasma, was determined by chromatographic separation of plasma retinol extracts prior to AMS analysis. The data showed that 14C concentrations rapidly decayed within the triglyceride-rich lipoprotein fractions after injection, whereas low density lipoprotein 14C began a significant rise in 14C 5 h post dose. Plasma 14C-retinol also appeared at 5 h post dose and its concentrations were maintained above baseline for >88 days. Based upon comparisons of 14C-retinol concentrations following an earlier study with orally dosed 14C-β-carotene, a molar vitamin A value of the absorbed β-carotene of 0.19 was derived, meaning that 1 mole of absorbed β-carotene provides 0.19 moles of vitamin A. This is the first study to show that infused β-carotene contributes to the vitamin A economy in humans in vivo.

  7. Low-level (submicromole) environmental 14C metrology

    NASA Astrophysics Data System (ADS)

    Currie, L. A.; Kessler, J. D.; Marolf, J. V.; McNichol, A. P.; Stuart, D. R.; Donoghue, J. C.; Donahue, D. J.; Burr, G. S.; Biddulph, D.

    2000-10-01

    Accelerator mass spectrometry (AMS) measurements of environmental 14C have been employed during the past decade at the several micromole level (tens of μg carbon), but advanced research in the atmospheric and marine sciences demands still higher (μg) sensitivity, an extreme example being the determination of 14C in elemental or "black" carbon (BC) at levels of 2-10 μg per kg of Greenland snow and ice (Currie et al., 1998). A fundamental limitation for 14C AMS is Poisson counting statistics, which sets in at about 1 μg modern-C. Using the small sample (25 μg) AMS target preparation facility at NOSAMS (Pearson et al., 1998), and the microsample combustion-dilution facility at NIST, we have demonstrated an intrinsic modern-C quantification limit ( mQ) of ca. 0.9 μg, based on a 1-parameter fit to the empirical AMS variance function. (For environmental 14C, the modern carbon quantification limit is defined as that mass ( mQ) corresponding to 10% relative standard deviation (rsd) for the fraction of modern carbon, σ( fM)/ fM.) Stringent control, required for quantitative dilution factors (DL), is achieved with the NIST on-line manometric/mass spectrometry facility that compensates also for unsuspected trace impurities from vigorous chemical processing (e.g., acid digestion). Our current combustion blank is trivial (mean: 0.16 ± 0.02 μg C, n=13) but lognormally distributed (dispersion [σ]: 0.07 ± 0.01 μg). An iterative numerical expression is introduced to assess the quantitative impacts of fossil and modern carbon blank components on mQ; and a new "clean chemistry" BC processing system is described for the minimization of such blanks. For the assay of soot carbon in Greenland snow/ice, the overall processing blank has been reduced from nearly 7 μg total carbon to less than 1 μg, and is undetectable for BC.

  8. Reconstruction of Monsoon Driven South China Sea Surface Ocean Circulation using Coral Δ14C

    NASA Astrophysics Data System (ADS)

    Goodkin, N.; Bolton, A.; Karnauskas, K. B.; Hughen, K. A.; Griffin, S.; Druffel, E. R. M.

    2016-12-01

    The need to improve our understanding of annual and decadal climate behavior in the South China Sea is increasingly important, as this region includes the largest population density globally but encompasses few climate records. Here we present a record of annually resolved Δ14C from a coral collected off the coast of Nha Trang, Vietnam (12°12'49.90″N, 109°18'17.51″E), that reveals a significant correlation to regional winter sea level pressure (SLP) and sea surface temperature (SST), and extends back more than 400 years. Coral Δ14C during thermonuclear bomb testing indicates the presence of wet-season (summer) upwelling, demonstrated by low Δ14C values for both baseline and peak values relative to other records in the region (Bolton et al., 2016, Radiocarbon). However, annually resolved pre-bomb ∆14C correlates significantly to regional dry-season (winter) SLP and SST, indicating that annual variability is driven by changes to the East Asian Winter Monsoon (EAWM) and subsequent down-welling at this site. Spectral density is focused at 25, 11.8, 7, 4, and 3.2 years per cycle reflecting a range of influences on surface advection variability including the EAWM (D'Arrigo et al., 2005, GRL) and the El Nino Southern Oscillation (ENSO). Spectral power at all of these frequencies decreases following the Little Ice Age ( 1600-1850?) to today, indicating that wind driven surface advection was more variable when hemispheric temperatures were cooler. Decadal variance in the past 100 years is significantly correlated to variance records of the Arctic Oscillation (AO, Thompson and Wallace, 1989, GRL), suggesting that increasing variance in the EAWM may be tied to increasing variance of the AO during the Little Ice Age and vice versa.

  9. The coevolution of ritual and society: new 14C dates from ancient Mexico.

    PubMed

    Marcus, Joyce; Flannery, Kent V

    2004-12-28

    New (14)C dates from Oaxaca, Mexico, document changes in religious ritual that accompanied the evolution of society from hunting and gathering to the archaic state. Before 4000 B.P. in conventional radiocarbon years, a nomadic egalitarian lifeway selected for unscheduled (ad hoc) ritual from which no one was excluded. With the establishment of permanent villages (4000-3000 B.P.), certain rituals were scheduled by solar or astral events and restricted to initiates/social achievers. After state formation (2050 B.P.), many important rituals were performed only by trained full-time priests using religious calendars and occupying temples built by corvee labor. Only 1,300-1,400 years seem to have elapsed between the oldest known ritual building and the first standardized state temple.

  10. Correlating the ancient Maya and modern European calendars with high-precision AMS 14C dating.

    PubMed

    Kennett, Douglas J; Hajdas, Irka; Culleton, Brendan J; Belmecheri, Soumaya; Martin, Simon; Neff, Hector; Awe, Jaime; Graham, Heather V; Freeman, Katherine H; Newsom, Lee; Lentz, David L; Anselmetti, Flavio S; Robinson, Mark; Marwan, Norbert; Southon, John; Hodell, David A; Haug, Gerald H

    2013-01-01

    The reasons for the development and collapse of Maya civilization remain controversial and historical events carved on stone monuments throughout this region provide a remarkable source of data about the rise and fall of these complex polities. Use of these records depends on correlating the Maya and European calendars so that they can be compared with climate and environmental datasets. Correlation constants can vary up to 1000 years and remain controversial. We report a series of high-resolution AMS (14)C dates on a wooden lintel collected from the Classic Period city of Tikal bearing Maya calendar dates. The radiocarbon dates were calibrated using a Bayesian statistical model and indicate that the dates were carved on the lintel between AD 658-696. This strongly supports the Goodman-Martínez-Thompson (GMT) correlation and the hypothesis that climate change played an important role in the development and demise of this complex civilization.

  11. The coevolution of ritual and society: New 14C dates from ancient Mexico

    PubMed Central

    Marcus, Joyce; Flannery, Kent V.

    2004-01-01

    New 14C dates from Oaxaca, Mexico, document changes in religious ritual that accompanied the evolution of society from hunting and gathering to the archaic state. Before 4000 B.P. in conventional radiocarbon years, a nomadic egalitarian lifeway selected for unscheduled (ad hoc) ritual from which no one was excluded. With the establishment of permanent villages (4000–3000 B.P.), certain rituals were scheduled by solar or astral events and restricted to initiates/social achievers. After state formation (2050 B.P.), many important rituals were performed only by trained full-time priests using religious calendars and occupying temples built by corvée labor. Only 1,300–1,400 years seem to have elapsed between the oldest known ritual building and the first standardized state temple. PMID:15601758

  12. Correlating the Ancient Maya and Modern European Calendars with High-Precision AMS 14C Dating

    PubMed Central

    Kennett, Douglas J.; Hajdas, Irka; Culleton, Brendan J.; Belmecheri, Soumaya; Martin, Simon; Neff, Hector; Awe, Jaime; Graham, Heather V.; Freeman, Katherine H.; Newsom, Lee; Lentz, David L.; Anselmetti, Flavio S.; Robinson, Mark; Marwan, Norbert; Southon, John; Hodell, David A.; Haug, Gerald H.

    2013-01-01

    The reasons for the development and collapse of Maya civilization remain controversial and historical events carved on stone monuments throughout this region provide a remarkable source of data about the rise and fall of these complex polities. Use of these records depends on correlating the Maya and European calendars so that they can be compared with climate and environmental datasets. Correlation constants can vary up to 1000 years and remain controversial. We report a series of high-resolution AMS 14C dates on a wooden lintel collected from the Classic Period city of Tikal bearing Maya calendar dates. The radiocarbon dates were calibrated using a Bayesian statistical model and indicate that the dates were carved on the lintel between AD 658-696. This strongly supports the Goodman-Martínez-Thompson (GMT) correlation and the hypothesis that climate change played an important role in the development and demise of this complex civilization. PMID:23579869

  13. Time since death and decay rate constants of Norway spruce and European larch deadwood in subalpine forests determined using dendrochronology and radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Petrillo, M.; Cherubini, P.; Fravolini, G.; Ascher, J.; Schärer, M.; Synal, H.-A.; Bertoldi, D.; Camin, F.; Larcher, R.; Egli, M.

    2015-09-01

    Due to the large size and highly heterogeneous spatial distribution of deadwood, the time scales involved in the coarse woody debris (CWD) decay of Picea abies (L.) Karst. and Larix decidua Mill. in Alpine forests have been poorly investigated and are largely unknown. We investigated the CWD decay dynamics in an Alpine valley in Italy using the five-decay class system commonly employed for forest surveys, based on a macromorphological and visual assessment. For the decay classes 1 to 3, most of the dendrochronological samples were cross-dated to assess the time that had elapsed since tree death, but for decay classes 4 and 5 (poorly preserved tree rings) and some others not having enough tree rings, radiocarbon dating was used. In addition, density, cellulose and lignin data were measured for the dated CWD. The decay rate constants for spruce and larch were estimated on the basis of the density loss using a single negative exponential model. In the decay classes 1 to 3, the ages of the CWD were similar varying between 1 and 54 years for spruce and 3 and 40 years for larch with no significant differences between the classes; classes 1-3 are therefore not indicative for deadwood age. We found, however, distinct tree species-specific differences in decay classes 4 and 5, with larch CWD reaching an average age of 210 years in class 5 and spruce only 77 years. The mean CWD rate constants were 0.012 to 0.018 yr-1 for spruce and 0.005 to 0.012 yr-1 for larch. Cellulose and lignin time trends half-lives (using a multiple-exponential model) could be derived on the basis of the ages of the CWD. The half-lives for cellulose were 21 yr for spruce and 50 yr for larch. The half-life of lignin is considerably higher and may be more than 100 years in larch CWD.

  14. Geographic and temporal trends in proboscidean and human radiocarbon histories during the late Pleistocene

    NASA Astrophysics Data System (ADS)

    Ugan, Andrew; Byers, David

    2007-12-01

    The causes of large animal extinctions at the end of the Pleistocene remain a hotly debated topic focused primarily on the effects of human over hunting and climate change. Here we examine multiple, large radiocarbon data sets for humans and extinct proboscideans and explore how variation in their temporal and geographic distributions were related prior to proboscidean extinction. These data include 4532 archaeological determinations from Europe and Siberia and 1177 mammoth and mastodont determinations from Europe, Siberia, and North America. All span the period from 45,000 to 12,000 calendar years BP. We show that while the geographic ranges of dated human occupations and proboscidean remains overlap across the terminal Pleistocene of the Old World, the two groups remain largely segregated and increases in the frequency of human occupations do not coincide with declines in proboscidean remains. Prior to the Last Glacial Maximum (LGM; ca 21,000 years BP), archaeological 14C determinations increase slightly in frequency worldwide while the frequency of dated proboscidean remains varies depending on taxon and location. After the LGM, both sympatric and allopatric groups of humans and proboscideans increase sharply as climatic conditions ameliorate. Post-LGM radiocarbon frequencies among proboscideans peak at different times, also depending upon taxon and location. Woolly mammoths in Beringia reach a maximum and then decline beginning between 16,000 and 15,500 years BP, woolly mammoths in Europe and Siberia ca 14,500 and 13,500 BP, and Columbian mammoth and American mastodont only after 13,000 BP. Declines among woolly mammoths appear to coincide with the restructuring of biotic communities following the Pleistocene-Holocene transition.

  15. Accelerator mass spectrometry 14C dating of lime mortars: Methodological aspects and field study applications at CIRCE (Italy)

    NASA Astrophysics Data System (ADS)

    Marzaioli, Fabio; Nonni, Sara; Passariello, Isabella; Capano, Manuela; Ricci, Paola; Lubritto, Carmine; De Cesare, Nicola; Eramo, Giacomo; Quirós Castillo, Juan Antonio; Terrasi, Filippo

    2013-01-01

    Centre for Isotopic Research on Cultural and Environmental heritage (CIRCE) has, recently, obtained some promising results in testing the feasibility of mortar radiocarbon dating by means of an ad hoc developed purification procedure (CryoSoniC: Cryobraking, Sonication, Centrifugation) applied to a series of laboratory mortars. Observed results encouraged CryoSoniC accuracy evaluation on genuine mortars sampled from archeological sites of known or independently constrained age (i.e., other 14C dates on different materials). In this study, some 14C measurements performed on genuine mortars will be discussed and compared with independently estimated (i.e., radiocarbon/archaeometrical dating) absolute chronologies of two Spanish sites. Observed results confirm the agreement of the CryoSoniC mortar dates with the archaeological expectations for both examined cases. Several authors reported the possibility of obtaining accurate radiocarbon dates of mortar matrices by analyzing lime lumps: binder-related particles of different sizes exclusively composed of calcium carbonate. In this paper, preliminary data for the absolute chronology reconstruction of the Basilica of the cemetery complex of Ponte della Lama (Canosa di Puglia, Italy) based on lime lumps will also be discussed. Dating accuracy will be quantified by comparing 14C data on mortar lime lumps from a funerary inscription of known age found near the Basilica, in the same study site. For this site, a comparison between absolute chronologies performed by bulk and CryoSoniC purified lime lumps, and charcoal incased in mortars (when found) will also be discussed. Observed results for this site provide evidence of how bulk lime lump dating may introduce systematic overestimations of the analyzed sample while CryoSoniC purification allows accurate dating.

  16. Biodegradation of [(sup14)C]Benzo[a]pyrene Added in Crude Oil to Uncontaminated Soil

    PubMed Central

    Kanaly, R.; Bartha, R.; Fogel, S.; Findlay, M.

    1997-01-01

    To investigate the possible cometabolic biodegradation of benzo[a]pyrene (BaP), crude oil spiked with [7-(sup14)C]BaP and unlabeled BaP was added to soil with no known pollution history, to give 34 g of oil and 67 mg of BaP/kg of dry soil. The oil-soil mixture was amended with mineral nutrients and incubated in an airtight container with continuous forced aeration. Total CO(inf2) and (sup14)CO(inf2) in the off-gas were trapped and quantified. Soil samples were Soxhlet extracted with dichloromethane at seven time points during the 150-day incubation period, and the extracted soil was subjected to further fractionation in order to recover reversibly and irreversibly bound radiocarbon. Radiocarbon recovery was 100% (plusmn) 3% for each time point. During the first 50 days of incubation, no (sup14)CO(inf2) was evolved, but over the next 100 days, 50% of the BaP radiocarbon was evolved as (sup14)CO(inf2). At 150 days, only 5% of the intact BaP and 23% of the crude oil remained. Of the remaining radiolabel, 20% was found in solvent-extractable metabolites and 25% was incorporated into soil organic matter. Only 1/10 of this could be solubilized by chemical hydrolysis. An abiotic control experiment exhibited binding of only 2% of the BaP, indicating the microbial nature of the BaP transformations. We report that in soil containing suitable cosubstrates, BaP can be completely degraded. PMID:16535735

  17. Tracing fossil fuel CO2 using Δ14C in Xi'an City, China

    NASA Astrophysics Data System (ADS)

    Zhou, Weijian; Wu, Shugang; Huo, Wenwen; Xiong, Xiaohu; Cheng, Peng; Lu, Xuefeng; Niu, Zhenchuan

    2014-09-01

    Radiocarbon can be used to trace fossil fuel CO2 (CO2ff) in the atmosphere, because radiocarbon has been depleted in fossil fuels. Here we present our study on the spatial distribution and temporal variations of CO2ff in Xi'an City, China using Δ14C of both green foxtail (Setaria viridis, L. Beauv.) leaf samples and urban air samples collected in the recent years. Our results show that the CO2ff indicated by green foxtail ranged from 14.7 ± 1.7 to 52.6 ± 1.7 ppm, reflecting high CO2ff mole fractions in downtown, industrial areas, and at road sites, and low CO2ff mole fractions in public parks. Meanwhile, the monthly CO2ff reflected by air samples showed higher value in winter (57.8 ± 17.1 ppm) than that in summer (20.2 ± 9.8 ppm) due to the enhancement usage of coal burning and the poor dispersion condition of atmosphere. This study displays that the increased fossil fuel emission is associated with the fast development of Xi'an City in China. It is worth mentioning that the green foxtail samples can be used to map out the CO2ff spatial distribution on large scale quickly and conveniently, while the air samples can be used to trace the CO2ff temporal variations with high resolution effectively. Therefore the Δ14C of both green foxtail and air samples is a good indicator of CO2ff emission.

  18. Uptake and distribution of /sup 14/C during and following exposure to (/sup 14/C)methyl isocyanate

    SciTech Connect

    Ferguson, J.S.; Kennedy, A.L.; Stock, M.F.; Brown, W.E.; Alarie, Y.

    1988-06-15

    Guinea pigs were exposed to (/sup 14/C)methyl isocyanate (/sup 14/CH/sub 3/-NCO, /sup 14/C MIC) for periods of 1 to 6 hr at concentrations of 0.5 to 15 ppm. Arterial blood samples taken during exposure revealed immediate and rapid uptake of /sup 14/C. Clearance of /sup 14/C was then gradual over a period of 3 days. Similarly /sup 14/C was present in urine and bile immediately following exposure, and clearance paralleled that observed in blood. Guinea pigs fitted with a tracheal cannula and exposed while under anesthesia showed a reduced /sup 14/C uptake in blood indicating that most of the /sup 14/C MIC uptake in normal guinea pigs occurred from retention of this agent in the upper respiratory tract passages. In exposed guinea pigs /sup 14/C was distributed to all examined tissues. In pregnant female mice similarly exposed to /sup 14/C MIC, /sup 14/C was observed in all tissues examined following exposure including the uterus, placenta, and fetus. While the form of /sup 14/C distributed in blood and tissues has not yet been identified, these findings may help to explain the toxicity of MIC or MIC reaction products on organs other than the respiratory tract, as noted by several investigators.

  19. Radiocarbon Signatures and Cycling of Dissolved Organic Carbon in the World Ocean

    NASA Astrophysics Data System (ADS)

    Druffel, E. R.; Griffin, S.; Walker, B. D.

    2012-12-01

    Radiocarbon (Delta14C) measurements of bulk dissolved organic carbon (DOC) in the deep ocean range from -390 per mil in the North Atlantic to -550 per mil in the Northeast Pacific. We report Delta14C measurements of DOC from six sites in the South Pacific and three sites in the South Atlantic collected on Repeat Hydrography cruises P6 (2010) and A10 (2011). We compare our new results with those reported earlier for the North central Pacific, Northeast Pacific, Southern Ocean and Sargasso Sea. We find that the Delta14C results from the deep South Pacific are lower than expected, given the range between Southern Ocean DOC Delta14C values (-500 per mil) and those from the North central Pacific (-525 per mil). Implications for DOC cycling in the world ocean are presented.

  20. Age and geomorphic history of Meteor Crater, Arizona, from cosmogenic 36Cl and 14C in rock varnish

    USGS Publications Warehouse

    Phillips, F.M.; Zreda, M.G.; Smith, S.S.; Elmore, D.; Kubik, P.W.; Dorn, R.I.; Roddy, D.J.

    1991-01-01

    Using cosmogenic 36Cl buildup and rock varnish radiocarbon, we have measured the exposure age of rock surfaces at Meteor Crater, Arizona. Our 36Cl measurements on four dolomite boulders ejected from the crater by the impact yield a mean age of 49.7 ?? 0.85 ka, which is in excellent agreement with an average age of 49 ?? 3 ka obtained from thermoluminescence studies on shock-metamorphosed dolomite and quartz. These ages are supported by undetectably low 14C in the oldest rock varnish sample. ?? 1991.

  1. Radiocarbon dating of marine material: mollusc versus foraminifera ages

    NASA Astrophysics Data System (ADS)

    Callard, L.; Long, A. J.; Plets, R. M.; Cooper, A.; Belknap, D. F.; Edwards, R.; Jackson, D.; Kelley, J. T.; Long, D.; Milne, G. A.; Monteys, X.; Quinn, R.

    2013-12-01

    A key challenge in reconstructing Quaternary environmental change from marine archives is developing a robust chronology. During the last ~50k a-1, radiocarbon dating is the mainstay for many studies. Often investigators are restricted in the material that is available for dating, with studies relying on AMS dating of either mono-specific or mixed assemblages of foraminifera. In some instances, marine molluscs (broken or whole, articulated or disarticulated) may also be present and can provide an alternative or complementary dating target. Previous radiocarbon dating of paired foraminiferal and marine molluscan samples from the Kattegat (Denmark) revealed significant age offsets between these materials, inferred to reflect greater reworking of foraminifera compared to the marine molluscs (Heier-Nielsen et al., 1995). Here we present the results of a comparable study from the Irish Sea Basin, which forms part of a wider investigation into the evidence for the Late Glacial sea-level minima at offshore sites from around Britain and Ireland. We have collected and AMS 14C-dated twelve paired samples of foraminifera and marine shells. The results shows a systematic age offset with the monospecific foraminifera samples consistently giving older ages than their shell counterparts. This offset increases with sample age, reaching a maximum offset of 3000 years in the oldest sample (~ 13 ka cal a BP). These results are consistent with the observations of Heier-Nielsen et al. (1995), and we hypothesize that foraminifera may be more susceptible to reworking from older deposits because of their lower effective density than the shell samples. However, foraminifera size and shape may also be contributing factors. These findings are potentially significant for studies that develop chronologies based on radiocarbon dating of foraminifera alone, since the resulting dates may over-estimate sample age by several thousand years. We conclude by outlining an experimental design that seeks

  2. Stimulation of Microbially Mediated Arsenic Release in Bangladesh Aquifers by Young Carbon Indicated by Radiocarbon Analysis of Sedimentary Bacterial Lipids.

    PubMed

    Whaley-Martin, K J; Mailloux, B J; van Geen, A; Bostick, B C; Silvern, R F; Kim, C; Ahmed, K M; Choudhury, I; Slater, G F

    2016-07-19

    The sources of reduced carbon driving the microbially mediated release of arsenic to shallow groundwater in Bangladesh remain poorly understood. Using radiocarbon analysis of phospholipid fatty acids (PLFAs) and potential carbon pools, the abundance and carbon sources of the active, sediment-associated, in situ bacterial communities inhabiting shallow aquifers (<30 m) at two sites in Araihazar, Bangladesh, were investigated. At both sites, sedimentary organic carbon (SOC) Δ(14)C signatures of -631 ± 54‰ (n = 12) were significantly depleted relative to dissolved inorganic carbon (DIC) of +24 ± 30‰ and dissolved organic carbon (DOC) of -230 ± 100‰. Sediment-associated PLFA Δ(14)C signatures (n = 10) at Site F (-167‰ to +20‰) and Site B (-163‰ to +21‰) were highly consistent and indicated utilization of carbon sources younger than the SOC, likely from the DOC pool. Sediment-associated PLFA Δ(14)C signatures were consistent with previously determined Δ(14)C signatures of microbial DNA sampled from groundwater at Site F indicating that the carbon source for these two components of the subsurface microbial community is consistent and is temporally stable over the two years between studies. These results demonstrate that the utilization of relatively young carbon sources by the subsurface microbial community occurs at sites with varying hydrology. Further they indicate that these young carbon sources drive the metabolism of the more abundant sediment-associated microbial communities that are presumably more capable of Fe reduction and associated release of As. This implies that an introduction of younger carbon to as of yet unaffected sediments (such as those comprising the deeper Pleistocene aquifer) could stimulate microbial communities and result in arsenic release.

  3. Secretin enhances (/sup 14/C)erythritol clearance in unanesthetized dogs

    SciTech Connect

    Lewis, M.H.; Baker, A.L.; Dhorajiwala, J.; Moossa, A.R.

    1982-01-01

    To determine the effect of secretin infusion on clearance of inert markers into bile, unanesthetized dogs fitted with Thomas cannulas received continuous infusions of (/sup 14/C)erythritol and (/sup 3/H)inulin throughout study. Taurocholic acid administered sequentially at 9.0, 20.0, and 40.0 mumol/min enhanced (/sup 14/C)erythritol clearance, and GIH secretin (3 units/min) administered along with TCA (40.0 mumol/min) increased (/sup 14/C)erythritol clearance from 4.9 +/- 1.2 ml/10 min to 6.8 +/- 1.3 ml/10 min (P less than 0.001), but simultaneously measured (/sup 3/H)inulin clearance was unaltered. Secretin alone also increased (/sup 14/C)erythritol clearance but did not alter (/sup 3/H)inulin clearance. The increase in (/sup 14/C)erythritol clearance per unit increase in bile flow was less during secretin infusion than TCA. Thus, secretin increases (/sup 14/C)erythritol transport through restricted channels, probably distal to the canaliculi. (/sup 14/C)Erythritol may not be an accurate marker for canalicular bile flow in dogs during secretin infusion.

  4. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb 14C

    PubMed Central

    Heinemeier, Katja Maria; Schjerling, Peter; Heinemeier, Jan; Magnusson, Stig Peter; Kjaer, Michael

    2013-01-01

    Tendons are often injured and heal poorly. Whether this is caused by a slow tissue turnover is unknown, since existing data provide diverging estimates of tendon protein half-life that range from 2 mo to 200 yr. With the purpose of determining life-long turnover of human tendon tissue, we used the 14C bomb-pulse method. This method takes advantage of the dramatic increase in atmospheric levels of 14C, produced by nuclear bomb tests in 1955–1963, which is reflected in all living organisms. Levels of 14C were measured in 28 forensic samples of Achilles tendon core and 4 skeletal muscle samples (donor birth years 1945–1983) with accelerator mass spectrometry (AMS) and compared to known atmospheric levels to estimate tissue turnover. We found that Achilles tendon tissue retained levels of 14C corresponding to atmospheric levels several decades before tissue sampling, demonstrating a very limited tissue turnover. The tendon concentrations of 14C approximately reflected the atmospheric levels present during the first 17 yr of life, indicating that the tendon core is formed during height growth and is essentially not renewed thereafter. In contrast, 14C levels in muscle indicated continuous turnover. Our observation provides a fundamental premise for understanding tendon function and pathology, and likely explains the poor regenerative capacity of tendon tissue.—Heinemeier, K. M., Schjerling, P., Heinemeier, J., Magnusson, S. P., Kjaer, M. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb 14C. PMID:23401563

  5. The biological fate of sup 14 C-dimercaptosuccinic acid in monkeys and rabbits

    SciTech Connect

    Tillotson, J.A.; Boswell, G.; Kincannon, L.; Speckman, C.L.

    1989-09-01

    The biological fate of {sup 14}C-labeled dimercaptosuccinic acid (DMSA) in monkeys and rabbits was determined by measuring the {sup 14}C activity in their urine, feces, and expired air ({sup 14}CO{sub 2}). Monkeys absorbed less than 20% DMSA from three oral dose levels (0.082, 0.16, and 0.5 mmol/kg) of {sup 14}C-DMSA, and the rabbits absorbed 32% DMSA or less from an oral dose of {sup 14}C-DMSA (0.5 mmol/kg). Although the bioavailability of DMSA was limited in either species, DMSA was detected in the blood of both species within minutes after oral dosing. In either species, most of the radiolabel from the absorbed {sup 14}C-DMSA was detected in the urine within 12 hours. We also developed a sensitive assay for directly measuring levels of DMSA (as free thiols) in blood. Intact DMSA was not detected in the blood of the monkeys or the rabbits more than 200 minutes after oral or intravenous dosing at 0.5 mmol DMSA/kg body weight. However, {sup 14}C activity in blood and urine of the monkeys was measurable 72 hours after this dose. Differences between measured {sup 14}C concentrations and intact DMSA concentrations in the blood suggest the presence of DMSA metabolites that have longer half-lives than DMSA. Consequently, until the biological activities of these compounds are identified, the pharmacokinetic analysis of DMSA may be incomplete.

  6. Improving the time control of the Subboreal/Subatlantic transition in a Czech peat sequence by 14C wiggle-matching

    NASA Astrophysics Data System (ADS)

    Speranza, A.; van der Plicht, J.; van Geel, B.

    2000-11-01

    To achieve an optimal time-control for a late Subboreal to early Subatlantic peat sequence from Pančavská Louka in the Czech Republic, different strategies are applied to convert a series of radiocarbon dates into a calendar time-scale. The methods of selection and preparation of the samples for AMS 14C dating are presented. The results of calibrating single radiocarbon dates are compared with a 14C wiggle-match strategy. As the accumulation rate of the peat was not constant, the concentrations of arboreal pollen are used to estimate the accumulation rate changes and to correct for these changes. The resulting time-control represents the best solution for this peat sequence with the methods currently available.

  7. Black Carbon in Marine Dissolved Organic Carbon: Abundance and Radiocarbon Measurements in the Global Ocean

    NASA Astrophysics Data System (ADS)

    Coppola, A. I.; Walker, B. D.; Druffel, E. R. M.

    2014-12-01

    Compound specific radiocarbon analysis is a powerful tool for understanding the cycling of individual components, such as black carbon (BC) produced from biomass burning and fossil fuel combustion, within bulk pools, like the marine dissolved organic carbon pool. Here, we use a solid phase extraction method and a wide range of solvent polarities to concentrate dissolved organic carbon from seawater. Then we isolate BC in sufficient quantities for radiocarbon analysis. We report the radiocarbon age of BC, concentrations and its relative structure, from coastal and open ocean surface samples. We will discuss our progress towards measuring these quantities in dissolved organic carbon collected from the Pacific and Atlantic oceans to understand the fate, transformation and cycling of BC in the world ocean. These measurements are paired with bulk DOC Δ14C profiles, providing insight into the role of BC as a missing sink in the ultra-refractory DOC pool.

  8. Annual variability in the radiocarbon age and source of dissolved CO2 in a peatland stream.

    PubMed

    Garnett, Mark H; Dinsmore, Kerry J; Billett, Michael F

    2012-06-15

    Radiocarbon dating has the capacity to significantly improve our understanding of the aquatic carbon cycle. In this study we used a new passive sampler to measure the radiocarbon ((14)C) and stable carbon (δ(13)C) isotopic composition of dissolved CO(2) for the first time in a peatland stream throughout a complete year (May 2010-June 2011). The in-stream sampling system collected time-integrated samples of CO(2) continuously over approximately 1 month periods. The rate of CO(2) trapping was proportional to independently measured streamwater CO(2) concentrations, demonstrating that passive samplers can be used to estimate the time-averaged dissolved CO(2) concentration of streamwater. While there was little variation and no clear trend in δ(13)CO(2) values (suggesting a consistent CO(2) source), we found a clear temporal pattern in the (14)C concentration of dissolved CO(2). The (14)C age of CO(2) varied from 707±35 to 1210±39 years BP, with the youngest CO(2) in the autumn and oldest in spring/early summer. Mean stream discharge and (14)C content of dissolved CO(2) were positively correlated. We suggest that the observed pattern in the (14)C content of dissolved CO(2) reflects changes in its origin, with older carbon derived from deeper parts of the peat profile contributing proportionally more gaseous carbon during periods of low stream flow.

  9. On radiocarbon and plutonium leakage to groundwater in the vicinity of a shallow-land radioactive waste repository.

    PubMed

    Gudelis, A; Gvozdaite, R; Kubareviciene, V; Druteikiene, R; Lukosevicius, S; Sutas, A

    2010-06-01

    A shallow-land radioactive waste repository operated in boggy forest environment from 1963 to 1989. During the operation period, a considerable amount of technogenic radionuclides, in solidified state, was disposed into the vault established in the geological structure at the depth of up to 3m. Environmental monitoring activities started after the closure of the repository in 1989. Recent investigations revealed transfer of radiocarbon and plutonium to the groundwater in the prevailing flow direction. Activity concentration of (239,240)Pu in non-filtered fraction of the groundwater from observation well no. 4 determined by alpha-spectrometry was 6.4 x 10(-5) Bq l(-1) in 2005, and 3.2 x 10(-4) Bq l(-1) in 2006. Further analysis of colloid-facilitated transport of plutonium is planned. Variation of (14)C activity concentration in the same well was monitored in 2006. It varied from 0.2+/-0.1 Bq l(-1) in October to 2.8+/-0.6 Bq l(-1) in June and July. Results imply further research into radiocarbon transfer to atmosphere and selected plant species.

  10. Constraints on primary and secondary particulate carbon sources using chemical tracer and 14C methods during CalNex-Bakersfield

    NASA Astrophysics Data System (ADS)

    Sheesley, Rebecca J.; Nallathamby, Punith Dev; Surratt, Jason D.; Lee, Anita; Lewandowski, Michael; Offenberg, John H.; Jaoui, Mohammed; Kleindienst, Tadeusz E.

    2017-10-01

    The present study investigates primary and secondary sources of organic carbon for Bakersfield, CA, USA as part of the 2010 CalNex study. The method used here involves integrated sampling that is designed to allow for detailed and specific chemical analysis of particulate matter (PM) in the Bakersfield airshed. To achieve this objective, filter samples were taken during thirty-four 23-hr periods between 19 May and 26 June 2010 and analyzed for organic tracers by gas chromatography - mass spectrometry (GC-MS). Contributions to organic carbon (OC) were determined by two organic tracer-based techniques: primary OC by chemical mass balance and secondary OC by a mass fraction method. Radiocarbon (14C) measurements of the total organic carbon were also made to determine the split between the modern and fossil carbon and thereby constrain unknown sources of OC not accounted for by either tracer-based attribution technique. From the analysis, OC contributions from four primary sources and four secondary sources were determined, which comprised three sources of modern carbon and five sources of fossil carbon. The major primary sources of OC were from vegetative detritus (9.8%), diesel (2.3%), gasoline (<1.0%), and lubricating oil impacted motor vehicle exhaust (30%); measured secondary sources resulted from isoprene (1.5%), α-pinene (<1.0%), toluene (<1.0%), and naphthalene (<1.0%, as an upper limit) contributions. The average observed organic carbon (OC) was 6.42 ± 2.33 μgC m-3. The 14C derived apportionment indicated that modern and fossil components were nearly equivalent on average; however, the fossil contribution ranged from 32 to 66% over the five week campaign. With the fossil primary and secondary sources aggregated, only 25% of the fossil organic carbon could not be attributed. Whereas, nearly 80% of the modern carbon could not be attributed to primary and secondary sources accessible to this analysis, which included tracers of biomass burning, vegetative

  11. Evaluation of the (14)C-urea breath test using indigenously produced (14)C-urea capsules and a modified technique for trapping exhaled breath: a pilot study.

    PubMed

    Tiwari, Bijaynath P; Nistala, Srinivas; Patil, Sanjay P; Kalgutkar, Deepak P; Jaychandran, Narath; Chander, Harish; Basu, Sandip

    2014-03-01

    The carbon urea breath test ((14)C-UBT) is a noninvasive technique used to detect Helicobacter pylori infection in patients presenting with dyspeptic symptoms. The present study was undertaken to determine the efficacy of indigenously produced (14)C-UBT capsules by the Board of Radiation and Isotope Technology, India. Thirty consecutive patients with dyspeptic symptoms were included in the study. After ingestion of capsules, breath samples were collected in a CO2-trapping solution to which a scintillation cocktail was added. After 24 h, the whole sample was counted in a liquid scintillation counter along with a standard of (14)C. The number of disintegrations of (14)C per minute in the breath sample was calculated. The results were compared with histopathological reports. Of 30 patients, 19 were positive and 11 were negative on (14)C-UBT. Histopathological reports confirmed 27 cases as positive and three as negative for H. pylori. Thus, the results of (14)C-UBT were concordant with histopathological results in 22/30 (73.3%) cases. Considering histopathology as the gold standard, the sensitivity, specificity, and positive predictive value of (14)C-UBT using indigenously produced capsules were found to be 70.33, 100, and 100%, respectively. On critical analysis of the discordant results, we observed that six patients had undergone H. pylori eradication therapy exactly 4 weeks before the test. When these six patients were excluded from the analysis, the sensitivity, specificity, and positive predictive value were found to be 90.05, 100, and 100%, respectively, which compared well with the values obtained using the standard procedure. The study demonstrates adequate efficacy of the indigenous methodology in newly diagnosed symptomatic patients with acid peptic disorders. The analyses of the results indicate that the test should be preferably employed after the recommended period of 1 month following completion of eradication therapy.

  12. Histamine formation from 14C-L-histidine in man

    PubMed Central

    Berg, B.; Granerus, G.; Johansson, Maj-Britt; Westling, H.; White, T.

    1972-01-01

    1. 14C-L-histidine was given i.v. to one normal subject and two patients with chronic myelocytic leukaemia. Urinary excretion of histamine and two of its metabolites methylhistamine and methylimidazoleacetic acid, total as well as 14C-labelled, was measured, as well as blood 14C-histamine. In addition the total urinary and pulmonary elimination of 14C was followed. 2. Total 14C elimination was high during the first days, then declined slowly except for a plateau at the 10th-14th day in the two patients. There was a measurable elimination even after some months. 3. 14C-histamine appeared in the blood of the leukaemic patient, whereas in the normal subjects the values were hardly measurable. 4. The leukaemic patients excreted much more of the two 14C-labelled histamine metabolites than the normal subject. The difference in excretion of the 14C-labelled metabolites was largest around the 12th day after the infusion of 14C-L-histidine. 5. The results indicate that the leukaemic patients formed at least 20 times more histamine daily than the normal subject. PMID:4510213

  13. Age models for peat deposits on the basis of coupled lead-210 and radiocarbon data.

    NASA Astrophysics Data System (ADS)

    Piotrowska, Natalia; de Vleeschouwer, François; Sikorski, Jarosław; Sensuła, Barbara; Michczyński, Adam; Fiałkiewicz-Kozieł, Barbara; Palowski, Bernard

    2010-05-01

    The study presents three examples of age-model construction based on the results of 210Pb and 14C dating methods applied to peat deposits. The three sites are ombrotrophic peat bogs: the Misten (Belgium), Slowinskie Bloto (N Poland) and Puscizna Mala (S Poland). All sites have been subjected to multiproxy studies aimed at reconstructing paleoenvironment and human activity, covering the last 1500, 1300 and 1800 years, respectively (De Vleeschouwer et al. 2009A, 2009B, in prep., Fialkiewicz-Koziel, ongoing PhD). A detailed comparison between 210Pb and post-bomb 14C results in the Misten bog has also been carried out by Piotrowska et al. (2009). In all cores, the 210Pb activity was calculated using 210Po and 208Po activities after acid-extraction from bulk samples, subsequent deposition on silver discs and measurements by alpha spectrometry. Unsupported 210Pb was detected until 35cm in Slowinskie Bloto, 15cm in the Misten and 19cm in Puscizna Mala. Constant Rate of Supply (CRS) model was then applied to compute ages of each 1-cm core interval. For the Misten and Slowinskie Bloto, radiocarbon measurements were performed on selected aboveground plant macrofossils, mainly Sphagnum spp. or Calluna vulgaris, Erica tetralix, and Andromeda polyfolia. Radiocarbon ages were determined using accelerator mass spectrometry (AMS) after acid-alkali-acid wash, combustion, purification of carbon dioxide and graphitisation. For Puscizna Mala bulk samples were dated after chemical preparation of benzene for liquid scintillation counting (LSC) or CO2 for gas proportional counting (GPC). Radiocarbon calibration was undertaken using the Intcal04 calibration curve and OxCal 4 software. As a priori information the 210Pb-derived ages were used in a P_Sequence model (Bronk Ramsey, 2008). A number of dates characterized by low agreement with stratigraphical order had to be considered as outliers and rejected from the final age model. For building a continuous age models a non-linear approach

  14. Absolute calibration of the Greenland time scale: implications for Antarctic time scales and for Δ 14C

    NASA Astrophysics Data System (ADS)

    Shackleton, N. J.; Fairbanks, R. G.; Chiu, Tzu-chien; Parrenin, F.

    2004-07-01

    We propose a new age scale for the two ice cores (GRIP and GISP2) that were drilled at Greenland summit, based on accelerator mass spectrometry 14C dating of foraminifera in core MD95-2042 (Paleoceanography 15 (2000) 565), calibrated by means of recently obtained paired 14C and 230Th measurements on pristine corals (Marine radiocarbon calibration curve spanning 10,500 to 50,000 years BP (thousand years before present) Based on paired 230Th/ 234U/ 238U and 14C dates on Pristine Corals Geological Society of America Bulletin, 2003, submitted for publication). The record of core MD95-2042 can be correlated very precisely to the Greenland ice cores. Between 30 and 40 ka BP our scale is 1.4 ka older than the GRIP SS09sea time scale (Journal of Quaternary Science 16 (2001) 299). At the older end of Marine Isotope Stage 3 we use published 230Th dates from speleothems to calibrate the record. Using this scale we show a Δ 14C record that is broadly consistent with the modelled record (Earth Planet. Sci. Lett. 200 (2002) 177) and with the data of Hughen et al. (Science 303 (2004) 202), but not consistent with the high values obtained by Beck et al. (Science 292 (2001) 2453) or by Voelker et al. (Radiocarbon 40 (1998) 517). We show how a set of age scales for the Antarctic ice cores can be derived that are both fully consistent with the Greenland scale, and glaciologically reasonable.

  15. Using the Suess effect on the stable carbon isotope to distinguish the future from the past in radiocarbon

    NASA Astrophysics Data System (ADS)

    Köhler, Peter

    2016-12-01

    The depletion of 14C due to the emission of radiocarbon-free fossil fuels (14C Suess effect) might lead to similar values in future and past radiocarbon signatures potentially introducing ambiguity in dating. I here test if a similar impact on the stable carbon isotope via the 13C Suess effect might help to distinguish between ancient and future carbon sources. To analyze a wide range of possibilities, I add to future emission scenarios carbon dioxide reduction (CDR) mechanisms, which partly enhance the depletion of atmospheric {{{Δ }}}14{{C}} already caused by the 14C Suess effect. The 13C Suess effect leads to unprecedented depletion in {δ }13{{C}} shifting the carbon cycle to a phase space in {{{Δ }}}14{{C}}{--}{δ }13{{C}}, in which the system has not been during the last 50 000 years and therefore the similarity in past and future {{{Δ }}}14{{C}} (the ambiguity in 14C dating) induced by fossil fuels can in most cases be overcome by analyzing 13C. Only for slow changing reservoirs (e.g. deep Indo-Pacific Ocean) or when CDR scenarios are dominated by bioenergy with capture and storage the effect of anthropogenic activities on 13C does not unequivocally identify between past and future carbon cycle changes.

  16. Solar activity around AD 775 from aurorae and radiocarbon

    NASA Astrophysics Data System (ADS)

    Neuhäuser, R.; Neuhäuser, D. L.

    2015-04-01

    A large variation in 14C around AD 775 has been considered to be caused by one or more solar super-flares within one year. We critically review all known aurora reports from Europe as well as the Near, Middle, and Far East from AD 731 to 825 and find 39 likely true aurorae plus four more potential aurorae and 24 other reports about halos, meteors, thunderstorms etc., which were previously misinterpreted as aurorae or misdated; we assign probabilities for all events according to five aurora criteria. We find very likely true aurorae in AD 743, 745, 762, 765, 772, 773, 793, 796, 807, and 817. There were two aurorae in the early 770s observed near Amida (now Diyarbak\\i r in Turkey near the Turkish-Syrian border), which were not only red, but also green-yellow - being at a relatively low geomagnetic latitude, they indicate a relatively strong solar storm. However, it cannot be argued that those aurorae (geomagnetic latitude 43 to 50°, considering five different reconstructions of the geomagnetic pole) could be connected to one or more solar super-flares causing the 14C increase around AD 775: There are several reports about low- to mid-latitude aurorae at 32 to 44° geomagnetic latitude in China and Iraq; some of them were likely observed (quasi-)simultaneously in two of three areas (Europe, Byzantium/Arabia, East Asia), one lasted several nights, and some indicate a particularly strong geomagnetic storm (red colour and dynamics), namely in AD 745, 762, 793, 807, and 817 - always without 14C peaks. We use 39 likely true aurorae as well as historic reports about sunspots together with the radiocarbon content from tree rings to reconstruct the solar activity: From AD {˜ 733} to {˜ 823}, we see at least nine Schwabe cycles; instead of one of those cycles, there could be two short, weak cycles - reflecting the rapid increase to a high 14C level since AD 775, which lies at the end of a strong cycle. In order to show the end of the dearth of naked-eye sunspots, we

  17. Authentication of Chinese vintage liquors using bomb-pulse 14C

    NASA Astrophysics Data System (ADS)

    Cheng, Peng; Zhou, Weijian; Burr, G. S.; Fu, Yunchong; Fan, Yukun; Wu, Shugang

    2016-12-01

    The older a bottle of Chinese vintage liquor is, the higher the price it commands. Driven by the potential for higher profits, some newly-founded distilleries openly sell liquor whose storage ages are exaggerated. In China, the market for vintage liquor has become fraught with uncertainty and a pressing need has arisen to establish an effective method to authenticate the age of vintage liquors. A radiocarbon (14C) dating method is described here that can verify cellar-stored years of Chinese liquors distilled within the last fifty years. Two different flavored Chinese liquors produced in “the golden triangular region” in the Upper Yangtze River region in southwest China, with known cellar-stored years, were analyzed to benchmark the technique. Strong flavored liquors are found to be consistent with local atmospheric Δ14C values. A small offset of 2-3 years between predicted vintage years of soy-sauce flavored liquors and strong flavored liquors is found to be associated with the fermentation cycle of certain varieties. The technique can measure cellar-stored years of a wide range of liquors including those with fundamentally different aromas. This demonstrates the strength of our method in identifying suspect Chinese vintage liquors.

  18. Authentication of Chinese vintage liquors using bomb-pulse 14C

    PubMed Central

    Cheng, Peng; Zhou, Weijian; Burr, G. S.; Fu, Yunchong; Fan, Yukun; Wu, Shugang

    2016-01-01

    The older a bottle of Chinese vintage liquor is, the higher the price it commands. Driven by the potential for higher profits, some newly-founded distilleries openly sell liquor whose storage ages are exaggerated. In China, the market for vintage liquor has become fraught with uncertainty and a pressing need has arisen to establish an effective method to authenticate the age of vintage liquors. A radiocarbon (14C) dating method is described here that can verify cellar-stored years of Chinese liquors distilled within the last fifty years. Two different flavored Chinese liquors produced in “the golden triangular region” in the Upper Yangtze River region in southwest China, with known cellar-stored years, were analyzed to benchmark the technique. Strong flavored liquors are found to be consistent with local atmospheric Δ14C values. A small offset of 2–3 years between predicted vintage years of soy-sauce flavored liquors and strong flavored liquors is found to be associated with the fermentation cycle of certain varieties. The technique can measure cellar-stored years of a wide range of liquors including those with fundamentally different aromas. This demonstrates the strength of our method in identifying suspect Chinese vintage liquors. PMID:27922117

  19. Authentication of Chinese vintage liquors using bomb-pulse (14)C.

    PubMed

    Cheng, Peng; Zhou, Weijian; Burr, G S; Fu, Yunchong; Fan, Yukun; Wu, Shugang

    2016-12-06

    The older a bottle of Chinese vintage liquor is, the higher the price it commands. Driven by the potential for higher profits, some newly-founded distilleries openly sell liquor whose storage ages are exaggerated. In China, the market for vintage liquor has become fraught with uncertainty and a pressing need has arisen to establish an effective method to authenticate the age of vintage liquors. A radiocarbon ((14)C) dating method is described here that can verify cellar-stored years of Chinese liquors distilled within the last fifty years. Two different flavored Chinese liquors produced in "the golden triangular region" in the Upper Yangtze River region in southwest China, with known cellar-stored years, were analyzed to benchmark the technique. Strong flavored liquors are found to be consistent with local atmospheric Δ(14)C values. A small offset of 2-3 years between predicted vintage years of soy-sauce flavored liquors and strong flavored liquors is found to be associated with the fermentation cycle of certain varieties. The technique can measure cellar-stored years of a wide range of liquors including those with fundamentally different aromas. This demonstrates the strength of our method in identifying suspect Chinese vintage liquors.

  20. Penetrative and dislodgeable residue characteristics of 14C-insecticides in apple fruit.

    PubMed

    Mota-Sanchez, David; Cregg, Bert; Hoffmann, Eric; Flore, James; Wise, John C

    2012-03-28

    Infinite- and finite-dose laboratory experiments were used to study the penetrative and dislodgeable residue characteristics of (14)C-insecticides in apple fruit. The differences in dislodgeable and penetrated residues of three radiolabeled insecticides ((14)C-thiamethoxam, (14)C-thiacloprid, and (14)C-indoxacarb), applied in aqueous solution with commercial formulations, were determined after water and methanol wash extractions. The rate of sorption and extent of penetration into the fruit cuticles and hypanthium of two apple cultivars were measured after 1, 6, and 24 h of treatment exposure, using radioactivity quantification methods. For all three compounds, 97% or more of the treatment solutions were found on the fruit surface as some form of non-sorbed residues. For indoxacarb, sorption into the epicuticle was rapid but desorption into the fruit hypanthium was delayed, indicative of a lipophilic penetration pathway. For the neonicotinoids, initial cuticular penetration was slower but with no such delay in desorption into the hypanthium.

  1. Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating

    SciTech Connect

    Eglinton, T.I.; Aluwihare, L.I.; McNichol, A.P.; Bauer, J.E.; Druffel, E.R.M.

    1996-03-01

    This paper describes the application of a novel, practical approach for isolation of individual compounds from complex organic matrices for natural abundance radiocarbon measurement. This is achieved through the use of automated pereparative capillary gas chromatography (PCGC) to separate and recover sufficient quantities of individual target compounds for {sup 14}C analysis by accelerator mass spectrometry (AMS). We developed and tested this approach using a suite of samples (plant lipids, petroleums) whose ages spanned the {sup 14}C time scale and which contained a variety of compound types (fatty acids, sterols, hydrocarbons). Comparison of individual compound and bulk radiocarbon signatures for the isotopically homogeneous samples studied revealed that {Delta}{sup 14}C values generally agreed well ({+-}10%). Background contamination was assessed at each stage of the isolation procedure, and incomplete solvent removal prior to combustion was the only significant source of additional carbon. Isotope fractionation was addressed through compound-specific stable carbon isotopic analyses. Fractionation of isotopes during isolation of individual compounds was minimal (<5% for {delta}{sup 13}C), provided the entire peak was collected during PCGC. Trapping of partially coeluting peaks did cause errors, and these results highlight the importance of conducting stable carbon isotopic measurements of each trapped compound in concert with AMS for reliable radiocarbon measurements. 29 refs., 9 figs., 2 tabs.

  2. Radiocarbon source apportionment of urban and wildfire black and organic carbon aerosols

    NASA Astrophysics Data System (ADS)

    Mouteva, G.; Fahrni, S. M.; Santos, G.; Randerson, J. T.; Czimczik, C. I.

    2013-12-01

    Fossil and non-fossil sources of black carbon (BC) and organic carbon (OC) in carbonaceous aerosols can be quantified unambiguously by radiocarbon (14C) measurements. However, accurate 14C-based source apportionment requires a clear and reproducible physical separation of OC and BC, as well as minimal sample contaminations with non-sample carbon. To achieve a clear separation, we used a thermo-optical aerosol analyzer (Sunset Laboratory Inc, USA) with a newly established protocol (Swiss_4S protocol, Zhang et al., 2012), specifically optimized to completely separate the OC and BC fractions with minimal charring and maximum BC recovery. A simple and efficient vacuum line was coupled to the analyzer to trap produced CO2 with high yields and low carbon blanks. Upon trapping, CO2 samples sealed into glass ampoules were converted to graphite and measured for their radiocarbon content at the Keck Carbon Cycle Accelerator Mass Spectrometry Laboratory at the University of California, Irvine. Here, we present the results from the radiocarbon analysis of a set of 14C reference materials, blanks and inter-comparison samples for both OC and BC with sample sizes as small as 5 μg C. We will also present initial results from a set of urban aerosol samples from Salt Lake City, collected throughout 2012 and 2013, and from interior Alaska, collected during the summer of 2013 near the Stuart Creek 2 wildfire.

  3. A shell-derived time history of bomb {sup 14}C on Georges Bank and its Labrador Sea implications

    SciTech Connect

    Weidman, C.R.; Jones, G.A.

    1993-08-15

    Bomb-produced radiocarbon has been used in the past as an important tracer of ocean circulation and as a valuable tool for calculating CO{sub 2} air-sea exchange. However, previous studies of the ocean`s time-varying bomb {sup 14}C record have been confined exclusively to analyzing banded corals, and thus their application has been limited to the lower latitudes. The first time history of bomb {sup 14}C from the high-latitude North Atlantic Ocean is obtained from a 54-year-old mollusc specimen, (Bivalvia) Arctica islandica, which was collected live from Georges Bank (41{degrees}N) in 1990. The annual growth bands of its shell were analyzed for {Delta}{sup 14}C using accelerator mass spectrometry, producing a {Delta}{sup 14}C time history from 1939 to 1990. The depleted condition of the Georges Bank bomb {sup 14}C signal relative to two coral-derived North Atlantic {Delta}{sup 14}C time histories suggests a significant deepwater source for the waters on Georges Bank. Supported by previous work linking the origin of waters on Georges Bank to the Labrador Sea, the {Delta}{sup 14}C budget on Georges Bank is modeled as Labrador Sea water, which largely becomes confined to the shelf and partially equilibrates with the atmosphere during a 1-year transit time from the Labrador Sea to Georges Bank. This model is also used to estimate a time history of bomb {sup 14}C for the Labrador Sea. Prebomb {Delta}{sup 14}C values calculated for the surface Labrador Sea suggest that a greater inventory of bomb {sup 14}C has accumulated here than has previously been reported. Deduced variations in the ventilation and/or {sup 14}CO{sub 2} uptake rates in the Labrador Sea correspond with observed changes in surface salinity of the Labrador Sea, suggesting a reduction in deepwater formation during the late 1960s and 1970s. 59 refs., 11 figs., 2 tabs.

  4. Preliminary Studies of the Radiocarbon Reservoir Effects in Lake Qinghai (china) Sediments and Their Relationship to Improved Geochronology of Lake Qinghai.

    NASA Astrophysics Data System (ADS)

    Jull, A. T.; Burr, G. S.; Dettman, D. L.; Zhou, W.; An, Z.; Cheng, L.

    2007-12-01

    A key part of any paleoclimatic reconstruction based on lake sediments is establishment of a firm geochronology for the cores. In order to determine the geochronological problems which might confront the Lake Qinghai project, we have undertaken a pilot study, to investigate the 14C reservoir effects in some cores already collected. Past studies have anticipated some of the potential concerns with radiocarbon dating of the lake sediments. Preliminary sediment trap studies were carried out in 1989 by the Institute for Saltwater Lake Studies (Xining) at a site near the Fishery village on the south shore of the lake, by Kelts et al., (1989). Subsequent studies (Henderson, 2004; Shen et al., 2005) indicated there are substantial apparent reservoir effects - with discordances between carbonate and organic material from the same horizons. A modern water sample collected by Jull (2003) also indicated there could be an input of old carbon. It appears there may be "old" carbon inputs to either the dissolved organic carbon (DOC) or dissolved inorganic carbon (DIC). Particulate matter has not been studied, and this also needs to be quantified. Jull (2003) also established that the surface water sample DIC was approximately 111 pMC in October 2003, which implies a residence time of DIC of about 10 years. Recently, Yu et al. (2007) proposed a two-box model to explain the reservoir ages observed previously of ~1100 14C yr BP (derived from Henderson, 2004) and Shen Ji et al (2003) arrived a similar average value of 1039 14C yr BP. We have therefore undertaken a fresh study, using recently-collected short cores, to compare the radiocarbon reservoir effects in organic and inorganic fractions. Our results indicate that there is a variable component to the reservoir effect, suggesting that inputs to the lake are an important contribution to these effects. Better understanding of these effects is vital to an accurate geochronology of Lake Qinghai sediments.

  5. Effects of dietary nonspecific nitrogen on (/sup 14/C)glutamate and (/sup 14/C)proline incorporation into bone proteins in chicks

    SciTech Connect

    Rogler, J.C.; de Moraes, G.H.; Elkin, R.G.

    1988-06-01

    The incorporation of (/sup 14/C)glutamic acid into EDTA-soluble and -insoluble calvaria protein in vitro and (/sup 14/C)proline into EDTA-insoluble femur protein in vivo was determined in chicks fed inadequate and adequate levels of nonspecific nitrogen (glutamic acid). In each instance, the amount of amino acid incorporated into bone protein was reduced by the low level of nonspecific nitrogen. It was concluded that the high incidence of leg abnormalities observed in chicks fed purified diets containing adequate levels of indispensable amino acids but lacking in total nitrogen might be associated with an inability to form bone matrix protein.

  6. Radiocarbon chronology of the late-glacial Puerto Bandera moraines, Southern Patagonian Icefield, Argentina

    NASA Astrophysics Data System (ADS)

    Strelin, J. A.; Denton, G. H.; Vandergoes, M. J.; Ninnemann, U. S.; Putnam, A. E.

    2011-09-01

    We report radiocarbon dates that constrain the timing of the deposition of the late-glacial Puerto Bandera moraine system alongside the western reaches of Lago Argentino adjacent to the Southern Patagonian Icefield. Close maximum-limiting radiocarbon ages ( n = 11) for glacier advance into the outer moraines, with a mean value of 11,100 ± 60 14C yrs BP (12,990 ± 80 cal yrs BP), were obtained from wood in deformation (soft) till exposed beneath flow and lodgment till in Bahía del Quemado on the northeast side of Brazo Norte (North Branch) of western Lago Argentino. Other exposures of this basal deformation till in Bahía del Quemado reveal incorporated clasts of peat, along with larger inclusions of deformed glaciofluvial and lacustrine deposits. Radiocarbon dates of wood included in these reworked peat clasts range from 11,450 ± 45 14C yrs BP to 13,450 ± 150 14C yrs BP (13,315 ± 60 to 16,440 ± 340 cal yrs BP). The implication is that, during this interval, glacier fronts were situated inboard of the Puerto Bandera moraines, with the peat clasts and larger proglacial deposits being eroded and then included in the basal till during the Puerto Bandera advance. Minimum-limiting radiocarbon ages for ice retreat come from basal peat in cores sampled in spillways and depressions generated during abandonment of the Puerto Bandera moraines. Glacier recession and subsequent plant colonization were initiated close behind different frontal sectors of these moraines prior to: 10,750 ± 75 14C yrs BP (12,660 ± 70 cal yrs BP) east of Brazo Rico, 10,550 ± 55 14C yrs BP (12,490 ± 80 cal yrs BP) in Peninsula Avellaneda, and 10,400 ± 50 14C yrs BP (12,280 ± 110 cal yrs BP) in Bahía Catalana. In addition, a radiocarbon date indicates that by 10,350 ± 45 14C yrs BP (12,220 ± 110 cal yrs BP), the Brazo Norte lobe (or former Upsala Glacier) had receded well up the northern branch of Lago Argentino, to a position behind the Herminita moraines. Furthermore, glacier termini

  7. 14C-based Source Apportionment of Carbonaceous Aerosols in Switzerland for 2008 - 2012

    NASA Astrophysics Data System (ADS)

    Zotter, Peter; Ciobanu, Gabriela; Zhang, Yanlin; El-Haddad, Imad; Szidat, Sönke; Wacker, Lukas; Baltensperger, Urs; Prévôt, André

    2013-04-01

    Carbonaceous particles (total carbon, TC) are a major fraction of the fine aerosol and affect climate and human health. TC is classified into the sub-fractions elemental carbon (EC) and organic carbon (OC). EC originates only from fossil fuel combustion and biomass burning. OC can be emitted directly as primary organic aerosol from biogenic emissions, wood burning and fossil fuel combustion or can be formed in-situ in the atmosphere (secondary organic aerosol) (Szidat et al. 2006). Radiocarbon (14C) analysis is a direct and quantitative tool for distinguishing fossil and non-fossil sources, since 14C in fossil fuels is completely depleted whereas other sources have a contemporary 14C level. This study presents source apportionment results from the winter season over a time period of 5 years (2007/2008-2011/2012) using 14C measurements on aerosol filters collected simultaneously at 16 air quality monitoring stations across Switzerland. For every year 5 winter smog episode days were selected from which filters from all stations were analyzed. To resolve a good spatial variability 11 stations north and 5 stations south of the Alps were selected. This 14C data set is unique around the world concerning the number of analyzed filters and the duration. The filter sampling was conducted using high volume samplers with PM10 inlets and a time resolution of 24h. Separation of OC and EC was carried out using the THEODORE system (Szidat et al. 2004) and a Sunset EC/OC analyzer (Zhang et al. 2012), respectively. The resulting CO2 was cryo-trapped and sealed in glass ampoules for 14C measurements, performed with the Mini Carbon Dating System MICADAS (Ruff et al. 2007) at the Swiss Federal Institute of Technology (ETH) Zürich. The results for non-fossil (NF) OC (5 year average) are 81% ± 10% for north and 85% ± 8% for south of the Alps. ECNF values range from 31% to 53% north and from 36% to 66% south of the Alps. Both, the OCNF and ECNF show higher values south of the Alps

  8. Dating the undatable: novel techniques for 14C dating of sub-ice shelf Antarctic sediments near the Larsen C ice shelf

    NASA Astrophysics Data System (ADS)

    Subt, C.; Yoon, H. I.; Yoo, K. C.; Lee, J. I.; Leventer, A.; Domack, E. W.; Rosenheim, B. E.

    2016-12-01

    Sub-ice shelf sediments proximal to the grounding line of the Larsen C ice shelf show fine-scale rhythmic laminations that could provide a near-continuous seasonal resolution record of regional ice mass changes. Despite the great potential of these sediments, a good Late Quaternary chronology is difficult to achieve. As with many marginal Antarctic sediments, in the absence of preserved carboniferous microfossils, the reliability of radiocarbon chronologies is often questioned. Bulk acid insoluble organic (AIO) 14C dating has been used frequently as a result, but works best where high productivity and sedimentation rates reign, and not too well in condensed sequences where high proportions of detritus are present. Ramped PyrOx 14C dating has progressively been shown to improve upon bulk AIO 14C dates and chronologies, and even match the accuracy afforded by carbonate 14C dating, through thermochemical degradation of organic components within a given sample. But what of highly detrital sediments such as subglacial sediments near the Larsen C ice shelf, where the proportion of contemporaneously deposited material is too small for a radiocarbon date fully separated from other detrital components? We present two novel modifications of the Ramped PyrOx 14C approach that can be applied to such sediments to maximize accuracy while minimizing the cost in uncertainty from utilizing ultra-small fractions of the highly detrital bulk sample. By applying these techniques, we can now generate chronologies for cores that would otherwise go undated and push the limits of radiocarbon dating to regions and core depth intervals where large amounts of ancient detritus overwrite the age of the autochthonous material. With a wider use of these techniques, the limitations of constraining chronologies will be lessened, enabling more coordinated a priori coring efforts to constrain regional glacial responses to rapid warming.

  9. Preparation, Characterization, and Microbial Degradation of Specifically Radiolabeled [14C]Lignocelluloses from Marine and Freshwater Macrophytes †

    PubMed Central

    Benner, Ronald; Maccubbin, A. E.; Hodson, Robert E.

    1984-01-01

    Specifically radiolabeled [14C-lignin]lignocelluloses were prepared from the aquatic macrophytes Spartina alterniflora, Juncus roemerianus, Rhizophora mangle, and Carex walteriana by using [14C]phenylalanine, [14C]tyrosine, and [14C]cinnamic acid as precursors. Specifically radiolabeled [14C-polysaccharide]lignocelluloses were prepared by using [14C]glucose as precursor. The rates of microbial degradation varied among [14C-lignin]lignocelluloses labeled with different lignin precursors within the same plant species. To determine the causes of these differential rates, [14C-lignin]lignocelluloses were thoroughly characterized for the distribution of radioactivity in nonlignin contaminants and within the lignin macromolecule. In herbaceous plants, significant amounts (8 to 24%) of radioactivity from [14C]phenylalanine and [14C]tyrosine were found associated with protein, although very little (3%) radioactivity from [14C]cinnamic acid was associated with protein. Microbial degradation of radiolabeled protein resulted in overestimation of lignin degradation rates in lignocelluloses derived from herbaceous aquatic plants. Other differences in degradation rates among [14C-lignin]lignocelluloses from the same plant species were attributable to differences in the amount of label being associated with ester-linked subunits of peripheral lignin. After acid hydrolysis of [14C-polysaccharide]lignocelluloses, radioactivity was detected in several sugars, although most of the radioactivity was distributed between glucose and xylose. After 576 h of incubation with salt marsh sediments, 38% of the polysaccharide component and between 6 and 16% of the lignin component (depending on the precursor) of J. roemerianus lignocellulose was mineralized to 14CO2; during the same incubation period, 30% of the polysaccharide component and between 12 and 18% of the lignin component of S. alterniflora lignocellulose was mineralized. PMID:16346477

  10. A simplified approach to calibrating [sup 14]C dates

    SciTech Connect

    Talma, A.S.; Vogel, J.C. )

    1993-01-01

    The authors propose a simplified approach to the calibration of radiocarbon dates. They use splines through the tree-ring data as calibration curves, thereby eliminating a large part of the statistical scatter of the actual data points. To express the age range, they transform the [plus minus]1 [sigma] and [plus minus]2 [sigma] values of the BP age to calendar dates and interpret them as the 68% and 95% confidence intervals. This approach by-passes the conceptual problems of the transfer of individual probability values from the radiocarbon to the calendar age. They have adapted software to make this calibration possible.

  11. Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon pool

    PubMed Central

    Ronge, T. A.; Tiedemann, R.; Lamy, F.; Köhler, P.; Alloway, B. V.; De Pol-Holz, R.; Pahnke, K.; Southon, J.; Wacker, L.

    2016-01-01

    During the last deglaciation, the opposing patterns of atmospheric CO2 and radiocarbon activities (Δ14C) suggest the release of 14C-depleted CO2 from old carbon reservoirs. Although evidences point to the deep Pacific as a major reservoir of this 14C-depleted carbon, its extent and evolution still need to be constrained. Here we use sediment cores retrieved along a South Pacific transect to reconstruct the spatio-temporal evolution of Δ14C over the last 30,000 years. In ∼2,500–3,600 m water depth, we find 14C-depleted deep waters with a maximum glacial offset to atmospheric 14C (ΔΔ14C=−1,000‰). Using a box model, we test the hypothesis that these low values might have been caused by an interaction of aging and hydrothermal CO2 influx. We observe a rejuvenation of circumpolar deep waters synchronous and potentially contributing to the initial deglacial rise in atmospheric CO2. These findings constrain parts of the glacial carbon pool to the deep South Pacific. PMID:27157845

  12. Linked changes in marine dissolved organic carbon molecular size and radiocarbon age

    NASA Astrophysics Data System (ADS)

    Walker, B. D.; Primeau, F. W.; Beaupré, S. R.; Guilderson, T. P.; Druffel, E. R. M.; McCarthy, M. D.

    2016-10-01

    Marine dissolved organic carbon (DOC) is a major global carbon reservoir, yet its cycling remains poorly understood. Previous work suggests that DOC molecular size and chemical composition can significantly affect its bioavailability. Thus, DOC size and composition may control DOC cycling and radiocarbon age (via Δ14C). Here we show that DOC molecular size is correlated to DOC Δ14C in the Pacific Ocean. Our results, based on a series of increasing molecular size fractions from three depths in the Pacific, show increasing DOC Δ14C with increasing molecular size. We use a size-age distribution model to predict the DOC and Δ14C of ultrafiltered DOC. The model predicts both large and small surface DOC with high Δ14C and a narrow range (200-500 Da) of low Δ14C DOC. Deep model offsets suggest different size distributions and/or Δ14C sources at 670-915 m. Our results suggest that molecular size and composition are linked to DOC reactivity and storage in the ocean.

  13. Increase of radiocarbon concentration in tree rings from Kujawy (SE Poland) around AD 774-775

    NASA Astrophysics Data System (ADS)

    Rakowski, Andrzej Z.; Krąpiec, Marek; Huels, Mathias; Pawlyta, Jacek; Dreves, Alexander; Meadows, John

    2015-10-01

    Evidence of a rapid increase in atmospheric radiocarbon (14C) content in AD 774-775 was presented by Miyake et al. (2012), who observed an increase of about 12‰ in the 14C content in annual tree rings from Japanese cedar. Usoskin et al. (2013) report a similar 14C spike in German oak, and attribute it to exceptional solar activity. If this phenomenon is global in character, such rapid changes in 14C concentration may affect the accuracy of calibrated dates, as the existing calibration curve is composed mainly of decadal samples. Single-year samples of dendro-chronologically dated tree rings of deciduous oak (Quercus robur) from Kujawy, a village near Krakow (SE Poland), spanning the years AD 765-796, were collected and their 14C content was measured using the AMS system in the Leibniz Laboratory. The results clearly show a rapid increase of 9.2 ± 2.1‰ in the 14C concentration in tree rings between AD 774 and AD 775, with maximum Δ14C = 4.1 ± 2.3‰ noted in AD 776.

  14. Low-Charge State AMS for High Throughput 14C Quantification

    SciTech Connect

    Ognibene, T.J.; Roberts, M.L.; Southon, J.R.; Vogel, J.S.

    2000-06-16

    Accelerator mass spectrometry (AMS) quantifies attomole (10{sup -18}) amounts of {sup 14}C in milligram sized samples. This sensitivity is used to trace nutrients, toxins and therapeutics in humans and animals at less than {micro}g/kg doses containing 1-100 nCi of {sup 14}C. Widespread use of AMS in pharmaceutical development and biochemical science has been hampered by the size and expense of the typical spectrometer that has been developed for high precision radiocarbon dating. The precision of AMS can be relaxed for biochemical tracing, but sensitivity, accuracy and throughput are important properties that must be maintained in spectrometers designed for routine quantification. We are completing installation of a spectrometer that will maintain the high throughput of our primary spectrometer but which requires less than 20% of the floor space and of the cost. Sensitivity and throughput are kept high by using the LLNL intense cesium sputter ion source with solid graphitic samples. Resultant space-charge effects are minimized by careful modeling to find optimal ion transport in the spectrometer. A long charge-changing ''stripper gas'' volume removes molecular isobars at potentials of a few hundred kiloVolts, reducing the size of the accelerating component. Fast ion detectors count at high rates to keep a wide dynamic range for 14 C concentrations. Solid sample presentation eliminates the sample cross contamination that degrades accuracy and the effects of ''memory'' in the ion source. Automated processes are under development for conversion of liquid and solid biological samples to the preferred graphitic form for the ion source.

  15. Concentrations and 14C age of nonstructural carbon in California oaks

    NASA Astrophysics Data System (ADS)

    Czimczik, C. I.; Druffel-Rodriguez, K.; Trumbore, S. E.

    2008-12-01

    Plants store photosynthetic assimilates as nonstructural carbon (NSC), mainly glucose, fructose, sucrose, and starch. NSC fuels processes such as respiration and growth. Research suggests that NSC represents a significant fraction of a plant's annual C budget, but temporal dynamics of NSC are poorly understood. We used concentration and radiocarbon (14C) measurements of NSC to investigate how temporal dynamics of NSC vary with life strategy and throughout a species' range. In Mediterranean environments, oaks have developed two strategies (evergreen and deciduous) to cope with drought. Within California, the uncertainty of annual winter rain increases from north to south. We compared two evergreen and deciduous species: Coastal and Interior live oak (Quercus agrifolia and wislizenii) and Valley and Blue oak (Q. lobata and douglasii). Samples (4 mm cores to 20 cm depth at dbh) were taken in 2008 before leaf-out and fall at five sites which represent an inland to coast temperature gradient from high to low summer temperatures as well as a north- south precipitation gradient. Sugars were isolated by shaking in methanol-water and quantified using a spectrometric micro-plate technique. Starch was isolated by boiling in ethanol followed by HCl digestion and quantified manometrically. 14C contents were measured by AMS. Preliminary findings indicate that in live oaks, winter sugar concentrations are constant throughout the tree and across sites, while 14C concentrations increase towards a tree's center. This suggests that the NSC pool oaks is not well mixed. Future work will elucidate whether plants can access these older NSC stores.

  16. AMS radiocarbon dating of mortar: The case study of the medieval UNESCO site of Modena

    NASA Astrophysics Data System (ADS)

    Carmine, Lubritto; Caroselli, Marta; Lugli, Stefano; Marzaioli, Fabio; Nonni, Sara; Marchetti Dori, S.; Terrasi, Filippo

    2015-10-01

    The carbon dioxide contributing to binder formation during the set of a lime mortar reflects the atmospheric 14C content at the time of construction of a building. For this reason, the 14C dating of mortars is used with increasing frequencies in archaeological and architectural research. Mortars, however, may also contain carbonaceous contaminants potentially affecting radiocarbon dating. The Centre for Isotopic Research on Cultural and Environmental heritage (CIRCE) of the Second University of Naples (SUN) has recently obtained some promising results in mortar radiocarbon dating thanks to the development of a procedure (i.e. CryoSoniC/Cryo2SoniC) aiming to eliminate exogenous C contamination that may occur in a mortar. The construction history of the UNESCO World Heritage Site of Modena (Italy) is still controversial and represents a challenging case study for the application of absolute dating methodologies for different reasons. From the point of view of 14C dating, for example, given the high percentage of carbonate aggregates composing these samples, Modena mortars represent an experimental test particularly indicative of exogenous carbon sources suppression ensuring methodology accuracy. In this paper several AMS Radiocarbon dates were carried out on lime lumps with the aim to: (i) verify procedure accuracy by a comparison of the results obtainable from lime lumps dated after different treatments (i.e. bulk lime lumps vs. CryoSoniC purified lime lumps); (ii) compare different building phases absolute chronology for the medieval UNESCO site of Modena, with that assumed by historical sources in order to assess preliminary the 14C dating feasibility for of the site. Historical temporal constraints and mortar clustering, based on petrography, have been applied to define a temporal framework of the analyzed structure. Moreover, a detailed petrographic characterization of mortars was used both as a preliminary tool for the choice of samples and to infer about the

  17. Radiocarbon analysis of stratospheric CO2 retrieved from AirCore sampling

    NASA Astrophysics Data System (ADS)

    Paul, Dipayan; Chen, Huilin; Been, Henk A.; Kivi, Rigel; Meijer, Harro A. J.

    2016-10-01

    Radiocarbon (14C) is an important atmospheric tracer and one of the many used in the understanding of the global carbon budget, which includes the greenhouse gases CO2 and CH4. Measurement of radiocarbon in atmospheric CO2 generally requires the collection of large air samples (a few liters) from which CO2 is extracted and then the concentration of radiocarbon is determined using accelerator mass spectrometry (AMS). However, the regular collection of air samples from the stratosphere, for example using aircraft and balloons, is prohibitively expensive. Here we describe radiocarbon measurements in stratospheric CO2 collected by the AirCore sampling method. AirCore is an innovative atmospheric sampling system, which comprises a long tube descending from a high altitude with one end open and the other closed, and it has been demonstrated to be a reliable, cost-effective sampling system for high-altitude profile (up to ≈ 30 km) measurements of CH4 and CO2. In Europe, AirCore measurements have been being performed on a regular basis near Sodankylä (northern Finland) since September 2013. Here we describe the analysis of samples from two such AirCore flights made there in July 2014, for determining the radiocarbon concentration in stratospheric CO2. The two AirCore profiles were collected on consecutive days. The stratospheric part of the AirCore was divided into six sections, each containing ≈ 35 µg CO2 ( ≈ 9.6 µgC), and stored in a stratospheric air subsampler constructed from 1/4 in. coiled stainless steel tubing ( ≈ 3 m). A small-volume extraction system was constructed that enabled > 99.5 % CO2 extraction from the stratospheric air samples. Additionally, a new small-volume high-efficiency graphitization system was constructed for graphitization of these extracted CO2 samples, which were measured at the Groningen AMS facility. Since the stratospheric samples were very similar in mass, reference samples were also prepared in the same mass range for

  18. A model for the formation and degradation of bound residues of the herbicide 14C-isoproturon in soil.

    PubMed

    Reuter, S; Ilim, M; Munch, J C; Andreux, F; Scheunert, I

    1999-08-01

    The humic monomer catechol was reacted with 14C-isoproturon and some of its metabolites, including 14C-4-isopropylaniline, in aqueous solution under a stream of oxygen. Only in the case of 14C-4-isopropylaniline, incorporation in oligomers, in fulvic acid-like polymers, and in humic acid-like polymers was observed. The main oligomer was identified by mass spectrometry as 4,5-bis-(4-isopropylphenylamino)-3,5-cyclohexadiene-1,2-dione. Oligomers and polymers containing bound 14C-4-isopropylaniline were subjected to biodegradation studies in a loamy agricultural soil during 55 days by quantifying 14CO2 evolved. In all cases, significant mineralization rates could be determined, which, however, were much smaller than those of free 14C-4-isoproturon and free 14C-4-isopropylaniline in the same soil.

  19. Application of Bomb Radiocarbon Chronologies to Shortfin Mako (Isurus oxyrinchus)

    SciTech Connect

    Ardizzone, D; Cailliet, G M; Natanson, L J; Andrews, A H; Kerr, L A; Brown, T A

    2007-07-16

    and the number of samples for MIA analysis was insufficient for some months. Hence, unequivocal validation of shortfin mako age estimates has yet to be accomplished. Atmospheric testing of thermonuclear devices in the 1950s and 1960s effectively doubled the natural atmospheric radiocarbon ({sup 14}C). The elevated {sup 14}C levels were first recorded in 1957-58, with a peak around 1963. As a consequence, {sup 14}C entered the ocean through gas exchange with the atmosphere at the ocean surface and in terrestrial runoff. Despite variable oceanographic conditions, a worldwide rise of the bomb {sup 14}C signal entered the ocean mixed layer as dissolved inorganic carbon (DIC) in 1957-58. The large amounts of {sup 14}C released from the bomb tests produced a signature that can be followed through time, throughout the marine food web, and into deeper waters. The marked increase of radiocarbon levels was first measured in the DIC of seawater and in biogenic marine carbonates of hermatypic corals in Florida. Subsequently, this record was documented in corals from other regions and in the thallus of rhodoliths. The accumulation of radiocarbon in the hard parts of most marine organisms in the mixed layer (such as fish otoliths and bivalves) was synchronous with the coral time-series. This technique has been used to validate age estimates and longevity of numerous bony fishes to date, as well as to establish bomb radiocarbon chronologies from different oceans. In the first application of this technique to lamnoid sharks, validated annual band-pair deposition in vertebral growth bands for the porbeagle (Lamna nasus) aged up to 26 years. Radiocarbon values from samples obtained from 15 porbeagle caught in the western North Atlantic Ocean (some of which were known-age) produced a chronology similar in magnitude to the reference carbonate chronology for that region. The observed phase shift of about 3 years was attributed to different sources of carbon between vertebrae and those for

  20. Constraining carbon sources and growth rates of freshwater microbialites in Pavilion Lake using (14)C analysis.

    PubMed

    Brady, A L; Slater, G; Laval, B; Lim, D S

    2009-12-01

    This study determined the natural abundance isotopic compositions ((13)C, (14)C) of the primary carbon pools and microbial communities associated with modern freshwater microbialites located in Pavilion Lake, British Columbia, Canada. The Delta(14)C of dissolved inorganic carbon (DIC) was constant throughout the water column and consistent with a primarily atmospheric source. Observed depletions in DIC (14)C values compared with atmospheric CO(2) indicated effects due either to DIC residence time and/or inputs of (14)C-depleted groundwater. Mass balance comparisons of local and regional groundwater indicate that groundwater DIC could contribute a maximum of 9-13% of the DIC. (14)C analysis of microbial phospholipid fatty acids from microbialite communities had Delta(14)C values comparable with lake water DIC, demonstrating that lake water DIC was their primary carbon source. Microbialite carbonate was also primarily derived from DIC. However, some depletion in microbialite carbonate (14)C relative to lake water DIC occurred, due either to residence time or mixing with a (14)C-depleted carbon source. A detrital branch covered with microbialite growth was used to estimate a microbialite growth rate of 0.05 mm year(-1) for the past 1000 years, faster than previous estimates for this system. These results demonstrate that the microbialites are actively growing and that the primary carbon source for both microbial communities and recent carbonate is DIC originating from the atmosphere. While these data cannot conclusively differentiate between abiotic and biotic formation mechanisms, the evidence for minor inputs of groundwater-derived DIC is consistent with the previously hypothesized biological origin of the Pavilion Lake microbialites.

  1. An isotopic (Δ14C, δ13C, and δ15N) investigation of particulate organic matter and zooplankton biomass in Lake Superior and across a size-gradient of aquatic systems

    NASA Astrophysics Data System (ADS)

    Zigah, P. K.; Minor, E. C.; Werne, J. P.; McCallister, S. Leigh

    2012-04-01

    Food webs in aquatic systems can be supported both by carbon from recent local primary productivity and by carbon subsidies, such as material from terrestrial ecosystems or past in situ primary productivity. The importance of these subsidies to respiration and biomass production remains a topic of debate, but they may play major roles in determining the fate of organic carbon and in sustaining upper trophic levels, including those contributing to economically important fisheries. While some studies have reported that terrigenous organic carbon supports disproportionately high zooplankton production, others have suggested that phytoplankton preferentially supports zooplankton production in aquatic ecosystems. Here we apply natural abundance radiocarbon14C) and stable isotope (δ13C, δ15N) analyses to show that zooplankton in Lake Superior selectively incorporate recently-fixed, locally-produced (autochthonous) organic carbon even though other carbon sources are readily available. Estimates from Bayesian isotopic modeling based on Δ14C values show that the average lakewide median contributions of recent in situ algal, terrestrial, sedimentary, and bacterial organic carbon to the bulk POM in Lake Superior were 23%, 28%, 15%, and 25%, respectively. However, the isotopic modeling estimates show that recent in situ production (algae) contributed a disproportionately large amount (median, 40-89%) of the carbon in zooplankton biomass in Lake Superior. Although terrigenous organic carbon and old organic carbon from resuspended sediments were significant portions of the available basal food resources, these contributed only a small amount to zooplankton biomass (average lakewide median, 2% from sedimentary organic carbon and 9% from terrigenous organic carbon). Comparison of zooplankton food sources based on their radiocarbon composition showed that terrigenous organic carbon was relatively more important in rivers and small lakes, and the proportion of terrestrially

  2. Radiocarbon dating of small terrestrial gastropod shells in North America

    USGS Publications Warehouse

    Pigati, J.S.; Rech, J.A.; Nekola, J.C.

    2010-01-01

    Fossil shells of small terrestrial gastropods are commonly preserved in wetland, alluvial, loess, and glacial deposits, as well as in sediments at many archeological sites. These shells are composed largely of aragonite (CaCO3) and potentially could be used for radiocarbon dating, but they must meet two criteria before their 14C ages can be considered to be reliable: (1) when gastropods are alive, the 14C activity of their shells must be in equilibrium with the 14C activity of the atmosphere, and (2) after burial, their shells must behave as closed systems with respect to carbon. To evaluate the first criterion, we conducted a comprehensive examination of the 14C content of the most common small terrestrial gastropods in North America, including 247 AMS measurements of modern shell material (3749 individual shells) from 46 different species. The modern gastropods that we analyzed were all collected from habitats on carbonate terrain and, therefore, the data presented here represent worst-case scenarios. In sum, ~78% of the shell aliquots that we analyzed did not contain dead carbon from limestone or other carbonate rocks even though it was readily available at all sites, 12% of the aliquots contained between 5 and 10% dead carbon, and a few (3% of the total) contained more than 10%. These results are significantly lower than the 20-30% dead carbon that has been reported previously for larger taxa living in carbonate terrain. For the second criterion, we report a case study from the American Midwest in which we analyzed fossil shells of small terrestrial gastropods (7 taxa; 18 AMS measurements; 173 individual shells) recovered from late-Pleistocene sediments. The fossil shells yielded 14C ages that were statistically indistinguishable from 14C ages of well-preserved plant macrofossils from the same stratum. Although just one site, these results suggest that small terrestrial gastropod shells may behave as closed systems with respect to carbon over geologic

  3. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb (14)C.

    PubMed

    Heinemeier, Katja Maria; Schjerling, Peter; Heinemeier, Jan; Magnusson, Stig Peter; Kjaer, Michael

    2013-05-01

    Tendons are often injured and heal poorly. Whether this is caused by a slow tissue turnover is unknown, since existing data provide diverging estimates of tendon protein half-life that range from 2 mo to 200 yr. With the purpose of determining life-long turnover of human tendon tissue, we used the (14)C bomb-pulse method. This method takes advantage of the dramatic increase in atmospheric levels of (14)C, produced by nuclear bomb tests in 1955-1963, which is reflected in all living organisms. Levels of (14)C were measured in 28 forensic samples of Achilles tendon core and 4 skeletal muscle samples (donor birth years 1945-1983) with accelerator mass spectrometry (AMS) and compared to known atmospheric levels to estimate tissue turnover. We found that Achilles tendon tissue retained levels of (14)C corresponding to atmospheric levels several decades before tissue sampling, demonstrating a very limited tissue turnover. The tendon concentrations of (14)C approximately reflected the atmospheric levels present during the first 17 yr of life, indicating that the tendon core is formed during height growth and is essentially not renewed thereafter. In contrast, (14)C levels in muscle indicated continuous turnover. Our observation provides a fundamental premise for understanding tendon function and pathology, and likely explains the poor regenerative capacity of tendon tissue.

  4. New constraints on deglacial marine radiocarbon anomalies from a depth transect near Baja California

    NASA Astrophysics Data System (ADS)

    Lindsay, Colin M.; Lehman, Scott J.; Marchitto, Thomas M.; Carriquiry, José D.; Ortiz, Joseph D.

    2016-08-01

    Previous studies have shown that radiocarbon activities (Δ14C) in the low-latitude, middepth Pacific and Indian Oceans were anomalously low during Heinrich Stadial 1 (HS1, ~17.8-14.6 ka) and the Younger Dryas (YD, ~12.8-11.5 ka), coincident with intervals of rising atmospheric CO2 concentration and declining atmospheric Δ14C. However, a full explanation of these events remains elusive due to sparse and sometimes conflicting data. Here we present new 14C measurements on benthic and planktic foraminifera that, in combination with previously published measurements, enable us to reconstruct the Δ14C depth gradient near Baja California. Vertical profiles were similar to present during the Last Glacial Maximum and Bølling/Allerod (14.6-12.8 ka) but display a pronounced middepth (~700 m) Δ14C minimum during HS1 and the YD. The latter observation, along with a comparison to other regional reconstructions, appears to rule out intermediate waters from the north or from directly below as proximate sources of aged 14C-depleted ocean carbon during deglaciation and point instead to changes in the composition of Equatorial Pacific intermediate waters. Simple mixing constraints require Equatorial Pacific intermediate waters to be only slightly lower in Δ14C than at Baja California, in contrast with previous observations of extremely low Δ14C at Galapagos Rise. While the latter may have been influenced by localized releases of geologic (14C-dead) CO2, the smaller and more widespread deglacial Δ14C anomalies in the Arabian Sea and North Pacific seem to require a source of aged carbon in the glacial deep Southern and Pacific Oceans for which there is growing evidence.

  5. Identification and synchronization of the common cosmic-ray signal in the IntCal13 14C calibration and the Greenland ice-core 10Be records

    NASA Astrophysics Data System (ADS)

    Muscheler, Raimund; Adolphi, Florian; Bronk Ramsey, Christopher; Rasmussen, Sune; Hughen, Konrad; Cooper, Alan; Turney, Chris

    2017-04-01

    The production rates of cosmogenic radionuclides (such as 10Be and 14C) are modulated by the solar and geomagnetic shielding of galactic cosmic rays. In addition, 14C and 10Be are influenced by the carbon cycle and the atmospheric transport and deposition, respectively. Isolating and identifying the common production signal allows us to synchronize ice core 10Be and tree ring 14C records during the Holocene (Adolphi and Muscheler, 2016), thereby connecting ice core climate records with 14C-dated records. Extending this comparison further back in time is challenging due to deteriorating quality of the 14C calibration record, IntCal13, (Reimer et al., 2013) and possible unidentified climate influences on the ice-core 10Be records. Nevertheless, by focusing on the most prominent production-rate features this comparison can be extended far back into the last glacial where, for example, the linkage of tree-ring based Kauri 14C data and the Greenland ice-core time scale (GICC05) suggested unresolved data and/or time scale differences around the period of the Laschamp geomagnetic field minimum at about 42000 yrs BP (Muscheler et al., 2014). Here we show that the data underlying the IntCal13 14C record and the ice-core 10Be records exhibit common variability that allows us to tentatively link the ice core GICC05 time scale to the radiocarbon time scale for almost the complete radiocarbon dating range. The observed time scale differences could be related to uncertainties in both the U/Th-based dating of the IntCal13 calibration data set and the GICC05 time scale, and we show that the two can be reconciled within the uncertainties of the ice-core layer counting. This direct comparison between IntCal13 and 10Be also suggests that the 14C differences shown in (Muscheler et al., 2014) around the Laschamp geomagnetic field minimum can be reduced by moderate adjustments to the GICC05 time scale. References: Adolphi, F., and Muscheler, R., 2016, Synchronizing the Greenland ice

  6. Appearance of circulating and tissue /sup 14/C-lipids after oral /sup 14/C-tripalmitate administration in the late pregnant rat

    SciTech Connect

    Argiles, J.; Herrera, E.

    1989-02-01

    Studies were performed to determine whether and/or how dietary lipids participate in maternal hypertriglyceridemia during late gestation in the rat. After oral administration of glycerol-tri(1-14C)-palmitate, total radioactivity in plasma increased more rapidly in 20-day pregnant rats than in either 19-day pregnant rats or virgin controls. At the peak of plasma radioactivity, four hours after the tracer was administered, most of the plasma label corresponded to 14C-lipids in triglyceride-rich lipoproteins (d less than 1.006), and when expressed per micromol of triglyceride, values were higher in pregnant than in virgin rats. The difference was less after 24 hours, although at this time the level of 14C-lipids in d less than 1.006 lipoproteins was still higher in 20-day pregnant rats than in virgins. Tissue 14C-lipids, as expressed per gram of fresh weight, were similar in pregnant and virgin rats, but the values in mammary glands were much higher in the former group. Estimated recovery of administered radioactivity four hours after tracer in total white adipose tissue, mammary glands, and plasma lipids was higher in pregnant than in virgin rats. No difference was found between 20-day pregnant and virgin rats either in the label retained in the gastrointestinal tract or in that exhaled as 14C-CO2 during the first four hours following oral administration of 14C-tripalmitate. These findings plus the known maternal hyperphagia, indicate that in the rat at late pregnancy triglyceride intestinal absorption is unchanged or even enhanced and that dietary lipids actively contribute to both maternal hypertriglyceridemia and lipid uptake by the mammary gland.

  7. Age validation of canary rockfish (Sebastes pinniger) using two independent otolith techniques: lead-radium and bomb radiocarbon dating.

    SciTech Connect

    Andrews, A H; Kerr, L A; Cailliet, G M; Brown, T A; Lundstrom, C C; Stanley, R D

    2007-11-04

    Canary rockfish (Sebastes pinniger) have long been an important part of recreational and commercial rockfish fishing from southeast Alaska to southern California, but localized stock abundances have declined considerably. Based on age estimates from otoliths and other structures, lifespan estimates vary from about 20 years to over 80 years. For the purpose of monitoring stocks, age composition is routinely estimated by counting growth zones in otoliths; however, age estimation procedures and lifespan estimates remain largely unvalidated. Typical age validation techniques have limited application for canary rockfish because they are deep dwelling and may be long lived. In this study, the unaged otolith of the pair from fish aged at the Department of Fisheries and Oceans Canada was used in one of two age validation techniques: (1) lead-radium dating and (2) bomb radiocarbon ({sup 14}C) dating. Age estimate accuracy and the validity of age estimation procedures were validated based on the results from each technique. Lead-radium dating proved successful in determining a minimum estimate of lifespan was 53 years and provided support for age estimation procedures up to about 50-60 years. These findings were further supported by {Delta}{sup 14}C data, which indicated a minimum estimate of lifespan was 44 {+-} 3 years. Both techniques validate, to differing degrees, age estimation procedures and provide support for inferring that canary rockfish can live more than 80 years.

  8. Percutaneous absorption of ( sup 14 C)DDT and ( sup 14 C)benzo(a)pyrene from soil

    SciTech Connect

    Wester, R.C.; Maibach, H.I.; Bucks, D.A.; Sedik, L.; Melendres, J.; Liao, C.; DiZio, S. )

    1990-10-01

    The objective was to determine percutaneous absorption of DDT and benzo(a)pyrene in vitro and in vivo from soil into and through skin. Soil (Yolo County 65-California-57-8; 26% sand, 26% clay, 48% silt) was passed through 10-, 20-, and 48-mesh sieves. Soil then retained by 80-mesh was mixed with (14C)-labeled chemical at 10 ppm. Acetone solutions at 10 ppm were prepared for comparative analysis. Human cadaver skin was dermatomed to 500 microns and used in glass diffusion cells with human plasma as the receptor fluid (3 ml/hr flow rate) for a 24-hr skin application time. With acetone vehicle, DDT (18.1 +/- 13.4%) readily penetrated into human skin. Significantly less DDT (1.0 +/- 0.7%) penetrated into human skin from soil. DDT would not partition from human skin into human plasma in the receptor phase (less than 0.1%). With acetone vehicle, benzo(a)pyrene (23.7 +/- 9.7%) readily penetrated into human skin. Significantly less benzo(a)pyrene (1.4 +/- 0.9%) penetrated into human skin from soil. Benzo(a)pyrene would not partition from human skin into human plasma in the receptor phase (less than 0.1%). Substantivity (skin retention) was investigated by applying 14C-labeled chemical to human skin in vitro for only 25 min. After soap and water wash, 16.7 +/- 13.2% of DDT applied in acetone remained absorbed to skin. With soil only 0.25 +/- 0.11% of DDT remained absorbed to skin. After soap and water wash 5.1 +/- 2.1% of benzo(a)pyrene applied in acetone remained absorbed to skin. With soil only 0.14 +/- 0.13% of benzo(a)pyrene remained absorbed to skin.

  9. A 14C age calibration curve for the last 60 ka: the Greenland-Hulu U/Th timescale and its impact on understanding the Middle to Upper Paleolithic transition in Western Eurasia.

    PubMed

    Weninger, Bernhard; Jöris, Olaf

    2008-11-01

    This paper combines the data sets available today for 14C-age calibration of the last 60 ka. By stepwise synchronization of paleoclimate signatures, each of these sets of 14C-ages is compared with the U/Th-dated Chinese Hulu Cave speleothem records, which shows global paleoclimate change in high temporal resolution. By this synchronization we have established an absolute-dated Greenland-Hulu chronological framework, against which global paleoclimate data can be referenced, extending the 14C-age calibration curve back to the limits of the radiocarbon method. Based on this new, U/Th-based Greenland(Hulu) chronology, we confirm that the radiocarbon timescale underestimates calendar ages by several thousand years during most of Oxygen Isotope Stage 3. Major atmospheric 14C variations are observed for the period of the Middle to Upper Paleolithic transition, which has significant implications for dating the demise of the last Neandertals. The early part of "the transition" (with 14C ages > 35.0 ka 14C BP) coincides with the Laschamp geomagnetic excursion. This period is characterized by highly-elevated atmospheric 14C levels. The following period ca. 35.0-32.5 ka 14C BP shows a series of distinct large-scale 14C age inversions and extended plateaus. In consequence, individual archaeological 14C dates older than 35.0 ka 14C BP can be age-calibrated with relatively high precision, while individual dates in the interval 35.0-32.5 ka 14C BP are subject to large systematic age-'distortions,' and chronologies based on large data sets will show apparent age-overlaps of up to ca. 5,000 cal years. Nevertheless, the observed variations in past 14C levels are not as extreme as previously proposed ("Middle to Upper Paleolithic dating anomaly"), and the new chronological framework leaves ample room for application of radiocarbon dating in the age-range 45.0-25.0 ka 14C BP at high temporal resolution.

  10. Premises and physical mechanisms to explain plateau boundaries in marine planktic 14C records as absolute age markers

    NASA Astrophysics Data System (ADS)

    Sarnthein, Michael; Grootes, Pieter M.

    2010-05-01

    resultant sedimentation rate changes to a minimum, minimizing resultant planktic reservoir ages, and monitoring strict criteria regarding realistic paired benthic reservoir ages, e.g., by testing alternative models of 14C plateau tuning. Being applied to eight cores this approach led to realistic estimates of absolute and 14C reservoir ages as well as of sedimentation rates for various key regions of the ocean. Refs.: Reimer, P. et al., 2010, Radiocarbon, 51 (4), 1111-1150. Sarnthein et al., 2007, in: A. Schmittner et al., AGU Monograph 173, 175-196.

  11. Collagen Fingerprinting: A New Screening Technique for Radiocarbon Dating Ancient Bone.

    PubMed

    Harvey, Virginia L; Egerton, Victoria M; Chamberlain, Andrew T; Manning, Phillip L; Buckley, Michael

    2016-01-01

    Collagen is the dominant organic component of bone and is intimately locked within the hydroxyapatite structure of this ubiquitous biomaterial that dominates archaeological and palaeontological assemblages. Radiocarbon analysis of extracted collagen is one of the most common approaches to dating bone from late Pleistocene or Holocene deposits, but dating is relatively expensive compared to other biochemical techniques. Numerous analytical methods have previously been investigated for the purpose of screening out samples that are unlikely to yield reliable dates including histological analysis, UV-stimulated fluorescence and, most commonly, the measurement of percentage nitrogen (%N) and ratio of carbon to nitrogen (C:N). Here we propose the use of collagen fingerprinting (also known as Zooarchaeology by Mass Spectrometry, or ZooMS, when applied to species identification) as an alternative screening method for radiocarbon dating, due to its ability to provide information on collagen presence and quality, alongside species identification. The method was tested on a series of sub-fossil bone specimens from cave systems on Cayman Brac (Cayman Islands), chosen due to the observable range in diagenetic alteration, and in particular, the extent of mineralisation. Six (14)C dates, of 18 initial attempts, were obtained from remains of extinct hutia, Capromys sp. (Rodentia; Capromyidae), recovered from five distinct caves on Cayman Brac, and ranging from 393 ± 25 to 1588 ± 26 radiocarbon years before present (yr BP). All of the bone samples that yielded radiocarbon dates generated excellent collagen fingerprints, and conversely those that gave poor fingerprints also failed dating. Additionally, two successfully fingerprinted bone samples were screened out from a set of 81. Both subsequently generated (14)C dates, demonstrating successful utilisation of ZooMS as an alternative screening mechanism to identify bone samples that are suitable for 1(4)C analysis.

  12. Collagen Fingerprinting: A New Screening Technique for Radiocarbon Dating Ancient Bone

    PubMed Central

    Harvey, Virginia L.; Egerton, Victoria M.; Chamberlain, Andrew T.; Manning, Phillip L.; Buckley, Michael

    2016-01-01

    Collagen is the dominant organic component of bone and is intimately locked within the hydroxyapatite structure of this ubiquitous biomaterial that dominates archaeological and palaeontological assemblages. Radiocarbon analysis of extracted collagen is one of the most common approaches to dating bone from late Pleistocene or Holocene deposits, but dating is relatively expensive compared to other biochemical techniques. Numerous analytical methods have previously been investigated for the purpose of screening out samples that are unlikely to yield reliable dates including histological analysis, UV-stimulated fluorescence and, most commonly, the measurement of percentage nitrogen (%N) and ratio of carbon to nitrogen (C:N). Here we propose the use of collagen fingerprinting (also known as Zooarchaeology by Mass Spectrometry, or ZooMS, when applied to species identification) as an alternative screening method for radiocarbon dating, due to its ability to provide information on collagen presence and quality, alongside species identification. The method was tested on a series of sub-fossil bone specimens from cave systems on Cayman Brac (Cayman Islands), chosen due to the observable range in diagenetic alteration, and in particular, the extent of mineralisation. Six 14C dates, of 18 initial attempts, were obtained from remains of extinct hutia, Capromys sp. (Rodentia; Capromyidae), recovered from five distinct caves on Cayman Brac, and ranging from 393 ± 25 to 1588 ± 26 radiocarbon years before present (yr BP). All of the bone samples that yielded radiocarbon dates generated excellent collagen fingerprints, and conversely those that gave poor fingerprints also failed dating. Additionally, two successfully fingerprinted bone samples were screened out from a set of 81. Both subsequently generated 14C dates, demonstrating successful utilisation of ZooMS as an alternative screening mechanism to identify bone samples that are suitable for 14C analysis. PMID:26938469

  13. Radiocarbon Depression in Aquatic Foodwebs of the Colorado River, USA: Coupling Between Carbonate Weathering and the Biosphere

    NASA Astrophysics Data System (ADS)

    Sickman, J. O.; Huang, W.; Lucero, D.; Anderson, M.

    2012-12-01

    The 14C isotopic composition of living organisms is generally considered to be in isotopic equilibrium with atmosphere CO2. During the course of investigations of aquatic foodwebs of the Colorado River, we measured substantial radiocarbon depression of organisms within planktonic and benthic foodwebs of Copper Basin Reservoir, a short residence-time water body at the intake to the Colorado River Aqueduct. All trophic levels had depressed radiocarbon content with inferred "age" of ca. 1,200 radiocarbon years (range: 0.85 to 0.87 fraction modern carbon (fmc)). Additional measurements of the radiocarbon content of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) were made in other major rivers in California (New (near Salton Sea), Santa Ana (near Riverside), San Joaquin (near Fresno) and Salinas (near San Luis Obispo)). In the New River (which is composed primarily of irrigation tailwater derived from the Colorado River), the radiocarbon values for DIC closely matched those found in biota of the Copper Basin Reservoir (0.85 to 0.87 fmc), but radiocarbon values for DOC were slightly higher (0.91 to 0.95 fmc). In the other California rivers, radiocarbon concentrations in DIC were generally below modern and lower than corresponding levels in DOC; in the case of the Santa Ana River, DOC was older than DIC as a result of wastewater inputs from upstream treatment plants. Together these data suggest that the carbonate equilibrium of California rivers is influenced by weathering of carbonate minerals which produces HCO3- with no 14C. We hypothesize that this dead carbon can move into aquatic foodwebs via algae and phytoplankton uptake during photosynthesis, depressing the 14C content of aquatic foodwebs below that of the atmosphere. Based on a simple two-component mixing model incorporating carbonate weathering and atmospheric CO2, we estimate that 15-17% of the carbon in the aquatic foodweb of Copper Basin is derived directly from mineral weathering of

  14. AMS radiocarbon dating of Middle and Upper Palaeolithic bone in the British Isles: improved reliability using ultrafiltration

    NASA Astrophysics Data System (ADS)

    Jacobi, R. M.; Higham, T. F. G.; Bronk Ramsey, C.

    2006-07-01

    Recent research at the Oxford Radiocarbon Accelerator Unit (ORAU) has shown that ultrafiltration of gelatin from archaeological bone can, in many instances, remove low molecular weight contaminants. These can sometimes be of a different radiocarbon age and, unless removed, may severely influence results, particularly when dating bones greater than two to three half-lives of 14C. In this study this methodology is applied to samples of Late Middle and Early Upper Palaeolithic age from the British Isles. In many instances the results of redating invite serious reconsideration of the chronology for these periods. Copyright

  15. The radiocarbon signature of microorganisms in the mesopelagic ocean

    PubMed Central

    Hansman, Roberta L.; Griffin, Sheila; Watson, Jordan T.; Druffel, Ellen R. M.; Ingalls, Anitra E.; Pearson, Ann; Aluwihare, Lihini I.

    2009-01-01

    Several lines of evidence indicate that microorganisms in the meso- and bathypelagic ocean are metabolically active and respiring carbon. In addition, growing evidence suggests that archaea are fixing inorganic carbon in this environment. However, direct quantification of the contribution from deep ocean carbon sources to community production in the dark ocean remains a challenge. In this study, carbon flow through the microbial community at 2 depths in the mesopelagic zone of the North Pacific Subtropical Gyre was examined by exploiting the unique radiocarbon signatures (Δ14C) of the 3 major carbon sources in this environment. The radiocarbon content of nucleic acids, a biomarker for viable cells, isolated from size-fractionated particles (0.2–0.5 μm and >0.5 μm) showed the direct incorporation of carbon delivered by rapidly sinking particles. Most significantly, at the 2 mesopelagic depths examined (670 m and 915 m), carbon derived from in situ autotrophic fixation supported a significant fraction of the free-living microbial community (0.2–0.5 μm size fraction), but the contribution of chemoautotrophy varied markedly between the 2 depths. Results further showed that utilization of the ocean's largest reduced carbon reservoir, 14C-depleted, dissolved organic carbon, was negligible in this environment. This isotopic portrait of carbon assimilation by the in situ, free-living microbial community, integrated over >50,000 L of seawater, implies that recent, photosynthetic carbon is not always the major carbon source supporting microbial community production in the mesopelagic realm. PMID:19366673

  16. Atmosphere-ocean gas exchange based on radiocarbon data

    NASA Astrophysics Data System (ADS)

    Byalko, Alexey

    2014-05-01

    In recent decades, the intensity of global atmospheric convection has accelerated faster than climate warming; it is possible to judge this process from indirect data. Increasing ocean salinity contrasts provide evidence that evaporation has intensified [1]; sea surface wind velocities and wave heights have increased [2]. The CO2 gas exchange between the atmosphere and ocean must also simultaneously increase. Monthly measurements of atmospheric CO2 concentration have been published since 1958 [3], but directly measuring its fluxes from the atmosphere to the ocean and back is hardly possible. We show they can be reconstructed from 14C isotope concentration data. In the past century, two processes influenced the atmospheric 14C concentration in opposite directions: burning fossil fuels and testing nuclear weapons in the atmosphere. We compare the gas exchange theory with measurements of radiocarbon content in the atmosphere [4—6], which allows assessing the gas exchange quantitatively for the ocean to atmosphere and atmosphere to ocean fluxes separately for period 1960—2010 [7]. References 1. Durack P. J. and Wijffels S. E., J. Climate 23, 4342 (2010). 2. Young I. R., Sieger S., and Babanin A.V., Science 332, 451 (2011). 3. NOAA Earth System Research Laboratory Data: ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt. 4. Nydal R., Lövseth K. // J. Geophys. Res. 1983. V. 88. P. 3579. 5. Levin I., Kromer B. // Radiocarbon. 1997. V. 39. P. 205. 6. Miller J.B., Lehman S.J., Montzka S.A., et al. // J. Geophys. Res. 2012. V. 117. D08302. 7. Byalko A.V. Doklady Physics, 2013. V. 58, 267-271.

  17. Marine04 Marine radiocarbon age calibration, 26 ? 0 ka BP

    SciTech Connect

    Hughen, K; Baille, M; Bard, E; Beck, J; Bertrand, C; Blackwell, P; Buck, C; Burr, G; Cutler, K; Damon, P; Edwards, R; Fairbanks, R; Friedrich, M; Guilderson, T; Kromer, B; McCormac, F; Manning, S; Bronk-Ramsey, C; Reimer, P; Reimer, R; Remmele, S; Southon, J; Stuiver, M; Talamo, S; Taylor, F; der Plicht, J v; Weyhenmeyer, C

    2004-11-01

    New radiocarbon calibration curves, IntCal04 and Marine04, have been constructed and internationally ratified to replace the terrestrial and marine components of IntCal98. The new calibration datasets extend an additional 2000 years, from 0-26 ka cal BP (Before Present, 0 cal BP = AD 1950), and provide much higher resolution, greater precision and more detailed structure than IntCal98. For the Marine04 curve, dendrochronologically dated tree-ring samples, converted with a box-diffusion model to marine mixed-layer ages,