Sample records for radiochemistry sample tracking

  1. User`s and reference guide to the INEL RML/analytical radiochemistry sample tracking database version 1.00

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Femec, D.A.

    This report discusses the sample tracking database in use at the Idaho National Engineering Laboratory (INEL) by the Radiation Measurements Laboratory (RML) and Analytical Radiochemistry. The database was designed in-house to meet the specific needs of the RML and Analytical Radiochemistry. The report consists of two parts, a user`s guide and a reference guide. The user`s guide presents some of the fundamentals needed by anyone who will be using the database via its user interface. The reference guide describes the design of both the database and the user interface. Briefly mentioned in the reference guide are the code-generating tools, CREATE-SCHEMAmore » and BUILD-SCREEN, written to automatically generate code for the database and its user interface. The appendices contain the input files used by the these tools to create code for the sample tracking database. The output files generated by these tools are also included in the appendices.« less

  2. Version 1.00 programmer`s tools used in constructing the INEL RML/analytical radiochemistry sample tracking database and its user interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Femec, D.A.

    This report describes two code-generating tools used to speed design and implementation of relational databases and user interfaces: CREATE-SCHEMA and BUILD-SCREEN. CREATE-SCHEMA produces the SQL commands that actually create and define the database. BUILD-SCREEN takes templates for data entry screens and generates the screen management system routine calls to display the desired screen. Both tools also generate the related FORTRAN declaration statements and precompiled SQL calls. Included with this report is the source code for a number of FORTRAN routines and functions used by the user interface. This code is broadly applicable to a number of different databases.

  3. Radiochemistry Education at Washington State University: Sustaining Academic Radiochemistry for the Nation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Sue B.; Nash, Ken; Benny, Paul

    2009-08-19

    Since 2002, Washington State University has been building radiochemistry as a component of its overall chemistry program. Using an aggressive hiring strategy and leveraged funds from the state of Washington and federal agencies, six radiochemistry faculty members have been added to give a total of seven radiochemists out of a department of twenty-five faculty members. These faculty members contribute to a diverse curriculum in radiochemistry, and the Chemistry Department now enjoys a significant increase in the number of trainees, the quantity of research expenditures, and the volume and quality of peer-reviewed scientific literature generated by the radiochemistry faculty and themore » trainees. These three factors are essential for sustaining the radiochemistry education and research program at any academic institution.« less

  4. Nuclear Forensics and Radiochemistry: Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rundberg, Robert S.

    The chemical behavior of radioactive elements can differ from conventional wisdom because the number of atoms can be unusually small. Kinetic effects and unusual oxidation states are phenomena that make radiochemistry different from conventional analytic chemistry. The procedures developed at Los Alamos are designed to minimize these effects and provide reproducible results over a wide range of sample types. The analysis of nuclear debris has the additional complication of chemical fractionation and the incorporation of environmental contaminants. These are dealt with through the use of three component isotope ratios and the use of appropriate end members.

  5. Development of an interdisciplinary curriculum in radiochemistry at the university of Iowa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, M.K.; De Vries, D.J.; Forbes, T.Z.

    An interdisciplinary curriculum in radiochemistry is under development at the University of Iowa. The program represents a collaboration between the Departments of Radiology and Chemistry with strong support from the College of Medicine and the College of Liberal Arts and Sciences. The University has undertaken this venture in response to a national and international need for professionals with skills and knowledge of nuclear chemistry and radiochemistry. Students enrolling in this program will benefit from a diverse spectrum of extramurally-funded projects for which radiochemistry is a cornerstone of research and development. Recently, a symposium was conducted at the University of Iowamore » to determine the undergraduate educational foundation that will produce desirable personnel for the diverse sectors related to radiochemistry. Professionals and researchers from around the United States were invited to contribute their perspectives on aspects of radiochemistry that would be important to include in the undergraduate program. Here, we present a brief communication of the draft curriculum, which is based on our understanding of the current need for radio-chemists and nuclear chemists across disciplines and is informed by our communications with participants in the radiochemistry symposium. Recurring themes, which were stressed by participants, included the need for the development of specialized hands-on open-source laboratory training, internship opportunities, and the inclusion of inexpensive-simple radiochemistry laboratory modules that could be included in early analytical laboratory instruction to attract students to the study of radiochemistry and nuclear chemistry. (authors)« less

  6. Quality Control Guidelines for SAM Radiochemical Methods

    EPA Pesticide Factsheets

    Learn more about quality control guidelines and recommendations for the analysis of samples using the radiochemistry methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  7. Applications of inductively coupled plasma-mass spectrometry in environmental radiochemistry

    USGS Publications Warehouse

    Grain, J.S.

    1996-01-01

    The state of the art in ICP-MS is now such that there are few discernible differences between radiochemical and mass spectrometric determinations of longlived radionuclides. Indeed, ICP-MS may provide better (more sensitive) data for many radionuclides, depending upon how one wishes to define "long-lived." In lowlevel determinations, sample preparation remains an important part of the analytical procedure, even with ICP-MS, but the speed and isotopic selectivity of the mass spectrometer appear to offer distinct procedural advantages over radiochemical techniques. Therefore, "radioanalytical" ICP-MS applications should continue to grow, especially in the area of radiation protection, but further research (on efficient sample introduction, for example) and method development may be required to get ICP-MS "off the ground" in the geochemical research areas that have traditionally been supported by radiochemistry.

  8. Challenges and Opportunities in Nuclear Science and Radiochemistry Education at the University of Missouri

    NASA Astrophysics Data System (ADS)

    Robertson, J. David; Etter, Randy L.; Miller, William H.; Neumeyer, Gayla M.

    2009-08-01

    Over the last thirty years, numerous reports and workshops have documented the decline in nuclear and radiochemistry education programs in the United States. Practitioners and stakeholders are keenly aware of the impact this decline will have on emerging technologies and critical research and are fully committed to rebuilding programs in nuclear and radiochemistry. The challenge is, however, to persuade our academic peers and administrations to invest in nuclear and radiochemistry education and training programs in view of multiple competing priorities. This paper provides an overview of the expansion of the radiochemistry program and the creation of the Nuclear Energy Technology Workforce (NETWork) Center at the University of Missouri, Columbia and the lessons learned along the way.

  9. Radiochemistry Student, Postdoc and Invited Speaker Support for New Directions in Isotope Production, Nuclear Forensics and Radiochemistry Supported by the DOE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurisson, Silvia, S.

    The Division of Nuclear Chemistry and Technology (NUCL) of the American Chemistry Society (ACS) is sponsoring a symposium entitled "New Directions in Isotope Production, Nuclear Forensics and Radiochemistry Supported by the DOE" at the 240th ACS National Meeting in Boston, MA 22-26 August 2010. Radiochemistry and nuclear science is a critical area of research and funding for which the DOE has provided support over the years. Radiochemistry is undergoing a renaissance in interdisciplinary areas including medicine, materials, nanotechnology, nuclear forensics and energy. For example, interest in nuclear energy is growing in response to global warming. The field of nuclear forensicsmore » has grown significantly since 9/11 in response to potential terror threats and homeland security. Radioactive molecular imaging agents and targeted radiotherapy are revolutionizing molecular medicine. The need for radiochemists is growing, critical, and global. The NUCL Division of the ACS has been involved in various areas of radiochemistry and nuclear chemistry for many years, and is the host of the DOE supported Nuclear Chemistry Summer Schools. This Symposium is dedicated to three of the critical areas of nuclear science, namely isotope production, nuclear forensics and radiochemistry. An important facet of this meeting is to provide support for young radiochemistry students/postdoctoral fellows to attend this Symposium as participants and contributors. The funding requested from DOE in this application will be used to provide bursaries for U.S. students/postdoctoral fellows to enable them to participate in this symposium at the 240th ACS National Meeting, and for invited scientists to speak on the important issues in these areas.« less

  10. Emergency radiobioassay preparedness exercises through the NIST radiochemistry intercomparison program.

    PubMed

    Nour, Svetlana; LaRosa, Jerry; Inn, Kenneth G W

    2011-08-01

    The present challenge for the international emergency radiobioassay community is to analyze contaminated samples rapidly while maintaining high quality results. The National Institute of Standards and Technology (NIST) runs a radiobioassay measurement traceability testing program to evaluate the radioanalytical capabilities of participating laboratories. The NIST Radiochemistry Intercomparison Program (NRIP) started more than 10 years ago, and emergency performance testing was added to the program seven years ago. Radiobioassay turnaround times under the NRIP program for routine production and under emergency response scenarios are 60 d and 8 h, respectively. Because measurement accuracy and sample turnaround time are very critical in a radiological emergency, response laboratories' analytical systems are best evaluated and improved through traceable Performance Testing (PT) programs. The NRIP provides participant laboratories with metrology tools to evaluate their performance and to improve it. The program motivates the laboratories to optimize their methodologies and minimize the turnaround time of their results. Likewise, NIST has to make adjustments and periodical changes in the bioassay test samples in order to challenge the participating laboratories continually. With practice, radioanalytical measurements turnaround time can be reduced to 3-4 h.

  11. Ethanolic carbon-11 chemistry: the introduction of green radiochemistry.

    PubMed

    Shao, Xia; Fawaz, Maria V; Jang, Keunsam; Scott, Peter J H

    2014-07-01

    The principles of green chemistry have been applied to a radiochemistry setting. Eleven carbon-11 labeled radiopharmaceuticals have been prepared using ethanol as the only organic solvent throughout the entire manufacturing process. The removal of all other organic solvents from the process simplifies production and quality control (QC) testing, moving our PET Center towards the first example of a green radiochemistry laboratory. All radiopharmaceutical doses prepared are suitable for clinical use. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Chemistry and radiochemistry of As, Re and Rh isotopes relevant to radiopharmaceutical applications: high specific activity radionuclides for imaging and treatment.

    PubMed

    Feng, Yutian; Phelps, Tim E; Carroll, Valerie; Gallazzi, Fabio; Sieckman, Gary; Hoffman, Timothy J; Barnes, Charles L; Ketring, Alan R; Hennkens, Heather M; Jurisson, Silvia S

    2017-10-31

    The chemistry and radiochemistry of high specific activity radioisotopes of arsenic, rhenium and rhodium are reviewed with emphasis on University of Missouri activities over the past several decades, and includes recent results. The nuclear facilities at the University of Missouri (10 MW research reactor and 16.5 MeV GE PETtrace cyclotron) allow research and development into novel theranostic radionuclides. The production, separation, enriched target recovery, radiochemistry, and chelation chemistry of 72,77 As, 186,188 Re and 105 Rh are discussed.

  13. ERA—European Radiochemists Association: Report on the activities of the Working Party for Nuclear and Radiochemistry of the Federation of European Chemical Societies

    NASA Astrophysics Data System (ADS)

    Kolar, Z. I.; Ware, A. R.

    2003-01-01

    The European Radiochemists Association started almost simultaneously with the appearance of the first issue of the Radiochemistry in Europe newsletter in August 1995. The objective of the European Radiochemists Association (ERA) is to extend and improve communication between radiochemists in Europe through a newsletter. Liaison persons within each country or group exchange details of their activities, set up a diary of relevant international events and exchange details of specialist equipment, facilities and technology. In the year 2000 the Federation of European Chemical Societies decided to form a working party on nuclear and radiochemistry. It is a formalisation of the European Radiochemists Association. Each chemical society is allowed to nominate a member to the Working Party on Nuclear and Radiochemistry. Currently we have 12 nominated members plus two invited and one observer. In addition to the ERA aims and objectives it proposes to put together a syllabus of radiochemistry for undergraduate and post-graduate students—this aspect has been a part of our support of the International Atomic Energy Agency initiative. Also the aim of the working party is to support other working parties and divisions, to press the Federation of the European Chemical Societies for financial structure. To this end an Expression of Interest has been tabled with the Framework 6 Programme for networking within radiochemistry in Europe. The WP will liaise with the International Isotope Society and the International Society on Radiopharmaceutical Chemistry and Biology to seek to communicate and to consider ways of working together.

  14. A New Program to Teach Nuclear and Radiochemistry to Undergraduates.

    ERIC Educational Resources Information Center

    Catchen, Gary L.; Canelos, James

    1988-01-01

    Follows the development of a course in nuclear and radiochemistry at Penn State. Lists specific nuclear science topics covered in the undergraduate level course. Describes audio-visual materials that have been developed for the course and includes a survey of students taking the course. (ML)

  15. Learning Nuclear Chemistry through Practice: A High School Student Project Using PET in a Clinical Setting

    ERIC Educational Resources Information Center

    Liguori, Lucia; Adamsen, Tom Christian Holm

    2013-01-01

    Practical experience is vital for promoting interest in science. Several aspects of chemistry are rarely taught in the secondary school curriculum, especially nuclear and radiochemistry. Therefore, we introduced radiochemistry to secondary school students through positron emission tomography (PET) associated with computer tomography (CT). PET-CT…

  16. Determination of the Spectral Index in the Fission Spectrum Energy Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Amy Sarah

    2016-05-16

    Neutron reaction cross sections play a vital role in tracking the production and destruction of isotopes exposed to neutron fluence. They are central to the process of reconciling the initial and final atom inventories. Measurements of irradiated samples by radiochemical methods in tangent with an algorithm are used to evaluate the fluence a sample is exposed to over the course of the irradiation. This algorithm is the Isotope Production Code (IPC) created and used by the radiochemistry data assessment team at Los Alamos National Laboratory (LANL). An integral result is calculated by varying the total neutron fluence seen by amore » sample. A sample, irradiated in a critical assembly, will be exposed to a unique neutron flux defined by the neutron source and distance of the sample from the source. Neutron cross sections utilized are a function of the hardness of the neutron spectrum at the location of irradiation. A spectral index is used an indicator of the hardness of the neutron spectrum. Cross sections fit forms applied in IPC are collapsed from a LANL 30-group energy structure. Several decades of research and development have been performed to formalize the current IPC cross section library. Basis of the current fission spectrum neutron reaction cross section library is rooted in critical assembly experiments performed from the 1950’s through the early 1970’s at LANL. The focus of this report is development of the spectral index used an indicator of the hardness of the neutron spectrum in the fission spectrum energy regime.« less

  17. Glenn T. Seaborg and heavy ion nuclear science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loveland, W.

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg's laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies.more » Future roles of radiochemistry in heavy ion nuclear science also will be discussed.« less

  18. Glenn T. Seaborg and heavy ion nuclear science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loveland, W.

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg`s laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies.more » Future roles of radiochemistry in heavy ion nuclear science also will be discussed.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paviet-Hartmann, P.; Akbarzadeh, M.; Griggs, J.

    The U.S. Department of Energy originally created the National Analytical Management Program (NAMP) to help coordinate its analytical capabilities and to address national needs in technology and resources. In support of this mission, the NAMP established a subcommittee to promote training and education in radiochemistry to avert the predicted loss in expertise. In cooperation with the U.S. Environmental Protection Agency and university partners, the NAMP developed a series of two-hour webinar presentations by experts on different topics relevant to radiochemistry. These webinars are intended to be of interest to those already in the workforce who may need a refresher coursemore » or a better understanding of specific radiochemistry topics. The live webinars include slides presentation, and engage the attendees by giving them the opportunity to ask questions during the live event through the web-cast interface. Certificates may be given for attendance during the live webinar. The success of these webinars relies not only on the presenters who are internationally recognized experts but also on how we promote them: we advertised them through a dedicated web site, social networks or flyers. Another important point is that they are free are accessible online in 2 formats: audio-video recording and pdf files. Recorded and archived versions comprise a library vital to future generations of radio-chemists and scientists interested in radiochemistry. The first webinar, An Overview of Actinide Chemistry, was presented on April 20, 2012. The overwhelmingly positive feedback from participants clearly demonstrates that the NAMP webinars are making a difference by providing unique educational opportunities in radiochemistry.« less

  20. Development of Customized [18F]Fluoride Elution Techniques for the Enhancement of Copper-Mediated Late-Stage Radiofluorination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mossine, Andrew V.; Brooks, Allen F.; Ichiishi, Naoko

    In a relatively short period of time, transition metal-mediated radiofluorination reactions have changed the PET radiochemistry landscape. These reactions have enabled the radiofluorination of a wide range of substrates, facilitating access to radiopharmaceuticals that were challenging to synthesize using traditional fluorine-18 radiochemistry. However, the process of adapting these new reactions for automated radiopharmaceutical production has revealed limitations in fitting them into the confines of traditional radiochemistry systems. In particular, the presence of bases (e.g. K 2CO 3) and/or phase transfer catalysts (PTC) (e.g. kryptofix 2.2.2) associated with fluorine-18 preparation has been found to be detrimental to reaction yields. We hypothesizedmore » that these limitations could be addressed through the development of alternate techniques for preparing [18F]fluoride. This approach also opens the possibility that an eluent can be individually tailored to meet the specific needs of a metal-catalyzed reaction of interest. In this communication, we demonstrate that various solutions of copper salts, bases, and ancillary ligands can be utilized to elute [ 18F]fluoride from ion exchange cartridges. The new procedures we present here are effective for fluorine-18 radiochemistry and, as proof of concept, have been used to optimize an otherwise base-sensitive copper-mediated radiofluorination reaction.« less

  1. Development of Customized [18F]Fluoride Elution Techniques for the Enhancement of Copper-Mediated Late-Stage Radiofluorination

    DOE PAGES

    Mossine, Andrew V.; Brooks, Allen F.; Ichiishi, Naoko; ...

    2017-03-22

    In a relatively short period of time, transition metal-mediated radiofluorination reactions have changed the PET radiochemistry landscape. These reactions have enabled the radiofluorination of a wide range of substrates, facilitating access to radiopharmaceuticals that were challenging to synthesize using traditional fluorine-18 radiochemistry. However, the process of adapting these new reactions for automated radiopharmaceutical production has revealed limitations in fitting them into the confines of traditional radiochemistry systems. In particular, the presence of bases (e.g. K 2CO 3) and/or phase transfer catalysts (PTC) (e.g. kryptofix 2.2.2) associated with fluorine-18 preparation has been found to be detrimental to reaction yields. We hypothesizedmore » that these limitations could be addressed through the development of alternate techniques for preparing [18F]fluoride. This approach also opens the possibility that an eluent can be individually tailored to meet the specific needs of a metal-catalyzed reaction of interest. In this communication, we demonstrate that various solutions of copper salts, bases, and ancillary ligands can be utilized to elute [ 18F]fluoride from ion exchange cartridges. The new procedures we present here are effective for fluorine-18 radiochemistry and, as proof of concept, have been used to optimize an otherwise base-sensitive copper-mediated radiofluorination reaction.« less

  2. Correction to Account for the Isomer of 87Y in the 87Y Radiochemical Diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes-Sterbenz, Anna Catherine; Jungman, Gerard

    Here we summarize the need to correct inventories of 87Y reported by the Los Alamos weapons radiochemistry team. The need for a correction arises from the fact that a 13.37 hour isomer of 87Y, that is strongly populated through (n, 2n) reactions on 88Y and isomers of 88Y, has not been included in the experimental analyses of NTS data. Inventories of 87Y reported by LANL’s weapons radiochemistry team should be multiplied by a correction factor that is numerically close to 0.9. Alternatively, the user could increase simulated values of 87Y by 1.1 for comparison with the original method for reportingmore » NTS values. If the inventories in question were directly reported by LLNL’s radiochemistry team, care must be taken to determine whether or not the correction factor has already been applied.« less

  3. Support for the American Chemical Society's Summer Schools in Nuclear and Radiochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantica, Paul F.

    The ACS Summer Schools in Nuclear and Radiochemistry were held at San Jose State University (SJSU) and Brookhaven National Laboratory (BNL). The Summer Schools offer undergraduate students with U.S. citizenship an opportunity to complete coursework through ACS accredited chemistry degree programs at SJSU or the State University of New York at Stony Brook (SBU). The courses include lecture and laboratory work on the fundamentals and applications of nuclear and radiochemistry. The number of students participating at each site is limited to 12, and the low student-to-instructor ratio is needed due to the intense nature of the six-week program. To broadenmore » the students’ perspectives on nuclear science, prominent research scientists active in nuclear and/or radiochemical research participate in a Guest Lecture Series. Symposia emphasizing environmental chemistry, nuclear medicine, and career opportunities are conducted as a part of the program.« less

  4. Support for Students, Postdoctoral Fellows and Trainees to Attend Radiochemistry-­Related Symposia at Pacifichem 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilbur, Daniel Scott

    This project was undertaken to meet the growing need for training personnel who will be involved in professional careers requiring knowledge of radiochemistry, such as those working in radionuclide production, and in biological, industrial, medical and environmental fields that use radionuclides in their work. The goal of the project was to provide financial assistance to students and trainees from academic and government institutions (US preferred) to attend selected radiochemistry-­related symposia at the Pacifichem 2015 meeting held in Honolulu, Hawaii in December 2015. The funding, meant to provide a portion of an awardee’s travel cost, was specifically directed at attendance tomore » the following symposia: #363, Isotope production-­ Providing Important Materials for Research and Applications; #215, Chemistry of Molecular Imaging, and #11, Chemistry for Development of Theranostic Radiopharmaceuticals. Those symposia were held December 16th (am & pm: #11, #363), December 17th (am: #11, #363; pm: #275) and December 18th (am & pm: #275). Pacifichem meetings are held every 5 years in Honolulu, Hawaii. The meetings are joint sponsored by a number of Chemistry Societies from Pacific Rim countries. The meetings are composed of a large number of symposia (>300) on a wide variety of topics, which make them similar to small meetings within the larger overall meeting. Therefore, attendance at the three symposia within Pacifichem 2015 was similar to attending a meeting focused entirely on radiochemistry-­related topics. To obtain the financial assistance, the student/trainee: (a) had to be an undergraduate student, graduate student or Postdoctoral Fellow in a physical science department or National Laboratory; (b) had to submit a letter from their supervisor indicating that he/she will be enrolled as a student/trainee at the time of the meeting, and were committed to attending the meeting; and (c) had to submit a resume or curriculum vitae along with a brief statement of why they wanted to attend the symposia. The Bursary Selection Committee reviewed the applications and selected awardees from the students that applied. Attendance of the students/trainees to the Pacifichem 2015 symposia provided information on the role radiochemistry and radionuclides can have in the development of future diagnostic and therapeutic agents. It is very likely that attending the symposia stimulated student interest in radiochemistry, and thus, will provide support for their decision to enter the field, or an impetus to make this technical area a career choice. This stimulus will ultimately help to fill the future workforce needs for professionals trained in radiochemistry needed within US, and in particular the Department of Energy.« less

  5. Nuclear Forensics and Radiochemistry: Fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rundberg, Robert S.

    Radiochemistry has been used to study fission since it’ discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution.

  6. Recent advances and results from the solid radiochemistry nuclear diagnostic at the National Ignition Facility

    DOE PAGES

    Gharibyan, N.; Shaughnessy, D. A.; Moody, K. J.; ...

    2016-08-05

    The solid debris collection capability at the National Ignition Facility has been expanded to include a third line-of-sight assembly. The solid radiochemistry nuclear diagnostic measurement of the ratio of gold isotopes is dependent on the efficient collection of neutron-activated hohlraum debris by passive metal disks. As a result, the collection of target debris at this new location is more reliable in comparison to the historic locations, and it appears to be independent of collector surface ablation.

  7. Fluorine-18 patents (2009–2015). Part 2: new radiochemistry

    PubMed Central

    Mossine, Andrew V; Thompson, Stephen; Brooks, Allen F; Sowa, Alexandra R; Miller, Jason M; Scott, Peter JH

    2016-01-01

    Fluorine-18 (18F) is one of the most common positron-emitting radionuclides used in the synthesis of positron emission tomography radiotracers due to its ready availability, convenient half-life and outstanding imaging properties. In Part 1 of this review, we presented the first analysis of patents issued for novel radiotracers labeled with fluorine-18. In Part 2, we follow-up with a focus on patents issued for new radiochemistry methodology using fluorine-18 issued between January 2009 and December 2015. PMID:27610753

  8. Recent advances and results from the solid radiochemistry nuclear diagnostic at the National Ignition Facility.

    PubMed

    Gharibyan, N; Shaughnessy, D A; Moody, K J; Grant, P M; Despotopulos, J D; Faye, S A; Jedlovec, D R; Yeamans, C B

    2016-11-01

    The solid debris collection capability at the National Ignition Facility has been expanded to include a third line-of-sight assembly. The solid radiochemistry nuclear diagnostic measurement of the ratio of gold isotopes is dependent on the efficient collection of neutron-activated hohlraum debris by passive metal disks. The collection of target debris at this new location is more reliable in comparison to the historic locations, and it appears to be independent of collector surface ablation.

  9. California Alliance For Radiotracer Education, CARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutcliffe, Julie

    The report contains a summary of the accomplishments made during the CARE proposal. The overall goal of this proposal was to train graduate students and postdoctoral fellows in the field of radiochemistry. The goal was to expose trainees to the fundamentals of radioisotope production, radiochemistry synthesis, synthetic organic chemistry as well as applications and hands on experience in small animal imaging. In summary approximately 30 trainees were involved including trainees both at the graduate and postdoctoral levels. This funding has to date resulted in publications in high impact journals such as Med Chem Comm, Journal of Nuclear Medicine and Molecularmore » Imaging and Biology. Trainees have gone on to further their careers in both academia, industry and the private sector. The funding will result in seven Master’s and six Ph.D dissertations. Without the DOE funding it simply would not have been possible to continue to train the next generation of radiochemists needed to assure a future US-based Nuclear and Radiochemistry Expertise.« less

  10. Improving cancer treatment with cyclotron produced radionuclides. Comprehensive progress report, February 1, 1992--July 15, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, S.M.; Finn, R.D.

    1995-07-17

    This research continues the long term goals of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. This program fits into the nuclear medicine component of DOE`s mission, which is aimed at enhancing the beneficial applications of radiation, radionuclides, and stable isotopes in the diagnosis, study and treatment of human diseases. The grant includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology/Immunology; and Imaging Physics. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Section under the DOE grant during the 1992--1995more » will be employed in the Pharmacology/Immunology component in the period 1996--1999. Imaging Physics resolves relevant imaging related physics issues that arise during the experimentation that results. In addition to the basic research mission, this project also provides a basis for training of research scientists in radiochemistry, immunology, bioengineering and imaging physics.« less

  11. Student Support-Radiochemistry Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wynn Volkert, PhD; Victoria

    2009-09-01

    The objectives of this program were to provide bursaries to assist students and post-doctoral fellows being trained in radiochemistry to actively participate in the 18th International Symposium in Radiopharmaceutical Sciences (ISRS-2009) held in Edmonton, Canada on July 12-19, 2009. The critical shortage of scientists in the U.S. trained radiochemistry and imaging scientists is well documented. Scientific meetings such as ISRS-2009 provide an outstanding opportunity to recruit active researchers and trainees in a venue that can inspire and mentor them to join the next generation of radiochemical scientists. The ISRS-2009 was particularly important in this meeting this objective since it ismore » regarded as the premier international meeting that features investigators from across the globe involved in cutting-edge research to synthesize and characterize radiolabeled biomolecules for molecular imaging in living systems. For example, radiochemistry and radionuclide imaging scientists presented new approaches and technologies for synthesis of novel radiolabeled biomolecules with PET (including, 11C and 18F) and SPECT (including 99mTc and 111In). The radiochemical and radionuclide imaging research presented at the ISRS-2009 are directly related to and supportive of the biomolecular radioisotope, radiochemistry and imaging programs in the DOE, Office of Science (BER). There were a total of fifteen students or post-doctoral fellows from a variety of radiochemistry and radionuclide imaging research and educational institutions from across the country (Table 1). Announcements of the SRS/DOE bursary award program were made on the ISRS-2009 meeting web site (www.ISRS18.com), on the SRS website (www.srsweb.org), and via SRS email blasts (announcement Figure 1). The applications were reviewed and awardees selected by a committee composed of Dr. Ken Krohn, University of Washington, Seattle, WA, Dr. William Eckelman, Bethesda, MD,Dr. Michael Welch, Washington University, St. Louis, MO and Dr. Wynn Volkert, University of Missouri, Columbia, MO. The trainees presented results of their work via either an oral or a poster presentation. Abstracts of their papers presented at the ISRS-2009 meeting were published in the Journal of Labelled Compounds and Radiopharmaceuticals, Volume 52, Supplement 1, 2009 (www.interscience.wiley.com/journal/jier), the official Abstract Book for the ISRS-2009 meeting. A copy of the published abstracts presented by each of the fifteen trainees receiving the SRS/DOE Bursary Award is provided on the following pages. The list of the fifteen trainees receiving the 2009 Bursary awards funded by this DOE grant was published in the July 2010 issue of Nuclear Medicine and Biology (Volume 37(5), July 2010) and in the SRS website with appropriate acknowledgement to the U.S. Department [See Appendix 1 for copies of the 15 student/trainee abstracts].« less

  12. Summary and Preliminary Interpretation of Tritium and Dissolved Noble Gas Data from Site 300

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visser, A.; Singleton, M.; Madrid, V.

    2014-01-29

    In October 2013, groundwater samples were collected from 10 wells from Site 300 and analyzed by the Environmental Radiochemistry Laboratory at Lawrence Livermore National Laboratory (LLNL). Groundwater samples were analyzed for groundwater age tracers: tritium, the helium isotope ratio of dissolved helium and the concentrations of dissolved noble gases (Helium, Neon, Argon, Krypton, and Xenon). A subset of the samples was also analyzed for excess nitrogen due to saturated zone denitrification. The age-dating data were used to evaluate the degree to which groundwater at a particular monitoring well was derived from pre-modern and/or modern sources. More specifically, the analyses canmore » be used to determine whether the recharge age of the groundwater beneath the site pre-dates anthropogenic activities at the site.« less

  13. Excreta Sampling as an Alternative to In Vivo Measurements at the Hanford Site.

    PubMed

    Carbaugh, Eugene H; Antonio, Cheryl L; Lynch, Timothy P

    2015-08-01

    The capabilities of indirect radiobioassay by urine and fecal sample analysis were compared with the direct radiobioassay methods of whole body counting and lung counting for the most common radionuclides and inhalation exposure scenarios encountered by Hanford workers. Radionuclides addressed by in vivo measurement included 137Cs, 60Co, 154Eu, and 241Am as an indicator for plutonium mixtures. The same radionuclides were addressed using gamma energy analysis of urine samples, augmented by radiochemistry and alpha spectrometry methods for plutonium in urine and fecal samples. It was concluded that in vivo whole body counting and lung counting capability should be maintained at the Hanford Site for the foreseeable future, however, urine and fecal sample analysis could provide adequate, though degraded, monitoring capability for workers as a short-term alternative, should in vivo capability be lost due to planned or unplanned circumstances.

  14. Radiochemistry in the twenty-first century: Strenghts, weaknesses, opportunities and threats

    NASA Astrophysics Data System (ADS)

    de Goeij, J. J. M.

    2003-01-01

    Strengths, weaknesses, opportunities and threats of radiochemistry and associated nuclear chemistry are discussed. For that purpose radiochemistry is subdivided into three categories. The first category covers fundamental aspects, e.g. nuclear reaction cross-sections, production routes with associated yields and radionuclidic impurities, decay schemes, radiochemical separations, recoil and hot-atom chemistry, isotope effects and fractionation, and interaction of radiation with matter and detection. The second category covers topics where radioactivity is inextricably involved, e.g. the nuclear fuel cycle, very heavy elements and other actinides, primordial and cosmogenic radioactivity, and radionuclide techniques for dating. The third category involves radioactivity as essential part of a technique. On one hand radioactivity is used here as source of ionising radiation for food conservation, polymerisation of plastics, sterilisation, radiotherapy and pain palliation. On the other hand it is used to get information on systems and materials, via radiotracer methods and nuclear activation techniques. In particular the latter field is experiencing strong competition with other, non-nuclear methods. In this frame it is indicated what is required to achieve a situation where nuclear analytical techniques may successfully be exploited to the full extent of their potentials, particularly in providing valuable and sometimes unique information.

  15. Dissolution of aerosol particles collected from nuclear facility plutonium production process

    DOE PAGES

    Xu, Ning; Martinez, Alexander; Schappert, Michael Francis; ...

    2015-08-14

    Here, a simple, robust analytical chemistry method has been developed to dissolve plutonium containing particles in a complex matrix. The aerosol particles collected on Marple cascade impactor substrates were shown to be dissolved completely with an acid mixture of 12 M HNO 3 and 0.1 M HF. A pressurized closed vessel acid digestion technique was utilized to heat the samples at 130 °C for 16 h to facilitate the digestion. The dissolution efficiency for plutonium particles was 99 %. The resulting particle digestate solution was suitable for trace elemental analysis and isotope composition determination, as well as radiochemistry measurements.

  16. Occurrence of $sup 137$Cs in the biosphere evaluated with environmental and metabolic studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haesaenen, E.

    This work forms a part of the fall-out studies carried out in the Department of Radiochemistry, University of Helsinki. Its main emphasis has been on the $gamma$-spectrometric determination of the $sup 137$Cs-levels and changes herein in different environmental samples and in man after the second nuclear testing period in 1961--1962. Special attention has been paid to the aquatic foodchains of $sup 137$Cs, to the foodchain reindeer-lichen-man, and to the biological half-life of $sup 137$Cs in man and in certain fish species. (auth)

  17. Analytical Chemistry Developmental Work Using a 243Am Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Khalil J.; Stanley, Floyd E.; Porterfield, Donivan R.

    2015-02-24

    This project seeks to reestablish our analytical capability to characterize Am bulk material and develop a reference material suitable to characterizing the purity and assay of 241Am oxide for industrial use. The tasks associated with this phase of the project included conducting initial separations experiments, developing thermal ionization mass spectrometry capability using the 243Am isotope as an isotope dilution spike , optimizing the spike for the determination of 241Pu- 241 Am radiochemistry, and, additionally, developing and testing a methodology which can detect trace to ultra- trace levels of Pu (both assay and isotopics) in bulk Am samples .

  18. Calibration and operational data for a compact photodiode detector useful for monitoring the location of moving sources of positron emitting radioisotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsland, M. G.; Dehnel, M. P.; Theroux, J.

    2013-04-19

    D-Pace has developed a compact cost-effective gamma detector system based on technology licensed from TRIUMF. These photodiode detectors are convenient for detecting the presence of positron emitting radioisotopes, particularly for the case of transport of radioisotopes from a PET cyclotron to hotlab, or from one location to another in an automated radiochemistry processing unit. This paper describes recent calibration experiments undertaken at the Turku PET Centre for stationary and moving sources of F18 and C11 in standard setups. The practical diagnostic utility of using several of these devices to track the transport of radioisotopes from the cyclotron to hotlab ismore » illustrated. For example, such a detector system provides: a semi-quantitative indication of total activity, speed of transport, location of any activity lost en route and effectiveness of follow-up system flushes, a means of identifying bolus break-up, feedback useful for deciding when to change out tubing.« less

  19. Improving cancer treatment with cyclotron produced radionuclides. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, S.M.; Finn, R.D.

    1993-11-01

    This report describes our continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section will be employed in the Pharmacology and Immunology sections during the next year. The development of novel radionuclides and tracers is of course useful in and of itself, but their utility is greatly enhanced by the interaction with the immunologymore » and pharmacology components of the program.« less

  20. Preparation of high purity plutonium oxide for radiochemistry instrument calibration standards and working standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, A.S.; Stalnaker, N.D.

    1997-04-01

    Due to the lack of suitable high level National Institute of Standards and Technology (NIST) traceable plutonium solution standards from the NIST or commercial vendors, the CST-8 Radiochemistry team at Los Alamos National Laboratory (LANL) has prepared instrument calibration standards and working standards from a well-characterized plutonium oxide. All the aliquoting steps were performed gravimetrically. When a {sup 241}Am standardized solution obtained from a commercial vendor was compared to these calibration solutions, the results agreed to within 0.04% for the total alpha activity. The aliquots of the plutonium standard solutions and dilutions were sealed in glass ampules for long termmore » storage.« less

  1. Summer Schools in Nuclear and Radiochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silber, Herbert B.

    The ACS Summer Schools in Nuclear and Radiochemistry (herein called “Summer Schools”) were funded by the U.S. Department of Energy and held at San Jose State University (SJSU) and Brookhaven National Laboratory (BNL). The Summer Schools offer undergraduate students with U.S. citizenship an opportunity to complete coursework through ACS accredited chemistry degree programs at SJSU or the State University of New York at Stony Brook (SBU). The courses include lecture and laboratory work on the fundamentals and applications of nuclear and radiochemistry. The number of students participating at each site is limited to 12, and the low student-to-instructor ratio ismore » needed due to the intense nature of the six-week program. To broaden the students’ perspectives on nuclear science, prominent research scientists active in nuclear and/or radiochemical research participate in a Guest Lecture Series. Symposia emphasizing environmental chemistry, nuclear medicine, and career opportunities are conducted as a part of the program. The Department of Energy’s Office of Basic Energy Sciences (BES) renewed the five-year proposal for the Summer Schools starting March 1, 2007, with contributions from Biological and Environmental Remediation (BER) and Nuclear Physics (NP). This Final Technical Report covers the Summer Schools held in the years 2007-2011.« less

  2. The automated radiosynthesis and purification of the opioid receptor antagonist, [6-O-methyl-11C]diprenorphine on the GE TRACERlab FXFE radiochemistry module.

    PubMed

    Fairclough, Michael; Prenant, Christian; Brown, Gavin; McMahon, Adam; Lowe, Jonathan; Jones, Anthony

    2014-05-15

    [6-O-Methyl-(11)C]diprenorphine ([(11)C]diprenorphine) is a positron emission tomography ligand used to probe the endogenous opioid system in vivo. Diprenorphine acts as an antagonist at all of the opioid receptor subtypes, that is, μ (mu), κ (kappa) and δ (delta). The radiosynthesis of [(11)C]diprenorphine using [(11)C]methyl iodide produced via the 'wet' method on a home-built automated radiosynthesis set-up has been described previously. Here, we describe a modified synthetic method to [(11)C]diprenorphine performed using [(11)C]methyl iodide produced via the gas phase method on a GE TRACERlab FXFE radiochemistry module. Also described is the use of [(11)C]methyl triflate as the carbon-11 methylating agent for the [(11)C]diprenorphine syntheses. [(11)C]Diprenorphine was produced to good manufacturing practice standards for use in a clinical setting. In comparison to previously reported [(11)C]diprenorphine radiosyntheisis, the method described herein gives a higher specific activity product which is advantageous for receptor occupancy studies. The radiochemical purity of [(11)C]diprenorphine is similar to what has been reported previously, although the radiochemical yield produced in the method described herein is reduced, an issue that is inherent in the gas phase radiosynthesis of [(11)C]methyl iodide. The yields of [(11)C]diprenorphine are nonetheless sufficient for clinical research applications. Other advantages of the method described herein are an improvement to both reproducibility and reliability of the production as well as simplification of the purification and formulation steps. We suggest that our automated radiochemistry route to [(11)C]diprenorphine should be the method of choice for routine [(11)C]diprenorphine productions for positron emission tomography studies, and the production process could easily be transferred to other radiochemistry modules such as the TRACERlab FX C pro. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Sucrose as a dosimetric material for photon and heavy particle radiation: A review

    NASA Astrophysics Data System (ADS)

    Karakirova, Yordanka; Yordanov, Nicola D.

    2015-05-01

    The application of high-energy radiation in many areas of human activity and its harmful effects on human health makes necessary knowledge of the radiation chemistry of various materials upon exposure to high-energy radiation. Among these materials, saccharides (particularly sucrose) maintain the greatest advantage for potential radiochemistry applications. Until now, radiation chemistry studies have been conducted primarily with γ-ray irradiation; however, in the past few years there has been increased interest in the fields of radiotherapy and radiochemistry on substances irradiated with heavy particles. To this end, this review discusses the possibilities of employing sucrose as a radiation-sensitive material for the determination of absorbed doses of high-energy radiation both for emergency situations and for dosimeters used in standard applications.

  4. Improving cancer treatment with cyclotron produced radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, S.M. Finn, R.D.

    1992-08-04

    This report describes the author's continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program has 3 interactive components: Radiochemistry /Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section under the DOE grant during the 1989--1992 grant period, will be employed in the Pharmacology and Immunology sections of the DOE grant during the 1992--1995 grant period. The development of novel radionuclides and tracers is of course usefulmore » in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.« less

  5. Inter-laboratory comparison measurements of radiochemical laboratories in Slovakia.

    PubMed

    Meresová, J; Belanová, A; Vrsková, M

    2010-01-01

    The first inter-laboratory comparison organized by the radiochemistry laboratory of Water Research Institute (WRI) in Bratislava was carried out in 1993 and since then is it realized on an annual basis and about 10 radiochemical laboratories from all over Slovakia are participating. The gross alpha and gross beta activities, and the activity concentrations of (222)Rn, tritium, and (226)Ra, and U(nat) concentration in synthetic water samples are compared. The distributed samples are covering the concentration range prevailing in potable and surface waters and are prepared by dilution of certified reference materials. Over the course of the years 1993-2008, we observed the improvement in the quality of results for most of the laboratories. However, the success rate of the gross alpha determination activity is not improving as much as the other parameters. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Analytical and Radiochemistry for Nuclear Forensics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, Robert Ernest; Dry, Donald E.; Kinman, William Scott

    Information about nonproliferation nuclear forensics, activities in forensics at Los Alamos National Laboratory, radio analytical work at LANL, radiochemical characterization capabilities, bulk chemical and materials analysis capabilities, and future interests in forensics interactions.

  7. Modular Approach to Instrumental Analysis.

    ERIC Educational Resources Information Center

    Deming, Richard L.; And Others

    1982-01-01

    To remedy certain deficiencies, an instrument analysis course was reorganized into six one-unit modules: optical spectroscopy, magnetic resonance, separations, electrochemistry, radiochemistry, and computers and interfacing. Selected aspects of the course are discussed. (SK)

  8. Improving cancer treatment with cyclotron produced radionuclides. Comprehensive progress report, February 1, 1990--January 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, S.M. Finn, R.D.

    1992-08-04

    This report describes the author`s continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program has 3 interactive components: Radiochemistry /Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section under the DOE grant during the 1989--1992 grant period, will be employed in the Pharmacology and Immunology sections of the DOE grant during the 1992--1995 grant period. The development of novel radionuclides and tracers is of course usefulmore » in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.« less

  9. Nuclear and Radiochemistry: the First 100 Years

    NASA Astrophysics Data System (ADS)

    Friedlander, G.; Herrmann, G.

    This chapter gives a brief overview of the development of nuclear and radiochemistry from Mme. Curie's chemical isolation of radium toward the end of the twentieth century. The first four sections deal with fairly distinct time periods: (1) the pioneering years when the only radioactive materials available were the naturally occurring ones; (2) the decade of rapid growth and expansion of both the fundamental science and its applications following the discoveries of the neutron and artificial radioactivity; (3) the World War II period characterized by the intense exploration of nuclear fission and its ramifications; (4) what can be called the “golden era” - the 3 to 4 decades following World War II when nuclear science was generously supported and therefore flourished. In the final section, research trends pursued near the end of the century are briefly touched upon.

  10. Radiochemistry and the Study of Fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rundberg, Robert S.

    These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since its discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered:more » In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since its discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.« less

  11. Radioactive Dating: A Method for Geochronology.

    ERIC Educational Resources Information Center

    Rowe, M. W.

    1985-01-01

    Gives historical background on the discovery of natural radiation and discusses various techniques for using knowledge of radiochemistry in geochronological studies. Indicates that of these radioactive techniques, Potassium-40/Argon-40 dating is used most often. (JN)

  12. Digital microfluidic platform for radiochemistry

    DOEpatents

    Van Dam, Michael R.; Kim, Chang-Jin; Chen, Supin; Ding, Huijiang; Shah, Gaurav Jitendra; Keng, Pei Yuin

    2016-11-01

    Disclosed herein are methods of performing microchemical reactions and electro-wetting-on-dielectric devices (EWOD devices) for use in performing those reactions. These devices and method are particularly suited for preparing radiochemical compounds, particularly compounds containing .sup.18F.

  13. Digital microfluidic platform for radiochemistry

    DOEpatents

    Van Dam, R. Michael; Kim, Chang -Jin; Chen, Supin; Ding, Huijiang; Shah, Gaurav Jitendra; Keng, Pei Yuin

    2015-11-24

    Disclosed herein are methods of performing microchemical reactions and electro-wetting-on-dielectric devices (EWOD devices) for use in performing those reactions. These devices and method are particularly suited for preparing radiochemical compounds, particularly compounds containing .sup.18F.

  14. Experiments in Radiochemistry: Paper Electrophorectic Separation of Superscript 90 Sr and Superscript 90 Y.

    ERIC Educational Resources Information Center

    Miekely, N.; Roldao, L. A.

    1982-01-01

    Using different supporting electrolytes, the influence of complex-forming equilibria on migration velocities of strontium-90 and yttrium-90 can be demonstrated in this experiment. Includes procedures and materials needed. (SK)

  15. Digital microfluidics – a new paradigm for radiochemistry

    PubMed Central

    Keng, Pei Yuin; van Dam, R. Michael

    2016-01-01

    The emerging technology of digital microfluidics is opening up the possibility to perform radiochemistry at the microliter scale to produce tracers for positron emission tomography (PET) labeled with fluorine-18 or other isotopes. Working at this volume scale not only reduces reagent costs, but also improves specific activity (SA) by reduction of contamination by the stable isotope. This technology could provide a practical means to routinely prepare high SA tracers for applications such as neuroimaging, and could make it possible to routinely achieve high SA using synthesis strategies such as isotopic exchange. Reagent droplets are controlled electronically, providing high reliability, a compact control system, and flexibility for diverse syntheses with a single chip design. The compact size may enable the development of a self-shielded synthesizer that does not require a hot cell. This article reviews the progress of this technology and its application to the synthesis of PET tracers. PMID:26650206

  16. A systematic investigation of PET Radionuclide Specific Activity on Miniaturization of Radiochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeanne M Link, PhD

    2012-03-08

    The PET radionuclides, 18F and 11C consist of very high radiation to mass amounts and should be easily adapted to new technologies such as chip chemistry with nanofluidics. However, environmental contamination with nonradioactive fluorine, carbon and other trace contaminants add sufficient mass, micrograms to milligrams, to prevent adapting PET radiochemistry to the nanochip technologies. In addition, the large volumes of material required for beam irradiation make it necessary to also remove the 18F and 11C from their chemical matrices. These steps add contaminants. The work described in this report was a systematic investigation of sources of these contaminants and methodsmore » to reduce these contaminants and the reaction volumes for radiochemical synthesis. Several methods were found to lower the contaminants and matrices to within a factor of 2 to 100 of those needed to fully implement chip technology but further improvements are needed.« less

  17. Click Chemistry and Radiochemistry: The First 10 Years.

    PubMed

    Meyer, Jan-Philip; Adumeau, Pierre; Lewis, Jason S; Zeglis, Brian M

    2016-12-21

    The advent of click chemistry has had a profound influence on almost all branches of chemical science. This is particularly true of radiochemistry and the synthesis of agents for positron emission tomography (PET), single photon emission computed tomography (SPECT), and targeted radiotherapy. The selectivity, ease, rapidity, and modularity of click ligations make them nearly ideally suited for the construction of radiotracers, a process that often involves working with biomolecules in aqueous conditions with inexorably decaying radioisotopes. In the following pages, our goal is to provide a broad overview of the first 10 years of research at the intersection of click chemistry and radiochemistry. The discussion will focus on four areas that we believe underscore the critical advantages provided by click chemistry: (i) the use of prosthetic groups for radiolabeling reactions, (ii) the creation of coordination scaffolds for radiometals, (iii) the site-specific radiolabeling of proteins and peptides, and (iv) the development of strategies for in vivo pretargeting. Particular emphasis will be placed on the four most prevalent click reactions-the Cu-catalyzed azide-alkyne cycloaddition (CuAAC), the strain-promoted azide-alkyne cycloaddition (SPAAC), the inverse electron demand Diels-Alder reaction (IEDDA), and the Staudinger ligation-although less well-known click ligations will be discussed as well. Ultimately, it is our hope that this review will not only serve to educate readers but will also act as a springboard, inspiring synthetic chemists and radiochemists alike to harness click chemistry in even more innovative and ambitious ways as we embark upon the second decade of this fruitful collaboration.

  18. Nuclear Forensics and Radiochemistry: Radiation Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rundberg, Robert S.

    Radiation detection is necessary for isotope identification and assay in nuclear forensic applications. The principles of operation of gas proportional counters, scintillation counters, germanium and silicon semiconductor counters will be presented. Methods for calibration and potential pitfalls in isotope quantification will be described.

  19. 10 CFR Appendix A to Part 725 - Categories of Restricted Data Available

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and radiation studies. b. Chemistry, chemical engineering and radiochemistry of all the elements and their compounds. Included are techniques and processes of chemical separations, radioactive waste..., including chemical engineering, processes and techniques. Reactor physics, engineering and criticality...

  20. The Experimental Determination of Thermal Neutron Flux in the Radiochemistry Curriculum

    ERIC Educational Resources Information Center

    Grant, Patrick M.

    1977-01-01

    Describes an experiment for determining the thermal neutron flux of the light-water nuclear reactor at the University of California, Irvine. The difficulty of the activity can be varied to match the student's level of proficiency. (SL)

  1. Ray Next-Event Estimator Transport of Primary and Secondary Gamma Rays

    DTIC Science & Technology

    2011-03-01

    McGraw-Hill. Choppin, G. R., Liljenzin, J.-O., & Rydberg, J. (2002). Radiochemistry and Nuclear Chemistry (3rd ed.). Woburn, MA: Butterworth- Heinemann ...time-energy bins. Any performance enhancements (maybe parallel searching?) to the search routines decrease estimator computational time

  2. Sediment lithology and radiochemistry from the back-barrier environments along the northern Chandeleur Islands, Louisiana—March 2012

    USGS Publications Warehouse

    Marot, Marci E.; Smith, Christopher G.; Adams, C. Scott; Richwine, Kathryn A.

    2017-04-11

    Scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center collected a set of 8 sediment cores from the back-barrier environments along the northern Chandeleur Islands, Louisiana, in March 2012. The sampling efforts were part of a larger USGS study to evaluate effects on the geomorphology of the Chandeleur Islands following the construction of an artificial sand berm to reduce oil transport onto federally managed lands. The objective of this study was to evaluate the response of the back-barrier tidal and wetland environments to the berm. This report serves as an archive for sedimentological and radiochemical data derived from the sediment cores. The data described in this report are available for download on the data downloads page.

  3. [Role of researchers and employees of the Military Medical Academy in development of the system of military medical supply].

    PubMed

    Miroshnichenko, Iu V; Kononov, V N; Perfil'ev, A B

    2013-12-01

    The Military Medical Academy has been solving theoretical and practical issues, concerning development of military medical supply, for 215 years. At different time periods and according to needs of military medicine and pharmacy researches and employees of the Academy aimed efforts to: development of the theory and practice of medical supply organization, regulatory basis of the system of medical supply, development of new samples of medical equipment, development of medicine manufacturing technologies and methods of quality control, researches in the area of medicine radiochemistry, forensic chemistry and toxicology, herbal and mineral water analysis and etc. At the present time there are the following education programs at the Academy: "Pharmacy", magister program "Management of medical supply", program for resident physicians "Management and economics of pharmacy".

  4. Temporal changes in lithology and radiochemistry from the back-barrier environments along the Chandeleur Islands, Louisiana: March 2012-July 2013

    USGS Publications Warehouse

    Marot, Marci E.; Adams, C. Scott; Richwine, Kathryn A.; Smith, Christopher G.; Osterman, Lisa E.; Bernier, Julie C.

    2014-01-01

    Scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center conducted a time-series collection of shallow sediment cores from the back-barrier environments along the Chandeleur Islands, Louisiana from March 2012 through July 2013. The sampling efforts were part of a larger USGS study to evaluate effects on the geomorphology of the Chandeleur Islands following the construction of an artificial sand berm to reduce oil transport onto federally managed lands. The objective of this study was to evaluate the response of the back-barrier tidal and wetland environments to the berm. This report serves as an archive for sedimentological, radiochemical, and microbiological data derived from the sediment cores. Data are available for a time-series of four sampling periods: March 2012; July 2012; September 2012; and July 2013. Downloadable data are available as Excel spreadsheets and as JPEG files. Additional files include: ArcGIS shapefiles of the sampling sites, detailed results of sediment grain size analyses, and formal Federal Geographic Data Committee metadata.

  5. Microfluidics for Positron Emission Tomography (PET) Imaging Probe Development

    PubMed Central

    Wang, Ming-Wei; Lin, Wei-Yu; Liu, Kan; Masterman-Smith, Michael; Shen, Clifton Kwang-Fu

    2012-01-01

    Due to increased needs for Positron Emission Tomography (PET) scanning, high demands for a wide variety of radiolabeled compounds will have to be met by exploiting novel radiochemistry and engineering technologies to improve the production and development of PET probes. The application of microfluidic reactors to perform radiosyntheses is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional labeling systems. Microfluidic-based radiochemistry can lead to the use of smaller quantities of precursors, accelerated reaction rates and easier purification processes with greater yield and higher specific activity of desired probes. Several ‘proof-of-principle’ examples, along with basics of device architecture and operation, and potential limitations of each design are discussed here. Along with the concept of radioisotope distribution from centralized cyclotron facilities to individual imaging centers and laboratories (“decentralized model”), an easy-to-use, standalone, flexible, fully-automated radiochemical microfluidic platform can open up to simpler and more cost-effective procedures for molecular imaging using PET. PMID:20643021

  6. Radiosyntheses using Fluorine-18: the Art and Science of Late Stage Fluorination

    PubMed Central

    Cole, Erin L.; Stewart, Megan N.; Littich, Ryan; Hoareau, Raphael; Scott, Peter J. H.

    2014-01-01

    Positron (β+) emission tomography (PE) is a powerful, noninvasive tool for the in vivo, three-dimensional imaging of physiological structures and biochemical pathways. The continued growth of PET imaging relies on a corresponding increase in access to radiopharmaceuticals (biologically active molecules labeled with short-lived radionuclides such as fluorine-18). This unique need to incorporate the short-lived fluorine-18 atom (t1/2 = 109.77 min) as late in the synthetic pathway as possible has made development of methodologies that enable rapid and efficient late stage fluorination an area of research within its own right. In this review we describe strategies for radiolabeling with fluorine-18, including classical fluorine-18 radiochemistry and emerging techniques for late stage fluorination reactions, as well as labeling technologies such as microfluidics and solid-phase radiochemistry. The utility of fluorine-18 labeled radiopharmaceuticals is showcased through recent applications of PET imaging in the healthcare, personalized medicine and drug discovery settings. PMID:24484425

  7. Rapid Radiochemical Methods for Asphalt Paving Material ...

    EPA Pesticide Factsheets

    Technical Brief Validated rapid radiochemical methods for alpha and beta emitters in solid matrices that are commonly encountered in urban environments were previously unavailable for public use by responding laboratories. A lack of tested rapid methods would delay the quick determination of contamination levels and the assessment of acceptable site-specific exposure levels. Of special concern are matrices with rough and porous surfaces, which allow the movement of radioactive material deep into the building material making it difficult to detect. This research focuses on methods that address preparation, radiochemical separation, and analysis of asphalt paving materials and asphalt roofing shingles. These matrices, common to outdoor environments, challenge the capability and capacity of very experienced radiochemistry laboratories. Generally, routine sample preparation and dissolution techniques produce liquid samples (representative of the original sample material) that can be processed using available radiochemical methods. The asphalt materials are especially difficult because they do not readily lend themselves to these routine sample preparation and dissolution techniques. The HSRP and ORIA coordinate radiological reference laboratory priorities and activities in conjunction with HSRP’s Partner Process. As part of the collaboration, the HSRP worked with ORIA to publish rapid radioanalytical methods for selected radionuclides in building material matrice

  8. Nuclear Science in the Undergraduate Curriculum: The New Nuclear Science Facility at San Jose State University.

    ERIC Educational Resources Information Center

    Ling, A. Campbell

    1979-01-01

    The following aspects of the radiochemistry program at San Jose State University in California are described: the undergraduate program in radiation chemistry, the new nuclear science facility, and academic programs in nuclear science for students not attending San Jose State University. (BT)

  9. Recycling and Reuse of Radioactive Materials

    ERIC Educational Resources Information Center

    O'Dou, Thomas Joseph

    2012-01-01

    The Radiochemistry Program at the University of Nevada, Las Vegas (UNLV) has a Radiation Protection Program that was designed to provide students with the ability to safely work with radioactive materials in quantities that are not available in other academic environments. Requirements for continuous training and supervision make this unique…

  10. Integral cross section measurement of the U 235 ( n , n ' ) U 235 m reaction in a pulsed reactor

    DOE PAGES

    Bélier, G.; Bond, E. M.; Vieira, D. J.; ...

    2015-04-08

    The integral measurement of the neutron inelastic cross section leading to the 26-minute half-life 235mU isomer in a fission-like neutron spectrum is presented. The experiment has been performed at a pulsed reactor, where the internal conversion decay of the isomer was measured using a dedicated electron detector after activation. The sample preparation, efficiency measurement, irradiation, radiochemistry purification, and isomer decay measurement will be presented. We determined the integral cross section for the ²³⁵U(n,n') 235mU reaction to be 1.00±0.13b. This result supports an evaluation performed with TALYS-1.4 code with respect to the isomer excitation as well as the total neutron inelasticmore » scattering cross section.« less

  11. Effect of distribution of striated laser hardening tracks on dry sliding wear resistance of biomimetic surface

    NASA Astrophysics Data System (ADS)

    Su, Wei; Zhou, Ti; Zhang, Peng; Zhou, Hong; Li, Hui

    2018-01-01

    Some biological surfaces were proved to have excellent anti-wear performance. Being inspired, Nd:YAG pulsed laser was used to create striated biomimetic laser hardening tracks on medium carbon steel samples. Dry sliding wear tests biomimetic samples were performed to investigate specific influence of distribution of laser hardening tracks on sliding wear resistance of biomimetic samples. After comparing wear weight loss of biomimetic samples, quenched sample and untreated sample, it can be suggested that the sample covered with dense laser tracks (3.5 mm spacing) has lower wear weight loss than the one covered with sparse laser tracks (4.5 mm spacing); samples distributed with only dense laser tracks or sparse laser tracks (even distribution) were proved to have better wear resistance than samples distributed with both dense and sparse tracks (uneven distribution). Wear mechanisms indicate that laser track and exposed substrate of biomimetic sample can be regarded as hard zone and soft zone respectively. Inconsecutive striated hard regions, on the one hand, can disperse load into small branches, on the other hand, will hinder sliding abrasives during wear. Soft regions with small range are beneficial in consuming mechanical energy and storing lubricative oxides, however, soft zone with large width (>0.5 mm) will be harmful to abrasion resistance of biomimetic sample because damages and material loss are more obvious on surface of soft phase. As for the reason why samples with even distributed bionic laser tracks have better wear resistance, it can be explained by the fact that even distributed laser hardening tracks can inhibit severe worn of local regions, thus sliding process can be more stable and wear extent can be alleviated as well.

  12. How to Make the 20-cent Fallout Meter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meade, Roger Allen; Rodriguez, Serena R.; Alvarez, Luis

    Nobel Prize winner Luis Alvarez published an article on how to build a homemade fallout meter in the November 12, 1961, issue of the Sunday supplement This Week Magazine. A yellowed copy of the article was recently found in the files of the Radiochemistry Group, C-NR, and is reproduced below in its original form.

  13. The Living Textbook of Nuclear Chemistry: A Peer-Reviewed, Web-Based, Education Resource

    ERIC Educational Resources Information Center

    Loveland, W.; Gallant, A.; Joiner, C.

    2004-01-01

    The recent developments in nuclear chemistry education are presented and an attempt is made to collect supplemental materials relating to the study and practice of nuclear chemistry. The Living Textbook of Nuclear Chemistry functions as an authoritative Web site with supplemental material for teaching nuclear and radiochemistry.

  14. Automated radiosynthesis of no-carrier-added 4-[18F]fluoroiodobenzene: a versatile building block in 18F radiochemistry.

    PubMed

    Way, Jenilee Dawn; Wuest, Frank

    2014-02-01

    4-[18F]Fluoroiodobenzene ([18F]FIB) is a versatile building block in 18F radiochemistry used in various transition metal-mediated C-C and C-N cross-coupling reactions and [18F]fluoroarylation reactions. Various synthesis routes have been described for the preparation of [18F]FIB. However, to date, no automated synthesis of [18F]FIB has been reported to allow access to larger amounts of [18F]FIB in high radiochemical and chemical purity. Herein, we describe an automated synthesis of no-carrier-added [18F]FIB on a GE TRACERlab™ FX automated synthesis unit starting from commercially available(4-iodophenyl)diphenylsulfonium triflate as the labelling precursor. [18F]FIB was prepared in high radiochemical yields of 89 ± 10% (decay-corrected, n = 7) within 60 min, including HPLC purification. The radiochemical purity exceeded 95%, and specific activity was greater than 40 GBq/μmol. Typically, from an experiment, 6.4 GBq of [18F]FIB could be obtained starting from 10.4 GBq of [18F]fluoride.

  15. Development of a beta-spectrometer using PIPS technology

    PubMed

    Courti; Goutelard; Burger; Blotin

    2000-07-01

    Various anthropogenic sources contribute to the inventory of long live beta-emitters in the environment. Studies have been carried out to obtain the 90Sr distribution in environment in order to estimate its impact in terms of radiation exposure to humans. The Laboratory routinely measures 90Sr by proportional counter after radiochemistry. An incomplete radiochemical separation leads to a deposit submitted to count polluted by natural beta-emitters. In order to confirm the result, 90Y (daughter of 90Sr), is extracted from the final radiochemical fraction and counted. The 90Y decreasing (T(1/2) = 2.67 days) is checked by successive counts over 64 h. The delay between the end of radiochemistry and the counting is imposed by 15 days to allow radioactive equilibrium between 90Sr and 90Y to be established. In order to remove this delay the purity of the 90Sr fraction source can be verified by beta-spectrometry. Thus, a beta-spectrometer is under development in collaboration with Canberra Semi-Conductor and Canberra Electronic. It consists in a PIPS detector where several silicon layers are combined. Initial results will be presented in this paper.

  16. Recent progress in [11 C]carbon dioxide ([11 C]CO2 ) and [11 C]carbon monoxide ([11 C]CO) chemistry.

    PubMed

    Taddei, Carlotta; Gee, Antony D

    2018-03-01

    [ 11 C]Carbon dioxide ([ 11 C]CO 2 ) and [ 11 C]carbon monoxide ([ 11 C]CO) are 2 attractive precursors for labelling the carbonyl position (C═O) in a vast range of functionalised molecules (eg, ureas, amides, and carboxylic acids). The development of radiosynthetic methods to produce functionalised 11 C-labelled compounds is required to enhance the radiotracers available for positron emission tomography, molecular, and medical imaging applications. Following a brief summary of secondary 11 C-precursor production and uses, the review focuses on recent progress with direct 11 C-carboxylation routes with [ 11 C]CO 2 and 11 C-carbonylation with [ 11 C]CO. Novel approaches to generate [ 11 C]CO using CO-releasing molecules (CO-RMs), such as silacarboxylic acids and disilanes, applied to radiochemistry are described and compared with standard [ 11 C]CO production methods. These innovative [ 11 C]CO synthesis strategies represent efficient and reliable [ 11 C]CO production processes, enabling the widespread use of [ 11 C]CO chemistry within the wider radiochemistry community. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Advantages and challenges in automated apatite fission track counting

    NASA Astrophysics Data System (ADS)

    Enkelmann, E.; Ehlers, T. A.

    2012-04-01

    Fission track thermochronometer data are often a core element of modern tectonic and denudation studies. Soon after the development of the fission track methods interest emerged for the developed an automated counting procedure to replace the time consuming labor of counting fission tracks under the microscope. Automated track counting became feasible in recent years with increasing improvements in computer software and hardware. One such example used in this study is the commercial automated fission track counting procedure from Autoscan Systems Pty that has been highlighted through several venues. We conducted experiments that are designed to reliably and consistently test the ability of this fully automated counting system to recognize fission tracks in apatite and a muscovite external detector. Fission tracks were analyzed in samples with a step-wise increase in sample complexity. The first set of experiments used a large (mm-size) slice of Durango apatite cut parallel to the prism plane. Second, samples with 80-200 μm large apatite grains of Fish Canyon Tuff were analyzed. This second sample set is characterized by complexities often found in apatites in different rock types. In addition to the automated counting procedure, the same samples were also analyzed using conventional counting procedures. We found for all samples that the fully automated fission track counting procedure using the Autoscan System yields a larger scatter in the fission track densities measured compared to conventional (manual) track counting. This scatter typically resulted from the false identification of tracks due surface and mineralogical defects, regardless of the image filtering procedure used. Large differences between track densities analyzed with the automated counting persisted between different grains analyzed in one sample as well as between different samples. As a result of these differences a manual correction of the fully automated fission track counts is necessary for each individual surface area and grain counted. This manual correction procedure significantly increases (up to four times) the time required to analyze a sample with the automated counting procedure compared to the conventional approach.

  18. Evaluation of residual radioactivity in human tissues associated with weapons testing at the nevada test site. Technical report, 1 June 1981-31 March 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wrenn, M.E.; Singh, N.P.; Paschoa, A.S.

    1992-11-01

    Residual radioactivity consisting of 239 Pu were measured by radiochemistry and alpha spectrometry in samples of bone and soft tissues from 100 autopsies or surgeries from northern and southwestern Utah and from control areas in Colorado and Pennsylvania. Based upon the isotopic ratio 240 Pu/239 Pu contamination was attributable to atmospheric weapons tests at the Nevada Test Site (NTS). In addition, 110 thyroid tissue samples obtained from tissue blocks made at autopsy of veterans dying at the VA hospital in Salt Lake City in the 1940's and 1950's were measured for 129 I (half life 16 million year) and 127more » I (stable) by neutron activation. The results were analyzed by year of death, by periods before and during atmospheric nuclear weapons testing at the NTS and by origin of usual residence. A model was developed to relate thyroid dose from 131 I to the measured 124/127 I ratios, and thyroid dose estimates were made based upon the measured ratios.« less

  19. Comparison of radium-228 determination in water among Australian laboratories.

    PubMed

    Zawadzki, Atun; Cook, Megan; Cutmore, Brodie; Evans, Fiona; Fierro, Daniela; Gedz, Alicea; Harrison, Jennifer J; Loosz, Tom; Medley, Peter; Mokhber-Shahin, Lida; Mullins, Sarah; Sdraulig, Sandra

    2017-11-01

    The National Health and Medical Research Council and Natural Resource Management Ministerial Council of Australia developed the current Australian Drinking Water Guidelines which recommend an annual radiation dose value of 1 mSv year -1 . One of the potential major contributors to the radiation dose from drinking water is radium-228, a naturally occurring radionuclide arising from the thorium decay series. Various methods of analysing for radium-228 in water have been established and adapted by analytical radiochemistry laboratories. Seven laboratories in Australia participated in analysing radium-228 spiked water samples with activity concentrations ranging from 6 mBq L -1 to 20 Bq L -1 . The aim of the exercise was to compare and evaluate radium-228 results reported by the participating laboratories, the methods used and the detection limits. This paper presents the outcome of the exercise. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  20. AN OVERVIEW ON PET RADIOCHEMISTRY: PART 2 - RADIOMETALS.

    PubMed

    Brandt, Marie; Cardinale, Jens; Aulsebrook, Margaret; Gasser, Gilles; Mindt, Thomas

    2018-05-10

    This continuing educational review provides an overview on radiometals used for PET. General aspects of radiometal-based radiotracers are covered and the most frequently applied metallic PET radionuclides 68 Ga, 89 Zr, and 64 Cu are highlighted with a discussion of their strengths and limitations. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  1. Sampling Analysis of Aerosol Retrievals by Single-track Spaceborne Instrument for Climate Research

    NASA Astrophysics Data System (ADS)

    Geogdzhayev, I. V.; Cairns, B.; Alexandrov, M. D.; Mishchenko, M. I.

    2012-12-01

    We examine to what extent the reduced sampling of along-track instruments such as Cloud-Aerosol LIdar with Orthogonal Polarisation (CALIOP) and Aerosol Polarimetry Sensor (APS) affects the statistical accuracy of a satellite climatology of retrieved aerosol optical thickness (AOT) by sub-sampling the retrievals from a wide-swath imaging instrument (MODerate resolution Imaging Spectroradiometer (MODIS)). Owing to its global coverage, longevity, and extensive characterization versus ground based data, the MODIS level-2 aerosol product is an instructive testbed for assessing sampling effects on climatic means derived from along-track instrument data. The advantage of using daily pixel-level aerosol retrievals from MODIS is that limitations caused by the presence of clouds are implicit in the sample, so that their seasonal and regional variations are captured coherently. However, imager data can exhibit cross-track variability of monthly global mean AOTs caused by a scattering-angle dependence. We found that single along-track values can deviate from the imager mean by 15% over land and by more than 20% over ocean. This makes it difficult to separate natural variability from viewing-geometry artifacts complicating direct comparisons of an along-track sub-sample with the full imager data. To work around this problem, we introduce "flipped-track" sampling which, by design, is statistically equivalent to along-track sampling and while closely approximating the imager in terms of angular artifacts. We show that the flipped-track variability of global monthly mean AOT is much smaller than the cross-track one for the 7-year period considered. Over the ocean flipped-track standard error is 85% less than the cross-track one (absolute values 0.0012 versus 0.0079), and over land it is about one third of the cross-track value (0.0054 versus 0.0188) on average. This allows us to attribute the difference between the two errors to the viewing-geometry artifacts and obtain an upper limit on AOT errors caused by along-track sampling. Our results show that using along-track subsets of MODIS aerosol data directly to analyze the sampling adequacy of single-track instruments can lead to false conclusions owing to the apparent enhancement of natural aerosol variability by the track-to-track artifacts. The analysis based on the statistics of the flipped-track means yields better estimates because it allows for better separation of the viewing-geometry artifacts and true natural variability. Published assessments estimate that a global AOT change of 0.01 would yield a climatically important flux change of 0.25 W/m2. Since the standard error estimates that we have obtained are comfortably below 0.01, we conclude that along-track instruments flown on a sun-synchronous orbiting platform have sufficient spatial sampling for estimating aerosol effects on climate. Since AOT is believed to be the most variable characteristic of tropospheric aerosols, our results imply that pixel-wide along-track coverage also provides adequate statistical representation of the global distribution of aerosol microphysical parameters.

  2. Interpretation of stable isotope, denitrification, and groundwater age data for samples collected from Sandia National Laboratories /New Mexico (SNL/NM) Burn Site Groundwater Area of Concern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madrid, V.; Singleton, M. J.; Visser, A.

    This report combines and summarizes results for two groundwater-sampling events (October 2012 and October/November 2015) from the Sandia National Laboratories/New Mexico (SNL/NM) Burn Site Groundwater (BSG) Area of Concern (AOC) located in the Lurance Canyon Arroyo southeast of Albuquerque, NM in the Manzanita Mountains. The first phase of groundwater sampling occurred in October 2012 including samples from 19 wells at three separate sites that were analyzed by the Environmental Radiochemistry Laboratory at Lawrence Livermore National Laboratory as part of a nitrate Monitored Natural Attenuation (MNA) evaluation. The three sites (BSG, Technical Area-V, and Tijeras Arroyo) are shown on the regionalmore » hydrogeologic map and described in the Sandia Annual Groundwater Monitoring Report. The first phase of groundwater sampling included six monitoring wells at the Burn Site, eight monitoring wells at Technical Area-V, and five monitoring wells at Tijeras Arroyo. Each groundwater sample was analyzed using the two specialized analytical methods, age-dating and denitrification suites. In September 2015, a second phase of groundwater sampling took place at the Burn Site including 10 wells sampled and analyzed by the same two analytical suites. Five of the six wells sampled in 2012 were resampled in 2015. This report summarizes results from two sampling events in order to evaluate evidence for in situ denitrification, the average age of the groundwater, and the extent of recent recharge of the bedrock fracture system beneath the BSG AOC.« less

  3. Large Area Solid Radiochemistry (LASR) collector at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Waltz, Cory; Gharibyan, Narek; Hardy, Mike; Shaughnessy, Dawn; Jedlovec, Don; Smith, Cal

    2017-08-01

    The flux of neutrons and charged particles produced from inertial confinement fusion experiments at the National Ignition Facility (NIF) induces measurable concentrations of nuclear reaction products in various target materials. The collection and radiochemical analysis of the post-shot debris can be utilized as an implosion diagnostic to obtain information regarding fuel areal density and ablator-fuel mixing. Furthermore, assessment of the debris from specially designed targets, material doped in capsules or mounted on the external surface of the target assembly, can support experiments relevant to nuclear forensic research. To collect the shot debris, we have deployed the Large Area Solid Radiochemistry Collector (LASR) at NIF. LASR uses a main collector plate that contains a large collection foil with an exposed 20 cm diameter surface located ˜50 cm from the NIF target. This covers ˜0.12 steradians, or about 1% of the total solid angle. We will describe the design, analysis, and operation of this experimental platform as well as the initial results. To speed up the design process 3-dimensional printing was utilized. Design analysis includes the dynamic loading of the NIF target vaporized mass, which was modeled using LS-DYNA.

  4. Integrated research training program of excellence in radiochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapi, Suzanne

    2015-09-18

    The overall goal of this “Integrated Research Training Program of Excellence in Radiochemistry” is to provide a rich and deep research experience in state-of-the-art radiochemistry and in the fundamentals of radioisotopic labeling and tracer methodology to develop researchers who are capable of meeting the challenges of designing and preparing radiotracers of broad applicability for monitoring and imaging diverse biological systems and environmental processes. This program was based in the Departments of Radiology and Radiation Oncology at Washington University Medical School and the Department of Chemistry at the University of Illinois at Urbana Champaign, and it was initially directed by Professormore » Michael J. Welch as Principal Investigator. After his passing in 2012, the program was led by Professor Suzanne E. Lapi. Programmatic content and participant progress was overseen by an Internal Advisory Committee of senior investigators consisting of the PIs, Professor Mach from the Department of Radiology at Washington University and Professor John A. Katzenellenbogen of the Department of Chemistry at the University of Illinois. A small External Advisory Committee to give overall program guidance was also constituted of experts in radiolabeled compounds and in their applications in environmental and plant science.« less

  5. Pd-mediated rapid cross-couplings using [(11) C]methyl iodide: groundbreaking labeling methods in (11) C radiochemistry.

    PubMed

    Doi, Hisashi

    2015-03-01

    Prof. Bengt Långström is a pioneer in the field of chemistry-driven positron emission tomography (PET) imaging. He has developed a variety of excellent radiolabeling methodologies using the methods of organic chemistry, with the aim of widening the potential of PET in the study of life. Among his groundbreaking achievements in (11) C radiochemistry, there is the discovery of the Pd-mediated rapid cross-coupling reaction using [(11) C]methyl iodide. It was first reported by his Uppsala group in 1994-1995 and was further investigated by his and other groups with a view of enhancing its generality and practicability. This reaction is currently considered one of the basic methods for (11) C-labeling of low-weight organic compounds. This paper presents a short summary of the background and the development of Pd-mediated rapid cross-couplings of [(11) C]methyl iodide, with a focus not only on organostannanes, but also on organoboranes, organozincs, and terminal acetylene compounds. All these reactions have proven to be dependable (11) C-labeling methodologies that use chemically reliable carbon-carbon bond formation reactions. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Inverse electron demand Diels-Alder reactions in chemical biology.

    PubMed

    Oliveira, B L; Guo, Z; Bernardes, G J L

    2017-08-14

    The emerging inverse electron demand Diels-Alder (IEDDA) reaction stands out from other bioorthogonal reactions by virtue of its unmatchable kinetics, excellent orthogonality and biocompatibility. With the recent discovery of novel dienophiles and optimal tetrazine coupling partners, attention has now been turned to the use of IEDDA approaches in basic biology, imaging and therapeutics. Here we review this bioorthogonal reaction and its promising applications for live cell and animal studies. We first discuss the key factors that contribute to the fast IEDDA kinetics and describe the most recent advances in the synthesis of tetrazine and dienophile coupling partners. Both coupling partners have been incorporated into proteins for tracking and imaging by use of fluorogenic tetrazines that become strongly fluorescent upon reaction. Selected notable examples of such applications are presented. The exceptional fast kinetics of this catalyst-free reaction, even using low concentrations of coupling partners, make it amenable for in vivo radiolabelling using pretargeting methodologies, which are also discussed. Finally, IEDDA reactions have recently found use in bioorthogonal decaging to activate proteins or drugs in gain-of-function strategies. We conclude by showing applications of the IEDDA reaction in the construction of biomaterials that are used for drug delivery and multimodal imaging, among others. The use and utility of the IEDDA reaction is interdisciplinary and promises to revolutionize chemical biology, radiochemistry and materials science.

  7. Molecular Innovations Toward Theranostics of Aggressive Prostate Cancer

    DTIC Science & Technology

    2017-11-01

    the positive control. 3. Proposed biodistribution, pharmacokinetics, and potential cytotoxicity evaluation experiments were accomplished. Task 4...Radiochemistry and in vitro assay of the synthesized theranostic agents (Sun/Hsieh) Task 5: In vivo and PET/CT imaging evaluation of the synthesized...were designed, synthesized and evaluated using a well-validated model ligand (integrin αvβ3 ligand). Our work suggests that the chirality of BFC

  8. Modeled Neutron and Charged-Particle Induced Nuclear Reaction Cross Sections for Radiochemistry in the Region of Yttrium, Zirconium, Niobium, and Molybdenum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, R D; Kelley, K; Dietrich, F S

    2006-06-13

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron, proton, and deuteron induced nuclear reaction cross sections for targets ranging from strontium (Z = 38) to rhodium (Z = 45).

  9. Estimating Am-241 activity in the body: comparison of direct measurements and radiochemical analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, Timothy P.; Tolmachev, Sergei Y.; James, Anthony C.

    2009-06-01

    The assessment of dose and ultimately the health risk from intakes of radioactive materials begins with estimating the amount actually taken into the body. An accurate estimate provides the basis to best assess the distribution in the body, the resulting dose, and ultimately the health risk. This study continues the time-honored practice of evaluating the accuracy of results obtained using in vivo measurement methods and techniques. Results from the radiochemical analyses of the 241Am activity content of tissues and organs from four donors to the United States Transuranium and Uranium Registries were compared to the results from direct measurements ofmore » radioactive material in the body performed in vivo and post mortem. Two were whole body donations and two were partial body donations The skeleton was the organ with the highest deposition of 241Am activity in all four cases. The activities ranged from 30 Bq to 300 Bq. The skeletal estimates obtained from measurements over the forehead were within 20% of the radiochemistry results in three cases and differed by 78% in one case. The 241Am lung activity estimates ranged from 1 Bq to 30 Bq in the four cases. The results from the direct measurements were within 40% of the radiochemistry results in 3 cases and within a factor of 3 for the other case. The direct measurement estimates of liver activity ranged from 2 Bq to 60 Bq and were generally lower than the radiochemistry results. The results from this study suggest that the measurement methods and calibration techniques used at the In Vivo Radiobioassay and Research Facility to quantify the activity in the lungs, skeleton and liver are reasonable under the most challenging conditions where there is 241Am activity in multiple organs. These methods and techniques are comparable to those used at other Department of Energy sites. This suggests that the current in vivo methods and calibration techniques provide reasonable estimates of radioactive material in the body. Not unexpectedly, there can be significant uncertainty in the estimates especially when activity is also present in other organs.« less

  10. Self-paced model learning for robust visual tracking

    NASA Astrophysics Data System (ADS)

    Huang, Wenhui; Gu, Jason; Ma, Xin; Li, Yibin

    2017-01-01

    In visual tracking, learning a robust and efficient appearance model is a challenging task. Model learning determines both the strategy and the frequency of model updating, which contains many details that could affect the tracking results. Self-paced learning (SPL) has recently been attracting considerable interest in the fields of machine learning and computer vision. SPL is inspired by the learning principle underlying the cognitive process of humans, whose learning process is generally from easier samples to more complex aspects of a task. We propose a tracking method that integrates the learning paradigm of SPL into visual tracking, so reliable samples can be automatically selected for model learning. In contrast to many existing model learning strategies in visual tracking, we discover the missing link between sample selection and model learning, which are combined into a single objective function in our approach. Sample weights and model parameters can be learned by minimizing this single objective function. Additionally, to solve the real-valued learning weight of samples, an error-tolerant self-paced function that considers the characteristics of visual tracking is proposed. We demonstrate the robustness and efficiency of our tracker on a recent tracking benchmark data set with 50 video sequences.

  11. Automation of (64)Cu production at Turku PET Centre.

    PubMed

    Elomaa, Viki-Veikko; Jurttila, Jori; Rajander, Johan; Solin, Olof

    2014-07-01

    At Turku PET Centre automation for handling solid targets for the production of (64)Cu has been built. The system consists of a module for moving the target from the irradiation position into a lead transport shield and a robotic-arm assisted setup for moving the target within radiochemistry laboratory. The main motivation for designing automation arises from radiation hygiene. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Improving cancer treatment with cyclotron produced radionuclides. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, S.M.; Finn, R.D.

    1992-08-04

    Our goal is to improve the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The grant includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. The radiochemistry group seeks to develop innovative cyclotron targetry, radiopharmaceuticals, and radiolabeled antibodies, which are then used to assess important unanswered questions in tumor pharmacology and immunology. Examples include selected positron emitting radionuclides, such as Iodine-124, and Ga-66; I-124, I-123, I-131 labeled iododeoxyuridine, C-11 colchicine, and antimetabolites, like C-11 methotrexate; and radiolabeled antibodies, 3F8, M195, A33, and MRK16 for application in the pharmacology and immunologymore » projects. The pharmacology program studies tumor resistance to chemotherapy, particularly the phenomenon of multidrug resistance and the relationship between tumor uptake and retention and the tumor response for anti-metabolite drugs. The immunology program studies the physiology of antibody localization at the tissue level as the basis for novel approaches to improving tumor localization such as through the use of an artificial lymphatic system which mechanically reduces intratumoral pressures in tumors in vivo. Quantitative imaging approaches based on PET and SPECT in radioimmunotherapy are studied to give greater insight into the physiology of tumor localization and dosimetry.« less

  13. Improving cancer treatment with cyclotron produced radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, S.M.; Finn, R.D.

    1992-08-04

    Our goal is to improve the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The grant includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. The radiochemistry group seeks to develop innovative cyclotron targetry, radiopharmaceuticals, and radiolabeled antibodies, which are then used to assess important unanswered questions in tumor pharmacology and immunology. Examples include selected positron emitting radionuclides, such as Iodine-124, and Ga-66; I-124, I-123, I-131 labeled iododeoxyuridine, C-11 colchicine, and antimetabolites, like C-11 methotrexate; and radiolabeled antibodies, 3F8, M195, A33, and MRK16 for application in the pharmacology and immunologymore » projects. The pharmacology program studies tumor resistance to chemotherapy, particularly the phenomenon of multidrug resistance and the relationship between tumor uptake and retention and the tumor response for anti-metabolite drugs. The immunology program studies the physiology of antibody localization at the tissue level as the basis for novel approaches to improving tumor localization such as through the use of an artificial lymphatic system which mechanically reduces intratumoral pressures in tumors in vivo. Quantitative imaging approaches based on PET and SPECT in radioimmunotherapy are studied to give greater insight into the physiology of tumor localization and dosimetry.« less

  14. Robust online tracking via adaptive samples selection with saliency detection

    NASA Astrophysics Data System (ADS)

    Yan, Jia; Chen, Xi; Zhu, QiuPing

    2013-12-01

    Online tracking has shown to be successful in tracking of previously unknown objects. However, there are two important factors which lead to drift problem of online tracking, the one is how to select the exact labeled samples even when the target locations are inaccurate, and the other is how to handle the confusors which have similar features with the target. In this article, we propose a robust online tracking algorithm with adaptive samples selection based on saliency detection to overcome the drift problem. To deal with the problem of degrading the classifiers using mis-aligned samples, we introduce the saliency detection method to our tracking problem. Saliency maps and the strong classifiers are combined to extract the most correct positive samples. Our approach employs a simple yet saliency detection algorithm based on image spectral residual analysis. Furthermore, instead of using the random patches as the negative samples, we propose a reasonable selection criterion, in which both the saliency confidence and similarity are considered with the benefits that confusors in the surrounding background are incorporated into the classifiers update process before the drift occurs. The tracking task is formulated as a binary classification via online boosting framework. Experiment results in several challenging video sequences demonstrate the accuracy and stability of our tracker.

  15. Radioactivity in trinitite six decades later.

    PubMed

    Parekh, Pravin P; Semkow, Thomas M; Torres, Miguel A; Haines, Douglas K; Cooper, Joseph M; Rosenberg, Peter M; Kitto, Michael E

    2006-01-01

    The first nuclear explosion test, named the Trinity test, was conducted on July 16, 1945 near Alamogordo, New Mexico. In the tremendous heat of the explosion, the radioactive debris fused with the local soil into a glassy material named Trinitite. Selected Trinitite samples from ground zero (GZ) of the test site were investigated in detail for radioactivity. The techniques used included alpha spectrometry, high-efficiency gamma-ray spectrometry, and low-background beta counting, following the radiochemistry for selected radionuclides. Specific activities were determined for fission products (90Sr, 137Cs), activation products (60Co, 133Ba, 152Eu, 154Eu, 238Pu, 241Pu), and the remnants of the nuclear fuel (239Pu, 240Pu). Additionally, specific activities of three natural radionuclides (40K, 232Th, 238U) and their progeny were measured. The determined specific activities of radionuclides and their relationships are interpreted in the context of the fission process, chemical behavior of the elements, as well as the nuclear explosion phenomenology.

  16. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR TRACKING SYSTEM (UA-D-28.0)

    EPA Science Inventory

    The Arizona Border Study used a system that tracks what occurs to a sample and provides the status of that sample at any given time. In essence, the tracking system provides an electronic chain of custody record for each sample as it moves through the project. This is achieved ...

  17. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR TRACKING SYSTEM (UA-D-28.0)

    EPA Science Inventory

    The NHEXAS Arizona project designed a system that tracks what occurs to a sample and provides the status of that sample at any given time. In essence, the tracking system provides an electronic chain of custody record for each sample as it moves through the project. This is ach...

  18. Image analysis used to count and measure etched tracks from ionizing radiation

    NASA Technical Reports Server (NTRS)

    Blanford, George E.; Schulz, Cindy K.

    1995-01-01

    We have developed techniques to use digitized scanning electron micrographs and computer image analysis programs to measure track densities in lunar soil grains and plastic dosimeters. Tracks in lunar samples are formed by highly ionizing solar energetic particles and cosmic rays during near surface exposure on the Moon. The track densities are related to the exposure conditions (depth and time). Distributions of the number of grains as a function of their track densities can reveal the modality of soil maturation. We worked on two samples identified for a consortium study of lunar weathering effects, 61221 and 67701. They were prepared by the lunar curator's staff as polished grain mounts that were etched in boiling 1 N NaOH for 6 h to reveal tracks. We determined that backscattered electron images taken at 10 percent contrast and approximately 50 percent brightness produced suitable high contrast images for analysis. We used the NIH Image program to cut out areas that were unsuitable for measurement such as edges, cracks, etc. We ascertained a gray-scale threshold of 25 to separate tracks from background. We used the computer to count everything that was two pixels or greater in size and to measure the area to obtain track densities. We found an excellent correlation with manual measurements for track densities below 1 x 10(exp 8) cm(exp -2). For track densities between 1 x 10(exp 8) cm(exp -2) to 1 x 10(exp 9) cm(exp -2) we found that a regression formula using the percentage area covered by tracks gave good agreement with manual measurements. We determined the track density distributions for 61221 and 67701. Sample 61221 is an immature sample, but not pristine. Sample 67701 is a submature sample that is very close to being fully mature. Because only 10 percent of the grains have track densities less than 10(exp 9) cm(exp -2), it is difficulty to determine whether the sample matured in situ or is a mixture of a mature and a submature soil. Although our analysis of plastic dosimeters is at an early stage of development, results are encouraging. The dosimeter was etched in 6.25 N NaOH at 70 deg C for 16 h. We took 200x secondary electron images of the sample and used the NIH Image software to count and measure major and minor diameters of the etched tracks. We calculated the relative track etch rate from a formula that relates it to the major and minor diameters. We made a histogram of the number of tracks versus their relative etch rate. The relative track etching rate is proportional to the linear energy transfer of the particle. With appropriate calibration experiments, the histogram could be used to calculate the radiation dose.

  19. Image analysis used to count and measure etched tracks from ionizing radiation

    NASA Astrophysics Data System (ADS)

    Blanford, George E.; Schulz, Cindy K.

    1995-07-01

    We have developed techniques to use digitized scanning electron micrographs and computer image analysis programs to measure track densities in lunar soil grains and plastic dosimeters. Tracks in lunar samples are formed by highly ionizing solar energetic particles and cosmic rays during near surface exposure on the Moon. The track densities are related to the exposure conditions (depth and time). Distributions of the number of grains as a function of their track densities can reveal the modality of soil maturation. We worked on two samples identified for a consortium study of lunar weathering effects, 61221 and 67701. They were prepared by the lunar curator's staff as polished grain mounts that were etched in boiling 1 N NaOH for 6 h to reveal tracks. We determined that backscattered electron images taken at 10 percent contrast and approximately 50 percent brightness produced suitable high contrast images for analysis. We used the NIH Image program to cut out areas that were unsuitable for measurement such as edges, cracks, etc. We ascertained a gray-scale threshold of 25 to separate tracks from background. We used the computer to count everything that was two pixels or greater in size and to measure the area to obtain track densities. We found an excellent correlation with manual measurements for track densities below 1 x 10(exp 8) cm(exp -2). For track densities between 1 x 10(exp 8) cm(exp -2) to 1 x 10(exp 9) cm(exp -2) we found that a regression formula using the percentage area covered by tracks gave good agreement with manual measurements. We determined the track density distributions for 61221 and 67701. Sample 61221 is an immature sample, but not pristine. Sample 67701 is a submature sample that is very close to being fully mature. Because only 10 percent of the grains have track densities less than 10(exp 9) cm(exp -2), it is difficulty to determine whether the sample matured in situ or is a mixture of a mature and a submature soil. Although our analysis of plastic dosimeters is at an early stage of development, results are encouraging. The dosimeter was etched in 6.25 N NaOH at 70 deg C for 16 h.

  20. NM-Scale Anatomy of an Entire Stardust Carrot Track

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Keller, L. P.; Clemett, S. J.; Messenger, S.

    2009-01-01

    Comet Wild-2 samples collected by NASA s Stardust mission are extremely complex, heterogeneous, and have experienced wide ranges of alteration during the capture process. There are two major types of track morphologies: "carrot" and "bulbous," that reflect different structural/compositional properties of the impactors. Carrot type tracks are typically produced by compact or single mineral grains which survive essentially intact as a single large terminal particle. Bulbous tracks are likely produced by fine-grained or organic-rich impactors [1]. Owing to their challenging nature and especially high value of Stardust samples, we have invested considerable effort in developing both sample preparation and analytical techniques tailored for Stardust sample analyses. Our report focuses on our systematic disassembly and coordinated analysis of Stardust carrot track #112 from the mm to nm-scale.

  1. Microfluidic technology platforms for synthesizing, labeling and measuring the kinetics of transport and biochemical reactions for developing molecular imaging probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phelps, Michael E.

    2009-09-01

    Radiotracer techniques are used in environmental sciences, geology, biology and medicine. Radiotracers with Positron Emission Tomography (PET) provided biological examinations of ~3 million patients 2008. Despite the success of positron labeled tracers in many sciences, there is limited access in an affordable and convenient manner to develop and use new tracers. Integrated microfluidic chips are a new technology well matched to the concentrations of tracers. Our goal is to develop microfluidic chips and new synthesis approaches to enable wide dissemination of diverse types of tracers at low cost, and to produce new generations of radiochemists for which there are manymore » unfilled jobs. The program objectives are to: 1. Develop an integrated microfluidic platform technology for synthesizing and 18F-labeling diverse arrays of different classes of molecules. 2. Incorporate microfluidic chips into small PC controlled devices (“Synthesizer”) with a platform interfaced to PC for electronic and fluid input/out control. 3. Establish a de-centralized model with Synthesizers for discovering and producing molecular imaging probes, only requiring delivery of inexpensive [18F]fluoride ion from commercial PET radiopharmacies vs the centralized approach of cyclotron facilities synthesizing and shipping a few different types of 18F-probes. 4. Develop a position sensitive avalanche photo diode (PSAPD) camera for beta particles embedded in a microfluidic chip for imaging and measuring transport and biochemical reaction rates to valid new 18F-labeled probes in an array of cell cultures. These objectives are met within a research and educational program integrating radio-chemistry, synthetic chemistry, biochemistry, engineering and biology in the Crump Institute for Molecular Imaging. The Radiochemistry Training Program exposes PhD and post doctoral students to molecular imaging in vitro in cells and microorganisms in microfluidic chips and in vivo with PET, from new technologies for radiochemistry (macro to micro levels), biochemistry and biology to imaging principles, tracer kinetics, pharmacokinetics and biochemical assays. New generations of radiochemists will be immersed in the biochemistry and biology for which their labeled probes are being developed for assays of these processes. In this program engineers and radio-chemists integrate the principles of microfluidics and radiolabeling along with proper system design and chemistry rule sets to yield Synthesizers enabling biological and pharmaceutical scientists to develop diverse arrays of probes to pursue their interests. This progression would allow also radiochemists to focus on the further evolution of rapid, high yield synthetic reactions with new enabling technologies, rather than everyday production of radiotracers that should be done by technologists. The invention of integrated circuits in electronics established a platform technology that allowed an evolution of ideas and applications far beyond what could have been imagined at the beginning. Rather than provide a technology for the solution to a single problem, it is hoped that microfluidic radiochemistry will be an enabling platform technology for others to solve many problems. As part of this objective, another program goal is to commercialize the technologies that come from this work so that they can be provided to others who wish to use it.« less

  2. Computer image analysis of etched tracks from ionizing radiation

    NASA Technical Reports Server (NTRS)

    Blanford, George E.

    1994-01-01

    I proposed to continue a cooperative research project with Dr. David S. McKay concerning image analysis of tracks. Last summer we showed that we could measure track densities using the Oxford Instruments eXL computer and software that is attached to an ISI scanning electron microscope (SEM) located in building 31 at JSC. To reduce the dependence on JSC equipment, we proposed to transfer the SEM images to UHCL for analysis. Last summer we developed techniques to use digitized scanning electron micrographs and computer image analysis programs to measure track densities in lunar soil grains. Tracks were formed by highly ionizing solar energetic particles and cosmic rays during near surface exposure on the Moon. The track densities are related to the exposure conditions (depth and time). Distributions of the number of grains as a function of their track densities can reveal the modality of soil maturation. As part of a consortium effort to better understand the maturation of lunar soil and its relation to its infrared reflectance properties, we worked on lunar samples 67701,205 and 61221,134. These samples were etched for a shorter time (6 hours) than last summer's sample and this difference has presented problems for establishing the correct analysis conditions. We used computer counting and measurement of area to obtain preliminary track densities and a track density distribution that we could interpret for sample 67701,205. This sample is a submature soil consisting of approximately 85 percent mature soil mixed with approximately 15 percent immature, but not pristine, soil.

  3. Partnership for a Drug-Free America: Partnership Attitude Tracking Study. Teens: Ethnic and Racial Trends, Spring 2002.

    ERIC Educational Resources Information Center

    Delaney, Barbara

    The annual Partnership Attitude Tracking Study (PATS) tracks consumers' attitudes about illegal drugs. PATS consists of two nationally projectable samples: a teen sample for students in grades 7-12 and a parent sample. The 2002 PATS, conducted in homes and schools, collected data using self-report surveys. Results indicate that after a decade of…

  4. Performance of the all-digital data-transition tracking loop in the advanced receiver

    NASA Astrophysics Data System (ADS)

    Cheng, U.; Hinedi, S.

    1989-11-01

    The performance of the all-digital data-transition tracking loop (DTTL) with coherent or noncoherent sampling is described. The effects of few samples per symbol and of noncommensurate sampling rates and symbol rates are addressed and analyzed. Their impacts on the loop phase-error variance and the mean time to lose lock (MTLL) are quantified through computer simulations. The analysis and preliminary simulations indicate that with three to four samples per symbol, the DTTL can track with negligible jitter because of the presence of earth Doppler rate. Furthermore, the MTLL is also expected to be large engough to maintain lock over a Deep Space Network track.

  5. Molecular Innovations Toward Theranostics of Aggressive Prostate Cancer

    DTIC Science & Technology

    2015-09-01

    Xiankai Sun, PhD CONTRACTING ORGANIZATION: University of Texas Southwestern Medical Center, Dallas, TX 75390 REPORT DATE : September 2015 TYPE OF REPORT...number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) September 2015 2. REPORT TYPE Annual 3. DATES COVERED (From...toxicity. To date , we have developed the radiochemistry procedure to label the T-SMDC with 68Ga efficiently. We have started evaluating its therapeutic

  6. Radiochemistry Research: Progress Report, October 1, 1974 to September 30, 1975

    DOE R&D Accomplishments Database

    Rowland, F. S.

    1975-01-01

    A major effort has been made this year to pursue details of the effects of the chlorofluoromethanes in the environment. The AEC report written in September, 1974, was revised and published as a review article in Reviews of Geophysics and Space Physics. A shorter description was published in the New Scientist in December, 1974. Three additional papers were published on the stratospheric chlorine problem. Testimony was provided at various hearings.

  7. Rats track odour trails accurately using a multi-layered strategy with near-optimal sampling.

    PubMed

    Khan, Adil Ghani; Sarangi, Manaswini; Bhalla, Upinder Singh

    2012-02-28

    Tracking odour trails is a crucial behaviour for many animals, often leading to food, mates or away from danger. It is an excellent example of active sampling, where the animal itself controls how to sense the environment. Here we show that rats can track odour trails accurately with near-optimal sampling. We trained rats to follow odour trails drawn on paper spooled through a treadmill. By recording local field potentials (LFPs) from the olfactory bulb, and sniffing rates, we find that sniffing but not LFPs differ between tracking and non-tracking conditions. Rats can track odours within ~1 cm, and this accuracy is degraded when one nostril is closed. Moreover, they show path prediction on encountering a fork, wide 'casting' sweeps on encountering a gap and detection of reappearance of the trail in 1-2 sniffs. We suggest that rats use a multi-layered strategy, and achieve efficient sampling and high accuracy in this complex task.

  8. Prototype development of ion exchanging alpha detectors

    NASA Astrophysics Data System (ADS)

    Krupp, Dominik; Scherer, Ulrich W.

    2018-07-01

    In contemporary alpha particle spectrometry, the sample preparation is separated from the detection of the radionuclides. The sample preparation itself requires much time and the equipment of a radiochemistry lab. If sample preparation and detection could be combined in one step, a huge time-saving potential becomes available. One way to realize such a combination is described here. The concept was explored by simulations with the well-established computer programs SRIM and AASI. In a proof of concept, the active surface of commercially available alpha detectors was modified with sulfonic acid groups as a well-known type of cation exchanger. It was shown, that in contrast to a pristine detector, a chemically modified detector is able to extract uranium-238 and -234 selectively as uranyl cations onto the detector surface from a diluted [238/234U]uranyl acetate solution. It was possible to measure directly in the sample solution for one week or to prepare the modified detector surfaces within 30 s for measurements in conventional alpha chambers. In either case, the full width at half maximum of the measured spectra was around 100 keV, allowing a clear nuclide identification. After regenerating the cation exchanger surfaces by rinsing with hydrochloric acid the typical uranium spectra had disappeared, proving chemical bonding of the uranium. Due to the large variety of potential functional groups this new way of alpha spectrometry could be beneficial for all fields of alpha particle spectrometry, from environmental analysis, over security measurements to studies of the heaviest elements.

  9. Statistical and sampling issues when using multiple particle tracking

    NASA Astrophysics Data System (ADS)

    Savin, Thierry; Doyle, Patrick S.

    2007-08-01

    Video microscopy can be used to simultaneously track several microparticles embedded in a complex material. The trajectories are used to extract a sample of displacements at random locations in the material. From this sample, averaged quantities characterizing the dynamics of the probes are calculated to evaluate structural and/or mechanical properties of the assessed material. However, the sampling of measured displacements in heterogeneous systems is singular because the volume of observation with video microscopy is finite. By carefully characterizing the sampling design in the experimental output of the multiple particle tracking technique, we derive estimators for the mean and variance of the probes’ dynamics that are independent of the peculiar statistical characteristics. We expose stringent tests of these estimators using simulated and experimental complex systems with a known heterogeneous structure. Up to a certain fundamental limitation, which we characterize through a material degree of sampling by the embedded probe tracking, these estimators can be applied to quantify the heterogeneity of a material, providing an original and intelligible kind of information on complex fluid properties. More generally, we show that the precise assessment of the statistics in the multiple particle tracking output sample of observations is essential in order to provide accurate unbiased measurements.

  10. Nuclear Forensics and Radiochemistry: Cross Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rundberg, Robert S.

    The neutron activation of components in a nuclear device can provide useful signatures of weapon design or sophistication. This lecture will cover some of the basics of neutron reaction cross sections. Nuclear reactor cross sections will also be presented to illustrate the complexity of convolving neutron energy spectra with nuclear excitation functions to calculate useful effective reactor cross sections. Deficiencies in the nuclear database will be discussed along with tools available at Los Alamos to provide new neutron cross section data.

  11. The metabolism of the human brain studied with positron emission tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greitz, T.; Ingvar, D.H.; Widen, L.

    1985-01-01

    This volume presents coverage of the use of positron emission tomography (PET) to study the human brain. The contributors assess new developments in high-resolution positron emission tomography, cyclotrons, radiochemistry, and tracer kinetic models, and explore the use of PET in brain energy metabolism, blood flow, and protein synthesis measurements, receptor analysis, and pH determinations, In addition, they discuss the relevance and applications of positron emission tomography from the perspectives of physiology, neurology, and psychiatry.

  12. Whole-rock uranium analysis by fission track activation

    NASA Technical Reports Server (NTRS)

    Weiss, J. R.; Haines, E. L.

    1974-01-01

    We report a whole-rock uranium method in which the polished sample and track detector are separated in a vacuum chamber. Irradiation with thermal neutrons induces uranium fission in the sample, and the detector records the integrated fission track density. Detection efficiency and geometric factors are calculated and compared with calibration experiments.

  13. Investigations of lunar materials

    NASA Technical Reports Server (NTRS)

    Comstock, G. M.; Fvwaraye, A. O.; Fleischer, R. L.; Hart, H. R., Jr.

    1972-01-01

    The investigations were directed at determining the radiation history and surface chronology of lunar materials using the etched particle track technique. The major lunar materials studied are the igneous rocks and double core from Apollo 12, the breccia and soil samples from Apollo 14, and the core samples from Luna 16. In the course of this work two new and potentially important observations were made: (1) Cosmic ray-induced spallation-recoil tracks were identified. The density of such tracks, when compared with the density of tracks induced by a known flux of accelerator protons, yields the time of exposure of a sample within the top meter or two of moon's surface. (2) Natural, fine scale plastic deformation was found to have fragmented pre-existing charged particle tracks, allowing the dating of the mechanical event causing the deformation.

  14. Surveying drainage culvert use by carnivores: sampling design and cost-benefit analyzes of track-pads vs. video-surveillance methods.

    PubMed

    Mateus, Ana Rita A; Grilo, Clara; Santos-Reis, Margarida

    2011-10-01

    Environmental assessment studies often evaluate the effectiveness of drainage culverts as habitat linkages for species, however, the efficiency of the sampling designs and the survey methods are not known. Our main goal was to estimate the most cost-effective monitoring method for sampling carnivore culvert using track-pads and video-surveillance. We estimated the most efficient (lower costs and high detection success) interval between visits (days) when using track-pads and also determined the advantages of using each method. In 2006, we selected two highways in southern Portugal and sampled 15 culverts over two 10-day sampling periods (spring and summer). Using the track-pad method, 90% of the animal tracks were detected using a 2-day interval between visits. We recorded a higher number of crossings for most species using video-surveillance (n = 129) when compared with the track-pad technique (n = 102); however, the detection ability using the video-surveillance method varied with type of structure and species. More crossings were detected in circular culverts (1 m and 1.5 m diameter) than in box culverts (2 m to 4 m width), likely because video cameras had a reduced vision coverage area. On the other hand, carnivore species with small feet such as the common genet Genetta genetta were detected less often using the track-pad surveying method. The cost-benefit analyzes shows that the track-pad technique is the most appropriate technique, but video-surveillance allows year-round surveys as well as the behavior response analyzes of species using crossing structures.

  15. ASTATINE-211 RADIOCHEMISTRY: THE DEVELOPMENT OF METHODOLOGIES FOR HIGH ACTIVITY LEVEL RADIOSYNTHESIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MICHAEL R. ZALUTSKY

    2012-08-08

    Targeted radionuclide therapy is emerging as a viable approach for cancer treatment because of its potential for delivering curative doses of radiation to malignant cell populations while sparing normal tissues. Alpha particles such as those emitted by 211At are particularly attractive for this purpose because of their short path length in tissue and high energy, making them highly effective in killing cancer cells. The current impact of targeted radiotherapy in the clinical domain remains limited despite the fact that in many cases, potentially useful molecular targets and labeled compounds have already been identified. Unfortunately, putting these concepts into practice hasmore » been impeded by limitations in radiochemistry methodologies. A critical problem is that the synthesis of therapeutic radiopharmaceuticals provides additional challenges in comparison to diagnostic reagents because of the need to perform radio-synthesis at high levels of radioactivity. This is particularly important for {alpha}-particle emitters such as 211At because they deposit large amounts of energy in a highly focal manner. The overall objective of this project is to develop convenient and reproducible radiochemical methodologies for the radiohalogenation of molecules with the {alpha}-particle emitter 211At at the radioactivity levels needed for clinical studies. Our goal is to address two problems in astatine radiochemistry: First, a well known characteristic of 211At chemistry is that yields for electrophilic astatination reactions decline as the time interval after radionuclide isolation from the cyclotron target increases. This is a critical problem that must be addressed if cyclotrons are to be able to efficiently supply 211At to remote users. And second, when the preparation of high levels of 211At-labeled compounds is attempted, the radiochemical yields can be considerably lower than those encountered at tracer dose. For these reasons, clinical evaluation of promising 211At-labeled targeted radiotherapeutics currently is a daunting task. Our central hypothesis is that improvements in 211At radiochemistry are critically dependent on gaining an understanding of and compensating for the effects of radiolysis induced by 211At {alpha}-particles. Because of the widespread interest in labeling antibodies, antibody fragments and peptides with 211At, our proposed work plan will initially focus on reagents that we have developed for this purpose. Part of our strategy is the use of synthetic precursors immobilized on polymeric resins or perfluorous and triarylphosphonium supports. Their use could eliminate the need for a purification step to separate unreacted tin precursor from labeled product and hopefully provide a simple kit technology that could be utilized at other institutions. The specific aims of this project are: (1) To optimze methods for 211At production and isolation of 211At from cyclotron targets; (2) To develop convenient and reproducible methodologies for high activity level and high specific activity radiohalogenation of biomolecules with 211At; (3) to develop a procedure for extending the shelf-life of 211At beyond a few hours so that this radionuclide can be utilized at centers remote from its site of production; and (4) to work out high activity level synthesis methods for utilizing support immobilized tin precursors for 211At labeling. If we are successful in achieving our goals, the radiochemical methodologies that are developed could greatly facilitate the use of 211At-labeled targeted cancer therapeutics in patients, even at institutions that are distant from the few sites currently available for 211At production.« less

  16. A GPU-accelerated 3D Coupled Sub-sample Estimation Algorithm for Volumetric Breast Strain Elastography

    PubMed Central

    Peng, Bo; Wang, Yuqi; Hall, Timothy J; Jiang, Jingfeng

    2017-01-01

    Our primary objective of this work was to extend a previously published 2D coupled sub-sample tracking algorithm for 3D speckle tracking in the framework of ultrasound breast strain elastography. In order to overcome heavy computational cost, we investigated the use of a graphic processing unit (GPU) to accelerate the 3D coupled sub-sample speckle tracking method. The performance of the proposed GPU implementation was tested using a tissue-mimicking (TM) phantom and in vivo breast ultrasound data. The performance of this 3D sub-sample tracking algorithm was compared with the conventional 3D quadratic sub-sample estimation algorithm. On the basis of these evaluations, we concluded that the GPU implementation of this 3D sub-sample estimation algorithm can provide high-quality strain data (i.e. high correlation between the pre- and the motion-compensated post-deformation RF echo data and high contrast-to-noise ratio strain images), as compared to the conventional 3D quadratic sub-sample algorithm. Using the GPU implementation of the 3D speckle tracking algorithm, volumetric strain data can be achieved relatively fast (approximately 20 seconds per volume [2.5 cm × 2.5 cm × 2.5 cm]). PMID:28166493

  17. Tansmutation Research program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidler, Paul

    2011-07-31

    Six years of research was conducted for the United States Department of Energy, Office of Nuclear Energy between the years of 2006 through 2011 at the University of Nevada, Las Vegas (UNLV). The results of this research are detailed in the narratives for tasks 1-45. The work performed spanned the range of experimental and modeling efforts. Radiochemistry (separations, waste separation, nuclear fuel, remote sensing, and waste forms) , material fabrication, material characterization, corrosion studies, nuclear criticality, sensors, and modeling comprise the major topics of study during these six years.

  18. Lunar sample contracts

    NASA Technical Reports Server (NTRS)

    Walker, R. M.

    1974-01-01

    The major scientific accomplishments through 1971 are reported for the particle track studies of lunar samples. Results are discussed of nuclear track measurements by optical and electron microscopy, thermoluminescence, X-ray diffraction, and differential thermal analysis.

  19. Final Report 2007: DOE-FG02-87ER60561

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilbourn, Michael R

    2007-04-26

    This project involved a multi-faceted approach to the improvement of techniques used in Positron Emission Tomography (PET), from radiochemistry to image processing and data analysis. New methods for radiochemical syntheses were examined, new radiochemicals prepared for evaluation and eventual use in human PET studies, and new pre-clinical methods examined for validation of biochemical parameters in animal studies. The value of small animal PET imaging in measuring small changes of in vivo biochemistry was examined and directly compared to traditional tissue sampling techniques. In human imaging studies, the ability to perform single experimental sessions utilizing two overlapping injections of radiopharmaceuticals wasmore » tested, and it was shown that valid biochemical measures for both radiotracers can be obtained through careful pharmacokinetic modeling of the PET emission data. Finally, improvements in reconstruction algorithms for PET data from small animal PET scanners was realized and these have been implemented in commercial releases. Together, the project represented an integrated effort to improve and extend all basic science aspects of PET imaging at both the animal and human level.« less

  20. Electron beam irradiation of fluoropolymers containing polyethers

    NASA Astrophysics Data System (ADS)

    Bucio, E.; Burillo, G.; Tapia, F.; Adem, E.; Cedillo, G.; Cassidy, P. E.

    2009-02-01

    A highly fluorinated monomer, 1,3-bis(1,1,1,3,3,3-hexafluoro-2-pentafluorophenyl methoxy-2-propyl)benzene (12F-FBE) was polymerized with some diphenols by polycondensation and then was electron beam irradiated between 100 and 1000 kGy to determine degradation radiochemistry yield ( Gs) by gel permeation chromatography (GPC). The samples were characterized after irradiation by DSC, FTIR, and nuclear magnetic resonance (NMR). The fluoropolymers show apparent degradation in mechanical properties at 300 kGy, except 12F-FBE polymerized with biphenol and bisphenol A, when they did not show any apparent physical change up to 300 kGy; and continue to be flexible and transparent, with a radiochemical yield scission ( Gs) of 0.75, 0.53, 0.88, and 0.38 for 12F-FBE/SDL aliphatic, 12F-FBE/biphenol, 12F-FBE/bisphenol A, and 12F-FBE/bisphenol O, respectively. The number average molecular weights for three of the polymers decrease upon 1000 kGy irradiation to 10% of their original values; however, the polymer from bisphenol A is much more stable and its Mn decreases to only 24% of original.

  1. Consistently Sampled Correlation Filters with Space Anisotropic Regularization for Visual Tracking

    PubMed Central

    Shi, Guokai; Xu, Tingfa; Luo, Jiqiang; Li, Yuankun

    2017-01-01

    Most existing correlation filter-based tracking algorithms, which use fixed patches and cyclic shifts as training and detection measures, assume that the training samples are reliable and ignore the inconsistencies between training samples and detection samples. We propose to construct and study a consistently sampled correlation filter with space anisotropic regularization (CSSAR) to solve these two problems simultaneously. Our approach constructs a spatiotemporally consistent sample strategy to alleviate the redundancies in training samples caused by the cyclical shifts, eliminate the inconsistencies between training samples and detection samples, and introduce space anisotropic regularization to constrain the correlation filter for alleviating drift caused by occlusion. Moreover, an optimization strategy based on the Gauss-Seidel method was developed for obtaining robust and efficient online learning. Both qualitative and quantitative evaluations demonstrate that our tracker outperforms state-of-the-art trackers in object tracking benchmarks (OTBs). PMID:29231876

  2. Experimental evidence regarding the pressure dependence of fission track annealing in apatite

    NASA Astrophysics Data System (ADS)

    Schmidt, J. S.; Lelarge, M. L. M. V.; Conceicao, R. V.; Balzaretti, N. M.

    2014-03-01

    The main purposes of fission track thermochronology are unravelling the thermal histories of sedimentary basins, determining uplift and denudation rates, identifying the structural evolution of orogenic belts, determining sedimentary provenance, and dating volcanic rocks. The effect of temperature on fission tracks is well known and is used to determine the thermal history; however, the effect of pressure on the stability of tracks is still under debate. The present work aims to understand the role of pressure on the annealing kinetics of apatite fission tracks. The samples of Durango apatite used in our experiments were chosen for their international recognition as a calibration standard for geological dating. Neutron irradiation of the samples, after total annealing of their spontaneous tracks, produced induced tracks with homogeneous densities and lengths. The effect of pressure associated with temperature on fission track annealing was verified by experimental procedures using a hydraulic press of 1000 t with a toroidal chamber profile. The experiments consisted of a combination of applying 2 and 4 GPa with 20,150,190,235, and 290 °C for 1 and 10 h. The annealing rate was analysed by measuring the lengths of the fission tracks after each experiment using optical microscopy. The results demonstrate that the annealing of apatite fission tracks has a pressure dependence for samples subjected to 2 and 4 GPa. However, when extrapolated to pressures of ⩽150 MPa, compatible with the normal geological context in which apatite fission track methodology is broadly used, this dependence becomes insignificant compared to the temperature effect.

  3. Reproducibility of apatite fission-track length data and thermal history reconstruction

    NASA Astrophysics Data System (ADS)

    Ketcham, Richard A.; Donelick, Raymond A.; Balestrieri, Maria Laura; Zattin, Massimiliano

    2009-07-01

    The ability to derive detailed thermal history information from apatite fission-track analysis is predicated on the reliability of track length measurements. However, insufficient attention has been given to whether and how these measurements should be standardized. In conjunction with a fission-track workshop we conducted an experiment in which 11 volunteers measured ~ 50 track lengths on one or two samples. One mount contained Durango apatite with unannealed induced tracks, and one contained apatite from a crystalline rock containing spontaneous tracks with a broad length distribution caused by partial resetting. Results for both mounts showed scatter indicative of differences in measurement technique among the individual analysts. The effects of this variability on thermal history inversion were tested using the HeFTy computer program to model the spontaneous track measurements. A cooling-only scenario and a reheating scenario more consistent with the sample's geological history were posed. When a uniform initial length value from the literature was used, results among analysts were very inconsistent in both scenarios, although normalizing for track angle by projecting all lengths to a c-axis parallel crystallographic orientation improved some aspects of congruency. When the induced track measurement was used as the basis for thermal history inversion congruency among analysts, and agreement with inversions based on data previously collected, was significantly improved. Further improvement was obtained by using c-axis projection. Differences among inversions that persisted could be traced to differential sampling of long- and short-track populations among analysts. The results of this study, while demonstrating the robustness of apatite fission-track thermal history inversion, nevertheless point to the necessity for a standardized length calibration schema that accounts for analyst variation.

  4. Effect of α-damage on fission-track annealing in zircon

    USGS Publications Warehouse

    Kasuya, Masao; Naeser, Charles W.

    1988-01-01

    The thermal stability of confined fission-track lengths in four zircon samples having different spontaneous track densities (i.e., different amounts of ??-damage) has been studied by one-hour isochronal annealing experiments. The thermal stability of spontaneous track lengths is independent of initial spontaneous track density. The thermal stability of induced track lengths in pre-annealed zircon, however, is significantly higher than that of spontaneous track lengths. The results indicate that the presence of ??-damage lowers the thermal stability of fission-tracks in zircon.

  5. UCLA Translational Biomarker Development Program (UTBD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czernin, Johannes

    2014-09-01

    The proposed UTBD program integrates the sciences of diagnostic nuclear medicine and (radio)chemistry with tumor biology and drug development. UTBD aims to translate new PET biomarkers for personalized medicine and to provide examples for the use of PET to determine pharmacokinetic (PK) and pharmacodynamic (PD) drug properties. The program builds on an existing partnership between the Ahmanson Translational Imaging Division (ATID) and the Crump Institute of Molecular Imaging (CIMI), the UCLA Department of Chemistry and the Division of Surgical Oncology. ATID provides the nuclear medicine training program, clinical and preclinical PET/CT scanners, biochemistry and biology labs for probe and drugmore » development, radiochemistry labs, and two cyclotrons. CIMI provides DOE and NIH-funded training programs for radio-synthesis (START) and molecular imaging (SOMI). Other participating entities at UCLA are the Department of Chemistry and Biochemistry and the Division of Surgical Oncology. The first UTBD project focuses on deoxycytidine kinase, a rate-limiting enzyme in nucleotide metabolism, which is expressed in many cancers. Deoxycytidine kinase (dCK) positive tumors can be targeted uniquely by two distinct therapies: 1) nucleoside analog prodrugs such as gemcitabine (GEM) are activated by dCK to cytotoxic antimetabolites; 2) recently developed small molecule dCK inhibitors kill tumor cells by starving them of nucleotides required for DNA replication and repair. Since dCK-specific PET probes are now available, PET imaging of tumor dCK activity could improve the use of two different classes of drugs in a wide variety of cancers.« less

  6. Development of an automated modular system for the synthesis of [11C]acetate.

    PubMed

    Felicini, Chiara; Någren, Kjell; Berton, Andrea; Pascali, Giancarlo; Salvadori, Piero Alberto

    2010-12-01

    Carboxylation reactions offer a straightforward method for the synthesis of carbon-11 labelled carboxylic acids. Among these, the preparation of carbon-11 (C)-acetate is receiving increasing attention because of diagnostic applications in oncology in addition to its well-established use as a probe for myocardial oxidative metabolism. Although a number of dedicated modules are commercially available, the development of the synthesis on flexible platforms would be beneficial to widen the number of tracers, in particular for preclinical assessment and testing. In this study, the carboxylation reaction was implemented for the synthesis of sodium 1-[C]acetate after the classic route of carboxylation of methylmagnesium chloride by [C]carbon dioxide, followed by the acidic hydrolysis, purification and sterile filtration. This was performed using a commercially available kit of preassembled hardware units and fully compatible components of radiochemistry automation (VarioSystem). The system proved be to highly versatile and inexpensive and allowed a quick translation of the radiochemistry project into a working system even by less experienced personnel, because of predefined interfaces between electronic parts and operating software (preloaded on a laptop and included in the kit). The automatic module proved to be a simple and reliable system for the production of 1-[C]acetate that was prepared in 24 min (total synthesis time) with stable radiochemical yields (20% nondecay corrected) and high radiochemical purity (>97%). The module is used routinely to produce 1-[C]acetate for preclinical studies and is being implemented for the production of the labelled fatty acids.

  7. Efficient Sample Tracking With OpenLabFramework

    PubMed Central

    List, Markus; Schmidt, Steffen; Trojnar, Jakub; Thomas, Jochen; Thomassen, Mads; Kruse, Torben A.; Tan, Qihua; Baumbach, Jan; Mollenhauer, Jan

    2014-01-01

    The advance of new technologies in biomedical research has led to a dramatic growth in experimental throughput. Projects therefore steadily grow in size and involve a larger number of researchers. Spreadsheets traditionally used are thus no longer suitable for keeping track of the vast amounts of samples created and need to be replaced with state-of-the-art laboratory information management systems. Such systems have been developed in large numbers, but they are often limited to specific research domains and types of data. One domain so far neglected is the management of libraries of vector clones and genetically engineered cell lines. OpenLabFramework is a newly developed web-application for sample tracking, particularly laid out to fill this gap, but with an open architecture allowing it to be extended for other biological materials and functional data. Its sample tracking mechanism is fully customizable and aids productivity further through support for mobile devices and barcoded labels. PMID:24589879

  8. Fast emulation of track reconstruction in the CMS simulation

    NASA Astrophysics Data System (ADS)

    Komm, Matthias; CMS Collaboration

    2017-10-01

    Simulated samples of various physics processes are a key ingredient within analyses to unlock the physics behind LHC collision data. Samples with more and more statistics are required to keep up with the increasing amounts of recorded data. During sample generation, significant computing time is spent on the reconstruction of charged particle tracks from energy deposits which additionally scales with the pileup conditions. In CMS, the FastSimulation package is developed for providing a fast alternative to the standard simulation and reconstruction workflow. It employs various techniques to emulate track reconstruction effects in particle collision events. Several analysis groups in CMS are utilizing the package, in particular those requiring many samples to scan the parameter space of physics models (e.g. SUSY) or for the purpose of estimating systematic uncertainties. The strategies for and recent developments in this emulation are presented, including a novel, flexible implementation of tracking emulation while retaining a sufficient, tuneable accuracy.

  9. New color-based tracking algorithm for joints of the upper extremities

    NASA Astrophysics Data System (ADS)

    Wu, Xiangping; Chow, Daniel H. K.; Zheng, Xiaoxiang

    2007-11-01

    To track the joints of the upper limb of stroke sufferers for rehabilitation assessment, a new tracking algorithm which utilizes a developed color-based particle filter and a novel strategy for handling occlusions is proposed in this paper. Objects are represented by their color histogram models and particle filter is introduced to track the objects within a probability framework. Kalman filter, as a local optimizer, is integrated into the sampling stage of the particle filter that steers samples to a region with high likelihood and therefore fewer samples is required. A color clustering method and anatomic constraints are used in dealing with occlusion problem. Compared with the general basic particle filtering method, the experimental results show that the new algorithm has reduced the number of samples and hence the computational consumption, and has achieved better abilities of handling complete occlusion over a few frames.

  10. Response of Microbial Community Function to Fluctuating Geochemical Conditions within a Legacy Radioactive Waste Trench Environment

    PubMed Central

    Kinsela, Andrew S.; Bligh, Mark W.; Harrison, Jennifer J.; Payne, Timothy E.

    2017-01-01

    ABSTRACT During the 1960s, small quantities of radioactive materials were codisposed with chemical waste at the Little Forest Legacy Site (Sydney, Australia) in 3-meter-deep, unlined trenches. Chemical and microbial analyses, including functional and taxonomic information derived from shotgun metagenomics, were collected across a 6-week period immediately after a prolonged rainfall event to assess the impact of changing water levels upon the microbial ecology and contaminant mobility. Collectively, results demonstrated that oxygen-laden rainwater rapidly altered the redox balance in the trench water, strongly impacting microbial functioning as well as the radiochemistry. Two contaminants of concern, plutonium and americium, were shown to transition from solid-iron-associated species immediately after the initial rainwater pulse to progressively more soluble moieties as reducing conditions were enhanced. Functional metagenomics revealed the potentially important role that the taxonomically diverse microbial community played in this transition. In particular, aerobes dominated in the first day, followed by an increase of facultative anaerobes/denitrifiers at day 4. Toward the mid-end of the sampling period, the functional and taxonomic profiles depicted an anaerobic community distinguished by a higher representation of dissimilatory sulfate reduction and methanogenesis pathways. Our results have important implications to similar near-surface environmental systems in which redox cycling occurs. IMPORTANCE The role of chemical and microbiological factors in mediating the biogeochemistry of groundwaters from trenches used to dispose of radioactive materials during the 1960s is examined in this study. Specifically, chemical and microbial analyses, including functional and taxonomic information derived from shotgun metagenomics, were collected across a 6-week period immediately after a prolonged rainfall event to assess how changing water levels influence microbial ecology and contaminant mobility. Results demonstrate that oxygen-laden rainwater rapidly altered the redox balance in the trench water, strongly impacting microbial functioning as well as the radiochemistry. Two contaminants of concern, plutonium and americium, were shown to transition from solid-iron-associated species immediately after the initial rainwater pulse to progressively more soluble moieties as reducing conditions were enhanced. Functional metagenomics revealed the important role that the taxonomically diverse microbial community played in this transition. Our results have important implications to similar near-surface environmental systems in which redox cycling occurs. PMID:28667104

  11. Response of Microbial Community Function to Fluctuating Geochemical Conditions within a Legacy Radioactive Waste Trench Environment.

    PubMed

    Vázquez-Campos, Xabier; Kinsela, Andrew S; Bligh, Mark W; Harrison, Jennifer J; Payne, Timothy E; Waite, T David

    2017-09-01

    During the 1960s, small quantities of radioactive materials were codisposed with chemical waste at the Little Forest Legacy Site (Sydney, Australia) in 3-meter-deep, unlined trenches. Chemical and microbial analyses, including functional and taxonomic information derived from shotgun metagenomics, were collected across a 6-week period immediately after a prolonged rainfall event to assess the impact of changing water levels upon the microbial ecology and contaminant mobility. Collectively, results demonstrated that oxygen-laden rainwater rapidly altered the redox balance in the trench water, strongly impacting microbial functioning as well as the radiochemistry. Two contaminants of concern, plutonium and americium, were shown to transition from solid-iron-associated species immediately after the initial rainwater pulse to progressively more soluble moieties as reducing conditions were enhanced. Functional metagenomics revealed the potentially important role that the taxonomically diverse microbial community played in this transition. In particular, aerobes dominated in the first day, followed by an increase of facultative anaerobes/denitrifiers at day 4. Toward the mid-end of the sampling period, the functional and taxonomic profiles depicted an anaerobic community distinguished by a higher representation of dissimilatory sulfate reduction and methanogenesis pathways. Our results have important implications to similar near-surface environmental systems in which redox cycling occurs. IMPORTANCE The role of chemical and microbiological factors in mediating the biogeochemistry of groundwaters from trenches used to dispose of radioactive materials during the 1960s is examined in this study. Specifically, chemical and microbial analyses, including functional and taxonomic information derived from shotgun metagenomics, were collected across a 6-week period immediately after a prolonged rainfall event to assess how changing water levels influence microbial ecology and contaminant mobility. Results demonstrate that oxygen-laden rainwater rapidly altered the redox balance in the trench water, strongly impacting microbial functioning as well as the radiochemistry. Two contaminants of concern, plutonium and americium, were shown to transition from solid-iron-associated species immediately after the initial rainwater pulse to progressively more soluble moieties as reducing conditions were enhanced. Functional metagenomics revealed the important role that the taxonomically diverse microbial community played in this transition. Our results have important implications to similar near-surface environmental systems in which redox cycling occurs. Copyright © 2017 Vázquez-Campos et al.

  12. Nanometer-scale anatomy of entire Stardust tracks

    NASA Astrophysics Data System (ADS)

    Nakamura-Messenger, Keiko; Keller, Lindsay P.; Clemett, Simon J.; Messenger, Scott; Ito, Motoo

    2011-07-01

    We have developed new sample preparation and analytical techniques tailored for entire aerogel tracks of Wild 2 sample analyses both on "carrot" and "bulbous" tracks. We have successfully ultramicrotomed an entire track along its axis while preserving its original shape. This innovation allowed us to examine the distribution of fragments along the entire track from the entrance hole all the way to the terminal particle. The crystalline silicates we measured have Mg-rich compositions and O isotopic compositions in the range of meteoritic materials, implying that they originated in the inner solar system. The terminal particle of the carrot track is a 16O-rich forsteritic grain that may have formed in a similar environment as Ca-, Al-rich inclusions and amoeboid olivine aggregates in primitive carbonaceous chondrites. The track also contains submicron-sized diamond grains likely formed in the solar system. Complex aromatic hydrocarbons distributed along aerogel tracks and in terminal particles. These organics are likely cometary but affected by shock heating.

  13. Experimental set up for the irradiation of biological samples and nuclear track detectors with UV C

    PubMed Central

    Portu, Agustina Mariana; Rossini, Andrés Eugenio; Gadan, Mario Alberto; Bernaola, Omar Alberto; Thorp, Silvia Inés; Curotto, Paula; Pozzi, Emiliano César Cayetano; Cabrini, Rómulo Luis; Martin, Gisela Saint

    2016-01-01

    Aim In this work we present a methodology to produce an “imprint” of cells cultivated on a polycarbonate detector by exposure of the detector to UV C radiation. Background The distribution and concentration of 10B atoms in tissue samples coming from BNCT (Boron Neutron Capture Therapy) protocols can be determined through the quantification and analysis of the tracks forming its autoradiography image on a nuclear track detector. The location of boron atoms in the cell structure could be known more accurately by the simultaneous observation of the nuclear tracks and the sample image on the detector. Materials and Methods A UV C irradiator was constructed. The irradiance was measured along the lamp direction and at different distances. Melanoma cells were cultured on polycarbonate foils, incubated with borophenylalanine, irradiated with thermal neutrons and exposed to UV C radiation. The samples were chemically attacked with a KOH solution. Results A uniform irradiation field was established to expose the detector foils to UV C light. Cells could be seeded on the polycarbonate surface. Both imprints from cells and nuclear tracks were obtained after chemical etching. Conclusions It is possible to yield cellular imprints in polycarbonate. The nuclear tracks were mostly present inside the cells, indicating a preferential boron uptake. PMID:26933396

  14. The AlSi10Mg samples produced by selective laser melting: single track, densification, microstructure and mechanical behavior

    NASA Astrophysics Data System (ADS)

    Wei, Pei; Wei, Zhengying; Chen, Zhen; Du, Jun; He, Yuyang; Li, Junfeng; Zhou, Yatong

    2017-06-01

    This densification behavior and attendant microstructural characteristics of the selective laser melting (SLM) processed AlSi10Mg alloy affected by the processing parameters were systematically investigated. The samples with a single track were produced by SLM to study the influences of laser power and scanning speed on the surface morphologies of scan tracks. Additionally, the bulk samples were produced to investigate the influence of the laser power, scanning speed, and hatch spacing on the densification level and the resultant microstructure. The experimental results showed that the level of porosity of the SLM-processed samples was significantly governed by energy density of laser beam and the hatch spacing. The tensile properties of SLM-processed samples and the attendant fracture surface can be enhanced by decreasing the level of porosity. The microstructure of SLM-processed samples consists of supersaturated Al-rich cellular structure along with eutectic Al/Si situated at the cellular boundaries. The Si content in the cellular boundaries increases with increasing the laser power and decreasing the scanning speed. The hardness of SLM-processed samples was significantly improved by this fine microstructure compared with the cast samples. Moreover, the hardness of SLM-processed samples at overlaps was lower than the hardness observed at track cores.

  15. Qualilty, isotopes, and radiochemistry of water sampled from the Upper Moenkopi Village water-supply wells, Coconino County, Arizona

    USGS Publications Warehouse

    Carruth, Rob; Beisner, Kimberly; Smith, Greg

    2013-01-01

    The Hopi Tribe Water Resources Program has granted contracts for studies to evaluate water supply conditions for the Moenkopi villages in Coconino County, Arizona. The Moenkopi villages include Upper Moenkopi Village and the village of Lower Moencopi, both on the Hopi Indian Reservation south of the Navajo community of Tuba City. These investigations have determined that water supplies are limited and vulnerable to several potential sources of contamination, including the Tuba City Landfill and a former uranium processing facility known as the Rare Metals Mill. Studies are ongoing to determine if uranium and other metals in groundwater beneath the landfill are greater than regional groundwater concentrations. The source of water supply for the Upper Moenkopi Village is three public-supply wells. The wells are referred to as MSW-1, MSW-2, and MSW-3 and all three wells obtain water from the regionally extensive N aquifer. The N aquifer is the principal aquifer in this region of northern Arizona and consists of thick beds of sandstone between less permeable layers of siltstone and mudstone. The relatively fine-grained character of the N aquifer inhibits rapid movement of water and large yields to wells. In recent years, water levels have declined in the three public-supply wells, causing concern that the current water supply will not be able to accommodate peak demand and allow for residential and economic growth. Analyses of major ions, nutrients, selected trace metals, stable and radioactive isotopes, and radiochemistry were performed on the groundwater samples from the three public-supply wells to describe general water-quality conditions and groundwater ages in and immediately surrounding the Upper Moenkopi Village area. None of the water samples collected from the public-supply wells exceeded the U.S. Environmental Protection Agency primary drinking water standards. The ratios of the major dissolved ions from the samples collected from MSW-1 and MSW-2 indicate water with a major ion composition of calcium and sulfate. There is no significant vertical distribution of ion concentrations in the samples collected from the upper and lower portion of the water column within the two wells. The samples collected at MSW-3 are higher in sodium and lower in calcium than the samples collected from MSW-1 and MSW-2, and contain a similar sulfate-ion percentage. There is a vertical distribution of ion concentrations in the samples collected from the upper and lower portion of the water column in MSW-3. Groundwater samples from the three water-supply wells analyzed for oxygen-18 and deuterium stable isotopes plot on a local water line that is approximately parallel to the global meteoric water line. Tritium concentrations in samples from MSW-1 and MSW-3 were equal to or less than laboratory detection limits and were interpreted to contain no modern (post-1952) water. Tritium concentration in a sample from the top of the water column at MSW-2 was 0.41 tritium units, indicating that the composition is primarily pre-bomb (pre-1952) water, but may contain a small fraction of post-bomb modern water. The calculated carbon-14 ages of groundwater in MSW-1 and MSW-2, both completed about 140 feet into the Navajo Sandstone, are about 3,000 years before present. The calculated carbon-14 age of groundwater in MSW-3, completed about 240 feet into the Kayenta Formation-Navajo Sandstone transition zone is about 5,000 years before present in the upper portion of the water column and about 8,500 years before present in the lower portion of the water column. The gross alpha radioactivity of samples collected from the three water-supply wells ranged from 5.1 to 9.8 picocuries per liter-less than the U.S. Environmental Protection Agency primary drinking water standard of 15 picocuries per liter. The gross beta radioactivity of samples collected from the wells ranged from 0.9 to 2.8 picocuries per liter and are not considered elevated relative to the U.S. Environmental Protection Agency primary drinking water standard.

  16. Intraoperative visualization and assessment of electromagnetic tracking error

    NASA Astrophysics Data System (ADS)

    Harish, Vinyas; Ungi, Tamas; Lasso, Andras; MacDonald, Andrew; Nanji, Sulaiman; Fichtinger, Gabor

    2015-03-01

    Electromagnetic tracking allows for increased flexibility in designing image-guided interventions, however it is well understood that electromagnetic tracking is prone to error. Visualization and assessment of the tracking error should take place in the operating room with minimal interference with the clinical procedure. The goal was to achieve this ideal in an open-source software implementation in a plug and play manner, without requiring programming from the user. We use optical tracking as a ground truth. An electromagnetic sensor and optical markers are mounted onto a stylus device, pivot calibrated for both trackers. Electromagnetic tracking error is defined as difference of tool tip position between electromagnetic and optical readings. Multiple measurements are interpolated into the thin-plate B-spline transform visualized in real time using 3D Slicer. All tracked devices are used in a plug and play manner through the open-source SlicerIGT and PLUS extensions of the 3D Slicer platform. Tracking error was measured multiple times to assess reproducibility of the method, both with and without placing ferromagnetic objects in the workspace. Results from exhaustive grid sampling and freehand sampling were similar, indicating that a quick freehand sampling is sufficient to detect unexpected or excessive field distortion in the operating room. The software is available as a plug-in for the 3D Slicer platforms. Results demonstrate potential for visualizing electromagnetic tracking error in real time for intraoperative environments in feasibility clinical trials in image-guided interventions.

  17. Correlated microanalysis of cometary organic grains returned by Stardust

    NASA Astrophysics Data System (ADS)

    de Gregorio, Bradley T.; Stroud, Rhonda M.; Cody, George D.; Nittler, Larry R.; David Kilcoyne, A. L.; Wirick, Sue

    2011-09-01

    Abstract- Carbonaceous matter in Stardust samples returned from comet 81P/Wild 2 is observed to contain a wide variety of organic functional chemistry. However, some of this chemical variety may be due to contamination or alteration during particle capture in aerogel. We investigated six carbonaceous Stardust samples that had been previously analyzed and six new samples from Stardust Track 80 using correlated transmission electron microscopy (TEM), X-ray absorption near-edge structure spectroscopy (XANES), and secondary ion mass spectroscopy (SIMS). TEM revealed that samples from Track 35 containing abundant aliphatic XANES signatures were predominantly composed of cometary organic matter infilling densified silica aerogel. Aliphatic organic matter from Track 16 was also observed to be soluble in the epoxy embedding medium. The nitrogen-rich samples in this study (from Track 22 and Track 80) both contained metal oxide nanoparticles, and are likely contaminants. Only two types of cometary organic matter appear to be relatively unaltered during particle capture. These are (1) polyaromatic carbonyl-containing organic matter, similar to that observed in insoluble organic matter (IOM) from primitive meteorites, interplanetary dust particles (IDPs), and in other carbonaceous Stardust samples, and (2) highly aromatic refractory organic matter, which primarily constitutes nanoglobule-like features. Anomalous isotopic compositions in some of these samples also confirm their cometary heritage. There also appears to be a significant labile aliphatic component of Wild 2 organic matter, but this material could not be clearly distinguished from carbonaceous contaminants known to be present in the Stardust aerogel collector.

  18. The Contours of Tracking in North Carolina

    ERIC Educational Resources Information Center

    Kelly, Sean

    2007-01-01

    In this analysis of North Carolina high schools the author examines school tracking policies using an amended version of Sorensen's (1970) conceptualization of the organizational dimensions of tracking. Data from curriculum guides in a stratified sample of 92 high schools reveal both consistency and variation in how tracking is implemented at the…

  19. The effect of α-damage on fission-track annealing in zircon

    USGS Publications Warehouse

    Kasuya, M.; Naeser, C.W.

    1988-01-01

    The thermal stability of confined fission-track lengths in four zircon samples having different spontaneous track densities (i.e. different amounts of ??-damage) has been studied by one hour isochronal annealing experiments. The thermal stability of spontaneous track lengths is independent of initial spontaneous track density. The thermal stability of induced track lengths in pre-annealed zircon, however, is significantly higher than that of spontaneous track lengths. The results indicate that the presence of ??-damage lowers the thermal stability of fission-tracks in zircon. ?? 1988.

  20. Technetium Tetrachloride Revisited: A Precursor to Lower-Valent Binary Technetium Chlorides

    DOE PAGES

    Johnstone, Erik V.; Poineau, Frederic; Forster, Paul M.; ...

    2012-07-09

    Technetium (Tc) is the lightest element that doesn't occur in nature. At UNLV, our radiochemistry program gives us access to Tc and the ability to make various Tc compounds. Here we describe the preparation and characterization of TcCl 4. The Tc atom is found to have a magnetic moment and magnetically orders at low temperature. As discerning trends in the transition metals, of which Tc is one, is important for understanding all transition metal compounds, this research is relevant to understanding these materials.

  1. A simple thick target for production of 89Zr using an 11MeV cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, Jeanne M.; Krohn, Kenneth A.; O'Hara, Matthew J.

    2017-04-01

    The growing interest but limited availability of 89Zr for PET led us to test targets for the 89(p,n) reaction. The goal was an easily constructed target for an 11 MeV Siements cyclotron. Yttrium foils were tested at different thicknesses, angles and currents. A 90 degree foil tolerated 41 microAmp without damage and produced ~800 MBq/hr, >20 mCi, an amount adequate for radiochemistry research and human doses in a widely available accelerator. This method should translate to higher energy cyclotrons.

  2. Nuclear Forensics and Radiochemistry: Reaction Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rundberg, Robert S.

    In the intense neutron flux of a nuclear explosion the production of isotopes may occur through successive neutron induced reactions. The pathway to these isotopes illustrates both the complexity of the problem and the need for high quality nuclear data. The growth and decay of radioactive isotopes can follow a similarly complex network. The Bateman equation will be described and modified to apply to the transmutation of isotopes in a high flux reactor. A alternative model of growth and decay, the GD code, that can be applied to fission products will also be described.

  3. Inorganic chemistry in nuclear imaging and radiotherapy: current and future directions

    PubMed Central

    Carroll, Valerie; Demoin, Dustin W.; Hoffman, Timothy J; Jurisson, Silvia S

    2013-01-01

    Summary Radiometals play an important role in diagnostic and therapeutic radiopharmaceuticals. This field of radiochemistry is multidisciplinary, involving radiometal production, separation of the radiometal from its target, chelate design for complexing the radiometal in a biologically stable environment, specific targeting of the radiometal to its in vivo site, and nuclear imaging and/or radiotherapy applications of the resultant radiopharmaceutical. The critical importance of inorganic chemistry in the design and application of radiometal-containing imaging and therapy agents is described from a historical perspective to future directions. PMID:25382874

  4. Separation of Bismuth from Lead with (Ethylenediamine)tetraacetic Acid. Application to Radiochemistry; SEPARACAO DE BISMUTO DO CHUMBO COM ACIDO ETILENODIAMINOTETRAACETICO APLICACAO PARA RADIOQUIMICA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lima, F.W.; Abrao, A.

    1958-09-01

    Bismuth can be separated from lead radiochemically by using (ethylenediamine)tetraacetic acid. The separation is successful when both elements are in trace concentration when one is in trace concentrations and other in macroconcentrations, and when both are in macroconcentrations. A single separation gives more than 90% of both elements. The process involves simple manipulations and can be done in less than fifteen minutes, which is of importance in the separation of short-lived isotopes. (tr-auth)

  5. Inverted Apatite (U-Th)/He and Fission-track Dates from the Rae craton, Baffin Island, Canada and Implications for Apatite Radiation Damage-He Diffusivity Models

    NASA Astrophysics Data System (ADS)

    Ault, A. K.; Reiners, P. W.; Thomson, S. N.; Miller, G. H.

    2015-12-01

    Coupled apatite (U-Th)/He and fission-track (AFT) thermochronology data from the same sample can be used to decipher complex low temperature thermal histories and evaluate compatibility between these two methods. Existing apatite He damage-diffusivity models parameterize radiation damage annealing as fission-track annealing and yield inverted apatite He and AFT dates for samples with prolonged residence in the He partial retention zone. Apatite chemistry also impacts radiation damage and fission-track annealing, temperature sensitivity, and dates in both systems. We present inverted apatite He and AFT dates from the Rae craton, Baffin Island, Canada, that cannot be explained by apatite chemistry or existing damage-diffusivity and fission track models. Apatite He dates from 34 individual analyses from 6 samples range from 237 ± 44 Ma to 511 ± 25 Ma and collectively define a positive date-eU relationship. AFT dates from these same samples are 238 ± 15 Ma to 350 ± 20 Ma. These dates and associated track length data are inversely correlated and define the left segment of a boomerang diagram. Three of the six samples with 20-90 ppm eU apatite grains yield apatite He and AFT dates inverted by 300 million years. These samples have average apatite Cl chemistry of ≤0.02 wt.%, with no correlation between Cl content and Dpar. Thermal history simulations using geologic constraints, an apatite He radiation damage accumulation and annealing model, apatite He dates with the range of eU values, and AFT date and track length data, do not yield any viable time-temperature paths. Apatite He and AFT data modeled separately predict thermal histories with Paleozoic-Mesozoic peaks reheating temperatures differing by ≥15 °C. By modifying the parameter controlling damage annealing (Rmr0) from the canonical 0.83 to 0.5-0.6, forward models reproduce the apatite He date-eU correlation and AFT dates with a common thermal history. Results imply apatite radiation damage anneals at higher temperatures than fission-track damage and the impact on coupled apatite He and AFT dates is magnified for protracted cooling histories. Further experimental and field-based tests are important for refining radiation damage and fission-track annealing parameters for accurate interpretation of apatite He- and AFT-derived thermal histories.

  6. Development of the U.S. Army Railroad Track Maintenance Management System (RAILER).

    DTIC Science & Technology

    1986-05-01

    availability is both feasible and desirable. Section 5 of this study discusses measurement and analysis equipment. .5 *- Sample Deduct Value Calculations... Sample of Five Groups of 50 Ties From Same Mile on Track 72 C2 Bad Tie Count Adjustment Factors 80 C3 Adjusted Badtie Count Factors Under Conservative...economic analysis developed as part of the PAVER system 3 can be used for RAILER; however, guidelines for providing track information inputs to the

  7. Rapid determination of 210Po in water samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2013-08-02

    A new rapid method for the determination of 210Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that can be used for emergency response or routine water analyses. If a radiological dispersive device (RDD) event or a radiological attack associated with drinking water supplies occurs, there will be an urgent need for rapid analyses of water samples, including drinking water, ground water and other water effluents. Current analytical methods for the assay of 210Po in water samples have typically involved spontaneous auto-deposition of 210Po onto silver or other metal disks followed by counting by alphamore » spectrometry. The auto-deposition times range from 90 minutes to 24 hours or more, at times with yields that may be less than desirable. If sample interferences are present, decreased yields and degraded alpha spectrums can occur due to unpredictable thickening in the deposited layer. Separation methods have focused on the use of Sr Resin, often in combination with 210Pb analysis. A new rapid method for 210Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that utilizes a rapid calcium phosphate co-precipitation method, separation using DGA Resin (N,N,N,N-tetraoctyldiglycolamide extractant-coated resin, Eichrom Technologies or Triskem-International), followed by rapid microprecipitation of 210Po using bismuth phosphate for counting by alpha spectrometry. This new method can be performed quickly with excellent removal of interferences, high chemical yields and very good alpha peak resolution, eliminating any potential problems with the alpha source preparation for emergency or routine samples. A rapid sequential separation method to separate 210Po and actinide isotopes was also developed. This new approach, rapid separation with DGA Resin plus microprecipitation for alpha source preparation, is a significant advance in radiochemistry for the rapid determination of 210Po.« less

  8. Solar Flare Track Exposure Ages in Regolith Particles: A Calibration for Transmission Electron Microscope Measurements

    NASA Technical Reports Server (NTRS)

    Berger, Eve L.; Keller, Lindsay P.

    2015-01-01

    Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Space weathering effects result from multiple processes including: exposure to the solar wind, which results in ion damage and implantation effects that are preserved in the rims of grains (typically the outermost 100 nm); cosmic ray and solar flare activity, which result in track formation; and impact processes that result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. Determining the rate at which these effects accumulate in the grains during their space exposure is critical to studies of the surface evolution of airless bodies. Solar flare energetic particles (mainly Fe-group nuclei) have a penetration depth of a few millimeters and leave a trail of ionization damage in insulating materials that is readily observable by transmission electron microscope (TEM) imaging. The density of solar flare particle tracks is used to infer the length of time an object was at or near the regolith surface (i.e., its exposure age). Track measurements by TEM methods are routine, yet track production rate calibrations have only been determined using chemical etching techniques [e.g., 1, and references therein]. We used focused ion beam-scanning electron microscope (FIB-SEM) sample preparation techniques combined with TEM imaging to determine the track density/exposure age relations for lunar rock 64455. The 64455 sample was used earlier by [2] to determine a track production rate by chemical etching of tracks in anorthite. Here, we show that combined FIB/TEM techniques provide a more accurate determination of a track production rate and also allow us to extend the calibration to solar flare tracks in olivine.

  9. A complete system for head tracking using motion-based particle filter and randomly perturbed active contour

    NASA Astrophysics Data System (ADS)

    Bouaynaya, N.; Schonfeld, Dan

    2005-03-01

    Many real world applications in computer and multimedia such as augmented reality and environmental imaging require an elastic accurate contour around a tracked object. In the first part of the paper we introduce a novel tracking algorithm that combines a motion estimation technique with the Bayesian Importance Sampling framework. We use Adaptive Block Matching (ABM) as the motion estimation technique. We construct the proposal density from the estimated motion vector. The resulting algorithm requires a small number of particles for efficient tracking. The tracking is adaptive to different categories of motion even with a poor a priori knowledge of the system dynamics. Particulary off-line learning is not needed. A parametric representation of the object is used for tracking purposes. In the second part of the paper, we refine the tracking output from a parametric sample to an elastic contour around the object. We use a 1D active contour model based on a dynamic programming scheme to refine the output of the tracker. To improve the convergence of the active contour, we perform the optimization over a set of randomly perturbed initial conditions. Our experiments are applied to head tracking. We report promising tracking results in complex environments.

  10. Measurements and evaluation of the risks due to external radiation exposures and to intake of activated elements for operational staff engaged in the maintenance of medical cyclotrons.

    PubMed

    Calandrino, R; del Vecchio, A; Parisi, R; Todde, S; De Felice, P; Savi, A; Pepe, A; Mrskova, A

    2010-06-01

    The aim of this paper is to assess the activation phenomena and to evaluate the risk of external exposure and intake doses for the maintenance staff of two medical cyclotrons. Two self-shielded cyclotrons are currently operating in the facility for the routine production of (11)C and (18)F. Four radiochemistry laboratories are linked to the cyclotrons by means of shielded radioisotope delivery lines. Radiopharmaceuticals are prepared both for the PET Diagnostic Department, where four CT-PET scanners are operating with a mean patient workload of 40 d(-1) and for [(18)F]FDG external distribution, to provide radiopharmaceuticals for other institutions. In spite of the fact that air contamination inside the radiochemistry laboratories during the synthesis represents the largest 'slice of the pie' in the evaluation of annual intake dose, potential contamination due to the activated particulate, generated during cyclotron irradiation by micro-corrosion of targets and other components potentially struck by the proton beam and generated neutrons, should be considered. In this regard, the most plausible long-lived (T(1/2) > 30 d) radioisotopes formed are: (97)Tc, (56)Co, (57)Co, (58)Co, (60)Co, (49)V, (55)Fe, (109)Cd, (65)Zn and (22)Na. The results for the operating personnel survey has revealed only low-level contamination for (65)Zn in one test, together with minor (18)F intake, probably due to the environmental dispersion of the radioisotope during the [(18)F]FDG synthesis.

  11. CMOS imager for pointing and tracking applications

    NASA Technical Reports Server (NTRS)

    Sun, Chao (Inventor); Pain, Bedabrata (Inventor); Yang, Guang (Inventor); Heynssens, Julie B. (Inventor)

    2006-01-01

    Systems and techniques to realize pointing and tracking applications with CMOS imaging devices. In general, in one implementation, the technique includes: sampling multiple rows and multiple columns of an active pixel sensor array into a memory array (e.g., an on-chip memory array), and reading out the multiple rows and multiple columns sampled in the memory array to provide image data with reduced motion artifact. Various operation modes may be provided, including TDS, CDS, CQS, a tracking mode to read out multiple windows, and/or a mode employing a sample-first-read-later readout scheme. The tracking mode can take advantage of a diagonal switch array. The diagonal switch array, the active pixel sensor array and the memory array can be integrated onto a single imager chip with a controller. This imager device can be part of a larger imaging system for both space-based applications and terrestrial applications.

  12. Sampling strategies for radio-tracking coyotes

    USGS Publications Warehouse

    Smith, G.J.; Cary, J.R.; Rongstad, O.J.

    1981-01-01

    Ten coyotes radio-tracked for 24 h periods were most active at night and moved little during daylight hours. Home-range size determined from radio-locations of 3 adult coyotes increased with the number of locations until an asymptote was reached at about 35-40 independent day locations or 3 6 nights of hourly radio-locations. Activity of the coyote did not affect the asymptotic nature of the home-range calculations, but home-range sizes determined from more than 3 nights of hourly locations were considerably larger than home-range sizes determined from daylight locations. Coyote home-range sizes were calculated from daylight locations, full-night tracking periods, and half-night tracking periods. Full- and half-lnight sampling strategies involved obtaining hourly radio-locations during 12 and 6 h periods, respectively. The half-night sampling strategy was the best compromise for our needs, as it adequately indexed the home-range size, reduced time and energy spent, and standardized the area calculation without requiring the researcher to become completely nocturnal. Sight tracking also provided information about coyote activity and sociability.

  13. Tracking radar studies of bird migration

    NASA Technical Reports Server (NTRS)

    Williams, T. C.; Williams, J. M.; Teal, J. M.; Kanwisher, J. W.

    1972-01-01

    The application of tracking radar for determining the flight paths of migratory birds is discussed. The effects produced by various meteorological parameters are described. Samples of radar scope presentations obtained during tracking studies are presented. The characteristics of the radars and their limitations are examined.

  14. Novel calibration for LA-ICP-MS-based fission-track thermochronology

    NASA Astrophysics Data System (ADS)

    Soares, C. J.; Guedes, S.; Hadler, J. C.; Mertz-Kraus, R.; Zack, T.; Iunes, P. J.

    2014-01-01

    We present a novel age-equation calibration for fission-track age determinations by laser ablation inductively coupled plasma mass spectrometry. This new calibration incorporates the efficiency factor of an internal surface, [ ηq]is, which is obtained by measuring the projected fission-track length, allowing the determination of FT ages directly using the recommended spontaneous fission decay constant. Also, the uranium concentrations in apatite samples are determined using a Durango (Dur-2, 7.44 μg/g U) crystal and a Mud Tank (MT-7, 6.88 μg/g U) crystal as uranium reference materials. The use of matrix-matched reference materials allows a reduction in the uncertainty of the uranium measurements to those related to counting statistics, which are ca. 1 % taking into account that no extra source of uncertainty has to be considered. The equations as well as the matrix-matched reference materials are evaluated using well-dated samples from Durango, Fish Canyon Tuff, and Limberg as unknown samples. The results compare well with their respective published ages determined through other dating methods. Additionally, the results agree with traditional fission-track ages using both the zeta approach and the absolute approach, suggesting that the calibration presented in this work can be robustly applied in geological context. Furthermore, considering that fission-track ages can be determined without an age standard sample, the fission-track thermochronology approach presented here is assumed to be a valuable dating tool.

  15. DNA analysis of hair and scat collected along snow tracks to document the presence of Canada Lynx.

    Treesearch

    Kevin S. McKelvey; Jeffrey von Kienast; Keith B. Aubry; Gary M. Koehler; Bejamin T. Maletzke; John R. Squires; Edward L. Lindquist; Steve Loch; Michael K. Schwartz

    2006-01-01

    Snow tracking is often used to inventory carnivore communities, but species identification using this method can produce ambiguous and misleading results. DNA can be extracted from hair and scat samples collected from tracks made in snow. Using DNA analysis could allow positive track identification across a broad range of snow conditions, thus increasing survey...

  16. Evaluation of Kapton pyrolysis, arc tracking, and flashover on SiO(x)-coated polyimide insulated samples of flat flexible current carriers for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Mundson, Chris

    1993-01-01

    Kapton polyimide wiring insulation was found to be vulnerable to pyrolization, arc tracking, and flashover when momentary short-circuit arcs have occurred on aircraft power systems. Short-circuit arcs between wire pairs can pyrolize the polyimide resulting in a conductive char between conductors that may sustain the arc (arc tracking). Furthermore, the arc tracking may spread (flashover) to other wire pairs within a wire bundle. Polyimide Kapton will also be used as the insulating material for the flexible current carrier (FCC) of Space Station Freedom (SSF). The FCC, with conductors in a planar type geometric layout as opposed to bundles, is known to sustain arc tracking at proposed SSF power levels. Tests were conducted in a vacuum bell jar that was designed to conduct polyimide pyrolysis, arc tracking, and flashover studies on samples of SSF's FCC. Test results will be reported concerning the minimal power level needed to sustain arc tracking and the FCC susceptibility to flashover. Results of the FCC arc tracking tests indicate that only 22 volt amps were necessary to sustain arc tracking (proposed SSF power level is 400 watts). FCC flashover studies indicate that the flashover event is highly unlikely.

  17. Composition dependent thermal annealing behaviour of ion tracks in apatite

    NASA Astrophysics Data System (ADS)

    Nadzri, A.; Schauries, D.; Mota-Santiago, P.; Muradoglu, S.; Trautmann, C.; Gleadow, A. J. W.; Hawley, A.; Kluth, P.

    2016-07-01

    Natural apatite samples with different F/Cl content from a variety of geological locations (Durango, Mexico; Mud Tank, Australia; and Snarum, Norway) were irradiated with swift heavy ions to simulate fission tracks. The annealing kinetics of the resulting ion tracks was investigated using synchrotron-based small-angle X-ray scattering (SAXS) combined with ex situ annealing. The activation energies for track recrystallization were extracted and consistent with previous studies using track-etching, tracks in the chlorine-rich Snarum apatite are more resistant to annealing than in the other compositions.

  18. Application of leftover sample material from waterborne protozoa monitoring for the molecular detection of Bacteroidales and fecal source tracking markers

    EPA Science Inventory

    In this study, we examined the potential for detecting fecal bacteria and microbial source tracking markers in samples discarded during the concentration of Cryptosporidium and Giardia using USEPA Method 1623. Recovery rates for different fecal bacteria were determined using sp...

  19. A DATABASE FOR TRACKING TOXICOGENOMIC SAMPLES AND PROCEDURES WITH GENOMIC, PROTEOMIC AND METABONOMIC COMPONENTS

    EPA Science Inventory

    A Database for Tracking Toxicogenomic Samples and Procedures with Genomic, Proteomic and Metabonomic Components
    Wenjun Bao1, Jennifer Fostel2, Michael D. Waters2, B. Alex Merrick2, Drew Ekman3, Mitchell Kostich4, Judith Schmid1, David Dix1
    Office of Research and Developmen...

  20. 77 FR 53941 - Emerging Global Advisors, LLC, et al.;

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... sampling strategy to track its Underlying Index. A Fund using a replication strategy will invest in the.... A Fund using a representative sampling strategy will hold some, but not necessarily all, of the... strategy, a Fund is not expected to track the performance of its Underlying Index with the same degree of...

  1. Resolving occlusion and segmentation errors in multiple video object tracking

    NASA Astrophysics Data System (ADS)

    Cheng, Hsu-Yung; Hwang, Jenq-Neng

    2009-02-01

    In this work, we propose a method to integrate the Kalman filter and adaptive particle sampling for multiple video object tracking. The proposed framework is able to detect occlusion and segmentation error cases and perform adaptive particle sampling for accurate measurement selection. Compared with traditional particle filter based tracking methods, the proposed method generates particles only when necessary. With the concept of adaptive particle sampling, we can avoid degeneracy problem because the sampling position and range are dynamically determined by parameters that are updated by Kalman filters. There is no need to spend time on processing particles with very small weights. The adaptive appearance for the occluded object refers to the prediction results of Kalman filters to determine the region that should be updated and avoids the problem of using inadequate information to update the appearance under occlusion cases. The experimental results have shown that a small number of particles are sufficient to achieve high positioning and scaling accuracy. Also, the employment of adaptive appearance substantially improves the positioning and scaling accuracy on the tracking results.

  2. A simple thick target for production of 89Zr using an 11 MeV cyclotron

    PubMed Central

    Link, Jeanne M.; Krohn, Kenneth A.; O’Hara, Matthew J.

    2017-01-01

    The growing interest but limited availability of 89Zr for PET led us to test targets for the 89Y(p,n) reaction. The goal was an easily constructed target for an 11 MeV Siemens cyclotron. Yttrium foils were tested at different thicknesses, angles and currents. A 90° foil tolerated 41 μA without damage and produced ~800 MBq/h, > 20 mCi, an amount adequate for radiochemistry research and human doses in a widely available accelerator. This method should translate to higher energy cyclotrons. PMID:28187357

  3. Management of radioactive waste gases from PET radiopharmaceutical synthesis using cost effective capture systems integrated with a cyclotron safety system.

    PubMed

    Stimson, D H R; Pringle, A J; Maillet, D; King, A R; Nevin, S T; Venkatachalam, T K; Reutens, D C; Bhalla, R

    2016-09-01

    The emphasis on the reduction of gaseous radioactive effluent associated with PET radiochemistry laboratories has increased. Various radioactive gas capture strategies have been employed historically including expensive automated compression systems. We have implemented a new cost-effective strategy employing gas capture bags with electronic feedback that are integrated with the cyclotron safety system. Our strategy is suitable for multiple automated 18 F radiosynthesis modules and individual automated 11 C radiosynthesis modules. We describe novel gas capture systems that minimize the risk of human error and are routinely used in our facility.

  4. National Center for Nuclear Security: The Nuclear Forensics Project (F2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klingensmith, A. L.

    These presentation visuals introduce the National Center for Nuclear Security. Its chartered mission is to enhance the Nation’s verification and detection capabilities in support of nuclear arms control and nonproliferation through R&D activities at the NNSS. It has three focus areas: Treaty Verification Technologies, Nonproliferation Technologies, and Technical Nuclear Forensics. The objectives of nuclear forensics are to reduce uncertainty in the nuclear forensics process & improve the scientific defensibility of nuclear forensics conclusions when applied to nearsurface nuclear detonations. Research is in four key areas: Nuclear Physics, Debris collection and analysis, Prompt diagnostics, and Radiochemistry.

  5. BAYES’ THEOREM AND EARLY SOLAR SHORT-LIVED RADIONUCLIDES: THE CASE FOR AN UNEXCEPTIONAL ORIGIN FOR THE SOLAR SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Edward D., E-mail: eyoung@epss.ucla.edu

    2016-08-01

    The presence of excesses of short-lived radionuclides in the early solar system evidenced in meteorites has been taken as testament to close encounters with exotic nucleosynthetic sources, including supernovae or AGB stars. An analysis of the likelihoods associated with different sources of these extinct nuclides in the early solar system indicates that, rather than being exotic, their abundances were typical of star-forming regions like those observed today in the Galaxy. The radiochemistry of the early solar system is therefore unexceptional, being the consequence of extensive averaging of solids from molecular clouds.

  6. The Basic Principles of FDG-PET/CT Imaging.

    PubMed

    Basu, Sandip; Hess, Søren; Nielsen Braad, Poul-Erik; Olsen, Birgitte Brinkmann; Inglev, Signe; Høilund-Carlsen, Poul Flemming

    2014-10-01

    Positron emission tomography (PET) imaging with 2-[(18)F]fluoro-2-deoxy-D-glucose (FDG) forms the basis of molecular imaging. FDG-PET imaging is a multidisciplinary undertaking that requires close interdisciplinary collaboration in a broad team comprising physicians, technologists, secretaries, radio-chemists, hospital physicists, molecular biologists, engineers, and cyclotron technicians. The aim of this review is to provide a brief overview of important basic issues and considerations pivotal to successful patient examinations, including basic physics, instrumentation, radiochemistry, molecular and cell biology, patient preparation, normal distribution of tracer, and potential interpretive pitfalls. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Study of nuclear multifragmentation induced by ultrarelativistic μ-mesons in nuclear track emulsion

    NASA Astrophysics Data System (ADS)

    Artemenkov, D. A.; Bradnova, V.; Firu, E.; Kornegrutsa, N. K.; Haiduc, M.; Mamatkulov, K. Z.; Kattabekov, R. R.; Neagu, A.; Rukoyatkin, P. A.; Rusakova, V. V.; Stanoeva, R.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.

    2016-02-01

    Exposures of test samples of nuclear track emulsion were analyzed. The formation of high-multiplicity nuclear stars was observed upon irradiating nuclear track emulsions with ultrarelativistic muons. Kinematical features studied in this exposure of nuclear track emulsions for events of the muon-induced splitting of carbon nuclei to three α-particles are indicative of the nuclear-diffraction interaction mechanism.

  8. Fast Compressive Tracking.

    PubMed

    Zhang, Kaihua; Zhang, Lei; Yang, Ming-Hsuan

    2014-10-01

    It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples from observations in recent frames. Despite much success has been demonstrated, numerous issues remain to be addressed. First, while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, misaligned samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from a multiscale image feature space with data-independent basis. The proposed appearance model employs non-adaptive random projections that preserve the structure of the image feature space of objects. A very sparse measurement matrix is constructed to efficiently extract the features for the appearance model. We compress sample images of the foreground target and the background using the same sparse measurement matrix. The tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. A coarse-to-fine search strategy is adopted to further reduce the computational complexity in the detection procedure. The proposed compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art methods on challenging sequences in terms of efficiency, accuracy and robustness.

  9. Adaptive quaternion tracking with nonlinear extended state observer

    NASA Astrophysics Data System (ADS)

    Bai, Yu-liang; Wang, Xiao-gang; Xu, Jiang-tao; Cui, Nai-gang

    2017-10-01

    This paper addresses the problem of attitude tracking for spacecraft in the presence of uncertainties in moments of inertia and environmental disturbances. An adaptive quaternion tracking control is combined with a nonlinear extended state observer and the disturbances compensated for in each sampling period. The tracking controller is proved to asymptotically track a prescribed motion in the presence of these uncertainties. Simulations of a nano-spacecraft demonstrate a significant improvement in pointing accuracy and tracking error when compared to a conventional attitude controller. The proposed tracking control is completely deterministic, simple to implement, does not require knowledge of the uncertainties and does not suffer from chattering.

  10. Textual and shape-based feature extraction and neuro-fuzzy classifier for nuclear track recognition

    NASA Astrophysics Data System (ADS)

    Khayat, Omid; Afarideh, Hossein

    2013-04-01

    Track counting algorithms as one of the fundamental principles of nuclear science have been emphasized in the recent years. Accurate measurement of nuclear tracks on solid-state nuclear track detectors is the aim of track counting systems. Commonly track counting systems comprise a hardware system for the task of imaging and software for analysing the track images. In this paper, a track recognition algorithm based on 12 defined textual and shape-based features and a neuro-fuzzy classifier is proposed. Features are defined so as to discern the tracks from the background and small objects. Then, according to the defined features, tracks are detected using a trained neuro-fuzzy system. Features and the classifier are finally validated via 100 Alpha track images and 40 training samples. It is shown that principle textual and shape-based features concomitantly yield a high rate of track detection compared with the single-feature based methods.

  11. Fission track length distributions in multi-system thermochronology (Invited)

    NASA Astrophysics Data System (ADS)

    Gleadow, A. J.; Seiler, C.

    2013-12-01

    Fission track length distributions contain a unique record of past temperature variations and therefore play a key role in low-temperature thermochronology, for which there is no exact equivalent in any other method. Confined track lengths closely approximate the true etchable ranges of latent fission tracks [1] and are therefore favoured for fission track studies, but they still have a number of practical limitations. These include small numbers of suitable tracks, especially when only horizontal confined tracks are measured. Using only track-in-track events for measurement further limits the sample size. These restrictions become acute for low track-density samples, where length measurements may be impossible. Irradiating the surface with 252Cf tracks [2] can substantially increase the number of confined tracks, but many researchers do not have access to a Cf source. An even more significant issue has emerged from inter-laboratory comparison experiments that demonstrate a disturbingly poor reproducibility of length measurements between observers [3], a problem compounded by a lack of standardisation in measurement techniques. As a result, individual observers may measure different positions for the end of a track, contributing significantly to variability, and consequently blurring the thermal histories obtained. New digital microscopes open up important opportunities for improved track length measurements by reducing restrictions on sample size, and eliminating some sources of inter-observer bias. We have developed a track length measurement system that enables precise determination of vertical as well as horizontal track dimensions, allowing 3D lengths to be obtained. Lengths are measured on captured image stacks that can be analysed easily and may also be shared, for greater standardisation between laboratories. Length measurements are highly reproducible between different observers using this system, suggesting that at least one source of variability can be eliminated. The selection of lengths for imaging, however, still remains a source of potential bias between observers. The new measurement system also enables measurement of 3D lengths of surface-intersecting ';semi-tracks', the distributions of which have been well understood theoretically [1,4], but have not been used in practice because of difficulties of measuring vertical dimensions on older microscopes. Semi-track lengths are, of course, a degraded measure compared to confined tracks because they are randomly truncated. However, this is more than compensated by their very much greater abundance, by a factor of >60, compared to confined tracks. They are also more amenable to semi- or fully-automated measurement techniques than confined tracks. Moreover the distribution characteristics of semi-track lengths relative to confined track lengths are well understood so that in principle the two types could be used together in modelling thermal histories. The implementation of these new approaches for track length measurement should significantly improve the precision and standardisation of track length measurements at every stage of their utilisation, from annealing studies to thermal history modelling of unknowns. [1] Galbraith (2003) Statistics for FT Analysis, Chapman & Hall [2] Donelick et al. (2005) Rev Min Geochem 58, 49-94 [3] Ketcham et al. (2009) Ear Planet Sci Lett 284, 504-515 [4] Jonckheere & Van den haute (1999) Rad Meas 30, 155-179

  12. NHEXAS PHASE I MARYLAND STUDY--STANDARD OPERATING PROCEDURE FOR CHAIN-OF-CUSTODY AND SAMPLE TRACKING (G04)

    EPA Science Inventory

    The purpose of the SOP is to establish the normal procedures for ensuring data chain-of-custody and data tracking. The chain-of-custody form included in this SOP is the standard form to be used for all data collected in the field. Keywords: samples; custody; records.

    The Nat...

  13. Modeling of human operator dynamics in simple manual control utilizing time series analysis. [tracking (position)

    NASA Technical Reports Server (NTRS)

    Agarwal, G. C.; Osafo-Charles, F.; Oneill, W. D.; Gottlieb, G. L.

    1982-01-01

    Time series analysis is applied to model human operator dynamics in pursuit and compensatory tracking modes. The normalized residual criterion is used as a one-step analytical tool to encompass the processes of identification, estimation, and diagnostic checking. A parameter constraining technique is introduced to develop more reliable models of human operator dynamics. The human operator is adequately modeled by a second order dynamic system both in pursuit and compensatory tracking modes. In comparing the data sampling rates, 100 msec between samples is adequate and is shown to provide better results than 200 msec sampling. The residual power spectrum and eigenvalue analysis show that the human operator is not a generator of periodic characteristics.

  14. Results of interlaboratory comparison of fission-track age standards: Fission-track workshop-1984

    USGS Publications Warehouse

    Miller, D.S.; Duddy, I.R.; Green, P.F.; Hurford, A.J.; Naeser, C.W.

    1985-01-01

    Five samples were made available as standards for the 1984 Fission Track Workshop held in the summer of 1984 (Rensselaer Polytechnic Institute, Troy, New York). Two zircons, two apatites and a sphene were distributed prior to the meeting to 40 different laboratories. To date, 24 different analysts have reported results. The isotopic ages of the standards ranged from 16.8 to 98.7 Myr. Only the statement that the age of each sample was less than 200 Myr was provided with the set of standards distributed. Consequently, each laboratory was required to use their laboratory's accepted treatment (irradiation level, etching conditions, counting conditions, etc.) for these samples. The results show that some workers have serious problems in achieving accurate age determinations. This emphasizes the need to calibrate experimental techniques and counting procedures against age standards before unknown ages are determined. Any fission-track age determination published or submitted for publication can only be considered reliable if it is supported by evidence of consistent determinations on age standards. Only this can provide the scientific community with the background to build up confidence concerning the validity of the fission-track method. ?? 1985.

  15. Two-phase Neogene extension in the northwestern basin and range recorded in a single thermochronology sample

    USGS Publications Warehouse

    Colgan, J.P.; Shuster, D.L.; Reiners, P.W.

    2008-01-01

    We use a combination of apatite 4He/3He, (U-Th)/ He, and fission-track thermochronology to date slip on the Surprise Valley fault in northeastern California by analyzing a single sample from the Warner Range in the footwall of the fault. This sample, a granitic clast from a conglomerate, yielded a fission-track age of 11.6 ?? 2.8 Ma and a (U-Th)/He age of 3.02 ?? 0.52 Ma. Geologic relationships indicate that this sample was buried to a depth of ???3.3 km prior to exhumation during slip on the Surprise Valley fault. Fission-track age and length data indicate that the sample was fully reset (>120 ??C) prior to exhumation, which began sometime after 14 Ma. A single aliquot of nine apatite grains was step-heated for 4He/3He analysis; modeling of the resulting 4He distribution indicates that cooling from <80 ??C to ???20 ??C occurred between 3 and 1 Ma. Interconsistent time-temperature (t-T) solutions to the combined 4He/3He, (U-Th)/He, and fission-track data require two distinct periods of cooling, consistent with non-continuous slip on the Surprise Valley fault. Early cooling and fault slip took place between 14 and 8 Ma, followed by more recent fault slip ca. 3 Ma. This timing is consistent with both local geologic relationships and with the regional timing of faulting along the western margin of the Basin and Range Province. These data demonstrate the resolving power of combined fission-track, (U-Th)/He, and 4He/3He thermochronometric data to extract low-temperature t-T information from a single sample close to Earth's surface. ?? 2008 The Geological Society of America.

  16. A novel storage system for cryoEM samples.

    PubMed

    Scapin, Giovanna; Prosise, Winifred W; Wismer, Michael K; Strickland, Corey

    2017-07-01

    We present here a new CryoEM grid boxes storage system designed to simplify sample labeling, tracking and retrieval. The system is based on the crystal pucks widely used by the X-ray crystallographic community for storage and shipping of crystals. This system is suitable for any cryoEM laboratory, but especially for large facilities that will need accurate tracking of large numbers of samples coming from different sources. Copyright © 2017. Published by Elsevier Inc.

  17. Object Tracking Using Adaptive Covariance Descriptor and Clustering-Based Model Updating for Visual Surveillance

    PubMed Central

    Qin, Lei; Snoussi, Hichem; Abdallah, Fahed

    2014-01-01

    We propose a novel approach for tracking an arbitrary object in video sequences for visual surveillance. The first contribution of this work is an automatic feature extraction method that is able to extract compact discriminative features from a feature pool before computing the region covariance descriptor. As the feature extraction method is adaptive to a specific object of interest, we refer to the region covariance descriptor computed using the extracted features as the adaptive covariance descriptor. The second contribution is to propose a weakly supervised method for updating the object appearance model during tracking. The method performs a mean-shift clustering procedure among the tracking result samples accumulated during a period of time and selects a group of reliable samples for updating the object appearance model. As such, the object appearance model is kept up-to-date and is prevented from contamination even in case of tracking mistakes. We conducted comparing experiments on real-world video sequences, which confirmed the effectiveness of the proposed approaches. The tracking system that integrates the adaptive covariance descriptor and the clustering-based model updating method accomplished stable object tracking on challenging video sequences. PMID:24865883

  18. Canine scent detection and microbial source tracking of human waste contamination in storm drains.

    PubMed

    Van De Werfhorst, Laurie C; Murray, Jill L S; Reynolds, Scott; Reynolds, Karen; Holden, Patricia A

    2014-06-01

    Human fecal contamination of surface waters and drains is difficult to diagnose. DNA-based and chemical analyses of water samples can be used to specifically quantify human waste contamination, but their expense precludes routine use. We evaluated canine scent tracking, using two dogs trained to respond to the scent of municipal wastewater, as a field approach for surveying human fecal contamination. Fecal indicator bacteria, as well as DNA-based and chemical markers of human waste, were analyzed in waters sampled from canine scent-evaluated sites (urban storm drains and creeks). In the field, the dogs responded positively (70% and 100%) at sites for which sampled waters were then confirmed as contaminated with human waste. When both dogs indicated a negative response, human waste markers were absent. Overall, canine scent tracking appears useful for prioritizing sampling sites for which DNA-based and similarly expensive assays can confirm and quantify human waste contamination.

  19. Neon and Helium in the Surface of Stardust Cell C2028

    NASA Technical Reports Server (NTRS)

    Palma, R. L.; Pepin, R. O.; Schlutter, D. J.; Frank, D. R.; Bastien, R.; Rodriguez, M.

    2015-01-01

    Previous studies of light noble gases in Stardust aerogel samples detected a variety of isotopically non-terrestrial He and Ne compositions. However, with one exception, in none of these samples was there visible evidence for the presence of particles that could have hosted the gases. The exception is materials keystoned from track 41, cell C2044, which contained observable fragments of the impacting Wild 2 comet coma grain. Here we report noble gas data from a second aerogel sample in which grains are observed, cut from the surface of a cell (C2028) riddled with tiny tracks and particles that are thought to be secondary in origin, ejected toward the cell when a parent grain collided with the spacecraft structure and fragmented. Interestingly, measured 20Ne/22Ne ratios in the track 41 and C2028 samples are similar, and within error of the meteoritic "Q-phase" Ne composition.

  20. A new method for evaluating radon and thoron alpha-activities per unit volume inside and outside various natural material samples by calculating SSNTD detection efficiencies for the emitted alpha-particles and measuring the resulting track densities.

    PubMed

    Misdaq, M A; Aitnouh, F; Khajmi, H; Ezzahery, H; Berrazzouk, S

    2001-08-01

    A Monte Carlo computer code for determining detection efficiencies of the CR-39 and LR-115 II solid-state nuclear track detectors (SSNTD) for alpha-particles emitted by the uranium and thorium series inside different natural material samples was developed. The influence of the alpha-particle initial energy on the SSNTD detection efficiencies was investigated. Radon (222Rn) and thoron (220Rn) alpha-activities per unit volume were evaluated inside and outside the natural material samples by exploiting data obtained for the detection efficiencies of the SSNTD utilized for the emitted alpha-particles, and measuring the resulting track densities. Results obtained were compared to those obtained by other methods. Radon emanation coefficients have been determined for some of the considered material samples.

  1. The Texas A&M Radioisotope Production and Radiochemistry Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akabani, Gamal

    The main motivation of the project at Texas A&M University was to carry out the production of critically needed radioisotopes used in medicine for diagnostic and therapy, and to establish an academic program in radionuclide production and separation methods. After a lengthy battle with the Texas A&M University Radiation Safety Office, the Texas Department of State Health Services granted us a license for the production of radionuclides in July 2015, allowing us to work in earnest in our project objectives. Experiments began immediately after licensing, and we started the assembly and testing of our target systems. There were four analytical/theoreticalmore » projects and two experimental target systems. These were for At-211 production and for Zn- 62/Cu-62 production. The theoretical projects were related to the production of Mo-99/Tc-99m using (a) a subcritical aqueous target system and (b) production of Tc-99m from accelerator-generated Mo-99 utilizing a photon-neutron interaction with enriched Mo-100 targets. The two experimental projects were the development of targetry systems and production of At-211 and Zn-62/Cu-62 generator. The targetry system for At-211 has been tested and production of At-211 is chronic depending of availability of beam time at the cyclotron. The installation and testing of the targetry system for the production of Zn-62/Cu-62 has not been finalized. A description of the systems is described. The academic program in radionuclide production and separation methods was initiated in the fall of 2011; due to the lack of a radiochemistry laboratory, it was suspended. We expect to re-start the academic program at the Texas A&M Institute for Preclinical Studies under the Molecular Imaging Program.« less

  2. The Texas A&M Radioisotope Production and Radiochemistry Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akabani, Gamal

    The main motivation of the project at Texas A&M University was to carry out the production of critically needed radioisotopes used in medicine for diagnostics and therapy, and to establish an academic program in radionuclide production and separation methods. After a lengthy battle with the Texas A&M University Radiation Safety Office, the Texas Department of State Health Services granted us a license for the production of radionuclides in July 2015, allowing us to work in earnest in our project objectives. Experiments began immediately after licensing, and we started the assembly and testing of our target systems. There were four analytical/theoreticalmore » projects and two experimental target systems. These were for At-211 production and for Zn-62/Cu-62 production. The theoretical projects were related to the production of Mo-99/Tc-99m using a) a subcritical aqueous target system and b) production of Tc-99m from accelerator-generated Mo-99 utilizing a photon-neutron interaction with enriched Mo-100 targets. The two experimental projects were the development of targetry systems and production of At-211 and Zn-62/Cu-62 generator. The targetry system for At-211 has been tested and production of At-211 is chronic depending of availability of beam time at the cyclotron. The installation and testing of the targetry system for the production of Zn-62/Cu-62 has not been finalized. A description of the systems is described. The academic program in radionuclide production and separation methods was initiated in the fall of 2011 and, due to the lack of a radiochemistry laboratory, it was suspended. We expect to re-start the academic program at the Texas A&M Institute for Preclinical Studies under the Molecular Imaging Program.« less

  3. Growing Applications of “Click Chemistry” for Bioconjugation in Contemporary Biomedical Research

    PubMed Central

    Nwe, Kido

    2009-01-01

    Summation This update summarizes the growing application of “click” chemistry in diverse areas such as bioconjugation, drug discovery, materials science, and radiochemistry. This update also discusses click chemistry reactions that proceed rapidly with high selectivity, specificity, and yield. Two important characteristics make click chemistry so attractive for assembling compounds, reagents, and biomolecules for preclinical and clinical applications. First, click reactions are bio-orthogonal; neither the reactants nor their product's functional groups interact with functionalized biomolecules. Second, the reactions proceed with ease under mild nontoxic conditions, such as at room temperature and, usually, in water. The copper-catalyzed Huisgen cycloaddition, azide-alkyne [3 + 2] dipolar cycloaddition, Staudinger ligation, and azide-phosphine ligation each possess these unique qualities. These reactions can be used to modify one cellular component while leaving others unharmed or untouched. Click chemistry has found increasing applications in all aspects of drug discovery in medicinal chemistry, such as for generating lead compounds through combinatorial methods. Bioconjugation via click chemistry is rigorously employed in proteomics and nucleic research. In radiochemistry, selective radiolabeling of biomolecules in cells and living organisms for imaging and therapy has been realized by this technology. Bifunctional chelating agents for several radionuclides useful for positron emission tomography and single-photon emission computed tomography imaging have also been prepared by using click chemistry. This review concludes that click chemistry is not the perfect conjugation and assembly technology for all applications, but provides a powerful, attractive alternative to conventional chemistry. This chemistry has proven itself to be superior in satisfying many criteria (e.g., biocompatibility, selectivity, yield, stereospecificity, and so forth); thus, one can expect it will consequently become a more routine strategy in the near future for a wide range of applications. PMID:19538051

  4. The effect of sampling rate on observed statistics in a correlated random walk

    PubMed Central

    Rosser, G.; Fletcher, A. G.; Maini, P. K.; Baker, R. E.

    2013-01-01

    Tracking the movement of individual cells or animals can provide important information about their motile behaviour, with key examples including migrating birds, foraging mammals and bacterial chemotaxis. In many experimental protocols, observations are recorded with a fixed sampling interval and the continuous underlying motion is approximated as a series of discrete steps. The size of the sampling interval significantly affects the tracking measurements, the statistics computed from observed trajectories, and the inferences drawn. Despite the widespread use of tracking data to investigate motile behaviour, many open questions remain about these effects. We use a correlated random walk model to study the variation with sampling interval of two key quantities of interest: apparent speed and angle change. Two variants of the model are considered, in which reorientations occur instantaneously and with a stationary pause, respectively. We employ stochastic simulations to study the effect of sampling on the distributions of apparent speeds and angle changes, and present novel mathematical analysis in the case of rapid sampling. Our investigation elucidates the complex nature of sampling effects for sampling intervals ranging over many orders of magnitude. Results show that inclusion of a stationary phase significantly alters the observed distributions of both quantities. PMID:23740484

  5. The efficacy of obtaining genetic-based identifications from putative wolverine snow tracks

    Treesearch

    Todd J. Ulizio; John R. Squires; Daniel H. Pletscher; Michael K. Schwartz; James J. Claar; Leonard F. Ruggiero

    2006-01-01

    Snow-track surveys to detect rare carnivores require unequivocal species identification because of management and political ramifications associated with the presence of such species. Collecting noninvasive genetic samples from putative wolverine (Gulo gulo) snow tracks is an effective method for providing definitive species identification for use in presence-...

  6. Track analysis of laser-illuminated etched track detectors using an opto-digital imaging system

    NASA Astrophysics Data System (ADS)

    Eghan, Moses J.; Buah-Bassuah, Paul K.; Oppon, Osborne C.

    2007-11-01

    An opto-digital imaging system for counting and analysing tracks on a LR-115 detector is described. One batch of LR-115 track detectors was irradiated with Am-241 for a determined period and distance for linearity test and another batch was exposed to radon gas. The laser-illuminated etched track detector area was imaged, digitized and analysed by the system. The tracks that were counted on the opto-digital system with the aid of media cybernetics software as well as spark gap counter showed comparable track density results ranging between 1500 and 2750 tracks cm-2 and 65 tracks cm-2 in the two different batch detector samples with 0.5% and 1% track counts, respectively. Track sizes of the incident alpha particles from the radon gas on the LR-115 detector demonstrating different track energies are statistically and graphically represented. The opto-digital imaging system counts and measures other track parameters at an average process time of 3-5 s.

  7. High bacterial diversity of biological soil crusts in water tracks over permafrost in the high arctic polar desert.

    PubMed

    Steven, Blaire; Lionard, Marie; Kuske, Cheryl R; Vincent, Warwick F

    2013-01-01

    In this study we report the bacterial diversity of biological soil crusts (biocrusts) inhabiting polar desert soils at the northern land limit of the Arctic polar region (83° 05 N). Employing pyrosequencing of bacterial 16S rRNA genes this study demonstrated that these biocrusts harbor diverse bacterial communities, often as diverse as temperate latitude communities. The effect of wetting pulses on the composition of communities was also determined by collecting samples from soils outside and inside of permafrost water tracks, hill slope flow paths that drain permafrost-affected soils. The intermittent flow regime in the water tracks was correlated with altered relative abundance of phylum level taxonomic bins in the bacterial communities, but the alterations varied between individual sampling sites. Bacteria related to the Cyanobacteria and Acidobacteria demonstrated shifts in relative abundance based on their location either inside or outside of the water tracks. Among cyanobacterial sequences, the proportion of sequences belonging to the family Oscillatoriales consistently increased in relative abundance in the samples from inside the water tracks compared to those outside. Acidobacteria showed responses to wetting pulses in the water tracks, increasing in abundance at one site and decreasing at the other two sites. Subdivision 4 acidobacterial sequences tended to follow the trends in the total Acidobacteria relative abundance, suggesting these organisms were largely responsible for the changes observed in the Acidobacteria. Taken together, these data suggest that the bacterial communities of these high latitude polar biocrusts are diverse but do not show a consensus response to intermittent flow in water tracks over high Arctic permafrost.

  8. Formerly utilized MED/AEC sites remedial action program. Radiological survey of The George Herbert Jones Chemical Laboratory, The University of Chicago, Chicago, Illinois, June 13-17, 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wynveen, R.A.; Smith, W.H.; Mayes, C.B.

    A comprehensive radiological survey was conducted at George Herbert Jones Chemical Laboratory at the University of Chicago, Chicago, Illinois. Radiochemistry for the MED/AEC project was performed in this building in the 1940s. The building is now used as laboratories, offices, and classrooms. The survey was undertaken to determine the location and quantities of any radioactive materials remaining from the MED/AEC operations. Forty-three spots of contamination possibly resulting from MED/AEC occupancy in 17 rooms exceeded the allowable limits as given in the ANSI Standard N13.12. Under current use conditions, the potential for radiation exposure to occupants of this building from thesemore » sources of contamination is remote. Concentrations of radon daughters in the air of the building, as measured with grab-sampling techniques, were below the limit of 0.01 WL above background as given in the Surgeon General's Guidelines. No long-lived radionuclides were detected in any air sample. Concentrations of radionuclides in soil samples from near the laboratory generally indicated background levels. In order to reduce the potential for radiation exposure, remedial measures such as stabilization of the contamination in place would be applicable as a short-term measure. In order to reduce the risk in the event that building modifications take place in the future, health physics procedures and coverage are recommended. The long-term solution would involve decontamination by removal of the radioactive residues from the 17 rooms or areas where contamination possibly resulting from MED/AEC activities was detected.« less

  9. Effects of low sampling rate in the digital data-transition tracking loop

    NASA Technical Reports Server (NTRS)

    Mileant, A.; Million, S.; Hinedi, S.

    1994-01-01

    This article describes the performance of the all-digital data-transition tracking loop (DTTL) with coherent and noncoherent sampling using nonlinear theory. The effects of few samples per symbol and of noncommensurate sampling and symbol rates are addressed and analyzed. Their impact on the probability density and variance of the phase error are quantified through computer simulations. It is shown that the performance of the all-digital DTTL approaches its analog counterpart when the sampling and symbol rates are noncommensurate (i.e., the number of samples per symbol is an irrational number). The loop signal-to-noise ratio (SNR) (inverse of phase error variance) degrades when the number of samples per symbol is an odd integer but degrades even further for even integers.

  10. Improving Lab Sample Management - POS/MCEARD

    EPA Science Inventory

    "Scientists face increasing challenges in managing their laboratory samples, including long-term storage of legacy samples, tracking multiple aliquots of samples for many experiments, and linking metadata to these samples. Other factors complicating sample management include the...

  11. A User Guide for Smoothing Air Traffic Radar Data

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E.; Paielli, Russell A.

    2014-01-01

    Matlab software was written to provide smoothing of radar tracking data to simulate ADS-B (Automatic Dependent Surveillance-Broadcast) data in order to test a tactical conflict probe. The probe, called TSAFE (Tactical Separation-Assured Flight Environment), is designed to handle air-traffic conflicts left undetected or unresolved when loss-of-separation is predicted to occur within approximately two minutes. The data stream that is down-linked from an aircraft equipped with an ADS-B system would include accurate GPS-derived position and velocity information at sample rates of 1 Hz. Nation-wide ADS-B equipage (mandated by 2020) should improve surveillance accuracy and TSAFE performance. Currently, position data are provided by Center radar (nominal 12-sec samples) and Terminal radar (nominal 4.8-sec samples). Aircraft ground speed and ground track are estimated using real-time filtering, causing lags up to 60 sec, compromising performance of a tactical resolution tool. Offline smoothing of radar data reduces wild-point errors, provides a sample rate as high as 1 Hz, and yields more accurate and lag-free estimates of ground speed, ground track, and climb rate. Until full ADS-B implementation is available, smoothed radar data should provide reasonable track estimates for testing TSAFE in an ADS-B-like environment. An example illustrates the smoothing of radar data and shows a comparison of smoothed-radar and ADS-B tracking. This document is intended to serve as a guide for using the smoothing software.

  12. Adolescent Student Burnout Inventory in Mainland China: Measurement Invariance across Gender and Educational Track

    ERIC Educational Resources Information Center

    Li, Bi; Wu, Yan; Wen, Zhonglin; Wang, Mengcheng

    2014-01-01

    This article assessed the measurement in variance of the Adolescent Student Burnout Inventory (ASBI) across gender and educational track, and investigated the main and interaction effects of gender and educational track on the facets of student burnout with a sample consisting of 2,216 adolescent students from China. Multigroup confirmatory factor…

  13. The software peculiarities of pattern recognition in track detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starkov, N.

    The different kinds of nuclear track recognition algorithms are represented. Several complicated samples of use them in physical experiments are considered. The some processing methods of complicated images are described.

  14. Phase fluctuation spectra: New radio science information to become available in the DSN tracking system Mark III-77

    NASA Technical Reports Server (NTRS)

    Berman, A. L.

    1977-01-01

    An algorithm was developed for the continuous and automatic computation of Doppler noise concurrently at four sample rate intervals, evenly spanning three orders of magnitude. Average temporal Doppler phase fluctuation spectra will be routinely available in the DSN tracking system Mark III-77 and require little additional processing. The basic (noise) data will be extracted from the archival tracking data file (ATDF) of the tracking data management system.

  15. Quantitative microbial faecal source tracking with sampling guided by hydrological catchment dynamics.

    PubMed

    Reischer, G H; Haider, J M; Sommer, R; Stadler, H; Keiblinger, K M; Hornek, R; Zerobin, W; Mach, R L; Farnleitner, A H

    2008-10-01

    The impairment of water quality by faecal pollution is a global public health concern. Microbial source tracking methods help to identify faecal sources but the few recent quantitative microbial source tracking applications disregarded catchment hydrology and pollution dynamics. This quantitative microbial source tracking study, conducted in a large karstic spring catchment potentially influenced by humans and ruminant animals, was based on a tiered sampling approach: a 31-month water quality monitoring (Monitoring) covering seasonal hydrological dynamics and an investigation of flood events (Events) as periods of the strongest pollution. The detection of a ruminant-specific and a human-specific faecal Bacteroidetes marker by quantitative real-time PCR was complemented by standard microbiological and on-line hydrological parameters. Both quantitative microbial source tracking markers were detected in spring water during Monitoring and Events, with preponderance of the ruminant-specific marker. Applying multiparametric analysis of all data allowed linking the ruminant-specific marker to general faecal pollution indicators, especially during Events. Up to 80% of the variation of faecal indicator levels during Events could be explained by ruminant-specific marker levels proving the dominance of ruminant faecal sources in the catchment. Furthermore, soil was ruled out as a source of quantitative microbial source tracking markers. This study demonstrates the applicability of quantitative microbial source tracking methods and highlights the prerequisite of considering hydrological catchment dynamics in source tracking study design.

  16. Coordinated Analyses of Diverse Components in Whole Stardust Cometary Tracks

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, Keiko; Keller, Lindsay P.; Messenger, Scott R.; Clemett, Simon J.; Nguyen, Lan-Anh N.; Frank, David

    2011-01-01

    Analyses of samples returned from Comet 81P/Wild-2 by the Stardust spacecraft have resulted in a number of surprising findings that show the origins of comets are more complex than previously suspected. However, these samples pose new experimental challenges because they are diverse and suffered fragmentation, thermal alteration, and fine scale mixing with aerogel. Questions remain about the nature of Wild-2 materials, such as the abundances of organic matter, crystalline materials, and presolar grains. To overcome these challenges, we have developed new sample preparation and analytical techniques tailored for entire aerogel tracks. We have successfully ultramicrotomed entire "carrot" and "bulbous" type tracks along their axis while preserving their original shapes. This innovation allowed us to examine the distribution of fragments along the track from the entrance hole all the way to the terminal particle (TP). We will present results of our coordinated analysis of the "carrot" type aerogel tracks #112 and #148, and the "bulbous" type aerogel tracks #113, #147 and #168 from the nanometer to the millimeter scale. Scanning TEM (STEM) was used for elemental and detailed mineralogy characterization, NanoSIMS was used for isotopic analyses, and ultrafast two-step laser mass spectrometry (ultra L2MS) was used to investigate the nature and distribution of organic phases. The isotopic measurements were performed following detailed TEM characterization for coordinated mineralogy. This approach also enabled spatially resolving the target sample from fine-scale mixtures of compressed aerogel and melt. Eight of the TPs of track #113 are dominated by coarse-grained enstatite (En90) that is largely orthoenstatite with minor, isolated clinoenstatite lamellae. One TP contains minor forsterite (Fo88) and small inclusions of diopside with % levels of Al, Cr and Fe. Two of the TPs contain angular regions of fine-grained nepheline surrounded by enstatite. Their O isotopic compositions are in the range of meteoritic materials, implying that they originated in the inner Solar System. Complex aromatic hydrocarbons are distributed along aerogel tracks and in TPs. These organics are likely cometary but were affected by shock heating. Three TPs of track #147 and two of track 168 have completely different mineralogy. TP2 of track #147 entirely consists of Fe-Ni alloy (5 at% Ni) and TP3 contains Fa28 with partial olivine-pyroxene intergrowth and minor albite. TP4 contains pentlandite, Fe-olivine, albite and high Ca pyroxene with Na and Cr (kosmochlor component). TP1 of #168 contains Fe-olivine, albite and pentlandite, and the concentric TP2 has a core of olivine grains with co-existing indigenous amorphous SiO2 surrounded by a carbon mantle, which in turn is surrounded by a layer of compressed aerogel. The TP of the carrot track #112 is a (16)O-rich forsteritic olivine grain that likely formed in the inner Solar System. The track also contains submicron-sized diamond grains of likely Solar System origin.

  17. Coordinated Analyses of Diverse Components in Whole Stardust Cometary Tracks

    NASA Astrophysics Data System (ADS)

    Nakamura-Messenger, K.; Keller, L. P.; Messenger, S. R.; Clemett, S. J.; Nguyen, L. N.; Frank, D.

    2011-12-01

    Analyses of samples returned from Comet 81P/Wild-2 by the Stardust spacecraft have resulted in a number of surprising findings that show the origins of comets are more complex than previously suspected. However, these samples pose new experimental challenges because they are diverse and suffered fragmentation, thermal alteration, and fine scale mixing with aerogel. Questions remain about the nature of Wild-2 materials, such as the abundances of organic matter, crystalline materials, and presolar grains. To overcome these challenges, we have developed new sample preparation and analytical techniques tailored for entire aerogel tracks [Nakamura-Messenger et al. 2011]. We have successfully ultramicrotomed entire "carrot" and "bulbous" type tracks along their axis while preserving their original shapes. This innovation allowed us to examine the distribution of fragments along the track from the entrance hole all the way to the terminal particle (TP). We will present results of our coordinated analysis of the "carrot" type aerogel tracks #112 and #148, and the "bulbous" type aerogel tracks #113, #147 and #168 from the nanometer to the millimeter scale. Scanning TEM (STEM) was used for elemental and detailed mineralogy characterization, NanoSIMS was used for isotopic analyses, and ultrafast two-step laser mass spectrometry (ultra L2MS) was used to investigate the nature and distribution of organic phases. The isotopic measurements were performed following detailed TEM characterization for coordinated mineralogy. This approach also enabled spatially resolving the target sample from fine-scale mixtures of compressed aerogel and melt. Eight of the TPs of track #113 are dominated by coarse-grained enstatite (En90) that is largely orthoenstatite with minor, isolated clinoenstatite lamellae. One TP contains minor forsterite (Fo88) and small inclusions of diopside with % levels of Al, Cr and Fe. Two of the TPs contain angular regions of fine-grained nepheline surrounded by enstatite. Their O isotopic compositions are in the range of meteoritic materials, implying that they originated in the inner Solar System. Complex aromatic hydrocarbons are distributed along aerogel tracks and in TPs. These organics are likely cometary but were affected by shock heating. Three TPs of track #147 and two of track 168 have completely different mineralogy. TP2 of track #147 entirely consists of Fe-Ni alloy (5 at% Ni) and TP3 contains Fa28 with partial olivine-pyroxene intergrowth and minor albite. TP4 contains pentlandite, Fe-olivine, albite and high Ca pyroxene with Na and Cr (kosmochlor component). TP1 of #168 contains Fe-olivine, albite and pentlandite, and the concentric TP2 has a core of olivine grains with co-existing indigenous amorphous SiO2 surrounded by a carbon mantle, which in turn is surrounded by a layer of compressed aerogel. The TP of the carrot track #112 is a 16O-rich forsteritic olivine grain that likely formed in the inner Solar System. The track also contains submicron-sized diamond grains of likely Solar System origin.

  18. Optimisation of Substrate Angles for Multi-material and Multi-functional Inkjet Printing.

    PubMed

    Vaithilingam, Jayasheelan; Saleh, Ehab; Wildman, Ricky D; Hague, Richard J M; Tuck, Christopher J

    2018-06-13

    Three dimensional inkjet printing of multiple materials for electronics applications are challenging due to the limited material availability, inconsistencies in layer thickness between dissimilar materials and the need to expose the printed tracks of metal nanoparticles to temperature above 100 °C for sintering. It is envisaged that instead of printing a dielectric and a conductive material on the same plane, by printing conductive tracks on an angled dielectric surface, the required number of silver layers and consequently, the exposure of the polymer to high temperature and the build time of the component can be significantly reduced. Conductive tracks printed with a fixed print height (FH) showed significantly better resolution for all angles than the fixed slope (FS) sample where the print height varied to maintain the slope length. The electrical resistance of the tracks remained under 10Ω up to 60° for FH; whereas for the FS samples, the resistance remained under 10Ω for samples up to 45°. Thus by fixing the print height to 4 mm, precise tracks with low resistance can be printed at substrate angles up to 60°. By adopting this approach, the build height "Z" can be quickly attained with less exposure of the polymer to high temperature.

  19. Radiochemistry, PET Imaging, and the Internet of Chemical Things

    PubMed Central

    2016-01-01

    The Internet of Chemical Things (IoCT), a growing network of computers, mobile devices, online resources, software suites, laboratory equipment, synthesis apparatus, analytical devices, and a host of other machines, all interconnected to users, manufacturers, and others through the infrastructure of the Internet, is changing how we do chemistry. While in its infancy across many chemistry laboratories and departments, it became apparent when considering our own work synthesizing radiopharmaceuticals for positron emission tomography (PET) that a more mature incarnation of the IoCT already exists. How does the IoCT impact our lives today, and what does it hold for the smart (radio)chemical laboratories of the future? PMID:27610410

  20. Radiochemistry, PET Imaging, and the Internet of Chemical Things.

    PubMed

    Thompson, Stephen; Kilbourn, Michael R; Scott, Peter J H

    2016-08-24

    The Internet of Chemical Things (IoCT), a growing network of computers, mobile devices, online resources, software suites, laboratory equipment, synthesis apparatus, analytical devices, and a host of other machines, all interconnected to users, manufacturers, and others through the infrastructure of the Internet, is changing how we do chemistry. While in its infancy across many chemistry laboratories and departments, it became apparent when considering our own work synthesizing radiopharmaceuticals for positron emission tomography (PET) that a more mature incarnation of the IoCT already exists. How does the IoCT impact our lives today, and what does it hold for the smart (radio)chemical laboratories of the future?

  1. Advanced Navigation Strategies For Asteroid Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Getzandanner, K.; Bauman, J.; Williams, B.; Carpenter, J.

    2010-01-01

    Flyby and rendezvous missions to asteroids have been accomplished using navigation techniques derived from experience gained in planetary exploration. This paper presents analysis of advanced navigation techniques required to meet unique challenges for precision navigation to acquire a sample from an asteroid and return it to Earth. These techniques rely on tracking data types such as spacecraft-based laser ranging and optical landmark tracking in addition to the traditional Earth-based Deep Space Network radio metric tracking. A systematic study of navigation strategy, including the navigation event timeline and reduction in spacecraft-asteroid relative errors, has been performed using simulation and covariance analysis on a representative mission.

  2. Quantifying the degree of persistence in random amoeboid motion based on the Hurst exponent of fractional Brownian motion.

    PubMed

    Makarava, Natallia; Menz, Stephan; Theves, Matthias; Huisinga, Wilhelm; Beta, Carsten; Holschneider, Matthias

    2014-10-01

    Amoebae explore their environment in a random way, unless external cues like, e.g., nutrients, bias their motion. Even in the absence of cues, however, experimental cell tracks show some degree of persistence. In this paper, we analyzed individual cell tracks in the framework of a linear mixed effects model, where each track is modeled by a fractional Brownian motion, i.e., a Gaussian process exhibiting a long-term correlation structure superposed on a linear trend. The degree of persistence was quantified by the Hurst exponent of fractional Brownian motion. Our analysis of experimental cell tracks of the amoeba Dictyostelium discoideum showed a persistent movement for the majority of tracks. Employing a sliding window approach, we estimated the variations of the Hurst exponent over time, which allowed us to identify points in time, where the correlation structure was distorted ("outliers"). Coarse graining of track data via down-sampling allowed us to identify the dependence of persistence on the spatial scale. While one would expect the (mode of the) Hurst exponent to be constant on different temporal scales due to the self-similarity property of fractional Brownian motion, we observed a trend towards stronger persistence for the down-sampled cell tracks indicating stronger persistence on larger time scales.

  3. Measuring zebrafish turning rate.

    PubMed

    Mwaffo, Violet; Butail, Sachit; di Bernardo, Mario; Porfiri, Maurizio

    2015-06-01

    Zebrafish is becoming a popular animal model in preclinical research, and zebrafish turning rate has been proposed for the analysis of activity in several domains. The turning rate is often estimated from the trajectory of the fish centroid that is output by commercial or custom-made target tracking software run on overhead videos of fish swimming. However, the accuracy of such indirect methods with respect to the turning rate associated with changes in heading during zebrafish locomotion is largely untested. Here, we compare two indirect methods for the turning rate estimation using the centroid velocity or position data, with full shape tracking for three different video sampling rates. We use tracking data from the overhead video recorded at 60, 30, and 15 frames per second of zebrafish swimming in a shallow water tank. Statistical comparisons of absolute turning rate across methods and sampling rates indicate that, while indirect methods are indistinguishable from full shape tracking, the video sampling rate significantly influences the turning rate measurement. The results of this study can aid in the selection of the video capture frame rate, an experimental design parameter in zebrafish behavioral experiments where activity is an important measure.

  4. High Bacterial Diversity of Biological Soil Crusts in Water Tracks over Permafrost in the High Arctic Polar Desert

    DOE PAGES

    Steven, Blaire; Lionard, Marie; Kuske, Cheryl R.; ...

    2013-08-13

    In this paper we report the bacterial diversity of biological soil crusts (biocrusts) inhabiting polar desert soils at the northern land limit of the Arctic polar region (83° 05 N). Employing pyrosequencing of bacterial 16S rRNA genes this study demonstrated that these biocrusts harbor diverse bacterial communities, often as diverse as temperate latitude communities. The effect of wetting pulses on the composition of communities was also determined by collecting samples from soils outside and inside of permafrost water tracks, hill slope flow paths that drain permafrost-affected soils. The intermittent flow regime in the water tracks was correlated with altered relativemore » abundance of phylum level taxonomic bins in the bacterial communities, but the alterations varied between individual sampling sites. Bacteria related to the Cyanobacteria and Acidobacteria demonstrated shifts in relative abundance based on their location either inside or outside of the water tracks. Among cyanobacterial sequences, the proportion of sequences belonging to the family Oscillatoriales consistently increased in relative abundance in the samples from inside the water tracks compared to those outside. Acidobacteria showed responses to wetting pulses in the water tracks, increasing in abundance at one site and decreasing at the other two sites. Subdivision 4 acidobacterial sequences tended to follow the trends in the total Acidobacteria relative abundance, suggesting these organisms were largely responsible for the changes observed in the Acidobacteria. Finally, taken together, these data suggest that the bacterial communities of these high latitude polar biocrusts are diverse but do not show a consensus response to intermittent flow in water tracks over high Arctic permafrost.« less

  5. High Bacterial Diversity of Biological Soil Crusts in Water Tracks over Permafrost in the High Arctic Polar Desert

    PubMed Central

    Steven, Blaire; Lionard, Marie; Kuske, Cheryl R.; Vincent, Warwick F.

    2013-01-01

    In this study we report the bacterial diversity of biological soil crusts (biocrusts) inhabiting polar desert soils at the northern land limit of the Arctic polar region (83° 05 N). Employing pyrosequencing of bacterial 16S rRNA genes this study demonstrated that these biocrusts harbor diverse bacterial communities, often as diverse as temperate latitude communities. The effect of wetting pulses on the composition of communities was also determined by collecting samples from soils outside and inside of permafrost water tracks, hill slope flow paths that drain permafrost-affected soils. The intermittent flow regime in the water tracks was correlated with altered relative abundance of phylum level taxonomic bins in the bacterial communities, but the alterations varied between individual sampling sites. Bacteria related to the Cyanobacteria and Acidobacteria demonstrated shifts in relative abundance based on their location either inside or outside of the water tracks. Among cyanobacterial sequences, the proportion of sequences belonging to the family Oscillatoriales consistently increased in relative abundance in the samples from inside the water tracks compared to those outside. Acidobacteria showed responses to wetting pulses in the water tracks, increasing in abundance at one site and decreasing at the other two sites. Subdivision 4 acidobacterial sequences tended to follow the trends in the total Acidobacteria relative abundance, suggesting these organisms were largely responsible for the changes observed in the Acidobacteria. Taken together, these data suggest that the bacterial communities of these high latitude polar biocrusts are diverse but do not show a consensus response to intermittent flow in water tracks over high Arctic permafrost. PMID:23967218

  6. The shape of ion tracks in natural apatite

    NASA Astrophysics Data System (ADS)

    Schauries, D.; Afra, B.; Bierschenk, T.; Lang, M.; Rodriguez, M. D.; Trautmann, C.; Li, W.; Ewing, R. C.; Kluth, P.

    2014-05-01

    Small angle X-ray scattering measurements were performed on natural apatite of different thickness irradiated with 2.2 GeV Au swift heavy ions. The evolution of the track radius along the full ion track length was estimated by considering the electronic energy loss and the velocity of the ions. The shape of the track is nearly cylindrical, slightly widening with a maximum diameter approximately 30 μm before the ions come to rest, followed by a rapid narrowing towards the end within a cigar-like contour. Measurements of average ion track radii in samples of different thicknesses, i.e. containing different sections of the tracks are in good agreement with the shape estimate.

  7. Assessing Developmental Education through Student Tracking. AIR 1995 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Weissman, Julie; And Others

    The effectiveness of developmental education policies at a comprehensive community college was investigated using a new student tracking system. A sample of 1,644 students were tracked from fall 1992 until the end of the fall 1994 semester, 1,226 of whom evidenced basic skills and were eligible for college-level courses, and 418 of whom were…

  8. Semi-Supervised Tensor-Based Graph Embedding Learning and Its Application to Visual Discriminant Tracking.

    PubMed

    Hu, Weiming; Gao, Jin; Xing, Junliang; Zhang, Chao; Maybank, Stephen

    2017-01-01

    An appearance model adaptable to changes in object appearance is critical in visual object tracking. In this paper, we treat an image patch as a two-order tensor which preserves the original image structure. We design two graphs for characterizing the intrinsic local geometrical structure of the tensor samples of the object and the background. Graph embedding is used to reduce the dimensions of the tensors while preserving the structure of the graphs. Then, a discriminant embedding space is constructed. We prove two propositions for finding the transformation matrices which are used to map the original tensor samples to the tensor-based graph embedding space. In order to encode more discriminant information in the embedding space, we propose a transfer-learning- based semi-supervised strategy to iteratively adjust the embedding space into which discriminative information obtained from earlier times is transferred. We apply the proposed semi-supervised tensor-based graph embedding learning algorithm to visual tracking. The new tracking algorithm captures an object's appearance characteristics during tracking and uses a particle filter to estimate the optimal object state. Experimental results on the CVPR 2013 benchmark dataset demonstrate the effectiveness of the proposed tracking algorithm.

  9. Application of neutron capture autoradiography to Boron Delivery seeking techniques for selective accumulation of boron compounds to tumor with intra-arterial administration of boron entrapped water-in-oil-in-water emulsion

    NASA Astrophysics Data System (ADS)

    Mikado, S.; Yanagie, H.; Yasuda, N.; Higashi, S.; Ikushima, I.; Mizumachi, R.; Murata, Y.; Morishita, Y.; Nishimura, R.; Shinohara, A.; Ogura, K.; Sugiyama, H.; Iikura, H.; Ando, H.; Ishimoto, M.; Takamoto, S.; Eriguchi, M.; Takahashi, H.; Kimura, M.

    2009-06-01

    It is necessary to accumulate the 10B atoms selectively to the tumor cells for effective Boron Neutron Capture Therapy (BNCT). In order to achieve an accurate measurement of 10B accumulations in the biological samples, we employed a technique of neutron capture autoradiography (NCAR) of sliced samples of tumor tissues using CR-39 plastic track detectors. The CR-39 track detectors attached with the biological samples were exposed to thermal neutrons in the thermal column of the JRR3 of Japan Atomic Energy Agency (JAEA). We obtained quantitative NCAR images of the samples for VX-2 tumor in rabbit liver after injection of 10BSH entrapped water-in-oil-in-water (WOW) emulsion by intra-arterial injection via proper hepatic artery. The 10B accumulations and distributions in VX-2 tumor and normal liver of rabbit were investigated by means of alpha-track density measurements. In this study, we showed the selective accumulation of 10B atoms in the VX-2 tumor by intra-arterial injection of 10B entrapped WOW emulsion until 3 days after injection by using digitized NCAR images (i.e. alpha-track mapping).

  10. Visuo‐manual tracking: does intermittent control with aperiodic sampling explain linear power and non‐linear remnant without sensorimotor noise?

    PubMed Central

    Gawthrop, Peter J.; Lakie, Martin; Loram, Ian D.

    2017-01-01

    Key points A human controlling an external system is described most easily and conventionally as linearly and continuously translating sensory input to motor output, with the inevitable output remnant, non‐linearly related to the input, attributed to sensorimotor noise.Recent experiments show sustained manual tracking involves repeated refractoriness (insensitivity to sensory information for a certain duration), with the temporary 200–500 ms periods of irresponsiveness to sensory input making the control process intrinsically non‐linear.This evidence calls for re‐examination of the extent to which random sensorimotor noise is required to explain the non‐linear remnant.This investigation of manual tracking shows how the full motor output (linear component and remnant) can be explained mechanistically by aperiodic sampling triggered by prediction error thresholds.Whereas broadband physiological noise is general to all processes, aperiodic sampling is associated with sensorimotor decision making within specific frontal, striatal and parietal networks; we conclude that manual tracking utilises such slow serial decision making pathways up to several times per second. Abstract The human operator is described adequately by linear translation of sensory input to motor output. Motor output also always includes a non‐linear remnant resulting from random sensorimotor noise from multiple sources, and non‐linear input transformations, for example thresholds or refractory periods. Recent evidence showed that manual tracking incurs substantial, serial, refractoriness (insensitivity to sensory information of 350 and 550 ms for 1st and 2nd order systems respectively). Our two questions are: (i) What are the comparative merits of explaining the non‐linear remnant using noise or non‐linear transformations? (ii) Can non‐linear transformations represent serial motor decision making within the sensorimotor feedback loop intrinsic to tracking? Twelve participants (instructed to act in three prescribed ways) manually controlled two systems (1st and 2nd order) subject to a periodic multi‐sine disturbance. Joystick power was analysed using three models, continuous‐linear‐control (CC), continuous‐linear‐control with calculated noise spectrum (CCN), and intermittent control with aperiodic sampling triggered by prediction error thresholds (IC). Unlike the linear mechanism, the intermittent control mechanism explained the majority of total power (linear and remnant) (77–87% vs. 8–48%, IC vs. CC). Between conditions, IC used thresholds and distributions of open loop intervals consistent with, respectively, instructions and previous measured, model independent values; whereas CCN required changes in noise spectrum deviating from broadband, signal dependent noise. We conclude that manual tracking uses open loop predictive control with aperiodic sampling. Because aperiodic sampling is inherent to serial decision making within previously identified, specific frontal, striatal and parietal networks we suggest that these structures are intimately involved in visuo‐manual tracking. PMID:28833126

  11. Spectral analysis of rare earth elements using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi Z.; Fox, Robert V.; Miziolek, Andrzej W.; DeLucia, Frank C.; André, Nicolas

    2015-06-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  12. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Madhavi Z; Fox, Dr. Richard V; Miziolek, Andrzej W

    2015-01-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to bemore » able to quantify the concentrations of various REEs in real-world complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.« less

  13. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Madhavi Z; Fox, Dr. Richard V; Miziolek, Andrzej W

    2015-01-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to bemore » able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.« less

  14. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madhavi Z. Martin; Robert V. Fox; Andrzej W. Miziolek

    2001-05-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to bemore » able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.« less

  15. Sheehan Suicidality Tracking Scale (Sheehan-STS)

    PubMed Central

    2009-01-01

    Objective: Accurate and prospective assessments of treatment-emergent suicidal thoughts and behaviors are essential to both clinical care and randomized clinical trials. The Sheehan Suicidality Tracking Scale is a prospective, patient self-report or clinician-administered rating scale that tracks both treatment-emergent suicidal ideation and behaviors. The Sheehan Suicidality Tracking Scale was incorporated into a multicenter, randomized, double-blind, placebo-controlled, and active comparator study examining the efficacy of an experimental corticotropin-releasing factor antagonist (BMS-562086) for the treatment of generalized anxiety disorder. Method: The Sheehan Suicidality Tracking Scale was administered to subjects at baseline, Week 2, Week 4, and Week 8 or early termination. Subjects completed theSheehan Suicidality Tracking Scale by self report. The Sheehan Suicidality Tracking Scale was designated as an exploratory outcome measure in the study protocol, and post-hoc analyses were performed to examine the performance of the Sheehan Suicidality Tracking Scale. Results: A total of 82 subjects completed the Sheehan Suicidality Tracking Scale during the course of the study. Altogether, these subjects provided 297 completed Sheehan Suicidality Tracking Scale ratings across the study time points. Sixty-one subjects (n=25 placebo, n=24 BMS-562086, and n=12 escitalopram) had a baseline and at least one post-baseline Sheehan Suicidality Tracking Scale measurement. The mean change from baseline at Week 8 in the Sheehan Suicidality Tracking Scale total score was -0.10, -0.02, and -0.06 for escitalopram, placebo, and BMS-562086 groups, respectively. The sensitivity of the Sheehan Suicidality Tracking Scale and HAM-D Item #3 (suicide) for identifying subjects with suicidal thoughts or behaviors was 100 percent and 63 percent, respectively. Conclusions: The Sheehan Suicidality Tracking Scale may be a sensitive psychometric tool to prospectively assess for treatment-emergent suicidal thoughts and behaviors. Despite the small sample size and low occurrence of suicidal ideation during the course of this clinical trial, the self-reported Sheehan Suicidality Tracking Scale demonstrated increased sensitivity over the rater administered HAM-D Item #3 in identifying suicide related ideations and behaviors. Further research in larger study samples as well as in other psychiatric disorders are needed. PMID:19724740

  16. Total Radiosynthesis: Thinking outside "the box".

    PubMed

    Liang, Steven H; Vasdev, Neil

    2015-09-01

    The logic of total synthesis transformed a stagnant state of medicinal and synthetic organic chemistry when there was a paucity of methods and reagents to synthesize drug molecules and/or natural products. Molecular imaging by positron emission tomography (PET) is now experiencing a renaissance in the way radiopharmaceuticals for molecular imaging are synthesized, however, a paradigm shift is desperately needed in the discovery pipeline to accelerate in vivo imaging studies. A significant challenge in radiochemistry is the limited choice of labeled reagents (or building blocks) available for the synthesis of novel radiopharmaceuticals with the most commonly used short-lived radionuclides carbon-11 ( 11 C; half-life ~20 minutes) and fluorine-18 ( 18 F; half-life ~2 hours). In fact, most drugs cannot be labeled with 11 C or 18 F due to a lack of efficient and diverse radiosynthetic methods. In general, routine radiopharmaceutical production relies on the incorporation of the isotope at the last or penultimate step of synthesis, ideally within one half-life of the radionuclide, to maximize radiochemical yields and specific activities thereby reducing losses due to radioactive decay. Reliance on radiochemistry conducted within the constraints of an automated synthesis unit ("box") has stifled the exploration of multi-step reactions with short-lived radionuclides. Radiopharmaceutical synthesis can be transformed by considering logic of total synthesis to develop novel approaches for 11 C- and 18 F-radiolabeling complex molecules via retrosynthetic analysis and multi-step reactions. As a result of such exploration, new methods, reagents and radiopharmaceuticals for in vivo imaging studies are discovered. A new avenue to develop radiotracers that were previously unattainable due to the lack of efficient radiosynthetic methods is necessary to work towards our ultimate, albeit impossible goal - the concept we term total radiosynthesis - to radiolabel virtually any molecule. As with the vast majority of drugs, most radiotracers also fail, therefore expeditious evaluation of tracers in preclinical models prior to optimization or derivatization of the lead molecules/drugs is necessary. Furthermore the exact position of the 11 C and 18 F radionuclide in tracers is often critical for metabolic considerations, and flexible methodologies to introduce the radiolabel are needed. Using the principles of total synthesis our laboratory and others have shown that multi-step radiochemical reactions are indeed suitable for preclinical and even clinical use. As the goal of total synthesis is to be concise, we have also simplified the syntheses of radiopharmaceuticals. We are presently developing new strategies via [ 11 C]CO 2 fixation which has enabled library radiosynthesis as well as labeling non-activated arenes using [ 18 F]fluoride via iodonium ylides. Both of which have proven to be suitable for human PET imaging. We concurrently utilize state-of-the-art automation technologies including microfluidic flow chemistry and rapid purification strategies for radiopharmaceutical production. In this account we highlight how total radiosynthesis has impacted our radiochemistry program, with prominent examples from others, focusing on its impact towards preclinical and clinical research studies.

  17. Expedited Synthesis of Fluorine-18 Labeled Phenols. A Missing Link in PET Radiochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katzenellenbogen, John A.; Zhou, Dong

    Fluorine-18 (F-18) is arguably the most valuable radionuclide for positron emission tomographic (PET) imaging. However, while there are many methods for labeling small molecules with F-18 at aliphatic positions and on electron-deficient aromatic rings, there are essentially no reliable and practical methods to label electron-rich aromatic rings such as phenols, with F-18 at high specific activity. This is disappointing because fluorine-labeled phenols are found in many drugs; there are also many interesting plant metabolites and hormones that contain either phenols or other electron-rich aromatic systems such as indoles whose metabolism, transport, and distribution would be interesting to study if theymore » could readily be labeled with F-18. Most approaches to label phenols with F-18 involve the labeling of electron-poor precursor arenes by nucleophilic aromatic substitution, followed by subsequent conversion to phenols by oxidation or other multi-step sequences that are often inefficient and time consuming. Thus, the lack of good methods for labeling phenols and other electron-rich aromatics with F-18 at high specific activity represents a significant methodological gap in F-18 radiochemistry that can be considered a “Missing Link in PET Radiochemistry”. The objective of this research project was to develop and optimize a series of unusual synthetic transformations that will enable phenols (and other electron-rich aromatic systems) to be labeled with F-18 at high specific activity, rapidly, reliably, and conveniently, thereby bridging this gap. Through the studies conducted with support of this project, we have substantially advanced synthetic methodology for the preparation of fluorophenols. Our progress is presented in detail in the sections below, and much has been published or presented publication; other components are being prepared for publication. In essence, we have developed a completely new method to prepare o-fluorophenols from non-aromatic precursors (diazocyclohexenones) by a novel reaction sequence that uses fluoride ion as a precursor and various activating electrophiles, and we have improved methods for the preparation of heterodiaryl iodonium salts. Both methods have been used to prepare interesting potential radiotracers. Other advances have been made in labeling dendrimeric nanoparticle structures of increasing interest for multimodal imaging and in advancing labeling through fluorosilane bonds. Thus, the progress we have made substantially fills the significant gap in PET radiochemistry that we originally identified, and it provides for the field new methodology that can be applied to a number of current challenges, including the preparation of several molecules of interest as radiotracers, such as 2-[18F]Fluoroestradiol (2-FES) and m-fluorotyrosine, which we have illustrated. These methods can be used by any skilled radiochemist interesting in preparing these agents or similar fluorine-18 labeled electron-rich arene systems of interested for PET biological imaging in the most general sense.« less

  18. Total Radiosynthesis: Thinking outside “the box”

    PubMed Central

    Liang, Steven H.; Vasdev, Neil

    2016-01-01

    The logic of total synthesis transformed a stagnant state of medicinal and synthetic organic chemistry when there was a paucity of methods and reagents to synthesize drug molecules and/or natural products. Molecular imaging by positron emission tomography (PET) is now experiencing a renaissance in the way radiopharmaceuticals for molecular imaging are synthesized, however, a paradigm shift is desperately needed in the discovery pipeline to accelerate in vivo imaging studies. A significant challenge in radiochemistry is the limited choice of labeled reagents (or building blocks) available for the synthesis of novel radiopharmaceuticals with the most commonly used short-lived radionuclides carbon-11 (11C; half-life ~20 minutes) and fluorine-18 (18F; half-life ~2 hours). In fact, most drugs cannot be labeled with 11C or 18F due to a lack of efficient and diverse radiosynthetic methods. In general, routine radiopharmaceutical production relies on the incorporation of the isotope at the last or penultimate step of synthesis, ideally within one half-life of the radionuclide, to maximize radiochemical yields and specific activities thereby reducing losses due to radioactive decay. Reliance on radiochemistry conducted within the constraints of an automated synthesis unit (“box”) has stifled the exploration of multi-step reactions with short-lived radionuclides. Radiopharmaceutical synthesis can be transformed by considering logic of total synthesis to develop novel approaches for 11C- and 18F-radiolabeling complex molecules via retrosynthetic analysis and multi-step reactions. As a result of such exploration, new methods, reagents and radiopharmaceuticals for in vivo imaging studies are discovered. A new avenue to develop radiotracers that were previously unattainable due to the lack of efficient radiosynthetic methods is necessary to work towards our ultimate, albeit impossible goal – the concept we term total radiosynthesis - to radiolabel virtually any molecule. As with the vast majority of drugs, most radiotracers also fail, therefore expeditious evaluation of tracers in preclinical models prior to optimization or derivatization of the lead molecules/drugs is necessary. Furthermore the exact position of the 11C and 18F radionuclide in tracers is often critical for metabolic considerations, and flexible methodologies to introduce the radiolabel are needed. Using the principles of total synthesis our laboratory and others have shown that multi-step radiochemical reactions are indeed suitable for preclinical and even clinical use. As the goal of total synthesis is to be concise, we have also simplified the syntheses of radiopharmaceuticals. We are presently developing new strategies via [11C]CO2 fixation which has enabled library radiosynthesis as well as labeling non-activated arenes using [18F]fluoride via iodonium ylides. Both of which have proven to be suitable for human PET imaging. We concurrently utilize state-of-the-art automation technologies including microfluidic flow chemistry and rapid purification strategies for radiopharmaceutical production. In this account we highlight how total radiosynthesis has impacted our radiochemistry program, with prominent examples from others, focusing on its impact towards preclinical and clinical research studies. PMID:27512156

  19. Stardust Interstellar Preliminary Examination V: XRF Analyses of Interstellar Dust Candidates at ESRF ID13

    NASA Technical Reports Server (NTRS)

    Brenker, Frank E.; Westphal, Andrew J.; Simionovici, Alexandre S.; Flynn, George J.; Gainsforth, Zack; Allen, Carlton C.; Sanford, Scott; Zolensky, Michael E.; Bastien, Ron K.; Frank, David R.

    2014-01-01

    Here, we report analyses by synchrotron X-ray fluorescence microscopy of the elemental composition of eight candidate impact features extracted from the Stardust Interstellar Dust Collector (SIDC). Six of the features were unambiguous tracks, and two were crater-like features. Five of the tracks are so-called midnight tracks that is, they had trajectories consistent with an origin either in the interstellar dust stream or as secondaries from impacts on the Sample Return Capsule (SRC). In a companion paper reporting synchrotron X-ray diffraction analyses of ISPE candidates, we show that two of these particles contain natural crystalline materials: the terminal particle of track 30contains olivine and spinel, and the terminal particle of track 34 contains olivine. Here, we show that the terminal particle of track 30, Orion, shows elemental abundances, normalized to Fe, that are close to CI values, and a complex, fine-grained structure. The terminal particle of track 34, Hylabrook, shows abundances that deviate strongly from CI, but shows little fine structure and is nearly homogenous. The terminal particles of other midnight tracks, 29 and 37, had heavy element abundances below detection threshold. A third, track28, showed a composition inconsistent with an extraterrestrial origin, but also inconsistent with known spacecraft materials. A sixth track, with a trajectory consistent with secondary ejecta from an impact on one of the spacecraft solar panels, contains abundant Ce and Zn. This is consistent with the known composition of the glass covering the solar panel. Neither crater-like feature is likely to be associated with extraterrestrial materials. We also analyzed blank aerogel samples to characterize background and variability between aerogel tiles. We found significant differences in contamination levels and compositions, emphasizing the need for local background subtraction for accurate quantification.

  20. Fission-track ages of apatites from the Precambrian of Rwanda and Burundi - Relationship to East African rift tectonics

    NASA Astrophysics Data System (ADS)

    van den Haute, P.

    1984-11-01

    Fission-track method dating of 27 apatite samples recovered from Precambrian intrusive rocks has yielded ages in the 75-423 million year range, which is noted to be younger than the ages of emplacement or metamorphism for these rocks according to other radiometric methods. On the basis of the regional geology and the length ratios of spontaneous-to-induced tracks for 18 of the 27 samples, it can be inferred that the fission-track ages are not mixed ages due to a recent thermal event, but rather that they date the last cooling history of the studied massifs. This last cooling is interpreted as primarily the result of a slow, epirogenetic uplift which affected the area during the major part of the Phanerozoic. In this way, the large age variations can be ascribed to differential cooling caused by regional epirogenetic uplift rate differences.

  1. Improved semi-supervised online boosting for object tracking

    NASA Astrophysics Data System (ADS)

    Li, Yicui; Qi, Lin; Tan, Shukun

    2016-10-01

    The advantage of an online semi-supervised boosting method which takes object tracking problem as a classification problem, is training a binary classifier from labeled and unlabeled examples. Appropriate object features are selected based on real time changes in the object. However, the online semi-supervised boosting method faces one key problem: The traditional self-training using the classification results to update the classifier itself, often leads to drifting or tracking failure, due to the accumulated error during each update of the tracker. To overcome the disadvantages of semi-supervised online boosting based on object tracking methods, the contribution of this paper is an improved online semi-supervised boosting method, in which the learning process is guided by positive (P) and negative (N) constraints, termed P-N constraints, which restrict the labeling of the unlabeled samples. First, we train the classification by an online semi-supervised boosting. Then, this classification is used to process the next frame. Finally, the classification is analyzed by the P-N constraints, which are used to verify if the labels of unlabeled data assigned by the classifier are in line with the assumptions made about positive and negative samples. The proposed algorithm can effectively improve the discriminative ability of the classifier and significantly alleviate the drifting problem in tracking applications. In the experiments, we demonstrate real-time tracking of our tracker on several challenging test sequences where our tracker outperforms other related on-line tracking methods and achieves promising tracking performance.

  2. Real-time catheter tracking for high-dose-rate prostate brachytherapy using an electromagnetic 3D-guidance device: A preliminary performance study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Jun; Sebastian, Evelyn; Mangona, Victor

    2013-02-15

    Purpose: In order to increase the accuracy and speed of catheter reconstruction in a high-dose-rate (HDR) prostate implant procedure, an automatic tracking system has been developed using an electromagnetic (EM) device (trakSTAR, Ascension Technology, VT). The performance of the system, including the accuracy and noise level with various tracking parameters and conditions, were investigated. Methods: A direct current (dc) EM transmitter (midrange model) and a sensor with diameter of 1.3 mm (Model 130) were used in the trakSTAR system for tracking catheter position during HDR prostate brachytherapy. Localization accuracy was assessed under both static and dynamic analyses conditions. For themore » static analysis, a calibration phantom was used to investigate error dependency on operating room (OR) table height (bottom vs midposition vs top), sensor position (distal tip of catheter vs connector end of catheter), direction [left-right (LR) vs anterior-posterior (AP) vs superior-inferior (SI)], sampling frequency (40 vs 80 vs 120 Hz), and interference from OR equipment (present vs absent). The mean and standard deviation of the localization offset in each direction and the corresponding error vectors were calculated. For dynamic analysis, the paths of five straight catheters were tracked to study the effects of directions, sampling frequency, and interference of EM field. Statistical analysis was conducted to compare the results in different configurations. Results: When interference was present in the static analysis, the error vectors were significantly higher at the top table position (3.3 {+-} 1.3 vs 1.8 {+-} 0.9 mm at bottom and 1.7 {+-} 1.0 mm at middle, p < 0.001), at catheter end position (3.1 {+-} 1.1 vs 1.4 {+-} 0.7 mm at the tip position, p < 0.001), and at 40 Hz sampling frequency (2.6 {+-} 1.1 vs 2.4 {+-} 1.5 mm at 80 Hz and 1.8 {+-} 1.1 at 160 Hz, p < 0.001). So did the mean offset errors in the LR direction (-1.7 {+-} 1.4 vs 0.4 {+-} 0.5 mm in AP and 0.8 {+-} 0.8 mm in SI directions, p < 0.001). The error vectors were significantly higher with surrounding interference (2.2 {+-} 1.3 mm) vs without interference (1.0 {+-} 0.7 mm, p < 0.001). An accuracy of 1.6 {+-} 0.2 mm can be reached when using optimum configuration (160 Hz at middle table position). When interference was present in the dynamic tracking, the mean tracking errors in LR direction (1.4 {+-} 0.5 mm) was significantly higher than that in AP direction (0.3 {+-} 0.2 mm, p < 0.001). So did the mean vector errors at 40 Hz (2.1 {+-} 0.2 mm vs 1.3 {+-} 0.2 mm at 80 Hz and 0.9 {+-} 0.2 mm at 160 Hz, p < 0.05). However, when interference was absent, they were comparable in the both directions and at all sampling frequencies. An accuracy of 0.9 {+-} 0.2 mm was obtained for the dynamic tracking when using optimum configuration. Conclusions: The performance of an EM tracking system depends highly on the system configuration and surrounding environment. The accuracy of EM tracking for catheter reconstruction in a prostate HDR brachytherapy procedure can be improved by reducing interference from surrounding equipment, decreasing distance from transmitter to tracking area, and choosing appropriated sampling frequency. A calibration scheme is needed to further reduce the tracking error when the interference is high.« less

  3. Novel particle tracking algorithm based on the Random Sample Consensus Model for the Active Target Time Projection Chamber (AT-TPC)

    NASA Astrophysics Data System (ADS)

    Ayyad, Yassid; Mittig, Wolfgang; Bazin, Daniel; Beceiro-Novo, Saul; Cortesi, Marco

    2018-02-01

    The three-dimensional reconstruction of particle tracks in a time projection chamber is a challenging task that requires advanced classification and fitting algorithms. In this work, we have developed and implemented a novel algorithm based on the Random Sample Consensus Model (RANSAC). The RANSAC is used to classify tracks including pile-up, to remove uncorrelated noise hits, as well as to reconstruct the vertex of the reaction. The algorithm, developed within the Active Target Time Projection Chamber (AT-TPC) framework, was tested and validated by analyzing the 4He+4He reaction. Results, performance and quality of the proposed algorithm are presented and discussed in detail.

  4. Characterization of Factors Affecting Nanoparticle Tracking Analysis Results With Synthetic and Protein Nanoparticles.

    PubMed

    Krueger, Aaron B; Carnell, Pauline; Carpenter, John F

    2016-04-01

    In many manufacturing and research areas, the ability to accurately monitor and characterize nanoparticles is becoming increasingly important. Nanoparticle tracking analysis is rapidly becoming a standard method for this characterization, yet several key factors in data acquisition and analysis may affect results. Nanoparticle tracking analysis is prone to user input and bias on account of a high number of parameters available, contains a limited analysis volume, and individual sample characteristics such as polydispersity or complex protein solutions may affect analysis results. This study systematically addressed these key issues. The integrated syringe pump was used to increase the sample volume analyzed. It was observed that measurements recorded under flow caused a reduction in total particle counts for both polystyrene and protein particles compared to those collected under static conditions. In addition, data for polydisperse samples tended to lose peak resolution at higher flow rates, masking distinct particle populations. Furthermore, in a bimodal particle population, a bias was seen toward the larger species within the sample. The impacts of filtration on an agitated intravenous immunoglobulin sample and operating parameters including "MINexps" and "blur" were investigated to optimize the method. Taken together, this study provides recommendations on instrument settings and sample preparations to properly characterize complex samples. Copyright © 2016. Published by Elsevier Inc.

  5. WaterlooClarke: TREC 2015 Microblog Track

    DTIC Science & Technology

    2015-11-20

    interests [1]. In this track, the representative social media is Twitter , and relevant posts are tweets with respect to a user’s interest. A user’s...every day. II. TASKS EVALUATION The developed systems listen to the Twitter sample stream2 for a period of 10 days and report the relevant tweets. All...manner as qi, but using a corpus of previously collected tweets. Our corpus was collected over approximately seven days from the Twitter sample stream

  6. A new 3D tracking method for cell mechanics investigation exploiting the capabilities of digital holography in microscopy

    NASA Astrophysics Data System (ADS)

    Miccio, L.; Memmolo, P.; Merola, F.; Fusco, S.; Netti, P. A.; Ferraro, P.

    2014-03-01

    A method for 3D tracking has been developed exploiting Digital Holography features in Microscopy (DHM). In the framework of self-consistent platform for manipulation and measurement of biological specimen we use DHM for quantitative and completely label free analysis of samples with low amplitude contrast. Tracking capability extend the potentiality of DHM allowing to monitor the motion of appropriate probes and correlate it with sample properties. Complete 3D tracking has been obtained for the probes avoiding the amplitude refocusing in traditional tracking processes. Moreover, in biology and biomedical research fields one of the main topic is the understanding of morphology and mechanics of cells and microorganisms. Biological samples present low amplitude contrast that limits the information that can be retrieved through optical bright-field microscope measurements. The main effect on light propagating in such objects is in phase. This is known as phase-retardation or phase-shift. DHM is an innovative and alternative approach in microscopy, it's a good candidate for no-invasive and complete specimen analysis because its main characteristic is the possibility to discern between intensity and phase information performing quantitative mapping of the Optical Path Length. In this paper, the flexibility of DH is employed to analyze cell mechanics of unstained cells subjected to appropriate stimuli. DHM is used to measure all the parameters useful to understand the deformations induced by external and controlled stresses on in-vitro cells. Our configuration allows 3D tracking of micro-particles and, simultaneously, furnish quantitative phase-contrast maps. Experimental results are presented and discussed for in vitro cells.

  7. High variability in strain estimation errors when using a commercial ultrasound speckle tracking algorithm on tendon tissue.

    PubMed

    Fröberg, Åsa; Mårtensson, Mattias; Larsson, Matilda; Janerot-Sjöberg, Birgitta; D'Hooge, Jan; Arndt, Anton

    2016-10-01

    Ultrasound speckle tracking offers a non-invasive way of studying strain in the free Achilles tendon where no anatomical landmarks are available for tracking. This provides new possibilities for studying injury mechanisms during sport activity and the effects of shoes, orthotic devices, and rehabilitation protocols on tendon biomechanics. To investigate the feasibility of using a commercial ultrasound speckle tracking algorithm for assessing strain in tendon tissue. A polyvinyl alcohol (PVA) phantom, three porcine tendons, and a human Achilles tendon were mounted in a materials testing machine and loaded to 4% peak strain. Ultrasound long-axis cine-loops of the samples were recorded. Speckle tracking analysis of axial strain was performed using a commercial speckle tracking software. Estimated strain was then compared to reference strain known from the materials testing machine. Two frame rates and two region of interest (ROI) sizes were evaluated. Best agreement between estimated strain and reference strain was found in the PVA phantom (absolute error in peak strain: 0.21 ± 0.08%). The absolute error in peak strain varied between 0.72 ± 0.65% and 10.64 ± 3.40% in the different tendon samples. Strain determined with a frame rate of 39.4 Hz had lower errors than 78.6 Hz as was the case with a 22 mm compared to an 11 mm ROI. Errors in peak strain estimation showed high variability between tendon samples and were large in relation to strain levels previously described in the Achilles tendon. © The Foundation Acta Radiologica 2016.

  8. Microbial source tracking markers at three inland recreational lakes in Ohio, 2011

    USGS Publications Warehouse

    Francy, Donna S.; Stelzer, Erin A.

    2012-01-01

    During the 2011 recreational season, samples were collected for E. coli and microbial source tracking (MST) marker concentrations to begin to understand potential sources of fecal contamination at three inland recreational lakes in Ohio - Buckeye, Atwood, and Tappan Lakes. The results from 32 regular samples, 4 field blanks, and 7 field replicates collected at 5 sites are presented in this report. At the three lakes, the ruminant-associated marker was found most often (57-73 percent of samples) but at estimated quantities, followed by the dog-associated marker (30-43 percent of samples). The human-associated marker was found in 14 and 50 percent of samples from Atwood and Tappan Lakes, respectively, but was not found in any samples from the two Buckeye Lake sites. The gull-associated marker was detected in only two samples, both from Tappan Lake.

  9. Irradiation of nuclear track emulsions with thermal neutrons, heavy ions, and muons

    NASA Astrophysics Data System (ADS)

    Artemenkov, D. A.; Bradnova, V.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.; Kattabekov, R. R.; Mamatkulov, K. Z.; Rusakova, V. V.

    2015-07-01

    Exposures of test samples of nuclear track emulsion were analyzed. Angular and energy correlations of products originating from the thermal-neutron-induced reaction n th +10 B → 7 Li + (γ)+ α were studied in nuclear track emulsions enriched in boron. Nuclear track emulsions were also irradiated with 86Kr+17 and 124Xe+26 ions of energy about 1.2 MeV per nucleon. Measurements of ranges of heavy ions in nuclear track emulsionsmade it possible to determine their energies on the basis of the SRIM model. The formation of high-multiplicity nuclear stars was observed upon irradiating nuclear track emulsions with ultrarelativistic muons. Kinematical features studied in this exposure of nuclear track emulsions for events of the muon-induced splitting of carbon nuclei to three alpha particles are indicative of the nucleardiffraction interaction mechanism.

  10. Microphysical, microchemical, and adhesive properties of lunar material. III - Gas interaction with lunar material.

    NASA Technical Reports Server (NTRS)

    Grossman, J. J.; Mukherjee, N. R.; Ryan, J. A.

    1972-01-01

    Gas adsorption measurements on an Apollo 12 ultrahigh vacuum-stored sample and Apollo 14 and 15 N2-stored samples, show that the cosmic ray track and solar wind damaged surface of lunar soil is very reactive. Room temperature monolayer adsorption of N2 by the Apollo 12 sample at 0.0001 atm was observed. Gas evolution of Apollo 14 lunar soil at liquid nitrogen temperature during adsorption/desorption cycling is probably due to cosmic ray track stored energy release accompanied by solar gas release from depths of 100-200 nm.

  11. Visual Tracking Based on Extreme Learning Machine and Sparse Representation

    PubMed Central

    Wang, Baoxian; Tang, Linbo; Yang, Jinglin; Zhao, Baojun; Wang, Shuigen

    2015-01-01

    The existing sparse representation-based visual trackers mostly suffer from both being time consuming and having poor robustness problems. To address these issues, a novel tracking method is presented via combining sparse representation and an emerging learning technique, namely extreme learning machine (ELM). Specifically, visual tracking can be divided into two consecutive processes. Firstly, ELM is utilized to find the optimal separate hyperplane between the target observations and background ones. Thus, the trained ELM classification function is able to remove most of the candidate samples related to background contents efficiently, thereby reducing the total computational cost of the following sparse representation. Secondly, to further combine ELM and sparse representation, the resultant confidence values (i.e., probabilities to be a target) of samples on the ELM classification function are used to construct a new manifold learning constraint term of the sparse representation framework, which tends to achieve robuster results. Moreover, the accelerated proximal gradient method is used for deriving the optimal solution (in matrix form) of the constrained sparse tracking model. Additionally, the matrix form solution allows the candidate samples to be calculated in parallel, thereby leading to a higher efficiency. Experiments demonstrate the effectiveness of the proposed tracker. PMID:26506359

  12. WE-D-BRF-01: FEATURED PRESENTATION - Investigating Particle Track Structures Using Fluorescent Nuclear Track Detectors and Monte Carlo Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowdell, S; Paganetti, H; Schuemann, J

    Purpose: To report on the efforts funded by the AAPM seed funding grant to develop the basis for fluorescent nuclear track detector (FNTD) based radiobiological experiments in combination with dedicated Monte Carlo simulations (MCS) on the nanometer scale. Methods: Two confocal microscopes were utilized in this study. Two FNTD samples were used to find the optimal microscope settings, one FNTD irradiated with 11.1 MeV/u Gold ions and one irradiated with 428.77 MeV/u Carbon ions. The first sample provided a brightly luminescent central track while the latter is used to test the capabilities to observe secondary electrons. MCS were performed usingmore » TOPAS beta9 version, layered on top of Geant4.9.6p02. Two sets of simulations were performed, one with the Geant4-DNA physics list and approximating the FNTDs by water, a second set using the Penelope physics list in a water-approximated FNTD and a aluminum-oxide FNTD. Results: Within the first half of the funding period, we have successfully established readout capabilities of FNTDs at our institute. Due to technical limitations, our microscope setup is significantly different from the approach implemented at the DKFZ, Germany. However, we can clearly reconstruct Carbon tracks in 3D with electron track resolution of 200 nm. A second microscope with superior readout capabilities will be tested in the second half of the funding period, we expect an improvement in signal to background ratio with the same the resolution.We have successfully simulated tracks in FNTDs. The more accurate Geant4-DNA track simulations can be used to reconstruct the track energy from the size and brightness of the observed tracks. Conclusion: We have achieved the goals set in the seed funding proposal: the setup of FNTD readout and simulation capabilities. We will work on improving the readout resolution to validate our MCS track structures down to the nanometer scales.« less

  13. Joint Sensing/Sampling Optimization for Surface Drifting Mine Detection with High-Resolution Drift Model

    DTIC Science & Technology

    2012-09-01

    as potential tools for large area detection coverage while being moderately inexpensive (Wettergren, Performance of Search via Track - Before - Detect for...via Track - Before - Detect for Distribute 34 Sensor Networks, 2008). These statements highlight three specific needs to further sensor network research...Bay hydrography. Journal of Marine Systems, 12, 221–236. Wettergren, T. A. (2008). Performance of search via track - before - detect for distributed

  14. An improved multi-domain convolution tracking algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Wang, Haiying; Zeng, Yingsen

    2018-04-01

    Along with the wide application of the Deep Learning in the field of Computer vision, Deep learning has become a mainstream direction in the field of object tracking. The tracking algorithm in this paper is based on the improved multidomain convolution neural network, and the VOT video set is pre-trained on the network by multi-domain training strategy. In the process of online tracking, the network evaluates candidate targets sampled from vicinity of the prediction target in the previous with Gaussian distribution, and the candidate target with the highest score is recognized as the prediction target of this frame. The Bounding Box Regression model is introduced to make the prediction target closer to the ground-truths target box of the test set. Grouping-update strategy is involved to extract and select useful update samples in each frame, which can effectively prevent over fitting. And adapt to changes in both target and environment. To improve the speed of the algorithm while maintaining the performance, the number of candidate target succeed in adjusting dynamically with the help of Self-adaption parameter Strategy. Finally, the algorithm is tested by OTB set, compared with other high-performance tracking algorithms, and the plot of success rate and the accuracy are drawn. which illustrates outstanding performance of the tracking algorithm in this paper.

  15. Radiochemistry, PET Imaging, and the Internet of Chemical Things

    DOE PAGES

    Thompson, Stephen; Kilbourn, Michael R.; Scott, Peter J. H.

    2016-08-16

    The Internet of Chemical Things (IoCT), a growing network of computers, mobile devices, online resources, software suites, laboratory equipment, synthesis apparatus, analytical devices, and a host of other machines, all interconnected to users, manufacturers, and others through the infrastructure of the Internet, is changing how we do chemistry. While in its infancy across many chemistry laboratories and departments, it became apparent when considering our own work synthesizing radiopharmaceuticals for positron emission tomography (PET) that a more mature incarnation of the IoCT already exists. Finally, how does the IoCT impact our lives today, and what does it hold for the smartmore » (radio)chemical laboratories of the future?« less

  16. Radiochemistry, PET Imaging, and the Internet of Chemical Things

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Stephen; Kilbourn, Michael R.; Scott, Peter J. H.

    The Internet of Chemical Things (IoCT), a growing network of computers, mobile devices, online resources, software suites, laboratory equipment, synthesis apparatus, analytical devices, and a host of other machines, all interconnected to users, manufacturers, and others through the infrastructure of the Internet, is changing how we do chemistry. While in its infancy across many chemistry laboratories and departments, it became apparent when considering our own work synthesizing radiopharmaceuticals for positron emission tomography (PET) that a more mature incarnation of the IoCT already exists. Finally, how does the IoCT impact our lives today, and what does it hold for the smartmore » (radio)chemical laboratories of the future?« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Covered are: analytical laboratory operations (ALO) sample receipt and control, ALO data report/package preparation review and control, single shell tank (PST) project sample tracking system, sample receiving, analytical balances, duties and responsibilities of sample custodian, sample refrigerator temperature monitoring, security, assignment of staff responsibilities, sample storage, data reporting, and general requirements for glassware.

  18. Visuo-manual tracking: does intermittent control with aperiodic sampling explain linear power and non-linear remnant without sensorimotor noise?

    PubMed

    Gollee, Henrik; Gawthrop, Peter J; Lakie, Martin; Loram, Ian D

    2017-11-01

    A human controlling an external system is described most easily and conventionally as linearly and continuously translating sensory input to motor output, with the inevitable output remnant, non-linearly related to the input, attributed to sensorimotor noise. Recent experiments show sustained manual tracking involves repeated refractoriness (insensitivity to sensory information for a certain duration), with the temporary 200-500 ms periods of irresponsiveness to sensory input making the control process intrinsically non-linear. This evidence calls for re-examination of the extent to which random sensorimotor noise is required to explain the non-linear remnant. This investigation of manual tracking shows how the full motor output (linear component and remnant) can be explained mechanistically by aperiodic sampling triggered by prediction error thresholds. Whereas broadband physiological noise is general to all processes, aperiodic sampling is associated with sensorimotor decision making within specific frontal, striatal and parietal networks; we conclude that manual tracking utilises such slow serial decision making pathways up to several times per second. The human operator is described adequately by linear translation of sensory input to motor output. Motor output also always includes a non-linear remnant resulting from random sensorimotor noise from multiple sources, and non-linear input transformations, for example thresholds or refractory periods. Recent evidence showed that manual tracking incurs substantial, serial, refractoriness (insensitivity to sensory information of 350 and 550 ms for 1st and 2nd order systems respectively). Our two questions are: (i) What are the comparative merits of explaining the non-linear remnant using noise or non-linear transformations? (ii) Can non-linear transformations represent serial motor decision making within the sensorimotor feedback loop intrinsic to tracking? Twelve participants (instructed to act in three prescribed ways) manually controlled two systems (1st and 2nd order) subject to a periodic multi-sine disturbance. Joystick power was analysed using three models, continuous-linear-control (CC), continuous-linear-control with calculated noise spectrum (CCN), and intermittent control with aperiodic sampling triggered by prediction error thresholds (IC). Unlike the linear mechanism, the intermittent control mechanism explained the majority of total power (linear and remnant) (77-87% vs. 8-48%, IC vs. CC). Between conditions, IC used thresholds and distributions of open loop intervals consistent with, respectively, instructions and previous measured, model independent values; whereas CCN required changes in noise spectrum deviating from broadband, signal dependent noise. We conclude that manual tracking uses open loop predictive control with aperiodic sampling. Because aperiodic sampling is inherent to serial decision making within previously identified, specific frontal, striatal and parietal networks we suggest that these structures are intimately involved in visuo-manual tracking. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  19. Annealing behaviour of ion tracks in olivine, apatite and britholite

    NASA Astrophysics Data System (ADS)

    Afra, B.; Lang, M.; Bierschenk, T.; Rodriguez, M. D.; Weber, W. J.; Trautmann, C.; Ewing, R. C.; Kirby, N.; Kluth, P.

    2014-05-01

    Ion tracks were created in olivine from San Carlos, Arizona (95% Mg2SiO4), apatite (Ca5(PO4)3(F,Cl,O)) from Durango, Mexico, and synthetic silicates with the apatite structure: Nd8Sr2(SiO4)6O2 and Nd8Ca2(SiO4)6O2 using 1.6 and 2.2 GeV Au ions. The morphology and annealing behaviour of the tracks were investigated by means of synchrotron based small angle X-ray scattering in combination with ex situ annealing. Tracks in olivine annealed above ∼400 °C undergo a significant change in track radius due to recrystallisation of the damage tracks. At temperatures higher than 620 °C, the scattering images indicate fragmentation of the track cylinders into smaller subsections. Ion tracks were annealed at elevated temperatures up to 400 °C in the Durango and Ca-britholite, and up to 560 °C in Sr-britholite. While there was a significant change in the track radii in the Durango apatite, tracks in the two synthetic samples remained almost unchanged.

  20. Hawaiian lavas: a window into mantle dynamics

    NASA Astrophysics Data System (ADS)

    Jones, Tim; Davies, Rhodri; Campbell, Ian

    2017-04-01

    The emergence of double track volcanism at Hawaii has traditionally posed two problems: (i) the physical emergence of two parallel chains of volcanoes at around 3 Ma, named the Loa and Kea tracks after the largest volcanoes in their sequence, and (ii) the systematic geochemical differences between the erupted lavas along each track. In this study, we dissolve this distinction by providing a geodynamical explanation for the physical emergence of double track volcanism at 3 Ma and use numerical models of the Hawaiian plume to illustrate how this process naturally leads to each volcanic track sampling distinct mantle compositions, which accounts for much of the geochemical characteristics of the Loa and Kea trends.

  1. Measurement of the bottom hadron lifetime at the Z 0 resonancce

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujino, Donald Hideo

    1992-06-01

    We have measured the bottom hadron lifetime from bmore » $$\\bar{b}$$ events produced at the Z 0 resonance. Using the precision vertex detectors of the Mark II detector at the Stanford Linear Collider, we developed an impact parameter tag to identify bottom hadrons. The vertex tracking system resolved impact parameters to 30 μm for high momentum tracks, and 70 μm for tracks with a momentum of 1 GeV. We selected B hadrons with an efficiency of 40% and a sample purity of 80%, by requiring there be at least two tracks in a single jet that significantly miss the Z 0 decay vertex. From a total of 208 hadronic Z 0 events collected by the Mark II detector in 1990, we tagged 53 jets, of which 22 came from 11 double-tagged events. The jets opposite the tagged ones, referred as the ``untagged`` sample, are rich in B hadrons and unbiased in B decay times. The variable Σδ is the sum of impact parameters from tracks in the jet, and contains vital information on the B decay time. We measured the B lifetime from a one-parameter likelihood fit to the untagged Σδ distribution, obtaining τ b = 1.53 $$+0.55\\atop{-0.45}$$ ± 0.16 ps which agrees with the current world average. The first error is statistical and the second is systematic. The systematic error was dominated by uncertainties in the track resolution function. As a check, we also obtained consistent results using the Σδ distribution from the tagged jets and from the entire hadronic sample without any bottom enrichment.« less

  2. Measurement of the bottom hadron lifetime at the Z sup 0 resonancce

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujino, D.H.

    1992-06-01

    We have measured the bottom hadron lifetime from b{bar b} events produced at the Z{sup 0} resonance. Using the precision vertex detectors of the Mark II detector at the Stanford Linear Collider, we developed an impact parameter tag to identify bottom hadrons. The vertex tracking system resolved impact parameters to 30 {mu}m for high momentum tracks, and 70 {mu}m for tracks with a momentum of 1 GeV. We selected B hadrons with an efficiency of 40% and a sample purity of 80%, by requiring there be at least two tracks in a single jet that significantly miss the Z{sup 0}more » decay vertex. From a total of 208 hadronic Z{sup 0} events collected by the Mark II detector in 1990, we tagged 53 jets, of which 22 came from 11 double-tagged events. The jets opposite the tagged ones, referred as the untagged'' sample, are rich in B hadrons and unbiased in B decay times. The variable {Sigma}{delta} is the sum of impact parameters from tracks in the jet, and contains vital information on the B decay time. We measured the B lifetime from a one-parameter likelihood fit to the untagged {Sigma}{delta} distribution, obtaining {tau}{sub b} = 1.53{sub {minus}0.45}{sup +0.55}{plus minus}0.16 ps which agrees with the current world average. The first error is statistical and the second is systematic. The systematic error was dominated by uncertainties in the track resolution function. As a check, we also obtained consistent results using the {Sigma}{delta} distribution from the tagged jets and from the entire hadronic sample without any bottom enrichment.« less

  3. Irradiation of nuclear track emulsions with thermal neutrons, heavy ions, and muons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artemenkov, D. A., E-mail: artemenkov@lhe.jinr.ru; Bradnova, V.; Zaitsev, A. A.

    Exposures of test samples of nuclear track emulsion were analyzed. Angular and energy correlations of products originating from the thermal-neutron-induced reaction n{sub th} +{sup 10} B → {sup 7} Li + (γ)+ α were studied in nuclear track emulsions enriched in boron. Nuclear track emulsions were also irradiated with {sup 86}Kr{sup +17} and {sup 124}Xe{sup +26} ions of energy about 1.2 MeV per nucleon. Measurements of ranges of heavy ions in nuclear track emulsionsmade it possible to determine their energies on the basis of the SRIM model. The formation of high-multiplicity nuclear stars was observed upon irradiating nuclear track emulsionsmore » with ultrarelativistic muons. Kinematical features studied in this exposure of nuclear track emulsions for events of the muon-induced splitting of carbon nuclei to three alpha particles are indicative of the nucleardiffraction interaction mechanism.« less

  4. Assessing Performance Tradeoffs in Undersea Distributed Sensor Networks

    DTIC Science & Technology

    2006-09-01

    time. We refer to this process as track - before - detect (see [5] for a description), since the final determination of a target presence is not made until...expressions for probability of successful search and probability of false search for modeling the track - before - detect process. We then describe a numerical...random manner (randomly sampled from a uniform distribution). II. SENSOR NETWORK PERFORMANCE MODELS We model the process of track - before - detect by

  5. NPP ATMS Prelaunch Performance Assessment and Sensor Data Record Validation

    DTIC Science & Technology

    2011-04-29

    TMS to sense scattering of cold cosmic background radiance from the tops of preci pitating clouds allows the retrieval of preCipitation intensities...operational and research missions over the last 40 years. The Cross-track Infrared and Microwave Sounding Suite (CrIMSS), consisting of the Cross-track...Infrared Sounder (CrrS) and the flIst space-based, Nyquist-sampled cross-track microwave sounder, the Advanced Technology Microwave Sounder (ATMS), will

  6. Tracking vaginal, anal and oral infection in a mouse papillomavirus infection model.

    PubMed

    Hu, Jiafen; Budgeon, Lynn R; Cladel, Nancy M; Balogh, Karla; Myers, Roland; Cooper, Timothy K; Christensen, Neil D

    2015-12-01

    Noninvasive and practical techniques to longitudinally track viral infection are sought after in clinical practice. We report a proof-of-principle study to monitor the viral DNA copy number using a newly established mouse papillomavirus (MmuPV1) mucosal infection model. We hypothesized that viral presence could be identified and quantified by collecting lavage samples from cervicovaginal, anal and oral sites. Nude mice infected at these sites with infectious MmuPV1 were tracked for up to 23 weeks starting at 6 weeks post-infection. Viral DNA copy number was determined by SYBR Green Q-PCR analysis. In addition, we tracked viral DNA load through three complete oestrous cycles to pinpoint whether there was a correlation between the DNA load and the four stages of the oestrous cycle. Our results showed that high viral DNA copy number was reproducibly detected from both anal and cervicovaginal lavage samples. The infection and disease progression were further confirmed by histology, cytology, in situ hybridization, immunohistochemistry and transmission electron microscopy. Interestingly, the viral copy number fluctuated over the oestrous cycle, with the highest level at the oestrus stage, implying that multiple sampling might be necessary to provide a reliable diagnosis. Virus DNA was detected in oral lavage samples at a later time after infection. Lower viral DNA load was found in oral samples when compared with those in anal and vaginal tracts. To our knowledge, our study is the first in vivo study to sequentially monitor papillomavirus infection from mucosal anal, oral and vaginal tracts in a preclinical model.

  7. Tracking of multiple targets using online learning for reference model adaptation.

    PubMed

    Pernkopf, Franz

    2008-12-01

    Recently, much work has been done in multiple object tracking on the one hand and on reference model adaptation for a single-object tracker on the other side. In this paper, we do both tracking of multiple objects (faces of people) in a meeting scenario and online learning to incrementally update the models of the tracked objects to account for appearance changes during tracking. Additionally, we automatically initialize and terminate tracking of individual objects based on low-level features, i.e., face color, face size, and object movement. Many methods unlike our approach assume that the target region has been initialized by hand in the first frame. For tracking, a particle filter is incorporated to propagate sample distributions over time. We discuss the close relationship between our implemented tracker based on particle filters and genetic algorithms. Numerous experiments on meeting data demonstrate the capabilities of our tracking approach. Additionally, we provide an empirical verification of the reference model learning during tracking of indoor and outdoor scenes which supports a more robust tracking. Therefore, we report the average of the standard deviation of the trajectories over numerous tracking runs depending on the learning rate.

  8. Systematic Examination of Stardust Bulbous Track Wall Materials

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Clemett, S. J.; Nguyen, A. N.; Berger, E. L.; Keller, L. P.; Messenger, S.

    2013-01-01

    Analyses of Comet Wild-2 samples returned by NASA's Stardust spacecraft have focused primarily on terminal particles (TPs) or well-preserved fine-grained materials along the track walls [1,2]. However much of the collected material was melted and mixed intimately with the aerogel by the hypervelocity impact [3,4]. We are performing systematic examinations of entire Stardust tracks to establish the mineralogy and origins of all comet Wild 2 components [7,8]. This report focuses on coordinated analyses of indigenous crystalline and amorphous/melt cometary materials along the aerogel track walls, their interaction with aerogel during collection and comparisons with their TPs.

  9. Nondestructive 3D confocal laser imaging with deconvolution of seven whole stardust tracks with complementary XRF and quantitative analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, M.; Ebel, D.S.

    2009-03-19

    We present a nondestructive 3D system for analysis of whole Stardust tracks, using a combination of Laser Confocal Scanning Microscopy and synchrotron XRF. 3D deconvolution is used for optical corrections, and results of quantitative analyses of several tracks are presented. The Stardust mission to comet Wild 2 trapped many cometary and ISM particles in aerogel, leaving behind 'tracks' of melted silica aerogel on both sides of the collector. Collected particles and their tracks range in size from submicron to millimeter scale. Interstellar dust collected on the obverse of the aerogel collector is thought to have an average track length ofmore » {approx}15 {micro}m. It has been our goal to perform a total non-destructive 3D textural and XRF chemical analysis on both types of tracks. To that end, we use a combination of Laser Confocal Scanning Microscopy (LCSM) and X Ray Florescence (XRF) spectrometry. Utilized properly, the combination of 3D optical data and chemical data provides total nondestructive characterization of full tracks, prior to flattening or other destructive analysis methods. Our LCSM techniques allow imaging at 0.075 {micro}m/pixel, without the use of oil-based lenses. A full textural analysis on track No.82 is presented here as well as analysis of 6 additional tracks contained within 3 keystones (No.128, No.129 and No.140). We present a method of removing the axial distortion inherent in LCSM images, by means of a computational 3D Deconvolution algorithm, and present some preliminary experiments with computed point spread functions. The combination of 3D LCSM data and XRF data provides invaluable information, while preserving the integrity of the samples for further analysis. It is imperative that these samples, the first extraterrestrial solids returned since the Apollo era, be fully mapped nondestructively in 3D, to preserve the maximum amount of information prior to other, destructive analysis.« less

  10. Uranium determination in natural water by the fissiontrack technique

    USGS Publications Warehouse

    Reimer, G.M.

    1975-01-01

    The fission track technique, utilizing the neutron-induced fission of uranium-235, provides a versatile analytical method for the routine analysis of uranium in liquid samples of natural water. A detector is immersed in the sample and both are irradiated. The fission track density observed in the detector is directly proportional to the uranium concentration. The specific advantages of this technique are: (1) only a small quantity of sample, typically 0.1-1 ml, is needed; (2) no sample concentration is necessary; (3) it is capable of providing analyses with a lower reporting limit of 1 ??g per liter; and (4) the actual time spent on an analysis can be only a few minutes. This paper discusses and describes the method. ?? 1975.

  11. (18)F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization.

    PubMed

    Vallabhajosula, Shankar

    2007-11-01

    Molecular imaging is the visualization, characterization, and measurement of biological processes at the molecular and cellular levels in a living system. At present, positron emission tomography/computed tomography (PET/CT) is one the most rapidly growing areas of medical imaging, with many applications in the clinical management of patients with cancer. Although [(18)F]fluorodeoxyglucose (FDG)-PET/CT imaging provides high specificity and sensitivity in several kinds of cancer and has many applications, it is important to recognize that FDG is not a "specific" radiotracer for imaging malignant disease. Highly "tumor-specific" and "tumor cell signal-specific" PET radiopharmaceuticals are essential to meet the growing demand of radioisotope-based molecular imaging technology. In the last 15 years, many alternative PET tracers have been proposed and evaluated in preclinical and clinical studies to characterize the tumor biology more appropriately. The potential clinical utility of several (18)F-labeled radiotracers (eg, fluoride, FDOPA, FLT, FMISO, FES, and FCH) is being reviewed by several investigators in this issue. An overview of design and development of (18)F-labeled PET radiopharmaceuticals, radiochemistry, and mechanism(s) of tumor cell uptake and localization of radiotracers are presented here. The approval of clinical indications for FDG-PET in the year 2000 by the Food and Drug Administration, based on a review of literature, was a major breakthrough to the rapid incorporation of PET into nuclear medicine practice, particularly in oncology. Approval of a radiopharmaceutical typically involves submission of a "New Drug Application" by a manufacturer or a company clearly documenting 2 major aspects of the drug: (1) manufacturing of PET drug using current good manufacturing practices and (2) the safety and effectiveness of a drug with specific indications. The potential routine clinical utility of (18)F-labeled PET radiopharmaceuticals depends also on regulatory compliance in addition to documentation of potential safety and efficacy by various investigators.

  12. Tracking of Cells with a Compact Microscope Imaging System with Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2007-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously

  13. Tracking of cells with a compact microscope imaging system with intelligent controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2007-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to auto-focus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.

  14. Stardust Interstellar Preliminary Examination II: Curating the Interstellar Dust Collector, Picokeystones, and Sources of Impact Tracks

    NASA Technical Reports Server (NTRS)

    Frank, David R.; Westphal, Andrew J.; Zolensky, Michael E.; Gainsforth, Zack; Butterworth, Anna L.; Bastien, Ronald K.; Allen, Carlton; Anderson, David; Bechtel, Hans A.; Sandford, Scott A.

    2013-01-01

    We discuss the inherent difficulties that arise during "ground truth" characterization of the Stardust interstellar dust collector. The challenge of identifying contemporary interstellar dust impact tracks in aerogel is described within the context of background spacecraft secondaries and possible interplanetary dust particles and beta-meteoroids. In addition, the extraction of microscopic dust embedded in aerogel is technically challenging. Specifically, we provide a detailed description of the sample preparation techniques developed to address the unique goals and restrictions of the Interstellar Preliminary Exam. These sample preparation requirements and the scarcity of candidate interstellar impact tracks exacerbate the difficulties. We also illustrate the role of initial optical imaging with critically important examples, and summarize the overall processing of the collection to date.

  15. 40 CFR 141.35 - Reporting for unregulated contaminant monitoring results.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... up to 30 characters assigned by the laboratory to uniquely identify containers, or groups of containers, containing water samples collected at the same sampling location for the same sampling date. 9... each sample event. This will associate samples with the PWS monitoring plan to allow EPA to track...

  16. 40 CFR 141.35 - Reporting for unregulated contaminant monitoring results.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... up to 30 characters assigned by the laboratory to uniquely identify containers, or groups of containers, containing water samples collected at the same sampling location for the same sampling date. 9... each sample event. This will associate samples with the PWS monitoring plan to allow EPA to track...

  17. 40 CFR 141.35 - Reporting for unregulated contaminant monitoring results.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... up to 30 characters assigned by the laboratory to uniquely identify containers, or groups of containers, containing water samples collected at the same sampling location for the same sampling date. 9... each sample event. This will associate samples with the PWS monitoring plan to allow EPA to track...

  18. Interfacing with USSTRATCOM and UTTR during Stardust Earth Return

    NASA Technical Reports Server (NTRS)

    Jefferson, David C.; Baird, Darren T.; Cangahuala, Laureano A.; Lewis, George D.

    2006-01-01

    The Stardust Sample Return Capsule separated from the main spacecraft four hours prior to atmospheric entry. Between this time and the time at which the SRC touched down at the Utah Test and Training Range, two organizations external to JPL were involved in tracking the Sample Return Capsule. Orbit determination for the Stardust spacecraft during deep space cruise, the encounters of asteroid Annefrank and comet Wild 2, and the final approach to Earth used X-band radio metric Doppler and range data obtained through the Deep Space Network. The SRC lacked the electronics needed for coherently transponded radio metric tracking, so the DSN was not able to track the SRC after it separated from the main spacecraft. Although the expected delivery accuracy at atmospheric entry was well within the capability needed to target the SRC to the desired ground location, it was still desirable to obtain direct knowledge of the SRC trajectory in case of anomalies. For this reason U.S. Strategic Command was engaged to track the SRC between separation and atmospheric entry. Once the SRC entered the atmosphere, ground sensors at UTTR were tasked to acquire the descending SRC and maintain track during the descent in order to determine the landing location, to which the ground recovery team was then directed. This paper discusses organizational interfaces, data products, and delivery schedules, and the actual tracking operations are described.

  19. Deep Space Navigation with Noncoherent Tracking Data

    NASA Technical Reports Server (NTRS)

    Ellis, J.

    1983-01-01

    Navigation capabilities of noncoherent tracking data are evaluated for interplanetary cruise phase and planetary (Venus) flyby orbit determination. Results of a formal covariance analysis are presented which show that a combination of one-way Doppler and delta DOR yields orbit accuracies comparable to conventional two-way Doppler tracking. For the interplanetary cruise phase, a tracking cycle consisting of a 3-hour Doppler pass and delta DOR (differential one-way range) from two baselines (one observation per overlap) acquired 3 times a month results in 100-km orbit determination accuracy. For reconstruction of a Venus flyby orbit, 10 days tracking at encounter consisting of continuous one-way Doppler and delta DOR sampled at one observation per overlap is sufficient to satisfy the accuracy requirements.

  20. A Class of Prediction-Correction Methods for Time-Varying Convex Optimization

    NASA Astrophysics Data System (ADS)

    Simonetto, Andrea; Mokhtari, Aryan; Koppel, Alec; Leus, Geert; Ribeiro, Alejandro

    2016-09-01

    This paper considers unconstrained convex optimization problems with time-varying objective functions. We propose algorithms with a discrete time-sampling scheme to find and track the solution trajectory based on prediction and correction steps, while sampling the problem data at a constant rate of $1/h$, where $h$ is the length of the sampling interval. The prediction step is derived by analyzing the iso-residual dynamics of the optimality conditions. The correction step adjusts for the distance between the current prediction and the optimizer at each time step, and consists either of one or multiple gradient steps or Newton steps, which respectively correspond to the gradient trajectory tracking (GTT) or Newton trajectory tracking (NTT) algorithms. Under suitable conditions, we establish that the asymptotic error incurred by both proposed methods behaves as $O(h^2)$, and in some cases as $O(h^4)$, which outperforms the state-of-the-art error bound of $O(h)$ for correction-only methods in the gradient-correction step. Moreover, when the characteristics of the objective function variation are not available, we propose approximate gradient and Newton tracking algorithms (AGT and ANT, respectively) that still attain these asymptotical error bounds. Numerical simulations demonstrate the practical utility of the proposed methods and that they improve upon existing techniques by several orders of magnitude.

  1. Performance evaluation of digital phase-locked loops for advanced deep space transponders

    NASA Technical Reports Server (NTRS)

    Nguyen, T. M.; Hinedi, S. M.; Yeh, H.-G.; Kyriacou, C.

    1994-01-01

    The performances of the digital phase-locked loops (DPLL's) for the advanced deep-space transponders (ADT's) are investigated. DPLL's considered in this article are derived from the analog phase-locked loop, which is currently employed by the NASA standard deep space transponder, using S-domain to Z-domain mapping techniques. Three mappings are used to develop digital approximations of the standard deep space analog phase-locked loop, namely the bilinear transformation (BT), impulse invariant transformation (IIT), and step invariant transformation (SIT) techniques. The performance in terms of the closed loop phase and magnitude responses, carrier tracking jitter, and response of the loop to the phase offset (the difference between in incoming phase and reference phase) is evaluated for each digital approximation. Theoretical results of the carrier tracking jitter for command-on and command-off cases are then validated by computer simulation. Both theoretical and computer simulation results show that at high sampling frequency, the DPLL's approximated by all three transformations have the same tracking jitter. However, at low sampling frequency, the digital approximation using BT outperforms the others. The minimum sampling frequency for adequate tracking performance is determined for each digital approximation of the analog loop. In addition, computer simulation shows that the DPLL developed by BT provides faster response to the phase offset than IIT and SIT.

  2. The radiation history of material returned by the Soviet automatic stations Luna 16 and Luna 20, according to track studies

    NASA Technical Reports Server (NTRS)

    Kashkarov, L. L.; Genayeva, L. I.; Lavrukhina, A. K.

    1977-01-01

    Fission tracks formed by the vH (very heavy) nuclei group of solar and galactic cosmic rays have been studied in silicate minerals of the lunar regolith returned by the Luna 16 and Luna 20 unmanned spacecraft. It is shown that the material in the Luna 16 core sample, from a typical mare region of the lunar surface, has undergone stronger irradiation by cosmic rays than material returned a highland region by Luna 20. A low-irradiation component (about 10 percent of the total number of crystals) has been found in the Luna 20 core sample materials, which can possibly be attributed to material added to the main bulk of the regolith in the formation of the crater Apollonius C. From the track density distribution of crystals, as a function of depth in the regolith core sample, it follows that the process of formation of the upper layer of the regolith, both for the lunar mare and for the highland region, includes sequential layering of finely crushed crystalline matter and subsequent mixing of it by micrometeorite bombardment. A portion of the crystals with a very high track density may be a component added to the lunar surface from outer space.

  3. An automated in vitro model for the evaluation of ultrasound modalities measuring myocardial deformation

    PubMed Central

    2010-01-01

    Background Echocardiography is the method of choice when one wishes to examine myocardial function. Qualitative assessment of the 2D grey scale images obtained is subjective, and objective methods are required. Speckle Tracking Ultrasound is an emerging technology, offering an objective mean of quantifying left ventricular wall motion. However, before a new ultrasound technology can be adopted in the clinic, accuracy and reproducibility needs to be investigated. Aim It was hypothesized that the collection of ultrasound sample data from an in vitro model could be automated. The aim was to optimize an in vitro model to allow for efficient collection of sample data. Material & Methods A tissue-mimicking phantom was made from water, gelatin powder, psyllium fibers and a preservative. Sonomicrometry crystals were molded into the phantom. The solid phantom was mounted in a stable stand and cyclically compressed. Peak strain was then measured by Speckle Tracking Ultrasound and sonomicrometry. Results We succeeded in automating the acquisition and analysis of sample data. Sample data was collected at a rate of 200 measurement pairs in 30 minutes. We found good agreement between Speckle Tracking Ultrasound and sonomicrometry in the in vitro model. Best agreement was 0.83 ± 0.70%. Worst agreement was -1.13 ± 6.46%. Conclusions It has been shown possible to automate a model that can be used for evaluating the in vitro accuracy and precision of ultrasound modalities measuring deformation. Sonomicrometry and Speckle Tracking Ultrasound had acceptable agreement. PMID:20822532

  4. High-speed adaptive contact-mode atomic force microscopy imaging with near-minimum-force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Juan; Zou, Qingze, E-mail: qzzou@rci.rutgers.edu

    In this paper, an adaptive contact-mode imaging approach is proposed to replace the traditional contact-mode imaging by addressing the major concerns in both the speed and the force exerted to the sample. The speed of the traditional contact-mode imaging is largely limited by the need to maintain precision tracking of the sample topography over the entire imaged sample surface, while large image distortion and excessive probe-sample interaction force occur during high-speed imaging. In this work, first, the image distortion caused by the topography tracking error is accounted for in the topography quantification. Second, the quantified sample topography is utilized inmore » a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line topography is integrated to the topography feeedback loop to enhance the sample topography tracking. The proposed approach is demonstrated and evaluated through imaging a calibration sample of square pitches at both high speeds (e.g., scan rate of 75 Hz and 130 Hz) and large sizes (e.g., scan size of 30 μm and 80 μm). The experimental results show that compared to the traditional constant-force contact-mode imaging, the imaging speed can be increased by over 30 folds (with the scanning speed at 13 mm/s), and the probe-sample interaction force can be reduced by more than 15% while maintaining the same image quality.« less

  5. Onco-STS: a web-based laboratory information management system for sample and analysis tracking in oncogenomic experiments.

    PubMed

    Gavrielides, Mike; Furney, Simon J; Yates, Tim; Miller, Crispin J; Marais, Richard

    2014-01-01

    Whole genomes, whole exomes and transcriptomes of tumour samples are sequenced routinely to identify the drivers of cancer. The systematic sequencing and analysis of tumour samples, as well other oncogenomic experiments, necessitates the tracking of relevant sample information throughout the investigative process. These meta-data of the sequencing and analysis procedures include information about the samples and projects as well as the sequencing centres, platforms, data locations, results locations, alignments, analysis specifications and further information relevant to the experiments. The current work presents a sample tracking system for oncogenomic studies (Onco-STS) to store these data and make them easily accessible to the researchers who work with the samples. The system is a web application, which includes a database and a front-end web page that allows the remote access, submission and updating of the sample data in the database. The web application development programming framework Grails was used for the development and implementation of the system. The resulting Onco-STS solution is efficient, secure and easy to use and is intended to replace the manual data handling of text records. Onco-STS allows simultaneous remote access to the system making collaboration among researchers more effective. The system stores both information on the samples in oncogenomic studies and details of the analyses conducted on the resulting data. Onco-STS is based on open-source software, is easy to develop and can be modified according to a research group's needs. Hence it is suitable for laboratories that do not require a commercial system.

  6. High-speed adaptive contact-mode atomic force microscopy imaging with near-minimum-force.

    PubMed

    Ren, Juan; Zou, Qingze

    2014-07-01

    In this paper, an adaptive contact-mode imaging approach is proposed to replace the traditional contact-mode imaging by addressing the major concerns in both the speed and the force exerted to the sample. The speed of the traditional contact-mode imaging is largely limited by the need to maintain precision tracking of the sample topography over the entire imaged sample surface, while large image distortion and excessive probe-sample interaction force occur during high-speed imaging. In this work, first, the image distortion caused by the topography tracking error is accounted for in the topography quantification. Second, the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line topography is integrated to the topography feeedback loop to enhance the sample topography tracking. The proposed approach is demonstrated and evaluated through imaging a calibration sample of square pitches at both high speeds (e.g., scan rate of 75 Hz and 130 Hz) and large sizes (e.g., scan size of 30 μm and 80 μm). The experimental results show that compared to the traditional constant-force contact-mode imaging, the imaging speed can be increased by over 30 folds (with the scanning speed at 13 mm/s), and the probe-sample interaction force can be reduced by more than 15% while maintaining the same image quality.

  7. Curation and Analysis of Samples from Comet Wild-2 Returned by NASA's Stardust Mission

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, Keiko; Walker, Robert M.

    2015-01-01

    The NASA Stardust mission returned the first direct samples of a cometary coma from comet 81P/Wild-2 in 2006. Intact capture of samples encountered at 6 km/s was enabled by the use of aerogel, an ultralow dense silica polymer. Approximately 1000 particles were captured, with micron and submicron materials distributed along mm scale length tracks. This sample collection method and the fine scale of the samples posed new challenges to the curation and cosmochemistry communities. Sample curation involved extensive, detailed photo-documentation and delicate micro-surgery to remove particles without loss from the aerogel tracks. This work had to be performed in highly clean facility to minimize the potential of contamination. JSC Curation provided samples ranging from entire tracks to micrometer-sized particles to external investigators. From the analysis perspective, distinguishing cometary materials from aerogel and identifying the potential alteration from the capture process were essential. Here, transmission electron microscopy (TEM) proved to be the key technique that would make this possible. Based on TEM work by ourselves and others, a variety of surprising findings were reported, such as the observation of high temperature phases resembling those found in meteorites, rarely intact presolar grains and scarce organic grains and submicrometer silicates. An important lesson from this experience is that curation and analysis teams must work closely together to understand the requirements and challenges of each task. The Stardust Mission also has laid important foundation to future sample returns including OSIRIS-REx and Hayabusa II and future cometary nucleus sample return missions.

  8. Performance of forty-one microbial source tracking methods: A twenty-seven lab evaluation study

    EPA Science Inventory

    The last decade has seen development of numerous new microbial source tracking (MST) methodologies, but many of these have been tested in just a few laboratories with a limited number of fecal samples. This method evaluation study examined the specificity and sensitivity of 43 ...

  9. Distributed event-triggered consensus tracking of second-order multi-agent systems with a virtual leader

    NASA Astrophysics Data System (ADS)

    Jie, Cao; Zhi-Hai, Wu; Li, Peng

    2016-05-01

    This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which is intermittently examined at constant sampling instants. Only partial neighbor information and local measurements are required for event detection. Then the corresponding event-triggered consensus tracking protocol is presented to guarantee second-order multi-agent systems to achieve consensus tracking. Numerical simulations are given to illustrate the effectiveness of the proposed strategy. Project supported by the National Natural Science Foundation of China (Grant Nos. 61203147, 61374047, and 61403168).

  10. Precise 3D Track Reconstruction Algorithm for the ICARUS T600 Liquid Argon Time Projection Chamber Detector

    DOE PAGES

    Antonello, M.; Baibussinov, B.; Benetti, P.; ...

    2013-01-15

    Liquid Argon Time Projection Chamber (LAr TPC) detectors offer charged particle imaging capability with remarkable spatial resolution. Precise event reconstruction procedures are critical in order to fully exploit the potential of this technology. In this paper we present a new, general approach to 3D reconstruction for the LAr TPC with a practical application to the track reconstruction. The efficiency of the method is evaluated on a sample of simulated tracks. We present also the application of the method to the analysis of stopping particle tracks collected during the ICARUS T600 detector operation with the CNGS neutrino beam.

  11. Adaptive vehicle motion estimation and prediction

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Thorpe, Chuck E.

    1999-01-01

    Accurate motion estimation and reliable maneuver prediction enable an automated car to react quickly and correctly to the rapid maneuvers of the other vehicles, and so allow safe and efficient navigation. In this paper, we present a car tracking system which provides motion estimation, maneuver prediction and detection of the tracked car. The three strategies employed - adaptive motion modeling, adaptive data sampling, and adaptive model switching probabilities - result in an adaptive interacting multiple model algorithm (AIMM). The experimental results on simulated and real data demonstrate that our tracking system is reliable, flexible, and robust. The adaptive tracking makes the system intelligent and useful in various autonomous driving tasks.

  12. Track membranes based on a 20-μm-thick polyethylene terephthalate film obtained with a beam of argon ions having a range shorter than the film thickness

    NASA Astrophysics Data System (ADS)

    Kudoyarov, M. F.; Kozlovskii, M. A.; Patrova, M. Ya.; Potokin, I. L.; Ankudinov, A. V.

    2016-07-01

    The possibility of performing an energy-efficient variant of irradiation of 20-μm-thick polyethylene terephthalate films to obtain track membranes was considered. Irradiation was done on both sides of a film with a beam of 53.4-MeV Ar+8 ions having energy insufficient for a through track to be formed. The characteristics of the resulting track membrane samples were studied. It was found that these membranes can be used in some cases as a basis for fabrication of composite gas-separating membranes.

  13. MotorSense: Using Motion Tracking Technology to Support the Identification and Treatment of Gross-Motor Dysfunction.

    PubMed

    Arnedillo-Sánchez, Inmaculada; Boyle, Bryan; Bossavit, Benoît

    2017-01-01

    MotorSense is a motion detection and tracking technology that can be implemented across a range of environments to assist in detecting delays in gross-motor skills development. The system utilises the motion tracking functionality of Microsoft's Kinect™. It features games that require children to perform graded gross-motor tasks matched with their chronological and developmental ages. This paper describes the rationale for MotorSense, provides an overview of the functionality of the system and illustrates sample activities.

  14. Particle tracking and extended object imaging by interferometric super resolution microscopy

    NASA Astrophysics Data System (ADS)

    Gdor, Itay; Yoo, Seunghwan; Wang, Xiaolei; Daddysman, Matthew; Wilton, Rosemarie; Ferrier, Nicola; Hereld, Mark; Cossairt, Oliver (Ollie); Katsaggelos, Aggelos; Scherer, Norbert F.

    2018-02-01

    An interferometric fluorescent microscope and a novel theoretic image reconstruction approach were developed and used to obtain super-resolution images of live biological samples and to enable dynamic real time tracking. The tracking utilizes the information stored in the interference pattern of both the illuminating incoherent light and the emitted light. By periodically shifting the interferometer phase and a phase retrieval algorithm we obtain information that allow localization with sub-2 nm axial resolution at 5 Hz.

  15. Variation in the form of Pavlovian conditioned approach behavior among outbred male Sprague-Dawley rats from different vendors and colonies: sign-tracking vs. goal-tracking.

    PubMed

    Fitzpatrick, Christopher J; Gopalakrishnan, Shyam; Cogan, Elizabeth S; Yager, Lindsay M; Meyer, Paul J; Lovic, Vedran; Saunders, Benjamin T; Parker, Clarissa C; Gonzales, Natalia M; Aryee, Emmanuel; Flagel, Shelly B; Palmer, Abraham A; Robinson, Terry E; Morrow, Jonathan D

    2013-01-01

    Even when trained under exactly the same conditions outbred male Sprague-Dawley (SD) rats vary in the form of the Pavlovian conditioned approach response (CR) they acquire. The form of the CR (i.e. sign-tracking vs. goal-tracking) predicts to what degree individuals attribute incentive salience to cues associated with food or drugs. However, we have noticed variation in the incidence of these two phenotypes in rats obtained from different vendors. In this study, we quantified sign- and goal-tracking behavior in a reasonably large sample of SD rats obtained from two vendors (Harlan or Charles River), as well as from individual colonies operated by both vendors. Our sample of rats acquired from Harlan had, on average, more sign-trackers than goal-trackers, and vice versa for our sample of rats acquired from Charles River. Furthermore, there were significant differences among colonies of the same vendor. Although it is impossible to rule out environmental variables, SD rats at different vendors and barriers may have reduced phenotypic heterogeneity as a result of genetic variables, such as random genetic drift or population bottlenecks. Consistent with this hypothesis, we identified marked population structure among colonies from Harlan. Therefore, despite sharing the same name, investigators should be aware that important genetic and phenotypic differences exist among SD rats from different vendors or even from different colonies of the same vendor. If used judiciously this can be an asset to experimental design, but it can also be a pitfall for those unaware of the issue.

  16. Status of Simulations for the Cyclotron Laboratory at the Institute for Nuclear Research and Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Asova, G.; Goutev, N.; Tonev, D.; Artinyan, A.

    2018-05-01

    The Institute for Nuclear Research and Nuclear Energy is preparing to operate a high-power cyclotron for production of radioisotopes for nuclear medicine, research in radiochemistry, radiobiology, nuclear physics, solid state physics. The cyclotron is a TR24 produced by ASCI, Canada, capable to deliver proton beams in the energy range of 15 to 24 MeV with current as high as 400 µA. Multiple extraction lines can be fed. The primary goal of the project is the production of PET and SPECT isotopes as 18F, 67,68Ga, 99mTc, etc. This contribution reports the status of the project. Design considerations for the cyclotron vault will be discussed for some of the target radioisotopes.

  17. Microwave gallium-68 radiochemistry for kinetically stable bis(thiosemicarbazone) complexes: structural investigations and cellular uptake under hypoxia.

    PubMed

    Alam, Israt S; Arrowsmith, Rory L; Cortezon-Tamarit, Fernando; Twyman, Frazer; Kociok-Köhn, Gabriele; Botchway, Stanley W; Dilworth, Jonathan R; Carroll, Laurence; Aboagye, Eric O; Pascu, Sofia I

    2016-01-07

    We report the microwave synthesis of several bis(thiosemicarbazones) and the rapid gallium-68 incorporation to give the corresponding metal complexes. These proved kinetically stable under 'cold' and 'hot' biological assays and were investigated using laser scanning confocal microscopy, flow cytometry and radioactive cell retention studies under normoxia and hypoxia. (68)Ga complex retention was found to be 34% higher in hypoxic cells than in normoxic cells over 30 min, further increasing to 53% at 120 min. Our data suggests that this class of gallium complexes show hypoxia selectivity suitable for imaging in living cells and in vivo tests by microPET in nude athymic mice showed that they are excreted within 1 h of their administration.

  18. Nuclear medicine and imaging research: Quantitative studies in radiopharmaceutical science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copper, M.; Beck, R.N.

    1991-06-01

    During the past three years the program has undergone a substantial revitalization. There has been no significant change in the scientific direction of this grant, in which emphasis continues to be placed on developing new or improved methods of obtaining quantitative data from radiotracer imaging studies. However, considerable scientific progress has been made in the three areas of interest: Radiochemistry, Quantitative Methodologies, and Experimental Methods and Feasibility Studies, resulting in a sharper focus of perspective and improved integration of the overall scientific effort. Changes in Faculty and staff, including development of new collaborations, have contributed to this, as has acquisitionmore » of additional and new equipment and renovations and expansion of the core facilities. 121 refs., 30 figs., 2 tabs.« less

  19. Positron emission tomography

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y. Lucas; Thompson, Christopher J.; Diksic, Mirko; Meyer, Ernest; Feindel, William H.

    One of the most exciting new technologies introduced in the last 10 yr is positron emission tomography (PET). PET provides quantitative, three-dimensional images for the study of specific biochemical and physiological processes in the human body. This approach is analogous to quantitative in-vivo autoradiography but has the added advantage of permitting non-invasive in vivo studies. PET scanning requires a small cyclotron to produce short-lived positron emitting isotopes such as oxygen-15, carbon-11, nitrogen-13 and fluorine-18. Proper radiochemical facilities and advanced computer equipment are also needed. Most important, PET requires a multidisciplinary scientific team of physicists, radiochemists, mathematicians, biochemists and physicians. This review analyzes the most recent trends in the imaging technology, radiochemistry, methodology and clinical applications of positron emission tomography.

  20. Imaging of Prostate Cancer Using Gallium-68-Labeled Bombesin.

    PubMed

    Sonni, Ida; Baratto, Lucia; Iagaru, Andrei

    2017-04-01

    Nuclear medicine can play an important role in evaluating prostate cancer combining anatomical and functional information with hybrid techniques. Various PET radiopharmaceuticals have been used for targeting specific biological markers in prostate cancer. Research is ideally oriented towards the development of radiopharmaceuticals targeting antigens overexpressed in prostate cancer, as opposed to normal prostate tissue. In this regard, gastrin-releasing peptide receptors (GRPR) are excellent candidates. Bombesin analogues targeting the GRPR have been investigated. Gallium-68 ( 68 Ga) is an interesting PET radioisotope due to several advantages, such as availability, ease of radiochemistry, half-life, and costs. The focus of this review is on 68 Ga-labeled bombesin analogues in prostate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Fluorine-18 Radiochemistry, Labeling Strategies and Synthetic Routes

    PubMed Central

    2015-01-01

    Fluorine-18 is the most frequently used radioisotope in positron emission tomography (PET) radiopharmaceuticals in both clinical and preclinical research. Its physical and nuclear characteristics (97% β+ decay, 109.7 min half-life, 635 keV positron energy), along with high specific activity and ease of large scale production, make it an attractive nuclide for radiochemical labeling and molecular imaging. Versatile chemistry including nucleophilic and electrophilic substitutions allows direct or indirect introduction of 18F into molecules of interest. The significant increase in 18F radiotracers for PET imaging accentuates the need for simple and efficient 18F-labeling procedures. In this review, we will describe the current radiosynthesis routes and strategies for 18F labeling of small molecules and biomolecules. PMID:25473848

  2. Separated isotopes: Vital tools for science and medicine

    NASA Astrophysics Data System (ADS)

    Deliberations and conclusions of a workshop on stable isotopes and derived radioisotopes organized by the Subcommittee on Nuclear and Radiochemistry of the National Research Council's Committee on Chemical Sciences at the request of the Department of Energy (DOE) are summarized. The workshop was jointly supported by the National Institutes of Health and DOE's Office of Basic Energy Sciences. An overview with three recommendations resulting from the workshop is followed by reports of the four workshop panels. Background papers were prepared by individuals on the Steering Committee and made available to all participants prior to the Workshop. They are reproduced as Appendixes 3 to 8. Short reports on alternate separation techniques were presented at the Workshop and are reproduced in Appendixes 9 to 11.

  3. Exploration and extension of an improved Riemann track fitting algorithm

    NASA Astrophysics Data System (ADS)

    Strandlie, A.; Frühwirth, R.

    2017-09-01

    Recently, a new Riemann track fit which operates on translated and scaled measurements has been proposed. This study shows that the new Riemann fit is virtually as precise as popular approaches such as the Kalman filter or an iterative non-linear track fitting procedure, and significantly more precise than other, non-iterative circular track fitting approaches over a large range of measurement uncertainties. The fit is then extended in two directions: first, the measurements are allowed to lie on plane sensors of arbitrary orientation; second, the full error propagation from the measurements to the estimated circle parameters is computed. The covariance matrix of the estimated track parameters can therefore be computed without recourse to asymptotic properties, and is consequently valid for any number of observation. It does, however, assume normally distributed measurement errors. The calculations are validated on a simulated track sample and show excellent agreement with the theoretical expectations.

  4. Ion track etching revisited: I. Correlations between track parameters in aged polymers

    NASA Astrophysics Data System (ADS)

    Fink, D.; Muñoz H., G.; García A., H.; Vacik, J.; Hnatowicz, V.; Kiv, A.; Alfonta, L.

    2018-04-01

    Some yet poorly understood problems of etching of pristine and swift heavy ion track-irradiated aged polymers were treated, by applying conductometry across the irradiated foils during etching. The onset times of etchant penetration across pristine foils, and the onset times of the different etched track regimes in irradiated foils were determined for polymers of various proveniences, fluences and ages, as well as their corresponding etching speeds. From the results, correlations of the parameters with each other were deduced. The normalization of these parameters enables one to compare irradiated polymer foils of different origin and treatment with one another. In a number of cases, also polymeric gel formation and swelling occur which influence the track etching behaviour. The polymer degradation during aging influences the track etching parameters, which differ from each other on both sides of the foils. With increasing sample age, these differences increase.

  5. Accuracy and precision of four value-added blood glucose meters: the Abbott Optium, the DDI Prodigy, the HDI True Track, and the HypoGuard Assure Pro.

    PubMed

    Sheffield, Catherine A; Kane, Michael P; Bakst, Gary; Busch, Robert S; Abelseth, Jill M; Hamilton, Robert A

    2009-09-01

    This study compared the accuracy and precision of four value-added glucose meters. Finger stick glucose measurements in diabetes patients were performed using the Abbott Diabetes Care (Alameda, CA) Optium, Diagnostic Devices, Inc. (Miami, FL) DDI Prodigy, Home Diagnostics, Inc. (Fort Lauderdale, FL) HDI True Track Smart System, and Arkray, USA (Minneapolis, MN) HypoGuard Assure Pro. Finger glucose measurements were compared with laboratory reference results. Accuracy was assessed by a Clarke error grid analysis (EGA), a Parkes EGA, and within 5%, 10%, 15%, and 20% of the laboratory value criteria (chi2 analysis). Meter precision was determined by calculating absolute mean differences in glucose values between duplicate samples (Kruskal-Wallis test). Finger sticks were obtained from 125 diabetes patients, of which 90.4% were Caucasian, 51.2% were female, 83.2% had type 2 diabetes, and average age of 59 years (SD 14 years). Mean venipuncture blood glucose was 151 mg/dL (SD +/-65 mg/dL; range, 58-474 mg/dL). Clinical accuracy by Clarke EGA was demonstrated in 94% of Optium, 82% of Prodigy, 61% of True Track, and 77% of the Assure Pro samples (P < 0.05 for Optium and True Track compared to all others). By Parkes EGA, the True Track was significantly less accurate than the other meters. Within 5% accuracy was achieved in 34%, 24%, 29%, and 13%, respectively (P < 0.05 for Optium, Prodigy, and Assure Pro compared to True Track). Within 10% accuracy was significantly greater for the Optium, Prodigy, and Assure Pro compared to True Track. Significantly more Optium results demonstrated within 15% and 20% accuracy compared to the other meter systems. The HDI True Track was significantly less precise than the other meter systems. The Abbott Optium was significantly more accurate than the other meter systems, whereas the HDI True Track was significantly less accurate and less precise compared to the other meter systems.

  6. Fish tracking by combining motion based segmentation and particle filtering

    NASA Astrophysics Data System (ADS)

    Bichot, E.; Mascarilla, L.; Courtellemont, P.

    2006-01-01

    In this paper, we suggest a new importance sampling scheme to improve a particle filtering based tracking process. This scheme relies on exploitation of motion segmentation. More precisely, we propagate hypotheses from particle filtering to blobs of similar motion to target. Hence, search is driven toward regions of interest in the state space and prediction is more accurate. We also propose to exploit segmentation to update target model. Once the moving target has been identified, a representative model is learnt from its spatial support. We refer to this model in the correction step of the tracking process. The importance sampling scheme and the strategy to update target model improve the performance of particle filtering in complex situations of occlusions compared to a simple Bootstrap approach as shown by our experiments on real fish tank sequences.

  7. A flexible system to capture sample vials in a storage box - the box vial scanner.

    PubMed

    Nowakowski, Steven E; Kressin, Kenneth R; Deick, Steven D

    2009-01-01

    Tracking sample vials in a research environment is a critical task and doing so efficiently can have a large impact on productivity, especially in high volume laboratories. There are several challenges to automating the capture process, including the variety of containers used to store samples. We developed a fast and robust system to capture the location of sample vials being placed in storage that allows the laboratories the flexibility to use sample containers of varying dimensions. With a single scan, this device captures the box identifier, the vial identifier and the location of each vial within a freezer storage box. The sample vials are tracked through a barcode label affixed to the cap while the boxes are tracked by a barcode label on the side of the box. Scanning units are placed at the point of use and forward data to a sever application for processing the scanned data. Scanning units consist of an industrial barcode reader mounted in a fixture positioning the box for scanning and providing lighting during the scan. The server application transforms the scan data into a list of storage locations holding vial identifiers. The list is then transferred to the laboratory database. The box vial scanner captures the IDs and location information for an entire box of sample vials into the laboratory database in a single scan. The system accommodates a wide variety of vials sizes by inserting risers under the sample box and a variety of storage box layouts are supported via the processing algorithm on the server.

  8. Object tracking with adaptive HOG detector and adaptive Rao-Blackwellised particle filter

    NASA Astrophysics Data System (ADS)

    Rosa, Stefano; Paleari, Marco; Ariano, Paolo; Bona, Basilio

    2012-01-01

    Scenarios for a manned mission to the Moon or Mars call for astronaut teams to be accompanied by semiautonomous robots. A prerequisite for human-robot interaction is the capability of successfully tracking humans and objects in the environment. In this paper we present a system for real-time visual object tracking in 2D images for mobile robotic systems. The proposed algorithm is able to specialize to individual objects and to adapt to substantial changes in illumination and object appearance during tracking. The algorithm is composed by two main blocks: a detector based on Histogram of Oriented Gradient (HOG) descriptors and linear Support Vector Machines (SVM), and a tracker which is implemented by an adaptive Rao-Blackwellised particle filter (RBPF). The SVM is re-trained online on new samples taken from previous predicted positions. We use the effective sample size to decide when the classifier needs to be re-trained. Position hypotheses for the tracked object are the result of a clustering procedure applied on the set of particles. The algorithm has been tested on challenging video sequences presenting strong changes in object appearance, illumination, and occlusion. Experimental tests show that the presented method is able to achieve near real-time performances with a precision of about 7 pixels on standard video sequences of dimensions 320 × 240.

  9. An analysis of the precision and reliability of the leap motion sensor and its suitability for static and dynamic tracking.

    PubMed

    Guna, Jože; Jakus, Grega; Pogačnik, Matevž; Tomažič, Sašo; Sodnik, Jaka

    2014-02-21

    We present the results of an evaluation of the performance of the Leap Motion Controller with the aid of a professional, high-precision, fast motion tracking system. A set of static and dynamic measurements was performed with different numbers of tracking objects and configurations. For the static measurements, a plastic arm model simulating a human arm was used. A set of 37 reference locations was selected to cover the controller's sensory space. For the dynamic measurements, a special V-shaped tool, consisting of two tracking objects maintaining a constant distance between them, was created to simulate two human fingers. In the static scenario, the standard deviation was less than 0.5 mm. The linear correlation revealed a significant increase in the standard deviation when moving away from the controller. The results of the dynamic scenario revealed the inconsistent performance of the controller, with a significant drop in accuracy for samples taken more than 250 mm above the controller's surface. The Leap Motion Controller undoubtedly represents a revolutionary input device for gesture-based human-computer interaction; however, due to its rather limited sensory space and inconsistent sampling frequency, in its current configuration it cannot currently be used as a professional tracking system.

  10. An Analysis of the Precision and Reliability of the Leap Motion Sensor and Its Suitability for Static and Dynamic Tracking

    PubMed Central

    Guna, Jože; Jakus, Grega; Pogačnik, Matevž; Tomažič, Sašo; Sodnik, Jaka

    2014-01-01

    We present the results of an evaluation of the performance of the Leap Motion Controller with the aid of a professional, high-precision, fast motion tracking system. A set of static and dynamic measurements was performed with different numbers of tracking objects and configurations. For the static measurements, a plastic arm model simulating a human arm was used. A set of 37 reference locations was selected to cover the controller's sensory space. For the dynamic measurements, a special V-shaped tool, consisting of two tracking objects maintaining a constant distance between them, was created to simulate two human fingers. In the static scenario, the standard deviation was less than 0.5 mm. The linear correlation revealed a significant increase in the standard deviation when moving away from the controller. The results of the dynamic scenario revealed the inconsistent performance of the controller, with a significant drop in accuracy for samples taken more than 250 mm above the controller's surface. The Leap Motion Controller undoubtedly represents a revolutionary input device for gesture-based human-computer interaction; however, due to its rather limited sensory space and inconsistent sampling frequency, in its current configuration it cannot currently be used as a professional tracking system. PMID:24566635

  11. Strain monitoring of a newly developed precast concrete track for high speed railway traffic using embedded fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Crail, Stephanie; Reichel, D.; Schreiner, U.; Lindner, E.; Habel, Wolfgang R.; Hofmann, Detlef; Basedau, Frank; Brandes, K.; Barner, A.; Ecke, Wolfgang; Schroeder, Kerstin

    2002-07-01

    In a German slab track system (Feste Fahrbahn FF, system Boegl) for speeds up to 300 km/h and more different fiber optic sensors have been embedded in several levels and locations of the track system. The track system consists of prestressed precast panels of steel fiber concrete which are supported by a cat-in-situ concrete or asphalt base course. The sensors are to measure the bond behavior or the stress transfer in the track system. For that, tiny fiber-optic sensors - fiber Fabry-Perot and Bragg grating sensors - have been embedded very near to the interface of the layers. Measurements were taken on a full scale test sample (slab track panel of 6.45 m length) as well as on a real high speed track. The paper describes the measurement task and discusses aspects with regard to sensor design and prefabrication of the sensor frames as well as the embedding procedure into the concrete track. Results from static and dynamic full scale tests carried out in the testing laboratory of BAM and from measurements on a track are given.

  12. The TRacking Adolescents' Individual Lives Survey (TRAILS): Design, Current Status, and Selected Findings

    ERIC Educational Resources Information Center

    Ormel, Johan; Oldehinkel, Albertine J.; Sijtsema, Jelle; van Oort, Floor; Raven, Dennis; Veenstra, Rene; Vollebergh, Wilma A. M.; Verhulst, Frank C.

    2012-01-01

    Objectives: The objectives of this study were as follows: to present a concise overview of the sample, outcomes, determinants, non-response and attrition of the ongoing TRacking Adolescents' Individual Lives Survey (TRAILS), which started in 2001; to summarize a selection of recent findings on continuity, discontinuity, risk, and protective…

  13. The Influence of Ability Grouping on Math Achievement in a Rural Middle School

    ERIC Educational Resources Information Center

    Pritchard, Robert R.

    2012-01-01

    The researcher examined the academic performance of low-tracked students (n = 156) using standardized math test scores to determine whether there is a statistically significant difference in achievement depending on academic environment, tracked or nontracked. An analysis of variance (ANOVA) was calculated, using a paired samples t-test for a…

  14. Tracking cotton fiber quality and foreign matter through a stripper harvester

    USDA-ARS?s Scientific Manuscript database

    The main objective of this project was to track cotton fiber quality and foreign matter content throughout the harvesting units and conveying/cleaning systems on a brush-roll stripper harvester. Seed cotton samples were collected at six locations in 2011 and five in 2012 including: 1) hand-picked fr...

  15. Thorium-uranium fission radiography

    NASA Technical Reports Server (NTRS)

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  16. [Diversity, relative abundance and activity patterns of medium and large mammals in a tropical deciduous forest in the Isthmus of Tehuantepec, Oaxaca, Mexico].

    PubMed

    Cortés-Marcial, Malinalli; Briones-Salas, Miguel

    2014-12-01

    The use of camera traps and mammal track search are complementary methods to monitoring species of which is not well documented their natural history, as in the case of medium and large mammals. To ensure its conservation and good management, it is necessary to generate information about the structure of the community and their populations. The objective of the present study was to estimate the diversity, relative abundance and activity patterns of medium and large mammals in a tropical deciduous forest located in the Isthmus of Tehuantepec, Oaxaca, Mexico. Samplings were conducted in three month intervals, from September 2011 to May 2013. We used photographic-sampling and track search, two complementary sampling methods. For photographic-sampling, 12 camera traps were placed covering an area of 60 km2, while for the tracks search a monthly tour of four line-transect surveys of three kilometers length each was undertaken. We obtained a total of 344 pictures with 5292 trap-days total sampling effort; in addition, 187 track records in a total of 144 km. With both methods we registered 21 species of mammals, in 13 families and seven orders, and five species resulted in new records to the area. The diversity index of Shannon-Wiener obtained with the method of tracks was H' = 2.41, while the most abundant species were Urocyon cinereoargen- teus (IAR = 0.23) and Pecari tajacu (IAR = 0.20). By the method of trap the most abundant species were P. tajacu (IAR = 2.62) and Nasua narica (IAR = 1.28). In terms of patterns of activity P. tajacu, N. narica and Odocoileus virginianus were primarily diurnal species; Canis latrans and Leopardus pardalis did not show preference for any schedule in particular, and Didelphis virginiana and Dasypus novemcinctus preferred to have nocturnal activity. This information can be of help to the creation of programs of management and conservation of mam- mals of medium and large in the Isthmus of Tehuantepec, Oaxaca, México.

  17. Extending neutron autoradiography technique for boron concentration measurements in hard tissues.

    PubMed

    Provenzano, Lucas; Olivera, María Silvina; Saint Martin, Gisela; Rodríguez, Luis Miguel; Fregenal, Daniel; Thorp, Silvia I; Pozzi, Emiliano C C; Curotto, Paula; Postuma, Ian; Altieri, Saverio; González, Sara J; Bortolussi, Silva; Portu, Agustina

    2018-07-01

    The neutron autoradiography technique using polycarbonate nuclear track detectors (NTD) has been extended to quantify the boron concentration in hard tissues, an application of special interest in Boron Neutron Capture Therapy (BNCT). Chemical and mechanical processing methods to prepare thin tissue sections as required by this technique have been explored. Four different decalcification methods governed by slow and fast kinetics were tested in boron-loaded bones. Due to the significant loss of the boron content, this technique was discarded. On the contrary, mechanical manipulation to obtain bone powder and tissue sections of tens of microns thick proved reproducible and suitable, ensuring a proper conservation of the boron content in the samples. A calibration curve that relates the 10 B concentration of a bone sample and the track density in a Lexan NTD is presented. Bone powder embedded in boric acid solution with known boron concentrations between 0 and 100 ppm was used as a standard material. The samples, contained in slim Lexan cases, were exposed to a neutron fluence of 10 12 cm -2 at the thermal column central facility of the RA-3 reactor (Argentina). The revealed tracks in the NTD were counted with an image processing software. The effect of track overlapping was studied and corresponding corrections were implemented in the presented calibration curve. Stochastic simulations of the track densities produced by the products of the 10 B thermal neutron capture reaction for different boron concentrations in bone were performed and compared with the experimental results. The remarkable agreement between the two curves suggested the suitability of the obtained experimental calibration curve. This neutron autoradiography technique was finally applied to determine the boron concentration in pulverized and compact bone samples coming from a sheep experimental model. The obtained results for both type of samples agreed with boron measurements carried out by ICP-OES within experimental uncertainties. The fact that the histological structure of bone sections remains preserved allows for future boron microdistribution analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Automated real-time needle-guide tracking for fast 3-T MR-guided transrectal prostate biopsy: a feasibility study.

    PubMed

    Zamecnik, Patrik; Schouten, Martijn G; Krafft, Axel J; Maier, Florian; Schlemmer, Heinz-Peter; Barentsz, Jelle O; Bock, Michael; Fütterer, Jurgen J

    2014-12-01

    To assess the feasibility of automatic needle-guide tracking by using a real-time phase-only cross correlation ( POCC phase-only cross correlation ) algorithm-based sequence for transrectal 3-T in-bore magnetic resonance (MR)-guided prostate biopsies. This study was approved by the ethics review board, and written informed consent was obtained from all patients. Eleven patients with a prostate-specific antigen level of at least 4 ng/mL (4 μg/L) and at least one transrectal ultrasonography-guided biopsy session with negative findings were enrolled. Regions suspicious for cancer were identified on 3-T multiparametric MR images. During a subsequent MR-guided biopsy, the regions suspicious for cancer were reidentified and targeted by using the POCC phase-only cross correlation -based tracking sequence. Besides testing a general technical feasibility of the biopsy procedure by using the POCC phase-only cross correlation -based tracking sequence, the procedure times were measured, and a pathologic analysis of the biopsy cores was performed. Thirty-eight core samples were obtained from 25 regions suspicious for cancer. It was technically feasible to perform the POCC phase-only cross correlation -based biopsies in all regions suspicious for cancer in each patient, with adequate biopsy samples obtained with each biopsy attempt. The median size of the region suspicious for cancer was 8 mm (range, 4-13 mm). In each region suspicious for cancer (median number per patient, two; range, 1-4), a median of one core sample per region was obtained (range, 1-3). The median time for guidance per target was 1.5 minutes (range, 0.7-5 minutes). Nineteen of 38 core biopsy samples contained cancer. This study shows that it is feasible to perform transrectal 3-T MR-guided biopsies by using a POCC phase-only cross correlation algorithm-based real-time tracking sequence. © RSNA, 2014.

  19. Chemical and biological tracers to determine groundwater flow in karstic aquifer, Yucatan Peninsula

    NASA Astrophysics Data System (ADS)

    Lenczewski, M.; Leal-Bautista, R. M.; McLain, J. E.

    2013-05-01

    Little is known about the extent of pollution in groundwater in the Yucatan Peninsula; however current population growth, both from international tourism and Mexican nationals increases the potential for wastewater release of a vast array of contaminants including personal care products, pharmaceuticals (Rx), and pathogenic microorganisms. Pathogens and Rx in groundwater can persist and can be particularly acute in this region where high permeability of the karst bedrock and the lack of top soil permit the rapid transport of contaminants into groundwater aquifers. The objective of this research is to develop and utilize novel biological and chemical source tracking methods to distinguish between different sources of anthropogenic pollution in degraded groundwater. Although several methods have been used successfully to track fecal contamination sources in small scale studies, little is known about their spatial limitations, as source tracking studies rarely include sample collection over a wide geographical area and with different sources of water. In addition, although source tracking methods to distinguish human from animal fecal contamination are widely available, this work has developed source tracking distinguish between separate human populations is highly unique. To achieve this objective, we collected water samples from a series of drinking wells, cenotes (sinkholes), wastewater treatment plants, and injection wells across the Yucatan Peninsula and examine potential source tracers within the collected water samples. The result suggests that groundwater sources impacted by tourist vs. local populations contain different chemical stressors. This work has developed a more detailed understanding of the presence and persistence of personal care products, pharmaceuticals, and fecal indicators in a karstic system; such understanding will be a vital component for the protection Mexican groundwater and human health. Quantification of different pollution sources within groundwater samples identified point sources of pollution, identify potential remediation strategies, and contribute to an improved understanding of the environmental impact of tourism and tourism-generated waste products on this groundwater-dependent ecosystem.

  20. Single particle tracking through highly scattering media with multiplexed two-photon excitation

    NASA Astrophysics Data System (ADS)

    Perillo, Evan; Liu, Yen-Liang; Liu, Cong; Yeh, Hsin-Chih; Dunn, Andrew K.

    2015-03-01

    3D single-particle tracking (SPT) has been a pivotal tool to furthering our understanding of dynamic cellular processes in complex biological systems, with a molecular localization accuracy (10-100 nm) often better than the diffraction limit of light. However, current SPT techniques utilize either CCDs or a confocal detection scheme which not only suffer from poor temporal resolution but also limit tracking to a depth less than one scattering mean free path in the sample (typically <15μm). In this report we highlight our novel design for a spatiotemporally multiplexed two-photon microscope which is able to reach sub-diffraction-limit tracking accuracy and sub-millisecond temporal resolution, but with a dramatically extended SPT range of up to 200 μm through dense cell samples. We have validated our microscope by tracking (1) fluorescent nanoparticles in a prescribed motion inside gelatin gel (with 1% intralipid) and (2) labeled single EGFR complexes inside skin cancer spheroids (at least 8 layers of cells thick) for ~10 minutes. Furthermore we discuss future capabilities of our multiplexed two-photon microscope design, specifically to the extension of (1) simultaneous multicolor tracking (i.e. spatiotemporal co-localization analysis) and (2) FRET studies (i.e. lifetime analysis). The high resolution, high depth penetration, and multicolor features of this microscope make it well poised to study a variety of molecular scale dynamics in the cell, especially related to cellular trafficking studies with in vitro tumor models and in vivo.

  1. JAMSTEC E-library of Deep-sea Images (J-EDI) Realizes a Virtual Journey to the Earth's Unexplored Deep Ocean

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Azuma, S.; Matsuda, S.; Nagayama, A.; Ogido, M.; Saito, H.; Hanafusa, Y.

    2016-12-01

    The Japan Agency for Marine-Earth Science and Technology (JAMSTEC) archives a large amount of deep-sea research videos and photos obtained by JAMSTEC's research submersibles and vehicles with cameras. The web site "JAMSTEC E-library of Deep-sea Images : J-EDI" (http://www.godac.jamstec.go.jp/jedi/e/) has made videos and photos available to the public via the Internet since 2011. Users can search for target videos and photos by keywords, easy-to-understand icons, and dive information at J-EDI because operating staffs classify videos and photos as to contents, e.g. living organism and geological environment, and add comments to them.Dive survey data including videos and photos are not only valiant academically but also helpful for education and outreach activities. With the aim of the improvement of visibility for broader communities, we added new functions of 3-dimensional display synchronized various dive survey data with videos in this year.New Functions Users can search for dive survey data by 3D maps with plotted dive points using the WebGL virtual map engine "Cesium". By selecting a dive point, users can watch deep-sea videos and photos and associated environmental data, e.g. water temperature, salinity, rock and biological sample photos, obtained by the dive survey. Users can browse a dive track visualized in 3D virtual spaces using the WebGL JavaScript library. By synchronizing this virtual dive track with videos, users can watch deep-sea videos recorded at a point on a dive track. Users can play an animation which a submersible-shaped polygon automatically traces a 3D virtual dive track and displays of dive survey data are synchronized with tracing a dive track. Users can directly refer to additional information of other JAMSTEC data sites such as marine biodiversity database, marine biological sample database, rock sample database, and cruise and dive information database, on each page which a 3D virtual dive track is displayed. A 3D visualization of a dive track makes users experience a virtual dive survey. In addition, by synchronizing a virtual dive track with videos, it is easy to understand living organisms and geological environments of a dive point. Therefore, these functions will visually support understanding of deep-sea environments in lectures and educational activities.

  2. Ambiguous data association and entangled attribute estimation

    NASA Astrophysics Data System (ADS)

    Trawick, David J.; Du Toit, Philip C.; Paffenroth, Randy C.; Norgard, Gregory J.

    2012-05-01

    This paper presents an approach to attribute estimation incorporating data association ambiguity. In modern tracking systems, time pressures often leave all but the most likely data association alternatives unexplored, possibly producing track inaccuracies. Numerica's Bayesian Network Tracking Database, a key part of its Tracker Adjunct Processor, captures and manages the data association ambiguity for further analysis and possible ambiguity reduction/resolution using subsequent data. Attributes are non-kinematic discrete sample space sensor data. They may be as distinctive as aircraft ID, or as broad as friend or foe. Attribute data may provide improvements to data association by a process known as Attribute Aided Tracking (AAT). Indeed, certain uniquely identifying attributes (e.g. aircraft ID), when continually reported, can be used to define data association (tracks are the collections of observations with the same ID). However, attribute data arriving infrequently, combined with erroneous choices from ambiguous data associations, can produce incorrect attribute and kinematic state estimation. Ambiguous data associations define the tracks that are entangled with each other. Attribute data observed on an entangled track then modify the attribute estimates on all tracks entangled with it. For example, if a red track and a blue track pass through a region of data association ambiguity, these tracks become entangled. Later red observations on one entangled track make the other track more blue, and reduce the data association ambiguity. Methods for this analysis have been derived and implemented for efficient forward filtering and forensic analysis.

  3. Biaxial Mechanical Testing of Posterior Sclera using High-Resolution Ultrasound Speckle Tracking for Strain Measurements

    PubMed Central

    Cruz-Perez, Benjamin; Tang, Junhua; Morris, Hugh J.; Palko, Joel R.; Pan, Xueliang; Hart, Richard T.; Liu, Jun

    2014-01-01

    This study aimed to characterize the mechanical responses of the sclera, the white outer coat of the eye, under equal-biaxial loading with unrestricted shear. An ultrasound speckle tracking technique was used to measure tissue deformation through sample thickness, expanding the capabilities of surface strain techniques. Eight porcine scleral samples were tested within 72 hours postmortem. High resolution ultrasound scans of scleral cross-sections along the two loading axes were acquired at 25 consecutive biaxial load levels. An additional repeat of the biaxial loading cycle was performed to measure a third normal strain emulating a strain gauge rosette for calculating the in-plane shear. The repeatability of the strain measurements during identical biaxial ramps was evaluated. A correlation-based ultrasound speckle tracking algorithm was used to compute the displacement field and determine the distributive strains in the sample cross-sections. A Fung type constitutive model including a shear term was used to determine the material constants of each individual specimen by fitting the model parameters to the experimental stress-strain data. A non-linear stress-strain response was observed in all samples. The meridian direction had significantly larger strains than the circumferential direction during equal-biaxial loadings (P’s<0.05). The stiffness along the two directions were also significantly different (P=0.02) but highly correlated (R2=0.8). These results showed that the mechanical properties of the porcine sclera were nonlinear and anisotropic under biaxial loading. This work has also demonstrated the feasibility of using ultrasound speckle tracking for strain measurements during mechanical testing. PMID:24438767

  4. Splitting attention reduces temporal resolution from 7 Hz for tracking one object to <3 Hz when tracking three.

    PubMed

    Holcombe, Alex O; Chen, Wei-Ying

    2013-01-09

    Overall performance when tracking moving targets is known to be poorer for larger numbers of targets, but the specific effect on tracking's temporal resolution has never been investigated. We document a broad range of display parameters for which visual tracking is limited by temporal frequency (the interval between when a target is at each location and a distracter moves in and replaces it) rather than by object speed. We tested tracking of one, two, and three moving targets while the eyes remained fixed. Variation of the number of distracters and their speed revealed both speed limits and temporal frequency limits on tracking. The temporal frequency limit fell from 7 Hz with one target to 4 Hz with two targets and 2.6 Hz with three targets. The large size of this performance decrease implies that in the two-target condition participants would have done better by tracking only one of the two targets and ignoring the other. These effects are predicted by serial models involving a single tracking focus that must switch among the targets, sampling the position of only one target at a time. If parallel processing theories are to explain why dividing the tracking resource reduces temporal resolution so markedly, supplemental assumptions will be required.

  5. Track structure based modelling of light ion radiation effects on nuclear and mitochondrial DNA

    NASA Astrophysics Data System (ADS)

    Schmitt, Elke; Ottolenghi, Andrea; Dingfelder, Michael; Friedland, Werner; Kundrat, Pavel; Baiocco, Giorgio

    2016-07-01

    Space radiation risk assessment is of great importance for manned spaceflights in order to estimate risks and to develop counter-measures to reduce them. Biophysical simulations with PARTRAC can help greatly to improve the understanding of initial biological response to ionizing radiation. Results from modelling radiation quality dependent DNA damage and repair mechanisms up to chromosomal aberrations (e.g. dicentrics) can be used to predict radiation effects depending on the kind of mixed radiation field exposure. Especially dicentric yields can serve as a biomarker for an increased risk due to radiation and hence as an indicator for the effectiveness of the used shielding. PARTRAC [1] is a multi-scale biophysical research MC code for track structure based initial DNA damage and damage response modelling. It integrates physics, radiochemistry, detailed nuclear DNA structure and molecular biology of DNA repair by NHEJ-pathway to assess radiation effects on cellular level [2]. Ongoing experiments with quasi-homogeneously distributed compared to sub-micrometre focused bunches of protons, lithium and carbon ions allow a separation of effects due to DNA damage complexity on nanometre scale from damage clustering on (sub-) micrometre scale [3, 4]. These data provide an unprecedented benchmark for the DNA damage response model in PARTRAC and help understand the mechanisms leading to cell killing and chromosomal aberrations (e.g. dicentrics) induction. A large part of space radiation is due to a mixed ion field of high energy protons and few heavier ions that can be only partly absorbed by the shielding. Radiation damage induced by low-energy ions significantly contributes to the high relative biological efficiency (RBE) of ion beams around Bragg peak regions. For slow light ions the physical cross section data basis in PARTRAC has been extended to investigate radiation quality effects in the Bragg peak region [5]. The resulting range and LET values agree with ICRU data and SRIM calculations. Preliminary studies regarding the biological endpoints DSB (cluster) and chromosomal aberrations have been performed for selected light ions up to neon. Validation with experimental data as well as further calculations are underway and final results will be presented at the meeting. Mitochondrial alterations have been implicated in radiation-induced cardiovascular effects. To extend the applicability of PARTRAC biophysical tool towards effects on mitochondria, the nuclear DNA and chromatin as the primary target of radiation has been complemented by a model of mitochondrial DNA (mtDNA) to mimic a coronary cell with thousand mitochondria contained in the cytoplasm. Induced mtDNA damage (SSB, DSB) has been scored for 60Co photons and 5 MeV alpha-particle irradiation, assuming alternative radical scavenging capacities within the mitochondria. While direct radiation effects in mtDNA are identical to nuclear DNA, indirect effects in mtDNA are in general larger due to lower scavenging and the lack of DNA-protecting histones. These simulations complement the scarce experimental data on radiation-induced mtDNA damage and help elucidate the relative roles of initial mtDNA versus nuclear DNA damage and of pathways that amplify their respective effects. Ongoing and planned developments of PARTRAC include coupling with a radiation transport code and track-structure based calculations of cell killing for RBE studies on macroscopic scales within a mixed ion field. [1] Friedland, Dingfelder et al. (2011): "Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC", Mutat. Res. 711, 28-40 [2] Friedland et al. (2013): "Track structure based modelling of chromosome aberrations after photon and alpha-particle irradiation", Mutat. Res. 756, 213-223 [3] Schmid, Friedland et al. (2015): "Sub-micrometer 20 MeV protons or 45 MeV lithium spot irradiation enhances yields of dicentric chromosomes due to clustering of DNA double-strand breaks", Mutat. Res. 793, 30-40 [4] Friedland, Schmitt, Kundrat (2015): "Modelling Proton bunches focussed to submicrometre scales: Low-LET Radiation damage in high-LET-like spatial structure", Radiat. Prot. Dosim. 166, 34-37 [5] Schmitt, Friedland, Kundrat, Dingfelder, Ottolenghi (2015): "Cross section scaling for track structure simulations of low-energy ions in liquid water", Radiat. Prot. Dosim. 166, 15-18} Supported by the European Atomic Energy Community's Seventh Framework Programme (FP7/2007-2011) under grant agreement no 249689 "DoReMi" and the German Federal Ministry on Education and Research (KVSF-Projekt "LET-Verbund").

  6. Single ion hit detection set-up for the Zagreb ion microprobe

    NASA Astrophysics Data System (ADS)

    Smith, R. W.; Karlušić, M.; Jakšić, M.

    2012-04-01

    Irradiation of materials by heavy ions accelerated in MV tandem accelerators may lead to the production of latent ion tracks in many insulators and semiconductors. If irradiation is performed in a high resolution microprobe facility, ion tracks can be ordered by submicrometer positioning precision. However, full control of the ion track positioning can only be achieved by a reliable ion hit detection system that should provide a trigger signal irrespectively of the type and thickness of the material being irradiated. The most useful process that can be utilised for this purpose is emission of secondary electrons from the sample surface that follows the ion impact. The status report of the set-up presented here is based on the use of a channel electron multiplier (CEM) detector mounted on an interchangable sample holder that is inserted into the chamber in a close geometry along with the sample to be irradiated. The set-up has been tested at the Zagreb ion microprobe for different ions and energies, as well as different geometrical arrangements. For energies of heavy ions below 1 MeV/amu, results show that efficient (100%) control of ion impact can be achieved only for ions heavier than silicon. The successful use of the set-up is demonstrated by production of ordered single ion tracks in a polycarbonate film and by monitoring fluence during ion microbeam patterning of Foturan glass.

  7. Evaluation of a Chlamydia trachomatis-specific, commercial, real-time PCR for use with ocular swabs.

    PubMed

    Pickering, Harry; Holland, Martin J; Last, Anna R; Burton, Matthew J; Burr, Sarah E

    2018-02-20

    Trachoma, the leading infectious cause of blindness worldwide, is caused by conjunctival Chlamydia trachomatis infection. Trachoma is diagnosed clinically by observation of conjunctival inflammation and/or scarring; however, there is evidence that monitoring C. trachomatis infection may be required for elimination programmes. There are many commercial and 'in-house' nucleic acid amplification tests for the detection of C. trachomatis DNA, but the majority have not been validated for use with ocular swabs. This study evaluated a commercial assay, the Fast-Track Vaginal swab kit, using conjunctival samples from trachoma-endemic areas. An objective, biostatistical-based method for binary classification of continuous PCR data was developed, to limit potential user-bias in diagnostic settings. The Fast-Track Vaginal swab assay was run on 210 ocular swab samples from Guinea-Bissau and Tanzania. Fit of individual amplification curves to exponential or sigmoid models, derivative and second derivative of the curves and final fluorescence value were examined for utility in thresholding for determining positivity. The results from the Fast-Track Vaginal swab assay were evaluated against a commercial test (Amplicor CT/NG) and a non-commercial test (in-house droplet digital PCR), both of whose performance has previously been evaluated. Significant evidence of exponential amplification (R 2  > 0.99) and final fluorescence > 0.15 were combined for thresholding. This objective approach identified a population of positive samples, however there were a subset of samples that amplified towards the end of the cycling protocol (at or later than 35 cycles), which were less clearly defined. The Fast-Track Vaginal swab assay showed good sensitivity against the commercial (95.71) and non-commercial (97.18) tests. Specificity was lower against both (90.00 and 96.55, respectively). This study defined a simple, automated protocol for binary classification of continuous, real-time qPCR data, for use in an end-point diagnostic test. This method identified a population of positive samples, however, as with manual thresholding, a subset of samples that amplified towards the end of the cycling program were less easily classified. When used with ocular swabs, the Fast-Track Vaginal swab assay had good sensitivity for C. trachomatis detection, but lower specificity than the commercial and non-commercial assays it was evaluated against, possibly leading to false positives.

  8. System health monitoring using multiple-model adaptive estimation techniques

    NASA Astrophysics Data System (ADS)

    Sifford, Stanley Ryan

    Monitoring system health for fault detection and diagnosis by tracking system parameters concurrently with state estimates is approached using a new multiple-model adaptive estimation (MMAE) method. This novel method is called GRid-based Adaptive Parameter Estimation (GRAPE). GRAPE expands existing MMAE methods by using new techniques to sample the parameter space. GRAPE expands on MMAE with the hypothesis that sample models can be applied and resampled without relying on a predefined set of models. GRAPE is initially implemented in a linear framework using Kalman filter models. A more generalized GRAPE formulation is presented using extended Kalman filter (EKF) models to represent nonlinear systems. GRAPE can handle both time invariant and time varying systems as it is designed to track parameter changes. Two techniques are presented to generate parameter samples for the parallel filter models. The first approach is called selected grid-based stratification (SGBS). SGBS divides the parameter space into equally spaced strata. The second approach uses Latin Hypercube Sampling (LHS) to determine the parameter locations and minimize the total number of required models. LHS is particularly useful when the parameter dimensions grow. Adding more parameters does not require the model count to increase for LHS. Each resample is independent of the prior sample set other than the location of the parameter estimate. SGBS and LHS can be used for both the initial sample and subsequent resamples. Furthermore, resamples are not required to use the same technique. Both techniques are demonstrated for both linear and nonlinear frameworks. The GRAPE framework further formalizes the parameter tracking process through a general approach for nonlinear systems. These additional methods allow GRAPE to either narrow the focus to converged values within a parameter range or expand the range in the appropriate direction to track the parameters outside the current parameter range boundary. Customizable rules define the specific resample behavior when the GRAPE parameter estimates converge. Convergence itself is determined from the derivatives of the parameter estimates using a simple moving average window to filter out noise. The system can be tuned to match the desired performance goals by making adjustments to parameters such as the sample size, convergence criteria, resample criteria, initial sampling method, resampling method, confidence in prior sample covariances, sample delay, and others.

  9. Locomotive track detection for underground

    NASA Astrophysics Data System (ADS)

    Ma, Zhonglei; Lang, Wenhui; Li, Xiaoming; Wei, Xing

    2017-08-01

    In order to improve the PC-based track detection system, this paper proposes a method to detect linear track for underground locomotive based on DSP + FPGA. Firstly, the analog signal outputted from the camera is sampled by A / D chip. Then the collected digital signal is preprocessed by FPGA. Secondly, the output signal of FPGA is transmitted to DSP via EMIF port. Subsequently, the adaptive threshold edge detection, polar angle and radius constrain based Hough transform are implemented by DSP. Lastly, the detected track information is transmitted to host computer through Ethernet interface. The experimental results show that the system can not only meet the requirements of real-time detection, but also has good robustness.

  10. Western North Pacific Tropical Cyclone Model Tracks in Present and Future Climates

    NASA Astrophysics Data System (ADS)

    Nakamura, Jennifer; Camargo, Suzana J.; Sobel, Adam H.; Henderson, Naomi; Emanuel, Kerry A.; Kumar, Arun; LaRow, Timothy E.; Murakami, Hiroyuki; Roberts, Malcolm J.; Scoccimarro, Enrico; Vidale, Pier Luigi; Wang, Hui; Wehner, Michael F.; Zhao, Ming

    2017-09-01

    Western North Pacific tropical cyclone (TC) model tracks are analyzed in two large multimodel ensembles, spanning a large variety of models and multiple future climate scenarios. Two methodologies are used to synthesize the properties of TC tracks in this large data set: cluster analysis and mass moment ellipses. First, the models' TC tracks are compared to observed TC tracks' characteristics, and a subset of the models is chosen for analysis, based on the tracks' similarity to observations and sample size. Potential changes in track types in a warming climate are identified by comparing the kernel smoothed probability distributions of various track variables in historical and future scenarios using a Kolmogorov-Smirnov significance test. Two track changes are identified. The first is a statistically significant increase in the north-south expansion, which can also be viewed as a poleward shift, as TC tracks are prevented from expanding equatorward due to the weak Coriolis force near the equator. The second change is an eastward shift in the storm tracks that occur near the central Pacific in one of the multimodel ensembles, indicating a possible increase in the occurrence of storms near Hawaii in a warming climate. The dependence of the results on which model and future scenario are considered emphasizes the necessity of including multiple models and scenarios when considering future changes in TC characteristics.

  11. Visual attention on a respiratory function monitor during simulated neonatal resuscitation: an eye-tracking study.

    PubMed

    Katz, Trixie A; Weinberg, Danielle D; Fishman, Claire E; Nadkarni, Vinay; Tremoulet, Patrice; Te Pas, Arjan B; Sarcevic, Aleksandra; Foglia, Elizabeth E

    2018-06-14

    A respiratory function monitor (RFM) may improve positive pressure ventilation (PPV) technique, but many providers do not use RFM data appropriately during delivery room resuscitation. We sought to use eye-tracking technology to identify RFM parameters that neonatal providers view most commonly during simulated PPV. Mixed methods study. Neonatal providers performed RFM-guided PPV on a neonatal manikin while wearing eye-tracking glasses to quantify visual attention on displayed RFM parameters (ie, exhaled tidal volume, flow, leak). Participants subsequently provided qualitative feedback on the eye-tracking glasses. Level 3 academic neonatal intensive care unit. Twenty neonatal resuscitation providers. Visual attention: overall gaze sample percentage; total gaze duration, visit count and average visit duration for each displayed RFM parameter. Qualitative feedback: willingness to wear eye-tracking glasses during clinical resuscitation. Twenty providers participated in this study. The mean gaze sample captured wa s 93% (SD 4%). Exhaled tidal volume waveform was the RFM parameter with the highest total gaze duration (median 23%, IQR 13-51%), highest visit count (median 5.17 per 10 s, IQR 2.82-6.16) and longest visit duration (median 0.48 s, IQR 0.38-0.81 s). All participants were willing to wear the glasses during clinical resuscitation. Wearable eye-tracking technology is feasible to identify gaze fixation on the RFM display and is well accepted by providers. Neonatal providers look at exhaled tidal volume more than any other RFM parameter. Future applications of eye-tracking technology include use during clinical resuscitation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Interdisciplinary lifestyle intervention for weight management in a community population (HealthTrack study): Study design and baseline sample characteristics.

    PubMed

    Tapsell, Linda C; Lonergan, Maureen; Martin, Allison; Batterham, Marijka J; Neale, Elizabeth P

    2015-11-01

    Integrating professional expertise in diet, exercise and behavioural support may provide more effective preventive health services but this needs testing. We describe the design and baseline results of a trial in the Illawarra region of New South Wales, Australia. The HealthTrack study is a 12 month randomised controlled trial testing effects of a novel interdisciplinary lifestyle intervention versus usual care. The study recruited overweight and obese adults 25-54 years resident in the Illawarra. Primary outcomes were weight, and secondary outcomes were disease risk factors (lipids, glucose, blood pressure), and behaviour (diet, activity, and psychological factors). Protocols, recruitment and baseline characteristics are reported. Between May 2014 and April 2015, 377 participants were recruited and randomised. The median age (IQR) of the mostly female sample (74%) was 45 (37-51) years. The sample comprised obese (BMI 32 (29-35) kg/m(2)) well educated (79% post school qualifications) non-smokers (96%). A high proportion reported suffering from anxiety (26.8%) and depression (33.7%). Metabolic syndrome was identified in 34.9% of the sample. The HealthTrack study sample was recruited to test the effectiveness of an interdisciplinary approach to preventive healthcare in self-identified overweight adults in the Illawarra region. The profile of participants gives some indication of those likely to use services similar to the trial design. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Constraints on Exposure Ages of Lunar and Asteroidal Regolith Particles

    NASA Technical Reports Server (NTRS)

    Berger, Eve L.; Keller, Lindsay P

    2014-01-01

    Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Exposure to the solar wind results in implantation effects that are preserved in the rims of grains (typically the outermost 100 nm), while impact processes result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. These processes are collectively referred to as space weathering. A critical element in the study of these processes is to determine the rate at which these effects accumulate in the grains during their space exposure. For small particulate samples, one can use the density of solar flare particle tracks to infer the length of time the particle was at the regolith surface (i.e., its exposure age). We have developed a new technique that enables more accurate determination of solar flare particle track densities in mineral grains <50 micron in size that utilizes focused ion beam (FIB) sample preparation combined with transmission electron microscopy (TEM) imaging. We have applied this technique to lunar soil grains from the Apollo 16 site (soil 64501) and most recently to samples from asteroid 25143 Itokawa returned by the Hayabusa mission. Our preliminary results show that the Hayabusa grains have shorter exposure ages compared to typical lunar soil grains. We will use these techniques to re-examine the track density-exposure age calibration from lunar samples reported by Blanford et al. (1975).

  14. Youth Attitude Tracking Study II Wave 17 -- Fall 1986.

    DTIC Science & Technology

    1987-06-01

    decision, unless so designated by other official documentation. TABLE OF CONTENTS Page PREFACE ................................................. xi...Segmentation Analyses .......................... 2-7 .3. METHODOLOGY OF YATS II....................................... 3-1 A. Sampling Design Overview...Sampling Design , Estimation Procedures and Estimated Sampling Errors ................................. A-i Appendix B: Data Collection Procedures

  15. Imaging a Large Sample with Selective Plane Illumination Microscopy Based on Multiple Fluorescent Microsphere Tracking

    NASA Astrophysics Data System (ADS)

    Ryu, Inkeon; Kim, Daekeun

    2018-04-01

    A typical selective plane illumination microscopy (SPIM) image size is basically limited by the field of view, which is a characteristic of the objective lens. If an image larger than the imaging area of the sample is to be obtained, image stitching, which combines step-scanned images into a single panoramic image, is required. However, accurately registering the step-scanned images is very difficult because the SPIM system uses a customized sample mount where uncertainties for the translational and the rotational motions exist. In this paper, an image registration technique based on multiple fluorescent microsphere tracking is proposed in the view of quantifying the constellations and measuring the distances between at least two fluorescent microspheres embedded in the sample. Image stitching results are demonstrated for optically cleared large tissue with various staining methods. Compensation for the effect of the sample rotation that occurs during the translational motion in the sample mount is also discussed.

  16. Visual object tracking by correlation filters and online learning

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Xia, Gui-Song; Lu, Qikai; Shen, Weiming; Zhang, Liangpei

    2018-06-01

    Due to the complexity of background scenarios and the variation of target appearance, it is difficult to achieve high accuracy and fast speed for object tracking. Currently, correlation filters based trackers (CFTs) show promising performance in object tracking. The CFTs estimate the target's position by correlation filters with different kinds of features. However, most of CFTs can hardly re-detect the target in the case of long-term tracking drifts. In this paper, a feature integration object tracker named correlation filters and online learning (CFOL) is proposed. CFOL estimates the target's position and its corresponding correlation score using the same discriminative correlation filter with multi-features. To reduce tracking drifts, a new sampling and updating strategy for online learning is proposed. Experiments conducted on 51 image sequences demonstrate that the proposed algorithm is superior to the state-of-the-art approaches.

  17. Computational imaging of sperm locomotion.

    PubMed

    Daloglu, Mustafa Ugur; Ozcan, Aydogan

    2017-08-01

    Not only essential for scientific research, but also in the analysis of male fertility and for animal husbandry, sperm tracking and characterization techniques have been greatly benefiting from computational imaging. Digital image sensors, in combination with optical microscopy tools and powerful computers, have enabled the use of advanced detection and tracking algorithms that automatically map sperm trajectories and calculate various motility parameters across large data sets. Computational techniques are driving the field even further, facilitating the development of unconventional sperm imaging and tracking methods that do not rely on standard optical microscopes and objective lenses, which limit the field of view and volume of the semen sample that can be imaged. As an example, a holographic on-chip sperm imaging platform, only composed of a light-emitting diode and an opto-electronic image sensor, has emerged as a high-throughput, low-cost and portable alternative to lens-based traditional sperm imaging and tracking methods. In this approach, the sample is placed very close to the image sensor chip, which captures lensfree holograms generated by the interference of the background illumination with the light scattered from sperm cells. These holographic patterns are then digitally processed to extract both the amplitude and phase information of the spermatozoa, effectively replacing the microscope objective lens with computation. This platform has further enabled high-throughput 3D imaging of spermatozoa with submicron 3D positioning accuracy in large sample volumes, revealing various rare locomotion patterns. We believe that computational chip-scale sperm imaging and 3D tracking techniques will find numerous opportunities in both sperm related research and commercial applications. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Beam tracking phase tomography with laboratory sources

    NASA Astrophysics Data System (ADS)

    Vittoria, F. A.; Endrizzi, M.; Kallon, G. K. N.; Hagen, C. K.; Diemoz, P. C.; Zamir, A.; Olivo, A.

    2018-04-01

    An X-ray phase-contrast laboratory system is presented, based on the beam-tracking method. Beam-tracking relies on creating micro-beamlets of radiation by placing a structured mask before the sample, and analysing them by using a detector with sufficient resolution. The system is used in tomographic configuration to measure the three dimensional distribution of the linear attenuation coefficient, difference from unity of the real part of the refractive index, and of the local scattering power of specimens. The complementarity of the three signals is investigated, together with their potential use for material discrimination.

  19. Rapid Antibiotic Susceptibility Testing of Uropathogenic E. coli by Tracking Submicron Scale Motion of Single Bacterial Cells.

    PubMed

    Syal, Karan; Shen, Simon; Yang, Yunze; Wang, Shaopeng; Haydel, Shelley E; Tao, Nongjian

    2017-08-25

    To combat antibiotic resistance, a rapid antibiotic susceptibility testing (AST) technology that can identify resistant infections at disease onset is required. Current clinical AST technologies take 1-3 days, which is often too slow for accurate treatment. Here we demonstrate a rapid AST method by tracking sub-μm scale bacterial motion with an optical imaging and tracking technique. We apply the method to clinically relevant bacterial pathogens, Escherichia coli O157: H7 and uropathogenic E. coli (UPEC) loosely tethered to a glass surface. By analyzing dose-dependent sub-μm motion changes in a population of bacterial cells, we obtain the minimum bactericidal concentration within 2 h using human urine samples spiked with UPEC. We validate the AST method using the standard culture-based AST methods. In addition to population studies, the method allows single cell analysis, which can identify subpopulations of resistance strains within a sample.

  20. Attofarad resolution potentiostat for electrochemical measurements on nanoscale biomolecular interfacial systems.

    PubMed

    Carminati, Marco; Ferrari, Giorgio; Sampietro, Marco

    2009-12-01

    We present an instrument that enables electrochemical measurements (cyclic voltammetry, impedance tracking, and impedance spectroscopy) on submicrometric samples. The system features a frequency range from dc to 1 MHz and a current resolution of 10 fA for a measurement time of 1 s, giving a sensitivity of few attofarads in terms of measurable capacitance with an applied voltage of only 100 mV. These performances are obtained using a low-noise wide-bandwidth integrator/differentiator stage to sense the input current and a modular approach to minimize the effect of input stray capacitances. A digitally implemented lock-in filter optimally extracts the impedance of the sample, providing time tracking and spectroscopy operating modes. This computer-based and flexible instrument is well suited for characterizing and tracking the electrical properties of biomolecules kept in the physiological solution down to the nanoscale.

  1. Fossil track and thermoluminescence studies of Luna 20 material.

    NASA Technical Reports Server (NTRS)

    Crozaz, G.; Walker, R.; Zimmerman, D.

    1973-01-01

    Track densities in 85 feldspar crystals from L-2009 range from 2,500,000 per sq cm to greater than one billion per sq cm. This track distribution represents an intermediate case between what have been previously defined as lightly and heavily irradiated soils and suggests that the Luna 20 sample consists of a mixture of a mature, heavily irradiated component with another, lightly irradiated component. Using a two-component mixing model, the age of the lightly irradiated component is about 270,000,000 yr. It is possible, but by no means certain, that this is associated with the formation of the crater Apollonius C. At about 200 C the ratio of natural thermoluminescence to that induced by a standard irradiation is similar to that in Apollo 12 and 14 cores below about 7 cm. This confirms that most of the Luna 20 sample represents subsurface material.

  2. Machine vision application in animal trajectory tracking.

    PubMed

    Koniar, Dušan; Hargaš, Libor; Loncová, Zuzana; Duchoň, František; Beňo, Peter

    2016-04-01

    This article was motivated by the doctors' demand to make a technical support in pathologies of gastrointestinal tract research [10], which would be based on machine vision tools. Proposed solution should be less expensive alternative to already existing RF (radio frequency) methods. The objective of whole experiment was to evaluate the amount of animal motion dependent on degree of pathology (gastric ulcer). In the theoretical part of the article, several methods of animal trajectory tracking are presented: two differential methods based on background subtraction, the thresholding methods based on global and local threshold and the last method used for animal tracking was the color matching with a chosen template containing a searched spectrum of colors. The methods were tested offline on five video samples. Each sample contained situation with moving guinea pig locked in a cage under various lighting conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. 77 FR 73493 - Notice of Proposed Information Collection: Comment Request Family Self-Sufficiency Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    .... DATES: Comments Due Date: February 8, 2013. ADDRESSES: Interested persons are invited to submit comments... model is needed because participant self-selection into FSS limits the ability to know whether program.... Tracking survey sample 3,000 1 Maximum of 1 hour over 3,000 hours. the tracking period, mainly to update...

  4. Comparison and Comparability: Fitness Tracking between Youths with Different Physical Activity Levels

    ERIC Educational Resources Information Center

    Liu, Wenhao; Nichols, Randall A.; Zillifro, Traci D.

    2013-01-01

    This study compared a three-year tracking of health-related physical fitness between two comparable samples of six graders that enrolled either in a PE4life middle school ("n"?=?154) or another school with a traditional PE program ("n?"=?93) in the United States. For the cohort, the FITNESSGRAM[TM] (Cooper Institute for…

  5. Transmission Electron Microscopy of Plagioclase-Rich Itokawa Grains: Space Weathering Effects and Solar Flare Track Exposure Ages

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Berger, Eve L.

    2017-01-01

    Limited samples are available for the study of space weathering effects on airless bodies. The grains returned by the Hayabusa mission to asteroid 25143 Itokawa provide the only samples currently available to study space weathering of ordinary chondrite regolith. We have previously studied olivine-rich Itokawa grains and documented their surface alteration and exposure ages based on the observed density of solar flare particle tracks. Here we focus on the rarer Itokawa plagioclase grains, in order to allow comparisons between Itokawa and lunar soil plagioclase grains for which an extensive data set exists.

  6. Two dimensional eye tracking: Sampling rate of forcing function

    NASA Technical Reports Server (NTRS)

    Hornseth, J. P.; Monk, D. L.; Porterfield, J. L.; Mcmurry, R. L.

    1978-01-01

    A study was conducted to determine the minimum update rate of a forcing function display required for the operator to approximate the tracking performance obtained on a continuous display. In this study, frequency analysis was used to determine whether there was an associated change in the transfer function characteristics of the operator. It was expected that as the forcing function display update rate was reduced, from 120 to 15 samples per second, the operator's response to the high frequency components of the forcing function would show a decrease in gain, an increase in phase lag, and a decrease in coherence.

  7. An automatic method for segmentation of fission tracks in epidote crystal photomicrographs

    NASA Astrophysics Data System (ADS)

    de Siqueira, Alexandre Fioravante; Nakasuga, Wagner Massayuki; Pagamisse, Aylton; Tello Saenz, Carlos Alberto; Job, Aldo Eloizo

    2014-08-01

    Manual identification of fission tracks has practical problems, such as variation due to observe-observation efficiency. An automatic processing method that could identify fission tracks in a photomicrograph could solve this problem and improve the speed of track counting. However, separation of nontrivial images is one of the most difficult tasks in image processing. Several commercial and free softwares are available, but these softwares are meant to be used in specific images. In this paper, an automatic method based on starlet wavelets is presented in order to separate fission tracks in mineral photomicrographs. Automatization is obtained by the Matthews correlation coefficient, and results are evaluated by precision, recall and accuracy. This technique is an improvement of a method aimed at segmentation of scanning electron microscopy images. This method is applied in photomicrographs of epidote phenocrystals, in which accuracy higher than 89% was obtained in fission track segmentation, even for difficult images. Algorithms corresponding to the proposed method are available for download. Using the method presented here, a user could easily determine fission tracks in photomicrographs of mineral samples.

  8. Stat-tracks and mediotypes: powerful tools for modern ichnology based on 3D models

    PubMed Central

    Bennett, Matthew R.; Marty, Daniel; Budka, Marcin; Reynolds, Sally C.; Bakirov, Rashid

    2018-01-01

    Vertebrate tracks are subject to a wide distribution of morphological types. A single trackmaker may be associated with a range of tracks reflecting individual pedal anatomy and behavioural kinematics mediated through substrate properties which may vary both in space and time. Accordingly, the same trackmaker can leave substantially different morphotypes something which must be considered in creating ichnotaxa. In modern practice this is often captured by the collection of a series of 3D track models. We introduce two concepts to help integrate these 3D models into ichnological analysis procedures. The mediotype is based on the idea of using statistically-generated three-dimensional track models (median or mean) of the type specimens to create a composite track to support formal recognition of a ichno type. A representative track (mean and/or median) is created from a set of individual reference tracks or from multiple examples from one or more trackways. In contrast, stat-tracks refer to other digitally generated tracks which may explore variance. For example, they are useful in: understanding the preservation variability of a given track sample; identifying characteristics or unusual track features; or simply as a quantitative comparison tool. Both concepts assist in making ichnotaxonomical interpretations and we argue that they should become part of the standard procedure when instituting new ichnotaxa. As three-dimensional models start to become a standard in publications on vertebrate ichnology, the mediotype and stat-track concepts have the potential to help guiding a revolution in the study of vertebrate ichnology and ichnotaxonomy. PMID:29340246

  9. Conducting ion tracks generated by charge-selected swift heavy ions

    NASA Astrophysics Data System (ADS)

    Gupta, Srashti; Gehrke, H. G.; Krauser, J.; Trautmann, C.; Severin, D.; Bender, M.; Rothard, H.; Hofsäss, H.

    2016-08-01

    Conducting ion tracks in tetrahedral amorphous carbon (ta-C) thin films were generated by irradiation with swift heavy ions of well-defined charge state. The conductivity of tracks and the surface topography of the films, showing characteristic hillocks at each track position, were investigated using conductive atomic force microscopy measurements. The dependence of track conductivity and hillock size on the charge state of the ions was studied using 4.6 MeV/u Pb ions of charge state 53+, 56+ and 60+ provided by GANIL, as well as 4.8 MeV/u Bi and Au ions of charge state from 50+ to 61+ and 4.2 MeV/u 238U ions in equilibrium charge state provided by UNILAC of GSI. For the charge state selection at GSI, an additional stripper-foil system was installed at the M-branch that now allows routine irradiations with ions of selected charge states. The conductivity of tracks in ta-C increases significantly when the charge state increases from 51+ to 60+. However, the conductivity of individual tracks on the same sample still shows large variations, indicating that tracks formed in ta-C are either inhomogeneous or the conductivity is limited by the interface between ion track and Si substrate.

  10. Robust infrared targets tracking with covariance matrix representation

    NASA Astrophysics Data System (ADS)

    Cheng, Jian

    2009-07-01

    Robust infrared target tracking is an important and challenging research topic in many military and security applications, such as infrared imaging guidance, infrared reconnaissance, scene surveillance, etc. To effectively tackle the nonlinear and non-Gaussian state estimation problems, particle filtering is introduced to construct the theory framework of infrared target tracking. Under this framework, the observation probabilistic model is one of main factors for infrared targets tracking performance. In order to improve the tracking performance, covariance matrices are introduced to represent infrared targets with the multi-features. The observation probabilistic model can be constructed by computing the distance between the reference target's and the target samples' covariance matrix. Because the covariance matrix provides a natural tool for integrating multiple features, and is scale and illumination independent, target representation with covariance matrices can hold strong discriminating ability and robustness. Two experimental results demonstrate the proposed method is effective and robust for different infrared target tracking, such as the sensor ego-motion scene, and the sea-clutter scene.

  11. Tracking strategies for laser ranging to multiple satellite targets

    NASA Technical Reports Server (NTRS)

    Robbins, J. W.; Smith, D. E.; Kolenkiewicz, R.

    1994-01-01

    By the middle of the decade, several new Laser Geodynamic Satellites will be launched to join the current constellation comprised of the laser geodynamic satellite (LAGEOS) (US), Starlette (France), Ajisai (Japan), and Etalon I and II (USSR). The satellites to be launched, LAGEOS II and III (US & Italy), and Stella (France), will be injected into orbits that differ from the existing constellation so that geodetic and gravimetric quantities are sampled to enhance their resolution and accuracy. An examination of various possible tracking strategies adopted by the network of laser tracking stations has revealed that the recovery of precise geodetic parameters can be obtained over shorter intervals than is currently obtainable with the present constellation of satellites. This is particularly important in the planning of mobile laser tracking operations, given a network of permanently operating tracking sites. Through simulations, it is shown that laser tracking of certain satellite passes, pre-selected to provide optimal sky-coverage, provides the means to acquire a sufficient amount of data to allow the recovery of 1 cm station positions.

  12. Evaluation of radio-tracking and strip transect methods for determining foraging ranges of Black-Legged Kittiwakes

    USGS Publications Warehouse

    Ostrand, William D.; Drew, G.S.; Suryan, R.M.; McDonald, L.L.

    1998-01-01

    We compared strip transect and radio-tracking methods of determining foraging range of Black-legged Kittiwakes (Rissa tridactyla). The mean distance birds were observed from their colony determined by radio-tracking was significantly greater than the mean value calculated from strip transects. We determined that this difference was due to two sources of bias: (1) as distance from the colony increased, the area of available habitat also increased resulting in decreasing bird densities (bird spreading). Consequently, the probability of detecting birds during transect surveys also would decrease as distance from the colony increased, and (2) the maximum distance birds were observed from the colony during radio-tracking exceeded the extent of the strip transect survey. We compared the observed number of birds seen on the strip transect survey to the predictions of a model of the decreasing probability of detection due to bird spreading. Strip transect data were significantly different from modeled data; however, the field data were consistently equal to or below the model predictions, indicating a general conformity to the concept of declining detection at increasing distance. We conclude that radio-tracking data gave a more representative indication of foraging distances than did strip transect sampling. Previous studies of seabirds that have used strip transect sampling without accounting for bird spreading or the effects of study-area limitations probably underestimated foraging range.

  13. Geochemistry of polymict ureilite EET83309, and a partially-disruptive impact model for ureilite origin

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.; Kallemeyn, Gregory W.

    1989-01-01

    Bulk-compositional data for the EET83309 polymict ureilite were obtained using INAA and radiochemistry procedures and electron probe analysis. It was found that the EET83309 has a bulk composition indistinguishable from ordinary ('monomict') ureilites for all elements except light-middle REEs (which are present in much higher concentrations), suggesting that polymict ureilites are mixtures of ordinary ureilites which were mixed on a very small number of parent bodies. Despite the light-REE enrichments, polymict ureilites are nearly devoid of basaltic (Al-rich) material. It is suggested that the missing basalt may have been blown off the parent body by a partially disruptive collision with a large C-rich projectile. This impact model of ureilite origin reconciles many paradoxical aspects of ureilite composition.

  14. Click chemistry in the Development of Contrast Agents for Magnetic Resonance Imaging

    PubMed Central

    Hapuarachchige, Sudath; Artemov, Dmitri

    2016-01-01

    Click chemistry provides fast, convenient, versatile and reliable chemical reactions that take place between pairs of functional groups of small molecules that can be purified without chromatographic methods. Due to the fast kinetics and low or no elimination of byproducts, click chemistry is a promising approach that is rapidly gaining acceptance in drug discovery, radiochemistry, bioconjugation, and nanoscience applications. Increasing use of click chemistry in synthetic procedures or as a bioconjugation technique in diagnostic imaging is occurring because click reactions are fast, provide a quantitative yield, and produce minimal amount of nontoxic byproducts. This review summarizes the recent application of click chemistry in magnetic resonance imaging and discusses the directions for applying novel click reactions and strategies for further improving MRI performance. PMID:27748712

  15. Innovations in Nuclear Infrastructure and Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Bernard

    The decision to implement the Innovation in Nuclear Infrastructure and Engineering Program (INIE) was an important first step towards ensuring that the United States preserves its worldwide leadership role in the field of nuclear science and engineering. Prior to INIE, university nuclear science and engineering programs were waning, undergraduate student enrollment was down, university research reactors were being shut down, while others faced the real possibility of closure. For too long, cutting edge research in the areas of nuclear medicine, neutron scattering, radiochemistry, and advanced materials was undervalued and therefore underfunded. The INIE program corrected this lapse in focus andmore » direction and started the process of drawing a new blueprint with positive goals and objectives that supports existing as well the next generation of educators, students and researchers.« less

  16. The performance of hafnium and gadolinium self powered neutron detectors in the TREAT reactor

    NASA Astrophysics Data System (ADS)

    Imel, G. R.; Hart, P. R.

    1996-05-01

    The use of gadolinium and hafnium self powered neutron detectors in a transient reactor is described in this paper. The detectors were calibrated to the fission rate of U-235 using calibrated fission chambers; the calibration factors were tested in two reactors in steady state and found to be consistent. Calibration of the detectors in transient reactor conditions was done by using uranium wires that were analyzed by radiochemistry techniques to determine total fissions during the transient. This was correlated to the time-integrated current of the detectors during the transient. A temperature correction factor was derived to account for self-shielding effects in the hafnium and gadolinium detectors. The dynamic response of the detectors under transient conditions was studied, and found to be excellent.

  17. Nanoparticles and Radiotracers: Advances toward Radio-Nanomedicine

    PubMed Central

    Pratt, Edwin C.; Shaffer, Travis M.; Grimm, Jan

    2016-01-01

    Here, we cover the convergence of radiochemistry for imaging and therapy with advances in nanoparticle (NP) design for biomedical applications. We first explore NP properties relevant for therapy and theranostics and emphasize the need for biocompatibility. We then explore radionuclide-imaging modalities such as Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and Cerenkov Luminescence (CL) with examples utilizing radiolabeled NP for imaging. PET and SPECT have served as diagnostic workhorses in the clinic, while preclinical NP design examples of multimodal imaging with radiotracers show promise in imaging and therapy. CL expands the types of radionuclides beyond PET and SPECT tracers to include high-energy electrons (β−) for imaging purposes. These advances in radionanomedicine will be discussed, showing the potential for radiolabeled NPs as theranostic agents. PMID:27006133

  18. Application of Palladium-Mediated 18F-Fluorination to PET Radiotracer Development: Overcoming Hurdles to Translation

    PubMed Central

    Kamlet, Adam S.; Neumann, Constanze N.; Lee, Eunsung; Carlin, Stephen M.; Moseley, Christian K.; Stephenson, Nickeisha; Hooker, Jacob M.; Ritter, Tobias

    2013-01-01

    New chemistry methods for the synthesis of radiolabeled small molecules have the potential to impact clinical positron emission tomography (PET) imaging, if they can be successfully translated. However, progression of modern reactions from the stage of synthetic chemistry development to the preparation of radiotracer doses ready for use in human PET imaging is challenging and rare. Here we describe the process of and the successful translation of a modern palladium-mediated fluorination reaction to non-human primate (NHP) baboon PET imaging–an important milestone on the path to human PET imaging. The method, which transforms [18F]fluoride into an electrophilic fluorination reagent, provides access to aryl–18F bonds that would be challenging to synthesize via conventional radiochemistry methods. PMID:23554994

  19. Simple, rapid method for the preparation of isotopically labeled formaldehyde

    DOEpatents

    Hooker, Jacob Matthew [Port Jefferson, NY; Schonberger, Matthias [Mains, DE; Schieferstein, Hanno [Aabergen, DE; Fowler, Joanna S [Bellport, NY

    2011-10-04

    Isotopically labeled formaldehyde (*C.sup..sctn.H.sub.2O) is prepared from labeled methyl iodide (*C.sup..sctn.H.sub.3I) by reaction with an oxygen nucleophile having a pendant leaving group. The mild and efficient reaction conditions result in good yields of *C.sup..sctn.H.sub.2O with little or no *C isotopic dilution. The simple, efficient production of .sup.11CH.sub.2O is described. The use of the .sup.11CH.sub.2O for the formation of positron emission tomography tracer compounds is described. The reaction can be incorporated into automated equipment available to radiochemistry laboratories. The isotopically labeled formaldehyde can be used in a variety of reactions to provide radiotracer compounds for imaging studies as well as for scintillation counting and autoradiography.

  20. Separated isotopes: vital tools for science and medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    Deliberations and conclusions of a Workshop on Stable Isotopes and Derived Radioisotopes organized by the Subcommittee on Nuclear and Radiochemistry of the National Research Council's Committee on Chemical Sciences at the request of the Department of Energy (DOE) are summarized. The workshop was jointly supported by the National Institutes of Health and DOE's Office of Basic Energy Sciences. An overview with three recommendations resulting from the Workshop is followed by reports of the four Workshop panels. Background papers were prepared by individuals on the Steering Committee and made available to all participants prior to the Workshop. They are reproduced asmore » Appendixes 3 to 8. Short reports on alternate separation techniques were presented at the Workshop and are reproduced in Appendixes 9 to 11.« less

  1. Identifying fecal sources in a selected catchment reach using multiple source-tracking tools

    USGS Publications Warehouse

    Vogel, J.R.; Stoeckel, D.M.; Lamendella, R.; Zelt, R.B.; Santo, Domingo J.W.; Walker, S.R.; Oerther, D.B.

    2007-01-01

    Given known limitations of current microbial source-tracking (MST) tools, emphasis on small, simple study areas may enhance interpretations of fecal contamination sources in streams. In this study, three MST tools - Escherichia coli repetitive element polymerase chain reaction (rep-PCR), coliphage typing, and Bacteroidales 16S rDNA host-associated markers - were evaluated in a selected reach of Plum Creek in sooth-central Nebraska. Water-quality samples were collected from six sites. One reach was selected for MST evaluation based on observed patterns of E. coli contamination. Despite high E. coli concentrations, coliphages were detected only once among water samples, precluding their use as a MST tool in this setting. Rep-PCR classification of E. coli isolates from both water and sediment samples supported the hypothesis that cattle and wildlife were dominant sources of fecal contamination, with minor contributions by horses and humans. Conversely, neither ruminant nor human sources were detected by Bacteroidales markers in most water samples. In bed sediment, ruminant- and human-associated Bacteroidales markers were detected throughout the interval from 0 to 0.3 m, with detections independent of E. coli concentrations in the sediment. Although results by E. coli-based and Bacteroidales-based MST methods led to similar interpretations, detection of Bacteroidales markers in sediment more commonly than in water indicates that different tools to track fecal contamination (in this case, tools based on Bacteroidales DNA and E. coli isolates) may have varying relevance to the more specific goal of tracking the sources of E. coli in watersheds. This is the first report of simultaneous, toolbox approach application of a library-based and marker-based MST analyses to lowing surface water. ?? ASA, CSSA, SSSA.

  2. Hand-writing motion tracking with vision-inertial sensor fusion: calibration and error correction.

    PubMed

    Zhou, Shengli; Fei, Fei; Zhang, Guanglie; Liu, Yunhui; Li, Wen J

    2014-08-25

    The purpose of this study was to improve the accuracy of real-time ego-motion tracking through inertial sensor and vision sensor fusion. Due to low sampling rates supported by web-based vision sensor and accumulation of errors in inertial sensors, ego-motion tracking with vision sensors is commonly afflicted by slow updating rates, while motion tracking with inertial sensor suffers from rapid deterioration in accuracy with time. This paper starts with a discussion of developed algorithms for calibrating two relative rotations of the system using only one reference image. Next, stochastic noises associated with the inertial sensor are identified using Allan Variance analysis, and modeled according to their characteristics. Finally, the proposed models are incorporated into an extended Kalman filter for inertial sensor and vision sensor fusion. Compared with results from conventional sensor fusion models, we have shown that ego-motion tracking can be greatly enhanced using the proposed error correction model.

  3. An efficient method to compute microlensed light curves for point sources

    NASA Technical Reports Server (NTRS)

    Witt, Hans J.

    1993-01-01

    We present a method to compute microlensed light curves for point sources. This method has the general advantage that all microimages contributing to the light curve are found. While a source moves along a straight line, all micro images are located either on the primary image track or on the secondary image tracks (loops). The primary image track extends from - infinity to + infinity and is made of many sequents which are continuously connected. All the secondary image tracks (loops) begin and end on the lensing point masses. The method can be applied to any microlensing situation with point masses in the deflector plane, even for the overcritical case and surface densities close to the critical. Furthermore, we present general rules to evaluate the light curve for a straight track arbitrary placed in the caustic network of a sample of many point masses.

  4. Aerogel Track Morphology: Measurement, Three Dimensional Reconstruction and Particle Location using Confocal Laser Scanning Microscopy

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Ball, A. D.; Wozniakiewicz, P. A.; Graham, G. A.; Burchell, M. J.; Cole, M. J.; Horz, F.; See, T. H.

    2007-01-01

    The Stardust spacecraft returned the first undoubted samples of cometary dust, with many grains embedded in the silica aerogel collector . Although many tracks contain one or more large terminal particles of a wide range of mineral compositions , there is also abundant material along the track walls. To help interpret the full particle size, structure and mass, both experimental simulation of impact by shots and numerical modeling of the impact process have been attempted. However, all approaches require accurate and precise measurement of impact track size parameters such as length, width and volume of specific portions. To make such measurements is not easy, especially if extensive aerogel fracturing and discoloration has occurred. In this paper we describe the application and limitations of laser confocal imagery for determination of aerogel track parameters, and for the location of particle remains.

  5. Personality and Problem Behaviours as Predictors of Adolescents' Social Status: Academic Track and Gender as Moderators

    ERIC Educational Resources Information Center

    Hubers, Mireille D.; Burk, William J.; Segers, Eliane; Kleinjan, Marloes; Scholte, Ron H. J.; Cillessen, Antonius H. N.

    2016-01-01

    This study examined adolescent personality and problem behaviours as predictors of two types of social status: social preference and popularity. Academic track (college preparatory and vocational) and gender were expected to moderate these associations. The sample included 693 students (49.0% female; M = 15.46 years) attending classrooms in two…

  6. Estimation of U content in coffee samples by fission-track counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, P.K.; Lal, N.; Nagpaul, K.K.

    1985-06-01

    Because coffee is consumed in large quantities by humans, the authors undertook the study of the uranium content of coffee as a continuation of earlier work to estimate the U content of foodstuffs. Since literature on this subject is scarce, they decided to use the well-established fission-track-counting technique to determine the U content of coffee.

  7. Determinants of Tracking Intentions, and Actual Education Choices among Junior High School Students in Rural China

    ERIC Educational Resources Information Center

    Song, Yingquan; Loyalka, Prashant; Wei, Jianguo

    2013-01-01

    This article analyzes rural middle school students' tracking intentions (academic high school, vocational high school, or going to work), actual education choices, and the factors affecting them, using a random sampled baseline survey and follow-up survey of 2,216 second-year students residing outside of county seats in forty-one impoverished…

  8. Estimating site occupancy and abundance using indirect detection indices

    USGS Publications Warehouse

    Stanley, T.R.; Royle, J. Andrew

    2005-01-01

    Knowledge of factors influencing animal distribution and abundance is essential in many areas of ecological research, management, and policy-making. Because common methods for modeling and estimating abundance (e.g., capture-recapture, distance sampling) are sometimes not practical for large areas or elusive species, indices are sometimes used as surrogate measures of abundance. We present an extension of the Royle and Nichols (2003) generalization of the MacKenzie et al. (2002) site-occupancy model that incorporates length of the sampling interval into the, model for detection probability. As a result, we obtain a modeling framework that shows how useful information can be extracted from a class of index methods we call indirect detection indices (IDIs). Examples of IDIs include scent station, tracking tube, snow track, tracking plate, and hair snare surveys. Our model is maximum likelihood, and it can be used to estimate site occupancy and model factors influencing patterns of occupancy and abundance in space. Under certain circumstances, it can also be used to estimate abundance. We evaluated model properties using Monte Carlo simulations and illustrate the method with tracking tube and scent station data. We believe this model will be a useful tool for determining factors that influence animal distribution and abundance.

  9. Imaging samples in silica aerogel using an experimental point spread function.

    PubMed

    White, Amanda J; Ebel, Denton S

    2015-02-01

    Light microscopy is a powerful tool that allows for many types of samples to be examined in a rapid, easy, and nondestructive manner. Subsequent image analysis, however, is compromised by distortion of signal by instrument optics. Deconvolution of images prior to analysis allows for the recovery of lost information by procedures that utilize either a theoretically or experimentally calculated point spread function (PSF). Using a laser scanning confocal microscope (LSCM), we have imaged whole impact tracks of comet particles captured in silica aerogel, a low density, porous SiO2 solid, by the NASA Stardust mission. In order to understand the dynamical interactions between the particles and the aerogel, precise grain location and track volume measurement are required. We report a method for measuring an experimental PSF suitable for three-dimensional deconvolution of imaged particles in aerogel. Using fluorescent beads manufactured into Stardust flight-grade aerogel, we have applied a deconvolution technique standard in the biological sciences to confocal images of whole Stardust tracks. The incorporation of an experimentally measured PSF allows for better quantitative measurements of the size and location of single grains in aerogel and more accurate measurements of track morphology.

  10. Probabilistic analysis showing that a combination of bacteroides and methanobrevibacter source tracking markers is effective for identifying waters contaminated by human fecal pollution

    USGS Publications Warehouse

    Johnston, Christopher; Byappanahalli, Muruleedhara N.; Gibson, Jacqueline MacDonald; Ufnar, Jennifer A.; Whitman, Richard L.; Stewart, Jill R.

    2013-01-01

    Microbial source tracking assays to identify sources of waterborne contamination typically target genetic markers of host-specific microorganisms. However, no bacterial marker has been shown to be 100% host-specific, and cross-reactivity has been noted in studies evaluating known source samples. Using 485 challenge samples from 20 different human and animal fecal sources, this study evaluated microbial source tracking markers including the Bacteroides HF183 16S rRNA, M. smithii nifH, and Enterococcus esp gene targets that have been proposed as potential indicators of human fecal contamination. Bayes' Theorem was used to calculate the conditional probability that these markers or a combination of markers can correctly identify human sources of fecal pollution. All three human-associated markers were detected in 100% of the sewage samples analyzed. Bacteroides HF183 was the most effective marker for determining whether contamination was specifically from a human source, and greater than 98% certainty that contamination was from a human source was shown when both Bacteroides HF183 and M. smithii nifH markers were present. A high degree of certainty was attained even in cases where the prior probability of human fecal contamination was as low as 8.5%. The combination of Bacteroides HF183 and M. smithii nifH source tracking markers can help identify surface waters impacted by human fecal contamination, information useful for prioritizing restoration activities or assessing health risks from exposure to contaminated waters.

  11. Correlated Microanalysis of Cometary Organic Grains Returned by Stardust

    NASA Technical Reports Server (NTRS)

    DeGregorio, B. T.; Stroud, R. M.; Nittler, L. R.; Cody, G. D,; Kilcoyne, A. L. D.

    2011-01-01

    Preliminary examination (PE) of samples returned from Comet 81P/Wild 2 by the NASA Stardust mission revealed a wide variety of carbonaceous samples [e.g. 1]. Carbonaceous matter is present as inclusions, rinds, and films in polyminerallic terminal particles [2-4], as carbon-rich particles along track walls [2, 5, 6], and as organic matter in aerogel around tracks [7, 8]. The organic chemistry of these samples ranges from purely aliphatic hydrocarbons to highly-aromatic material, often modified by various organic functional groups [2, 4, 5, 9-11]. Difficulty arises when interpreting the genesis of these carbonaceous samples, since contaminants could be introduced from the spacecraft [12], aerogel [1, 8], or during sample preparation. In addition, hypervelocity capture into aerogel may have heated cometary material in excess of 1000 C, which could have significantly altered the structure and chemistry of carbonaceous matter. Fortunately, much of this contamination or alteration can be identified through correlated microanalysis with transmission electron microscopy (TEM), scanning-transmission X-ray microscopy (STXM), and nanoscale secondary ion mass spectroscopy (SIMS).

  12. Search for lightly ionizing particles with the MACRO detector

    NASA Astrophysics Data System (ADS)

    Ambrosio, M.; Antolini, R.; Auriemma, G.; Bakari, D.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bisi, V.; Bloise, C.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B. C.; Coutu, S.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; Derkaoui, J.; de Vincenzi, M.; di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Gray, L.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Mikheyev, S.; Miller, L.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolò, D.; Nolty, R.; Orth, C.; Okada, C.; Osteria, G.; Ouchrif, M.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Pistilli, P.; Popa, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Satriano, C.; Satta, L.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Vakili, M.; Vilela, E.; Walter, C. W.; Webb, R.

    2000-09-01

    A search for lightly ionizing particles has been performed with the MACRO detector. This search was sensitive to particles with charges between 15 e and close to the charge of an electron, with β between approximately 0.25 and 1.0. Unlike previous searches both single track events and tracks buried within high multiplicity muon showers were examined. In a period of approximately one year no candidates were observed. Assuming an isotropic flux, for the single track sample this corresponds to a 90% C.L. upper flux limit Φ<=9.2×10-15 cm-2 s-1 sr-1.

  13. Predictability of the California Current System

    NASA Technical Reports Server (NTRS)

    Miller, Arthur J.; Chereskin, T.; Cornuelle, B. D.; Niiler, P. P.; Moisan, J. R.; Lindstrom, Eric (Technical Monitor)

    2001-01-01

    The physical and biological oceanography of the Southern California Bight (SCB), a highly productive subregion of the California Current System (CCS) that extends from Point Conception, California, south to Ensenada, Mexico, continues to be extensively studied. For example, the California Cooperative Oceanic Fisheries Investigations (CalCOFI) program has sampled this region for over 50 years, providing an unparalleled time series of physical and biological data. However, our understanding of what physical processes control the large-scale and mesoscale variations in these properties is incomplete. In particular, the non-synoptic and relatively coarse spatial sampling (70km) of the hydrographic grid does not completely resolve the mesoscale eddy field (Figure 1a). Moreover, these unresolved physical variations exert a dominant influence on the evolution of the ecosystem. In recent years, additional datasets that partially sample the SCB have become available. Acoustic Doppler Current Profiler (ADCP) measurements, which now sample upper-ocean velocity between stations, and sea level observations along TOPEX tracks give a more complete picture of the mesoscale variability. However, both TOPEX and ADCP are well-sampled only along the cruise or orbit tracks and coarsely sampled in time and between tracks. Surface Lagrangian drifters also sample the region, although irregularly in time and space. SeaWiFS provides estimates of upper-ocean chlorophyll-a (chl-alpha), usually giving nearly complete coverage for week-long intervals, depending on cloud coverage. Historical ocean color data from the Coastal Zone Color Scanner (CZCS) has been used extensively to determine phytoplankton patterns and variability, characterize the primary production across the SCB coastal fronts, and describe the seasonal and interannual variability in pigment concentrations. As in CalCOFI, these studies described much of the observed structures and their variability over relatively large space and time scales.

  14. Assessment of Giardia and Cryptosporidium spp. as a microbial source tracking tool for surface water: application in a mixed-use watershed.

    PubMed

    Prystajecky, Natalie; Huck, Peter M; Schreier, Hans; Isaac-Renton, Judith L

    2014-04-01

    Knowledge of host specificity, combined with genomic sequencing of Giardia and Cryptosporidium spp., has demonstrated a microbial source tracking (MST) utility for these common waterborne microbes. To explore the source attribution potential of these pathogens, water samples were collected in a mixed rural-urban watershed in the Township of Langley, in southwestern British Columbia (BC), Canada, over a 2-year period. Cryptosporidium was detected in 63% of surface water samples at concentrations ranging from no positive detection (NPD) to 20,600 oocysts per 100 liters. Giardia was detected in 86% of surface water samples at concentrations ranging from NPD to 3,800 cysts per 100 liters of water. Sequencing at the 18S rRNA locus revealed that 50% of Cryptosporidium samples and 98% of Giardia samples contained species/genotypes (Cryptosporidium) or assemblages (Giardia) that are capable of infecting humans, based on current knowledge of host specificity and taxonomy. Cryptosporidium genotyping data were more promising for source tracking potential, due to the greater number of host-adapted (i.e., narrow-host-range) species/genotypes compared to Giardia, since 98% of Giardia isolates were zoonotic and the potential host could not be predicted. This report highlights the benefits of parasite genomic sequencing to complement Method 1623 (U.S. Environmental Protection Agency) and shows that Cryptosporidium subtyping for MST purposes is superior to the use of Giardia subtyping, based on better detection limits for Cryptosporidium-positive samples than for Giardia-positive samples and on greater host specificity among Cryptosporidium species. These additional tools could be used for risk assessment in public health and watershed management decisions.

  15. Assessment of Giardia and Cryptosporidium spp. as a Microbial Source Tracking Tool for Surface Water: Application in a Mixed-Use Watershed

    PubMed Central

    Huck, Peter M.; Schreier, Hans; Isaac-Renton, Judith L.

    2014-01-01

    Knowledge of host specificity, combined with genomic sequencing of Giardia and Cryptosporidium spp., has demonstrated a microbial source tracking (MST) utility for these common waterborne microbes. To explore the source attribution potential of these pathogens, water samples were collected in a mixed rural-urban watershed in the Township of Langley, in southwestern British Columbia (BC), Canada, over a 2-year period. Cryptosporidium was detected in 63% of surface water samples at concentrations ranging from no positive detection (NPD) to 20,600 oocysts per 100 liters. Giardia was detected in 86% of surface water samples at concentrations ranging from NPD to 3,800 cysts per 100 liters of water. Sequencing at the 18S rRNA locus revealed that 50% of Cryptosporidium samples and 98% of Giardia samples contained species/genotypes (Cryptosporidium) or assemblages (Giardia) that are capable of infecting humans, based on current knowledge of host specificity and taxonomy. Cryptosporidium genotyping data were more promising for source tracking potential, due to the greater number of host-adapted (i.e., narrow-host-range) species/genotypes compared to Giardia, since 98% of Giardia isolates were zoonotic and the potential host could not be predicted. This report highlights the benefits of parasite genomic sequencing to complement Method 1623 (U.S. Environmental Protection Agency) and shows that Cryptosporidium subtyping for MST purposes is superior to the use of Giardia subtyping, based on better detection limits for Cryptosporidium-positive samples than for Giardia-positive samples and on greater host specificity among Cryptosporidium species. These additional tools could be used for risk assessment in public health and watershed management decisions. PMID:24463970

  16. TrackArt: the user friendly interface for single molecule tracking data analysis and simulation applied to complex diffusion in mica supported lipid bilayers.

    PubMed

    Matysik, Artur; Kraut, Rachel S

    2014-05-01

    Single molecule tracking (SMT) analysis of fluorescently tagged lipid and protein probes is an attractive alternative to ensemble averaged methods such as fluorescence correlation spectroscopy (FCS) or fluorescence recovery after photobleaching (FRAP) for measuring diffusion in artificial and plasma membranes. The meaningful estimation of diffusion coefficients and their errors is however not straightforward, and is heavily dependent on sample type, acquisition method, and equipment used. Many approaches require advanced computing and programming skills for their implementation. Here we present TrackArt software, an accessible graphic interface for simulation and complex analysis of multiple particle paths. Imported trajectories can be filtered to eliminate spurious or corrupted tracks, and are then analyzed using several previously described methodologies, to yield single or multiple diffusion coefficients, their population fractions, and estimated errors. We use TrackArt to analyze the single-molecule diffusion behavior of a sphingolipid analog SM-Atto647N, in mica supported DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) bilayers. Fitting with a two-component diffusion model confirms the existence of two separate populations of diffusing particles in these bilayers on mica. As a demonstration of the TrackArt workflow, we characterize and discuss the effective activation energies required to increase the diffusion rates of these populations, obtained from Arrhenius plots of temperature-dependent diffusion. Finally, TrackArt provides a simulation module, allowing the user to generate models with multiple particle trajectories, diffusing with different characteristics. Maps of domains, acting as impermeable or permeable obstacles for particles diffusing with given rate constants and diffusion coefficients, can be simulated or imported from an image. Importantly, this allows one to use simulated data with a known diffusion behavior as a comparison for results acquired using particular algorithms on actual, "natural" samples whose diffusion behavior is to be extracted. It can also serve as a tool for demonstrating diffusion principles. TrackArt is an open source, platform-independent, Matlab-based graphical user interface, and is easy to use even for those unfamiliar with the Matlab programming environment. TrackArt can be used for accurate simulation and analysis of complex diffusion data, such as diffusion in lipid bilayers, providing publication-quality formatted results.

  17. Measuring track densities in lunar grains by image analysis

    NASA Technical Reports Server (NTRS)

    Blanford, George E.

    1993-01-01

    We have developed techniques to use digitized scanning electron micrographs and computer image analysis programs to measure track densities in lunar soil grains. Tracks were formed by highly ionizing solar energetic particles and cosmic rays during near surface exposure on the Moon. The track densities are related to the exposure conditions (depth and time). Distributions of the number of grains as a function of their track densities can reveal the modality of soil maturation. We used a sample that had already been etched in 6 N NaOH at 118 C for 15 h to reveal tracks. We determined that back-scattered electron images taken at 50 percent contrast and approximately 49.8 percent brightness produced suitable high contrast images for analysis. We ascertained gray-scale thresholds of interest: 0-230 for tracks, 231 for masked regions, and 232-255 for background. We found no need to set an upper size limit for distinguishing tracks. We did use lower limits to exclude noise: 16 pixels at 15000x, 4 pixels at 10000x, 2 pixels at 6800x, and 0 pixels at 4600x. We used computer counting and measurement of area to obtain track densities. We found an excellent correlation with manual measurements for track densities below 1x10(exp 8) sq cm. For track densities between 1x10(exp 8) sq cm to 1x10(exp 9) sq cm, we found that a regression formula using the percentage area covered by tracks gave good agreement with manual measurements. Finally we used these new techniques to obtain a track density distribution that gave more detail and was more rapidly obtained than using manual techniques 15 years ago.

  18. Siamese convolutional networks for tracking the spine motion

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Sui, Xiubao; Sun, Yicheng; Liu, Chengwei; Hu, Yong

    2017-09-01

    Deep learning models have demonstrated great success in various computer vision tasks such as image classification and object tracking. However, tracking the lumbar spine by digitalized video fluoroscopic imaging (DVFI), which can quantitatively analyze the motion mode of spine to diagnose lumbar instability, has not yet been well developed due to the lack of steady and robust tracking method. In this paper, we propose a novel visual tracking algorithm of the lumbar vertebra motion based on a Siamese convolutional neural network (CNN) model. We train a full-convolutional neural network offline to learn generic image features. The network is trained to learn a similarity function that compares the labeled target in the first frame with the candidate patches in the current frame. The similarity function returns a high score if the two images depict the same object. Once learned, the similarity function is used to track a previously unseen object without any adapting online. In the current frame, our tracker is performed by evaluating the candidate rotated patches sampled around the previous frame target position and presents a rotated bounding box to locate the predicted target precisely. Results indicate that the proposed tracking method can detect the lumbar vertebra steadily and robustly. Especially for images with low contrast and cluttered background, the presented tracker can still achieve good tracking performance. Further, the proposed algorithm operates at high speed for real time tracking.

  19. Hybrid position and orientation tracking for a passive rehabilitation table-top robot.

    PubMed

    Wojewoda, K K; Culmer, P R; Gallagher, J F; Jackson, A E; Levesley, M C

    2017-07-01

    This paper presents a real time hybrid 2D position and orientation tracking system developed for an upper limb rehabilitation robot. Designed to work on a table-top, the robot is to enable home-based upper-limb rehabilitative exercise for stroke patients. Estimates of the robot's position are computed by fusing data from two tracking systems, each utilizing a different sensor type: laser optical sensors and a webcam. Two laser optical sensors are mounted on the underside of the robot and track the relative motion of the robot with respect to the surface on which it is placed. The webcam is positioned directly above the workspace, mounted on a fixed stand, and tracks the robot's position with respect to a fixed coordinate system. The optical sensors sample the position data at a higher frequency than the webcam, and a position and orientation fusion scheme is proposed to fuse the data from the two tracking systems. The proposed fusion scheme is validated through an experimental set-up whereby the rehabilitation robot is moved by a humanoid robotic arm replicating previously recorded movements of a stroke patient. The results prove that the presented hybrid position tracking system can track the position and orientation with greater accuracy than the webcam or optical sensors alone. The results also confirm that the developed system is capable of tracking recovery trends during rehabilitation therapy.

  20. Measurement and Modeling of Fugitive Dust from Off Road DoD Activities

    DTIC Science & Technology

    2017-12-08

    each soil and vehicle type (see Table 2). Note, no tracked vehicles were run at YTC. CT is the curve track sampling location, CR is the curve ridge...Soil is SL = sandy loam. ...................... 116 Figure 35. Single-event Wind Erosion Evaluation Program (SWEEP) Run example results. ... 121...Figure 36. Single-event Wind Erosion Evaluation Program (SWEEP) Threshold Run example results screen

  1. Linear Combination of Heuristics Approach to Spatial Sampling Hyperspectral Data for Target Tracking

    DTIC Science & Technology

    2010-12-01

    Figure 37 - Illustration of the tunable spectral polarimeter. ........................................... 154 Figure 38 - Illustration of micromirrors ...polarimeter. 9.2 Multiobject Tracking Spectrometer The idea of combining an array of MEMS micromirrors with an imager and a spectrometer array is the... micromirror array is located at an intermediate focal plane of the optical system. If all the individual mirrors are turned in the same direction

  2. High temperature annealing of fission tracks in fluorapatite, Santa Fe Springs oil field, Los Angeles Basin, California

    USGS Publications Warehouse

    Naeser, Nancy D.; Crowley, Kevin D.; McCulloh, Thane H.; Reaves, Chris M.; ,

    1990-01-01

    Annealing of fission tracks is a kinetic process dependent primarily on temperature and to a laser extent on time. Several kinetic models of apatite annealing have been proposed. The predictive capabilities of these models for long-term geologic annealing have been limited to qualitative or semiquantitative at best, because of uncertainties associated with (1) the extrapolation of laboratory observations to geologic conditions, (2) the thermal histories of field samples, and (3) to some extent, the effect of apatite composition on reported annealing temperatures. Thermal history in the Santa Fe Springs oil field, Los Angeles Basin, California, is constrained by an exceptionally well known burial history and present-day temperature gradient. Sediment burial histories are continuous and tightly constrained from about 9 Ma to present, with an important tie at 3.4 Ma. No surface erosion and virtually no uplift were recorded during or since deposition of these sediments, so the burial history is simple and uniquely defined. Temperature gradient (???40??C km-1) is well established from oil-field operations. Fission-track data from the Santa Fe Springs area should thus provide one critical field test of kinetic annealing models for apatite. Fission-track analysis has been performed on apatites from sandstones of Pliocene to Miocene age from a deep drill hole at Santa Fe Springs. Apatite composition, determined by electron microprobe, is fluorapatite [average composition (F1.78Cl0.01OH0.21)] with very low chlorine content [less than Durango apatite; sample means range from 0.0 to 0.04 Cl atoms, calculated on the basis of 26(O, F, Cl, OH)], suggesting that the apatite is not unusually resistant to annealing. Fission tracks are preserved in these apatites at exceptionally high present-day temperatures. Track loss is not complete until temperatures reach the extreme of 167-178??C (at 3795-4090 m depth). The temperature-time annealing relationships indicated by the new data from Santa Fe Springs conflict with predictions based on previously published, commonly used, kinetic annealing models for apatite. Work is proceeding on samples from another area of the basin that may resolve this discrepancy.

  3. Single exosome detection in serum using microtoroid optical resonators (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Su, Judith

    2016-03-01

    Recently exosomes have attracted interest due to their potential as cancer biomarkers. We report the real time, label-free sensing of single exosomes in serum using microtoroid optical resonators. We use this approach to assay the progression of tumors implanted in mice by specifically detecting low concentrations of tumor-derived exosomes. Our approach measures the adsorption of individual exosomes onto a functionalized silica microtoroid by tracking changes in the optical resonant frequency of the microtoroid. When exosomes land on the microtoroid, they perturb its refractive index in the evanescent field and thus shift its resonance frequency. Through digital frequency locking, we are able to rapidly track these shifts with accuracies of better than 10 attometers (one part in 10^11). Samples taken from tumor-implanted mice from later weeks generated larger frequency shifts than those from earlier weeks. Control samples taken from a mouse with no tumor generated no such increase in signal between subsequent weeks. Analysis of shifts from tumor-implanted mouse samples show a distribution of unitary steps, with the maximum step having a height of ~1.2 fm, corresponding to an exosome size of 44 ± 4.8 nm. This size range corresponds to that found by performing nanoparticle tracking analysis on the same samples. Our results demonstrate development towards a minimally-invasive tumor "biopsy" that eliminates the need to find and access a tumor.

  4. Microbiological Detection Systems for Molecular Analysis of Environmental Water and Soil Samples

    EPA Science Inventory

    Multiple detection systems are being targeted to track various species and genotypes of pathogens found in environmental samples with the overreaching goal of developing analytical separation and detection techniques for Salmonella enterica Serovars Typhi, Cryptosporidium parvum,...

  5. SHI induced nano track polymer filters and characterization

    NASA Astrophysics Data System (ADS)

    Vijay, Y. K.

    2009-07-01

    Swift heavy ion irradiation produces damage in polymers in the form of latent tracks. Latent tracks can be enlarged by etching it in a suitable etchant and thus nuclear track etch membrane can be formed for gas permeation / purification in particular for hydrogen where the molecular size is very small. By applying suitable and controlled etching conditions well defined tracks can be formed for specific applications of the membranes. After etching gas permeation method is used for characterizing the tracks. In the present work polycarbonate (PC) of various thickness were irradiated with energetic ion beam at Inter University Accelerator Centre (IUAC), New Delhi. Nuclear tracks were modified by etching the PC in 6N NaOH at 60 (±1) °C from both sides for different times to produce track etch membranes. At critical etch time the etched pits from both the sides meet a rapid increase in gas permeation was observed. Permeability of hydrogen and carbon dioxide has been measured in samples etched for different times. The latent tracks produced by SHI irradiation in the track etch membranes show enhancement of free volume of the polymer. Nano filters are separation devices for the mixture of gases, different ions in the solution and isotopes and isobars separations. The polymer thin films with controlled porosity finding it self as best choice. However, the permeability and selectivity of these polymer based membrane filters are very important at the nano scale separation. The Swift Heavy Ion (SHI) induced nuclear track etched polymeric films with controlled etching have been attempted and characterized as nano scale filters.

  6. A video multitracking system for quantification of individual behavior in a large fish shoal: advantages and limits.

    PubMed

    Delcourt, Johann; Becco, Christophe; Vandewalle, Nicolas; Poncin, Pascal

    2009-02-01

    The capability of a new multitracking system to track a large number of unmarked fish (up to 100) is evaluated. This system extrapolates a trajectory from each individual and analyzes recorded sequences that are several minutes long. This system is very efficient in statistical individual tracking, where the individual's identity is important for a short period of time in comparison with the duration of the track. Individual identification is typically greater than 99%. Identification is largely efficient (more than 99%) when the fish images do not cross the image of a neighbor fish. When the images of two fish merge (occlusion), we consider that the spot on the screen has a double identity. Consequently, there are no identification errors during occlusions, even though the measurement of the positions of each individual is imprecise. When the images of these two merged fish separate (separation), individual identification errors are more frequent, but their effect is very low in statistical individual tracking. On the other hand, in complete individual tracking, where individual fish identity is important for the entire trajectory, each identification error invalidates the results. In such cases, the experimenter must observe whether the program assigns the correct identification, and, when an error is made, must edit the results. This work is not too costly in time because it is limited to the separation events, accounting for fewer than 0.1% of individual identifications. Consequently, in both statistical and rigorous individual tracking, this system allows the experimenter to gain time by measuring the individual position automatically. It can also analyze the structural and dynamic properties of an animal group with a very large sample, with precision and sampling that are impossible to obtain with manual measures.

  7. Combined use of algorithms for peak picking, peak tracking and retention modelling to optimize the chromatographic conditions for liquid chromatography-mass spectrometry analysis of fluocinolone acetonide and its degradation products.

    PubMed

    Fredriksson, Mattias J; Petersson, Patrik; Axelsson, Bengt-Olof; Bylund, Dan

    2011-10-17

    A strategy for rapid optimization of liquid chromatography column temperature and gradient shape is presented. The optimization as such is based on the well established retention and peak width models implemented in software like e.g. DryLab and LC simulator. The novel part of the strategy is a highly automated processing algorithm for detection and tracking of chromatographic peaks in noisy liquid chromatography-mass spectrometry (LC-MS) data. The strategy is presented and visualized by the optimization of the separation of two degradants present in ultraviolet (UV) exposed fluocinolone acetonide. It should be stressed, however, that it can be utilized for LC-MS analysis of any sample and application where several runs are conducted on the same sample. In the application presented, 30 components that were difficult or impossible to detect in the UV data could be automatically detected and tracked in the MS data by using the proposed strategy. The number of correctly tracked components was above 95%. Using the parameters from the reconstructed data sets to the model gave good agreement between predicted and observed retention times at optimal conditions. The area of the smallest tracked component was estimated to 0.08% compared to the main component, a level relevant for the characterization of impurities in the pharmaceutical industry. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Enhancement of sun-tracking with optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Wu, Jiunn-Chi

    2015-09-01

    Sun-tracking is one of the most challenging tasks in implementing CPV. In order to justify the additional complexity of sun-tracking, careful assessment of performance of CPV by monitoring the performance of sun-tracking is vital. Measurement of accuracy of sun-tracking is one of the important tasks in an outdoor test. This study examines techniques with three optoelectronic devices (i.e. position sensitive device (PSD), CCD and webcam). Outdoor measurements indicated that during sunny days (global horizontal insolation (GHI) > 700 W/m2), three devices recorded comparable tracking accuracy of 0.16˜0.3°. The method using a PSD has fastest sampling rate and is able to detect the sun's position without additional image processing. Yet, it cannot identify the sunlight effectively during low insolation. The techniques with a CCD and a webcam enhance the accuracy of centroid of sunlight via the optical lens and image processing. The image quality acquired using a webcam and a CCD is comparable but the webcam is more affordable than that of CCD because it can be assembled with consumer-graded products.

  9. Fission track astrology of three Apollo 14 gas-rich breccias

    NASA Technical Reports Server (NTRS)

    Graf, H.; Shirck, J.; Sun, S.; Walker, R.

    1973-01-01

    The three Apollo 14 breccias 14301, 14313, and 14318 all show fission xenon due to the decay of Pu-244. To investigate possible in situ production of the fission gas, an analysis was made of the U-distribution in these three breccias. The major amount of the U lies in glass clasts and in matrix material and no more than 25% occurs in distinct high-U minerals. The U-distribution of each breccia is discussed in detail. Whitlockite grains in breccias 14301 and 14318 found with the U-mapping were etched and analyzed for fission tracks. The excess track densities are much smaller than indicated by the Xe-excess. Because of a preirradiation history documented by very high track densities in feldspar grains, however, it is impossible to attribute the excess tracks to the decay of Pu-244. A modified track method has been developed for measuring average U-concentrations in samples containing a heterogeneous distribution of U in the form of small high-U minerals. The method is briefly discussed, and results for the rocks 14301, 14313, 14318, 68815, 15595, and the soil 64421 are given.

  10. Evaluation of beam tracking strategies for the THOR-CSW solar wind instrument

    NASA Astrophysics Data System (ADS)

    De Keyser, Johan; Lavraud, Benoit; Prech, Lubomir; Neefs, Eddy; Berkenbosch, Sophie; Beeckman, Bram; Maggiolo, Romain; Fedorov, Andrei; Baruah, Rituparna; Wong, King-Wah; Amoros, Carine; Mathon, Romain; Génot, Vincent

    2017-04-01

    We compare different beam tracking strategies for the Cold Solar Wind (CSW) plasma spectrometer on the ESA M4 THOR mission candidate. The goal is to intelligently select the energy and angular windows the instrument is sampling and to adapt these windows as the solar wind properties evolve, with the aim to maximize the velocity distribution acquisition rate while maintaining excellent energy and angular resolution. Using synthetic data constructed using high-cadence measurements by the Faraday cup instrument on the Spektr-R mission (30 ms resolution), we test the performance of energy beam tracking with or without angular beam tracking. The algorithm can be fed both by data acquired by the plasma spectrometer during the previous measurement cycle, or by data from another instrument, in casu the Faraday Cup (FAR) instrument foreseen on THOR. We verify how these beam tracking algorithms behave for different sizes of the energy and angular windows, and for different data integration times, in order to assess the limitations of the algorithm and to avoid situations in which the algorithm loses track of the beam.

  11. Low-Latency Line Tracking Using Event-Based Dynamic Vision Sensors

    PubMed Central

    Everding, Lukas; Conradt, Jörg

    2018-01-01

    In order to safely navigate and orient in their local surroundings autonomous systems need to rapidly extract and persistently track visual features from the environment. While there are many algorithms tackling those tasks for traditional frame-based cameras, these have to deal with the fact that conventional cameras sample their environment with a fixed frequency. Most prominently, the same features have to be found in consecutive frames and corresponding features then need to be matched using elaborate techniques as any information between the two frames is lost. We introduce a novel method to detect and track line structures in data streams of event-based silicon retinae [also known as dynamic vision sensors (DVS)]. In contrast to conventional cameras, these biologically inspired sensors generate a quasicontinuous stream of vision information analogous to the information stream created by the ganglion cells in mammal retinae. All pixels of DVS operate asynchronously without a periodic sampling rate and emit a so-called DVS address event as soon as they perceive a luminance change exceeding an adjustable threshold. We use the high temporal resolution achieved by the DVS to track features continuously through time instead of only at fixed points in time. The focus of this work lies on tracking lines in a mostly static environment which is observed by a moving camera, a typical setting in mobile robotics. Since DVS events are mostly generated at object boundaries and edges which in man-made environments often form lines they were chosen as feature to track. Our method is based on detecting planes of DVS address events in x-y-t-space and tracing these planes through time. It is robust against noise and runs in real time on a standard computer, hence it is suitable for low latency robotics. The efficacy and performance are evaluated on real-world data sets which show artificial structures in an office-building using event data for tracking and frame data for ground-truth estimation from a DAVIS240C sensor. PMID:29515386

  12. Robust and Rapid Air-Borne Odor Tracking without Casting1,2,3

    PubMed Central

    Bhattacharyya, Urvashi

    2015-01-01

    Abstract Casting behavior (zigzagging across an odor stream) is common in air/liquid-borne odor tracking in open fields; however, terrestrial odor localization often involves path selection in a familiar environment. To study this, we trained rats to run toward an odor source in a multi-choice olfactory arena with near-laminar airflow. We find that rather than casting, rats run directly toward an odor port, and if this is incorrect, they serially sample other sources. This behavior is consistent and accurate in the presence of perturbations, such as novel odors, background odor, unilateral nostril stitching, and turbulence. We developed a model that predicts that this run-and-scan tracking of air-borne odors is faster than casting, provided there are a small number of targets at known locations. Thus, the combination of best-guess target selection with fallback serial sampling provides a rapid and robust strategy for finding odor sources in familiar surroundings. PMID:26665165

  13. Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles

    NASA Astrophysics Data System (ADS)

    Li, Xiaohui; Sun, Zhenping; Cao, Dongpu; Liu, Daxue; He, Hangen

    2017-03-01

    This study proposes a novel integrated local trajectory planning and tracking control (ILTPTC) framework for autonomous vehicles driving along a reference path with obstacles avoidance. For this ILTPTC framework, an efficient state-space sampling-based trajectory planning scheme is employed to smoothly follow the reference path. A model-based predictive path generation algorithm is applied to produce a set of smooth and kinematically-feasible paths connecting the initial state with the sampling terminal states. A velocity control law is then designed to assign a speed value at each of the points along the generated paths. An objective function considering both safety and comfort performance is carefully formulated for assessing the generated trajectories and selecting the optimal one. For accurately tracking the optimal trajectory while overcoming external disturbances and model uncertainties, a combined feedforward and feedback controller is developed. Both simulation analyses and vehicle testing are performed to verify the effectiveness of the proposed ILTPTC framework, and future research is also briefly discussed.

  14. Design, implementation and flight testing of PIF autopilots for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.

    1983-01-01

    The designs of Proportional-Integrated-Filter (PIF) auto-pilots for a General Aviation (NAVION) aircraft are presented. The PIF autopilot uses the sampled-data regulator and command generator tracking to determine roll select, pitch select, heading select, altitude select and localizer/glideslope capture and hold autopilot modes. The PIF control law uses typical General Aviation sensors for state feedback, command error integration for command tracking, digital complementary filtering and analog prefiltering for sensor noise suppression, a control filter for computation delay accommodation and the incremental form to eliminate trim values in implementation. Theoretical developments described in detail, were needed to combine the sampled-data regulator with command generator tracking for use as a digital flight control system. The digital PIF autopilots are evaluated using closed-loop eigenvalues and linear simulations. The implementation of the PIF autopilots in a digital flight computer using a high order language (FORTRAN) is briefly described. The successful flight test results for each PIF autopilot mode is presented.

  15. The KTB apatite fission-track profiles: Building on a firm foundation?

    NASA Astrophysics Data System (ADS)

    Wauschkuhn, B.; Jonckheere, R.; Ratschbacher, L.

    2015-10-01

    Deep boreholes serve as natural laboratories for testing thermochronometers under geological conditions. The Kontinentale Tiefbohrung (KTB) is an interesting candidate because the geological evidence suggests that approximate isothermal holding since the last documented exhumation in the Late Cretaceous to Palaeocene is a reasonable assumption for the thermal histories of the KTB samples. We report 30 new apatite fission-track ages and 50 new mean confined track lengths determined on cores from the 4 km deep pilot hole. The ϕ- and ζ-external detector ages are consistent with the population ages from earlier studies and together define a clear age profile. The mean track lengths from this and earlier studies reveal the effects of experimental factors. The measured age and length profiles are compared with the predictions of 24 annealing models for isothermal holding. There are clear discrepancies between the measured and calculated profiles. Down to 1.5 km depth, the measured mean track lengths are shorter than the predicted. The balance of methodological evidence indicates that this is due to seasoning, i.e., a shortening of the fossil confined tracks without attendant age reduction. From 2.5 to 4.0 km depth, the mean track lengths are longer than the predictions. This suggests that the bias model that weights the probabilities of observing tracks of different length and which is based on experiments relating surface track densities to mean track lengths is not appropriate for confined tracks. Experimental and methodological factors are sometimes difficult to disentangle, but present a sufficient margin for there to be no need to go against the independent geological evidence. Unknown geological events cannot be ruled out but their existence cannot be inferred from the fission-track data alone, much less can the nature or magnitude of such events be specified.

  16. Collection methods and quality assessment for Esche-richia coli, water quality, and microbial source tracking data within Tumacácori National Historical Park and the upper Santa Cruz River, Arizona, 2015-16

    USGS Publications Warehouse

    Paretti, Nicholas; Coes, Alissa L.; Kephart, Christopher M.; Mayo, Justine

    2018-03-05

    Tumacácori National Historical Park protects the culturally important Mission, San José de Tumacácori, while also managing a portion of the ecologically diverse riparian corridor of the Santa Cruz River. This report describes the methods and quality assurance procedures used in the collection of water samples for the analysis of Escherichia coli (E. coli), microbial source tracking markers, suspended sediment, water-quality parameters, turbidity, and the data collection for discharge and stage; the process for data review and approval is also described. Finally, this report provides a quantitative assessment of the quality of the E. coli, microbial source tracking, and suspended sediment data.The data-quality assessment revealed that bias attributed to field and laboratory contamination was minimal, with E. coli detections in only 3 out of 33 field blank samples analyzed. Concentrations in the field blanks were several orders of magnitude lower than environmental concentrations. The microbial source tracking (MST) field blank was below the detection limit for all MST markers analyzed. Laboratory blanks for E. coli at the USGS Arizona Water Science Center and laboratory blanks for MST markers at the USGS Ohio Water Microbiology Laboratory were all below the detection limit. Irreplicate data for E. coli and suspended sediment indicated that bias was not introduced to the data by combining samples collected using discrete sampling methods with samples collected using automatic sampling methods.The split and sequential E. coli replicate data showed consistent analytical variability and a single equation was developed to explain the variability of E. coli concentrations. An additional analysis of analytical variability for E. coli indicated analytical variability around 18 percent relative standard deviation and no trend was observed in the concentration during the processing and analysis of multiple split-replicates. Two replicate samples were collected for MST and individual markers were compared for a base flow and flood sample. For the markers found in common between the two types of samples, the relative standard deviation for the base flow sample was more than 3 times greater than the markers in the flood sample. Sequential suspended sediment replicates had a relative standard deviation of about 1.3 percent, indicating that environmental and analytical variability was minimal.A holding time review and laboratory study analysis supported the extended holding times required for this investigation. Most concentrations for flood and base-flow samples were within the theoretical variability specified in the most probable number approach suggesting that extended hold times did not overly influence the final concentrations reported.

  17. TEM Analyses of Itokawa Regolith Grains and Lunar Soil Grains to Directly Determine Space Weathering Rates on Airless Bodies

    NASA Technical Reports Server (NTRS)

    Berger, Eve L.; Keller, Lindsay P.; Christoffersen, Roy

    2016-01-01

    Samples returned from the moon and Asteroid Itokawa by NASA's Apollo Missions and JAXA's Hayabusa Mission, respectively, provide a unique record of their interaction with the space environment. Space weathering effects result from micrometeorite impact activity and interactions with the solar wind. While the effects of solar wind interactions, ion implantation and solar flare particle track accumulation, have been studied extensively, the rate at which these effects accumulate in samples on airless bodies has not been conclusively determined. Results of numerical modeling and experimental simulations do not converge with observations from natural samples. We measured track densities and rim thicknesses of three olivine grains from Itokawa and multiple olivine and anorthite grains from lunar soils of varying exposure ages. Samples were prepared for analysis using a Leica EM UC6 ultramicrotome and an FEI Quanta 3D dual beam focused ion beam scanning electron microscope (FIB-SEM). Transmission electron microscope (TEM) analyses were performed on the JEOL 2500SE 200kV field emission STEM. The solar wind damaged rims on lunar anorthite grains are amorphous, lack inclusions, and are compositionally similar to the host grain. The rim width increases as a smooth function of exposure age until it levels off at approximately 180 nm after approximately 20 My (Fig. 1). While solar wind ion damage can only accumulate while the grain is in a direct line of sight to the Sun, solar flare particles can penetrate to mm-depths. To assess whether the track density accurately predicts surface exposure, we measured the rim width and track density in olivine and anorthite from the surface of rock 64455, which was never buried and has a surface exposure age of 2 My based on isotopic measurements. The rim width from 64455 (60-70nm) plots within error of the well-defined trend for solar wind amorphized rims in Fig. 1. Measured solar flare track densities are accurately reflecting the surface exposure of the grains. Track densities correlate with the amorphous rim thicknesses. While the space-weathered rims of anorthite grains are amorphous, the space-weathered rims on both Itokawa and lunar olivine grains show solar wind damaged rims that are not amorphous. Instead, the rims are nanocrystalline with high dislocation densities and sparse inclusions of nanophase Fe metal. The rim thicknesses on the olivine grains also correlate with track density. The Itokawa olivine grains have track densities that indicate surface exposures of approximately 10(exp 5) years. Longer exposures (up to approximately 10(exp 7) years) do not amorphize the rims, as evidenced by lunar soil olivines with high track densities (approximately 10(exp 11) cm(exp -2)). From the combined data, shown in Fig. 1, it is clear that olivine is damaged (but not amorphized) more rapidly by the solar wind compared to anorthite. The olivine damaged rim forms quickly (in approximately 10(exp 6) y) and saturates at approximately 120nm with longer exposure time. The anorthite damaged rims form more slowly, amorphize, and grow thicker than the olivine rims. This is in agreement with numerical modeling data which predicts that solar wind damaged rims on anorthite will be thicker than olivine. However, the models predict that both olivine and anorthite rims will amorphize and reach equilibrium widths in less than 10(exp 3) y, in contrast to what is observed for natural samples. Laboratory irradiation experiments, which show rapid formation of fully amorphous and blistered surfaces from simulated solar wind exposures are also in contrast to observations of natural samples. These results suggest that there is a flux dependence on the type and extent of irradiation damage that develops in olivine. This flux dependence suggests that great caution be used in extrapolating between high-flux laboratory experiments and the natural case, as demonstrated by. We constrain the space weathering rate through analysis of returned samples. Provided that the track densities and the solar wind damaged rim widths exhibited by the Itokawa grains are typical of the fine-grained regions of Itokawa, then the space weathering rate is on the order of 10(exp 5) y. Space weathering effects in lunar soils saturate within a few My of exposure while those in Itokawa regolith grains formed in approximately 10(exp 5) y. Olivine and anorthite respond differently to solar wind irradiation. The space weathering effects in olivine are particularly difficult to reconcile with laboratory irradiation studies and numerical models. Additional measurements, experiments, and modeling are required to resolve the discrepancies among the observations and calculations involving solar wind amorphization of different minerals on airless bodies.

  18. lop-DWI: A Novel Scheme for Pre-Processing of Diffusion-Weighted Images in the Gradient Direction Domain.

    PubMed

    Sepehrband, Farshid; Choupan, Jeiran; Caruyer, Emmanuel; Kurniawan, Nyoman D; Gal, Yaniv; Tieng, Quang M; McMahon, Katie L; Vegh, Viktor; Reutens, David C; Yang, Zhengyi

    2014-01-01

    We describe and evaluate a pre-processing method based on a periodic spiral sampling of diffusion-gradient directions for high angular resolution diffusion magnetic resonance imaging. Our pre-processing method incorporates prior knowledge about the acquired diffusion-weighted signal, facilitating noise reduction. Periodic spiral sampling of gradient direction encodings results in an acquired signal in each voxel that is pseudo-periodic with characteristics that allow separation of low-frequency signal from high frequency noise. Consequently, it enhances local reconstruction of the orientation distribution function used to define fiber tracks in the brain. Denoising with periodic spiral sampling was tested using synthetic data and in vivo human brain images. The level of improvement in signal-to-noise ratio and in the accuracy of local reconstruction of fiber tracks was significantly improved using our method.

  19. Customized laboratory information management system for a clinical and research leukemia cytogenetics laboratory.

    PubMed

    Bakshi, Sonal R; Shukla, Shilin N; Shah, Pankaj M

    2009-01-01

    We developed a Microsoft Access-based laboratory management system to facilitate database management of leukemia patients referred for cytogenetic tests in regards to karyotyping and fluorescence in situ hybridization (FISH). The database is custom-made for entry of patient data, clinical details, sample details, cytogenetics test results, and data mining for various ongoing research areas. A number of clinical research laboratoryrelated tasks are carried out faster using specific "queries." The tasks include tracking clinical progression of a particular patient for multiple visits, treatment response, morphological and cytogenetics response, survival time, automatic grouping of patient inclusion criteria in a research project, tracking various processing steps of samples, turn-around time, and revenue generated. Since 2005 we have collected of over 5,000 samples. The database is easily updated and is being adapted for various data maintenance and mining needs.

  20. Towards establishing a human fecal contamination index in microbial source tracking

    EPA Science Inventory

    There have been significant advances in development of PCR-based methods to detect source associated DNA sequences (markers), but method evaluation has focused on performance with individual challenge samples. Little attention has been given to integration of multiple samples fro...

  1. Aquifer environment selects for microbial species cohorts in sediment and groundwater

    PubMed Central

    Hug, Laura A; Thomas, Brian C; Brown, Christopher T; Frischkorn, Kyle R; Williams, Kenneth H; Tringe, Susannah G; Banfield, Jillian F

    2015-01-01

    Little is known about the biogeography or stability of sediment-associated microbial community membership because these environments are biologically complex and generally difficult to sample. High-throughput-sequencing methods provide new opportunities to simultaneously genomically sample and track microbial community members across a large number of sampling sites or times, with higher taxonomic resolution than is associated with 16 S ribosomal RNA gene surveys, and without the disadvantages of primer bias and gene copy number uncertainty. We characterized a sediment community at 5 m depth in an aquifer adjacent to the Colorado River and tracked its most abundant 133 organisms across 36 different sediment and groundwater samples. We sampled sites separated by centimeters, meters and tens of meters, collected on seven occasions over 6 years. Analysis of 1.4 terabase pairs of DNA sequence showed that these 133 organisms were more consistently detected in saturated sediments than in samples from the vadose zone, from distant locations or from groundwater filtrates. Abundance profiles across aquifer locations and from different sampling times identified organism cohorts that comprised subsets of the 133 organisms that were consistently associated. The data suggest that cohorts are partly selected for by shared environmental adaptation. PMID:25647349

  2. Holographic microscopy for 3D tracking of bacteria

    NASA Astrophysics Data System (ADS)

    Nadeau, Jay; Cho, Yong Bin; El-Kholy, Marwan; Bedrossian, Manuel; Rider, Stephanie; Lindensmith, Christian; Wallace, J. Kent

    2016-03-01

    Understanding when, how, and if bacteria swim is key to understanding critical ecological and biological processes, from carbon cycling to infection. Imaging motility by traditional light microscopy is limited by focus depth, requiring cells to be constrained in z. Holographic microscopy offers an instantaneous 3D snapshot of a large sample volume, and is therefore ideal in principle for quantifying unconstrained bacterial motility. However, resolving and tracking individual cells is difficult due to the low amplitude and phase contrast of the cells; the index of refraction of typical bacteria differs from that of water only at the second decimal place. In this work we present a combination of optical and sample-handling approaches to facilitating bacterial tracking by holographic phase imaging. The first is the design of the microscope, which is an off-axis design with the optics along a common path, which minimizes alignment issues while providing all of the advantages of off-axis holography. Second, we use anti-reflective coated etalon glass in the design of sample chambers, which reduce internal reflections. Improvement seen with the antireflective coating is seen primarily in phase imaging, and its quantification is presented here. Finally, dyes may be used to increase phase contrast according to the Kramers-Kronig relations. Results using three test strains are presented, illustrating the different types of bacterial motility characterized by an enteric organism (Escherichia coli), an environmental organism (Bacillus subtilis), and a marine organism (Vibrio alginolyticus). Data processing steps to increase the quality of the phase images and facilitate tracking are also discussed.

  3. Microdosimetry calculations for monoenergetic electrons using Geant4-DNA combined with a weighted track sampling algorithm.

    PubMed

    Famulari, Gabriel; Pater, Piotr; Enger, Shirin A

    2017-07-07

    The aim of this study was to calculate microdosimetric distributions for low energy electrons simulated using the Monte Carlo track structure code Geant4-DNA. Tracks for monoenergetic electrons with kinetic energies ranging from 100 eV to 1 MeV were simulated in an infinite spherical water phantom using the Geant4-DNA extension included in Geant4 toolkit version 10.2 (patch 02). The microdosimetric distributions were obtained through random sampling of transfer points and overlaying scoring volumes within the associated volume of the tracks. Relative frequency distributions of energy deposition f(>E)/f(>0) and dose mean lineal energy ([Formula: see text]) values were calculated in nanometer-sized spherical and cylindrical targets. The effects of scoring volume and scoring techniques were examined. The results were compared with published data generated using MOCA8B and KURBUC. Geant4-DNA produces a lower frequency of higher energy deposits than MOCA8B. The [Formula: see text] values calculated with Geant4-DNA are smaller than those calculated using MOCA8B and KURBUC. The differences are mainly due to the lower ionization and excitation cross sections of Geant4-DNA for low energy electrons. To a lesser extent, discrepancies can also be attributed to the implementation in this study of a new and fast scoring technique that differs from that used in previous studies. For the same mean chord length ([Formula: see text]), the [Formula: see text] calculated in cylindrical volumes are larger than those calculated in spherical volumes. The discrepancies due to cross sections and scoring geometries increase with decreasing scoring site dimensions. A new set of [Formula: see text] values has been presented for monoenergetic electrons using a fast track sampling algorithm and the most recent physics models implemented in Geant4-DNA. This dataset can be combined with primary electron spectra to predict the radiation quality of photon and electron beams.

  4. adLIMS: a customized open source software that allows bridging clinical and basic molecular research studies.

    PubMed

    Calabria, Andrea; Spinozzi, Giulio; Benedicenti, Fabrizio; Tenderini, Erika; Montini, Eugenio

    2015-01-01

    Many biological laboratories that deal with genomic samples are facing the problem of sample tracking, both for pure laboratory management and for efficiency. Our laboratory exploits PCR techniques and Next Generation Sequencing (NGS) methods to perform high-throughput integration site monitoring in different clinical trials and scientific projects. Because of the huge amount of samples that we process every year, which result in hundreds of millions of sequencing reads, we need to standardize data management and tracking systems, building up a scalable and flexible structure with web-based interfaces, which are usually called Laboratory Information Management System (LIMS). We started collecting end-users' requirements, composed of desired functionalities of the system and Graphical User Interfaces (GUI), and then we evaluated available tools that could address our requirements, spanning from pure LIMS to Content Management Systems (CMS) up to enterprise information systems. Our analysis identified ADempiere ERP, an open source Enterprise Resource Planning written in Java J2EE, as the best software that also natively implements some highly desirable technological advances, such as the high usability and modularity that grants high use-case flexibility and software scalability for custom solutions. We extended and customized ADempiere ERP to fulfil LIMS requirements and we developed adLIMS. It has been validated by our end-users verifying functionalities and GUIs through test cases for PCRs samples and pre-sequencing data and it is currently in use in our laboratories. adLIMS implements authorization and authentication policies, allowing multiple users management and roles definition that enables specific permissions, operations and data views to each user. For example, adLIMS allows creating sample sheets from stored data using available exporting operations. This simplicity and process standardization may avoid manual errors and information backtracking, features that are not granted using track recording on files or spreadsheets. adLIMS aims to combine sample tracking and data reporting features with higher accessibility and usability of GUIs, thus allowing time to be saved on doing repetitive laboratory tasks, and reducing errors with respect to manual data collection methods. Moreover, adLIMS implements automated data entry, exploiting sample data multiplexing and parallel/transactional processing. adLIMS is natively extensible to cope with laboratory automation through platform-dependent API interfaces, and could be extended to genomic facilities due to the ERP functionalities.

  5. Comprehensive Glossary of Nuclear Science

    NASA Astrophysics Data System (ADS)

    Langlands, Tracy; Stone, Craig; Meyer, Richard

    2001-10-01

    We have developed a comprehensive glossary of terms covering the broad fields of nuclear and related areas of science. The glossary has been constructed with two sections. A primary section consists of over 6,000 terms covering the fields of nuclear and high energy physics, nuclear chemistry, radiochemistry, health physics, astrophysics, materials science, analytical science, environmental science, nuclear medicine, nuclear engineering, nuclear instrumentation, nuclear weapons, and nuclear safeguards. Approximately 1,500 terms of specific focus on military and nuclear weapons testing define the second section. The glossary is currently larger than many published glossaries and dictionaries covering the entire field of physics. Glossary terms have been defined using an extensive collection of current and historical publications. Historical texts extend back into the 1800's, the early days of atomic physics. The glossary has been developed both as a software application and as a hard copy document.

  6. Isolation and Puification of Uranium Isotopes for Measurement by Mass-Spectrometry (233, 234, 235, 236, 238U) and Alpha Spectrometry (232U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinelli, R; Hamilton, T; Brown, T

    2006-05-30

    This report describes a standardized methodology used by researchers from the Center for Accelerator Mass Spectrometry (CAMS) (Energy and Environment Directorate) and the Environmental Radiochemistry Group (Chemistry and Materials Science Directorate) at the Lawrence Livermore National Laboratory (LLNL) for the full isotopic analysis of uranium from solution. The methodology has largely been developed for use in characterizing the uranium composition of selected nuclear materials but may also be applicable to environmental studies and assessments of public, military or occupational exposures to uranium using in-vitro bioassay monitoring techniques. Uranium isotope concentrations and isotopic ratios are measured using a combination of Multimore » Collector Inductively Coupled Plasma Mass Spectrometry (MC ICP-MS), Accelerator Mass Spectrometry (AMS) and Alpha Spectrometry.« less

  7. Sewage pollution in urban stormwater runoff as evident from the widespread presence of multiple microbial and chemical source tracking markers.

    PubMed

    Sidhu, J P S; Ahmed, W; Gernjak, W; Aryal, R; McCarthy, D; Palmer, A; Kolotelo, P; Toze, S

    2013-10-01

    The concurrence of human sewage contamination in urban stormwater runoff (n=23) from six urban catchments across Australia was assessed by using both microbial source tracking (MST) and chemical source tracking (CST) markers. Out of 23 stormwater samples human adenovirus (HAv), human polyomavirus (HPv) and the sewage-associated markers; Methanobrevibacter smithii nifH and Bacteroides HF183 were detected in 91%, 56%, 43% and 96% of samples, respectively. Similarly, CST markers paracetamol (87%), salicylic acid (78%) acesulfame (96%) and caffeine (91%) were frequently detected. Twenty one samples (91%) were positive for six to eight sewage related MST and CST markers and remaining two samples were positive for five and four markers, respectively. A very good consensus (>91%) observed between the concurrence of the HF183, HAv, acesulfame and caffeine suggests good predictability of the presence of HAv in samples positive for one of the three markers. High prevalence of HAv (91%) also suggests that other enteric viruses may also be present in the stormwater samples which may pose significant health risks. This study underscores the benefits of employing a set of MST and CST markers which could include monitoring for HF183, adenovirus, caffeine and paracetamol to accurately detect human sewage contamination along with credible information on the presence of human enteric viruses, which could be used for more reliable public health risk assessments. Based on the results obtained in this study, it is recommended that some degree of treatment of captured stormwater would be required if it were to be used for non-potable purposes. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  8. School-to-Work Transition of College Graduates in Korea: The Impact of High School Track on College Performance and Post-College Occupational Outcomes

    ERIC Educational Resources Information Center

    Kwon, Sung Youn

    2014-01-01

    This study aimed at examining the impacts of high school track on college performance and subsequent occupational outcomes after college graduation. To this end, the Korean Education and Employment Panel (KEEP) data from 2004 through 2010, including 4,000 samples of 12th graders as of 2004 from vocational and general high schools, were analyzed.…

  9. Quantitative PCR for Tracking the Megaplasmid-Borne Biodegradation Potential of a Model Sphingomonad

    PubMed Central

    Hartmann, Erica M.; Badalamenti, Jonathan P.; Krajmalnik-Brown, Rosa

    2012-01-01

    We developed a quantitative PCR method for tracking the dxnA1 gene, the initial, megaplasmid-borne gene in Sphingomonas wittichii RW1's dibenzo-p-dioxin degradation pathway. We used this method on complex environmental samples and report on growth of S. wittichii RW1 in landfill leachate, thus furnishing a novel tool for monitoring megaplasmid-borne, dioxygenase-encoding genes. PMID:22492441

  10. Abbott prism: a multichannel heterogeneous chemiluminescence immunoassay analyzer.

    PubMed

    Khalil, O S; Zurek, T F; Tryba, J; Hanna, C F; Hollar, R; Pepe, C; Genger, K; Brentz, C; Murphy, B; Abunimeh, N

    1991-09-01

    We describe a multichannel heterogeneous immunoassay analyzer in which a sample is split between disposable reaction trays in a group of linear tracks. The system's pipettor uses noninvasive sensing of the sample volume and disposable pipet tips. Each assay track has (a) a conveyor belt for moving reaction trays to predetermined functional stations, (b) temperature-controlled tunnels, (c) noncontact transfer of the reaction mixture between incubation and detection wells, and (d) single-photon counting to detect a chemiluminescence (CL) signal from the captured immunochemical product. A novel disposable reaction tray, with separate reaction and detection wells and self-contained fluid removal, is used in conjunction with the transfer device on the track to produce a carryover-free system. The linear immunoassay track has nine predetermined positions for performing individual assay steps. Assay step sequence and timing is selected by changing the location of the assay modules between these predetermined positions. The assay methodology, a combination of microparticle capture and direct detection of a CL signal on a porous matrix, offers excellent sensitivity, specificity, and ease of automation. Immunoassay configurations have been tested for hepatitis B surface antigen and for antibodies to hepatitis B core antigen, hepatitis C virus, human immunodeficiency virus I and II, and human T-cell leukemia virus I and II.

  11. Herbicide use on railway tracks for safety reasons in Germany?

    PubMed

    Schweinsberg, F; Abke, W; Rieth, K; Rohmann, U; Zullei-Seibert, N

    1999-06-30

    A short overview on the occurrence of herbicides in groundwater and drinking water located in the vicinity of railway tracks in Germany is presented. The study has been conducted using the experience of various water supply companies and includes a literature research on the subject. It has been documented that in Germany only 1% of the total area treated with pesticides was under management of the former Deutsche Bundesbahn before 1990. The specific amount applied on the railway tracks was, however, a factor of 6 higher than that used in agriculture, although it must be borne in mind that the retaining capacity of railway tracks for pesticides is much lower. The herbicides applied ranged from 2,4-D and 2,4,5-T, triazine derivatives, e.g. atrazine and urea derivatives such as diuron. Traces of almost all of the herbicides applied could be detected in samples of groundwater and drinking water in the vicinity of railway tracks. Since 1997 only glyphosate has been used.

  12. Accelerating CR-39 Track Detector Processing by Utilizing UV

    NASA Astrophysics Data System (ADS)

    Sparling, Jonathan; Padalino, Stephen; McLean, James; Sangster, Craig; Regan, Sean

    2017-10-01

    The use of CR-39 plastic as a Solid State Nuclear Track Detector is an effective technique for obtaining data in high energy particle experiments including inertial confinement fusion. To reveal particle tracks after irradiation, CR-39 is chemically etched in NaOH at 80°C, producing micron-scale signal pits at the nuclear track sites. It has been shown that illuminating CR-39 with UV light prior to etching increases bulk and track etch rates, especially when combined with elevated temperature. Spectroscopic analysis for amorphous solids has helped identify which UV wavelengths are most effective at enhancing etch rates. Absorption peaks found in the near infrared range provide for efficient sample heating, and may allow targeting cooperative IR-UV chemistry. Avoiding UV induced noise can be achieved through variations in absorption depths with wavelength. Vacuum drying and water absorption tests allow measurement of the resulting variation of bulk etch rate with depth. Funded in part by the NSF and an Department of Energy Grant through the Lab of Laser Energetics.

  13. Design of state-feedback controllers including sensitivity reduction, with applications to precision pointing

    NASA Technical Reports Server (NTRS)

    Hadass, Z.

    1974-01-01

    The design procedure of feedback controllers was described and the considerations for the selection of the design parameters were given. The frequency domain properties of single-input single-output systems using state feedback controllers are analyzed, and desirable phase and gain margin properties are demonstrated. Special consideration is given to the design of controllers for tracking systems, especially those designed to track polynomial commands. As an example, a controller was designed for a tracking telescope with a polynomial tracking requirement and some special features such as actuator saturation and multiple measurements, one of which is sampled. The resulting system has a tracking performance comparing favorably with a much more complicated digital aided tracker. The parameter sensitivity reduction was treated by considering the variable parameters as random variables. A performance index is defined as a weighted sum of the state and control convariances that sum from both the random system disturbances and the parameter uncertainties, and is minimized numerically by adjusting a set of free parameters.

  14. Development and testing of passive tracking markers for different field strengths and tracking speeds.

    PubMed

    Peeters, J M; Seppenwoolde, J-H; Bartels, L W; Bakker, C J G

    2006-03-21

    Susceptibility markers for passive tracking need to be small in order to maintain the shape and mechanical properties of the endovascular device. Nevertheless, they also must have a high magnetic moment to induce an adequate artefact at a variety of scan techniques, tracking speeds and, preferably, field strengths. Paramagnetic markers do not satisfy all of these requirements. Ferro- and ferrimagnetic materials were therefore investigated with a vibrating sample magnetometer and compared with the strongly paramagnetic dysprosium oxide. Results indicated that the magnetic behaviour of stainless steel type AISI 410 corresponds the best with ideal marker properties. Markers with different magnetic moments were constructed and tested in in vitro and in vivo experiments. The appearance of the corresponding artefacts was field strength independent above magnetic saturation of 1.5 T. Generally, the contrast-to-noise ratio decreased at increasing tracking speed and decreasing magnetic moment. Device depiction was most consistent at a frame rate of 20 frames per second.

  15. Hand-Writing Motion Tracking with Vision-Inertial Sensor Fusion: Calibration and Error Correction

    PubMed Central

    Zhou, Shengli; Fei, Fei; Zhang, Guanglie; Liu, Yunhui; Li, Wen J.

    2014-01-01

    The purpose of this study was to improve the accuracy of real-time ego-motion tracking through inertial sensor and vision sensor fusion. Due to low sampling rates supported by web-based vision sensor and accumulation of errors in inertial sensors, ego-motion tracking with vision sensors is commonly afflicted by slow updating rates, while motion tracking with inertial sensor suffers from rapid deterioration in accuracy with time. This paper starts with a discussion of developed algorithms for calibrating two relative rotations of the system using only one reference image. Next, stochastic noises associated with the inertial sensor are identified using Allan Variance analysis, and modeled according to their characteristics. Finally, the proposed models are incorporated into an extended Kalman filter for inertial sensor and vision sensor fusion. Compared with results from conventional sensor fusion models, we have shown that ego-motion tracking can be greatly enhanced using the proposed error correction model. PMID:25157546

  16. LIFEdb: a database for functional genomics experiments integrating information from external sources, and serving as a sample tracking system

    PubMed Central

    Bannasch, Detlev; Mehrle, Alexander; Glatting, Karl-Heinz; Pepperkok, Rainer; Poustka, Annemarie; Wiemann, Stefan

    2004-01-01

    We have implemented LIFEdb (http://www.dkfz.de/LIFEdb) to link information regarding novel human full-length cDNAs generated and sequenced by the German cDNA Consortium with functional information on the encoded proteins produced in functional genomics and proteomics approaches. The database also serves as a sample-tracking system to manage the process from cDNA to experimental read-out and data interpretation. A web interface enables the scientific community to explore and visualize features of the annotated cDNAs and ORFs combined with experimental results, and thus helps to unravel new features of proteins with as yet unknown functions. PMID:14681468

  17. Evaluation of Bovine Feces-Associated Microbial Source Tracking Markers and Their Correlations with Fecal Indicators and Zoonotic Pathogens in a Brisbane, Australia, Reservoir

    PubMed Central

    Sritharan, T.; Palmer, A.; Sidhu, J. P. S.; Toze, S.

    2013-01-01

    This study was aimed at evaluating the host specificity and host sensitivity of two bovine feces-associated bacterial (BacCow-UCD and cowM3) and one viral [bovine adenovirus (B-AVs)] microbial source tracking (MST) markers by screening 130 fecal and wastewater samples from 10 target and nontarget host groups in southeast Queensland, Australia. In addition, 36 water samples were collected from a reservoir and tested for the occurrence of all three bovine feces-associated markers along with fecal indicator bacteria (FIB), Campylobacter spp., Escherichia coli O157, and Salmonella spp. The overall host specificity values of the BacCow-UCD, cowM3, and B-AVs markers to differentiate between bovine and other nontarget host groups were 0.66, 0.88, and 1.00, respectively (maximum value of 1.00). The overall host sensitivity values of these markers, however, in composite bovine wastewater and individual bovine fecal DNA samples were 0.93, 0.90, and 0.60, respectively (maximum value of 1.00). Among the 36 water samples tested, 56%, 22%, and 6% samples were PCR positive for the BacCow-UCD, cowM3, and B-AVs markers, respectively. Among the 36 samples tested, 50% and 14% samples were PCR positive for the Campylobacter 16S rRNA and E. coli O157 rfbE genes, respectively. Based on the results, we recommend that multiple bovine feces-associated markers be used if possible for bovine fecal pollution tracking. Nonetheless, the presence of the multiple bovine feces-associated markers along with the presence of potential zoonotic pathogens indicates bovine fecal pollution in the reservoir water samples. Further research is required to understand the decay rates of these markers in relation to FIB and zoonotic pathogens. PMID:23417003

  18. Real-time particle tracking for studying intracellular trafficking of pharmaceutical nanocarriers.

    PubMed

    Huang, Feiran; Watson, Erin; Dempsey, Christopher; Suh, Junghae

    2013-01-01

    Real-time particle tracking is a technique that combines fluorescence microscopy with object tracking and computing and can be used to extract quantitative transport parameters for small particles inside cells. Since the success of a nanocarrier can often be determined by how effectively it delivers cargo to the target organelle, understanding the complex intracellular transport of pharmaceutical nanocarriers is critical. Real-time particle tracking provides insight into the dynamics of the intracellular behavior of nanoparticles, which may lead to significant improvements in the design and development of novel delivery systems. Unfortunately, this technique is not often fully understood, limiting its implementation by researchers in the field of nanomedicine. In this chapter, one of the most complicated aspects of particle tracking, the mean square displacement (MSD) calculation, is explained in a simple manner designed for the novice particle tracker. Pseudo code for performing the MSD calculation in MATLAB is also provided. This chapter contains clear and comprehensive instructions for a series of basic procedures in the technique of particle tracking. Instructions for performing confocal microscopy of nanoparticle samples are provided, and two methods of determining particle trajectories that do not require commercial particle-tracking software are provided. Trajectory analysis and determination of the tracking resolution are also explained. By providing comprehensive instructions needed to perform particle-tracking experiments, this chapter will enable researchers to gain new insight into the intracellular dynamics of nanocarriers, potentially leading to the development of more effective and intelligent therapeutic delivery vectors.

  19. SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution.

    PubMed

    Miller, Christopher A; White, Brian S; Dees, Nathan D; Griffith, Malachi; Welch, John S; Griffith, Obi L; Vij, Ravi; Tomasson, Michael H; Graubert, Timothy A; Walter, Matthew J; Ellis, Matthew J; Schierding, William; DiPersio, John F; Ley, Timothy J; Mardis, Elaine R; Wilson, Richard K; Ding, Li

    2014-08-01

    The sensitivity of massively-parallel sequencing has confirmed that most cancers are oligoclonal, with subpopulations of neoplastic cells harboring distinct mutations. A fine resolution view of this clonal architecture provides insight into tumor heterogeneity, evolution, and treatment response, all of which may have clinical implications. Single tumor analysis already contributes to understanding these phenomena. However, cryptic subclones are frequently revealed by additional patient samples (e.g., collected at relapse or following treatment), indicating that accurately characterizing a tumor requires analyzing multiple samples from the same patient. To address this need, we present SciClone, a computational method that identifies the number and genetic composition of subclones by analyzing the variant allele frequencies of somatic mutations. We use it to detect subclones in acute myeloid leukemia and breast cancer samples that, though present at disease onset, are not evident from a single primary tumor sample. By doing so, we can track tumor evolution and identify the spatial origins of cells resisting therapy.

  20. A simple microviscometric approach based on Brownian motion tracking.

    PubMed

    Hnyluchová, Zuzana; Bjalončíková, Petra; Karas, Pavel; Mravec, Filip; Halasová, Tereza; Pekař, Miloslav; Kubala, Lukáš; Víteček, Jan

    2015-02-01

    Viscosity-an integral property of a liquid-is traditionally determined by mechanical instruments. The most pronounced disadvantage of such an approach is the requirement of a large sample volume, which poses a serious obstacle, particularly in biology and biophysics when working with limited samples. Scaling down the required volume by means of microviscometry based on tracking the Brownian motion of particles can provide a reasonable alternative. In this paper, we report a simple microviscometric approach which can be conducted with common laboratory equipment. The core of this approach consists in a freely available standalone script to process particle trajectory data based on a Newtonian model. In our study, this setup allowed the sample to be scaled down to 10 μl. The utility of the approach was demonstrated using model solutions of glycerine, hyaluronate, and mouse blood plasma. Therefore, this microviscometric approach based on a newly developed freely available script can be suggested for determination of the viscosity of small biological samples (e.g., body fluids).

  1. SciClone: Inferring Clonal Architecture and Tracking the Spatial and Temporal Patterns of Tumor Evolution

    PubMed Central

    Dees, Nathan D.; Griffith, Malachi; Welch, John S.; Griffith, Obi L.; Vij, Ravi; Tomasson, Michael H.; Graubert, Timothy A.; Walter, Matthew J.; Ellis, Matthew J.; Schierding, William; DiPersio, John F.; Ley, Timothy J.; Mardis, Elaine R.; Wilson, Richard K.; Ding, Li

    2014-01-01

    The sensitivity of massively-parallel sequencing has confirmed that most cancers are oligoclonal, with subpopulations of neoplastic cells harboring distinct mutations. A fine resolution view of this clonal architecture provides insight into tumor heterogeneity, evolution, and treatment response, all of which may have clinical implications. Single tumor analysis already contributes to understanding these phenomena. However, cryptic subclones are frequently revealed by additional patient samples (e.g., collected at relapse or following treatment), indicating that accurately characterizing a tumor requires analyzing multiple samples from the same patient. To address this need, we present SciClone, a computational method that identifies the number and genetic composition of subclones by analyzing the variant allele frequencies of somatic mutations. We use it to detect subclones in acute myeloid leukemia and breast cancer samples that, though present at disease onset, are not evident from a single primary tumor sample. By doing so, we can track tumor evolution and identify the spatial origins of cells resisting therapy. PMID:25102416

  2. Results From a Microbial Source-Tracking Study at Villa Angela Beach, Cleveland, Ohio, 2007

    USGS Publications Warehouse

    Bushon, Rebecca N.; Stelzer, Erin A.; Stoeckel, Donald M.

    2009-01-01

    During the 2007 recreational season at Villa Angela Beach in Cleveland, Ohio, scientists with the U.S. Geological Survey (USGS) and the Northeast Ohio Regional Sewer District (NEORSD) found high Escherichia coli (E. coli) concentrations that were not easily explained by results obtained to date in ongoing investigations of recreational water quality at the beach. To help understand the sources behind these elevated E. coli concentrations, the USGS and NEORSD sampled beach-area water for Bacteroides DNA markers. Bacteroides are a group of enteric bacteria that are being used in microbial source tracking, in hope that host-associated DNA markers could be used to indicate potential sources of E. coli in the Villa Angela environment. The USGS Ohio Water Microbiology Laboratory analyzed a total of 13 source samples (sewage and waterfowl feces) and 33 beach-area water and sand samples for three Bacteroides DNA markers. This report lists the results of those analyses, along with environmental conditions at Villa Angela on the dates that samples were collected.

  3. A Combined Adaptive Neural Network and Nonlinear Model Predictive Control for Multirate Networked Industrial Process Control.

    PubMed

    Wang, Tong; Gao, Huijun; Qiu, Jianbin

    2016-02-01

    This paper investigates the multirate networked industrial process control problem in double-layer architecture. First, the output tracking problem for sampled-data nonlinear plant at device layer with sampling period T(d) is investigated using adaptive neural network (NN) control, and it is shown that the outputs of subsystems at device layer can track the decomposed setpoints. Then, the outputs and inputs of the device layer subsystems are sampled with sampling period T(u) at operation layer to form the index prediction, which is used to predict the overall performance index at lower frequency. Radial basis function NN is utilized as the prediction function due to its approximation ability. Then, considering the dynamics of the overall closed-loop system, nonlinear model predictive control method is proposed to guarantee the system stability and compensate the network-induced delays and packet dropouts. Finally, a continuous stirred tank reactor system is given in the simulation part to demonstrate the effectiveness of the proposed method.

  4. Measurement of radon exhalation rate in various building materials and soil samples

    NASA Astrophysics Data System (ADS)

    Bala, Pankaj; Kumar, Vinod; Mehra, Rohit

    2017-03-01

    Indoor radon is considered as one of the potential dangerous radioactive elements. Common building materials and soil are the major source of this radon gas in the indoor environment. In the present study, the measurement of radon exhalation rate in the soil and building material samples of Una and Hamirpur districts of Himachal Pradesh has been done with solid state alpha track detectors, LR-115 type-II plastic track detectors. The radon exhalation rate for the soil samples varies from 39.1 to 91.2 mBq kg-1 h-1 with a mean value 59.7 mBq kg-1 h-1. Also the radium concentration of the studied area is found and it varies from 30.6 to 51.9 Bq kg-1 with a mean value 41.6 Bq kg-1. The exhalation rate for the building material samples varies from 40.72 (sandstone) to 81.40 mBq kg-1 h-1 (granite) with a mean value of 59.94 mBq kg-1 h-1.

  5. The probability of occurrence of high-loss windstorms

    NASA Astrophysics Data System (ADS)

    Massey, Neil

    2016-04-01

    Windstorms are one of the largest meteorological risks to life and property in Europe. High - loss windstorms, in terms of insured losses, are a result of not only the windspeed of the storm but also the position and track of the storm. The two highest loss storms on record, Daria (1990) and Lothar (1999) caused so much damage because they tracked across highly populated areas of Europe. Although the frequency and intensity of high - loss wind storms in the observed record is known, there are not enough samples, due to the short observed record, to truly know the distribution of the frequency and intensity of windstorms over Europe and, by extension, the distribution of losses which could occur if the atmosphere had been in a different state due to the internal variability of the atmosphere. Risk and loss modelling exercises carried out by and for the reinsurance industry have typically stochastically perturbed the historical record of high - loss windstorms to produce distributions of potential windstorms with greater sample sizes than the observations. This poster presents a new method of generating many samples of potential windstorms and analyses the frequency of occurrence, intensity and potential losses of these windstorms. The large ensemble regional climate modelling project weather@home is used to generate many regional climate model representations (800 per year) of the weather over Europe between 1985 and 2010. The regional climate model is driven at the boundaries by a free running global climate model and so each ensemble member represents a potential state of the atmosphere, rather than an observed state. The winter storm season of October to March is analysed by applying an objective cyclone identification and tracking algorithm to each ensemble member. From the resulting tracks, the windspeed within a 1000km radius of the cyclone centre is extracted and the maximum windspeed over a 72 hour period is derived as the storm windspeed footprint. This footprint is fed into a population based loss model to estimate the losses for the storm. Additionally the same analysis is performed on data from the same regional climate model, driven at the boundaries by ERA - Interim. This allows the tracks and losses of the storms in the observed record to be recovered using the same tracking method and loss model. A storm track matching function is applied to the storm tracks in the large ensemble and so analogues of the observed storms can be recovered. The frequency of occurrence of the high - loss storms in the large ensemble can then be determined, and used as a proxy for the frequency of occurrence in the observations.

  6. Ultrasonic Micro-Blades for the Rapid Extraction of Impact Tracks from Aerogel

    NASA Technical Reports Server (NTRS)

    Ishii, H. A.; Graham, G. A.; Kearsley, A. T.; Grant, P. G.; Snead, C. J.; Bradley, J. P.

    2005-01-01

    The science return of NASA's Stardust Mission with its valuable cargo of cometary debris hinges on the ability to efficiently extract particles from silica aerogel collectors. The current method for extracting cosmic dust impact tracks is a mature procedure involving sequential perforation of the aerogel with glass needles on computer controlled micromanipulators. This method is highly successful at removing well-defined aerogel fragments of reasonable optical clarity while causing minimal damage to the surrounding aerogel collector tile. Such a system will be adopted by the JSC Astromaterials Curation Facility in anticipation of Stardust s arrival in early 2006. In addition to Stardust, aerogel is a possible collector for future sample return missions and is used for capture of hypervelocity ejecta in high power laser experiments of interest to LLNL. Researchers will be eager to obtain Stardust samples for study as quickly as possible, and rapid extraction tools requiring little construction, training, or investment would be an attractive asset. To this end, we have experimented with micro-blades for the Stardust impact track extraction process. Our ultimate goal is a rapid extraction system in a clean electron beam environment, such as an SEM or dual-beam FIB, for in situ sample preparation, mounting and analysis.

  7. Ultra heavy cosmic ray experiment (A0178)

    NASA Technical Reports Server (NTRS)

    Thompson, A.; Osullivan, D.; Bosch, J.; Keegan, R.; Wenzel, K. P.; Jansen, F.; Domingo, C.

    1992-01-01

    The Ultra Heavy Cosmic Ray Experiment (UHCRE) is based on a modular array of 192 side viewing solid state nuclear track detector stacks. These stacks were mounted in sets of four in 48 pressure vessels using 16 peripheral LDEF trays. The geometry factor for high energy cosmic ray nuclei, allowing for Earth shadowing, was 30 sq m sr, giving a total exposure factor of 170 sq m sr y at an orbital inclination of 28.4 degs. Scanning results indicate that about 3000 cosmic ray nuclei in the charge region with Z greater than 65 were collected. This sample is more than ten times the current world data in the field (taken to be the data set from the HEAO-3 mission plus that from the Ariel-6 mission) and is sufficient to provide the world's first statistically significant sample of actinide cosmic rays. Results are presented including a sample of ultra heavy cosmic ray nuclei, analysis of pre-flight and post-flight calibration events and details of track response in the context of detector temperature history. The integrated effect of all temperature and age related latent track variations cause a maximum charge shift of + or - 0.8e for uranium and + or - 0.6e for the platinum-lead group. Astrophysical implications of the UHCRE charge spectrum are discussed.

  8. Localized strain measurements of the intervertebral disc annulus during biaxial tensile testing.

    PubMed

    Karakolis, Thomas; Callaghan, Jack P

    2015-01-01

    Both inter-lamellar and intra-lamellar failures of the annulus have been described as potential modes of disc herniation. Attempts to characterize initial lamellar failure of the annulus have involved tensile testing of small tissue samples. The purpose of this study was to evaluate a method of measuring local surface strains through image analysis of a tensile test conducted on an isolated sample of annular tissue in order to enhance future studies of intervertebral disc failure. An annulus tissue sample was biaxial strained to 10%. High-resolution images captured the tissue surface throughout testing. Three test conditions were evaluated: submerged, non-submerged and marker. Surface strains were calculated for the two non-marker conditions based on motion of virtual tracking points. Tracking algorithm parameters (grid resolution and template size) were varied to determine the effect on estimated strains. Accuracy of point tracking was assessed through a comparison of the non-marker conditions to a condition involving markers placed on tissue surface. Grid resolution had a larger effect on local strain than template size. Average local strain error ranged from 3% to 9.25% and 0.1% to 2.0%, for the non-submerged and submerged conditions, respectively. Local strain estimation has a relatively high potential for error. Submerging the tissue provided superior strain estimates.

  9. Sub-0.1 μm optical track width measurement

    NASA Astrophysics Data System (ADS)

    Smith, Richard J.; See, Chung W.; Somekh, Mike G.; Yacoot, Andrew

    2005-08-01

    In this paper, we will describe a technique that combines a common path scanning optical interferometer with artificial neural networks (ANN), to perform track width measurements that are significantly beyond the capability of conventional optical systems. Artificial neural networks have been used for many different applications. In the present case, ANNs are trained using profiles of known samples obtained from the scanning interferometer. They are then applied to tracks that have not previously been exposed to the networks. This paper will discuss the impacts of various ANN configurations, and the processing of the input signal on the training of the network. The profiles of the samples, which are used as the inputs to the ANNs, are obtained with a common path scanning optical interferometer. It provides extremely repeatable measurements, with very high signal to noise ratio, both are essential for the working of the ANNs. The characteristics of the system will be described. A number of samples with line widths ranging from 60nm-3μm have been measured to test the system. The system can measure line widths down to 60nm with a standard deviation of 3nm using optical wavelength of 633nm and a system numerical aperture of 0.3. These results will be presented in detail along with a discussion of the potential of this technique.

  10. Characterizing the localized surface plasmon resonance behaviors of Au nanorings and tracking their diffusion in bio-tissue with optical coherence tomography

    PubMed Central

    Lee, Cheng-Kuang; Tseng, Hung-Yu; Lee, Chia-Yun; Wu, Shou-Yen; Chi, Ting-Ta; Yang, Kai-Min; Chou, Han-Yi Elizabeth; Tsai, Meng-Tsan; Wang, Jyh-Yang; Kiang, Yean-Woei; Chiang, Chun-Pin; Yang, C. C.

    2010-01-01

    The characterization results of the localized surface plasmon resonance (LSPR) of Au nanorings (NRs) with optical coherence tomography (OCT) are first demonstrated. Then, the diffusion behaviors of Au NRs in mouse liver samples tracked with OCT are shown. For such research, aqueous solutions of Au NRs with two different localized surface plasmon resonance (LSPR) wavelengths are prepared and characterized. Their LSPR-induced extinction cross sections at 1310 nm are estimated with OCT scanning of solution droplets on coverslip to show reasonably consistent results with the data at individual LSPR wavelengths and at 1310 nm obtained from transmission measurements of Au NR solutions and numerical simulations. The resonant and non-resonant Au NRs are delivered into mouse liver samples for tracking Au NR diffusion in the samples through continuous OCT scanning for one hour. With resonant Au NRs, the average A-mode scan profiles of OCT scanning at different delay times clearly demonstrate the extension of strong backscattering depth with time. The calculation of speckle variance among successive OCT scanning images, which is related to the local transport speed of Au NRs, leads to the illustrations of downward propagation and spreading of major Au NR motion spot with time. PMID:21258530

  11. Quantitative Identification of the Annealing Degree of Apatite Fission Tracks Using Terahertz Time Domain Spectroscopy (THz-TDS).

    PubMed

    Wu, Hang; Wu, Shixiang; Qiu, Nansheng; Chang, Jian; Bao, Rima; Zhang, Xin; Liu, Nian; Liu, Shuai

    2018-01-01

    Apatite fission-track (AFT) analysis, a widely used low-temperature thermochronology method, can provide details of the hydrocarbon generation history of source rocks for use in hydrocarbon exploration. The AFT method is based on the annealing behavior of fission tracks generated by 238 U fission in apatite particles during geological history. Due to the cumbersome experimental steps and high expense, it is imperative to find an efficient and inexpensive technique to determinate the annealing degree of AFT. In this study, on the basis of the ellipsoid configuration of tracks, the track volume fraction model (TVFM) is established and the fission-track volume index is proposed. Furthermore, terahertz time domain spectroscopy (THz-TDS) is used for the first time to identify the variation of the AFT annealing degree of Durango apatite particles heated at 20, 275, 300, 325, 450, and 500 ℃ for 10 h. The THz absorbance of the sample increases with the degree of annealing. In addition, the THz absorption index is exponentially related to annealing temperature and can be used to characterize the fission-track volume index. Terahertz time domain spectroscopy can be an ancillary technique for AFT thermochronological research. More work is urgently needed to extrapolate experimental data to geological conditions.

  12. 75 FR 74003 - Endangered Species; Permit No. 15677

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... measured, weighed, sampled for genetic tissue analysis, and PIT tagged. Additionally, selected adults and..., shortnose sturgeon sex would be determined from a sample of fish annually by either laparoscopy or tubular... disrupters in the environment. Manual tracking and passive detections of telemetered fish at fixed receiver...

  13. Measurement of 238U and 232Th in Petrol, Gas-oil and Lubricant Samples by Using Nuclear Track Detectors and Resulting Radiation Doses to the Skin of Mechanic Workers.

    PubMed

    Misdaq, M A; Chaouqi, A; Ouguidi, J; Touti, R; Mortassim, A

    2015-10-01

    Workers in repair shops of vehicles (cars, buses, truck, etc.) clean carburetors, check fuel distribution, and perform oil changes and greasing. To explore the exposure pathway of (238)U and (232)Th and its decay products to the skin of mechanic workers, these radionuclides were measured inside petrol, gas-oil, and lubricant material samples by means of CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs), and corresponding annual committed equivalent doses to skin were determined. The maximum total equivalent effective dose to skin due to the (238)U and (232)Th series from the application of different petrol, gas-oil, and lubricant samples by mechanic workers was found equal to 1.2 mSv y(-1) cm(-2).

  14. Radiation effects in nematodes: Results from IML-1 experiments

    NASA Technical Reports Server (NTRS)

    Nelson, G. A.; Schubert, W. W.; Kazarians, G. A.; Richards, G. F.; Benton, E. V.; Benton, E. R.; Henke, R.

    1994-01-01

    The nematode Caenorhabditis elegans was exposed to natural space radiation using the ESA biorack facility aboard Spacelab on International Microgravity Laboratory 1, STS-42. For the major experimental objective dormant animals were suspended in buffer or on agar or immobilized next to CR-39 plastic nuclear track detectors to correlate fluence of HZE particles with genetic events. This configuration was used to isolate mutations in a set of 350 essential genes as well as in the unc-22 structural gene. From flight samples 13 mutants in the unc-22 gene were isolated along with 53 lethal mutations from autosomal regions balanced by a translocation eT1(III;V). Preliminary analysis suggests that mutants from worms correlated with specific cosmic ray tracks may have a higher proportion of rearrangements than those isolated from tube cultures on a randomly sampled basis. Flight sample mutation rate was approximately 8-fold higher than ground controls which exhibited laboratory spontaneous frequencies.

  15. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.

    PubMed

    Peikon, Ian D; Fitzsimmons, Nathan A; Lebedev, Mikhail A; Nicolelis, Miguel A L

    2009-06-15

    Collection and analysis of limb kinematic data are essential components of the study of biological motion, including research into biomechanics, kinesiology, neurophysiology and brain-machine interfaces (BMIs). In particular, BMI research requires advanced, real-time systems capable of sampling limb kinematics with minimal contact to the subject's body. To answer this demand, we have developed an automated video tracking system for real-time tracking of multiple body parts in freely behaving primates. The system employs high-contrast markers painted on the animal's joints to continuously track the three-dimensional positions of their limbs during activity. Two-dimensional coordinates captured by each video camera are combined and converted to three-dimensional coordinates using a quadratic fitting algorithm. Real-time operation of the system is accomplished using direct memory access (DMA). The system tracks the markers at a rate of 52 frames per second (fps) in real-time and up to 100fps if video recordings are captured to be later analyzed off-line. The system has been tested in several BMI primate experiments, in which limb position was sampled simultaneously with chronic recordings of the extracellular activity of hundreds of cortical cells. During these recordings, multiple computational models were employed to extract a series of kinematic parameters from neuronal ensemble activity in real-time. The system operated reliably under these experimental conditions and was able to compensate for marker occlusions that occurred during natural movements. We propose that this system could also be extended to applications that include other classes of biological motion.

  16. Detection of multiple airborne targets from multisensor data

    NASA Astrophysics Data System (ADS)

    Foltz, Mark A.; Srivastava, Anuj; Miller, Michael I.; Grenander, Ulf

    1995-08-01

    Previously we presented a jump-diffusion based random sampling algorithm for generating conditional mean estimates of scene representations for the tracking and recongition of maneuvering airborne targets. These representations include target positions and orientations along their trajectories and the target type associated with each trajectory. Taking a Bayesian approach, a posterior measure is defined on the parameter space by combining sensor models with a sophisticated prior based on nonlinear airplane dynamics. The jump-diffusion algorithm constructs a Markov process which visits the elements of the parameter space with frequencies proportional to the posterior probability. It consititutes both the infinitesimal, local search via a sample path continuous diffusion transform and the larger, global steps through discrete jump moves. The jump moves involve the addition and deletion of elements from the scene configuration or changes in the target type assoviated with each target trajectory. One such move results in target detection by the addition of a track seed to the inference set. This provides initial track data for the tracking/recognition algorithm to estimate linear graph structures representing tracks using the other jump moves and the diffusion process, as described in our earlier work. Target detection ideally involves a continuous research over a continuum of the observation space. In this work we conclude that for practical implemenations the search space must be discretized with lattice granularity comparable to sensor resolution, and discuss how fast Fourier transforms are utilized for efficient calcuation of sufficient statistics given our array models. Some results are also presented from our implementation on a networked system including a massively parallel machine architecture and a silicon graphics onyx workstation.

  17. Artificial phototropism based on a photo-thermo-responsive hydrogel

    NASA Astrophysics Data System (ADS)

    Gopalakrishna, Hamsini

    Solar energy is leading in renewable energy sources and the aspects surrounding the efforts to harvest light are gaining importance. One such aspect is increasing the light absorption, where heliotropism comes into play. Heliotropism, the ability to track the sun across the sky, can be integrated with solar cells for more efficient photon collection and other optoelectronic systems. Inspired by plants, which optimize incident sunlight in nature, several researchers have made artificial heliotropic and phototropic systems. This project aims to design, synthesize and characterize a material system and evaluate its application in a phototropic system. A gold nanoparticle (Au NP) incorporated poly(N-isopropylacrylamide) (PNIPAAm) hydrogel was synthesized as a photo-thermo-responsive material in our phototropic system. The Au NPs generate heat from the incident via plasmonic resonance to induce a volume phase change of the thermo-responsive hydrogel PNIPAAm. PNIPAAm shrinks or swells at temperature above or below 32°C. Upon irradiation, the Au NP-PNIPAAm micropillar actuates, specifically bending toward the incident light and precisely following the varying incident angle. Swelling ratio tests, bending angle tests with a static incident light and bending tests with varying angles were carried out on hydrogel samples with varying Au NP concentrations. Swelling ratios ranging from 1.45 to 2.9 were recorded for pure hydrogel samples and samples with very low Au NP concentrations. Swelling ratios of 2.41 and 3.37 were calculated for samples with low and high concentrations of Au NPs, respectively. A bending of up to 88° was observed in Au NP-hydrogel pillars with a low Au NP concentration with a 90° incident angle. The light tracking performance was assessed by the slope of the pillar Bending angle (response angle) vs. Incident light angle plot. A slope of 1 indicates ideal tracking with top of the pillar being normal to the incident light, maximizing the photon absorption. Slopes of 0.82 and 0.56 were observed for the low and high Au NP concentration samples. The rapid and precise incident light tracking of our system has shown the promise in phototropic applications.

  18. Determination of plutonium-239, thorium-232, and natural uranium isotopic concentrations in biological samples using photofission track analysis

    NASA Astrophysics Data System (ADS)

    Parry, James Roswell

    Fission track analysis (FTA) has many uses in the scientific community including but not limited to geological dating, neutron flux mapping, and dose reconstruction. The common method of fission for FTA is through neutrons from a nuclear reactor. This dissertation investigates the use of bremsstrahlung radiation produced from an electron linear accelerator to induce fission in FTA samples. This provides a means of simultaneously measuring the amount of Pu-239, U-nat, and Th-232 in a single sample. The benefit of measuring the three isotopes simultaneously is the possible elimination of costly and time consuming chemical processing for dose reconstruction samples. Samples containing the three isotopes were irradiated in two different bremsstrahlung spectra and a neutron spectrum to determine the amount of Pu-239, U-nat, and Th-232 in the samples. The reaction rate from the calibration samples and the counted fission tracks on the samples were used in determining the concentration of each isotope in the samples. The results were accurate to within a factor of two or three, showing that the method can work to predict the concentrations of multiple isotopes in a sample. The limitations of current accelerators and detectors limits the application of this specific procedure to higher concentrations of isotopes. The method detection limits for Pu-239, U-nat, and Th-232 are 20 pCi, 1 fCi, and 0.4 flCI respectively. Analysis of extremely low concentrations of isotopes would require the use of different detectors such as quartz due to the embrittlement encountered in the Lexan at high exposures. Cracking of the Texan detectors started to appear at a fluence of about 2 x 1018 electrons from the accelerator. This may be partly due to the beam stop not being an adequate thickness. The procedure is likely limited to specialty applications for the near term. However, with the world concerns of exposure to depleted uranium, this procedure may find applications in this area since it would be simple to adapt the procedure to depleted uranium detection.

  19. Convolutional Deep Belief Networks for Single-Cell/Object Tracking in Computational Biology and Computer Vision.

    PubMed

    Zhong, Bineng; Pan, Shengnan; Zhang, Hongbo; Wang, Tian; Du, Jixiang; Chen, Duansheng; Cao, Liujuan

    2016-01-01

    In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a convolutional deep belief network (CDBN). Secondly, we design a simple yet effective method to transfer features learned from CDBNs on the source tasks for generic purpose to the object tracking tasks using only limited amount of training data. Finally, to alleviate the tracker drifting problem caused by model updating, we jointly consider three different types of positive samples. Extensive experiments validate the robustness and effectiveness of the proposed method.

  20. Convolutional Deep Belief Networks for Single-Cell/Object Tracking in Computational Biology and Computer Vision

    PubMed Central

    Pan, Shengnan; Zhang, Hongbo; Wang, Tian; Du, Jixiang; Chen, Duansheng; Cao, Liujuan

    2016-01-01

    In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a convolutional deep belief network (CDBN). Secondly, we design a simple yet effective method to transfer features learned from CDBNs on the source tasks for generic purpose to the object tracking tasks using only limited amount of training data. Finally, to alleviate the tracker drifting problem caused by model updating, we jointly consider three different types of positive samples. Extensive experiments validate the robustness and effectiveness of the proposed method. PMID:27847827

  1. Use of artificial neural networks on optical track width measurements.

    PubMed

    Smith, Richard J; See, Chung W; Somekh, Mike G; Yacoot, Andrew

    2007-08-01

    We have demonstrated recently that, by using an ultrastable optical interferometer together with artificial neural networks (ANNs), track widths down to 60 nm can be measured with a 0.3 NA objective lens. We investigate the effective conditions for training ANNs. Experimental results will be used to show the characteristics of the training samples and the data format of the ANN inputs required to produce suitably trained ANNs. Results obtained with networks measuring double tracks, and classifying different structures, will be presented to illustrate the capability of the technique. We include a discussion on expansion of the application areas of the system, allowing it to be used as a general purpose instrument.

  2. Use of artificial neural networks on optical track width measurements

    NASA Astrophysics Data System (ADS)

    Smith, Richard J.; See, Chung W.; Somekh, Mike G.; Yacoot, Andrew

    2007-08-01

    We have demonstrated recently that, by using an ultrastable optical interferometer together with artificial neural networks (ANNs), track widths down to 60 nm can be measured with a 0.3 NA objective lens. We investigate the effective conditions for training ANNs. Experimental results will be used to show the characteristics of the training samples and the data format of the ANN inputs required to produce suitably trained ANNs. Results obtained with networks measuring double tracks, and classifying different structures, will be presented to illustrate the capability of the technique. We include a discussion on expansion of the application areas of the system, allowing it to be used as a general purpose instrument.

  3. Wavelet-based tracking of bacteria in unreconstructed off-axis holograms.

    PubMed

    Marin, Zach; Wallace, J Kent; Nadeau, Jay; Khalil, Andre

    2018-03-01

    We propose an automated wavelet-based method of tracking particles in unreconstructed off-axis holograms to provide rough estimates of the presence of motion and particle trajectories in digital holographic microscopy (DHM) time series. The wavelet transform modulus maxima segmentation method is adapted and tailored to extract Airy-like diffraction disks, which represent bacteria, from DHM time series. In this exploratory analysis, the method shows potential for estimating bacterial tracks in low-particle-density time series, based on a preliminary analysis of both living and dead Serratia marcescens, and for rapidly providing a single-bit answer to whether a sample chamber contains living or dead microbes or is empty. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. United States Transuranium and Uranium Registries. Annual Report, October 1, 1993--September 30, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kathren, R.L.; Harwick, L.A.

    1995-08-01

    This report summarizes the salient activities and progress of the United States Transuranium. and Uranium Registries for the period October 1, 1993 through September 30, 1994, along with details of specific programs areas including the National Human Radiobiology Tissue Repository (NHRTR) and tissue radiochemistry analysis project. Responsibility for tissue radioanalysis was transferred from Los Alamos National Laboratory to Washington State University in February 1994. The University of Washington was selected as the Quality Assurance/Quality Control laboratory and a three way intercomparison with them and LANL has been initiated. The results of the initial alpha spectrometry intercomparison showed excellent agreement amongmore » the laboratories and are documented in full in the Appendices to the report. The NHRTR serves as the initial point of receipt for samples received from participants in the USTUR program. Samples are weighed, divided, and reweighed, and a portion retained by the NHRTR as backup or for use in other studies. Tissue specimens retained in the NHRTR are maintained frozen at -70 C and include not only those from USTUR registrants but also those from the radium dial painter and thorium worker studies formerly conducted by Argonne National Laboratory. In addition, there are fixed tissues and a large collection of histopathology slides from all the studies, plus about 20,000 individual solutions derived from donated tissues. These tissues and tissue related materials are made available to other investigators for legitimate research purposes. Ratios of the concentration of actinides in various tissues have been used to evaluate the biokinetics, and retention half times of plutonium and americium. Retention half times for plutonium in various soft tissues range from 10-20 y except for the testes for which a retention half time of 58 y was observed. For americium, the retention half time in various soft tissues studied was 2.2-3.5 y.« less

  5. Development of a Methodology for Assessing Aircrew Workloads.

    DTIC Science & Technology

    1981-11-01

    Workload Feasibility Study. .. ...... 52 Subjects. .. .............. ........ 53 Equipment .. ............... ....... 53 Date Analysis ... analysis ; simulation; standard time systems; switching synthetic time systems; task activities; task interference; time study; tracking; workload; work sampl...standard data systems, information content analysis , work sampling and job evaluation. Con- ventional methods were found to be deficient in accounting

  6. Dynamic Eye Tracking Based Metrics for Infant Gaze Patterns in the Face-Distractor Competition Paradigm

    PubMed Central

    Ahtola, Eero; Stjerna, Susanna; Yrttiaho, Santeri; Nelson, Charles A.; Leppänen, Jukka M.; Vanhatalo, Sampsa

    2014-01-01

    Objective To develop new standardized eye tracking based measures and metrics for infants’ gaze dynamics in the face-distractor competition paradigm. Method Eye tracking data were collected from two samples of healthy 7-month-old (total n = 45), as well as one sample of 5-month-old infants (n = 22) in a paradigm with a picture of a face or a non-face pattern as a central stimulus, and a geometric shape as a lateral stimulus. The data were analyzed by using conventional measures of infants’ initial disengagement from the central to the lateral stimulus (i.e., saccadic reaction time and probability) and, additionally, novel measures reflecting infants gaze dynamics after the initial disengagement (i.e., cumulative allocation of attention to the central vs. peripheral stimulus). Results The results showed that the initial saccade away from the centrally presented stimulus is followed by a rapid re-engagement of attention with the central stimulus, leading to cumulative preference for the central stimulus over the lateral stimulus over time. This pattern tended to be stronger for salient facial expressions as compared to non-face patterns, was replicable across two independent samples of 7-month-old infants, and differentiated between 7 and 5 month-old infants. Conclusion The results suggest that eye tracking based assessments of infants’ cumulative preference for faces over time can be readily parameterized and standardized, and may provide valuable techniques for future studies examining normative developmental changes in preference for social signals. Significance Standardized measures of early developing face preferences may have potential to become surrogate biomarkers of neurocognitive and social development. PMID:24845102

  7. Semi-quantitative evaluation of fecal contamination potential by human and ruminant sources using multiple lines of evidence

    USGS Publications Warehouse

    Stoeckel, D.M.; Stelzer, E.A.; Stogner, R.W.; Mau, D.P.

    2011-01-01

    Protocols for microbial source tracking of fecal contamination generally are able to identify when a source of contamination is present, but thus far have been unable to evaluate what portion of fecal-indicator bacteria (FIB) came from various sources. A mathematical approach to estimate relative amounts of FIB, such as Escherichia coli, from various sources based on the concentration and distribution of microbial source tracking markers in feces was developed. The approach was tested using dilute fecal suspensions, then applied as part of an analytical suite to a contaminated headwater stream in the Rocky Mountains (Upper Fountain Creek, Colorado). In one single-source fecal suspension, a source that was not present could not be excluded because of incomplete marker specificity; however, human and ruminant sources were detected whenever they were present. In the mixed-feces suspension (pet and human), the minority contributor (human) was detected at a concentration low enough to preclude human contamination as the dominant source of E. coli to the sample. Without the semi-quantitative approach described, simple detects of human-associated marker in stream samples would have provided inaccurate evidence that human contamination was a major source of E. coli to the stream. In samples from Upper Fountain Creek the pattern of E. coli, general and host-associated microbial source tracking markers, nutrients, and wastewater-associated chemical detections-augmented with local observations and land-use patterns-indicated that, contrary to expectations, birds rather than humans or ruminants were the predominant source of fecal contamination to Upper Fountain Creek. This new approach to E. coli allocation, validated by a controlled study and tested by application in a relatively simple setting, represents a widely applicable step forward in the field of microbial source tracking of fecal contamination. ?? 2011 Elsevier Ltd.

  8. Multiscale spectral nanoscopy

    DOEpatents

    Yang, Haw; Welsher, Kevin

    2016-11-15

    A system and method for non-invasively tracking a particle in a sample is disclosed. The system includes a 2-photon or confocal laser scanning microscope (LSM) and a particle-holding device coupled to a stage with X-Y and Z position control. The system also includes a tracking module having a tracking excitation laser, X-Y and Z radiation-gathering components configured to detect deviations of the particle in an X-Y and Z directions. The system also includes a processor coupled to the X-Y and Z radiation gathering components, generate control signals configured to drive the stage X-Y and Z position controls to track the movement of the particle. The system may also include a synchronization module configured to generate LSM pixels stamped with stage position and a processing module configured to generate a 3D image showing the 3D trajectory of a particle using the LSM pixels stamped with stage position.

  9. Accurate mask-based spatially regularized correlation filter for visual tracking

    NASA Astrophysics Data System (ADS)

    Gu, Xiaodong; Xu, Xinping

    2017-01-01

    Recently, discriminative correlation filter (DCF)-based trackers have achieved extremely successful results in many competitions and benchmarks. These methods utilize a periodic assumption of the training samples to efficiently learn a classifier. However, this assumption will produce unwanted boundary effects, which severely degrade the tracking performance. Correlation filters with limited boundaries and spatially regularized DCFs were proposed to reduce boundary effects. However, their methods used the fixed mask or predesigned weights function, respectively, which was unsuitable for large appearance variation. We propose an accurate mask-based spatially regularized correlation filter for visual tracking. Our augmented objective can reduce the boundary effect even in large appearance variation. In our algorithm, the masking matrix is converted into the regularized function that acts on the correlation filter in frequency domain, which makes the algorithm fast convergence. Our online tracking algorithm performs favorably against state-of-the-art trackers on OTB-2015 Benchmark in terms of efficiency, accuracy, and robustness.

  10. Fuzzy logic particle tracking velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1993-01-01

    Fuzzy logic has proven to be a simple and robust method for process control. Instead of requiring a complex model of the system, a user defined rule base is used to control the process. In this paper the principles of fuzzy logic control are applied to Particle Tracking Velocimetry (PTV). Two frames of digitally recorded, single exposure particle imagery are used as input. The fuzzy processor uses the local particle displacement information to determine the correct particle tracks. Fuzzy PTV is an improvement over traditional PTV techniques which typically require a sequence (greater than 2) of image frames for accurately tracking particles. The fuzzy processor executes in software on a PC without the use of specialized array or fuzzy logic processors. A pair of sample input images with roughly 300 particle images each, results in more than 200 velocity vectors in under 8 seconds of processing time.

  11. Optimal Appearance Model for Visual Tracking

    PubMed Central

    Wang, Yuru; Jiang, Longkui; Liu, Qiaoyuan; Yin, Minghao

    2016-01-01

    Many studies argue that integrating multiple cues in an adaptive way increases tracking performance. However, what is the definition of adaptiveness and how to realize it remains an open issue. On the premise that the model with optimal discriminative ability is also optimal for tracking the target, this work realizes adaptiveness and robustness through the optimization of multi-cue integration models. Specifically, based on prior knowledge and current observation, a set of discrete samples are generated to approximate the foreground and background distribution. With the goal of optimizing the classification margin, an objective function is defined, and the appearance model is optimized by introducing optimization algorithms. The proposed optimized appearance model framework is embedded into a particle filter for a field test, and it is demonstrated to be robust against various kinds of complex tracking conditions. This model is general and can be easily extended to other parameterized multi-cue models. PMID:26789639

  12. Investigation on microfluidic particles manipulation by holographic 3D tracking strategies

    NASA Astrophysics Data System (ADS)

    Cacace, Teresa; Paturzo, Melania; Memmolo, Pasquale; Vassalli, Massimo; Fraldi, Massimiliano; Mensitieri, Giuseppe; Ferraro, Pietro

    2017-06-01

    We demonstrate a 3D holographic tracking method to investigate particles motion in a microfluidic channel while unperturbed while inducing their migration through microfluidic manipulation. Digital holography (DH) in microscopy is a full-field, label-free imaging technique able to provide quantitative phase-contrast. The employed 3D tracking method is articulated in steps. First, the displacements along the optical axis are assessed by numerical refocusing criteria. In particular, an automatic refocusing method to recover the particles axial position is implemented employing a contrast-based refocusing criterion. Then, the transverse position of the in-focus object is evaluated through quantitative phase map segmentation methods and centroid-based 2D tracking strategy. The introduction of DH is thus suggested as a powerful approach for control of particles and biological samples manipulation, as well as a possible aid to precise design and implementation of advanced lab-on-chip microfluidic devices.

  13. A new pterosaur tracksite from the Jurassic Summerville formation, near Ferron, Utah

    USGS Publications Warehouse

    Mickelson, Debra L.; Lockley, Martin G.; Bishop, John; Kirkland, James I.

    2003-01-01

    Pterosaur tracks (cf. Pteraichnus) from the Summerville Formation of the Ferron area of central Utah add to the growing record of Pteraichnus tracksites in the Late Jurassic Summerville Formation and time-equivalent, or near time-equivalent, deposits. The site is typical in revealing high pterosaur track densities, but low ichnodiversity suggesting congregations or “flocks” of many individuals. Footprint length varies from 2.0 to 7.0 cms. The ratio of well-preserved pes:manus tracks is about 1:3.4. This reflects a bias in favor of preservation of manus tracks due to the greater weight-bearing role of the front limbs, as noted in other pterosaur track assemblages. The sample also reveals a number of well-preserved trackways including one suggestive of pes-only progression that might be associated with take off or landing, and another that shows pronounced lengthening of stride indicating acceleration.One well-preserved medium-sized theropod trackway (Therangospodus) and other larger theropod track casts (cf. Megalosauripus) are associated with what otherwise appears to be a nearly monospecific pterosaur track assemblage. However, traces of a fifth pes digit suggest some tracks are of rhamphorynchoid rather than pterodactyloid origin, as usually inferred for Pteraichnus. The tracks occur at several horizons in a thin stratigraphic interval of ripple marked sandstones and siltstones. Overall the assemblage is similar to others found in the same time interval in the Western Interior from central and eastern Utah through central and southern Wyoming, Colorado, northeastern Arizona, and western Oklahoma. This vast “Pteraichnusichnofacies,” with associated saurischian tracks, remains the only ichnological evidence of pre-Cretaceous pterosaurs in North America and sheds important light on the vertebrate ecology of the Summerville Formation and contiguous deposits.

  14. Beam tracking approach for single–shot retrieval of absorption, refraction, and dark-field signals with laboratory  x-ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vittoria, Fabio A., E-mail: fabio.vittoria.12@ucl.ac.uk; Diemoz, Paul C.; Olivo, Alessandro

    We present the translation of the beam tracking approach for x-ray phase-contrast and dark-field imaging, recently demonstrated using synchrotron radiation, to a laboratory setup. A single absorbing mask is used before the sample, and a local Gaussian interpolation of the beam at the detector is used to extract absorption, refraction, and dark–field signals from a single exposure of the sample. Multiple exposures can be acquired when high resolution is needed, as shown here. A theoretical analysis of the effect of polychromaticity on the retrieved signals, and of the artifacts this might cause when existing retrieval methods are used, is alsomore » discussed.« less

  15. Uncertainty Footprint: Visualization of Nonuniform Behavior of Iterative Algorithms Applied to 4D Cell Tracking

    PubMed Central

    Wan, Y.; Hansen, C.

    2018-01-01

    Research on microscopy data from developing biological samples usually requires tracking individual cells over time. When cells are three-dimensionally and densely packed in a time-dependent scan of volumes, tracking results can become unreliable and uncertain. Not only are cell segmentation results often inaccurate to start with, but it also lacks a simple method to evaluate the tracking outcome. Previous cell tracking methods have been validated against benchmark data from real scans or artificial data, whose ground truth results are established by manual work or simulation. However, the wide variety of real-world data makes an exhaustive validation impossible. Established cell tracking tools often fail on new data, whose issues are also difficult to diagnose with only manual examinations. Therefore, data-independent tracking evaluation methods are desired for an explosion of microscopy data with increasing scale and resolution. In this paper, we propose the uncertainty footprint, an uncertainty quantification and visualization technique that examines nonuniformity at local convergence for an iterative evaluation process on a spatial domain supported by partially overlapping bases. We demonstrate that the patterns revealed by the uncertainty footprint indicate data processing quality in two algorithms from a typical cell tracking workflow – cell identification and association. A detailed analysis of the patterns further allows us to diagnose issues and design methods for improvements. A 4D cell tracking workflow equipped with the uncertainty footprint is capable of self diagnosis and correction for a higher accuracy than previous methods whose evaluation is limited by manual examinations. PMID:29456279

  16. Effects of track and threat information on judgments of hurricane strike probability.

    PubMed

    Wu, Hao-Che; Lindell, Michael K; Prater, Carla S; Samuelson, Charles D

    2014-06-01

    Although evacuation is one of the best strategies for protecting citizens from hurricane threat, the ways that local elected officials use hurricane data in deciding whether to issue hurricane evacuation orders is not well understood. To begin to address this problem, we examined the effects of hurricane track and intensity information in a laboratory setting where participants judged the probability that hypothetical hurricanes with a constant bearing (i.e., straight line forecast track) would make landfall in each of eight 45 degree sectors around the Gulf of Mexico. The results from 162 participants in a student sample showed that the judged strike probability distributions over the eight sectors within each scenario were, unsurprisingly, unimodal and centered on the sector toward which the forecast track pointed. More significantly, although strike probability judgments for the sector in the direction of the forecast track were generally higher than the corresponding judgments for the other sectors, the latter were not zero. Most significantly, there were no appreciable differences in the patterns of strike probability judgments for hurricane tracks represented by a forecast track only, an uncertainty cone only, or forecast track with an uncertainty cone-a result consistent with a recent survey of coastal residents threatened by Hurricane Charley. The study results suggest that people are able to correctly process basic information about hurricane tracks but they do make some errors. More research is needed to understand the sources of these errors and to identify better methods of displaying uncertainty about hurricane parameters. © 2013 Society for Risk Analysis.

  17. A Mach-Zender digital holographic microscope with sub-micrometer resolution for imaging and tracking of marine micro-organisms

    NASA Astrophysics Data System (ADS)

    Kühn, Jonas; Niraula, Bimochan; Liewer, Kurt; Kent Wallace, J.; Serabyn, Eugene; Graff, Emilio; Lindensmith, Christian; Nadeau, Jay L.

    2014-12-01

    Digital holographic microscopy is an ideal tool for investigation of microbial motility. However, most designs do not exhibit sufficient spatial resolution for imaging bacteria. In this study we present an off-axis Mach-Zehnder design of a holographic microscope with spatial resolution of better than 800 nm and the ability to resolve bacterial samples at varying densities over a 380 μm × 380 μm × 600 μm three-dimensional field of view. Larger organisms, such as protozoa, can be resolved in detail, including cilia and flagella. The instrument design and performance are presented, including images and tracks of bacterial and protozoal mixed samples and pure cultures of six selected species. Organisms as small as 1 μm (bacterial spores) and as large as 60 μm (Paramecium bursaria) may be resolved and tracked without changes in the instrument configuration. Finally, we present a dilution series investigating the maximum cell density that can be imaged, a type of analysis that has not been presented in previous holographic microscopy studies.

  18. State Tracking and Fault Diagnosis for Dynamic Systems Using Labeled Uncertainty Graph.

    PubMed

    Zhou, Gan; Feng, Wenquan; Zhao, Qi; Zhao, Hongbo

    2015-11-05

    Cyber-physical systems such as autonomous spacecraft, power plants and automotive systems become more vulnerable to unanticipated failures as their complexity increases. Accurate tracking of system dynamics and fault diagnosis are essential. This paper presents an efficient state estimation method for dynamic systems modeled as concurrent probabilistic automata. First, the Labeled Uncertainty Graph (LUG) method in the planning domain is introduced to describe the state tracking and fault diagnosis processes. Because the system model is probabilistic, the Monte Carlo technique is employed to sample the probability distribution of belief states. In addition, to address the sample impoverishment problem, an innovative look-ahead technique is proposed to recursively generate most likely belief states without exhaustively checking all possible successor modes. The overall algorithms incorporate two major steps: a roll-forward process that estimates system state and identifies faults, and a roll-backward process that analyzes possible system trajectories once the faults have been detected. We demonstrate the effectiveness of this approach by applying it to a real world domain: the power supply control unit of a spacecraft.

  19. Apatite fission-track evidence of widespread Eocene heating and exhumation in the Yukon-Tanana Upland, interior Alaska

    USGS Publications Warehouse

    Dusel-Bacon, C.; Murphy, J.M.

    2001-01-01

    We present an apatite fission-track (AFT) study of five plutonic rocks and seven metamorphic rocks across 310 km of the Yukon-Tanana Upland in east-central Alaska. Samples yielding ???40 Ma AFT ages and mean confined track lengths > 14 ??m with low standard deviations cooled rapidly from >120??C to 40 Ma suggest partial annealing and, therefore, lower maximum temperatures (???90-105??C). A few samples with single-grain ages of ???20 Ma apparently remained above ???50??C after initial cooling. Although the present geothermal gradient in the western Yukon-Tanana Upland is ???32??C/km, it could have been as high as 45??C/km during a widespread Eocene intraplate magmatic episode. Prior to rapid exhumation, samples with ???40 Ma AFT ages were >3.8-2.7 km deep and samples with >50 Ma AFT ages were >3.3-2.0 km deep. We calculate a 440-320 m/Ma minimum rate for exhumation of all samples during rapid cooling. Our AFT data, and data from rocks north of Fairbanks and from the Eielson deep test hole, indicate up to 3 km of post-40 Ma vertical displacement along known and inferred northeast-trending high-angle faults. The predominance of 40-50 Ma AFT ages throughout the Yukon-Tanana Upland indicates that, prior to the post-40 Ma relative uplift along some northeast-trending faults, rapid regional cooling and exhumation closely followed the Eocene extensional magmatism. We propose that Eocene magmatism and exhumation were somehow related to plate movements that produced regional-scale oroclinal rotation, northward translation of outboard terranes, major dextral strike-slip faulting, and subduction of an oceanic spreading ridge along the southern margin of Alaska.

  20. Kr-86 Ion-Beam Irradiation of Hydrated DNA: Free Radical and Unaltered Base Yields

    PubMed Central

    Becker, David; Adhikary, Amitava; Tetteh, Smedley T.; Bull, Arthur W.; Sevilla, Michael D.

    2012-01-01

    This work reports an ESR and product analysis investigation of Kr-86 ion-beam irradiation of hydrated DNA at 77 K. The irradiation results in the formation and trapping of both base radicals and sugar phosphate radicals (DNA backbone radicals). The absolute yields (G, μmol/J) of the base radicals are smaller than the yields found in similarly prepared γ-irradiated DNA samples, and the relative yields of backbone radicals relative to base radicals are much higher than that found in γ-irradiated samples. From these results, we have elaborated our radiation chemical model of the track structure for ion-beam irradiated DNA as it applies to krypton ion-beams. The base radicals, which are trapped as ion radicals or reversibly protonated or deprotonated ion radicals, are formed almost entirely in the track penumbra, a region in which radiation chemical effects are similar to those found in γ-irradiated samples. By comparing the yields of base radicals in ion-beam samples to the yields of the same radicals in γ-irradiated samples, the partition of energy between the low-LET region (penumbra) and the core is experimentally determined. The neutral sugar and other backbone radicals, which are not as susceptible to recombination as are ion radicals, are formed largely in the track core. The backbone radicals show a linear dose response up to very high doses. Unaltered base release yields in Kr-86 irradiated hydrated DNA are equal to sugar radical yields within experimental error limits, consistent with radiation-chemical processes in which all base release originates with sugar radicals. Two phosphorus-centered radicals from fragmentation of the DNA backbone are found in low yields. PMID:23106211

  1. Kr-86 ion-beam irradiation of hydrated DNA: free radical and unaltered base yields.

    PubMed

    Becker, David; Adhikary, Amitava; Tetteh, Smedley T; Bull, Arthur W; Sevilla, Michael D

    2012-12-01

    This work reports an ESR and product analysis investigation of Kr-86 ion-beam irradiation of hydrated DNA at 77 K. The irradiation results in the formation and trapping of both base radicals and sugar phosphate radicals (DNA backbone radicals). The absolute yields (G, μmol/J) of the base radicals are smaller than the yields found in similarly prepared γ-irradiated DNA samples, and the relative yields of backbone radicals relative to base radicals are much higher than that found in γ-irradiated samples. From these results, we have elaborated our radiation chemical model of the track structure for ion-beam irradiated DNA as it applies to krypton ion-beams. The base radicals, which are trapped as ion radicals or reversibly protonated or deprotonated ion radicals, are formed almost entirely in the track penumbra, a region in which radiation chemical effects are similar to those found in γ-irradiated samples. By comparing the yields of base radicals in ion-beam samples to the yields of the same radicals in γ-irradiated samples, the partition of energy between the low-LET region (penumbra) and the core is experimentally determined. The neutral sugar and other backbone radicals, which are not as susceptible to recombination as are ion radicals, are formed largely in the track core. The backbone radicals show a linear dose response up to very high doses. Unaltered base release yields in Kr-86 irradiated hydrated DNA are equal to sugar radical yields within experimental error limits, consistent with radiation-chemical processes in which all base release originates with sugar radicals. Two phosphorus-centered radicals from fragmentation of the DNA backbone are found in low yields.

  2. Dating thermal events at Cerro Prieto using fission track annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanford, S.J.; Elders, W..

    1981-01-01

    Data from laboratory experiments and geologic fading studies were compiled from published sources to produce lines of iso-annealing for apatite in time-temperature space. Fission track ages were calculated for samples from two wells at Cerro Prieto, one with an apparently simple and one with an apparently complex thermal history. Temperatures were estimated by empirical vitrinite reflectance geothermometry, fluid inclusion homogenization and oxygen isotope equilibrium. These estimates were compared with logs of measured borehole temperatures.

  3. Results of the Second U.S. Manned Orbital Space Flight

    DTIC Science & Technology

    1962-05-24

    accomplish 11F voice transmission to the range of approximately 250 miles. Both the ground were unsuccessful. Thc reason for the SARAH beacon and UHF...exposures taken 0 .iquid o 0 0 of the horizon. The .11IT photographic study Front view Front view is discussed, and a sample plhotograplh is shown...beyond from each tracking station automatically in the meaningful limits of horizon-to-horizon the core storage of the computers. Two IBM track. The

  4. Simulation and performance of an artificial retina for 40 MHz track reconstruction

    DOE PAGES

    Abba, A.; Bedeschi, F.; Citterio, M.; ...

    2015-03-05

    We present the results of a detailed simulation of the artificial retina pattern-recognition algorithm, designed to reconstruct events with hundreds of charged-particle tracks in pixel and silicon detectors at LHCb with LHC crossing frequency of 40 MHz. Performances of the artificial retina algorithm are assessed using the official Monte Carlo samples of the LHCb experiment. We found performances for the retina pattern-recognition algorithm comparable with the full LHCb reconstruction algorithm.

  5. Mass-loss rates of cool stars

    NASA Astrophysics Data System (ADS)

    Katrien Els Decin, Leen

    2015-08-01

    Over much of the initial mass function, stars lose a significant fraction of their mass through a stellar wind during the late stages of their evolution when being a (super)giant star. As of today, we can not yet predict the mass-loss rate during the (super)giant phase for a given star with specific stellar parameters from first principles. This uncertainty directly impacts the accuracy of current stellar evolution and population synthesis models that predict the enrichment of the interstellar medium by these stellar winds. Efforts to establish the link between the initial physical and chemical conditions at stellar birth and the mass-loss rate during the (super)giant phase have proceeded on two separate tracks: (1) more detailed studies of the chemical and morpho-kinematical structure of the stellar winds of (super)giant stars in our own Milky Way by virtue of the proximity, and (2) large scale and statistical studies of a (large) sample of stars in other galaxies (such as the LMC and SMC) and globular clusters eliminating the uncertainty on the distance estimate and providing insight into the dependence of the mass-loss rate on the metallicity. In this review, I will present recent results of both tracks, will show how recent measurements confirm (some) theoretical predictions, but also how results from the first track admonish of common misconceptions inherent in the often more simplified analysis used to analyse the large samples from track 2.

  6. Global Geopotential Modelling from Satellite-to-Satellite Tracking,

    DTIC Science & Technology

    1981-10-01

    measured range-rate sampled at regular intervals. The expansion of the potential has been truncated at degree n = 331, because little information on...averaging interval is 4 s , and sampling takes place every 4 s ; if residual data are used, with respect to a reference model of specified accuracy, complete...LEGFDN, MODEL, andNVAR... .. ....... 93 B-4 Sample Output .. .. .. .... ..... ..... ..... 94 Appendix C: Detailed Listings Degree by Degree

  7. Mapping of explosive contamination using GC/chemiluminescence and ion mobility spectrometry techniques

    NASA Astrophysics Data System (ADS)

    Miller, Carla J.; Glenn, D. F.; Hartenstein, Steven D.; Hallowell, Susan F.

    1998-12-01

    Recent efforts at the Idaho National Engineering and Environmental Laboratory (INEEL) have included mapping explosive contamination resulting from manufacturing and carrying improvised explosive devices (IEDs). Two types of trace detection equipment were used to determine levels of contamination from designated sampling areas. A total of twenty IEDs were constructed: ten using TNT and ten using C-4. Two test scenarios were used. The first scenario tracked the activities of a manufacturer who straps the device onto an independent courier. The courier then performed a series of activities to simulate waiting in an airport. The second scenario tracked the activities of a manufacturer who also served as the courier. A sample set for each test consisted of thirty samples from various locations on each IED manufacturer, thirty from each IED courier, twenty-five from the manufacturing area, and twenty-five from the courier area. Pre-samples and post-samples were collected for analysis with each detection technique. Samples analyzed by gc/chemiluminescence were taken by swiping a teflon- coated sampling swipe across the surface of the sampling area to pick up any explosive particles. Samples analyzed by ion mobility spectrometry (IMS) were taken from the clothing of the manufacturer and courier by vacuuming the surface and collecting particulates on a fiberglass filter. Samples for IMS analysis from the manufacturing and courier rooms were taken by wiping a cotton sampling swipe across the surface area. Currently, building IEDs and monitoring the explosive contamination is being directed toward detection with portal monitors.

  8. Comet coma sample return instrument

    NASA Technical Reports Server (NTRS)

    Albee, A. L.; Brownlee, Don E.; Burnett, Donald S.; Tsou, Peter; Uesugi, K. T.

    1994-01-01

    The sample collection technology and instrument concept for the Sample of Comet Coma Earth Return Mission (SOCCER) are described. The scientific goals of this Flyby Sample Return are to return to coma dust and volatile samples from a known comet source, which will permit accurate elemental and isotopic measurements for thousands of individual solid particles and volatiles, detailed analysis of the dust structure, morphology, and mineralogy of the intact samples, and identification of the biogenic elements or compounds in the solid and volatile samples. Having these intact samples, morphologic, petrographic, and phase structural features can be determined. Information on dust particle size, shape, and density can be ascertained by analyzing penetration holes and tracks in the capture medium. Time and spatial data of dust capture will provide understanding of the flux dynamics of the coma and the jets. Additional information will include the identification of cosmic ray tracks in the cometary grains, which can provide a particle's process history and perhaps even the age of the comet. The measurements will be made with the same equipment used for studying micrometeorites for decades past; hence, the results can be directly compared without extrapolation or modification. The data will provide a powerful and direct technique for comparing the cometary samples with all known types of meteorites and interplanetary dust. This sample collection system will provide the first sample return from a specifically identified primitive body and will allow, for the first time, a direct method of matching meteoritic materials captured on Earth with known parent bodies.

  9. Dose rate prediction methodology for remote handled transuranic waste workers at the waste isolation pilot plant.

    PubMed

    Hayes, Robert

    2002-10-01

    An approach is described for estimating future dose rates to Waste Isolation Pilot Plant workers processing remote handled transuranic waste. The waste streams will come from the entire U.S. Department of Energy complex and can take on virtually any form found from the processing sequences for defense-related production, radiochemistry, activation and related work. For this reason, the average waste matrix from all generator sites is used to estimate the average radiation fields over the facility lifetime. Innovative new techniques were applied to estimate expected radiation fields. Non-linear curve fitting techniques were used to predict exposure rate profiles from cylindrical sources using closed form equations for lines and disks. This information becomes the basis for Safety Analysis Report dose rate estimates and for present and future ALARA design reviews when attempts are made to reduce worker doses.

  10. Consensus nomenclature rules for radiopharmaceutical chemistry — Setting the record straight

    DOE PAGES

    Coenen, Heinz H.; Gee, Antony D.; Adam, Michael; ...

    2017-10-21

    Over recent years, within the community of radiopharmaceutical sciences, there has been an increased incidence of incorrect usage of established scientific terms and conventions, and even the emergence of ‘self-invented’ terms. Here, in order to address these concerns, an international Working Group on ‘Nomenclature in Radiopharmaceutical Chemistry and related areas’ was established in 2015 to achieve clarification of terms and to generate consensus on the utilisation of a standardised nomenclature pertinent to the field. Upon open consultation, the following consensus guidelines were agreed, which aim to: Provide a reference source for nomenclature good practice in the radiopharma-ceutical sciences; Clarify themore » use of terms and rules concerning exclusively radiopharmaceutical terminology, i.e. nuclear- and radiochemical terms, symbols and expressions; Address gaps and inconsistencies in existing radiochemistry nomenclature rules; Provide source literature for further harmonisation beyond our immediate peer group (publishers, editors, IUPAC, pharmacopoeias, etc.).« less

  11. Molecular Imaging Probe Development using Microfluidics

    PubMed Central

    Liu, Kan; Wang, Ming-Wei; Lin, Wei-Yu; Phung, Duy Linh; Girgis, Mark D.; Wu, Anna M.; Tomlinson, James S.; Shen, Clifton K.-F.

    2012-01-01

    In this manuscript, we review the latest advancement of microfluidics in molecular imaging probe development. Due to increasing needs for medical imaging, high demand for many types of molecular imaging probes will have to be met by exploiting novel chemistry/radiochemistry and engineering technologies to improve the production and development of suitable probes. The microfluidic-based probe synthesis is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional systems. Numerous chemical reactions have been successfully performed in micro-reactors and the results convincingly demonstrate with great benefits to aid synthetic procedures, such as purer products, higher yields, shorter reaction times compared to the corresponding batch/macroscale reactions, and more benign reaction conditions. Several ‘proof-of-principle’ examples of molecular imaging probe syntheses using microfluidics, along with basics of device architecture and operation, and their potential limitations are discussed here. PMID:22977436

  12. Radiochemistry of iodine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahn, M.; Kleinberg, J.

    1977-09-01

    The preparation of isotopes of the element, with selected procedures for its determination in or separation from various media is described along with the separating of iodine species from each other. Each part of the introductory section is referenced separately from the remainder of the monograph. For the preparative and analytical sections there is an extensive, indexed bibliography which was developed from the indexes of Volumes 19 to 30 inclusive (1965-1974) of Nuclear Science Abstracts (NSA). From these indexes the NSA abstracts of possible pertinent references were selected for examination and a choice was made of those references which weremore » to be included in the bibliography. The bibliography has both primary and secondary references. Although the monograph does not cover hot atom chemistry, the kinetics of exchange reactions, decay schemes, or physiological applications, papers in these areas were examined as possible sources of useful preparative and analytical procedures. (JRD)« less

  13. Review of cyclotron production and quality control of ``High specific activity'' radionuclides for biomedical, biological, industrial and environmental applications at INFN-LASA

    NASA Astrophysics Data System (ADS)

    Birattari, C.; Bonardi, M.; Groppi, F.; Gini, L.

    2001-12-01

    At the "Radiochemistry Laboratory" of Accelerators and Applied Superconductivity Laboratory, LASA, a wide range of high specific activity radionuclides, RNs, have been produced in No Carrier Added form, for both basic research and application purposes. Use was made of the AVF proton cyclotron (K=45) of Milan University (up to 1987). More recently, the irradiations were carried out at the Scanditronix MC40 cyclotron (K=38; p, d, He-4 and He-3) of JRC-Ispra, Italy, of the European Community. In order to optimize the irradiation conditions for radioisotope production, a series of thin- and thick-target excitation functions have been experimentally determined. For each RN, a specific radiochemical separation has been developed in order to obtain GBq (mCi) amounts of the radiotracers in "high specific activity" No Carrier Added form (NCA).

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurisson, Silvia S.; Lever, Susan Z.; Robertson, J. David

    This grant was situated at the University of Missouri to train Ph.D. scientists in radiochemistry and synthetic chemistry in conjunction with Faculty from the Interdisciplinary Plant Group, Division of Biological Sciences, the MU Research Reactor Center, Molecular Biology and the Radiopharmaceutical Sciences Institute. This project was collaborative with Brookhaven National Laboratory (Richard Ferrieri, PI). Projects for the Ph.D. candidates included novel probe development for peptides, nucleosides, small molecules or radiometals, the direct use of radiometals as probes, or nuclear techniques for analysis. The projects for the postdoctoral fellow involved synthetic chemistry for the preparation of precursors for novel tracers thatmore » will be radiolabeled with 18F or other appropriate radionuclides. The skill sets of our team members allowed us to prepare probes with positron or single photon emitters, as well as ones that are dual-labeled (fluorescent and radiolabeled). We focused our technical advances to those that will be broadly applicable to any research field.« less

  15. Targeted and Nontargeted α-Particle Therapies.

    PubMed

    McDevitt, Michael R; Sgouros, George; Sofou, Stavroula

    2018-06-04

    α-Particle irradiation of cancerous tissue is increasingly recognized as a potent therapeutic option. We briefly review the physics, radiobiology, and dosimetry of α-particle emitters, as well as the distinguishing features that make them unique for radiopharmaceutical therapy. We also review the emerging clinical role of α-particle therapy in managing cancer and recent studies on in vitro and preclinical α-particle therapy delivered by antibodies, other small molecules, and nanometer-sized particles. In addition to their unique radiopharmaceutical characteristics, the increased availability and improved radiochemistry of α-particle radionuclides have contributed to the growing recent interest in α-particle radiotherapy. Targeted therapy strategies have presented novel possibilities for the use of α-particles in the treatment of cancer. Clinical experience has already demonstrated the safe and effective use of α-particle emitters as potent tumor-selective drugs for the treatment of leukemia and metastatic disease.

  16. Targeted and Nontargeted α-Particle Therapies

    PubMed Central

    McDevitt, Michael R.; Sgouros, George; Sofou, Stavroula

    2018-01-01

    α-Particle irradiation of cancerous tissue is increasingly recognized as a potent therapeutic option. We briefly review the physics, radiobiology, and dosimetry of α-particle emitters, as well as the distinguishing features that make them unique for radiopharmaceutical therapy. We also review the emerging clinical role of α-particle therapy in managing cancer and recent studies on in vitro and preclinical α-particle therapy delivered by antibodies, other small molecules, and nanometer-sized particles. In addition to their unique radiopharmaceutical characteristics, the increased availability and improved radiochemistry of α-particle radionuclides have contributed to the growing recent interest in α-particle radiotherapy. Targeted therapy strategies have presented novel possibilities for the use of α-particles in the treatment of cancer. Clinical experience has already demonstrated the safe and effective use of α-particle emitters as potent tumor-selective drugs for the treatment of leukemia and metastatic disease. PMID:29345977

  17. Consensus nomenclature rules for radiopharmaceutical chemistry — Setting the record straight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coenen, Heinz H.; Gee, Antony D.; Adam, Michael

    Over recent years, within the community of radiopharmaceutical sciences, there has been an increased incidence of incorrect usage of established scientific terms and conventions, and even the emergence of ‘self-invented’ terms. Here, in order to address these concerns, an international Working Group on ‘Nomenclature in Radiopharmaceutical Chemistry and related areas’ was established in 2015 to achieve clarification of terms and to generate consensus on the utilisation of a standardised nomenclature pertinent to the field. Upon open consultation, the following consensus guidelines were agreed, which aim to: Provide a reference source for nomenclature good practice in the radiopharma-ceutical sciences; Clarify themore » use of terms and rules concerning exclusively radiopharmaceutical terminology, i.e. nuclear- and radiochemical terms, symbols and expressions; Address gaps and inconsistencies in existing radiochemistry nomenclature rules; Provide source literature for further harmonisation beyond our immediate peer group (publishers, editors, IUPAC, pharmacopoeias, etc.).« less

  18. A New Highly Reactive and Low Lipophilicity Fluorine-18 Labeled Tetrazine Derivative for Pretargeted PET Imaging

    PubMed Central

    2015-01-01

    A new 18F-labeled tetrazine derivative was developed aiming at optimal radiochemistry, fast reaction kinetics in inverse electron-demand Diels–Alder cycloaddition (IEDDA), and favorable pharmacokinetics for in vivo bioorthogonal chemistry. The radiolabeling of the tetrazine was achieved in high yield, purity, and specific activity under mild reaction conditions via conjugation with 5-[18F]fluoro-5-deoxyribose, providing a glycosylated tetrazine derivative with low lipophilicity. The 18F-tetrazine showed fast reaction kinetics toward the most commonly used dienophiles in IEDDA reactions. It exhibited excellent chemical and enzymatic stability in mouse plasma and in phosphate-buffered saline (pH 7.41). Biodistribution in mice revealed favorable pharmacokinetics with major elimination via urinary excretion. The results indicate that the glycosylated 18F-labeled tetrazine is an excellent candidate for in vivo bioorthogonal chemistry applications in pretargeted PET imaging approaches. PMID:26819667

  19. Digital tracking loops for a programmable digital modem

    NASA Technical Reports Server (NTRS)

    Poklemba, John J.

    1992-01-01

    In this paper, an analysis and hardware emulation of the tracking loops for a very flexible programmable digital modem (PDM) will be presented. The modem is capable of being programmed for 2, 4, 8, 16-PSK, 16-QAM, MSK, and Offset-QPSK modulation schemes over a range of data rates from 2.34 to 300 Mbps with programmable spectral occupancy from 1.2 to 1.8 times the symbol rate; these operational parameters are executable in burst or continuous mode. All of the critical processing in both the modulator and demodulator is done at baseband with very high-speed digital hardware and memory. Quadrature analog front-ends are used for translation between baseband and the IF center frequency. The modulator is based on a table lookup approach, where precomputed samples are stored in memory and clocked out according to the incoming data pattern. The sample values are predistorted to counteract the effects of the other filtering functions in the link as well as any transmission impairments. The demodulator architecture was adapted from a joint estimator-detector (JED) mathematical analysis. Its structure is applicable to most signalling formats that can be represented in a two-dimensional space. The JED realization uses interdependent, mutually aiding tracking loops with post-detection data feedback. To expedite and provide for more reliable synchronization, initial estimates for these loops are computed in a parallel acquisition processor. The cornerstone of the demodulator realization is the pre-averager received data filter which allows operation over a broad range of data rates without any hardware changes and greatly simplifies the implementation complexity. The emulation results confirmed tracking loop operation over the entire range of operational parameters listed above, as well as the capability of achieving and maintaining synchronization at BER's in excess of 10(exp -1). The emulation results also showed very close agreement with the tracking loop analysis, and validated the resolution apportionment of the various hardware elements in the tracking loops.

  20. Probabilistic Multi-Person Tracking Using Dynamic Bayes Networks

    NASA Astrophysics Data System (ADS)

    Klinger, T.; Rottensteiner, F.; Heipke, C.

    2015-08-01

    Tracking-by-detection is a widely used practice in recent tracking systems. These usually rely on independent single frame detections that are handled as observations in a recursive estimation framework. If these observations are imprecise the generated trajectory is prone to be updated towards a wrong position. In contrary to existing methods our novel approach uses a Dynamic Bayes Network in which the state vector of a recursive Bayes filter, as well as the location of the tracked object in the image are modelled as unknowns. These unknowns are estimated in a probabilistic framework taking into account a dynamic model, and a state-of-the-art pedestrian detector and classifier. The classifier is based on the Random Forest-algorithm and is capable of being trained incrementally so that new training samples can be incorporated at runtime. This allows the classifier to adapt to the changing appearance of a target and to unlearn outdated features. The approach is evaluated on a publicly available benchmark. The results confirm that our approach is well suited for tracking pedestrians over long distances while at the same time achieving comparatively good geometric accuracy.

  1. Mobile Eye Tracking Reveals Little Evidence for Age Differences in Attentional Selection for Mood Regulation

    PubMed Central

    Isaacowitz, Derek M.; Livingstone, Kimberly M.; Harris, Julia A.; Marcotte, Stacy L.

    2014-01-01

    We report two studies representing the first use of mobile eye tracking to study emotion regulation across adulthood. Past research on age differences in attentional deployment using stationary eye tracking has found older adults show relatively more positive looking, and seem to benefit more mood-wise from this looking pattern, compared to younger adults. However, these past studies have greatly constrained the stimuli participants can look at, despite real-world settings providing numerous possibilities for what to choose to look at. We therefore used mobile eye tracking to study age differences in attentional selection, as indicated by fixation patterns to stimuli of different valence freely chosen by the participant. In contrast to stationary eye tracking studies of attentional deployment, Study 1 showed that younger and older individuals generally selected similar proportions of valenced stimuli, and attentional selection had similar effects on mood across age groups. Study 2 replicated this pattern with an adult lifespan sample including middle-aged individuals. Emotion regulation-relevant attention may thus differ depending on whether stimuli are freely chosen or not. PMID:25527965

  2. Statistical and Multifractal Evaluation of Soil Compaction in a Vineyard

    NASA Astrophysics Data System (ADS)

    Marinho, M.; Raposo, J. R.; Mirás Avalos, J. M.; Paz González, A.

    2012-04-01

    One of the detrimental effects caused by agricultural machines is soil compaction, which can be defined by an increase in soil bulk density. Soil compaction often has a negative impact on plant growth, since it reduces the macroporosity and soil permeability and increases resistance to penetration. Our research explored the effect of the agricultural machinery on soil when trafficking through a vineyard at a small spatial scale, based on the evaluation of the soil compaction status. The objectives of this study were: i) to quantify soil bulk density along transects following wine row, wheel track and outside track, and, ii) to characterize the variability of the bulk density along these transects using multifractal analysis. The field work was conducted at the experimental farm of EVEGA (Viticulture and Enology Centre of Galicia) located in Ponte San Clodio, Leiro, Orense, Spain. Three parallel transects were marked on positions with contrasting machine traffic effects, i.e. vine row, wheel-track and outside-track. Undisturbed samples were collected in 16 points of each transect, spaced 0.50 m apart, for bulk density determination using the cylinder method. Samples were taken in autumn 2011, after grape harvest. Since soil between vine rows was tilled and homogenized beginning spring 2011, cumulative effects of traffic during the vine growth period could be evaluated. The distribution patterns of soil bulk density were characterized by multifractal analysis carried out by the method of moments. Multifractality was assessed by several indexes derived from the mass exponent, τq, the generalized dimension, Dq, and the singularity spectrum, f(α), curves. Mean soil bulk density values determined for vine row, outside-track and wheel-track transects were 1.212 kg dm-3, 1.259 kg dm-3and 1.582 kg dm-3, respectively. The respective coefficients of variation (CV) for these three transects were 7.76%, 4.82% and 2.03%. Therefore mean bulk density under wheel-track was 30.5% higher than along the vine row. Vine row and outside-track positions showed not significant differences between means. The bulk density of the wheel-track transect also showed the lowest CV. The multifractal spectra of the three transects were asymmetric curves, rather short toward the left and much longer toward the right. The width of the right deviating shaped multifractal spectra was ranked as: wine row > outside-track ≈ wheel-track. Entropy dimension, D1, was 0.998, 0.992 and 0.992 for vine row, outside-track and track transects, respectively. These results show different patterns of variability of bulk density for parallel transects. They also suggest that multifractal parameters may be useful in assessing the variability of other soil properties such as soil particle density, soil porosity or soil water content, at different spatial scales as well. Acknowledgments. This work was funded in part by Spanish Ministry of Science and Innovation (MICINN) in the frame of project CGL2009-13700-C02. Financial support from CAPES/GOV., Brazil, is also acknowledged by Prof. M. Marinho.

  3. Tracking of BMI, fatness and cardiorespiratory fitness from adolescence to middle adulthood: the Zagreb Growth and Development Longitudinal Study.

    PubMed

    Sorić, Maroje; Jembrek Gostović, Mirjana; Gostović, Mladen; Hočevar, Marija; Mišigoj-Duraković, Marjeta

    2014-01-01

    Effective intervention strategies aiming to improve cardiorespiratory fitness and to decrease body fatness are needed. However, long-term stability of these traits is not well understood. To assess long-term tracking of cardiorespiratory fitness and body fatness from late adolescence to middle adulthood. The sample consisted of 50 participants (31 boys) from the Zagreb Growth and Development Longitudinal Study who were followed up in adulthood (median age = 43). Fatness was evaluated through BMI and skin-folds, while cardiorespiratory fitness was assessed using a cardiopulmonary exercise test. Inter-age partial correlation coefficients were calculated to evaluate tracking. Body mass index and skin-folds showed moderate tracking from age 15 years to middle adulthood (partial r = 0.55, p < 0.001 and partial r = 0.52, p < 0.001, respectively), while tracking of subcutaneous fat distribution was somewhat lower (partial r = 0.38, p < 0.01). At the same time, the observed tracking of peak oxygen uptake was low-to-moderate (partial r = 0.30, p = 0.03), while ventilatory aerobic and anaerobic thresholds did not show significant tracking. The results of this study indicate that preventive efforts aiming to increase cardiorespiratory fitness should include all adolescents, irrespective of their cardiorespiratory fitness status. Conversely, strategies aiming at obesity prevention should focus on high-risk groups of adolescents.

  4. High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Wei; Shabbir, Faizan; Gong, Chao

    2015-04-13

    We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processingmore » units, we reconstruct and analyze the entire volume of a CR-39 detector within ∼1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.« less

  5. Results and Analysis of the Infrastructure Request for Information (DE-SOL-0008318)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidrich, Brenden John

    2015-07-01

    The Department of Energy (DOE) Office of Nuclear Energy (NE) released a request for information (RFI) (DE-SOL-0008318) for “University, National Laboratory, Industry and International Input on Potential Office of Nuclear Energy Infrastructure Investments” on April 13, 2015. DOE-NE solicited information on five specific types of capabilities as well as any others suggested by the community. The RFI proposal period closed on June 19, 2015. From the 26 responses, 34 individual proposals were extracted. Eighteen were associated with a DOE national laboratory, including Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), Idaho National Laboratory (INL), Los Alamos National Laboratory (LANL), Pacificmore » Northwest National Laboratory (PNNL) and Sandia National Laboratory (SNL). Oak Ridge National Laboratory (ORNL) was referenced in a proposal as a proposed capability location, although the proposal did not originate with ORNL. Five US universities submitted proposals (Massachusetts Institute of Technology, Pennsylvania State University, Rensselaer Polytechnic Institute, University of Houston and the University of Michigan). Three industrial/commercial institutions submitted proposals (AREVA NP, Babcock and Wilcox (B&W) and the Electric Power Research Institute (EPRI)). Eight major themes emerged from the submissions as areas needing additional capability or support for existing capabilities. Two submissions supported multiple areas. The major themes are: Advanced Manufacturing (AM), High Performance Computing (HPC), Ion Irradiation with X-Ray Diagnostics (IIX), Ion Irradiation with TEM Visualization (IIT), Radiochemistry Laboratories (RCL), Test Reactors, Neutron Sources and Critical Facilities (RX) , Sample Preparation and Post-Irradiation Examination (PIE) and Thermal-Hydraulics Test Facilities (THF).« less

  6. Diffusion of the Digital Health Self-Tracking Movement in Canada: Results of a National Survey

    PubMed Central

    Leaver, Chad; Bourget, Claire

    2018-01-01

    Background With the ever-increasing availability of mobile apps, consumer wearables, and smart medical devices, more and more individuals are self-tracking and managing their personal health data. Objective The aim of this study was to investigate the diffusion of the digital self-tracking movement in Canada. It provides a comprehensive, yet detailed account of this phenomenon. It examines the profile of digital self-trackers, traditional self-trackers, and nontrackers, further investigating the primary motivations for self-tracking and reasons for nontracking; barriers to adoption of connected care technologies; users’ appreciation of their self-tracking devices, including what they perceive to be the main benefits; factors that influence people’s intention to continue using connected care technologies in the future; and the reasons for usage discontinuance. Methods We conducted an online survey with a sample of 4109 Canadian adults, one of the largest ever. To ensure a representative sample, quota method was used (gender, age), following stratification by region. The maximum margin of error is estimated at 1.6%, 19 times out of 20. Results Our findings reveal that 66.20% (2720/4109) of our respondents regularly self-track one or more aspects of their health. About one in 4 respondents (1014/4109, 24.68%) currently owns a wearable or smart medical device, and 57.20% (580/1014) use their devices on a regular basis for self-tracking purposes. Digital self-trackers are typically young or mature adults, healthy, employed, university educated, with an annual family income of over $80,000 CAD. The most popular reported device is the fitness tracker or smartwatch that can capture a range of parameters. Currently, mobile apps and digital self-tracking devices are mainly used to monitor physical activity (856/1669, 51.13%), nutrition (545/1669, 32.65%), sleep patterns (482/1669, 28.88%) and, to a much lesser extent, cardiovascular and pulmonary biomarkers (215/1669, 12.88%), medication intake (126/1669, 7.55%), and glucose level (79/1669, 4.73%). Most users of connected care technologies (481/580, 83.0%) are highly satisfied and 88.2% (511/580) intend to continue using their apps and devices in the future. A majority said smart digital devices have allowed them to maintain or improve their health condition (398/580, 68.5%) and to be better informed about their health in general (387/580, 66.6%). About 33.80% of our sample (1389/4109) is composed of people who do not monitor their health or well-being on a regular basis. Conclusions Our study shows an opportunity to advance the health of Canadians through connected care technologies. Our findings can be used to set baseline information for future research on the rise of digital health self-tracking and its impacts. Although the use of mobile apps, consumer wearables, and smart medical devices could potentially benefit the growing population of patients with chronic conditions, the question remains as to whether it will diffuse broadly beyond early adopters and across cost inequities. PMID:29720359

  7. Diffusion of the Digital Health Self-Tracking Movement in Canada: Results of a National Survey.

    PubMed

    Paré, Guy; Leaver, Chad; Bourget, Claire

    2018-05-02

    With the ever-increasing availability of mobile apps, consumer wearables, and smart medical devices, more and more individuals are self-tracking and managing their personal health data. The aim of this study was to investigate the diffusion of the digital self-tracking movement in Canada. It provides a comprehensive, yet detailed account of this phenomenon. It examines the profile of digital self-trackers, traditional self-trackers, and nontrackers, further investigating the primary motivations for self-tracking and reasons for nontracking; barriers to adoption of connected care technologies; users' appreciation of their self-tracking devices, including what they perceive to be the main benefits; factors that influence people's intention to continue using connected care technologies in the future; and the reasons for usage discontinuance. We conducted an online survey with a sample of 4109 Canadian adults, one of the largest ever. To ensure a representative sample, quota method was used (gender, age), following stratification by region. The maximum margin of error is estimated at 1.6%, 19 times out of 20. Our findings reveal that 66.20% (2720/4109) of our respondents regularly self-track one or more aspects of their health. About one in 4 respondents (1014/4109, 24.68%) currently owns a wearable or smart medical device, and 57.20% (580/1014) use their devices on a regular basis for self-tracking purposes. Digital self-trackers are typically young or mature adults, healthy, employed, university educated, with an annual family income of over $80,000 CAD. The most popular reported device is the fitness tracker or smartwatch that can capture a range of parameters. Currently, mobile apps and digital self-tracking devices are mainly used to monitor physical activity (856/1669, 51.13%), nutrition (545/1669, 32.65%), sleep patterns (482/1669, 28.88%) and, to a much lesser extent, cardiovascular and pulmonary biomarkers (215/1669, 12.88%), medication intake (126/1669, 7.55%), and glucose level (79/1669, 4.73%). Most users of connected care technologies (481/580, 83.0%) are highly satisfied and 88.2% (511/580) intend to continue using their apps and devices in the future. A majority said smart digital devices have allowed them to maintain or improve their health condition (398/580, 68.5%) and to be better informed about their health in general (387/580, 66.6%). About 33.80% of our sample (1389/4109) is composed of people who do not monitor their health or well-being on a regular basis. Our study shows an opportunity to advance the health of Canadians through connected care technologies. Our findings can be used to set baseline information for future research on the rise of digital health self-tracking and its impacts. Although the use of mobile apps, consumer wearables, and smart medical devices could potentially benefit the growing population of patients with chronic conditions, the question remains as to whether it will diffuse broadly beyond early adopters and across cost inequities. ©Guy Paré, Chad Leaver, Claire Bourget. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 02.05.2018.

  8. Breakdown Characteristic Analysis of Paper- Oil Insulation under AC and DC Voltage

    NASA Astrophysics Data System (ADS)

    Anuar, N. F.; Jamail, N. A. M.; Rahman, R. A.; Kamarudin, M. S.

    2017-08-01

    This paper presents the study of breakdown characteristic of Kraft paper insulated with two different types of insulating fluid, which are Palm oil and Coconut oil. Palm oil and Coconut oil are chosen as the alternative fluid to the transformer oil because it has high potential and environmentally-friendly. The Segezha Kraft papers with various thicknesses (65.5 gsm, 75 gsm, 85gsm, 90 gsm) have been used in this research. High Voltage Direct Current (HVDC), High Voltage Alternating Current (HVAC) and carbon track and severity analysis is conducted to observe the sample of aging Kraft paper. These samples have been immersed using Palm oil and Coconut oil up to 90 days to observe the absorption rate. All samples started to reach saturation level at 70 days of immersion. HVDC and HVAC breakdown experiments have been done after the samples had reached the saturation level based on normal condition, immersed in Palm oil and immersed in Coconut oil. All samples immersed in liquid show different breakdown voltage reading compared to normal condition. The analysis of carbon track and severity on surface has been done using Analytical Scanning Electron Microscope (SEM) Analysis. The results of the experiment show that the sample of Kraft paper immersed in Palm oil was better than Coconut oil immersed sample. Therefore the sample condition was the main factor that determines the value of breakdown voltage test. Introduction

  9. Controlling Processes on Carbonate Chemistry across the Pacific

    NASA Astrophysics Data System (ADS)

    Hartman, S. E.

    2016-12-01

    The SWIRE NOC Ocean Monitoring System (SNOMS) project is an innovative programme helping to answer important questions about global climate change by using a commercial ship of opportunity to measure carbon in the surface of the ocean. Daily sampling coupled to continuous underway observation from a ship of opportunity (MV Shengking) provides new insights into the processes controlling variability in the carbonate system across the Pacific. The ships track runs from Vancouver (Canada) to Brisbane (Australia). Daily samples were taken on-board and measurements of Total alkalinity (TA) and total dissolved inorganic carbon (DIC) were determined. This was alongside measurements of nutrients and continuous records of temperature, salinity, chlorophyll-fluorescence, carbon dioxide and dissolved oxygen (DO). These sensor based measurements were validated using the discrete samples. Carbon dioxide calculated from DIC and TA showed an offset from the sensor data of up to 8uatm. This and comparisons with climatology were used to calibrate the sensor data. The data have been compared with previous data from the MV Pacific Celebes that ran a similar route until 2012. The data show a clear increase in seawater carbon dioxide, tracking the atmospheric increases. Along track the partial pressure of seawater carbon dioxide varied by over 150 uatm. The highest values were seen just south of the equator in the Pacific, which is an important source region for carbon dioxide to the atmosphere.

  10. An unattended device for high-voltage sampling and passive measurement of thoron decay products.

    PubMed

    Gierl, Stefanie; Meisenberg, Oliver; Haninger, Thomas; Wielunski, Marek; Tschiersch, Jochen

    2014-02-01

    An integrating measurement device for the concentration of airborne thoron decay products was designed and calibrated. It is suitable for unattended use over up to several months also in inhabited dwellings. The device consists of a hemispheric capacitor with a wire mesh as the outer electrode on ground potential and the sampling substrates as the inner electrode on +7.0 kV. Negatively charged and neutral thoron decay products are accelerated to and deposited on the sampling substrates. As sampling substrates, CR39 solid-state nuclear track detectors are used in order to record the alpha decay of the sampled decay products. Nuclide discrimination is achieved by covering the detectors with aluminum foil of different thickness, which are penetrated only by alpha particles with sufficient energy. Devices of this type were calibrated against working level monitors in a thoron experimental house. The sensitivity was measured as 9.2 tracks per Bq/m(3) × d of thoron decay products. The devices were used over 8 weeks in several houses built of earthen material in southern Germany, where equilibrium equivalent concentrations of 1.4-9.9 Bq/m(3) of thoron decay products were measured.

  11. A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos.

    PubMed

    Aghamohammadi, Amirhossein; Ang, Mei Choo; A Sundararajan, Elankovan; Weng, Ng Kok; Mogharrebi, Marzieh; Banihashem, Seyed Yashar

    2018-01-01

    Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods.

  12. A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos

    PubMed Central

    2018-01-01

    Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods. PMID:29438421

  13. Evaluation of the Tobii EyeX Eye tracking controller and Matlab toolkit for research.

    PubMed

    Gibaldi, Agostino; Vanegas, Mauricio; Bex, Peter J; Maiello, Guido

    2017-06-01

    The Tobii Eyex Controller is a new low-cost binocular eye tracker marketed for integration in gaming and consumer applications. The manufacturers claim that the system was conceived for natural eye gaze interaction, does not require continuous recalibration, and allows moderate head movements. The Controller is provided with a SDK to foster the development of new eye tracking applications. We review the characteristics of the device for its possible use in scientific research. We develop and evaluate an open source Matlab Toolkit that can be employed to interface with the EyeX device for gaze recording in behavioral experiments. The Toolkit provides calibration procedures tailored to both binocular and monocular experiments, as well as procedures to evaluate other eye tracking devices. The observed performance of the EyeX (i.e. accuracy < 0.6°, precision < 0.25°, latency < 50 ms and sampling frequency ≈55 Hz), is sufficient for some classes of research application. The device can be successfully employed to measure fixation parameters, saccadic, smooth pursuit and vergence eye movements. However, the relatively low sampling rate and moderate precision limit the suitability of the EyeX for monitoring micro-saccadic eye movements or for real-time gaze-contingent stimulus control. For these applications, research grade, high-cost eye tracking technology may still be necessary. Therefore, despite its limitations with respect to high-end devices, the EyeX has the potential to further the dissemination of eye tracking technology to a broad audience, and could be a valuable asset in consumer and gaming applications as well as a subset of basic and clinical research settings.

  14. NHEXAS PHASE I MARYLAND STUDY--STANDARD OPERATING PROCEDURE FOR IDENTIFICATION NUMBERS FOR SAMPLES AND FORMS (G03)

    EPA Science Inventory

    The purpose of this SOP is to indicate the proper method for assigning unique Identification Numbers for all samples taken and forms used in the collection of NHEXAS Pilot Studies. All data tracking procedures were built upon these ID numbers. Inspection of these ID numbers pro...

  15. A novel approach to Lagrangian sampling of marine boundary layer cloud and aerosol in the northeast Pacific: case studies from CSET

    NASA Astrophysics Data System (ADS)

    Mohrmann, J.; Albrecht, B. A.; Bretherton, C. S.; Ghate, V. P.; Zuidema, P.; Wood, R.

    2015-12-01

    The Cloud System Evolution in the Trades (CSET) field campaign took place during July/August 2015 with the purpose of characterizing the cloud, aerosol and thermodynamic properties of the northeast Pacific marine boundary layer. One major science goal of the campaign was to observe a Lagrangian transition from thin stratocumulus (Sc) upwind near California to trade cumulus (Cu) nearer to Hawaii. Cloud properties were observed from the NSF/NCAR Gulfstream V research plane (GV) using the HIAPER Cloud Radar (HCR) and the HIAPER Spectral Resolution Lidar (HSRL), among other instrumentation. Aircraft observations were complemented by a suite of satellite-derived products. To observe a the evolution of airmasses over the course of two days, upwind regions were sampled on an outbound flight to from Sacramento, CA, to Kona, HI. The sampled airmasses were then tracked using HYSPLIT trajectories based on GFS model forecasts, and the return flight to California was planned to intercept those airmasses, using satellite observation to track cloud evolution in the interim. This approach required that trajectories were reasonably stable up to 3 days prior to final sampling, and also that forecast trajectories were in agreement with post-flight analysis and visual cloud feature tracking. The extent to which this was realised, and hence the validity of this new approach to Lagrangian airmass observation, is assessed here. We also present results showing that a Sc-Cu airmass transition was consistently observed during the CSET study using measurements from research flights and satellite.

  16. Influence of uneven rail irregularities on the dynamic response of the railway track using a three-dimensional model of the vehicle-track system

    NASA Astrophysics Data System (ADS)

    Naeimi, Meysam; Zakeri, Jabbar Ali; Esmaeili, Morteza; Shadfar, Morad

    2015-01-01

    A mathematical model of the vehicle-track interaction is developed to investigate the coupled behaviour of vehicle-track system, in the presence of uneven irregularities at left/right rails. The railway vehicle is simplified as a 3D multi-rigid-body model, and the track is treated as the two parallel beams on a layered discrete support system. Besides the car-body, the bogies and the wheel sets, the sleepers are assumed to have roll degree of freedom, in order to simulate the in-plane rotation of the components. The wheel-rail interface is treated using a nonlinear Hertzian contact model, coupling the mathematical equations of the vehicle-track systems. The dynamic interaction of the entire system is numerically studied in time domain, employing Newmark's integration method. The track irregularity spectra of both the left/right rails are taken into account, as the inputs of dynamic excitations. The dynamic responses of the track system induced by such irregularities are obtained, particularly in terms of the vertical (bounce) and roll displacements. The numerical model of the present research is validated using several benchmark models reported in the literature, for both the smooth and unsmooth track conditions. Four sample profiles of the measured rail irregularities are considered as the case studies of excitation sources, examining their influences on the dynamic behaviour of the coupled system. The results of numerical simulations demonstrate that the motion of track system is significantly influenced by the presence of uneven irregularities in left/right rails. Dynamic response of the sleepers in the roll direction becomes more sensitive to the rail irregularities, as the unevenness severity of the parallel profiles (quantitative difference between left and right rail spectra) is increased. The severe geometric deformation of the track in the bounce-pitch-roll directions is mainly related to such profile unevenness (cross-level) in left/right rails.

  17. Nocturnal bird migration in opaque clouds

    NASA Technical Reports Server (NTRS)

    Griffin, D. R.

    1972-01-01

    The use of a tracking radar to measure the flight paths of migrating birds on nights with opaque clouds is discussed. The effects of wind and lack of visual references are examined. The limitations of the radar observations are described, and samples of tracks obtained during radar observations are included. It is concluded that nonvisual mechanisms of orientation make it possible for birds to migrate in opaque clouds, but the exact nature of the sensory information cannot be determined by radar observations.

  18. Digital phase-lock loop

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess B. (Inventor)

    1991-01-01

    An improved digital phase lock loop incorporates several distinctive features that attain better performance at high loop gain and better phase accuracy. These features include: phase feedback to a number-controlled oscillator in addition to phase rate; analytical tracking of phase (both integer and fractional cycles); an amplitude-insensitive phase extractor; a more accurate method for extracting measured phase; a method for changing loop gain during a track without loss of lock; and a method for avoiding loss of sampled data during computation delay, while maintaining excellent tracking performance. The advantages of using phase and phase-rate feedback are demonstrated by comparing performance with that of rate-only feedback. Extraction of phase by the method of modeling provides accurate phase measurements even when the number-controlled oscillator phase is discontinuously updated.

  19. Learning an intrinsic-variable preserving manifold for dynamic visual tracking.

    PubMed

    Qiao, Hong; Zhang, Peng; Zhang, Bo; Zheng, Suiwu

    2010-06-01

    Manifold learning is a hot topic in the field of computer science, particularly since nonlinear dimensionality reduction based on manifold learning was proposed in Science in 2000. The work has achieved great success. The main purpose of current manifold-learning approaches is to search for independent intrinsic variables underlying high dimensional inputs which lie on a low dimensional manifold. In this paper, a new manifold is built up in the training step of the process, on which the input training samples are set to be close to each other if the values of their intrinsic variables are close to each other. Then, the process of dimensionality reduction is transformed into a procedure of preserving the continuity of the intrinsic variables. By utilizing the new manifold, the dynamic tracking of a human who can move and rotate freely is achieved. From the theoretical point of view, it is the first approach to transfer the manifold-learning framework to dynamic tracking. From the application point of view, a new and low dimensional feature for visual tracking is obtained and successfully applied to the real-time tracking of a free-moving object from a dynamic vision system. Experimental results from a dynamic tracking system which is mounted on a dynamic robot validate the effectiveness of the new algorithm.

  20. Tracking multiple particles in fluorescence time-lapse microscopy images via probabilistic data association.

    PubMed

    Godinez, William J; Rohr, Karl

    2015-02-01

    Tracking subcellular structures as well as viral structures displayed as 'particles' in fluorescence microscopy images yields quantitative information on the underlying dynamical processes. We have developed an approach for tracking multiple fluorescent particles based on probabilistic data association. The approach combines a localization scheme that uses a bottom-up strategy based on the spot-enhancing filter as well as a top-down strategy based on an ellipsoidal sampling scheme that uses the Gaussian probability distributions computed by a Kalman filter. The localization scheme yields multiple measurements that are incorporated into the Kalman filter via a combined innovation, where the association probabilities are interpreted as weights calculated using an image likelihood. To track objects in close proximity, we compute the support of each image position relative to the neighboring objects of a tracked object and use this support to recalculate the weights. To cope with multiple motion models, we integrated the interacting multiple model algorithm. The approach has been successfully applied to synthetic 2-D and 3-D images as well as to real 2-D and 3-D microscopy images, and the performance has been quantified. In addition, the approach was successfully applied to the 2-D and 3-D image data of the recent Particle Tracking Challenge at the IEEE International Symposium on Biomedical Imaging (ISBI) 2012.

  1. An Improved Model Predictive Current Controller of Switched Reluctance Machines Using Time-Multiplexed Current Sensor

    PubMed Central

    Li, Bingchu; Ling, Xiao; Huang, Yixiang; Gong, Liang; Liu, Chengliang

    2017-01-01

    This paper presents a fixed-switching-frequency model predictive current controller using multiplexed current sensor for switched reluctance machine (SRM) drives. The converter was modified to distinguish currents from simultaneously excited phases during the sampling period. The only current sensor installed in the converter was time division multiplexing for phase current sampling. During the commutation stage, the control steps of adjacent phases were shifted so that sampling time was staggered. The maximum and minimum duty ratio of pulse width modulation (PWM) was limited to keep enough sampling time for analog-to-digital (A/D) conversion. Current sensor multiplexing was realized without complex adjustment of either driver circuit nor control algorithms, while it helps to reduce the cost and errors introduced in current sampling due to inconsistency between sensors. The proposed controller is validated by both simulation and experimental results with a 1.5 kW three-phase 12/8 SRM. Satisfied current sampling is received with little difference compared with independent phase current sensors for each phase. The proposed controller tracks the reference current profile as accurately as the model predictive current controller with independent phase current sensors, while having minor tracking errors compared with a hysteresis current controller. PMID:28513554

  2. START: a system for flexible analysis of hundreds of genomic signal tracks in few lines of SQL-like queries.

    PubMed

    Zhu, Xinjie; Zhang, Qiang; Ho, Eric Dun; Yu, Ken Hung-On; Liu, Chris; Huang, Tim H; Cheng, Alfred Sze-Lok; Kao, Ben; Lo, Eric; Yip, Kevin Y

    2017-09-22

    A genomic signal track is a set of genomic intervals associated with values of various types, such as measurements from high-throughput experiments. Analysis of signal tracks requires complex computational methods, which often make the analysts focus too much on the detailed computational steps rather than on their biological questions. Here we propose Signal Track Query Language (STQL) for simple analysis of signal tracks. It is a Structured Query Language (SQL)-like declarative language, which means one only specifies what computations need to be done but not how these computations are to be carried out. STQL provides a rich set of constructs for manipulating genomic intervals and their values. To run STQL queries, we have developed the Signal Track Analytical Research Tool (START, http://yiplab.cse.cuhk.edu.hk/start/ ), a system that includes a Web-based user interface and a back-end execution system. The user interface helps users select data from our database of around 10,000 commonly-used public signal tracks, manage their own tracks, and construct, store and share STQL queries. The back-end system automatically translates STQL queries into optimized low-level programs and runs them on a computer cluster in parallel. We use STQL to perform 14 representative analytical tasks. By repeating these analyses using bedtools, Galaxy and custom Python scripts, we show that the STQL solution is usually the simplest, and the parallel execution achieves significant speed-up with large data files. Finally, we describe how a biologist with minimal formal training in computer programming self-learned STQL to analyze DNA methylation data we produced from 60 pairs of hepatocellular carcinoma (HCC) samples. Overall, STQL and START provide a generic way for analyzing a large number of genomic signal tracks in parallel easily.

  3. Identification Of Cells With A Compact Microscope Imaging System With Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2006-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking mic?oscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.

  4. Operation of a Cartesian Robotic System in a Compact Microscope with Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2006-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.

  5. Power of sign surveys to monitor population trend

    USGS Publications Warehouse

    Kendall, Katherine C.; Metzgar, Lee H.; Patterson, David A.; Steele, Brian M.

    1992-01-01

    The urgent need for an effective monitoring scheme for grizzly bear (Ursus arctos) populations led us to investigate the effort required to detect changes in populations of low—density dispersed animals, using sign (mainly scats and tracks) they leave on trails. We surveyed trails in Glacier National Park for bear tracks and scats during five consecutive years. Using these data, we modeled the occurrence of bear sign on trails, then estimated the power of various sampling schemes. Specifically, we explored the power of bear sign surveys to detect a 20% decline in sign occurrence. Realistic sampling schemes appear feasible if the density of sign is high enough, and we provide guidelines for designs with adequate replication to monitor long—term trends of dispersed populations using sign occurrences on trails.

  6. Selective counting and sizing of single virus particles using fluorescent aptamer-based nanoparticle tracking analysis.

    PubMed

    Szakács, Zoltán; Mészáros, Tamás; de Jonge, Marien I; Gyurcsányi, Róbert E

    2018-05-30

    Detection and counting of single virus particles in liquid samples are largely limited to narrow size distribution of viruses and purified formulations. To address these limitations, here we propose a calibration-free method that enables concurrently the selective recognition, counting and sizing of virus particles as demonstrated through the detection of human respiratory syncytial virus (RSV), an enveloped virus with a broad size distribution, in throat swab samples. RSV viruses were selectively labeled through their attachment glycoproteins (G) with fluorescent aptamers, which further enabled their identification, sizing and counting at the single particle level by fluorescent nanoparticle tracking analysis. The proposed approach seems to be generally applicable to virus detection and quantification. Moreover, it could be successfully applied to detect single RSV particles in swab samples of diagnostic relevance. Since the selective recognition is associated with the sizing of each detected particle, this method enables to discriminate viral elements linked to the virus as well as various virus forms and associations.

  7. Updating a preoperative surface model with information from real-time tracked 2D ultrasound using a Poisson surface reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Deyu; Rettmann, Maryam E.; Holmes, David R.; Linte, Cristian A.; Packer, Douglas; Robb, Richard A.

    2014-03-01

    In this work, we propose a method for intraoperative reconstruction of a left atrial surface model for the application of cardiac ablation therapy. In this approach, the intraoperative point cloud is acquired by a tracked, 2D freehand intra-cardiac echocardiography device, which is registered and merged with a preoperative, high resolution left atrial surface model built from computed tomography data. For the surface reconstruction, we introduce a novel method to estimate the normal vector of the point cloud from the preoperative left atrial model, which is required for the Poisson Equation Reconstruction algorithm. In the current work, the algorithm is evaluated using a preoperative surface model from patient computed tomography data and simulated intraoperative ultrasound data. Factors such as intraoperative deformation of the left atrium, proportion of the left atrial surface sampled by the ultrasound, sampling resolution, sampling noise, and registration error were considered through a series of simulation experiments.

  8. MINERvA neutrino detector response measured with test beam data

    DOE PAGES

    Aliaga, L.; Altinok, O.; Araujo Del Castillo, C.; ...

    2015-04-11

    The MINERvA collaboration operated a scaled-down replica of thesolid scintillator tracking and sampling calorimeter regions of the MINERvA detector in a hadron test beam at the Fermilab Test Beam Facility. This paper reports measurements with samples of protons, pions, and electrons from 0.35 to 2.0 GeV/c momentum. The calorimetric response to protons, pions, and electrons is obtained from these data. A measurement of the parameter in Birks' law and an estimate of the tracking efficiency are extracted from the proton sample. Overall the data are well described by a Geant4-based Monte Carlo simulation of the detector and particle interactions withmore » agreements better than 4% for the calorimetric response, though some features of the data are not precisely modeled. Furthermore, these measurements are used to tune the MINERvA detector simulation and evaluate systematic uncertainties in support of the MINERvA neutrino cross-section measurement program.« less

  9. Use of Digital Volume Correlation to Measure Deformation of Shale Using Natural Markers

    NASA Astrophysics Data System (ADS)

    Dewers, T. A.; Quintana, E.; Ingraham, M. D.; Jacques, C. L.

    2016-12-01

    We apply digital volume correlation (DVC) to interpreting deformation as influenced by shale heterogeneity. An extension of digital image correlation, DVC uses 3D images (CT Scans) of a sample before, during and after loading to determine deformation in terms of a 3D strain map. The technology tracks the deformation of high and low density regions within the sample to determine full field 3D strains within the sample. High pyrite shales (Woodford and Marcellus in this study) are being used as the high density pyrite serves as an excellent point to track in the volume correlation. Preliminary results indicate that this technology is promising for measuring true volume strains, strain localization, and strain portioning by microlithofacies within specimens during testing. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. Characterization of a Track-and-Hold Amplifier for Application to a High Performance SAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DUBBERT, DALE F.; HARDIN, TERRY LYNN; DELAPLAIN, GILBERT G.

    2002-07-01

    A Synthetic Aperture Radar (SAR) which employs direct IF sampling can significantly reduce the complexity of the analog electronics prior to the analog-to-digital converter (ADC). For relatively high frequency IF bands, a wide-bandwidth track-and-hold amplifier (THA) is required prior to the ADC. The THA functions primarily as a means of converting, through bandpass sampling, the IF signal to a baseband signal which can be sampled by the ADC. For a wide-band, high dynamic-range receiver system, such as a SAR receiver, stringent performance requirements are placed on the THA. We first measure the THA parameters such as gain, gain compression, third-ordermore » intercept (TOI), signal-to-noise ratio (SNR), spurious-free dynamic-range (SFDR), noise figure (NF), and phase noise. The results are then analyzed in terms of their respective impact on the overall performance of the SAR. The specific THA under consideration is the Rockwell Scientific RTH010.« less

  11. Predictive Service Life Tests for Roofing Membranes: Phase II Investigation of Accelerated Aging Tests for Tracking Degradation of Roofing Membrane Materials

    DTIC Science & Technology

    2002-09-01

    bitumens, EPDM , and PVC. Most heat-driven aging tests for building materials use a temperature of 70 °C. Ultraviolet radiation exposure in the...of 0.85 mm/sec. These samples generated three types of load-strain curves. A relatively straight line was generated by each EPDM rubber sample...Mathey 1974) at -18 °C. Except for the EPDM rubber membranes and Sample H, all samples tested comply with this suggested requirement. Sample H is an

  12. Development and Commissioning of an External Beam Facility in the Union College Ion Beam Analysis Laboratory

    NASA Astrophysics Data System (ADS)

    Yoskowitz, Joshua; Clark, Morgan; Labrake, Scott; Vineyard, Michael

    2015-10-01

    We have developed an external beam facility for the 1.1-MV tandem Pelletron accelerator in the Union College Ion Beam Analysis Laboratory. The beam is extracted from an aluminum pipe through a 1 / 4 ' ' diameter window with a 7.5- μm thick Kapton foil. This external beam facility allows us to perform ion beam analysis on samples that cannot be put under vacuum, including wet samples and samples too large to fit into the scattering chamber. We have commissioned the new facility by performing proton induced X-ray emission (PIXE) analysis of several samples of environmental interest. These include samples of artificial turf, running tracks, and a human tooth with an amalgam filling. A 1.7-MeV external proton beam was incident on the samples positioned 2 cm from the window. The resulting X-rays were measured using a silicon drift detector and were analyzed using GUPIX software to determine the concentrations of elements in the samples. The results on the human tooth indicate that while significant concentrations of Hg, Ag, and Sn are present in the amalgam filling, only trace amounts of Hg appear to have leached into the tooth. The artificial turf and running tracks show rather large concentrations of a broad range of elements and trace amounts of Pb in the turf infill.

  13. [Maria Skłodowska-Curie--her chemistry at the centenary of the second Nobel Prize].

    PubMed

    Zagórski, Zbigniew Paweł; Kornacka, Ewa Maria

    2012-01-01

    The article presents from the perspective of one hundred years the work of Maria Curie-Skłodowska, which in many cases was ahead of the state of knowledge of the time. It opened new horizons and for this reason we made many digressions. The fact of awarding her the Nobel Prize twice is a sensation enough to present the values of careful activity of the Nobel Prize Committee that emphasizes the importance of Maria's achievements. A significant element of Maria Skłodowska-Curie's achievements was still mysterious character of the radiation in her time, and only chemical approach made it possible to organise the phenomena and explain the origin of the radiation. The essence of the research was an arduous separation of components following the track of growing radiation of successive fractions of preparations. This research was a start of the technology of educement of dispersed elements in great mass of materials. We underline the paramount role of the chemical research Maria Skłodowska conducted while still in Warsaw in the laboratories of the Museum of Industry and Agriculture under the guidance of an excellent chemist Józef Jerzy Boguski. Her research in Paris was the origin of the semi-commercial scale in chemistry and setting aside a special shed outside the university building was the beginning of the institutes that now function beyond universities and are key element of scientific and technical progress. Technology of splitting developed by Maria Skłodowska-Curie was applied also by other radiochemists, e.g. By Otto Hahn. Lively movement in radiochemistry of her lifetime resulted in Maria's disputes with e.g. German chemist Marckwald, who questioned the originality of polonium. The scientific disputes like this one Maria won triumphantly although in several others she had to accept opponents' argument, as in the case of radon. Her experiments were planned with utmost rationality as it was with the rejection of the hypothesis saying that radioactivity was transferred from the outer space or from the sun. A great part of Maria Skłodowska-Curie's work was connected with biology which was demonstrated by describing in mathematical terms, for the first time in the history of radiobiology, nonexistent at that time, of the phenomenon of inactivation of bacteria by ionizing radiation. We emphasize difficult conditions for the health of the radiochemists of the time but we don't find any proof that there was any influence of ionizing radiation on Maria's health. She must have absorbed much greater doses of radiation during her heroic work in the mobile radiological surgery at the front of the 1st World War. We don't think it's appropriate to speculate rashly about contamination with alpha emitters. Unfortunately, due to her family's protest it was impossible to collect samples of remains before their relocation to the Pantheon in Paris.

  14. Diffuse Volcanism at the Young End of the Walvis Ridge - Tristan - Gough Seamount Province: Geochemical Sampling and Constraints on Plume Dynamics

    NASA Astrophysics Data System (ADS)

    Class, C.; Koppers, A. A. P.; Sager, W. W.; Schnur, S.

    2014-12-01

    The Walvis Ridge-Tristan/Gough seamount province in the South Atlantic represents 130 Myr of continuous intra-plate volcanism that can be connected to the once conjunct Parana-Etendeka flood basalt province. With this it represents one of the few primary hotspots consistent with the thermal plume model. However, around 60 Ma, the morphological expression of the Walvis Ridge changed drastically from a robust 200 km wide aseismic ridge into a 400 km wide region of diffuse and diminished volcanism. As a result, this part of the plume trail has been described by two subtracks, one ending at Tristan da Cunha and another at Gough Island more than 400 km to the SSE. Where the Walvis Ridge forks into these two tracks there is a center prong. There is also the 39.5°S lineament of seamounts between, but oblique to, the two subtracks, which is parallel to the local fracture zone directions. All these features are at odds with the classical definition of a narrow hotspot track although Rohde et al. (2013) showed that the Tristan and Gough subtracks retain a distinct geochemical signature over 70 Myr and are consistent with a zoned, deep-seated plume. The first Sr-Nd-Hf-Pb isotopic and trace element analyses from the detailed dredge sampling cruise MV1203 show that samples from two prominent seamounts at the western end of the 39.5°S lineament have a Gough-type signature, which makes an upper mantle source for this lineament unlikely but rather indicates that the Gough-type source stretches some 200 km NNW from Gough. Tristan track seamount samples are comparable with published data, however, one new sample has a Gough-type composition suggesting leakage of this component into the Tristan-type plume zone. Seamounts on the middle prong of the Walvis Ridge fork have compositions intermediate to Gough and Tristan domains, suggesting mixing between sources or melts of the two domains. Thus, the Gough-component in the last 60 Myr of plume activity is volumetrically much more significant than previously apparent in only a small number of seamounts with this signature. A spread over much of the width of the seamount province is indicated including some leakage into the Tristan track.

  15. Simulated fissioning of uranium and testing of the fission-track dating method

    USGS Publications Warehouse

    McGee, V.E.; Johnson, N.M.; Naeser, C.W.

    1985-01-01

    A computer program (FTD-SIM) faithfully simulates the fissioning of 238U with time and 235U with neutron dose. The simulation is based on first principles of physics where the fissioning of 238U with the flux of time is described by Ns = ??f 238Ut and the fissioning of 235U with the fluence of neutrons is described by Ni = ??235U??. The Poisson law is used to set the stochastic variation of fissioning within the uranium population. The life history of a given crystal can thus be traced under an infinite variety of age and irradiation conditions. A single dating attempt or up to 500 dating attempts on a given crystal population can be simulated by specifying the age of the crystal population, the size and variation in the areas to be counted, the amount and distribution of uranium, the neutron dose to be used and its variation, and the desired ratio of 238U to 235U. A variety of probability distributions can be applied to uranium and counting-area. The Price and Walker age equation is used to estimate age. The output of FTD-SIM includes the tabulated results of each individual dating attempt (sample) on demand and/or the summary statistics and histograms for multiple dating attempts (samples) including the sampling age. An analysis of the results from FTD-SIM shows that: (1) The external detector method is intrinsically more precise than the population method. (2) For the external detector method a correlation between spontaneous track count, Ns, and induced track count, Ni, results when the population of grains has a stochastic uranium content and/or when the counting areas between grains are stochastic. For the population method no correlation can exist. (3) In the external detector method the sampling distribution of age is independent of the number of grains counted. In the population method the sampling distribution of age is highly dependent on the number of grains counted. (4) Grains with zero-track counts, either in Ns or Ni, are in integral part of fissioning theory and under certain circumstances must be included in any estimate of age. (5) In estimating standard error of age the standard error of Ns and Ni and ?? must be accurately estimated and propagated through the age equation. Several statistical models are presently available to do so. ?? 1985.

  16. On the influence of etch pits in the overall dissolution rate of apatite basal sections

    NASA Astrophysics Data System (ADS)

    Alencar, Igor; Guedes, Sandro; Palissari, Rosane; Hadler, Julio C.

    2015-09-01

    Determination of efficiencies for particle detection plays a central role for proper estimation of reaction rates. If chemical etching is employed in the revelation of latent particle tracks in solid-state detectors, dissolution rates and etchable lengths are important factors governing the revelation and observation. In this work, the mask method, where a reference part of the sample is protected during dissolution, was employed to measure step heights in basal sections of apatite etched with a nitric acid, HNO, solution at a concentration of 1.1 M and a temperature of 20 °C. We show a drastic increase in the etching velocity as the number of etch pits in the surface augments, in accordance with the dissolution stepwave model, where the outcrop of each etch pit generates a continuous sequence of stepwaves. The number of etch pits was varied by irradiation with neutrons and perpendicularly incident heavy ions. The size dependence of the etch-pit opening with etching duration for ion (200-300 MeV 152Sm and 238U) tracks was also investigated. There is no distinction for the etch pits between the different ions, and the dissolution seems to be governed by the opening velocity when a high number of etch pits are present in the surface. Measurements of the etchable lengths of these ion tracks show an increase in these lengths when samples are not pre-annealed before irradiation. We discuss the implications of these findings for fission-track modelling.

  17. Combustion Organic Aerosol as Cloud Condensation Nuclei in Ship Tracks.

    NASA Astrophysics Data System (ADS)

    Russell, Lynn M.; Noone, Kevin J.; Ferek, Ronald J.; Pockalny, Robert A.; Flagan, Richard C.; Seinfeld, John H.

    2000-08-01

    Polycyclic aromatic hydrocarbons (PAHs) have been sampled in marine stratiform clouds to identify the contribution of anthropogenic combustion emissions in activation of aerosol to cloud droplets. The Monterey Area Ship Track experiment provided an opportunity to acquire data on the role of organic compounds in ambient clouds and in ship tracks identified in satellite images. Identification of PAHs in cloud droplet residual samples indicates that several PAHs are present in cloud condensation nuclei in anthropogenically influenced air and do result in activated droplets in cloud. These results establish the presence of combustion products, such as PAHs, in submicrometer aerosols in anthropogenically influenced marine air, with enhanced concentrations in air polluted by ship effluent. The presence of PAHs in droplet residuals in anthropogenically influenced air masses indicates that some fraction of those combustion products is present in the cloud condensation nuclei that activate in cloud. Although a sufficient mass of droplet residuals was not collected to establish a similar role for organics from measurements in satellite-identified ship tracks, the available evidence from the fraction of organics present in the interstitial aerosol is consistent with part of the organic fraction partitioning to the droplet population. In addition, the probability that a compound will be found in cloud droplets rather than in the unactivated aerosol and the compound's water solubility are compared. The PAHs studied are only weakly soluble in water, but most of the sparse data collected support more soluble compounds having a higher probability of activation.

  18. Amphibian breeding phenology and reproductive outcome: an examination using terrestrial and aquatic sampling

    Treesearch

    C.H. Greenberg; S.A. Johnson; R. Owen; A. Storfer

    2017-01-01

    Worldwide amphibian declines highlight the need for programs that monitor species presence and track population trends. We sampled larval amphibians with a box trap at 3-week intervals for 23 months in eight wetlands, and concurrently trapped adults and juveniles with drift fences, to examine spatiotemporal patterns of tadpole occurrence; explore relationships between...

  19. Effects of DNA Extraction Procedures on Bacteroides Profiles in Fecal Samples From Various Animals Determined by Terminal Restriction Fragment Length Polymorphism Analysis

    EPA Science Inventory

    A major assumption in microbial source tracking is that some fecal bacteria are specific to a host animal, and thus provide unique microbial fingerprints that can be used to differentiate hosts. However, the DNA information obtained from a particular sample may be biased dependi...

  20. Investigations in the Science of Sports.

    ERIC Educational Resources Information Center

    Hammrich, Penny L.; Fadigan, Kathleen

    2003-01-01

    Describes the Sisters in Sport Science (SISS) program which provides equitable access for girls to science and mathematics through sports. Includes a sample SISS activity that integrates track and physical sciences. (YDS)

Top