Sample records for radiographic image quality

  1. Sliding window adaptive histogram equalization of intraoral radiographs: effect on image quality.

    PubMed

    Sund, T; Møystad, A

    2006-05-01

    To investigate whether contrast enhancement by non-interactive, sliding window adaptive histogram equalization (SWAHE) can enhance the image quality of intraoral radiographs in the dental clinic. Three dentists read 22 periapical and 12 bitewing storage phosphor (SP) radiographs. For the periapical readings they graded the quality of the examination with regard to visually locating the root apex. For the bitewing readings they registered all occurrences of approximal caries on a confidence scale. Each reading was first done on an unprocessed radiograph ("single-view"), and then re-done with the image processed with SWAHE displayed beside the unprocessed version ("twin-view"). The processing parameters for SWAHE were the same for all the images. For the periapical examinations, twin-view was judged to raise the image quality for 52% of those cases where the single-view quality was below the maximum. For the bitewing radiographs, there was a change of caries classification (both positive and negative) with twin-view in 19% of the cases, but with only a 3% net increase in the total number of caries registrations. For both examinations interobserver variance was unaffected. Non-interactive SWAHE applied to dental SP radiographs produces a supplemental contrast enhanced image which in twin-view reading improves the image quality of periapical examinations. SWAHE also affects caries diagnosis of bitewing images, and further study using a gold standard is warranted.

  2. A comparison of defect size and film quality obtained from Film digitized image and digital image radiographs

    NASA Astrophysics Data System (ADS)

    Kamlangkeng, Poramate; Asa, Prateepasen; Mai, Noipitak

    2014-06-01

    Digital radiographic testing is an acceptable premature nondestructive examination technique. Its performance and limitation comparing to the old technique are still not widely well known. In this paper conducted the study on the comparison of the accuracy of the defect size measurement and film quality obtained from film and digital radiograph techniques by testing in specimens and known size sample defect. Initially, one specimen was built with three types of internal defect; which are longitudinal cracking, lack of fusion, and porosity. For the known size sample defect, it was machined various geometrical size for comparing the accuracy of the measuring defect size to the real size in both film and digital images. To compare the image quality by considering at smallest detectable wire and the three defect images. In this research used Image Quality Indicator (IQI) of wire type 10/16 FE EN BS EN-462-1-1994. The radiographic films were produced by X-ray and gamma ray using Kodak AA400 size 3.5x8 inches, while the digital images were produced by Fuji image plate type ST-VI with 100 micrometers resolution. During the tests, a radiator GE model MF3 was implemented. The applied energy is varied from 120 to 220 kV and the current from 1.2 to 3.0 mA. The intensity of Iridium 192 gamma ray is in the range of 24-25 Curie. Under the mentioned conditions, the results showed that the deviation of the defect size measurement comparing to the real size obtained from the digital image radiographs is below than that of the film digitized, whereas the quality of film digitizer radiographs is higher in comparison.

  3. Digital processing of radiographic images from PACS to publishing.

    PubMed

    Christian, M E; Davidson, H C; Wiggins, R H; Berges, G; Cannon, G; Jackson, G; Chapman, B; Harnsberger, H R

    2001-03-01

    Several studies have addressed the implications of filmless radiologic imaging on telemedicine, diagnostic ability, and electronic teaching files. However, many publishers still require authors to submit hard-copy images for publication of articles and textbooks. This study compares the quality digital images directly exported from picture archive and communications systems (PACS) to images digitized from radiographic film. The authors evaluated the quality of publication-grade glossy photographs produced from digital radiographic images using 3 different methods: (1) film images digitized using a desktop scanner and then printed, (2) digital images obtained directly from PACS then printed, and (3) digital images obtained from PACS and processed to improve sharpness prior to printing. Twenty images were printed using each of the 3 different methods and rated for quality by 7 radiologists. The results were analyzed for statistically significant differences among the image sets. Subjective evaluations of the filmless images found them to be of equal or better quality than the digitized images. Direct electronic transfer of PACS images reduces the number of steps involved in creating publication-quality images as well as providing the means to produce high-quality radiographic images in a digital environment.

  4. Digitized hand-wrist radiographs: comparison of subjective and software-derived image quality at various compression ratios.

    PubMed

    McCord, Layne K; Scarfe, William C; Naylor, Rachel H; Scheetz, James P; Silveira, Anibal; Gillespie, Kevin R

    2007-05-01

    The objectives of this study were to compare the effect of JPEG 2000 compression of hand-wrist radiographs on observer image quality qualitative assessment and to compare with a software-derived quantitative image quality index. Fifteen hand-wrist radiographs were digitized and saved as TIFF and JPEG 2000 images at 4 levels of compression (20:1, 40:1, 60:1, and 80:1). The images, including rereads, were viewed by 13 orthodontic residents who determined the image quality rating on a scale of 1 to 5. A quantitative analysis was also performed by using a readily available software based on the human visual system (Image Quality Measure Computer Program, version 6.2, Mitre, Bedford, Mass). ANOVA was used to determine the optimal compression level (P < or =.05). When we compared subjective indexes, JPEG compression greater than 60:1 significantly reduced image quality. When we used quantitative indexes, the JPEG 2000 images had lower quality at all compression ratios compared with the original TIFF images. There was excellent correlation (R2 >0.92) between qualitative and quantitative indexes. Image Quality Measure indexes are more sensitive than subjective image quality assessments in quantifying image degradation with compression. There is potential for this software-based quantitative method in determining the optimal compression ratio for any image without the use of subjective raters.

  5. Benchmarking the performance of fixed-image receptor digital radiographic systems part 1: a novel method for image quality analysis.

    PubMed

    Lee, Kam L; Ireland, Timothy A; Bernardo, Michael

    2016-06-01

    This is the first part of a two-part study in benchmarking the performance of fixed digital radiographic general X-ray systems. This paper concentrates on reporting findings related to quantitative analysis techniques used to establish comparative image quality metrics. A systematic technical comparison of the evaluated systems is presented in part two of this study. A novel quantitative image quality analysis method is presented with technical considerations addressed for peer review. The novel method was applied to seven general radiographic systems with four different makes of radiographic image receptor (12 image receptors in total). For the System Modulation Transfer Function (sMTF), the use of grid was found to reduce veiling glare and decrease roll-off. The major contributor in sMTF degradation was found to be focal spot blurring. For the System Normalised Noise Power Spectrum (sNNPS), it was found that all systems examined had similar sNNPS responses. A mathematical model is presented to explain how the use of stationary grid may cause a difference between horizontal and vertical sNNPS responses.

  6. [Evaluation method with radiographic image quality indicator for internal defects of dental casting metallic restoration].

    PubMed

    Li, Y; Zheng, G; Lin, H

    2014-12-18

    To develop a new kind of dental radiographic image quality indicator (IQI) for internal quality of casting metallic restoration to influence on its usage life. Radiographic image quality indicator method was used to evaluate the depth of the defects region and internal quality of 127 casting metallic restoration and the accuracy was compared with that of conventional callipers method. In the 127 cases of casting metallic restoration, 9 were found the thickness less than 0.7 mm and the thinnest thickness only 0.2 mm in 26 casting metallic crowns or bridges' occlusal defects region. The data measured by image quality indicator were consistent with those measured by conventional gauging. Two metal inner crowns were found the thickness less than 0.3 mm in 56 porcelain crowns or bridges. The thickness of casting removable partial denture was more than 1.0 mm, but thinner regions were not found. It was found that in a titanium partial denture, the X-ray image of clasp was not uniform and there were internal porosity defects in the clasp. Special dental image quality indicator can solve the visual error problems caused by different observing backgrounds and estimate the depth of the defects region in the casting.

  7. Experiences with the European guidelines on quality criteria for radiographic images in Tanzania

    PubMed Central

    Muhogora, W. E.; Nyanda, A. M.; Kazema, R. R.

    2001-01-01

    Objective assessment of the quality of radiographic images is practically a difficult task and protocols that address this problem are few. In 1996, the European union published nearly objective image quality criteria to unify the practices in Europe. However, experience with these criteria in countries of lower health care levels is little documented. As a case study in Tanzania, we present the general performance of European guidelines in some Tanzanian hospitals to a total of 200 radiographs obtained from some common x‐ray examinations. The results show that more than 70% of chest (PA), lumbar spine (AP), and pelvis AP radiographs passed the quality criteria, while the performance of lumbar spine LAT x‐ray examinations was about 50% and therefore less satisfactory. The corresponding mean entrance dose to the patient for specified x‐ray techniques was of range 0.08–0.56 mGy, 3.1–7.7 mGy, 2.53–5.4 mGy, and 4.0–16.78 mGy for chest PA, lumbar spine AP, pelvis AP and lumbar spine LAT x‐ray examinations, respectively. Although a good number of observers were not well familiar to the guidelines, the quality criteria have been found useful and their adoption in the country recommended. The need to provide relevant education and training to staff in the radiology departments is of utmost importance. PACS number(s): 87.57.–s, 87.52.–g PMID:11686743

  8. Super-resolution convolutional neural network for the improvement of the image quality of magnified images in chest radiographs

    NASA Astrophysics Data System (ADS)

    Umehara, Kensuke; Ota, Junko; Ishimaru, Naoki; Ohno, Shunsuke; Okamoto, Kentaro; Suzuki, Takanori; Shirai, Naoki; Ishida, Takayuki

    2017-02-01

    Single image super-resolution (SR) method can generate a high-resolution (HR) image from a low-resolution (LR) image by enhancing image resolution. In medical imaging, HR images are expected to have a potential to provide a more accurate diagnosis with the practical application of HR displays. In recent years, the super-resolution convolutional neural network (SRCNN), which is one of the state-of-the-art deep learning based SR methods, has proposed in computer vision. In this study, we applied and evaluated the SRCNN scheme to improve the image quality of magnified images in chest radiographs. For evaluation, a total of 247 chest X-rays were sampled from the JSRT database. The 247 chest X-rays were divided into 93 training cases with non-nodules and 152 test cases with lung nodules. The SRCNN was trained using the training dataset. With the trained SRCNN, the HR image was reconstructed from the LR one. We compared the image quality of the SRCNN and conventional image interpolation methods, nearest neighbor, bilinear and bicubic interpolations. For quantitative evaluation, we measured two image quality metrics, peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In the SRCNN scheme, PSNR and SSIM were significantly higher than those of three interpolation methods (p<0.001). Visual assessment confirmed that the SRCNN produced much sharper edge than conventional interpolation methods without any obvious artifacts. These preliminary results indicate that the SRCNN scheme significantly outperforms conventional interpolation algorithms for enhancing image resolution and that the use of the SRCNN can yield substantial improvement of the image quality of magnified images in chest radiographs.

  9. Implant image quality in dental radiographs recorded using a customized imaging guide or a standard film holder.

    PubMed

    Schropp, Lars; Stavropoulos, Andreas; Spin-Neto, Rubens; Wenzel, Ann

    2012-01-01

    To compare a customized imaging guide and a standard film holder for obtaining optimally projected intraoral radiographs of dental implants. Intraoral radiographs of four screw-type implants with different inclination placed in an upper or lower dental phantom model were recorded by 32 groups of examiners after a short instruction in the use of the RB-RB/LB-LB mnemonic rule. Half of the examiners recorded the images using a standard film holder and the other half used a customized imaging guide. Each radiograph was assessed under blinded conditions with regard to rendering of the implant threads and was assigned to one of four quality categories: (1) perfect, (2) not perfect, but clinically acceptable, (3) not acceptable, and (4) hopeless. For the upper jaw, the same number of exposures per implant were made to achieve an acceptable image (P=0.86) by the standard film holder method (median=2) and the imaging guide method (median=2). For the lower jaw, medians for the imaging guide method and the film holder method were 1 and 2, respectively (P=0.004). For the imaging guide method, the first exposure was rated as perfect/acceptable in 62% of the cases and for the film holder method in 41% of the cases (P=0.013). After ≤ 2 exposures, 78% (imaging guide method) and 69% (film holder method) of the implant images were perfect/acceptable (P=0.23). The implant inclination did not have a major influence on the outcomes. Perfect or acceptable images were achieved after two exposures with the same frequency either using a customized imaging guide method or a standard film holder method. However, the use of a customized imaging guide method was overall significantly superior to a standard film holder method in terms of obtaining perfect or acceptable images with only one exposure. © 2011 John Wiley & Sons A/S.

  10. Digital processing of radiographic images for print publication.

    PubMed

    Cockerill, James W

    2002-01-01

    Digital imaging of X-rays yields high quality, evenly exposed negatives and prints. This article outlines the method used, materials and methods of this technique and discusses the advantages of digital radiographic images.

  11. Validation of an image-based technique to assess the perceptual quality of clinical chest radiographs with an observer study

    NASA Astrophysics Data System (ADS)

    Lin, Yuan; Choudhury, Kingshuk R.; McAdams, H. Page; Foos, David H.; Samei, Ehsan

    2014-03-01

    We previously proposed a novel image-based quality assessment technique1 to assess the perceptual quality of clinical chest radiographs. In this paper, an observer study was designed and conducted to systematically validate this technique. Ten metrics were involved in the observer study, i.e., lung grey level, lung detail, lung noise, riblung contrast, rib sharpness, mediastinum detail, mediastinum noise, mediastinum alignment, subdiaphragm-lung contrast, and subdiaphragm area. For each metric, three tasks were successively presented to the observers. In each task, six ROI images were randomly presented in a row and observers were asked to rank the images only based on a designated quality and disregard the other qualities. A range slider on the top of the images was used for observers to indicate the acceptable range based on the corresponding perceptual attribute. Five boardcertificated radiologists from Duke participated in this observer study on a DICOM calibrated diagnostic display workstation and under low ambient lighting conditions. The observer data were analyzed in terms of the correlations between the observer ranking orders and the algorithmic ranking orders. Based on the collected acceptable ranges, quality consistency ranges were statistically derived. The observer study showed that, for each metric, the averaged ranking orders of the participated observers were strongly correlated with the algorithmic orders. For the lung grey level, the observer ranking orders completely accorded with the algorithmic ranking orders. The quality consistency ranges derived from this observer study were close to these derived from our previous study. The observer study indicates that the proposed image-based quality assessment technique provides a robust reflection of the perceptual image quality of the clinical chest radiographs. The derived quality consistency ranges can be used to automatically predict the acceptability of a clinical chest radiograph.

  12. Fabrication and characteristics of experimental radiographic amplifier screens. [image transducers with improved image contrast and resolution

    NASA Technical Reports Server (NTRS)

    Szepesi, Z.

    1978-01-01

    The fabrication process and transfer characteristics for solid state radiographic image transducers (radiographic amplifier screens) are described. These screens are for use in realtime nondestructive evaluation procedures that require large format radiographic images with contrast and resolution capabilities unavailable with conventional fluoroscopic screens. The screens are suitable for in-motion, on-line radiographic inspection by means of closed circuit television. Experimental effort was made to improve image quality and response to low energy (5 kV and up) X-rays.

  13. Development and validation of a visual grading scale for assessing image quality of AP pelvis radiographic images.

    PubMed

    Mraity, Hussien A A B; England, Andrew; Cassidy, Simon; Eachus, Peter; Dominguez, Alejandro; Hogg, Peter

    2016-01-01

    The aim of this article was to apply psychometric theory to develop and validate a visual grading scale for assessing the visual perception of digital image quality anteroposterior (AP) pelvis. Psychometric theory was used to guide scale development. Seven phantom and seven cadaver images of visually and objectively predetermined quality were used to help assess scale reliability and validity. 151 volunteers scored phantom images, and 184 volunteers scored cadaver images. Factor analysis and Cronbach's alpha were used to assess scale validity and reliability. A 24-item scale was produced. Aggregated mean volunteer scores for each image correlated with the rank order of the visually and objectively predetermined image qualities. Scale items had good interitem correlation (≥0.2) and high factor loadings (≥0.3). Cronbach's alpha (reliability) revealed that the scale has acceptable levels of internal reliability for both phantom and cadaver images (α = 0.8 and 0.9, respectively). Factor analysis suggested that the scale is multidimensional (assessing multiple quality themes). This study represents the first full development and validation of a visual image quality scale using psychometric theory. It is likely that this scale will have clinical, training and research applications. This article presents data to create and validate visual grading scales for radiographic examinations. The visual grading scale, for AP pelvis examinations, can act as a validated tool for future research, teaching and clinical evaluations of image quality.

  14. Development and validation of a visual grading scale for assessing image quality of AP pelvis radiographic images

    PubMed Central

    England, Andrew; Cassidy, Simon; Eachus, Peter; Dominguez, Alejandro; Hogg, Peter

    2016-01-01

    Objective: The aim of this article was to apply psychometric theory to develop and validate a visual grading scale for assessing the visual perception of digital image quality anteroposterior (AP) pelvis. Methods: Psychometric theory was used to guide scale development. Seven phantom and seven cadaver images of visually and objectively predetermined quality were used to help assess scale reliability and validity. 151 volunteers scored phantom images, and 184 volunteers scored cadaver images. Factor analysis and Cronbach's alpha were used to assess scale validity and reliability. Results: A 24-item scale was produced. Aggregated mean volunteer scores for each image correlated with the rank order of the visually and objectively predetermined image qualities. Scale items had good interitem correlation (≥0.2) and high factor loadings (≥0.3). Cronbach's alpha (reliability) revealed that the scale has acceptable levels of internal reliability for both phantom and cadaver images (α = 0.8 and 0.9, respectively). Factor analysis suggested that the scale is multidimensional (assessing multiple quality themes). Conclusion: This study represents the first full development and validation of a visual image quality scale using psychometric theory. It is likely that this scale will have clinical, training and research applications. Advances in knowledge: This article presents data to create and validate visual grading scales for radiographic examinations. The visual grading scale, for AP pelvis examinations, can act as a validated tool for future research, teaching and clinical evaluations of image quality. PMID:26943836

  15. Exploring the feasibility of traditional image querying tasks for industrial radiographs

    NASA Astrophysics Data System (ADS)

    Bray, Iliana E.; Tsai, Stephany J.; Jimenez, Edward S.

    2015-08-01

    Although there have been great strides in object recognition with optical images (photographs), there has been comparatively little research into object recognition for X-ray radiographs. Our exploratory work contributes to this area by creating an object recognition system designed to recognize components from a related database of radiographs. Object recognition for radiographs must be approached differently than for optical images, because radiographs have much less color-based information to distinguish objects, and they exhibit transmission overlap that alters perceived object shapes. The dataset used in this work contained more than 55,000 intermixed radiographs and photographs, all in a compressed JPEG form and with multiple ways of describing pixel information. For this work, a robust and efficient system is needed to combat problems presented by properties of the X-ray imaging modality, the large size of the given database, and the quality of the images contained in said database. We have explored various pre-processing techniques to clean the cluttered and low-quality images in the database, and we have developed our object recognition system by combining multiple object detection and feature extraction methods. We present the preliminary results of the still-evolving hybrid object recognition system.

  16. Dental digital radiographic imaging.

    PubMed

    Mauriello, S M; Platin, E

    2001-01-01

    Radiographs are an important adjunct to providing oral health care for the total patient. Historically, radiographic images have been produced using film-based systems. However, in recent years, with the arrival of new technologies, many practitioners have begun to incorporate digital radiographic imaging into their practices. Since dental hygienists are primarily responsible for exposing and processing radiographs in the provision of dental hygiene care, it is imperative that they become knowledgeable on the use and application of digital imaging in patient care and record keeping. The purpose of this course is to provide a comprehensive overview of digital radiography in dentistry. Specific components addressed are technological features, diagnostic software, advantages and disadvantages, technique procedures, and legal implications.

  17. Optimisation of the digital radiographic imaging of suspected non-accidental injury

    NASA Astrophysics Data System (ADS)

    Offiah, Amaka

    Aim: To optimise the digital (radiographic) imaging of children presenting with suspected non-accidental injury (NAI). Objectives: (i) To evaluate existing radiographic quality criteria, and to develop a more suitable system if these are found to be inapplicable to skeletal surveys obtained in suspected NAI. (ii) To document differences in image quality between conventional film-screen and the recently installed Fuji5000R computed radiography (CR) system at Great Ormond Street Hospital for Children, (iii) To document the extent of variability in the standard of skeletal surveys obtained in the UK for suspected NAI. (iv) To determine those radiographic parameters which yield the highest diagnostic accuracy, while still maintaining acceptable radiation dose to the child, (v) To determine how varying degrees of edge-enhancement affect diagnostic accuracy. (vi) To establish the accuracy of soft compared to hard copy interpretation of images in suspected NAI. Materials and Methods: (i) and (ii) Retrospective analysis of 286 paediatric lateral spine radiographs by two observers based on the Commission of European Communities (CEC) quality criteria, (iii) Review of the skeletal surveys of 50 consecutive infants referred from hospitals throughout the United Kingdom (UK) with suspected NAI. (iv) Phantom studies. Leeds TO. 10 and TO. 16 test objects were used to compare the relationship between film density, exposure parameters and visualisation of object details, (iv) Clinical study. Anteroposterior and lateral post mortem skull radiographs of six consecutive infants were obtained at various exposures. Six observers independently scored the images based on visualisation of five criteria, (v) and (vi) A study of diagnostic accuracy in which six observers independently interpreted 50 radiographs from printed copies (with varying degrees of edge-enhancement) and from a monitor. Results: The CEC criteria are useful for optimisation of imaging parameters and allow the detection

  18. A method to incorporate the effect of beam quality on image noise in a digitally reconstructed radiograph (DRR) based computer simulation for optimisation of digital radiography

    NASA Astrophysics Data System (ADS)

    Moore, Craig S.; Wood, Tim J.; Saunderson, John R.; Beavis, Andrew W.

    2017-09-01

    The use of computer simulated digital x-radiographs for optimisation purposes has become widespread in recent years. To make these optimisation investigations effective, it is vital simulated radiographs contain accurate anatomical and system noise. Computer algorithms that simulate radiographs based solely on the incident detector x-ray intensity (‘dose’) have been reported extensively in the literature. However, while it has been established for digital mammography that x-ray beam quality is an important factor when modelling noise in simulated images there are no such studies for diagnostic imaging of the chest, abdomen and pelvis. This study investigates the influence of beam quality on image noise in a digital radiography (DR) imaging system, and incorporates these effects into a digitally reconstructed radiograph (DRR) computer simulator. Image noise was measured on a real DR imaging system as a function of dose (absorbed energy) over a range of clinically relevant beam qualities. Simulated ‘absorbed energy’ and ‘beam quality’ DRRs were then created for each patient and tube voltage under investigation. Simulated noise images, corrected for dose and beam quality, were subsequently produced from the absorbed energy and beam quality DRRs, using the measured noise, absorbed energy and beam quality relationships. The noise images were superimposed onto the noiseless absorbed energy DRRs to create the final images. Signal-to-noise measurements in simulated chest, abdomen and spine images were within 10% of the corresponding measurements in real images. This compares favourably to our previous algorithm where images corrected for dose only were all within 20%.

  19. Application of an electronic image analyzer to dimensional measurements from neutron radiographs

    NASA Technical Reports Server (NTRS)

    Vary, A.; Bowles, K. J.

    1973-01-01

    Means of obtaining improved dimensional measurements from neutron radiographs of nuclear fuel elements are discussed. The use of video-electronic image analysis relative to edge definition in radiographic images is described. Based on this study, an edge definition criterion is proposed for overcoming image unsharpness effects in taking accurate diametral measurements from radiographs. An electronic density slicing method for automatic edge definition is described. Results of measurements made with video micrometry are compared with scanning microdensitometer and micrometric physical measurements. An image quality indicator for estimating photographic and geometric unsharpness is described.

  20. Bone texture analysis on dental radiographic images: results with several angulated radiographs on the same region of interest

    NASA Astrophysics Data System (ADS)

    Amouriq, Yves; Guedon, Jeanpierre; Normand, Nicolas; Arlicot, Aurore; Benhdech, Yassine; Weiss, Pierre

    2011-03-01

    Bone microarchitecture is the predictor of bone quality or bone disease. It can only be measured on a bone biopsy, which is invasive and not available for all clinical situations. Texture analysis on radiographs is a common way to investigate bone microarchitecture. But relationship between three-dimension histomorphometric parameters and two-dimension texture parameters is not always well known, with poor results. The aim of this study is to performed angulated radiographs of the same region of interest and see if a better relationship between texture analysis on several radiographs and histomorphometric parameters can be developed. Computed radiography images of dog (Beagle) mandible section in molar regions were compared with high-resolution micro-CT (Computed-Tomograph) volumes. Four radiographs with 27° angle (up, down, left, right, using Rinn ring and customized arm positioning system) were performed from initial radiograph position. Bone texture parameters were calculated on all images. Texture parameters were also computed from new images obtained by difference between angulated images. Results of fractal values in different trabecular areas give some caracterisation of bone microarchitecture.

  1. Novel Card Games for Learning Radiographic Image Quality and Urologic Imaging in Veterinary Medicine.

    PubMed

    Ober, Christopher P

    Second-year veterinary students are often challenged by concepts in veterinary radiology, including the fundamentals of image quality and generation of differential lists. Four card games were developed to provide veterinary students with a supplemental means of learning about radiographic image quality and differential diagnoses in urogenital imaging. Students played these games and completed assessments of their subject knowledge before and after playing. The hypothesis was that playing each game would improve students' understanding of the topic area. For each game, students who played the game performed better on the post-test than students who did not play that game (all p<.01). For three of the four games, students who played each respective game demonstrated significant improvement in scores between the pre-test and the post-test (p<.002). The majority of students expressed that the games were both helpful and enjoyable. Educationally focused games can help students learn classroom and laboratory material. However, game design is important, as the game using the most passive learning process also demonstrated the weakest results. In addition, based on participants' comments, the games were very useful in improving student engagement in the learning process. Thus, use of games in the classroom and laboratory setting seems to benefit the learning process.

  2. Improving the Quality of Radiographs in Neonatal Intensive Care Unit Utilizing Educational Interventions.

    PubMed

    Gupta, Ashish O; Rorke, Jeanne; Abubakar, Kabir

    2015-08-01

    We aimed to develop an educational tool to improve the radiograph quality, sustain this improvement overtime, and reduce the number of repeat radiographs. A three phase quality control study was conducted at a tertiary care NICU. A retrospective data collection (phase1) revealed suboptimal radiograph quality and led to an educational intervention and development of X-ray preparation checklist (primary intervention), followed by a prospective data collection for 4 months (phase 2). At the end of phase 2, interim analysis revealed a gradual decline in radiograph quality, which prompted a more comprehensive educational session with constructive feedback to the NICU staff (secondary intervention), followed by another data collection for 6 months (phase 3). There was a significant improvement in the quality of radiographs obtained after primary educational intervention (phase 2) compared with phase 1 (p < 0.001). During interim analysis after phase 2, radiograph quality declined but still remained significantly better than phase 1. Secondary intervention resulted in significant improvement in radiograph quality to > 95% in all domains of image quality. No radiographs were repeated in phase 3, compared with 5.8% (16/277) in phase 1. A structured, collaborated educational intervention successfully improves the radiograph quality and decreases the need for repeat radiographs and radiation exposure in the neonates. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. Examination Outcomes Following Use of Card Games for Learning Radiographic Image Quality in Veterinary Medicine.

    PubMed

    Ober, Christopher P

    Understanding the concepts of radiographic image quality and artifact formation can be difficult for veterinary students. Two educational card games were previously developed to help students learn about factors affecting contrast and blackness as well as radiographic artifacts. Second-year veterinary students played one of the two card games as a part of their normal studies for their veterinary imaging course and later took the radiographic physics quiz normally administered during the course. Performance on quiz questions related to each of the two games was compared between students who played each respective game and those who did not. The hypothesis was that students who played a game would perform better on related questions than those who did not play that game. For the contrast and blackness questions, students who played the associated game as part of their studies performed better than those who only studied by conventional means (mean 4.3 vs. 3.8 out of 5 points, p=.02). However, there was no significant difference in results between groups for artifacts questions (mean 4.7 vs. 4.5 out of 5 points, p=.35). Based on these results, educational game play can have benefits to student learning, but performance may be dependent on specific game objectives and play mechanics.

  4. Digital radiographic imaging transfer: comparison with plain radiographs.

    PubMed

    Averch, T D; O'Sullivan, D; Breitenbach, C; Beser, N; Schulam, P G; Moore, R G; Kavoussi, L R

    1997-04-01

    Advances in digital imaging and computer display technology have allowed development of clinical teleradiographic systems. There are limited data assessing the effectiveness of such systems when applied to urologic pathology. In an effort to appraise the effectiveness of teleradiology in identifying renal calculi, the accuracy of findings on transmitted radiographic images were compared with those made when viewing the actual plain film. Plain films (KUB) were obtained from 26 patients who presented to the radiology department to rule out urinary calculous disease. The films were digitalized by a radiograph scanner into ARCNEMA-2 file format, compressed by a NASA algorithm, and transferred via a 28.8-kbps modern over standard telephone lines to a remote section 25 miles away, where they were decompressed and viewed on a 1600 x 1200-pixel monitor. Two attending urologists and two endourologic fellows were randomized to read either the transmitted image or the original radiograph with minimal clinical history provided. Of the 26 plain radiographic films, 24 were correctly interpreted by the fellows and 25 by the attending physicians (92% and 96% accuracy, respectively) for a total accuracy of 94% with no statistical difference (p = 0.16). After compression, all but one of the digital images were transferred successfully. The attending physicians correctly interpreted 24 of the 25 digital images (96%), whereas the fellows were correct on 21 interpretations (84%), resulting in a total 90% accuracy with a significant difference between the groups (p < or = 0.04). Overall, no statistical difference between the interpretations of the plain film and the digital image was revealed (p = 0.21). Using available technology, KUB images can be transmitted to a remote site, and the location of a stone can be determined correctly. Higher accuracy is demonstrated by experienced surgeons.

  5. Potential usefulness of a video printer for producing secondary images from digitized chest radiographs

    NASA Astrophysics Data System (ADS)

    Nishikawa, Robert M.; MacMahon, Heber; Doi, Kunio; Bosworth, Eric

    1991-05-01

    Communication between radiologists and clinicians could be improved if a secondary image (copy of the original image) accompanied the radiologic report. In addition, the number of lost original radiographs could be decreased, since clinicians would have less need to borrow films. The secondary image should be simple and inexpensive to produce, while providing sufficient image quality for verification of the diagnosis. We are investigating the potential usefulness of a video printer for producing copies of radiographs, i.e. images printed on thermal paper. The video printer we examined (Seikosha model VP-3500) can provide 64 shades of gray. It is capable of recording images up to 1,280 pixels by 1,240 lines and can accept any raster-type video signal. The video printer was characterized in terms of its linearity, contrast, latitude, resolution, and noise properties. The quality of video-printer images was also evaluated in an observer study using portable chest radiographs. We found that observers could confirm up to 90 of the reported findings in the thorax using video- printer images, when the original radiographs were of high quality. The number of verified findings was diminished when high spatial resolution was required (e.g. detection of a subtle pneumothorax) or when a low-contrast finding was located in the mediastinal area or below the diaphragm (e.g. nasogastric tubes).

  6. Shortcomings of low-cost imaging systems for viewing computed radiographs.

    PubMed

    Ricke, J; Hänninen, E L; Zielinski, C; Amthauer, H; Stroszczynski, C; Liebig, T; Wolf, M; Hosten, N

    2000-01-01

    To assess potential advantages of a new PC-based viewing tool featuring image post-processing for viewing computed radiographs on low-cost hardware (PC) with a common display card and color monitor, and to evaluate the effect of using color versus monochrome monitors. Computed radiographs of a statistical phantom were viewed on a PC, with and without post-processing (spatial frequency and contrast processing), employing a monochrome or a color monitor. Findings were compared with the viewing on a radiological Workstation and evaluated with ROC analysis. Image post-processing improved the perception of low-contrast details significantly irrespective of the monitor used. No significant difference in perception was observed between monochrome and color monitors. The review at the radiological Workstation was superior to the review done using the PC with image processing. Lower quality hardware (graphic card and monitor) used in low cost PCs negatively affects perception of low-contrast details in computed radiographs. In this situation, it is highly recommended to use spatial frequency and contrast processing. No significant quality gain has been observed for the high-end monochrome monitor compared to the color display. However, the color monitor was affected stronger by high ambient illumination.

  7. Clinical image quality evaluation for panoramic radiography in Korean dental clinics

    PubMed Central

    Choi, Bo-Ram; Choi, Da-Hye; Huh, Kyung-Hoe; Yi, Won-Jin; Heo, Min-Suk; Choi, Soon-Chul; Bae, Kwang-Hak

    2012-01-01

    Purpose The purpose of this study was to investigate the level of clinical image quality of panoramic radiographs and to analyze the parameters that influence the overall image quality. Materials and Methods Korean dental clinics were asked to provide three randomly selected panoramic radiographs. An oral and maxillofacial radiology specialist evaluated those images using our self-developed Clinical Image Quality Evaluation Chart. Three evaluators classified the overall image quality of the panoramic radiographs and evaluated the causes of imaging errors. Results A total of 297 panoramic radiographs were collected from 99 dental hospitals and clinics. The mean of the scores according to the Clinical Image Quality Evaluation Chart was 79.9. In the classification of the overall image quality, 17 images were deemed 'optimal for obtaining diagnostic information,' 153 were 'adequate for diagnosis,' 109 were 'poor but diagnosable,' and nine were 'unrecognizable and too poor for diagnosis'. The results of the analysis of the causes of the errors in all the images are as follows: 139 errors in the positioning, 135 in the processing, 50 from the radiographic unit, and 13 due to anatomic abnormality. Conclusion Panoramic radiographs taken at local dental clinics generally have a normal or higher-level image quality. Principal factors affecting image quality were positioning of the patient and image density, sharpness, and contrast. Therefore, when images are taken, the patient position should be adjusted with great care. Also, standardizing objective criteria of image density, sharpness, and contrast is required to evaluate image quality effectively. PMID:23071969

  8. Improving the diagnostic quality and adequacy of shoulder radiographs in a District General Hospital

    PubMed Central

    Richards, Bethany; Riley, James; Saithna, Adnan

    2016-01-01

    A high rate of suboptimal shoulder radiographs was identified during a service evaluation exercise in our orthopaedic outpatient clinics. Inadequate radiographs require a return to the radiology department for further imaging, a resultant increased workload, delays in the clinic, increased radiation for patients, and inconvenience and decreased patient satisfaction. Furthermore, if a sub-optimal radiograph is accepted there is concern that diagnoses may be missed. The aim of this project was to decrease the rate of suboptimal radiographs by delivering a teaching package directed towards quality improvement. Evaluation criteria were set for standard orthopaedic shoulder radiographs (Anterior-posterior, axillary, and Velpeau views). Baseline data collection was performed over three, two-week periods and included all patients attending the shoulder clinic. The percentage of x-rays which were deemed adequate was only 19.4% for anterior-posterior views and 57.9% for axillary views. A comprehensive educational package was delivered to radiographers. This included a formal PowerPoint based teaching session, hands on training with practice using a skeleton, posters with step-by step instructions on how to obtain an adequate image, and PDF aide memoires suitable for viewing on a smartphone. Two subsequent two-week periods of data collection were performed to evaluate the benefit of this intervention. Delivery of focussed training and provision of easily accessible aide memoires to facilitate improved quality of radiographs resulted in a significant (p<0.05) reduction in the rate of inadequate images. There was also a significant decreases in the rate of return to the radiology department for repeat imaging. PMID:27559473

  9. Interactive radiographic image retrieval system.

    PubMed

    Kundu, Malay Kumar; Chowdhury, Manish; Das, Sudeb

    2017-02-01

    Content based medical image retrieval (CBMIR) systems enable fast diagnosis through quantitative assessment of the visual information and is an active research topic over the past few decades. Most of the state-of-the-art CBMIR systems suffer from various problems: computationally expensive due to the usage of high dimensional feature vectors and complex classifier/clustering schemes. Inability to properly handle the "semantic gap" and the high intra-class versus inter-class variability problem of the medical image database (like radiographic image database). This yields an exigent demand for developing highly effective and computationally efficient retrieval system. We propose a novel interactive two-stage CBMIR system for diverse collection of medical radiographic images. Initially, Pulse Coupled Neural Network based shape features are used to find out the most probable (similar) image classes using a novel "similarity positional score" mechanism. This is followed by retrieval using Non-subsampled Contourlet Transform based texture features considering only the images of the pre-identified classes. Maximal information compression index is used for unsupervised feature selection to achieve better results. To reduce the semantic gap problem, the proposed system uses a novel fuzzy index based relevance feedback mechanism by incorporating subjectivity of human perception in an analytic manner. Extensive experiments were carried out to evaluate the effectiveness of the proposed CBMIR system on a subset of Image Retrieval in Medical Applications (IRMA)-2009 database consisting of 10,902 labeled radiographic images of 57 different modalities. We obtained overall average precision of around 98% after only 2-3 iterations of relevance feedback mechanism. We assessed the results by comparisons with some of the state-of-the-art CBMIR systems for radiographic images. Unlike most of the existing CBMIR systems, in the proposed two-stage hierarchical framework, main importance

  10. Application of the EM algorithm to radiographic images.

    PubMed

    Brailean, J C; Little, D; Giger, M L; Chen, C T; Sullivan, B J

    1992-01-01

    The expectation maximization (EM) algorithm has received considerable attention in the area of positron emitted tomography (PET) as a restoration and reconstruction technique. In this paper, the restoration capabilities of the EM algorithm when applied to radiographic images is investigated. This application does not involve reconstruction. The performance of the EM algorithm is quantitatively evaluated using a "perceived" signal-to-noise ratio (SNR) as the image quality metric. This perceived SNR is based on statistical decision theory and includes both the observer's visual response function and a noise component internal to the eye-brain system. For a variety of processing parameters, the relative SNR (ratio of the processed SNR to the original SNR) is calculated and used as a metric to compare quantitatively the effects of the EM algorithm with two other image enhancement techniques: global contrast enhancement (windowing) and unsharp mask filtering. The results suggest that the EM algorithm's performance is superior when compared to unsharp mask filtering and global contrast enhancement for radiographic images which contain objects smaller than 4 mm.

  11. Proton Radiography Imager:Generates Synthetic Proton Radiographs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilks, Scott C.; Black, Mason R.

    ProRad is a computer program that is used to generate synthetic images of proton (or other charged particles) radiographs. The proton radiographs arc images that arc obtained by sending energetic protons (or electrons or positrons, for example) through 11 plasma where electric and/or magnetic fields alter the particles trajectory, Dnd the variations me imaged on RC film, image plate, or equivalent

  12. Digital radiographic imaging: is the dental practice ready?

    PubMed

    Parks, Edwin T

    2008-04-01

    Digital radiographic imaging is slowly, but surely, replacing film-based imaging. It has many advantages over traditional imaging, but the technology also has some drawbacks. The author presents an overview of the types of digital image receptors available, image enhancement software and the range of costs for the new technology. PRACTICE IMPLICATIONS. The expenses associated with converting to digital radiographic imaging are considerable. The purpose of this article is to provide the clinician with an overview of digital radiographic imaging technology so that he or she can be an informed consumer when evaluating the numerous digital systems in the marketplace.

  13. Evaluation of trabecular bone patterns on dental radiographic images: influence of cortical bone

    NASA Astrophysics Data System (ADS)

    Amouriq, Yves; Evenou, Pierre; Arlicot, Aurore; Normand, Nicolas; Layrolle, Pierre; Weiss, Pierre; Guédon, Jean-Pierre

    2010-03-01

    For some authors trabecular bone is highly visible in intraoral radiographs. For other authors, the observed intrabony trabecular pattern is a representation of only the endosteal surface of cortical bone, not of intermedullary striae. The purpose of this preliminary study was to investigate the true anatomical structures that are visible in routine dental radiographs and classically denoted trabecular bone. This is a major point for bone texture analysis on radiographs. Computed radiography (CR) images of dog mandible section in molar region were compared with simulations calculated from high-resolution micro-CT volumes. Calculated simulations were obtained using the Mojette Transform. By digitally editing the CT volume, the simulations were separated into trabecular and cortical components into a region of interest. Different images were compared and correlated, some bone micro-architecture parameters calculated. A high correlation was found between computed radiographs and calculated simulations from micro-CT. The Mojette transform was successful to obtain high quality images. Cortical bone did not contribute to change in a major way simulated images. These first results imply that intrabony trabecular pattern observed on radiographs can not only be a representation of the cortical bone endosteal surface and that trabecular bone is highly visible in intraoral radiographs.

  14. Digital image analysis: improving accuracy and reproducibility of radiographic measurement.

    PubMed

    Bould, M; Barnard, S; Learmonth, I D; Cunningham, J L; Hardy, J R

    1999-07-01

    To assess the accuracy and reproducibility of a digital image analyser and the human eye, in measuring radiographic dimensions. We experimentally compared radiographic measurement using either an image analyser system or the human eye with digital caliper. The assessment of total hip arthroplasty wear from radiographs relies on both the accuracy of radiographic images and the accuracy of radiographic measurement. Radiographs were taken of a slip gauge (30+/-0.00036 mm) and slip gauge with a femoral stem. The projected dimensions of the radiographic images were calculated by trigonometry. The radiographic dimensions were then measured by blinded observers using both techniques. For a single radiograph, the human eye was accurate to 0.26 mm and reproducible to +/-0.1 mm. In comparison the digital image analyser system was accurate to 0.01 mm with a reproducibility of +/-0.08 mm. In an arthroplasty model, where the dimensions of an object were corrected for magnification by the known dimensions of a femoral head, the human eye was accurate to 0.19 mm, whereas the image analyser system was accurate to 0.04 mm. The digital image analysis system is up to 20 times more accurate than the human eye, and in an arthroplasty model the accuracy of measurement increases four-fold. We believe such image analysis may allow more accurate and reproducible measurement of wear from standard follow-up radiographs.

  15. Dose, image quality and spine modeling assessment of biplanar EOS micro-dose radiographs for the follow-up of in-brace adolescent idiopathic scoliosis patients.

    PubMed

    Morel, Baptiste; Moueddeb, Sonia; Blondiaux, Eleonore; Richard, Stephen; Bachy, Manon; Vialle, Raphael; Ducou Le Pointe, Hubert

    2018-05-01

    The aim of this study was to compare the radiation dose, image quality and 3D spine parameter measurements of EOS low-dose and micro-dose protocols for in-brace adolescent idiopathic scoliosis (AIS) patients. We prospectively included 25 consecutive patients (20 females, 5 males) followed for AIS and undergoing brace treatment. The mean age was 12 years (SD 2 years, range 8-15 years). For each patient, in-brace biplanar EOS radiographs were acquired in a standing position using both the conventional low-dose and micro-dose protocols. Dose area product (DAP) was systematically recorded. Diagnostic image quality was qualitatively assessed by two radiologists for visibility of anatomical structures. The reliability of 3D spine modeling between two operators was quantitatively evaluated for the most clinically relevant 3D radiological parameters using intraclass correlation coefficient (ICC). The mean DAP for the posteroanterior and lateral acquisitions was 300 ± 134 and 433 ± 181 mGy cm 2 for the low-dose radiographs, and 41 ± 19 and 81 ± 39 mGy cm 2 for micro-dose radiographs. Image quality was lower with the micro-dose protocol. The agreement was "good" to "very good" for all measured clinical parameters when comparing the low-dose and micro-dose protocols (ICC > 0.73). The micro-dose protocol substantially reduced the delivered dose (by a factor of 5-7 compared to the low-dose protocol) in braced children with AIS. Although image quality was reduced, the micro-dose protocol proved to be adapted to radiological follow-up, with adequate image quality and reliable clinical measurements. These slides can be retrieved under Electronic Supplementary Material.

  16. Digital processing of radiographic images

    NASA Technical Reports Server (NTRS)

    Bond, A. D.; Ramapriyan, H. K.

    1973-01-01

    Some techniques are presented and the software documentation for the digital enhancement of radiographs. Both image handling and image processing operations are considered. The image handling operations dealt with are: (1) conversion of format of data from packed to unpacked and vice versa; (2) automatic extraction of image data arrays; (3) transposition and 90 deg rotations of large data arrays; (4) translation of data arrays for registration; and (5) reduction of the dimensions of data arrays by integral factors. Both the frequency and the spatial domain approaches are presented for the design and implementation of the image processing operation. It is shown that spatial domain recursive implementation of filters is much faster than nonrecursive implementations using fast fourier transforms (FFT) for the cases of interest in this work. The recursive implementation of a class of matched filters for enhancing image signal to noise ratio is described. Test patterns are used to illustrate the filtering operations. The application of the techniques to radiographic images of metallic structures is demonstrated through several examples.

  17. Integration of radiographic images with an electronic medical record.

    PubMed Central

    Overhage, J. M.; Aisen, A.; Barnes, M.; Tucker, M.; McDonald, C. J.

    2001-01-01

    Radiographic images are important and expensive diagnostic tests. However, the provider caring for the patient often does not review the images directly due to time constraints. Institutions can use picture archiving and communications systems to make images more available to the provider, but this may not be the best solution. We integrated radiographic image review into the Regenstrief Medical Record System in order to address this problem. To achieve adequate performance, we store JPEG compressed images directly in the RMRS. Currently, physicians review about 5% of all radiographic studies using the RMRS image review function. PMID:11825241

  18. 42 CFR 37.44 - Approval of radiographic facilities that use digital radiography systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... image acquisition, digitization, processing, compression, transmission, display, archiving, and... quality digital chest radiographs by submitting to NIOSH digital radiographic image files of a test object... digital radiographic image files from six or more sample chest radiographs that are of acceptable quality...

  19. 42 CFR 37.44 - Approval of radiographic facilities that use digital radiography systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... image acquisition, digitization, processing, compression, transmission, display, archiving, and... quality digital chest radiographs by submitting to NIOSH digital radiographic image files of a test object... digital radiographic image files from six or more sample chest radiographs that are of acceptable quality...

  20. Image quality and dose differences caused by vendor-specific image processing of neonatal radiographs.

    PubMed

    Sensakovic, William F; O'Dell, M Cody; Letter, Haley; Kohler, Nathan; Rop, Baiywo; Cook, Jane; Logsdon, Gregory; Varich, Laura

    2016-10-01

    Image processing plays an important role in optimizing image quality and radiation dose in projection radiography. Unfortunately commercial algorithms are black boxes that are often left at or near vendor default settings rather than being optimized. We hypothesize that different commercial image-processing systems, when left at or near default settings, create significant differences in image quality. We further hypothesize that image-quality differences can be exploited to produce images of equivalent quality but lower radiation dose. We used a portable radiography system to acquire images on a neonatal chest phantom and recorded the entrance surface air kerma (ESAK). We applied two image-processing systems (Optima XR220amx, by GE Healthcare, Waukesha, WI; and MUSICA(2) by Agfa HealthCare, Mortsel, Belgium) to the images. Seven observers (attending pediatric radiologists and radiology residents) independently assessed image quality using two methods: rating and matching. Image-quality ratings were independently assessed by each observer on a 10-point scale. Matching consisted of each observer matching GE-processed images and Agfa-processed images with equivalent image quality. A total of 210 rating tasks and 42 matching tasks were performed and effective dose was estimated. Median Agfa-processed image-quality ratings were higher than GE-processed ratings. Non-diagnostic ratings were seen over a wider range of doses for GE-processed images than for Agfa-processed images. During matching tasks, observers matched image quality between GE-processed images and Agfa-processed images acquired at a lower effective dose (11 ± 9 μSv; P < 0.0001). Image-processing methods significantly impact perceived image quality. These image-quality differences can be exploited to alter protocols and produce images of equivalent image quality but lower doses. Those purchasing projection radiography systems or third-party image-processing software should be aware that image

  1. Imperceptible reversible watermarking of radiographic images based on quantum noise masking.

    PubMed

    Pan, Wei; Bouslimi, Dalel; Karasad, Mohamed; Cozic, Michel; Coatrieux, Gouenou

    2018-07-01

    of different anatomical structures show that our scheme induces a very low image distortion (PSNR∼ 76.5 dB) for a relatively important capacity (capacity∼ 0.02 bits of message per pixel). The proposed watermarking scheme, while being reversible, preserves the diagnosis value of radiographic images by masking the watermark into the quantum noise. As theoretically and experimentally established our scheme offers a good capacity/image quality compromise that can support different watermarking based security services such as integrity and authenticity control. The watermark can be kept into the image during the interpretation of the image, offering thus a continuous protection. Such a masking strategy can be seen as the first psychovisual model for radiographic images. The reversibility allows the watermark update when necessary. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Automatic image hanging protocol for chest radiographs in PACS.

    PubMed

    Luo, Hui; Hao, Wei; Foos, David H; Cornelius, Craig W

    2006-04-01

    Chest radiography is one of the most widely used techniques in diagnostic imaging. It comprises at least one-third of all diagnostic radiographic procedures in hospitals. However, in the picture archive and communication system, images are often stored with the projection and orientation unknown or mislabeled, which causes inefficiency for radiologists' interpretation. To address this problem, an automatic hanging protocol for chest radiographs is presented. The method targets the most effective region in a chest radiograph, and extracts a set of size-, rotation-, and translation-invariant features from it. Then, a well-trained classifier is used to recognize the projection. The orientation of the radiograph is later identified by locating the neck, heart, and abdomen positions in the radiographs. Initial experiments are performed on the radiographs collected from daily routine chest exams in hospitals and show promising results. Using the presented protocol, 98.2% of all cases could be hung correctly on projection view (without protocol, 62%), and 96.1% had correct orientation (without protocol, 75%). A workflow study on the protocol also demonstrates a significant improvement in efficiency for image display.

  3. Investigation of an electronic image enhancer for radiographs

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1972-01-01

    Radiographs of nuclear and aerospace components were studied with a closed-circuit television system to determine the advantages of electronic enhancement in radiographic nondestructive evaluation. The radiographic images were examined on a television monitor under various degrees of magnification and enhancement. The enhancement was accomplished by generating a video signal whose amplitude is proportional to the rate of change of density. Points, lines, edges, and other density variations that are faintly registered in the original image are rendered in sharp relief. Examples of the applications of this mode of enhancement are discussed together with the system's dynamic response and resolution.

  4. Investigation of an electronic image enhancer for radiographs.

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1972-01-01

    Radiographs of nuclear and aerospace components were studied with a closed-circuit television system to determine the advantages of electronic enhancement in radiographic nondestructive evaluation. The radiographic images were examined on a television monitor under various degrees of magnification and enhancement. The enhancement was accomplished by generating a video signal whose amplitude is proportional to the rate of change of density. Points, lines, edges, and other density variations that are faintly registered in the original image are rendered in sharp relief. Examples of the applications of this mode of enhancement are discussed together with the system's dynamic response and resolution.

  5. Digital Radiographic Image Processing and Analysis.

    PubMed

    Yoon, Douglas C; Mol, André; Benn, Douglas K; Benavides, Erika

    2018-07-01

    This article describes digital radiographic imaging and analysis from the basics of image capture to examples of some of the most advanced digital technologies currently available. The principles underlying the imaging technologies are described to provide a better understanding of their strengths and limitations. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Comparison of two interpolation methods for empirical mode decomposition based evaluation of radiographic femur bone images.

    PubMed

    Udhayakumar, Ganesan; Sujatha, Chinnaswamy Manoharan; Ramakrishnan, Swaminathan

    2013-01-01

    Analysis of bone strength in radiographic images is an important component of estimation of bone quality in diseases such as osteoporosis. Conventional radiographic femur bone images are used to analyze its architecture using bi-dimensional empirical mode decomposition method. Surface interpolation of local maxima and minima points of an image is a crucial part of bi-dimensional empirical mode decomposition method and the choice of appropriate interpolation depends on specific structure of the problem. In this work, two interpolation methods of bi-dimensional empirical mode decomposition are analyzed to characterize the trabecular femur bone architecture of radiographic images. The trabecular bone regions of normal and osteoporotic femur bone images (N = 40) recorded under standard condition are used for this study. The compressive and tensile strength regions of the images are delineated using pre-processing procedures. The delineated images are decomposed into their corresponding intrinsic mode functions using interpolation methods such as Radial basis function multiquadratic and hierarchical b-spline techniques. Results show that bi-dimensional empirical mode decomposition analyses using both interpolations are able to represent architectural variations of femur bone radiographic images. As the strength of the bone depends on architectural variation in addition to bone mass, this study seems to be clinically useful.

  7. Radiographical measurements for distal intra-articular fractures of the radius using plain radiographs and cone beam computed tomography images.

    PubMed

    Suojärvi, Nora; Sillat, T; Lindfors, N; Koskinen, S K

    2015-12-01

    Operative treatment of an intra-articular distal radius fracture is one of the most common procedures in orthopedic and hand surgery. The intra- and interobserver agreement of common radiographical measurements of these fractures using cone beam computed tomography (CBCT) and plain radiographs were evaluated. Thirty-seven patients undergoing open reduction and volar fixation for a distal radius fracture were studied. Two radiologists analyzed the preoperative radiographs and CBCT images. Agreement of the measurements was subjected to intra-class correlation coefficient and the Bland-Altman analyses. Plain radiographs provided a slightly poorer level of agreement. For fracture diastasis, excellent intraobserver agreement was achieved for radiographs and good or excellent agreement for CBCT, compared to poor interobserver agreement (ICC 0.334) for radiographs and good interobserver agreement (ICC 0.621) for CBCT images. The Bland-Altman analyses indicated a small mean difference between the measurements but rather large variation using both imaging methods, especially in angular measurements. For most of the measurements, radiographs do well, and may be used in clinical practice. Two different measurements by the same reader or by two different readers can lead to different decisions, and therefore a standardization of the measurements is imperative. More detailed analysis of articular surface needs cross-sectional imaging modalities.

  8. Current status on the application of image processing of digital intraoral radiographs amongst general dental practitioners.

    PubMed

    Tohidast, Parisa; Shi, Xie-Qi

    2016-01-01

    The objectives of this study were to present the subjective knowledge level and the use of image processing on digital intraoral radiographs amongst general dental practitioners at Distriktståndvrden AB, Stockholm. A questionnaire, consisting of12 questions, was sent to 12 dental prac- tices in Stockholm. Additionally, 2000 radiographs were randomly selected from these clinics for evaluation of applied image processing and its effect on image quality. Descriptive and analytical statistical methods were applied to present the current status of the use of image proces- sing alternatives for the dentists' daily clinical work. 50 out of 53 dentists participated in the survey.The survey showed that most of dentists in.this study had received education on image processing at some stage of their career. No correlations were found between application of image processing on one side and educa- tion received with regards to image processing, previous working experience, age and gender on the other. Image processing in terms of adjusting brightness and contrast was frequently used. Overall, in this study 24.5% of the 200 images were actually image processed in practice, in which 90% of the images were improved or maintained in image quality. According to our survey, image processing is experienced to be frequently used by the dentists at Distriktstandvåden AB for diagnosing anatomical and pathological changes using intraoral radiographs. 24.5% of the 200 images were actually image processed in terms of adjusting brightness and/or contrast. In the present study we did not found that the dentists' age, gender, previous working experience and education in image processing influence their viewpoint towards the application of image processing.

  9. Automated characterization of perceptual quality of clinical chest radiographs: Validation and calibration to observer preference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samei, Ehsan, E-mail: samei@duke.edu; Lin, Yuan; Choudhury, Kingshuk R.

    Purpose: The authors previously proposed an image-based technique [Y. Lin et al. Med. Phys. 39, 7019–7031 (2012)] to assess the perceptual quality of clinical chest radiographs. In this study, an observer study was designed and conducted to validate the output of the program against rankings by expert radiologists and to establish the ranges of the output values that reflect the acceptable image appearance so the program output can be used for image quality optimization and tracking. Methods: Using an IRB-approved protocol, 2500 clinical chest radiographs (PA/AP) were collected from our clinical operation. The images were processed through our perceptual qualitymore » assessment program to measure their appearance in terms of ten metrics of perceptual image quality: lung gray level, lung detail, lung noise, rib–lung contrast, rib sharpness, mediastinum detail, mediastinum noise, mediastinum alignment, subdiaphragm–lung contrast, and subdiaphragm area. From the results, for each targeted appearance attribute/metric, 18 images were selected such that the images presented a relatively constant appearance with respect to all metrics except the targeted one. The images were then incorporated into a graphical user interface, which displayed them into three panels of six in a random order. Using a DICOM calibrated diagnostic display workstation and under low ambient lighting conditions, each of five participating attending chest radiologists was tasked to spatially order the images based only on the targeted appearance attribute regardless of the other qualities. Once ordered, the observer also indicated the range of image appearances that he/she considered clinically acceptable. The observer data were analyzed in terms of the correlations between the observer and algorithmic rankings and interobserver variability. An observer-averaged acceptable image appearance was also statistically derived for each quality attribute based on the collected individual acceptable

  10. Vertical or horizontal orientation of foot radiographs does not affect image interpretation

    PubMed Central

    Ferran, Nicholas Antonio; Ball, Luke; Maffulli, Nicola

    2012-01-01

    Summary This study determined whether the orientation of dorsoplantar and oblique foot radiographs has an effect on radiograph interpretation. A test set of 50 consecutive foot radiographs were selected (25 with fractures, and 25 normal), and duplicated in the horizontal orientation. The images were randomly arranged, numbered 1 through 100, and analysed by six image interpreters. Vertical and horizontal area under the ROC curve, accuracy, sensitivity and specificity were calculated for each image interpreter. There was no significant difference in the area under the ROC curve, accuracy, sensitivity or specificity of image interpretation between images viewed in the vertical or horizontal orientation. While conventions for display of radiographs may help to improve the development of an efficient visual search strategy in trainees, and allow for standardisation of publication of radiographic images, variation from the convention in clinical practice does not appear to affect the sensitivity or specificity of image interpretation. PMID:23738310

  11. Technologist-Directed Repeat Musculoskeletal and Chest Radiographs: How Often Do They Impact Diagnosis?

    PubMed

    Rosenkrantz, Andrew B; Jacobs, Jill E; Jain, Nidhi; Brusca-Augello, Geraldine; Mechlin, Michael; Parente, Marc; Recht, Michael P

    2017-12-01

    Radiologic technologists may repeat images within a radiographic examination because of perceived suboptimal image quality, excluding these original images from submission to a PACS. This study assesses the appropriateness of technologists' decisions to repeat musculoskeletal and chest radiographs as well as the utility of repeat radiographs in addressing examinations' clinical indication. We included 95 musculoskeletal and 87 chest radiographic examinations in which the technologist repeated one or more images because of perceived image quality issues, rejecting original images from PACS submission. Rejected images were retrieved from the radiograph unit and uploaded for viewing on a dedicated server. Musculoskeletal and chest radiologists reviewed rejected and repeat images in their timed sequence, in addition to the studies' remaining images. Radiologists answered questions regarding the added value of repeat images. The reviewing radiologist agreed with the reason for rejection for 64.2% of musculoskeletal and 60.9% of chest radiographs. For 77.9% and 93.1% of rejected radiographs, the clinical inquiry could have been satisfied without repeating the image. For 75.8% and 64.4%, the repeated images showed improved image quality. Only 28.4% and 3.4% of repeated images were considered to provide additional information that was helpful in addressing the clinical question. Most repeated radiographs (chest more so than musculoskeletal radiographs) did not add significant clinical information or alter diagnosis, although they did increase radiation exposure. The decision to repeat images should be made after viewing the questionable image in context with all images in a study and might best be made by a radiologist rather than the performing technologist.

  12. 42 CFR 37.44 - Approval of radiographic facilities that use digital radiography systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... effective management, safety, and proper performance of chest image acquisition, digitization, processing... digital chest radiographs by submitting to NIOSH digital radiographic image files of a test object (e.g... radiographic image files from six or more sample chest radiographs that are of acceptable quality to one or...

  13. A Study of Radiographic Imaging Systems Used for Dental Hygiene.

    ERIC Educational Resources Information Center

    Karst, Nancy S.

    Thirty-three two-year dental hygiene programs throughout the United States were surveyed to identify the radiographic imaging system most often used and the accompanying rationale for that decision. A literature review identified the three radiographic imaging systems most frequently used and indicated that all dental hygiene programs had the…

  14. [Transparency regime: semiotics of radiographical images in urological diagnostics].

    PubMed

    Martin, M; Fangerau, H

    2012-10-01

    Shortly after Röntgen discovered x-rays urology became one of the main test fields for the application of this new technology. Initial scepticism among physicians, who were inclined to cling to traditional manual methods of diagnosing, was replaced by enthusiasm for radiographic technologies and the new method soon became the standard in, for example the diagnosis of concrements. Patients favoring radiographic procedures over the use of probes and a convincing documentation of stones in radiograms were factors that impacted the relatively rapid integration of radiology into urology. The radiographic representation of soft tissues and body cavities was more difficult and the development of contrast agents in particular posed a serious problem. Several patients died during this research. A new diagnostic dimension was revealed when radiography and cystography were combined to form the method of retrograde pyelography. However, the problem of how urologists could learn how to read the new images remained. In order to allow trainee physicians to practice interpreting radiograms atlases were produced which offered explanatory texts and drawings for radiographic images of the kidneys, the bladder etc. Thus, urologists developed a self-contained semiotics which facilitated the appropriation of a unique urological radiographical gaze.

  15. Image quality and radiation dose on digital chest imaging: comparison of amorphous silicon and amorphous selenium flat-panel systems.

    PubMed

    Bacher, Klaus; Smeets, Peter; Vereecken, Ludo; De Hauwere, An; Duyck, Philippe; De Man, Robert; Verstraete, Koenraad; Thierens, Hubert

    2006-09-01

    The aim of this study was to compare the image quality and radiation dose in chest imaging using an amorphous silicon flat-panel detector system and an amorphous selenium flat-panel detector system. In addition, the low-contrast performance of both systems with standard and low radiation doses was compared. In two groups of 100 patients each, digital chest radiographs were acquired with either an amorphous silicon or an amorphous selenium flat-panel system. The effective dose of the examination was measured using thermoluminescent dosimeters placed in an anthropomorphic Rando phantom. The image quality of the digital chest radiographs was assessed by five experienced radiologists using the European Guidelines on Quality Criteria for Diagnostic Radiographic Images. In addition, a contrast-detail phantom study was set up to assess the low-contrast performance of both systems at different radiation dose levels. Differences between the two groups were tested for significance using the two-tailed Mann-Whitney test. The amorphous silicon flat-panel system allowed an important and significant reduction in effective dose in comparison with the amorphous selenium flat-panel system (p < 0.0001) for both the posteroanterior and lateral views. In addition, clinical image quality analysis showed that the dose reduction was not detrimental to image quality. Compared with the amorphous selenium flat-panel detector system, the amorphous silicon flat-panel detector system performed significantly better in the low-contrast phantom study, with phantom entrance dose values of up to 135 muGy. Chest radiographs can be acquired with a significantly lower patient radiation dose using an amorphous silicon flat-panel system than using an amorphous selenium flat-panel system, thereby producing images that are equal or even superior in quality to those of the amorphous selenium flat-panel detector system.

  16. Adaptive pseudo-color enhancement method of weld radiographic images based on HSI color space and self-transformation of pixels.

    PubMed

    Jiang, Hongquan; Zhao, Yalin; Gao, Jianmin; Gao, Zhiyong

    2017-06-01

    The radiographic testing (RT) image of a steam turbine manufacturing enterprise has the characteristics of low gray level, low contrast, and blurriness, which lead to a substandard image quality. Moreover, it is not conducive for human eyes to detect and evaluate defects. This study proposes an adaptive pseudo-color enhancement method for weld radiographic images based on the hue, saturation, and intensity (HSI) color space and the self-transformation of pixels to solve these problems. First, the pixel's self-transformation is performed to the pixel value of the original RT image. The function value after the pixel's self-transformation is assigned to the HSI components in the HSI color space. Thereafter, the average intensity of the enhanced image is adaptively adjusted to 0.5 according to the intensity of the original image. Moreover, the hue range and interval can be adjusted according to personal habits. Finally, the HSI components after the adaptive adjustment can be transformed to display in the red, green, and blue color space. Numerous weld radiographic images from a steam turbine manufacturing enterprise are used to validate the proposed method. The experimental results show that the proposed pseudo-color enhancement method can improve image definition and make the target and background areas distinct in weld radiographic images. The enhanced images will be more conducive for defect recognition. Moreover, the image enhanced using the proposed method conforms to the human eye visual properties, and the effectiveness of defect recognition and evaluation can be ensured.

  17. Adaptive pseudo-color enhancement method of weld radiographic images based on HSI color space and self-transformation of pixels

    NASA Astrophysics Data System (ADS)

    Jiang, Hongquan; Zhao, Yalin; Gao, Jianmin; Gao, Zhiyong

    2017-06-01

    The radiographic testing (RT) image of a steam turbine manufacturing enterprise has the characteristics of low gray level, low contrast, and blurriness, which lead to a substandard image quality. Moreover, it is not conducive for human eyes to detect and evaluate defects. This study proposes an adaptive pseudo-color enhancement method for weld radiographic images based on the hue, saturation, and intensity (HSI) color space and the self-transformation of pixels to solve these problems. First, the pixel's self-transformation is performed to the pixel value of the original RT image. The function value after the pixel's self-transformation is assigned to the HSI components in the HSI color space. Thereafter, the average intensity of the enhanced image is adaptively adjusted to 0.5 according to the intensity of the original image. Moreover, the hue range and interval can be adjusted according to personal habits. Finally, the HSI components after the adaptive adjustment can be transformed to display in the red, green, and blue color space. Numerous weld radiographic images from a steam turbine manufacturing enterprise are used to validate the proposed method. The experimental results show that the proposed pseudo-color enhancement method can improve image definition and make the target and background areas distinct in weld radiographic images. The enhanced images will be more conducive for defect recognition. Moreover, the image enhanced using the proposed method conforms to the human eye visual properties, and the effectiveness of defect recognition and evaluation can be ensured.

  18. A laboratory evaluation of four quality control devices for radiographic processing.

    PubMed

    Rushton, V E; Horner, K

    1994-08-01

    Quality assurance programmes for radiographic processing traditionally employ expensive sensitometric and densitometric techniques. However cheap and simple devices for monitoring radiographic processing are available. The aim of this study was to make a comparison of four such devices in terms of their ability to detect variations in radiographic density of clinical significance. Three of the devices are commercially available while the fourth is easily manufactured from waste materials. Ideal bitewing exposure times were selected for four different kilovoltage/film speed combinations. Phantom bitewing radiographs, exposed using these exposure times, were processed using a variety of times and developer temperatures to simulate variations in radiographic quality due to inadequate processing conditions. Test films, produced using the four monitoring devices, were exposed and processed under identical conditions. The phantom bitewings were judged to have 'acceptable' quality when the optical density of that part of the film not showing calcified structures was within +/- 0.5 of that of the film processed under optimal conditions. The efficacy of the monitoring devices in indicating the adequacy of processing was assessed by a comparison of their readings with those made from the phantom bitewings. None of the monitoring devices was ideal for all the kilovoltage/film speed combinations tested, but the homemade device proved to be the most generally effective. We conclude that guidelines to dentists on radiographic quality assurance should include reference to and details of this simple device.

  19. An in vitro comparison of subjective image quality of panoramic views acquired via 2D or 3D imaging.

    PubMed

    Pittayapat, P; Galiti, D; Huang, Y; Dreesen, K; Schreurs, M; Souza, P Couto; Rubira-Bullen, I R F; Westphalen, F H; Pauwels, R; Kalema, G; Willems, G; Jacobs, R

    2013-01-01

    The objective of this study is to compare subjective image quality and diagnostic validity of cone-beam CT (CBCT) panoramic reformatting with digital panoramic radiographs. Four dry human skulls and two formalin-fixed human heads were scanned using nine different CBCTs, one multi-slice CT (MSCT) and one standard digital panoramic device. Panoramic views were generated from CBCTs in four slice thicknesses. Seven observers scored image quality and visibility of 14 anatomical structures. Four observers repeated the observation after 4 weeks. Digital panoramic radiographs showed significantly better visualization of anatomical structures except for the condyle. Statistical analysis of image quality showed that the 3D imaging modalities (CBCTs and MSCT) were 7.3 times more likely to receive poor scores than the 2D modality. Yet, image quality from NewTom VGi® and 3D Accuitomo 170® was almost equivalent to that of digital panoramic radiographs with respective odds ratio estimates of 1.2 and 1.6 at 95% Wald confidence limits. A substantial overall agreement amongst observers was found. Intra-observer agreement was moderate to substantial. While 2D-panoramic images are significantly better for subjective diagnosis, 2/3 of the 3D-reformatted panoramic images are moderate or good for diagnostic purposes. Panoramic reformattings from particular CBCTs are comparable to digital panoramic images concerning the overall image quality and visualization of anatomical structures. This clinically implies that a 3D-derived panoramic view can be generated for diagnosis with a recommended 20-mm slice thickness, if CBCT data is a priori available for other purposes.

  20. Validation of a novel technique for creating simulated radiographs using computed tomography datasets.

    PubMed

    Mendoza, Patricia; d'Anjou, Marc-André; Carmel, Eric N; Fournier, Eric; Mai, Wilfried; Alexander, Kate; Winter, Matthew D; Zwingenberger, Allison L; Thrall, Donald E; Theoret, Christine

    2014-01-01

    Understanding radiographic anatomy and the effects of varying patient and radiographic tube positioning on image quality can be a challenge for students. The purposes of this study were to develop and validate a novel technique for creating simulated radiographs using computed tomography (CT) datasets. A DICOM viewer (ORS Visual) plug-in was developed with the ability to move and deform cuboidal volumetric CT datasets, and to produce images simulating the effects of tube-patient-detector distance and angulation. Computed tomographic datasets were acquired from two dogs, one cat, and one horse. Simulated radiographs of different body parts (n = 9) were produced using different angles to mimic conventional projections, before actual digital radiographs were obtained using the same projections. These studies (n = 18) were then submitted to 10 board-certified radiologists who were asked to score visualization of anatomical landmarks, depiction of patient positioning, realism of distortion/magnification, and image quality. No significant differences between simulated and actual radiographs were found for anatomic structure visualization and patient positioning in the majority of body parts. For the assessment of radiographic realism, no significant differences were found between simulated and digital radiographs for canine pelvis, equine tarsus, and feline abdomen body parts. Overall, image quality and contrast resolution of simulated radiographs were considered satisfactory. Findings from the current study indicated that radiographs simulated using this new technique are comparable to actual digital radiographs. Further studies are needed to apply this technique in developing interactive tools for teaching radiographic anatomy and the effects of varying patient and tube positioning. © 2013 American College of Veterinary Radiology.

  1. Explaining the Effect of a Grid by Using an Optical Analog to an X-ray Radiographic Imaging System

    ERIC Educational Resources Information Center

    Honnicke, M. G.; Gavinho, L.; Cusatis, C.

    2008-01-01

    Compton scattering and diffuse scattering degenerate the contrast in radiographic images. To avoid such scattering effects, a grid, between the patient and the film is currently used to improve the image quality. Teaching this topic to medical physics students requires demonstration experiments. In this paper, an optical analog to an x-ray…

  2. WE-G-204-07: Automated Characterization of Perceptual Quality of Clinical Chest Radiographs: Improvements in Lung, Spine, and Hardware Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, J; Zhang, L; Samei, E

    Purpose: To develop and validate more robust methods for automated lung, spine, and hardware detection in AP/PA chest images. This work is part of a continuing effort to automatically characterize the perceptual image quality of clinical radiographs. [Y. Lin et al. Med. Phys. 39, 7019–7031 (2012)] Methods: Our previous implementation of lung/spine identification was applicable to only one vendor. A more generalized routine was devised based on three primary components: lung boundary detection, fuzzy c-means (FCM) clustering, and a clinically-derived lung pixel probability map. Boundary detection was used to constrain the lung segmentations. FCM clustering produced grayscale- and neighborhood-based pixelmore » classification probabilities which are weighted by the clinically-derived probability maps to generate a final lung segmentation. Lung centerlines were set along the left-right lung midpoints. Spine centerlines were estimated as a weighted average of body contour, lateral lung contour, and intensity-based centerline estimates. Centerline estimation was tested on 900 clinical AP/PA chest radiographs which included inpatient/outpatient, upright/bedside, men/women, and adult/pediatric images from multiple imaging systems. Our previous implementation further did not account for the presence of medical hardware (pacemakers, wires, implants, staples, stents, etc.) potentially biasing image quality analysis. A hardware detection algorithm was developed using a gradient-based thresholding method. The training and testing paradigm used a set of 48 images from which 1920 51×51 pixel{sup 2} ROIs with and 1920 ROIs without hardware were manually selected. Results: Acceptable lung centerlines were generated in 98.7% of radiographs while spine centerlines were acceptable in 99.1% of radiographs. Following threshold optimization, the hardware detection software yielded average true positive and true negative rates of 92.7% and 96.9%, respectively. Conclusion: Updated

  3. Inadequate pelvic radiographs: implications of not getting it right the first time.

    PubMed

    Parker, S; Nagra, N S; Kulkarni, K; Pegrum, J; Barry, S; Hughes, R; Ghani, Y

    2017-09-01

    Introduction Pelvic radiography is a frequent investigation. European guidelines aim to ensure appropriate use and adequate quality. When initial images are inadequate, repeat radiographs are often required, which may have significant patient safety and economic implications. Objectives The study aimed to assess the adequacy of pelvic imaging across three orthopaedic centres, to identify causes for inadequate imaging and to establish the cost of inadequate imaging from financial and patient safety perspectives. Methods Pelvic radiographs were identified on Picture Archiving and Communication System software at three UK hospitals. Radiographs were assessed against European guidelines and indications for repeat imaging were analysed. Results A total of 1,531 sequential pelvic radiographs were reviewed. The mean age of patients was 60 years (range 5 months to 101 years). Of this total, 51.9% of images were suboptimal, with no significant difference across the three hospitals (P > 0.05). Hospital 3 repeated radiographs in 6.3% of cases, compare with 18.1% and 19.7% at hospitals 1 and 2, respectively (P > 0.05). Hospital 3 identified pathology missed on the initial radiograph in 1% of cases, compared with 5.4% and 5.5% at hospitals 1 and 2, respectively (P > 0.05). Out-of-hours imaging is associated with a higher rate of suboptimal quality (69.1%) compared with normal working hours (51.3%; P = 0.006). Adequacy rates vary with age (χ 2 = 43.62, P < 0.001). Risk of having a suboptimal radiograph increases above the age of 60-years (χ 2 = 4.45, P < 0.05). The annual cost of repeat radiographs was £56,200 per hospital. Discussion and conclusion High rates of pelvic radiograph inadequacy can lead to missed pathology and the requirement for repeat imaging, which has significant patient safety and financial implications. Risk factors for inadequate radiographs include older patients and those having out-of-hours imaging.

  4. Methods employed for chest radiograph interpretation education for radiographers: A systematic review of the literature.

    PubMed

    McLaughlin, L; McConnell, J; McFadden, S; Bond, R; Hughes, C

    2017-11-01

    This systematic review aimed to determine the strength of evidence available in the literature on the effect of training to develop the skills required by radiographers to interpret plain radiography chest images. Thirteen articles feature within the review. Sample size varied from one reporting radiographer to 148 radiography students/experienced radiographers. The quality of the articles achieved a mean score of 7.5/10, indicating the evidence is strong and the quality of studies in this field is high. Investigative approaches included audit of participants' performance in clinical practice post formal training, evaluation of informal training and the impact of short feedback sessions on performance. All studies demonstrated positive attributions on user performance. Using a combination of training techniques can help maximise learning and accommodate those with different preferred learning types. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  5. The x-ray light valve: a potentially low-cost, digital radiographic imaging system-concept and implementation considerations.

    PubMed

    Webster, Christie Ann; Koprinarov, Ivaylo; Germann, Stephen; Rowlands, J A

    2008-03-01

    New x-ray radiographic systems based on large-area flat-panel technology have revolutionized our capability to produce digital x-ray images. However, these imagers are extraordinarily expensive compared to the systems they are replacing. Hence, there is a need for a low-cost digital imaging system for general applications in radiology. A novel potentially low-cost radiographic imaging system based on established technologies is proposed-the X-Ray Light Valve (XLV). This is a potentially high-quality digital x-ray detector made of a photoconducting layer and a liquid-crystal cell, physically coupled in a sandwich structure. Upon exposure to x rays, charge is collected on the surface of the photoconductor. This causes a change in the optical properties of the liquid-crystal cell and a visible image is generated. Subsequently, it is digitized by a scanned optical imager. The image formation is based on controlled modulation of light from an external source. The operation and practical implementation of the XLV system are described. The potential performance of the complete system and issues related to sensitivity, spatial resolution, noise, and speed are discussed. The feasibility of clinical use of an XLV device based on amorphous selenium (a-Se) as the photoconductor and a reflective electrically controlled birefringence cell is analyzed. The results of our analysis indicate that the XLV can potentially be adapted to a wide variety of radiographic tasks.

  6. The quality of emergency room radiograph interpretations.

    PubMed

    McLain, P L; Kirkwood, C R

    1985-05-01

    Primary care physicians often make patient management decisions based in part on their own interpretations of radiographs. This important area of clinical decision making has not been previously analyzed in the literature. In this series of 294 consecutive radiographs from rural practice, interpretative disagreement between primary care providers and backup radiologists occurred 9.2 percent of the time, a discordance rate similar to that seen among radiologists in other studies. Although a majority of the films for which interpretative disagreement occurred had potential implications for influencing patient management, in only seven cases did actual case management vary from appropriate norms. Follow-up of cases where interpretative disagreement occurred revealed that in only two cases did unsatisfactory outcomes occur. Primary care physicians can provide high-quality radiographic interpretations that, when coupled with clinical information, yield extremely low rates of error or potential for poor patient outcomes.

  7. Efficient storage and management of radiographic images using a novel wavelet-based multiscale vector quantizer

    NASA Astrophysics Data System (ADS)

    Yang, Shuyu; Mitra, Sunanda

    2002-05-01

    Due to the huge volumes of radiographic images to be managed in hospitals, efficient compression techniques yielding no perceptual loss in the reconstructed images are becoming a requirement in the storage and management of such datasets. A wavelet-based multi-scale vector quantization scheme that generates a global codebook for efficient storage and transmission of medical images is presented in this paper. The results obtained show that even at low bit rates one is able to obtain reconstructed images with perceptual quality higher than that of the state-of-the-art scalar quantization method, the set partitioning in hierarchical trees.

  8. A stopping criterion to halt iterations at the Richardson-Lucy deconvolution of radiographic images

    NASA Astrophysics Data System (ADS)

    Almeida, G. L.; Silvani, M. I.; Souza, E. S.; Lopes, R. T.

    2015-07-01

    Radiographic images, as any experimentally acquired ones, are affected by spoiling agents which degrade their final quality. The degradation caused by agents of systematic character, can be reduced by some kind of treatment such as an iterative deconvolution. This approach requires two parameters, namely the system resolution and the best number of iterations in order to achieve the best final image. This work proposes a novel procedure to estimate the best number of iterations, which replaces the cumbersome visual inspection by a comparison of numbers. These numbers are deduced from the image histograms, taking into account the global difference G between them for two subsequent iterations. The developed algorithm, including a Richardson-Lucy deconvolution procedure has been embodied into a Fortran program capable to plot the 1st derivative of G as the processing progresses and to stop it automatically when this derivative - within the data dispersion - reaches zero. The radiograph of a specially chosen object acquired with thermal neutrons from the Argonauta research reactor at Institutode Engenharia Nuclear - CNEN, Rio de Janeiro, Brazil, have undergone this treatment with fair results.

  9. Mammography in females with an implanted medical device: impact on image quality, pain and anxiety.

    PubMed

    Paap, Ellen; Witjes, Marloes; van Landsveld-Verhoeven, Cary; Pijnappel, Ruud M; Maas, Angela H E M; Broeders, Mireille J M

    2016-10-01

    To assess the image quality of mammograms in females with an implanted medical device (IMD), to evaluate pain and anxiety during mammography in these females and to investigate the experience of radiographers. Image quality was evaluated by two radiographers and one radiologist in the images of females with an IMD participating in the Dutch screening programme (clients). Pain and anxiety were scored using a Numeric Rating Scale in both clients visiting a screening organization and patients from the Isala Hospital, Zwolle. Experience of screening radiographers was collected with a questionnaire. Images of the breast with IMD showed reduced contrast in craniocaudal (CC) and mediolateral-oblique (MLO) views [by both the radiographers and radiologist (range: 11-29%)], less projected breast tissue [only radiographers; CC lateral side: 25.5%, 95% confidence interval (CI): 18.7-32.2] and reduced projection of the pectoral muscle (only radiographers; MLO width pectoral muscle: 31.5%, 95% CI: 24.4-38.7). Clients experienced more pain and anxiety during mammography in the breast with IMD compared to the breast without IMD in the breast (pain difference CC: 0.48 ± 0.16, p = 0.003; pain difference MLO: 0.46 ± 0.16, p = 0.004; anxiety difference 1.30 ± 0.22; p < 0.001). Patients experienced more pain (1.05 ± 0.12; p < 0.001) and anxiety (1.22 ± 0.15; p < 0.001) after placement of IMD. Radiographers are more cautious, more anxious and use less compression during mammography of breasts with IMD. Image quality in a breast with an IMD could be improved by projecting more breast tissue on the mammogram, thereby including (part of) the IMD between the paddles, if required. In addition, radiographers should pay sufficient attention to reducing discomfort both before and during the screening examination. Little is known about the quality of mammography in females with an IMD or how these females and radiographers experience the screening

  10. The x-ray light valve: a low-cost, digital radiographic imaging system-spatial resolution

    NASA Astrophysics Data System (ADS)

    MacDougall, Robert D.; Koprinarov, Ivaylo; Webster, Christie A.; Rowlands, J. A.

    2007-03-01

    In recent years, new x-ray radiographic systems based on large area flat panel technology have revolutionized our capability to produce digital x-ray radiographic images. However, these active matrix flat panel imagers (AMFPIs) are extraordinarily expensive compared to the systems they are replacing. Thus there is a need for a low cost digital imaging system for general applications in radiology. Different approaches have been considered to make lower cost, integrated x-ray imaging devices for digital radiography, including: scanned projection x-ray, an integrated approach based on computed radiography technology and optically demagnified x-ray screen/CCD systems. These approaches suffer from either high cost or high mechanical complexity and do not have the image quality of AMFPIs. We have identified a new approach - the X-ray Light Valve (XLV). The XLV has the potential to achieve the immediate readout in an integrated system with image quality comparable to AMFPIs. The XLV concept combines three well-established and hence lowcost technologies: an amorphous selenium (a-Se) layer to convert x-rays to image charge, a liquid crystal (LC) cell as an analog display, and an optical scanner for image digitization. Here we investigate the spatial resolution possible with XLV systems. Both a-Se and LC cells have both been shown separately to have inherently very high spatial resolution. Due to the close electrostatic coupling in the XLV, it can be expected that the spatial resolution of this system will also be very high. A prototype XLV was made and a typical office scanner was used for image digitization. The Modulation Transfer Function was measured and the limiting factor was seen to be the optical scanner. However, even with this limitation the XLV system is able to meet or exceed the resolution requirements for chest radiography.

  11. The 'radiographer-referrer game': image interpretation dynamics in rural practice.

    PubMed

    Squibb, Kathryn; Smith, Anthony; Dalton, Lisa; Bull, Rosalind M

    2016-03-01

    Effective interprofessional communication is intrinsic to safe health care. Despite the identified positive impact of collaborative radiographic interpretation between rural radiographers and referrers, communication difficulties still exist. This article describes the strategies that Australian rural radiographers use for communication of their radiographic opinion to the referring doctor. In a two-phase interpretive doctoral study completed in 2012, data were collected from radiographers working in rural New South Wales, Western Australia and Tasmania using a paper based questionnaire followed by in-depth semistructured interviews. Data were analysed thematically in order to identify, analyse and report the emergent themes. The overarching theme was Patient Advocacy, where in the interest of patient care radiographers took measures to ensure that a referring doctor did not miss radiographic abnormalities. Strong interprofessional relationships enabled direct communication pathways. Interprofessional boundaries shaped by historical hierarchical relationships, together with a lack of confidence and educational preparation for radiographic interpretation result in barriers to direct communication pathways. These barriers prompted radiographers to pursue indirect communication pathways, such as side-stepping and hint and hope. A lack of formal communication pathways and educational preparation for this role has resulted in radiographers playing the radiographer-referrer game to overtly or covertly assist referrers in reaching a radiographic diagnosis. The findings from this study may be used to plan interventions for strengthening interprofessional communication pathways and improve quality of healthcare for patients.

  12. Method for producing three-dimensional real image using radiographic perspective views of an object

    DOEpatents

    Ellingson, William A.; Read, Alvin A.

    1976-02-24

    A sequence of separate radiographs are made by indexing a radiation source along a known path relative to the object under study. Thus, each radiograph contains information from a different perspective. A holographically-recorded image is then made from each radiographic perspective by exact re-tracing of the rays through each radiographic perspective such that the re-tracing duplicates the geometry under which it was originally prepared. The holographically-stored images are simultaneously illuminated with the conjugate of the reference beam used in the original recordings. The result is the generation of a three-dimensional real image of the object such that a light-sensitive device can be moved to view the real image along any desired surface with the optical information in all other surfaces greatly suppressed.

  13. Imaging of juvenile idiopathic arthritis. Part I: Clinical classifications and radiographs

    PubMed Central

    Matuszewska, Genowefa; Gietka, Piotr; Płaza, Mateusz; Walentowska-Janowicz, Marta

    2016-01-01

    Juvenile idiopathic arthritis is the most common autoimmune systemic disease of the connective tissue affecting individuals at the developmental age. Radiography is the primary modality employed in the diagnostic imaging in order to identify changes typical of this disease entity and rule out other bone-related pathologies, such as neoplasms, posttraumatic changes, developmental defects and other forms of arthritis. The standard procedure involves the performance of comparative joint radiographs in two planes. Radiographic changes in juvenile idiopathic arthritis are detected in later stages of the disease. Bone structures are assessed in the first place. Radiographs can also indirectly indicate the presence of soft tissue inflammation (i.e. in joint cavities, sheaths and bursae) based on swelling and increased density of the soft tissue as well as dislocation of fat folds. Signs of articular cartilage defects are also seen in radiographs indirectly – based on joint space width changes. The first part of the publication presents the classification of juvenile idiopathic arthritis and discusses its radiographic images. The authors list the affected joints as well as explain the spectrum and specificity of radiographic signs resulting from inflammatory changes overlapping with those caused by the maturation of the skeletal system. Moreover, certain dilemmas associated with the monitoring of the disease are reviewed. The second part of the publication will explain issues associated with ultrasonography and magnetic resonance imaging, which are more and more commonly applied in juvenile idiopathic arthritis for early detection of pathological features as well as the disease complications. PMID:27679726

  14. Online Kidney Position Verification Using Non-Contrast Radiographs on a Linear Accelerator with on Board KV X-Ray Imaging Capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, David J.; Kron, Tomas; Hubbard, Patricia

    2009-01-01

    The kidneys are dose-limiting organs in abdominal radiotherapy. Kilovoltage (kV) radiographs can be acquired using on-board imager (OBI)-equipped linear accelerators with better soft tissue contrast and lower radiation doses than conventional portal imaging. A feasibility study was conducted to test the suitability of anterior-posterior (AP) non-contrast kV radiographs acquired at treatment time for online kidney position verification. Anthropomorphic phantoms were used to evaluate image quality and radiation dose. Institutional Review Board approval was given for a pilot study that enrolled 5 adults and 5 children. Customized digitally reconstructed radiographs (DRRs) were generated to provide a priori information on kidney shapemore » and position. Radiotherapy treatment staff performed online evaluation of kidney visibility on OBI radiographs. Kidney dose measured in a pediatric anthropomorphic phantom was 0.1 cGy for kV imaging and 1.7 cGy for MV imaging. Kidneys were rated as well visualized in 60% of patients (90% confidence interval, 34-81%). The likelihood of visualization appears to be influenced by the relative AP separation of the abdomen and kidneys, the axial profile of the kidneys, and their relative contrast with surrounding structures. Online verification of kidney position using AP non-contrast kV radiographs on an OBI-equipped linear accelerator appears feasible for patients with suitable abdominal anatomy. Kidney position information provided is limited to 2-dimensional 'snapshots,' but this is adequate in some clinical situations and potentially advantageous in respiratory-correlated treatments. Successful clinical implementation requires customized partial DRRs, appropriate imaging parameters, and credentialing of treatment staff.« less

  15. A Comparative Study on Diagnostic Accuracy of Colour Coded Digital Images, Direct Digital Images and Conventional Radiographs for Periapical Lesions – An In Vitro Study

    PubMed Central

    Mubeen; K.R., Vijayalakshmi; Bhuyan, Sanat Kumar; Panigrahi, Rajat G; Priyadarshini, Smita R; Misra, Satyaranjan; Singh, Chandravir

    2014-01-01

    Objectives: The identification and radiographic interpretation of periapical bone lesions is important for accurate diagnosis and treatment. The present study was undertaken to study the feasibility and diagnostic accuracy of colour coded digital radiographs in terms of presence and size of lesion and to compare the diagnostic accuracy of colour coded digital images with direct digital images and conventional radiographs for assessing periapical lesions. Materials and Methods: Sixty human dry cadaver hemimandibles were obtained and periapical lesions were created in first and second premolar teeth at the junction of cancellous and cortical bone using a micromotor handpiece and carbide burs of sizes 2, 4 and 6. After each successive use of round burs, a conventional, RVG and colour coded image was taken for each specimen. All the images were evaluated by three observers. The diagnostic accuracy for each bur and image mode was calculated statistically. Results: Our results showed good interobserver (kappa > 0.61) agreement for the different radiographic techniques and for the different bur sizes. Conventional Radiography outperformed Digital Radiography in diagnosing periapical lesions made with Size two bur. Both were equally diagnostic for lesions made with larger bur sizes. Colour coding method was least accurate among all the techniques. Conclusion: Conventional radiography traditionally forms the backbone in the diagnosis, treatment planning and follow-up of periapical lesions. Direct digital imaging is an efficient technique, in diagnostic sense. Colour coding of digital radiography was feasible but less accurate however, this imaging technique, like any other, needs to be studied continuously with the emphasis on safety of patients and diagnostic quality of images. PMID:25584318

  16. Automated matching of corresponding seed images of three simulator radiographs to allow 3D triangulation of implanted seeds.

    PubMed

    Altschuler, M D; Kassaee, A

    1997-02-01

    To match corresponding seed images in different radiographs so that the 3D seed locations can be triangulated automatically and without ambiguity requires (at least) three radiographs taken from different perspectives, and an algorithm that finds the proper permutations of the seed-image indices. Matching corresponding images in only two radiographs introduces inherent ambiguities which can be resolved only with the use of non-positional information obtained with intensive human effort. Matching images in three or more radiographs is an 'NP (Non-determinant in Polynomial time)-complete' problem. Although the matching problem is fundamental, current methods for three-radiograph seed-image matching use 'local' (seed-by-seed) methods that may lead to incorrect matchings. We describe a permutation-sampling method which not only gives good 'global' (full permutation) matches for the NP-complete three-radiograph seed-matching problem, but also determines the reliability of the radiographic data themselves, namely, whether the patient moved in the interval between radiographic perspectives.

  17. Automated matching of corresponding seed images of three simulator radiographs to allow 3D triangulation of implanted seeds

    NASA Astrophysics Data System (ADS)

    Altschuler, Martin D.; Kassaee, Alireza

    1997-02-01

    To match corresponding seed images in different radiographs so that the 3D seed locations can be triangulated automatically and without ambiguity requires (at least) three radiographs taken from different perspectives, and an algorithm that finds the proper permutations of the seed-image indices. Matching corresponding images in only two radiographs introduces inherent ambiguities which can be resolved only with the use of non-positional information obtained with intensive human effort. Matching images in three or more radiographs is an `NP (Non-determinant in Polynomial time)-complete' problem. Although the matching problem is fundamental, current methods for three-radiograph seed-image matching use `local' (seed-by-seed) methods that may lead to incorrect matchings. We describe a permutation-sampling method which not only gives good `global' (full permutation) matches for the NP-complete three-radiograph seed-matching problem, but also determines the reliability of the radiographic data themselves, namely, whether the patient moved in the interval between radiographic perspectives.

  18. Diaphragm breathing movement measurement using ultrasound and radiographic imaging: a concurrent validity.

    PubMed

    Noh, Dong K; Lee, Jae J; You, Joshua H

    2014-01-01

    Recent ultrasound imaging evidence asserts that the diaphragm is an important multifunctional muscle to control breathing as well as stabilize the core and posture in humans. However, the validity and accuracy of ultrasound for the measurement of dynamic diaphragm movements during breathing and functional core activities have not been determined. The specific aim of this study was to validate the accuracy of ultrasound imaging measurements of diaphragm movements by concurrently comparing these measurements to the gold standard of radiographic imaging measurements. A total of 14 asymptomatic adults (9 males, 5 females; mean age =28.4 ± 3.0 years) were recruited to participate in the study. Ultrasound and radiographic images were used concurrently to determine diaphragm movement (inspiration, expiration, and excursion) during tidal breathing. Pearson correlation analysis showed strong correlations, ranging from r=0.78 to r=0.83, between ultrasound and radiographic imaging measurements of the diaphragm during inhalation, exhalation, and excursion. These findings suggest that ultrasound imaging measurement is useful to accurately evaluate diaphragm movements during tidal breathing. Clinically, ultrasound imaging measurements can be used to diagnose and treat diaphragm movement impairments in individuals with neuromuscular disorders including spinal cord injuries, stroke, and multiple sclerosis.

  19. Modeling and optimization of a time-resolved proton radiographic imaging system for proton cancer treatment

    NASA Astrophysics Data System (ADS)

    Han, Bin

    This dissertation describes a research project to test the clinical utility of a time-resolved proton radiographic (TRPR) imaging system by performing comprehensive Monte Carlo simulations of a physical device coupled with realistic lung cancer patient anatomy defined by 4DCT for proton therapy. A time-resolved proton radiographic imaging system was modeled through Monte Carlo simulations. A particle-tracking feature was employed to evaluate the performance of the proton imaging system, especially in its ability to visualize and quantify proton range variations during respiration. The Most Likely Path (MLP) algorithm was developed to approximate the multiple Coulomb scattering paths of protons for the purpose of image reconstruction. Spatial resolution of ˜ 1 mm and range resolution of 1.3% of the total range were achieved using the MLP algorithm. Time-resolved proton radiographs of five patient cases were reconstructed to track tumor motion and to calculate water equivalent length variations. By comparing with direct 4DCT measurement, the accuracy of tumor tracking was found to be better than 2 mm in five patient cases. Utilizing tumor tracking information to reduce margins to the planning target volume, a gated treatment plan was compared with un-gated treatment plan. The equivalent uniform dose (EUD) and the normal tissue complication probability (NTCP) were used to quantify the gain in the quality of treatments. The EUD of the OARs was found to be reduced up to 11% and the corresponding NTCP of organs at risk (OARs) was found to be reduced up to 16.5%. These results suggest that, with image guidance by proton radiography, dose to OARs can be reduced and the corresponding NTCPs can be significantly reduced. The study concludes that the proton imaging system can accurately track the motion of the tumor and detect the WEL variations, leading to potential gains in using image-guided proton radiography for lung cancer treatments.

  20. Adsorbed radioactivity and radiographic imaging of surfaces of stainless steel and titanium

    NASA Astrophysics Data System (ADS)

    Jung, Haijo

    1997-11-01

    Type 304 stainless steel used for typical surface materials of spent fuel shipping casks and titanium were exposed in the spent fuel storage pool of a typical PWR power plant. Adsorption characteristics, effectiveness of decontamination by water cleaning and by electrocleaning, and swipe effectiveness on the metal surfaces were studied. A variety of environmental conditions had been manipulated to stimulate the potential 'weeping' phenomenon that often occurs with spent fuel shipping casks during transit. In a previous study, few heterogeneous effects of adsorbed contamination onto metal surfaces were observed. Radiographic images of cask surfaces were made in this study and showed clearly heterogeneous activity distributions. Acquired radiographic images were digitized and further analyzed with an image analysis computer package and compared to calibrated images by using standard sources. The measurements of activity distribution by using the radiographic image method were consistent with that using a HPGe detector. This radiographic image method was used to study the effects of electrocleaning for total and specified areas. The Modulation Transfer Function (MTF) of a film-screen system in contact with a radioactive metal surface was studied with neutron activated gold foils and showed more broad resolution properties than general diagnostic x-ray film-screen systems. Microstructure between normal areas and hot spots showed significant differences, and one hot spot appearing as a dot on the film image consisted of several small hot spots (about 10 μm in diameter). These hot spots were observed as structural defects of the metal surfaces.

  1. Verifying placement of small-bore feeding tubes: electromagnetic device images versus abdominal radiographs.

    PubMed

    Bryant, Vera; Phang, Jean; Abrams, Kevin

    2015-11-01

    Clinicians are unsure if radiography is needed to confirm correct positioning of feeding tubes inserted with assistance from an electromagnetic system. To compare radiographic reports of feeding tube placement with images generated by an electromagnetic feeding tube placement device. The medical records of 200 consecutive patients who had feeding tubes inserted with assistance from an electromagnetic feeding tube placement device were reviewed retrospectively. Radiographic reports of tube site were compared with images generated by the device. Radiographic evidence of tube sites was available in 188 cases: 184 tubes were located in portions of the gastrointestinal tract. Ninety of the 188 tubes were situated in the optimal site (distal duodenum or jejunum) radiographically. Images generated by the electromagnetic device were available in 176 cases; of these, 52 tubes appeared to end in the expected left lower quadrant. Tubes shown on radiographs to be in other sites also occasionally appeared to end in the left lower quadrant. Nurses using the device did not recognize 4 of the 188 tubes (2.1%) that were inadvertently placed in the lung. No consistent pattern of quadrant distribution was found for tubes positioned in the stomach or proximal duodenum. Images generated by the electromagnetic tube placement device provided inconsistent results regarding tube location. A small percentage of seriously malpositioned tubes were not detected by using the electromagnetic device. These findings do not support eliminating radiographs to confirm correct tube placement following use of an electromagnetic tube placement device. ©2015 American Association of Critical-Care Nurses.

  2. System of radiographic control or an imaging system for personal radiographic inspection

    NASA Astrophysics Data System (ADS)

    Babichev, E. A.; Baru, S. E.; Neustroev, V. A.; Leonov, V. V.; Porosev, V. V.; Savinov, G. A.; Ukraintsev, Yu. G.

    2004-06-01

    The security system of personal radiographic inspection for detection of explosive materials and plastic weapons was developed in BINP recently. Basic system parameters are: maximum scanning height— 2000 mm, image width— 800 mm, number of detector channels—768, channel size— 1.05×1 mm, charge collecting time for one line—2, 5 ms, scanning speed— 40 cm/s, maximum scanning time— 5 s, radiation dose per one inspection <5 μSv. The detector is a multichannel ionization Xe chamber. The image of inspected person will appear on the display just after scanning. The pilot sample of this system was put into operation in March, 2003.b

  3. Radiographic Diagnosis of Pincer-Type Femoroacetabular Impingement: A Systematic Review.

    PubMed

    Rhee, Chanseok; Le Francois, Tina; Byrd, J W Thomas; Glazebrook, Mark; Wong, Ivan

    2017-05-01

    Femoroacetabular impingement (FAI) is a well-recognized condition that causes hip pain and can lead to early osteoarthritis if not managed properly. With the increasing awareness and efficacy of operative treatments for pincer-type FAI, there is a need for consensus on the standardized radiographic diagnosis. To perform a systematic review of the evidence regarding imaging modalities and radiographic signs for diagnosing pincer-type FAI. Systematic review; Level of evidence, 4. A literature review was performed in 2016 using the Cochrane, PubMed, and Embase search engines. All articles focusing on a radiographic diagnosis of pincer-type FAI were reviewed. Each of the included 44 articles was assigned the appropriate level of evidence, and the particular radiographic marker and/or type of imaging were also summarized. There were 44 studies included in the final review. Most of the articles were level 4 evidence (26 articles), and there were 12 level 3 and 6 level 2 articles. The crossover sign was the most commonly used radiographic sign (27/44) followed by the lateral center-edge angle (22/44). Anteroposterior (AP) pelvis plain radiographs were the most commonly used imaging modality (33 studies). Poor-quality evidence exists in support of most currently used radiographic markers, including the crossover sign, lateral center-edge angle, posterior wall sign, ischial spine sign, coxa profunda, acetabular protrusion, and acetabular index. There is poor-quality conflicting evidence regarding the use of the herniation pit to diagnose pincer-type FAI. Some novel measurements, such as β-angle, acetabular roof ratio, and acetabular retroversion index, have been proposed, but they also lack support from the literature. No strong evidence exists to support a single best set of current radiographic markers for the diagnosis of pincer-type FAI, largely due to the lack of better quality trials (levels 1 and 2) that compare conventional radiographic findings with the gold

  4. Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging

    NASA Astrophysics Data System (ADS)

    Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas

    2016-03-01

    In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.

  5. An evaluation of the stability of image quality parameters of Elekta X-ray volume imager and iViewGT imaging systems.

    PubMed

    Stanley, Dennis N; Rasmussen, Karl; Kirby, Neil; Papanikolaou, Nikos; Gutiérrez, Alonso N

    2018-05-01

    A robust image quality assurance and analysis methodology for image-guided localization systems is crucial to ensure the accurate localization and visualization of target tumors. In this study, the long-term stability of selected image parameters was assessed and evaluated for the cone-beam computed tomography (CBCT) mode, planar radiographic kV mode, and the radiographic MV mode of an Elekta VersaHD. The CATPHAN, QckV-1, and QC-3 phantoms were used to evaluate the image quality parameters. The planar radiographic images were analyzed in PIPSpro™ with spatial resolution (f30, f40, f50), contrast to noise ratio (CNR) and noise being recorded. For XVI CBCT, Head and Neck Small20 (S20) and Pelvis Medium20 (M20) standard acquisition modes were evaluated for uniformity, noise, spatial resolution, and HU constancy. Dose and kVp for the XVI were recorded using the Unfors RaySafe Xi system with the R/F low detector for the kV planar radiographic mode. For each metric, values were normalized to the mean and the standard deviations were recorded. A total of 30 measurements were performed on a single Elekta VersaHD linear accelerator over an 18-month period without significant adjustment or recalibration to the XVI or iViewGT systems during the evaluated time frame. For the planar radiographic spatial resolution, the normalized standard deviation values of the f30, f40, and f50 were 0.004, 0.003, and 0.003 and 0.015, 0.009, and 0.017 for kV and MV, respectively. The average recorded dose for kV was 67.96 μGy. The standard deviations of the evaluated metrics for the S20 acquisition were 0.083(f30), 0.058(f40), 0.056(f50), 0.021(Water/poly-HU constancy), 0.029(uniformity) and 0.028(noise). The standard deviations for the M20 acquisition were 0.093(f30), 0.043(f40), 0.037(f50), 0.016(Water/poly-HU constancy), 0.010(uniformity) and 0.011(Noise). A study was performed to assess the stability of the basic image quality parameters recommended by TG-142 for the Elekta XVI and i

  6. Multi-scale Morphological Image Enhancement of Chest Radiographs by a Hybrid Scheme.

    PubMed

    Alavijeh, Fatemeh Shahsavari; Mahdavi-Nasab, Homayoun

    2015-01-01

    Chest radiography is a common diagnostic imaging test, which contains an enormous amount of information about a patient. However, its interpretation is highly challenging. The accuracy of the diagnostic process is greatly influenced by image processing algorithms; hence enhancement of the images is indispensable in order to improve visibility of the details. This paper aims at improving radiograph parameters such as contrast, sharpness, noise level, and brightness to enhance chest radiographs, making use of a triangulation method. Here, contrast limited adaptive histogram equalization technique and noise suppression are simultaneously performed in wavelet domain in a new scheme, followed by morphological top-hat and bottom-hat filtering. A unique implementation of morphological filters allows for adjustment of the image brightness and significant enhancement of the contrast. The proposed method is tested on chest radiographs from Japanese Society of Radiological Technology database. The results are compared with conventional enhancement techniques such as histogram equalization, contrast limited adaptive histogram equalization, Retinex, and some recently proposed methods to show its strengths. The experimental results reveal that the proposed method can remarkably improve the image contrast while keeping the sensitive chest tissue information so that radiologists might have a more precise interpretation.

  7. Multi-scale Morphological Image Enhancement of Chest Radiographs by a Hybrid Scheme

    PubMed Central

    Alavijeh, Fatemeh Shahsavari; Mahdavi-Nasab, Homayoun

    2015-01-01

    Chest radiography is a common diagnostic imaging test, which contains an enormous amount of information about a patient. However, its interpretation is highly challenging. The accuracy of the diagnostic process is greatly influenced by image processing algorithms; hence enhancement of the images is indispensable in order to improve visibility of the details. This paper aims at improving radiograph parameters such as contrast, sharpness, noise level, and brightness to enhance chest radiographs, making use of a triangulation method. Here, contrast limited adaptive histogram equalization technique and noise suppression are simultaneously performed in wavelet domain in a new scheme, followed by morphological top-hat and bottom-hat filtering. A unique implementation of morphological filters allows for adjustment of the image brightness and significant enhancement of the contrast. The proposed method is tested on chest radiographs from Japanese Society of Radiological Technology database. The results are compared with conventional enhancement techniques such as histogram equalization, contrast limited adaptive histogram equalization, Retinex, and some recently proposed methods to show its strengths. The experimental results reveal that the proposed method can remarkably improve the image contrast while keeping the sensitive chest tissue information so that radiologists might have a more precise interpretation. PMID:25709942

  8. Digitizing an Analog Radiography Teaching File Under Time Constraint: Trade-Offs in Efficiency and Image Quality.

    PubMed

    Loehfelm, Thomas W; Prater, Adam B; Debebe, Tequam; Sekhar, Aarti K

    2017-02-01

    We digitized the radiography teaching file at Black Lion Hospital (Addis Ababa, Ethiopia) during a recent trip, using a standard digital camera and a fluorescent light box. Our goal was to photograph every radiograph in the existing library while optimizing the final image size to the maximum resolution of a high quality tablet computer, preserving the contrast resolution of the radiographs, and minimizing total library file size. A secondary important goal was to minimize the cost and time required to take and process the images. Three workers were able to efficiently remove the radiographs from their storage folders, hang them on the light box, operate the camera, catalog the image, and repack the radiographs back to the storage folder. Zoom, focal length, and film speed were fixed, while aperture and shutter speed were manually adjusted for each image, allowing for efficiency and flexibility in image acquisition. Keeping zoom and focal length fixed, which kept the view box at the same relative position in all of the images acquired during a single photography session, allowed unused space to be batch-cropped, saving considerable time in post-processing, at the expense of final image resolution. We present an analysis of the trade-offs in workflow efficiency and final image quality, and demonstrate that a few people with minimal equipment can efficiently digitize a teaching file library.

  9. Quantifying the quality of medical x-ray images: An evaluation based on normal anatomy for lumbar spine and chest radiography

    NASA Astrophysics Data System (ADS)

    Tingberg, Anders Martin

    Optimisation in diagnostic radiology requires accurate methods for determination of patient absorbed dose and clinical image quality. Simple methods for evaluation of clinical image quality are at present scarce and this project aims at developing such methods. Two methods are used and further developed; fulfillment of image criteria (IC) and visual grading analysis (VGA). Clinical image quality descriptors are defined based on these two methods: image criteria score (ICS) and visual grading analysis score (VGAS), respectively. For both methods the basis is the Image Criteria of the ``European Guidelines on Quality Criteria for Diagnostic Radiographic Images''. Both methods have proved to be useful for evaluation of clinical image quality. The two methods complement each other: IC is an absolute method, which means that the quality of images of different patients and produced with different radiographic techniques can be compared with each other. The separating power of IC is, however, weaker than that of VGA. VGA is the best method for comparing images produced with different radiographic techniques and has strong separating power, but the results are relative, since the quality of an image is compared to the quality of a reference image. The usefulness of the two methods has been verified by comparing the results from both of them with results from a generally accepted method for evaluation of clinical image quality, receiver operating characteristics (ROC). The results of the comparison between the two methods based on visibility of anatomical structures and the method based on detection of pathological structures (free-response forced error) indicate that the former two methods can be used for evaluation of clinical image quality as efficiently as the method based on ROC. More studies are, however, needed for us to be able to draw a general conclusion, including studies of other organs, using other radiographic techniques, etc. The results of the experimental

  10. SU-E-J-50: An Evaluation of the Stability of Image Quality Parameters of the Elekta XVI and IView Imaging Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, D; Papanikolaou, N; Gutierrez, A

    2015-06-15

    Introduction Quality assurance of the image quality for image guided localization systems is crucial to ensure accurate visualization and localization of target volumes. In this study, the long term stability of selected image parameters was assessed and evaluated for CBCT mode, planar radiographic kV mode and MV mode. Methods and Materials: The CATPHAN, QckV-1 and QC-3 phantoms were used to evaluate the image quality parameters. The planar radiographic images were analyzed in PIPSpro™ with spatial resolution (f30, f40, f50) being recorded. For XVI CBCT, Head and Neck Small20 (S20) and Pelvis Medium20 (M20) standard acquisition modes were evaluated for Uniformity,more » Noise, Spatial Resolution and HU constancy. Dose and kVp for the XVI were recorded using the Unfors RaySafe Xi system with the R/F Low Detector for the kV planar radiographic mode. Results A total of 20 and 10 measurements were acquired for the planar radiographic and CBCT systems respectively over a two month period. Values were normalized to the mean and the standard deviations (STD) were recorded. For the planar radiographic spatial resolution, the STD for f30, f40, f50 were 0.004, 0.002, 0.002 and 0.005, 0.007, 0.008 for the kV and MV, respectively. The average recorded dose for kV was 38.7±2.7 μGy. The STD of the evaluated metrics for the S20 acquisition were: 0.444(f30), 0.067(f40), 0.062(f50), 0.018(Water/poly-HU constancy), 0.028(uniformity) and 0.106(noise). The standard deviations for the M20 acquisition were: 0.108(f30), 0.073(f40), 0.091(f50), 0.008(Water/poly-HU constancy), 0.005(uniformity) and 0.005(noise). Using these, tolerances can be reported as a warning and action threshold of 1σ and 2σ. Conclusion A study was performed to assess the stability of the basic image quality parameters recommended by TG-142 for the Elekta XVI and iView imaging systems. Consistent imaging and dosimetric properties over the evaluated time frame were noted. This work was funded in part by the

  11. Computer aided weld defect delineation using statistical parametric active contours in radiographic inspection.

    PubMed

    Goumeidane, Aicha Baya; Nacereddine, Nafaa; Khamadja, Mohammed

    2015-01-01

    A perfect knowledge of a defect shape is determinant for the analysis step in automatic radiographic inspection. Image segmentation is carried out on radiographic images and extract defects indications. This paper deals with weld defect delineation in radiographic images. The proposed method is based on a new statistics-based explicit active contour. An association of local and global modeling of the image pixels intensities is used to push the model to the desired boundaries. Furthermore, other strategies are proposed to accelerate its evolution and make the convergence speed depending only on the defect size as selecting a band around the active contour curve. The experimental results are very promising, since experiments on synthetic and radiographic images show the ability of the proposed model to extract a piece-wise homogenous object from very inhomogeneous background, even in a bad quality image.

  12. Radiographic Film Processing Quality Assurance: A Self-Teaching Workbook. Quality Assurance Series.

    ERIC Educational Resources Information Center

    Goldman, Lee W.

    This workbook has been designed for use in conjunction with the manual, "Photographic Quality Assurance in Diagnostic Radiology, Nuclear Medicine and Radiation Therapy." Presented are several typical problems arising from the existence of variability and fluctuations in the automatic processing of radiographs, which unless corrected, can…

  13. 2D–3D radiograph to cone-beam computed tomography (CBCT) registration for C-arm image-guided robotic surgery

    PubMed Central

    Liu, Wen Pei; Otake, Yoshito; Azizian, Mahdi; Wagner, Oliver J.; Sorger, Jonathan M.; Armand, Mehran; Taylor, Russell H.

    2015-01-01

    Purpose C-arm radiographs are commonly used for intraoperative image guidance in surgical interventions. Fluoroscopy is a cost-effective real-time modality, although image quality can vary greatly depending on the target anatomy. Cone-beam computed tomography (CBCT) scans are sometimes available, so 2D–3D registration is needed for intra-procedural guidance. C-arm radiographs were registered to CBCT scans and used for 3D localization of peritumor fiducials during a minimally invasive thoracic intervention with a da Vinci Si robot. Methods Intensity-based 2D–3D registration of intraoperative radiographs to CBCT was performed. The feasible range of X-ray projections achievable by a C-arm positioned around a da Vinci Si surgical robot, configured for robotic wedge resection, was determined using phantom models. Experiments were conducted on synthetic phantoms and animals imaged with an OEC 9600 and a Siemens Artis zeego, representing the spectrum of different C-arm systems currently available for clinical use. Results The image guidance workflow was feasible using either an optically tracked OEC 9600 or a Siemens Artis zeego C-arm, resulting in an angular difference of Δθ : ~ 30°. The two C-arm systems provided TREmean ≤ 2.5 mm and TREmean ≤ 2.0 mm, respectively (i.e., comparable to standard clinical intraoperative navigation systems). Conclusions C-arm 3D localization from dual 2D–3D registered radiographs was feasible and applicable for intraoperative image guidance during da Vinci robotic thoracic interventions using the proposed workflow. Tissue deformation and in vivo experiments are required before clinical evaluation of this system. PMID:25503592

  14. Quality assurance for kilo- and megavoltage in-room imaging and localization for off- and online setup error correction.

    PubMed

    Balter, James M; Antonuk, Larry E

    2008-01-01

    In-room radiography is not a new concept for image-guided radiation therapy. Rapid advances in technology, however, have made this positioning method convenient, and thus radiograph-based positioning has propagated widely. The paradigms for quality assurance of radiograph-based positioning include imager performance, systems integration, infrastructure, procedure documentation and testing, and support for positioning strategy implementation.

  15. The burden of non-radiographic axial spondyloarthritis.

    PubMed

    Boonen, Annelies; Sieper, Joachim; van der Heijde, Désirée; Dougados, Maxime; Bukowski, Jack F; Valluri, Satish; Vlahos, Bonnie; Kotak, Sameer

    2015-04-01

    To identify patients earlier, new classification criteria have been introduced for axial spondyloarthritis (axSpA). Patients who satisfy the clinical or imaging criteria for axSpA in the absence of definite sacroiliac joint changes on pelvic x-rays are classified as having non-radiographic axSpA. Although the burden associated with radiographic axSpA (i.e., ankylosing spondylitis) has been extensively studied, the impact of non-radiographic disease is not well understood. The purpose of this review is to provide an overview of the burden of illness in non-radiographic axSpA, including epidemiology and effects on patients׳ functioning and health-related quality of life (HR-QoL). A PubMed search was performed using relevant key words (e.g., "spondyloarthritis," "ankylosing spondylitis," "epidemiology," and "quality of life") to examine literature published from 2003 to 2013. Studies conducted to date suggest that radiographic progression is detected in approximately 10% of patients with non-radiographic axSpA over 2 years. Differences between patients with non-radiographic and radiographic axSpA were found in age, symptom duration, and gender distribution. Although less inflammation (i.e., lower C-reactive protein levels and less spinal inflammation on MRI) and less impairment in spinal mobility are observed in non-radiographic than in radiographic axSpA, the 2 conditions pose a similar burden in terms of disease activity, physical function, HR-QoL impairment. Patients with non-radiographic axSpA are more frequently female. Although patients with non-radiographic axSpA have shorter disease duration and lack radiological changes, they demonstrate a substantial burden of illness, with self-reported disease activity and functional impairments comparable to those found in patients with radiographic disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Improvement of density resolution in short-pulse hard x-ray radiographic imaging using detector stacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borm, B.; Gärtner, F.; Khaghani, D.

    2016-09-15

    We demonstrate that stacking several imaging plates (IPs) constitutes an easy method to increase hard x-ray detection efficiency. Used to record x-ray radiographic images produced by an intense-laser driven hard x-ray backlighter source, the IP stacks resulted in a significant improvement of the radiograph density resolution. We attribute this to the higher quantum efficiency of the combined detectors, leading to a reduced photon noise. Electron-photon transport simulations of the interaction processes in the detector reproduce the observed contrast improvement. Increasing the detection efficiency to enhance radiographic imaging capabilities is equally effective as increasing the x-ray source yield, e.g., by amore » larger drive laser energy.« less

  17. Low molecular weight dextran provides similar optical coherence tomography coronary imaging compared to radiographic contrast media.

    PubMed

    Frick, Kyle; Michael, Tesfaldet T; Alomar, Mohammed; Mohammed, Atif; Rangan, Bavana V; Abdullah, Shuaib; Grodin, Jerrold; Hastings, Jeffrey L; Banerjee, Subhash; Brilakis, Emmanouil S

    2014-11-01

    Optical coherence tomography (OCT) coronary imaging requires displacement of red blood cells from the vessel lumen. This is usually accomplished using radiographic contrast. Low molecular weight dextran has low cost and is safe in low volumes. In the present study, we compared dextran with contrast for coronary OCT imaging. Fifty-one vessels in 26 patients were sequentially imaged using manual injection of radiographic contrast (iodixanol) and dextran. OCT images were analyzed at 1 mm intervals to determine the image clarity (defined as a visible lumen border > 270°) and to measure the lumen area and lumen diameter. To correct for the refractive index of dextran, the dextran area measurements were multiplied by 1.117 and the dextran length measurements were multiplied by 1.057. A total of 3,418 cross-sections (1,709 with contrast and 1,709 with dextran) were analyzed. There were no complications related to OCT imaging or to contrast or dextran administration. Clear image segments were observed in 97.0% vs. 96.7% of the cross-sections obtained with contrast and dextran, respectively (P = 0.45). The mean lumen areas were also similar: 6.69 ± 1.95 mm(2) with iodixanol vs. 7.06 ± 2.06 mm(2) with dextran (correlation coefficient 0.984). The image quality and measurements during OCT image acquisition are similar for dextran and contrast. Dextran could be used instead of contrast for OCT imaging, especially in patients in whom contrast load minimization is desired. © 2013 Wiley Periodicals, Inc.

  18. Influence of physical parameters on radiation protection and image quality in intra-oral radiology

    NASA Astrophysics Data System (ADS)

    Belinato, W.; Souza, D. N.

    2011-10-01

    In the world of diagnostic imaging, radiography is an important supplementary method for dental diagnosis. In radiology, special attention must be paid to the radiological protection of patients and health professionals, and also to image quality for correct diagnosis. In Brazil, the national rules governing the operation of medical and dental radiology were specified in 1998 by the National Sanitary Surveillance Agency, complemented in 2005 by the guide "Medical radiology: security and performance of equipment." In this study, quality control tests were performed in public clinics with dental X-ray equipment in the State of Sergipe, Brazil, with consideration of the physical parameters that influence radiological protection and also the quality of images taken in intra-oral radiography. The accuracy of the exposure time was considered acceptable for equipment with digital timers. Exposure times and focal-spot size variations can lead to increased entrance dose. Increased dose has also been associated with visual processing of radiographic film, which often requires repeating the radiographic examination.

  19. Exposure Range For Cine Radiographic Procedures

    NASA Astrophysics Data System (ADS)

    Moore, Robert J.

    1980-08-01

    Based on the author's experience, state-of-the-art cine radiographic equipment of the type used in modern cardiovascular laboratories for selective coronary arteriography must perform at well-defined levels to produce cine images with acceptable quantum mottle, contrast, and detail, as judged by consensus of across section of American cardiologists/radiologists experienced in viewing such images. Accordingly, a "standard" undertable state-of-the-art cine radiographic imaging system is postulated to answer the question of what patient exposure range is necessary to obtain cine images of acceptable quality. It is shown that such a standard system would be expected to produce a 'tabletop exposure of about 25 milliRoentgens per frame for the "standard" adult patient, plus-or-minus 33% for accept-able variation of system parameters. This means that for cine radiography at 60 frames per second (30 frames per second) the exposure rate range based on this model is 60 to 120 Roentgens per minute (30 to 60 Roentgens per minute). The author contends that studies at exposure levels below these will yield cine images of questionable diagnostic value; studies at exposure levels above these may yield cine images of excellent visual quality but having little additional diagnostic value, at the expense of added patient/personnel radiation exposure and added x-ray tube heat loading.

  20. The effect of defect cluster size and interpolation on radiographic image quality

    NASA Astrophysics Data System (ADS)

    Töpfer, Karin; Yip, Kwok L.

    2011-03-01

    For digital X-ray detectors, the need to control factory yield and cost invariably leads to the presence of some defective pixels. Recently, a standard procedure was developed to identify such pixels for industrial applications. However, no quality standards exist in medical or industrial imaging regarding the maximum allowable number and size of detector defects. While the answer may be application specific, the minimum requirement for any defect specification is that the diagnostic quality of the images be maintained. A more stringent criterion is to keep any changes in the images due to defects below the visual threshold. Two highly sensitive image simulation and evaluation methods were employed to specify the fraction of allowable defects as a function of defect cluster size in general radiography. First, the most critical situation of the defect being located in the center of the disease feature was explored using image simulation tools and a previously verified human observer model, incorporating a channelized Hotelling observer. Detectability index d' was obtained as a function of defect cluster size for three different disease features on clinical lung and extremity backgrounds. Second, four concentrations of defects of four different sizes were added to clinical images with subtle disease features and then interpolated. Twenty observers evaluated the images against the original on a single display using a 2-AFC method, which was highly sensitive to small changes in image detail. Based on a 50% just-noticeable difference, the fraction of allowed defects was specified vs. cluster size.

  1. Assessing the quality of radiographic processing in general dental practice.

    PubMed

    Thornley, P H; Stewardson, D A; Rout, P G J; Burke, F J T

    2006-05-13

    To determine if a commercial device (Vischeck) for monitoring film processing quality was a practical option in general dental practice, and to assess processing quality among a group of GDPs in the West Midlands with this device. Clinical evaluation. General dental practice, UK, 2004. Ten GDP volunteers from a practice based research group processed Vischeck strips (a) when chemicals were changed, (b) one week later, and (c) immediately before the next change of chemicals. These were compared with strips processed under ideal conditions. Additionally, a series of duplicate radiographs were produced and processed together with Vischeck strips in progressively more dilute developer solutions to compare the change in radiograph quality assessed clinically with that derived from the Vischeck. The Vischeck strips suggested that at the time chosen for change of processing chemicals, eight dentists had been processing films well beyond the point indicated for replacement. Solutions were changed after a wide range of time periods and number of films processed. The calibration of the Vischeck strip correlated closely to a clinical assessment of acceptable film quality. Vischeck strips are a useful aid to monitoring processing quality in automatic developers in general dental practice. Most of this group of GDPs were using chemicals beyond the point at which diagnostic yield would be affected.

  2. Forward model with space-variant of source size for reconstruction on X-ray radiographic image

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Liu, Jun; Jing, Yue-feng; Xiao, Bo; Wei, Cai-hua; Guan, Yong-hong; Zhang, Xuan

    2018-03-01

    The Forward Imaging Technique is a method to solve the inverse problem of density reconstruction in radiographic imaging. In this paper, we introduce the forward projection equation (IFP model) for the radiographic system with areal source blur and detector blur. Our forward projection equation, based on X-ray tracing, is combined with the Constrained Conjugate Gradient method to form a new method for density reconstruction. We demonstrate the effectiveness of the new technique by reconstructing density distributions from simulated and experimental images. We show that for radiographic systems with source sizes larger than the pixel size, the effect of blur on the density reconstruction is reduced through our method and can be controlled within one or two pixels. The method is also suitable for reconstruction of non-homogeneousobjects.

  3. Dual-energy KUB radiographic examination for the detection of renal calculus.

    PubMed

    Yen, Peggy; Bailly, Greg; Pringle, Christopher; Barnes, David

    2014-08-01

    The dual-energy radiographic technique has been proved to be clinically useful in the thorax. Herein, we attempt to apply this technique to the abdomen and pelvis in the context of renal colic. The visibility of renal calculi were assessed using various dual energy peak kilovoltage combination radiographs applied to standard phantoms. This technique demonstrates a higher than acceptable radiation dosage required to optimize the image quality and the optimized diagnostic quality is inferior to that of the standard Kidneys, Ureters, and Bladder radiograph. The dual-energy radiographic technique could not better identify the radiopaque renal calculi. Limiting technical considerations include the increased subcutaneous and peritoneal adipose tissue and the limited contrast between the soft tissue and underlying calculi. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  4. Implant treatment planning regarding augmentation procedures: panoramic radiographs vs. cone beam computed tomography images.

    PubMed

    Dagassan-Berndt, Dorothea C; Zitzmann, Nicola U; Walter, Clemens; Schulze, Ralf K W

    2016-08-01

    To evaluate the impact of cone beam computed tomography (CBCT) imaging on treatment planning regarding augmentation procedures for implant placement. Panoramic radiographs and CBCT images of 40 patients requesting single-tooth implants in 59 sites were retrospectively analyzed by six specialists in implantology, and treatment planning was performed. Therapeutic recommendations were compared with the surgical protocol performed initially. Bone height estimation from panoramic radiographs yielded to higher measures and greater variability compared to CBCT. The suggested treatment plan for lateral and vertical augmentation procedures based on CBCT or panoramic radiographs coincided for 55-72% of the cases. A trend to a more invasive augmentation procedure was seen when planning was based on CBCT. Panoramic radiography revealed 57-63% (lateral) vs. 67% (vertical augmentation) congruent plans in agreement with surgery. Among the dissenting sites, there was a trend toward less invasive planning for lateral augmentation with panoramic radiographs, while vertical augmentation requirements were more frequently more invasive when based on CBCT. Vertical augmentation requirements can be adequately determined from panoramic radiographs. In difficult cases with a deficient lateral alveolar bone, the augmentation schedule may better be evaluated from CBCT to avoid underestimation, which occurs more frequently when based on panoramic radiographs only. However, overall, radiographic interpretation and diagnostic thinking accuracy seem to be mainly depending on the opinion of observers. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Digital radiography: optimization of image quality and dose using multi-frequency software.

    PubMed

    Precht, H; Gerke, O; Rosendahl, K; Tingberg, A; Waaler, D

    2012-09-01

    New developments in processing of digital radiographs (DR), including multi-frequency processing (MFP), allow optimization of image quality and radiation dose. This is particularly promising in children as they are believed to be more sensitive to ionizing radiation than adults. To examine whether the use of MFP software reduces the radiation dose without compromising quality at DR of the femur in 5-year-old-equivalent anthropomorphic and technical phantoms. A total of 110 images of an anthropomorphic phantom were imaged on a DR system (Canon DR with CXDI-50 C detector and MLT[S] software) and analyzed by three pediatric radiologists using Visual Grading Analysis. In addition, 3,500 images taken of a technical contrast-detail phantom (CDRAD 2.0) provide an objective image-quality assessment. Optimal image-quality was maintained at a dose reduction of 61% with MLT(S) optimized images. Even for images of diagnostic quality, MLT(S) provided a dose reduction of 88% as compared to the reference image. Software impact on image quality was found significant for dose (mAs), dynamic range dark region and frequency band. By optimizing image processing parameters, a significant dose reduction is possible without significant loss of image quality.

  6. EVALUATION OF THE EFFECTS OF PROCESSING DELAYS AND PROTECTIVE PLASTIC CASES ON IMAGE QUALITY OF A PHOTOSTIMULABLE PHOSPHOR PLATE SYSTEM

    PubMed Central

    Bramante, Clóvis Monteiro; Bramante, Alexandre Silva; de Souza, Rogério Emílio; Moraes, Ivaldo Gomes; Bernardineli, Norberti; Garcia, Roberto Brandão

    2008-01-01

    This ex vivo study evaluated the quality of digital radiographic images obtained with the photostimulable phosphor plate system (Digora) according to the processing delay and maintenance of optical plates in either opaque (supplied with the system) or transparent protective plastic cases during this period. Five radiographs were obtained from the mandibular molar region of a dry human mandible using optical plates. These plates were placed in the protective plastic cases before obtaining the radiographs and were processed immediately or after processing delays of 5, 60 and 120 min, when the case was removed. The results revealed a reduction in image quality when processing was delay 120 min compared to the other times. The opaque case provided better protection to the sensor than the transparent case. In conclusion, a 120-min processing delay for the Digora system caused a reduction in image quality, yet without interfering with the quality of diagnosis. The opaque case supplied by the system's manufacturer provided better protection to the optical plate than the transparent case. PMID:19089233

  7. A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of bone and soft-tissue targets.

    PubMed

    Jaffray, D A; Drake, D G; Moreau, M; Martinez, A A; Wong, J W

    1999-10-01

    phantoms using both the MV and the kV imaging system, and the visibility of soft-tissue targets is assessed. Characterization of the gains in the two systems demonstrates that the MV system is x-ray quantum noise-limited at very low spatial frequencies; this is not the case for the kV system. The estimates of gain used in the model are validated by measurements of the total gain in each system. Contrast-detail measurements demonstrate that the MV system is capable of detecting subject contrasts of less than 0.1% (at 6 and 18 MV). A comparison of the kV and MV contrast-detail performance indicates that equivalent bony object detection can be achieved with the kV system at significantly lower doses (factors of 40 and 90 lower than for 6 and 18 MV, respectively). The tomographic performance of the system is promising; soft-tissue visibility is demonstrated at relatively low imaging doses (3 cGy) using four laboratory rats. We have integrated a kV radiographic and tomographic imaging system with a medical linear accelerator to allow localization of bone and soft-tissue structures in the reference frame of the accelerator. Modeling and experiments have demonstrated the feasibility of acquiring high-quality radiographic and tomographic images at acceptable imaging doses. Full integration of the kV and MV imaging systems with the treatment machine will allow on-line radiographic and tomographic guidance of field placement.

  8. A survey of radiographers' confidence and self-perceived accuracy in frontline image interpretation and their continuing educational preferences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neep, Michael J; Centre for Functioning and Health Research, Metro South Health, Brisbane, Queensland; School of Public Health and Social Work and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland

    The provision of a written comment on traumatic abnormalities of the musculoskeletal system detected by radiographers can assist referrers and may improve patient management, but the practice has not been widely adopted outside the United Kingdom. The purpose of this study was to investigate Australian radiographers' perceptions of their readiness for practice in a radiographer commenting system and their educational preferences in relation to two different delivery formats of image interpretation education, intensive and non-intensive. A cross-sectional web-based questionnaire was implemented between August and September 2012. Participants included radiographers with experience working in emergency settings at four Australian metropolitan hospitals.more » Conventional descriptive statistics, frequency histograms, and thematic analysis were undertaken. A Wilcoxon signed-rank test examined whether a difference in preference ratings between intensive and non-intensive education delivery was evident. The questionnaire was completed by 73 radiographers (68% response rate). Radiographers reported higher confidence and self-perceived accuracy to detect traumatic abnormalities than to describe traumatic abnormalities of the musculoskeletal system. Radiographers frequently reported high desirability ratings for both the intensive and the non-intensive education delivery, no difference in desirability ratings for these two formats was evident (z = 1.66, P = 0.11). Some Australian radiographers perceive they are not ready to practise in a frontline radiographer commenting system. Overall, radiographers indicated mixed preferences for image interpretation education delivered via intensive and non-intensive formats. Further research, preferably randomised trials, investigating the effectiveness of intensive and non-intensive education formats of image interpretation education for radiographers is warranted.« less

  9. Seed viability detection using computerized false-color radiographic image enhancement

    NASA Technical Reports Server (NTRS)

    Vozzo, J. A.; Marko, Michael

    1994-01-01

    Seed radiographs are divided into density zones which are related to seed germination. The seeds which germinate have densities relating to false-color red. In turn, a seed sorter may be designed which rejects those seeds not having sufficient red to activate a gate along a moving belt containing the seed source. This results in separating only seeds with the preselected densities representing biological viability lending to germination. These selected seeds demand a higher market value. Actual false-coloring isn't required for a computer to distinguish the significant gray-zone range. This range can be predetermined and screened without the necessity of red imaging. Applying false-color enhancement is a means of emphasizing differences in densities of gray within any subject from photographic, radiographic, or video imaging. Within the 0-255 range of gray levels, colors can be assigned to any single level or group of gray levels. Densitometric values then become easily recognized colors which relate to the image density. Choosing a color to identify any given density allows separation by morphology or composition (form or function). Additionally, relative areas of each color are readily available for determining distribution of that density by comparison with other densities within the image.

  10. 42 CFR 37.43 - Approval of radiographic facilities that use film.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... roentgenography of the chest. Amer J Roentgenol 117(4):771-776. (b) Each radiographic facility submitting chest... facility addressing radiation exposures, equipment maintenance, and image quality, and must conform to the... individual data, interpretations, and images) consistent with applicable statutes and regulations governing...

  11. 42 CFR 37.43 - Approval of radiographic facilities that use film.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... roentgenography of the chest. Amer J Roentgenol 117(4):771-776. (b) Each radiographic facility submitting chest... facility addressing radiation exposures, equipment maintenance, and image quality, and must conform to the... individual data, interpretations, and images) consistent with applicable statutes and regulations governing...

  12. Is there a relation between local bone quality as assessed on panoramic radiographs and alveolar bone level?

    PubMed

    Nackaerts, Olivia; Gijbels, Frieda; Sanna, Anna-Maria; Jacobs, Reinhilde

    2008-03-01

    The aim was to explore the relation between radiographic bone quality on panoramic radiographs and relative alveolar bone level. Digital panoramic radiographs of 94 female patients were analysed (mean age, 44.5; range, 35-74). Radiographic density of the alveolar bone in the premolar region was determined using Agfa Musica software. Alveolar bone level and bone quality index (BQI) were also assessed. Relationships between bone density and BQI on one hand and the relative loss of alveolar bone level on the other were assessed. Mandibular bone density and loss of alveolar bone level were weakly but significantly negatively correlated for the lower premolar area (r = -.27). The BQI did not show a statistically significant relation to alveolar bone level. Radiographic mandibular bone density on panoramic radiographs shows a weak but significant relation to alveolar bone level, with more periodontal breakdown for less dense alveolar bone.

  13. Condylar guidance: correlation between protrusive interocclusal record and panoramic radiographic image: a pilot study.

    PubMed

    Tannamala, Pavan Kumar; Pulagam, Mahesh; Pottem, Srinivas R; Swapna, B

    2012-04-01

    The purpose of this study was to compare the sagittal condylar angles set in the Hanau articulator by use of a method of obtaining an intraoral protrusive record to those angles found using a panoramic radiographic image. Ten patients, free of signs and symptoms of temporomandibular disorder and with intact dentition were selected. The dental stone casts of the subjects were mounted on a Hanau articulator with a springbow and poly(vinyl siloxane) interocclusal records. For all patients, the protrusive records were obtained when the mandible moved forward by approximately 6 mm. All procedures for recording, mounting, and setting were done in the same session. The condylar guidance angles obtained were tabulated. A panoramic radiographic image of each patient was made with the Frankfurt horizontal plane parallel to the floor of the mouth. Tracings of the radiographic images were made. The horizontal reference line was marked by joining the orbitale and porion. The most superior and most inferior points of the curvatures were identified. These two lines were connected by a straight line representing the mean curvature line. Angles made by the intersection of the mean curvature line and the horizontal reference line were measured. The results were subjected to statistical analysis with a significance level of p < 0.05. The radiographic values were on average 4° greater than the values obtained by protrusive interocclusal record method. The mean condylar guidance angle between the right and left side by both the methods was not statistically significant. The comparison of mean condylar guidance angles between the right side of the protrusive record method and the right side of the panoramic radiographic method and the left side of the protrusive record method and the left side of the panoramic radiographic method (p= 0.071 and p= 0.057, respectively) were not statistically significant. Within the limitations of this study, it was concluded that the protrusive condylar

  14. European radiographers' challenges from mammography education and clinical practice - an integrative review.

    PubMed

    Metsälä, Eija; Richli Meystre, Nicole; Pires Jorge, José; Henner, Anja; Kukkes, Tiina; Sá Dos Reis, Cláudia

    2017-06-01

    This study aims to identify European radiographers' challenges in clinical performance in mammography and the main areas of mammography that require more and better training. An extensive search was performed to identify relevant studies focused on clinical practice, education and training in mammography published between January 2010 and December 2015 in the English language. The data were analysed by using deductive thematic analysis. A total of 27 full text articles were read, evaluating their quality. Sixteen articles out of 27 were finally selected for this integrative review. The main challenges of radiographers' mammography education/training can be divided into three groups: training needs, challenges related to radiographers, and challenges related to the organization of education. The most common challenges of clinical performance in mammography among European radiographers involved technical performance, the quality of practices, and patient-centeredness. The introduction of harmonized mammography guidelines across Europe may serve as an evidence-based tool to be implemented in practice and education. However, the variability in human and material resources as well as the different cultural contexts should be considered during this process. • Radiographers' awareness of their professional identity and enhancing multiprofessional cooperation in mammography. • Radiographers' responsibilities regarding image quality (IQ) and optimal breast imaging performance. • Patient-centred mammography services focusing on the psychosocial needs of the patient. • Challenges: positioning, QC-testing, IQ-assessment, optimization of breast compression, communication, teamwork, and patient-centred care. • Introduction of evidence-based guidelines in Europe to harmonize mammography practice and education.

  15. A computer-aided diagnosis system to detect pathologies in temporal subtraction images of chest radiographs

    NASA Astrophysics Data System (ADS)

    Looper, Jared; Harrison, Melanie; Armato, Samuel G.

    2016-03-01

    Radiologists often compare sequential radiographs to identify areas of pathologic change; however, this process is prone to error, as human anatomy can obscure the regions of change, causing the radiologists to overlook pathology. Temporal subtraction (TS) images can provide enhanced visualization of regions of change in sequential radiographs and allow radiologists to better detect areas of change in radiographs. Not all areas of change shown in TS images, however, are actual pathology. The purpose of this study was to create a computer-aided diagnostic (CAD) system that identifies which regions of change are caused by pathology and which are caused by misregistration of the radiographs used to create the TS image. The dataset used in this study contained 120 images with 74 pathologic regions on 54 images outlined by an experienced radiologist. High and low ("light" and "dark") gray-level candidate regions were extracted from the images using gray-level thresholding. Then, sampling techniques were used to address the class imbalance problem between "true" and "false" candidate regions. Next, the datasets of light candidate regions, dark candidate regions, and the combined set of light and dark candidate regions were used as training and testing data for classifiers by using five-fold cross validation. Of the classifiers tested (support vector machines, discriminant analyses, logistic regression, and k-nearest neighbors), the support vector machine on the combined candidates using synthetic minority oversampling technique (SMOTE) performed best with an area under the receiver operating characteristic curve value of 0.85, a sensitivity of 85%, and a specificity of 84%.

  16. Comparison of imaging characteristics of multiple-beam equalization and storage phosphor direct digitizer radiographic systems

    NASA Astrophysics Data System (ADS)

    Sankaran, A.; Chuang, Keh-Shih; Yonekawa, Hisashi; Huang, H. K.

    1992-06-01

    The imaging characteristics of two chest radiographic equipment, Advanced Multiple Beam Equalization Radiography (AMBER) and Konica Direct Digitizer [using a storage phosphor (SP) plate] systems have been compared. The variables affecting image quality and the computer display/reading systems used are detailed. Utilizing specially designed wedge, geometric, and anthropomorphic phantoms, studies were conducted on: exposure and energy response of detectors; nodule detectability; different exposure techniques; various look- up tables (LUTs), gray scale displays and laser printers. Methods for scatter estimation and reduction were investigated. It is concluded that AMBER with screen-film and equalization techniques provides better nodule detectability than SP plates. However, SP plates have other advantages such as flexibility in the selection of exposure techniques, image processing features, and excellent sensitivity when combined with optimum reader operating modes. The equalization feature of AMBER provides better nodule detectability under the denser regions of the chest. Results of diagnostic accuracy are demonstrated with nodule detectability plots and analysis of images obtained with phantoms.

  17. The influence of dental implants in periapical and panoramic radiographs and cone beam computed tomography images: a clinical study.

    PubMed

    Felix, Rafael Perdomo; Shinkai, Rosemary Sadami Arai; Rockenbach, Maria Ivete Bolzan

    2018-01-01

    The aim of this study was to analyze the influence of dental implants on the radiographic density of the peri-implant region in tomographic and radiographic examinations. A sample of 21 dental implants from 10 patients with Brånemark-protocol prostheses was evaluated based on postoperative control images, including periapical radiography (paralleling technique), panoramic radiography, and cone beam computed tomography (CBCT). The density means of 6 defined areas near dental implants were calculated and compared considering their locations and the different imaging examinations. The CBCT examinations showed significantly different densities among the measured areas (P < 0.001), while there were no significant differences among the density means of the various areas in periapical radiographs (P = 0.430) and panoramic radiographs (P = 0.149). The highest mean densities were observed in areas closer to the implants in all the examinations: CBCT (127.88 and 120.71), panoramic (106.51 and 106.09), and periapical (120.32). The sagittal CBCT images were measured in 2 different sections, and in both sections those areas closer to implants showed mean densities that were significantly higher than means from more distant areas (P < 0.001). Means from distant areas on CBCT slice imaging were significantly lower than the densities of the same areas on periapical and panoramic examinations. The changes in mean radiographic density values in the peri-implant region confirmed the interference of dental implants in radiographic and tomographic images. CBCT images suffered the greatest interference from dental implants.

  18. Flat-panel-detector chest radiography: effect of tube voltage on image quality.

    PubMed

    Uffmann, Martin; Neitzel, Ulrich; Prokop, Mathias; Kabalan, Nahla; Weber, Michael; Herold, Christian J; Schaefer-Prokop, Cornelia

    2005-05-01

    To compare the visibility of anatomic structures in direct-detector chest radiographs acquired with different tube voltages at equal effective doses to the patient. The study protocol was approved by the institutional internal review board, and written informed consent was obtained from all patients. Posteroanterior chest radiographs of 48 consecutively selected patients were obtained at 90, 121, and 150 kVp by using a flat-panel-detector unit that was based on cesium iodide technology and automated exposure control. Monte Carlo simulations were used to verify that the effective dose for all kilovoltage settings was equal. Five radiologists subjectively and independently rated the delineation of anatomic structures on hard-copy images by using a five-point scale. They also ranked image quality in a blinded side-by-side comparison. Average ranking scores were compared by using one-way analysis of variance with repeated measures. Data were analyzed for the entire patient group and for two patient subgroups that were formed according to body mass index (BMI). The visibility scores of most anatomic structures were significantly superior with the 90-kVp images (mean score, 3.11), followed by the 121-kVp (mean score, 2.95) and 150-kVp images (mean score, 2.80). Differences did not reach significance (P > .05) only for the delineation of the peripheral vessels, the heart contours, and the carina. This was also true for the subgroup of patients (n = 24) with a BMI greater than and the subgroup of patients (n = 24) with a BMI less than the mean BMI (26.9 kg/m(2)). At side-by-side comparison, the readers rated 90-kVp images as having superior image quality in the majority of image triplets; the percentage of 90-kVp images rated as "first choice" ranged from 60% (29 of 48 patients) to 90% (43 of 48 patients), with a median of 88% (42 of 48 patients), among the readers. Delineation of most anatomic structures and overall image quality were ranked superior in digital

  19. Evaluation of computed tomography post-processing images in postoperative assessment of Lisfranc injuries compared with plain radiographs.

    PubMed

    Li, Haobo; Chen, Yanxi; Qiang, Minfei; Zhang, Kun; Jiang, Yuchen; Zhang, Yijie; Jia, Xiaoyang

    2017-06-14

    The objective of this study is to evaluate the value of computed tomography (CT) post-processing images in postoperative assessment of Lisfranc injuries compared with plain radiographs. A total of 79 cases with closed Lisfranc injuries that were treated with conventional open reduction and internal fixation from January 2010 to June 2016 were analyzed. Postoperative assessment was performed by two independent orthopedic surgeons with both plain radiographs and CT post-processing images. Inter- and intra-observer agreement were analyzed by kappa statistics while the differences between the two postoperative imaging assessments were assessed using the χ 2 test (McNemar's test). Significance was assumed when p < 0.05. Inter- and intra-observer agreement of CT post-processing images was much higher than that of plain radiographs. Non-anatomic reduction was more easily identified in patients with injuries of Myerson classifications A, B1, B2, and C1 using CT post-processing images with overall groups (p < 0.05), and poor internal fixation was also more easily detected in patients with injuries of Myerson classifications A, B1, B2, and C2 using CT post-processing images with overall groups (p < 0.05). CT post-processing images can be more reliable than plain radiographs in the postoperative assessment of reduction and implant placement for Lisfranc injuries.

  20. CLINICAL AUDIT OF IMAGE QUALITY IN RADIOLOGY USING VISUAL GRADING CHARACTERISTICS ANALYSIS.

    PubMed

    Tesselaar, Erik; Dahlström, Nils; Sandborg, Michael

    2016-06-01

    The aim of this work was to assess whether an audit of clinical image quality could be efficiently implemented within a limited time frame using visual grading characteristics (VGC) analysis. Lumbar spine radiography, bedside chest radiography and abdominal CT were selected. For each examination, images were acquired or reconstructed in two ways. Twenty images per examination were assessed by 40 radiology residents using visual grading of image criteria. The results were analysed using VGC. Inter-observer reliability was assessed. The results of the visual grading analysis were consistent with expected outcomes. The inter-observer reliability was moderate to good and correlated with perceived image quality (r(2) = 0.47). The median observation time per image or image series was within 2 min. These results suggest that the use of visual grading of image criteria to assess the quality of radiographs provides a rapid method for performing an image quality audit in a clinical environment. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Radiographic endodontic working length estimation: comparison of three digital image receptors.

    PubMed

    Athar, Anas; Angelopoulos, Christos; Katz, Jerald O; Williams, Karen B; Spencer, Paulette

    2008-10-01

    This in vitro study was conducted to evaluate the accuracy of the Schick wireless image receptor compared with 2 other types of digital image receptors for measuring the radiographic landmarks pertinent to endodontic treatment. Fourteen human cadaver mandibles with retained molars were selected. A fine endodontic file (#10) was introduced into the canal at random distances from the apex and at the apex of the tooth; images were made with 3 different #2-size image receptors: DenOptix storage phosphor plates, Gendex CCD sensor (wired), and Schick CDR sensor (wireless). Six raters viewed the images for identification of the radiographic apex of the tooth and the tip of a fine (#10) endodontic file. Inter-rater reliability was also assessed. Repeated-measures analysis of variance revealed a significant main effect for the type of image receptor. Raters' error in identifying structures of interest was significantly higher for Denoptix storage phosphor plates, whereas the least error was noted with the Schick CDR sensor. A significant interaction effect was observed for rater and type of image receptor used, but this effect contributed only 6% (P < .01; eta(2) = 0.06) toward the outcome of the results. Schick CDR wireless sensor may be preferable to other solid-state sensors, because there is no cable connecting the sensor to the computer. Further testing of this sensor for other diagnostic tasks is recommended, as well as evaluation of patient acceptance.

  2. Multiscale image processing and antiscatter grids in digital radiography.

    PubMed

    Lo, Winnie Y; Hornof, William J; Zwingenberger, Allison L; Robertson, Ian D

    2009-01-01

    Scatter radiation is a source of noise and results in decreased signal-to-noise ratio and thus decreased image quality in digital radiography. We determined subjectively whether a digitally processed image made without a grid would be of similar quality to an image made with a grid but without image processing. Additionally the effects of exposure dose and of a using a grid with digital radiography on overall image quality were studied. Thoracic and abdominal radiographs of five dogs of various sizes were made. Four acquisition techniques were included (1) with a grid, standard exposure dose, digital image processing; (2) without a grid, standard exposure dose, digital image processing; (3) without a grid, half the exposure dose, digital image processing; and (4) with a grid, standard exposure dose, no digital image processing (to mimic a film-screen radiograph). Full-size radiographs as well as magnified images of specific anatomic regions were generated. Nine reviewers rated the overall image quality subjectively using a five-point scale. All digitally processed radiographs had higher overall scores than nondigitally processed radiographs regardless of patient size, exposure dose, or use of a grid. The images made at half the exposure dose had a slightly lower quality than those made at full dose, but this was only statistically significant in magnified images. Using a grid with digital image processing led to a slight but statistically significant increase in overall quality when compared with digitally processed images made without a grid but whether this increase in quality is clinically significant is unknown.

  3. A Lossless hybrid wavelet-fractal compression for welding radiographic images.

    PubMed

    Mekhalfa, Faiza; Avanaki, Mohammad R N; Berkani, Daoud

    2016-01-01

    In this work a lossless wavelet-fractal image coder is proposed. The process starts by compressing and decompressing the original image using wavelet transformation and fractal coding algorithm. The decompressed image is removed from the original one to obtain a residual image which is coded by using Huffman algorithm. Simulation results show that with the proposed scheme, we achieve an infinite peak signal to noise ratio (PSNR) with higher compression ratio compared to typical lossless method. Moreover, the use of wavelet transform speeds up the fractal compression algorithm by reducing the size of the domain pool. The compression results of several welding radiographic images using the proposed scheme are evaluated quantitatively and compared with the results of Huffman coding algorithm.

  4. Ultrasonic and radiographic evaluation of advanced aerospace materials: Ceramic composites

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1990-01-01

    Two conventional nondestructive evaluation techniques were used to evaluate advanced ceramic composite materials. It was shown that neither ultrasonic C-scan nor radiographic imaging can individually provide sufficient data for an accurate nondestructive evaluation. Both ultrasonic C-scan and conventional radiographic imaging are required for preliminary evaluation of these complex systems. The material variations that were identified by these two techniques are porosity, delaminations, bond quality between laminae, fiber alignment, fiber registration, fiber parallelism, and processing density flaws. The degree of bonding between fiber and matrix cannot be determined by either of these methods. An alternative ultrasonic technique, angular power spectrum scanning (APSS) is recommended for quantification of this interfacial bond.

  5. Preliminary evaluation of a high-resolution workstation for diagnostic interpretation of portable radiographs

    NASA Astrophysics Data System (ADS)

    Honeyman-Buck, Janice C.; Huda, Walter; Palmer, Carole K.; Frost, Meryll M.; Moser, Robert; Staab, Edward V.

    1995-04-01

    A cost effectiveness study on the feasibility of using computed radiography (CR) instead of screen-film methods for portable radiographs indicates that we could only justify CR if film were eliminated. Before purchasing CR equipment, we needed to evaluate the use of softcopy to replace film for routine clinical use. The evaluation had to cover image quality, human factors, and efficiency measures. Screen-film radiographs were digitized and used to simulate CR in two studies. The first study evaluated the quality of digitized images and the workstation user interface. Twenty-one radiographs were selected at random from scopes in the radiology department, were digitized, and transferred to a megascan workstation. Five radiologists were asked to assess the quality of the images and the ease of operation of the workstation while an observer recorded their comments and scores. The second study evaluated the feasibility of using the workstation in a clinical environment. Four radiologists read adult and pediatric portable images in film and softcopy format. Reports were evaluated for differences and timing statistics were kept. The results of the first study indicate that image quality may be acceptable for diagnostic purposes and suggests some changes in the user interface. Newborn infant images were the least acceptable in softcopy, largely due to magnification artifacts introduced when viewing very small images. The evaluation was based on a digitizer as a simulator for a CR unit and the digitizer did not exhibit the same resolution characteristics as CR. Films that were unacceptable from the digitizer are expected to be acceptable with CR. The results of the second study indicated that the high resolution diagnostic workstation could be used in a clinical setting, and that the diagnostic readings were not significantly different between film and softcopy displays. The results also indicated that, depending on the radiologist and the type of images, more time was

  6. Validation of the international labour office digitized standard images for recognition and classification of radiographs of pneumoconiosis.

    PubMed

    Halldin, Cara N; Petsonk, Edward L; Laney, A Scott

    2014-03-01

    Chest radiographs are recommended for prevention and detection of pneumoconiosis. In 2011, the International Labour Office (ILO) released a revision of the International Classification of Radiographs of Pneumoconioses that included a digitized standard images set. The present study compared results of classifications of digital chest images performed using the new ILO 2011 digitized standard images to classification approaches used in the past. Underground coal miners (N = 172) were examined using both digital and film-screen radiography (FSR) on the same day. Seven National Institute for Occupational Safety and Health-certified B Readers independently classified all 172 digital radiographs, once using the ILO 2011 digitized standard images (DRILO2011-D) and once using digitized standard images used in the previous research (DRRES). The same seven B Readers classified all the miners' chest films using the ILO film-based standards. Agreement between classifications of FSR and digital radiography was identical, using a standard image set (either DRILO2011-D or DRRES). The overall weighted κ value was 0.58. Some specific differences in the results were seen and noted. However, intrareader variability in this study was similar to the published values and did not appear to be affected by the use of the new ILO 2011 digitized standard images. These findings validate the use of the ILO digitized standard images for classification of small pneumoconiotic opacities. When digital chest radiographs are obtained and displayed appropriately, results of pneumoconiosis classifications using the 2011 ILO digitized standards are comparable to film-based ILO classifications and to classifications using earlier research standards. Published by Elsevier Inc.

  7. Paediatric x-ray radiation dose reduction and image quality analysis.

    PubMed

    Martin, L; Ruddlesden, R; Makepeace, C; Robinson, L; Mistry, T; Starritt, H

    2013-09-01

    Collaboration of multiple staff groups has resulted in significant reduction in the risk of radiation-induced cancer from radiographic x-ray exposure during childhood. In this study at an acute NHS hospital trust, a preliminary audit identified initial exposure factors. These were compared with European and UK guidance, leading to the introduction of new factors that were in compliance with European guidance on x-ray tube potentials. Image quality was assessed using standard anatomical criteria scoring, and visual grading characteristics analysis assessed the impact on image quality of changes in exposure factors. This analysis determined the acceptability of gradual radiation dose reduction below the European and UK guidance levels. Chest and pelvis exposures were optimised, achieving dose reduction for each age group, with 7%-55% decrease in critical organ dose. Clinicians confirmed diagnostic image quality throughout the iterative process. Analysis of images acquired with preliminary and final exposure factors indicated an average visual grading analysis result of 0.5, demonstrating equivalent image quality. The optimisation process and final radiation doses are reported for Carestream computed radiography to aid other hospitals in minimising radiation risks to children.

  8. A novel quality assurance method in a university teaching paediatric radiology department.

    PubMed

    Gallet, J M; Reed, M H; Hlady, J

    2000-08-01

    Primary diagnostic equipment in a paediatric radiology department must perform at optimal levels at all times. The Children's Hospital Radiology Department in Winnipeg, Canada, has developed an impartial means of reporting radiographic image quality. The main objectives of this study programme were two-fold. First, to monitor diagnostic X-ray equipment performance, and second, to improve the resultant image quality as a means of implementing the fundamental concepts of continuous quality improvement. Reading radiologists completed a quality assurance (QA) card when they identified a radiographic image quality problem. The cards were subsequently collected by the clinical instructor who then informed, in confidence, the radiographers of the written comments or concerns. QA cards have been conspicuously installed in the paediatric radiology reading room since the middle of 1993. Since its inception, equipment malfunction has been monitored and indicators for improving image quality developed. This component of the QA programme has shown itself to be a successful means of communicating with radiographers in maintaining superior image quality.

  9. Experiments in concept modeling for radiographic image reports.

    PubMed Central

    Bell, D S; Pattison-Gordon, E; Greenes, R A

    1994-01-01

    OBJECTIVE: Development of methods for building concept models to support structured data entry and image retrieval in chest radiography. DESIGN: An organizing model for chest-radiographic reporting was built by analyzing manually a set of natural-language chest-radiograph reports. During model building, clinician-informaticians judged alternative conceptual structures according to four criteria: content of clinically relevant detail, provision for semantic constraints, provision for canonical forms, and simplicity. The organizing model was applied in representing three sample reports in their entirety. To explore the potential for automatic model discovery, the representation of one sample report was compared with the noun phrases derived from the same report by the CLARIT natural-language processing system. RESULTS: The organizing model for chest-radiographic reporting consists of 62 concept types and 17 relations, arranged in an inheritance network. The broadest types in the model include finding, anatomic locus, procedure, attribute, and status. Diagnoses are modeled as a subtype of finding. Representing three sample reports in their entirety added 79 narrower concept types. Some CLARIT noun phrases suggested valid associations among subtypes of finding, status, and anatomic locus. CONCLUSIONS: A manual modeling process utilizing explicitly stated criteria for making modeling decisions produced an organizing model that showed consistency in early testing. A combination of top-down and bottom-up modeling was required. Natural-language processing may inform model building, but algorithms that would replace manual modeling were not discovered. Further progress in modeling will require methods for objective model evaluation and tools for formalizing the model-building process. PMID:7719807

  10. Image analysis software as a strategy to improve the radiographic determination of fracture healing.

    PubMed

    Duryea, Jeffrey; Evans, Christopher; Glatt, Vaida

    2018-05-28

    To develop and validate an unbiased, accurate, convenient and inexpensive means of determining when an osseous defect has healed and recovered sufficient strength to allow weight-bearing. A novel image processing software algorithm was created to analyze the radiographic images and produce a metric designed to reflect the bone strength. We used a rat femoral segmental defect model that provides a range of healing responses from complete union to non-union. Femora were examined by X-ray, micro-computed tomography (µCT) and mechanical testing. Accurate simulated radiographic images at different incident X-ray beam angles were produced from the µCT data files. The software-generated metric (SC) showed high levels of correlation with both the mechanical strength (τMech) and the polar moment of inertia (pMOI), with the mechanical testing data having the highest association. The optimization analysis yielded optimal oblique angles θB of 125° for τMech and 50° for pMOI. The Pearson's R values for the optimized model were 0.71 and 0.64 for τMech and pMOI, respectively. Further validation using true radiographs also demonstrated that the metric was accurate, and that the simulations were realistic. The preliminary findings suggest a very promising methodology to assess bone fracture healing using conventional radiography. With radiographs acquired at appropriate incident angles, it proved possible to calculate accurately the degree of healing and the mechanical strength of the bone. Further research is necessary to refine this approach and determine whether it translates to the human clinical setting.

  11. Effects of AEC chamber selection on patient dose and image quality.

    PubMed

    Hawking, Nancy; Elmore, Angie

    2009-01-01

    To determine whether manipulation of the standard automatic exposure control (AEC) chamber selections reduces the patient's entrance skin exposure (ESE) without compromising image quality. Data for density and radiation dose were gathered at 2 clinical locations by exposing abdomen and pelvis phantoms to radiation using 3 AEC chamber selection configurations. ESE (skin dose) was measured using a multipurpose dosimeter. The experiment included both film-screen and computed radiography (CR) systems. For both phantoms, using the 2 outside chambers resulted in the lowest dose on the film-screen and CR systems. In general, optical density (OD) and exposure indicator (EI) remained within acceptable ranges and image quality was maintained using this chamber configuration. Using only the center chamber resulted in the highest dose increases and lowest image quality for film-screen and CR systems. When performing anteroposterior (AP) abdomen and AP pelvis examinations, radiographers can reduce patients' ESE and maintain image quality by selecting the 2 outside AEC chambers. Further research on AEC chamber selection should be conducted for additional anatomical regions.

  12. New patient-controlled abdominal compression method in radiography: radiation dose and image quality.

    PubMed

    Piippo-Huotari, Oili; Norrman, Eva; Anderzén-Carlsson, Agneta; Geijer, Håkan

    2018-05-01

    The radiation dose for patients can be reduced with many methods and one way is to use abdominal compression. In this study, the radiation dose and image quality for a new patient-controlled compression device were compared with conventional compression and compression in the prone position . To compare radiation dose and image quality of patient-controlled compression compared with conventional and prone compression in general radiography. An experimental design with quantitative approach. After obtaining the approval of the ethics committee, a consecutive sample of 48 patients was examined with the standard clinical urography protocol. The radiation doses were measured as dose-area product and analyzed with a paired t-test. The image quality was evaluated by visual grading analysis. Four radiologists evaluated each image individually by scoring nine criteria modified from the European quality criteria for diagnostic radiographic images. There was no significant difference in radiation dose or image quality between conventional and patient-controlled compression. Prone position resulted in both higher dose and inferior image quality. Patient-controlled compression gave similar dose levels as conventional compression and lower than prone compression. Image quality was similar with both patient-controlled and conventional compression and was judged to be better than in the prone position.

  13. Technical innovation changes standard radiographic protocols in veterinary medicine: is it necessary to obtain two dorsoproximal-palmarodistal oblique views of the equine foot when using computerised radiography systems?

    PubMed

    Whitlock, J; Dixon, J; Sherlock, C; Tucker, R; Bolt, D M; Weller, R

    2016-05-21

    Since the 1950s, veterinary practitioners have included two separate dorsoproximal-palmarodistal oblique (DPr-PaDiO) radiographs as part of a standard series of the equine foot. One image is obtained to visualise the distal phalanx and the other to visualise the navicular bone. However, rapid development of computed radiography and digital radiography and their post-processing capabilities could mean that this practice is no longer required. The aim of this study was to determine differences in perceived image quality between DPr-PaDiO radiographs that were acquired with a computerised radiography system with exposures, centring and collimation recommended for the navicular bone versus images acquired for the distal phalanx but were subsequently manipulated post-acquisition to highlight the navicular bone. Thirty images were presented to four clinicians for quality assessment and graded using a 1-3 scale (1=textbook quality, 2=diagnostic quality, 3=non-diagnostic image). No significant difference in diagnostic quality was found between the original navicular bone images and the manipulated distal phalanx images. This finding suggests that a single DPr-PaDiO image of the distal phalanx is sufficient for an equine foot radiographic series, with appropriate post-processing and manipulation. This change in protocol will result in reduced radiographic study time and decreased patient/personnel radiation exposure. British Veterinary Association.

  14. Comparison of Lumbar Lordosis in Lateral Radiographs in Standing Position with supine MR Imaging in consideration of the Sacral Slope.

    PubMed

    Benditz, Achim; Boluki, Daniel; Weber, Markus; Zeman, Florian; Grifka, Joachim; Völlner, Florian

    2017-03-01

    Purpose  To investigate the influence of sacral slope on the correlation between measurements of lumbar lordosis obtained by standing radiographs and magnetic resonance images in supine position (MRI). Little information is available on the correlation between measurements of lumbar lordosis obtained by radiographic and MR images. Most relevant studies have shown correlations for the thoracic spine, but detailed analyses on the lumbar spine are lacking. Methods  MR images and standing lateral radiographs of 63 patients without actual low back pain or radiographic pathologies of the lumbar spine were analyzed. Standing radiographic measurements included the sagittal parameters pelvic incidence (PI) pelvic tilt (PT), and sacral slope (SS); MR images were used to additionally measure lumbar L1-S1 lordosis and single level lordosis. Differences between radiographic and MRI measurements were analyzed and divided into 4 subgroups of different sacral slope according to Roussouly's classification. Results  Global lumbar lordosis (L1-S1) was 44.99° (± 10 754) on radiographs and 47.91° (± 9.170) on MRI, yielding a clinically relevant correlation (r = 0.61, p < 0.01). Measurements of single level lordosis only showed minor differences. At all levels except for L5 / S1, lordosis measured by means of standing radiographs was higher than that measured by MRI. The difference in global lumbar L1-S1 lordosis was -2.9°. Analysis of the Roussouly groups showed the largest difference for L1-S1 (-8.3°) in group 2. In group 4, when measured on MRI, L5 / S1 lordosis (25.71°) was lower than L4 / L5 lordosis (27.63°) compared to the other groups. Conclusions  Although measurements of global lumbar lordosis significantly differed between the two scanning technologies, the mean difference was just 2.9°. MRI in supine position may be used for estimating global lumbar lordosis, but single level lordosis should be determined by means of standing

  15. Sensitometric properties of Agfa Dentus OrthoLux, Agfa Dentus ST8G, and Kodak Ektavision panoramic radiographic film.

    PubMed

    Wakoh, M; Nishikawa, K; Kobayashi, N; Farman, A G; Kuroyanagi, K

    2001-02-01

    The purpose of this study was to compare the sensitometric properties of and visualization of anatomical structures with Agfa OrthoLux green-sensitive panoramic radiographic film, Agfa ST8G green sensitive panoramic radiographic film, and Kodak Ektavision green-sensitive panoramic radiographic film used in combination with an Agfa Ortho Regular 400 imaging screen, Kodak Ektavision imaging screen, and Kodak Lanex Regular imaging screen. The density response and resolution of panoramic radiographic film/intensifying screen combinations was evaluated by means of Hunter and Driffield curves, modulation transfer functions, and noise-equivalent number of quanta. Image clarity of selected anatomical structures was rated independently by 6 oral and maxillofacial radiologists. The ISO speed for the Agfa OrthoLux panoramic radiographic film combinations was the fastest, and the ISO speed for the Kodak Ektavision green-sensitive panoramic radiographic film combinations was the slowest. The average gradient for the Agfa ST8G systems was relatively steep in comparison with those for the other film/screen combinations. The modulation transfer functions for the Kodak Ektavision film were higher than those for the other films, irrespective of the screen combination used, and those for Agfa OrthoLux film were slightly higher than those for Agfa ST8G film. The noise-equivalent number of quanta for the Agfa ST8G film/screen combinations was lower than those for the other film/screen combinations. The noise-equivalent number of quanta for the Kodak Ektavision film/screen combinations was well within the high-frequency range, whereas Agfa OrthoLux combined with either the Kodak Ektavision imaging screen or the Kodak Lanex Regular imaging screen produced a noise-equivalent number of quanta similar to those of the Kodak Ektavision film/screen combinations in the low-frequency range. Agfa OrthoLux was perceived to provide clearer images of the selected anatomical details than Agfa ST8G

  16. Reproducibility of Mammography Units, Film Processing and Quality Imaging

    NASA Astrophysics Data System (ADS)

    Gaona, Enrique

    2003-09-01

    The purpose of this study was to carry out an exploratory survey of the problems of quality control in mammography and processors units as a diagnosis of the current situation of mammography facilities. Measurements of reproducibility, optical density, optical difference and gamma index are included. Breast cancer is the most frequently diagnosed cancer and is the second leading cause of cancer death among women in the Mexican Republic. Mammography is a radiographic examination specially designed for detecting breast pathology. We found that the problems of reproducibility of AEC are smaller than the problems of processors units because almost all processors fall outside of the acceptable variation limits and they can affect the mammography quality image and the dose to breast. Only four mammography units agree with the minimum score established by ACR and FDA for the phantom image.

  17. Clinical, radiographic, and magnetic resonance imaging findings of gastrocnemius musculotendinopathy in various dog breeds.

    PubMed

    Kaiser, Susanne M; Harms, Oliver; Konar, Martin; Staudacher, Anne; Langer, Anna; Thiel, Cetina; Kramer, Martin; Schaub, Sebastian; von Pückler, Kerstin H

    2016-11-23

    To describe clinical, radiographic, and magnetic resonance imaging (MRI) findings in 16 dogs diagnosed with gastrocnemius musculotendinopathy. Retrospective evaluation of medical records, radiographs, and MRI results, as well as follow-up completed by telephone questionnaire. Most dogs had chronic hindlimb lameness with no history of trauma or athletic activities. Clinical examination revealed signs of pain on palpation without stifle joint instability. Seven dogs had radiographic signs of osteophyte formation on the lateral fabella. Magnetic resonance imaging revealed T2 hyperintensity and uptake of contrast agent in the region of the origin of the gastrocnemius muscle. Changes were found in the lateral and medial heads of the gastrocnemius. Conservative treatment resulted in return to full function in 11 dogs. Two dogs showed partial restoration of normal function, one dog showed no improvement. Two dogs were lost to follow-up. Gastrocnemius musculotendinopathy is a potential cause of chronic hindlimb lameness in medium to large breed dogs. A history of athletic activity must not necessarily be present. Magnetic resonance imaging shows signal changes and uptake of contrast agent in the region of the origin of the gastrocnemius muscle. A combination of T1 pre- and post-contrast administration and T2 weighted sequences completed by a fat-suppressed sequence in the sagittal plane are well-suited for diagnosis. Conservative treatment generally results in return to normal function.

  18. Construction of anthropomorphic hybrid, dual-lattice voxel models for optimizing image quality and dose in radiography

    NASA Astrophysics Data System (ADS)

    Petoussi-Henss, Nina; Becker, Janine; Greiter, Matthias; Schlattl, Helmut; Zankl, Maria; Hoeschen, Christoph

    2014-03-01

    In radiography there is generally a conflict between the best image quality and the lowest possible patient dose. A proven method of dosimetry is the simulation of radiation transport in virtual human models (i.e. phantoms). However, while the resolution of these voxel models is adequate for most dosimetric purposes, they cannot provide the required organ fine structures necessary for the assessment of the imaging quality. The aim of this work is to develop hybrid/dual-lattice voxel models (called also phantoms) as well as simulation methods by which patient dose and image quality for typical radiographic procedures can be determined. The results will provide a basis to investigate by means of simulations the relationships between patient dose and image quality for various imaging parameters and develop methods for their optimization. A hybrid model, based on NURBS (Non Linear Uniform Rational B-Spline) and PM (Polygon Mesh) surfaces, was constructed from an existing voxel model of a female patient. The organs of the hybrid model can be then scaled and deformed in a non-uniform way i.e. organ by organ; they can be, thus, adapted to patient characteristics without losing their anatomical realism. Furthermore, the left lobe of the lung was substituted by a high resolution lung voxel model, resulting in a dual-lattice geometry model. "Dual lattice" means in this context the combination of voxel models with different resolution. Monte Carlo simulations of radiographic imaging were performed with the code EGS4nrc, modified such as to perform dual lattice transport. Results are presented for a thorax examination.

  19. A review of computer aided interpretation technology for the evaluation of radiographs of aluminum welds

    NASA Technical Reports Server (NTRS)

    Lloyd, J. F., Sr.

    1987-01-01

    Industrial radiography is a well established, reliable means of providing nondestructive structural integrity information. The majority of industrial radiographs are interpreted by trained human eyes using transmitted light and various visual aids. Hundreds of miles of radiographic information are evaluated, documented and archived annually. In many instances, there are serious considerations in terms of interpreter fatigue, subjectivity and limited archival space. Quite often it is difficult to quickly retrieve radiographic information for further analysis or investigation. Methods of improving the quality and efficiency of the radiographic process are being explored, developed and incorporated whenever feasible. High resolution cameras, digital image processing, and mass digital data storage offer interesting possibilities for improving the industrial radiographic process. A review is presented of computer aided radiographic interpretation technology in terms of how it could be used to enhance the radiographic interpretation process in evaluating radiographs of aluminum welds.

  20. Angular relational signature-based chest radiograph image view classification.

    PubMed

    Santosh, K C; Wendling, Laurent

    2018-01-22

    In a computer-aided diagnosis (CAD) system, especially for chest radiograph or chest X-ray (CXR) screening, CXR image view information is required. Automatically separating CXR image view, frontal and lateral can ease subsequent CXR screening process, since the techniques may not equally work for both views. We present a novel technique to classify frontal and lateral CXR images, where we introduce angular relational signature through force histogram to extract features and apply three different state-of-the-art classifiers: multi-layer perceptron, random forest, and support vector machine to make a decision. We validated our fully automatic technique on a set of 8100 images hosted by the U.S. National Library of Medicine (NLM), National Institutes of Health (NIH), and achieved an accuracy close to 100%. Our method outperforms the state-of-the-art methods in terms of processing time (less than or close to 2 s for the whole test data) while the accuracies can be compared, and therefore, it justifies its practicality. Graphical Abstract Interpreting chest X-ray (CXR) through the angular relational signature.

  1. Stereoscopic radiographic images with thermal neutrons

    NASA Astrophysics Data System (ADS)

    Silvani, M. I.; Almeida, G. L.; Rogers, J. D.; Lopes, R. T.

    2011-10-01

    Spatial structure of an object can be perceived by the stereoscopic vision provided by eyes or by the parallax produced by movement of the object with regard to the observer. For an opaque object, a technique to render it transparent should be used, in order to make visible the spatial distribution of its inner structure, for any of the two approaches used. In this work, a beam of thermal neutrons at the main port of the Argonauta research reactor of the Instituto de Engenharia Nuclear in Rio de Janeiro/Brazil has been used as radiation to render the inspected objects partially transparent. A neutron sensitive Imaging Plate has been employed as a detector and after exposure it has been developed by a reader using a 0.5 μm laser beam, which defines the finest achievable spatial resolution of the acquired digital image. This image, a radiographic attenuation map of the object, does not represent any specific cross-section but a convoluted projection for each specific attitude of the object with regard to the detector. After taking two of these projections at different object attitudes, they are properly processed and the final image is viewed by a red and green eyeglass. For monochromatic images this processing involves transformation of black and white radiographies into red and white and green and white ones, which are afterwards merged to yield a single image. All the processes are carried out with the software ImageJ. Divergence of the neutron beam unfortunately spoils both spatial and contrast resolutions, which become poorer as object-detector distance increases. Therefore, in order to evaluate the range of spatial resolution corresponding to the 3D image being observed, a curve expressing spatial resolution against object-detector gap has been deduced from the Modulation Transfer Functions experimentally. Typical exposure times, under a reactor power of 170 W, were 6 min for both quantitative and qualitative measurements. In spite of its intrinsic constraints

  2. Radiographic trends of dental offices and dental schools.

    PubMed

    Suleiman, O H; Spelic, D C; Conway, B; Hart, J C; Boyce, P R; Antonsen, R G

    1999-07-01

    A survey of private practice facilities in the United States that perform dental radiography was conducted in 1993 and repeated in dental schools in 1995-1996. Both surveys were conducted as part of the Nationwide Evaluation of X-ray Trends, or NEXT, survey program. A representative sample of dental facilities from each participating state were surveyed, and data on patient radiation exposure, radiographic technique, film-image quality, film-processing quality and darkroom fog were collected. The authors found that dental schools use E-speed film more frequently than do private practice facilities. The use of E-speed film and better film processing by dental schools resulted in lower patient radiation exposures without sacrificing image quality. The authors also found that dental school darkrooms had lower ambient fog levels than did those of private practice facilities. The distribution for the 1993 NEXT survey facilities was greater than that observed for dental schools for radiation exposure, film-processing quality and darkroom fog. Dental schools, in general, had better film quality and lower radiation exposures than did private practice facilities. Facilities need to emphasize better quality processing and the use of E-speed film to reduce patient exposure and improve image quality.

  3. Optimisation of radiation dose and image quality in mobile neonatal chest radiography.

    PubMed

    Hinojos-Armendáriz, V I; Mejía-Rosales, S J; Franco-Cabrera, M C

    2018-05-01

    To optimise the radiation dose and image quality for chest radiography in the neonatal intensive care unit (NICU) by increasing the mean beam energy. Two techniques for the acquisition of NICU AP chest X-ray images were compared for image quality and radiation dose. 73 images were acquired using a standard technique (56 kV, 3.2 mAs and no additional filtration) and 90 images with a new technique (62 kV, 2 mAs and 2 mm Al filtration). The entrance surface air kerma (ESAK) was measured using a phantom and compared between the techniques and against established diagnostic reference levels (DRL). Images were evaluated using seven image quality criteria independently by three radiologists. Images quality and radiation dose were compared statistically between the standard and new techniques. The maximum ESAK for the new technique was 40.20 μGy, 43.7% of the ESAK of the standard technique. Statistical evaluation demonstrated no significant differences in image quality between the two acquisition techniques. Based on the techniques and acquisition factors investigated within this study, it is possible to lower the radiation dose without any significant effects on image quality by adding filtration (2 mm Al) and increasing the tube potential. Such steps are relatively simple to undertake and as such, other departments should consider testing and implementing this dose reduction strategy within clinical practice where appropriate. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  4. Radiographic findings in late-presenting congenital diaphragmatic hernia: helpful imaging findings.

    PubMed

    Muzzafar, Sofia; Swischuk, Leonard E; Jadhav, Siddharth P

    2012-03-01

    Imaging findings in delayed presentation of congenital diaphragmatic hernia can be confusing and misleading, resulting in a delay in diagnosis. To evaluate the often puzzling plain film findings of late-presenting CDH in an effort to determine whether any of the findings could be helpful in arriving at an early diagnosis. We reviewed and documented the plain film findings and clinical data in eight patients seen during the last 20 years with late-presenting CDH. IRB exempt status was obtained in this study. There were five boys and three girls. The age range was 4 months to 12 years with a mean of 2.4 years. Five children presented with acute respiratory problems while three presented with acute abdominal pain. Two children presented with both respiratory and abdominal findings and one also presented with hematemesis. Two children had radiographic findings that were not difficult to analyze while the remaining six had findings that posed initial diagnostic problems. Although not common, late-presenting CDH can result in confusing plain film radiographic findings and a delay in diagnosis. We found that the most important finding in analyzing these radiographs is in evaluating the location and position of the gastric bubble with the more common left-side hernias.

  5. High-energy radiographic imaging performance of LYSO

    DOE PAGES

    Smalley, Duane; Duke, Dana; Webb, Timothy; ...

    2018-05-23

    Here, a comprehensive comparison of the dominant sources of radiation-induced blur for radiographic imaging system performance is made. End-point energies of 6, 10, 15, and 20 MeV bremsstrahlung photon radiation produced at the Los Alamos National Laboratory Microtron facility were used to examine the performance of large-panel cerium-doped lutetium yttrium silicon oxide (LYSO:Ce) scintillators 3, 5 and 10 mm thick. The system resolution was measured and compared between the various end-point energies and scintillator thicknesses. Contrary to expectations, it is found that there was only a minor dependence of system resolution on scintillator thickness or beam end-point energy. This indicatesmore » that increased scintillator thickness does not have a dramatic effect on system performance. The data are then compared to Geant4 simulations to assess contributions to the system performance through the examination of modulation transfer functions. It was determined that the low-frequency response of the system is dominated by the radiation-induced signal, while the higher-frequency response of the system is dominated by the optical imaging of the scintillation emission.« less

  6. High-energy radiographic imaging performance of LYSO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smalley, Duane; Duke, Dana; Webb, Timothy

    Here, a comprehensive comparison of the dominant sources of radiation-induced blur for radiographic imaging system performance is made. End-point energies of 6, 10, 15, and 20 MeV bremsstrahlung photon radiation produced at the Los Alamos National Laboratory Microtron facility were used to examine the performance of large-panel cerium-doped lutetium yttrium silicon oxide (LYSO:Ce) scintillators 3, 5 and 10 mm thick. The system resolution was measured and compared between the various end-point energies and scintillator thicknesses. Contrary to expectations, it is found that there was only a minor dependence of system resolution on scintillator thickness or beam end-point energy. This indicatesmore » that increased scintillator thickness does not have a dramatic effect on system performance. The data are then compared to Geant4 simulations to assess contributions to the system performance through the examination of modulation transfer functions. It was determined that the low-frequency response of the system is dominated by the radiation-induced signal, while the higher-frequency response of the system is dominated by the optical imaging of the scintillation emission.« less

  7. Digitized radiographs in skeletal trauma: a performance comparison between a digital workstation and the original film images.

    PubMed

    Wilson, A J; Hodge, J C

    1995-08-01

    To evaluate the diagnostic performance of a teleradiology system in skeletal trauma. Radiographs from 180 skeletal trauma patients were digitized (matrix, 2,000 x 2,500) and transmitted to a remote digital viewing console (1,200-line monitor). Four radiologists interpreted both the original film images and digital images. Each reader was asked to identify, locate, and characterize fractures and dislocations. Receiver operating characteristic curves were generated, and the results of the original and digitized film readings were compared. All readers performed better with the original film when interpreting fractures. Although the patterns varied between readers, all had statistically significant differences (P < .01) for the two image types. There was no statistically significant difference in performance with the two images when dislocations were diagnosed. The system tested is not a satisfactory alternative to the original radiograph for routine reading of fracture films.

  8. Segmentation of radiographic images under topological constraints: application to the femur.

    PubMed

    Gamage, Pavan; Xie, Sheng Quan; Delmas, Patrice; Xu, Wei Liang

    2010-09-01

    A framework for radiographic image segmentation under topological control based on two-dimensional (2D) image analysis was developed. The system is intended for use in common radiological tasks including fracture treatment analysis, osteoarthritis diagnostics and osteotomy management planning. The segmentation framework utilizes a generic three-dimensional (3D) model of the bone of interest to define the anatomical topology. Non-rigid registration is performed between the projected contours of the generic 3D model and extracted edges of the X-ray image to achieve the segmentation. For fractured bones, the segmentation requires an additional step where a region-based active contours curve evolution is performed with a level set Mumford-Shah method to obtain the fracture surface edge. The application of the segmentation framework to analysis of human femur radiographs was evaluated. The proposed system has two major innovations. First, definition of the topological constraints does not require a statistical learning process, so the method is generally applicable to a variety of bony anatomy segmentation problems. Second, the methodology is able to handle both intact and fractured bone segmentation. Testing on clinical X-ray images yielded an average root mean squared distance (between the automatically segmented femur contour and the manual segmented ground truth) of 1.10 mm with a standard deviation of 0.13 mm. The proposed point correspondence estimation algorithm was benchmarked against three state-of-the-art point matching algorithms, demonstrating successful non-rigid registration for the cases of interest. A topologically constrained automatic bone contour segmentation framework was developed and tested, providing robustness to noise, outliers, deformations and occlusions.

  9. Radiologists remember mountains better than radiographs, or do they?

    PubMed

    Evans, Karla K; Marom, Edith M; Godoy, Myrna C B; Palacio, Diana; Sagebiel, Tara; Cuellar, Sonia Betancourt; McEntee, Mark; Tian, Charles; Brennan, Patrick C; Haygood, Tamara Miner

    2016-01-01

    Expertise with encoding material has been shown to aid long-term memory for that material. It is not clear how relevant this expertise is for image memorability (e.g., radiologists' memory for radiographs), and how robust over time. In two studies, we tested scene memory using a standard long-term memory paradigm. One compared the performance of radiologists to naïve observers on two image sets, chest radiographs and everyday scenes, and the other radiologists' memory with immediate as opposed to delayed recognition tests using musculoskeletal radiographs and forest scenes. Radiologists' memory was better than novices for images of expertise but no different for everyday scenes. With the heterogeneity of image sets equated, radiologists' expertise with radiographs afforded them better memory for the musculoskeletal radiographs than forest scenes. Enhanced memory for images of expertise disappeared over time, resulting in chance level performance for both image sets after weeks of delay. Expertise with the material is important for visual memorability but not to the same extent as idiosyncratic detail and variability of the image set. Similar memory decline with time for images of expertise as for everyday scenes further suggests that extended familiarity with an image is not a robust factor for visual memorability.

  10. Radiologists remember mountains better than radiographs, or do they?

    PubMed Central

    Evans, Karla K.; Marom, Edith M.; Godoy, Myrna C. B.; Palacio, Diana; Sagebiel, Tara; Cuellar, Sonia Betancourt; McEntee, Mark; Tian, Charles; Brennan, Patrick C.; Haygood, Tamara Miner

    2015-01-01

    Abstract. Expertise with encoding material has been shown to aid long-term memory for that material. It is not clear how relevant this expertise is for image memorability (e.g., radiologists’ memory for radiographs), and how robust over time. In two studies, we tested scene memory using a standard long-term memory paradigm. One compared the performance of radiologists to naïve observers on two image sets, chest radiographs and everyday scenes, and the other radiologists’ memory with immediate as opposed to delayed recognition tests using musculoskeletal radiographs and forest scenes. Radiologists’ memory was better than novices for images of expertise but no different for everyday scenes. With the heterogeneity of image sets equated, radiologists’ expertise with radiographs afforded them better memory for the musculoskeletal radiographs than forest scenes. Enhanced memory for images of expertise disappeared over time, resulting in chance level performance for both image sets after weeks of delay. Expertise with the material is important for visual memorability but not to the same extent as idiosyncratic detail and variability of the image set. Similar memory decline with time for images of expertise as for everyday scenes further suggests that extended familiarity with an image is not a robust factor for visual memorability. PMID:26870748

  11. A new bite block for panoramic radiographs of anterior edentulous patients: A technical report.

    PubMed

    Park, Jong-Woong; Symkhampha, Khanthaly; Huh, Kyung-Hoe; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul

    2015-06-01

    Panoramic radiographs taken using conventional chin-support devices have often presented problems with positioning accuracy and reproducibility. The aim of this report was to propose a new bite block for panoramic radiographs of anterior edentulous patients that better addresses these two issues. A new panoramic radiography bite block similar to the bite block for dentulous patients was developed to enable proper positioning stability for edentulous patients. The new bite block was designed and implemented in light of previous studies. The height of the new bite block was 18 mm and to compensate for the horizontal edentulous space, its horizontal width was 7 mm. The panoramic radiographs using the new bite block were compared with those using the conventional chin-support device. Panoramic radiographs taken with the new bite block showed better stability and bilateral symmetry than those taken with the conventional chin-support device. Patients also showed less movement and more stable positioning during panoramic radiography with the new bite block. Conventional errors in panoramic radiographs of edentulous patients could be caused by unreliability of the chin-support device. The newly proposed bite block for panoramic radiographs of edentulous patients showed better reliability. Further study is required to evaluate the image quality and reproducibility of images with the new bite block.

  12. Melorheostosis involving the cervical and upper thoracic spine: radiographic, CT, and MR imaging findings.

    PubMed

    Motimaya, A M; Meyers, S P

    2006-01-01

    Melorheostosis, an uncommon mesenchymal dysplasia, rarely affects the axial skeleton. We describe the imaging findings of melorheostosis involving the cervical and upper thoracic spine. Radiographs and CT showed unilateral well-marginated undulating zones of cortical hyperostosis involving multiple vertebrae that were contiguous with a coalescent ossified right paravertebral mass. MR imaging showed zones of signal intensity void on all pulse sequences without contrast enhancement. Conservative management was elected because of lack of interval clinical and imaging changes for 8 years.

  13. Antero-posterior (AP) pelvis x-ray imaging on a trolley: Impact of trolley design, mattress design and radiographer practice on image quality and radiation dose.

    PubMed

    Tugwell, J R; England, A; Hogg, P

    2017-08-01

    Physical and technical differences exist between imaging on an x-ray tabletop and imaging on a trolley. This study evaluates how trolley imaging impacts image quality and radiation dose for an antero-posterior (AP) pelvis projection whilst subsequently exploring means of optimising this imaging examination. An anthropomorphic pelvis phantom was imaged on a commercially available trolley under various conditions. Variables explored included two mattresses, two image receptor holder positions, three source to image distances (SIDs) and four mAs values. Image quality was evaluated using relative visual grading analysis with the reference image acquired on the x-ray tabletop. Contrast to noise ratio (CNR) was calculated. Effective dose was established using Monte Carlo simulation. Optimisation scores were derived as a figure of merit by dividing effective dose with visual image quality scores. Visual image quality reduced significantly (p < 0.05) whilst effective dose increased significantly (p < 0.05) for images acquired on the trolley using identical acquisition parameters to the reference image. The trolley image with the highest optimisation score was acquired using 130 cm SID, 20 mAs, the standard mattress and platform not elevated. A difference of 12.8 mm was found between the image with the lowest and highest magnification factor (18%). The acquisition parameters used for AP pelvis on the x-ray tabletop are not transferable to trolley imaging and should be modified accordingly to compensate for the differences that exist. Exposure charts should be developed for trolley imaging to ensure optimal image quality at lowest possible dose. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  14. MO-DE-209-03: Assessing Image Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, W.

    Digital Breast Tomosynthesis (DBT) is rapidly replacing mammography as the standard of care in breast cancer screening and diagnosis. DBT is a form of computed tomography, in which a limited set of projection images are acquired over a small angular range and reconstructed into tomographic data. The angular range varies from 15° to 50° and the number of projections varies between 9 and 25 projections, as determined by the equipment manufacturer. It is equally valid to treat DBT as the digital analog of classical tomography – that is, linear tomography. In fact, the name “tomosynthesis” stands for “synthetic tomography.” DBTmore » shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DBT systems is a hybrid between computed tomography and classical tomographic methods. In this lecture, we will explore the continuum from radiography to computed tomography to illustrate the characteristics of DBT. This lecture will consist of four presentations that will provide a complete overview of DBT, including a review of the fundamentals of DBT acquisition, a discussion of DBT reconstruction methods, an overview of dosimetry for DBT systems, and summary of the underlying image theory of DBT thereby relating image quality and dose. Learning Objectives: To understand the fundamental principles behind tomosynthesis image acquisition. To understand the fundamentals of tomosynthesis image reconstruction. To learn the determinants of image quality and dose in DBT, including measurement techniques. To learn the image theory underlying tomosynthesis, and the relationship between dose and image quality. ADM is a consultant to, and holds stock in, Real Time Tomography, LLC. ADM receives research support from Hologic Inc., Analogic Inc., and Barco NV.; ADM is a member of the Scientific Advisory Board for Gamma Medica Inc.; A. Maidment, Research

  15. Brazilian young dental practitioners' use and acceptance of digital radiographic examinations.

    PubMed

    Rovaris, Karla; de Faria Vasconcelos, Karla; do Nascimento, Eduarda Helena Leandro; Oliveira, Matheus Lima; Freitas, Deborah Queiroz; Haiter-Neto, Francisco

    2016-12-01

    The aim of this study was to investigate the use and acceptance of digital radiographic examinations by Brazilian dental practitioners in daily practice and to evaluate the advances that have occurred over the past 5 years. Dental practitioners enrolled in extension courses at the Piracicaba Dental School, University of Campinas, Brazil, responded to a self-administered questionnaire in the years 2011 and 2015. They were asked about sociodemographic factors and their knowledge and use of digital radiographic examinations. Descriptive analysis was performed, as well as the chi-square and Fisher exact tests, with a significance level of 5% (α=0.05). A total of 181 participants responded to the questionnaire in the years 2011 and 2015. Most of the respondents worked in private practice, had graduated within the last 5 years, and were between 20 and 30 years old. In 2011, 55.6% of respondents reported having ever used digital radiographic examinations, while in 2015 this number increased significantly to 85.4% (p<.0001), out of which 71.4% preferred it to conventional images. Moreover, 21.4% of respondents reported having used digital radiographic examinations for more than 3 years. A significant increase in use of intraoral digital radiography (p=0.0316) was observed in 2015. In both years, image quality and high cost were indicated, respectively, as the main advantage and disadvantage of digital radiographic examinations. This study showed that digital radiology has become more common in Brazil over the past 5 years. Most of the Brazilian dental practitioners evaluated in 2015 used digital radiographic examinations.

  16. Evaluation of two imaging techniques: near-infrared transillumination and dental radiographs for the detection of early approximal enamel caries.

    PubMed

    Maia, A M A; Karlsson, L; Margulis, W; Gomes, A S L

    2011-10-01

    The aim of this paper was to evaluate a transillumination (TI) system using near-infrared (NIR) light and bitewing radiographs for the detection of early approximal enamel caries lesions. Mesiodistal sections of teeth (n = 14) were cut with various thicknesses from 1.5 mm to 4.75 mm. Both sides of each section were included, 17 approximal surfaces with natural enamel caries and 11 surfaces considered intact. The approximal surfaces were illuminated by NIR light and X-ray. Captured images were analysed by two calibrated specialists in radiology, and re-analysed after 6 months using stereomicroscope images as a gold standard. The interexaminer reliability (Kappa test statistic) for the NIR TI technique showed moderate agreement on first (0.55) and second (0.48) evaluation, and low agreement for bitewing radiographs on first (0.26) and second (0.32) evaluation. In terms of accuracy, the sensitivity for the NIR TI system was 0.88 and the specificity was 0.72. For the bitewing radiographs the sensitivity ranged from 0.35 to 0.53 and the specificity ranged from 0.50 to 0.72. In the same samples and conditions tested, NIR TI images showed reliability and the enamel caries surfaces were better identified than on dental radiographs.

  17. Evaluation of two imaging techniques: near-infrared transillumination and dental radiographs for the detection of early approximal enamel caries

    PubMed Central

    Maia, A M A; Karlsson, L; Margulis, W; Gomes, A S L

    2011-01-01

    Objectives The aim of this paper was to evaluate a transillumination (TI) system using near-infrared (NIR) light and bitewing radiographs for the detection of early approximal enamel caries lesions. Methods Mesiodistal sections of teeth (n = 14) were cut with various thicknesses from 1.5 mm to 4.75 mm. Both sides of each section were included, 17 approximal surfaces with natural enamel caries and 11 surfaces considered intact. The approximal surfaces were illuminated by NIR light and X-ray. Captured images were analysed by two calibrated specialists in radiology, and re-analysed after 6 months using stereomicroscope images as a gold standard. Results The interexaminer reliability (Kappa test statistic) for the NIR TI technique showed moderate agreement on first (0.55) and second (0.48) evaluation, and low agreement for bitewing radiographs on first (0.26) and second (0.32) evaluation. In terms of accuracy, the sensitivity for the NIR TI system was 0.88 and the specificity was 0.72. For the bitewing radiographs the sensitivity ranged from 0.35 to 0.53 and the specificity ranged from 0.50 to 0.72. Conclusion In the same samples and conditions tested, NIR TI images showed reliability and the enamel caries surfaces were better identified than on dental radiographs. PMID:21960400

  18. Detecting objects in radiographs for homeland security

    NASA Astrophysics Data System (ADS)

    Prasad, Lakshman; Snyder, Hans

    2005-05-01

    We present a general scheme for segmenting a radiographic image into polygons that correspond to visual features. This decomposition provides a vectorized representation that is a high-level description of the image. The polygons correspond to objects or object parts present in the image. This characterization of radiographs allows the direct application of several shape recognition algorithms to identify objects. In this paper we describe the use of constrained Delaunay triangulations as a uniform foundational tool to achieve multiple visual tasks, namely image segmentation, shape decomposition, and parts-based shape matching. Shape decomposition yields parts that serve as tokens representing local shape characteristics. Parts-based shape matching enables the recognition of objects in the presence of occlusions, which commonly occur in radiographs. The polygonal representation of image features affords the efficient design and application of sophisticated geometric filtering methods to detect large-scale structural properties of objects in images. Finally, the representation of radiographs via polygons results in significant reduction of image file sizes and permits the scalable graphical representation of images, along with annotations of detected objects, in the SVG (scalable vector graphics) format that is proposed by the world wide web consortium (W3C). This is a textual representation that can be compressed and encrypted for efficient and secure transmission of information over wireless channels and on the Internet. In particular, our methods described here provide an algorithmic framework for developing image analysis tools for screening cargo at ports of entry for homeland security.

  19. Image quality, threshold contrast and mean glandular dose in CR mammography

    NASA Astrophysics Data System (ADS)

    Jakubiak, R. R.; Gamba, H. R.; Neves, E. B.; Peixoto, J. E.

    2013-09-01

    In many countries, computed radiography (CR) systems represent the majority of equipment used in digital mammography. This study presents a method for optimizing image quality and dose in CR mammography of patients with breast thicknesses between 45 and 75 mm. Initially, clinical images of 67 patients (group 1) were analyzed by three experienced radiologists, reporting about anatomical structures, noise and contrast in low and high pixel value areas, and image sharpness and contrast. Exposure parameters (kV, mAs and target/filter combination) used in the examinations of these patients were reproduced to determine the contrast-to-noise ratio (CNR) and mean glandular dose (MGD). The parameters were also used to radiograph a CDMAM (version 3.4) phantom (Artinis Medical Systems, The Netherlands) for image threshold contrast evaluation. After that, different breast thicknesses were simulated with polymethylmethacrylate layers and various sets of exposure parameters were used in order to determine optimal radiographic parameters. For each simulated breast thickness, optimal beam quality was defined as giving a target CNR to reach the threshold contrast of CDMAM images for acceptable MGD. These results were used for adjustments in the automatic exposure control (AEC) by the maintenance team. Using optimized exposure parameters, clinical images of 63 patients (group 2) were evaluated as described above. Threshold contrast, CNR and MGD for such exposure parameters were also determined. Results showed that the proposed optimization method was effective for all breast thicknesses studied in phantoms. The best result was found for breasts of 75 mm. While in group 1 there was no detection of the 0.1 mm critical diameter detail with threshold contrast below 23%, after the optimization, detection occurred in 47.6% of the images. There was also an average MGD reduction of 7.5%. The clinical image quality criteria were attended in 91.7% for all breast thicknesses evaluated in both

  20. [Comparison of the image quality of conventional and digital radiography in lizards. Mammography technique versus digital detector system].

    PubMed

    Bochmann, Monika; Ludewig, E; Pees, M

    2011-01-01

    A conventional high-resolution screen-film system (Film Kodak MIN-R S, Kodak MIN-R 2000) was compared with an indirect digital detector system (Varian PaxScan 4030E) for use in radiography of lizards. A total of 20 bearded dragons (Pogona vitticeps ) with body masses between 123 g and 487 g were investigated by using conventional and digital image acquisition techniques. The digital image was taken with the same dose as well as half the dose of the conventional radiograph. The study was conducted semi-blinded as the x-ray images were encoded and randomised. Five veterinarians with clinical experience in reptile medicine served as observers. Exactly defined structures in three anatomical regions were assessed using a three-step scale. Furthermore, the overall quality of the respective region was evaluated using a five-step scale. Evaluation of the data was done by visual grading analysis. None of the structures examined was assessed to be of significantly inferior quality on the digital images in comparison to the conventional radiographs. The majority of the results demonstrated an equal quality of both systems. For assessment of the lung tissue and the pulmonary vessels as well as the overall assessment of the lung, the digital radiographs with full dose were rated to be significantly superior in comparison to the film-screen system. Furthermore, the joint contours of the shoulder and cubital joints and the overall assessments of the humerus and the caudal coelomic cavity were rated significantly better on digital images with full dose compared to those with reduced dose. The digital flat panel detector technique examined in this study is equal or superior to the conventional high-resolution screen-film system used. Nevertheless, the practicability of a dose reduction is limited in bearded dragons. Digital imaging systems are progressively being used in veterinary practice. The results of the study demonstrate the useful application of the digital detector systems

  1. Development and assessment of an e-learning course on breast imaging for radiographers: a stratified randomized controlled trial.

    PubMed

    Moreira, Inês C; Ventura, Sandra Rua; Ramos, Isabel; Rodrigues, Pedro Pereira

    2015-01-05

    Mammography is considered the best imaging technique for breast cancer screening, and the radiographer plays an important role in its performance. Therefore, continuing education is critical to improving the performance of these professionals and thus providing better health care services. Our goal was to develop an e-learning course on breast imaging for radiographers, assessing its efficacy, effectiveness, and user satisfaction. A stratified randomized controlled trial was performed with radiographers and radiology students who already had mammography training, using pre- and post-knowledge tests, and satisfaction questionnaires. The primary outcome was the improvement in test results (percentage of correct answers), using intention-to-treat and per-protocol analysis. A total of 54 participants were assigned to the intervention (20 students plus 34 radiographers) with 53 controls (19+34). The intervention was completed by 40 participants (11+29), with 4 (2+2) discontinued interventions, and 10 (7+3) lost to follow-up. Differences in the primary outcome were found between intervention and control: 21 versus 4 percentage points (pp), P<.001. Stratified analysis showed effect in radiographers (23 pp vs 4 pp; P=.004) but was unclear in students (18 pp vs 5 pp; P=.098). Nonetheless, differences in students' posttest results were found (88% vs 63%; P=.003), which were absent in pretest (63% vs 63%; P=.106). The per-protocol analysis showed a higher effect (26 pp vs 2 pp; P<.001), both in students (25 pp vs 3 pp; P=.004) and radiographers (27 pp vs 2 pp; P<.001). Overall, 85% were satisfied with the course, and 88% considered it successful. This e-learning course is effective, especially for radiographers, which highlights the need for continuing education.

  2. Development and Assessment of an E-Learning Course on Breast Imaging for Radiographers: A Stratified Randomized Controlled Trial

    PubMed Central

    Ventura, Sandra Rua; Ramos, Isabel; Rodrigues, Pedro Pereira

    2015-01-01

    Background Mammography is considered the best imaging technique for breast cancer screening, and the radiographer plays an important role in its performance. Therefore, continuing education is critical to improving the performance of these professionals and thus providing better health care services. Objective Our goal was to develop an e-learning course on breast imaging for radiographers, assessing its efficacy, effectiveness, and user satisfaction. Methods A stratified randomized controlled trial was performed with radiographers and radiology students who already had mammography training, using pre- and post-knowledge tests, and satisfaction questionnaires. The primary outcome was the improvement in test results (percentage of correct answers), using intention-to-treat and per-protocol analysis. Results A total of 54 participants were assigned to the intervention (20 students plus 34 radiographers) with 53 controls (19+34). The intervention was completed by 40 participants (11+29), with 4 (2+2) discontinued interventions, and 10 (7+3) lost to follow-up. Differences in the primary outcome were found between intervention and control: 21 versus 4 percentage points (pp), P<.001. Stratified analysis showed effect in radiographers (23 pp vs 4 pp; P=.004) but was unclear in students (18 pp vs 5 pp; P=.098). Nonetheless, differences in students’ posttest results were found (88% vs 63%; P=.003), which were absent in pretest (63% vs 63%; P=.106). The per-protocol analysis showed a higher effect (26 pp vs 2 pp; P<.001), both in students (25 pp vs 3 pp; P=.004) and radiographers (27 pp vs 2 pp; P<.001). Overall, 85% were satisfied with the course, and 88% considered it successful. Conclusions This e-learning course is effective, especially for radiographers, which highlights the need for continuing education. PMID:25560547

  3. Reducing the spatial resolution range of neutron radiographs cast by thick objects

    NASA Astrophysics Data System (ADS)

    Almeida, G. L.; Silvani, M. I.; Souza, E. S.; Lopes, R. T.

    2017-11-01

    The quality of a neutron radiograph is strongly dependent upon the features of the acquisition system. Most of them, such as detector resolution, electronic noise and statistical fluctuation can hardly be improved. Yet, a main parameter ruling the image spatial resolution, namely the L/D ratio of the system can be increased simply by lengthening the source-detector clearance. Such an option eventually may not be feasible due to neutron flux decreasing or engineering constraints. Under this circumstance, a radiograph improvement is only possible by some kind of after-acquisition procedure capable to retrieve, at least partially, the information concealed by the degradation process. Since the spoiling agent tied to the L/D has a systematic character, its impact can be reduced by an unfolding procedure such as Richardson-Lucy algorithm. However, that agent should be fully characterized and furnished to the algorithm as a Point Spread Function - PSF unfolding function. A main drawback of unfolding algorithms like Richardson-Lucy is that the PSF should be fixed, i.e., it assumes a certain constant image spatial resolution, rather than a variable one as actually occurs for thick objects. This work presents a methodology to minimize this difficulty by making all planes of the inspected object to cast a resolution within the shorter gap comprised between the object central plane and the detector. The image can then be unfolded with a lower resolution within a tighter range, yielding a better quality. The process is performed with two radiographs, where one of them is acquired with the object turned by 180° on its vertical axis with regard to the other. After a mirroring of one of them about its vertical axis, the images are added. As the resolution increases linearly with the object-detector gap, it would remain always lower than that of the central one. Therefore, the overall resolution of the composite radiograph is enhanced. A further improvement can then be achieved

  4. Personalized models of bones based on radiographic photogrammetry.

    PubMed

    Berthonnaud, E; Hilmi, R; Dimnet, J

    2009-07-01

    The radiographic photogrammetry is applied, for locating anatomical landmarks in space, from their two projected images. The goal of this paper is to define a personalized geometric model of bones, based uniquely on photogrammetric reconstructions. The personalized models of bones are obtained from two successive steps: their functional frameworks are first determined experimentally, then, the 3D bone representation results from modeling techniques. Each bone functional framework is issued from direct measurements upon two radiographic images. These images may be obtained using either perpendicular (spine and sacrum) or oblique incidences (pelvis and lower limb). Frameworks link together their functional axes and punctual landmarks. Each global bone volume is decomposed in several elementary components. Each volumic component is represented by simple geometric shapes. Volumic shapes are articulated to the patient's bone structure. The volumic personalization is obtained by best fitting the geometric model projections to their real images, using adjustable articulations. Examples are presented to illustrating the technique of personalization of bone volumes, directly issued from the treatment of only two radiographic images. The chosen techniques for treating data are then discussed. The 3D representation of bones completes, for clinical users, the information brought by radiographic images.

  5. Impact of lossy compression on diagnostic accuracy of radiographs for periapical lesions

    NASA Technical Reports Server (NTRS)

    Eraso, Francisco E.; Analoui, Mostafa; Watson, Andrew B.; Rebeschini, Regina

    2002-01-01

    OBJECTIVES: The purpose of this study was to evaluate the lossy Joint Photographic Experts Group compression for endodontic pretreatment digital radiographs. STUDY DESIGN: Fifty clinical charge-coupled device-based, digital radiographs depicting periapical areas were selected. Each image was compressed at 2, 4, 8, 16, 32, 48, and 64 compression ratios. One root per image was marked for examination. Images were randomized and viewed by four clinical observers under standardized viewing conditions. Each observer read the image set three times, with at least two weeks between each reading. Three pre-selected sites per image (mesial, distal, apical) were scored on a five-scale score confidence scale. A panel of three examiners scored the uncompressed images, with a consensus score for each site. The consensus score was used as the baseline for assessing the impact of lossy compression on the diagnostic values of images. The mean absolute error between consensus and observer scores was computed for each observer, site, and reading session. RESULTS: Balanced one-way analysis of variance for all observers indicated that for compression ratios 48 and 64, there was significant difference between mean absolute error of uncompressed and compressed images (P <.05). After converting the five-scale score to two-level diagnostic values, the diagnostic accuracy was strongly correlated (R (2) = 0.91) with the compression ratio. CONCLUSION: The results of this study suggest that high compression ratios can have a severe impact on the diagnostic quality of the digital radiographs for detection of periapical lesions.

  6. Improving the ability to review preoperative radiographs intraoperatively in trauma and orthopaedic theatres at Lancashire teaching hospitals

    PubMed Central

    Jump, Christopher

    2017-01-01

    Background The ability to review preoperative radiographs during trauma and orthopaedic surgery is essential for the surgeon to provide optimum treatment to the patient. However, due to current information technology (IT) systems, screen-savers frequently interrupt the ability to review images and theatre staff are not routinely available to deactivate the screen-saver. This prolongs theatre time for the patient and affects the quality of care provided. The aim of this quality improvement project was to improve the availability of radiographs for the surgeon to review intraoperatively. Method/results Data were collected from all trauma and orthopaedic theatres at two hospital sites covering all subspecialties and including emergency and elective cases. Baseline measurements showed that the frequency of preoperative radiographs not interrupted during an operation was 0% (0/50). Following this the Trust’s IT systems were improved to prevent activation of the screen-saver on the theatre computers using the generic theatre login details. After the first-cycle intervention, data were collected showing 52% (14/27) of preoperative radiographs were not interrupted by a screen-saver. The cause for this result being less than expected was investigated and found to be due to an alternative computer login being used on the theatre computers at one of the hospital sites. Education of theatre staff was then undertaken to ensure the correct theatre login was used and notices to remind staff placed on the theatre computers. After the second-cycle intervention, data were collected showing that 100% (26/26) of preoperative radiographs were not interrupted during operative time allowing the surgeon to review images when required. Conclusion/implications This quality improvement project has made changes to theatre IT systems and practices of theatre staff which has resulted in a significant improvement in the ability for the operating surgeon to review preoperative radiographs

  7. Improving the ability to review preoperative radiographs intraoperatively in trauma and orthopaedic theatres at Lancashire teaching hospitals.

    PubMed

    Jump, Christopher

    2017-01-01

    The ability to review preoperative radiographs during trauma and orthopaedic surgery is essential for the surgeon to provide optimum treatment to the patient. However, due to current information technology (IT) systems, screen-savers frequently interrupt the ability to review images and theatre staff are not routinely available to deactivate the screen-saver. This prolongs theatre time for the patient and affects the quality of care provided. The aim of this quality improvement project was to improve the availability of radiographs for the surgeon to review intraoperatively. Data were collected from all trauma and orthopaedic theatres at two hospital sites covering all subspecialties and including emergency and elective cases. Baseline measurements showed that the frequency of preoperative radiographs not interrupted during an operation was 0% (0/50). Following this the Trust's IT systems were improved to prevent activation of the screen-saver on the theatre computers using the generic theatre login details. After the first-cycle intervention, data were collected showing 52% (14/27) of preoperative radiographs were not interrupted by a screen-saver. The cause for this result being less than expected was investigated and found to be due to an alternative computer login being used on the theatre computers at one of the hospital sites. Education of theatre staff was then undertaken to ensure the correct theatre login was used and notices to remind staff placed on the theatre computers. After the second-cycle intervention, data were collected showing that 100% (26/26) of preoperative radiographs were not interrupted during operative time allowing the surgeon to review images when required. This quality improvement project has made changes to theatre IT systems and practices of theatre staff which has resulted in a significant improvement in the ability for the operating surgeon to review preoperative radiographs intraoperatively.

  8. Radiographic visualization of magma dynamics in an erupting volcano.

    PubMed

    Tanaka, Hiroyuki K M; Kusagaya, Taro; Shinohara, Hiroshi

    2014-03-10

    Radiographic imaging of magma dynamics in a volcanic conduit provides detailed information about ascent and descent of magma, the magma flow rate, the conduit diameter and inflation and deflation of magma due to volatile expansion and release. Here we report the first radiographic observation of the ascent and descent of magma along a conduit utilizing atmospheric (cosmic ray) muons (muography) with dynamic radiographic imaging. Time sequential radiographic images show that the top of the magma column ascends right beneath the crater floor through which the eruption column was observed. In addition to the visualization of this magma inflation, we report a sequence of images that show magma descending. We further propose that the monitoring of temporal variations in the gas volume fraction of magma as well as its position in a conduit can be used to support existing eruption prediction procedures.

  9. Radiographic visualization of magma dynamics in an erupting volcano

    PubMed Central

    Tanaka, Hiroyuki K. M.; Kusagaya, Taro; Shinohara, Hiroshi

    2014-01-01

    Radiographic imaging of magma dynamics in a volcanic conduit provides detailed information about ascent and descent of magma, the magma flow rate, the conduit diameter and inflation and deflation of magma due to volatile expansion and release. Here we report the first radiographic observation of the ascent and descent of magma along a conduit utilizing atmospheric (cosmic ray) muons (muography) with dynamic radiographic imaging. Time sequential radiographic images show that the top of the magma column ascends right beneath the crater floor through which the eruption column was observed. In addition to the visualization of this magma inflation, we report a sequence of images that show magma descending. We further propose that the monitoring of temporal variations in the gas volume fraction of magma as well as its position in a conduit can be used to support existing eruption prediction procedures. PMID:24614612

  10. Radiographic technical quality of root canal treatment performed by a new rotary single-file system.

    PubMed

    Colombo, Marco; Bassi, Cristina; Beltrami, Riccardo; Vigorelli, Paolo; Spinelli, Antonio; Cavada, Andrea; Dagna, Alberto; Chiesa, Marco; Poggio, Claudio

    2017-01-01

    The aim of the present study was to evaluate radiographically the technical quality of root canal filling performed by postgraduate students with a new single-file Nickel-Titanium System (F6 Skytaper Komet) in clinical practice. Records of 74 patients who had received endodontic treatment by postgraduate students at the School of Dentistry, Faculty of Medicine, University of Pavia in the period between September 2015 and April 2016 were collected and examined: the final sample consisted 114 teeth and 204 root canals. The quality of endodontic treatment was evaluated by examining the length of the filling in relation to the radiographic apex, the density of the obturation according to the presence of voids and the taper of root canal filling. Chi-squared analysis was used to determine statistically significant differences between the technical quality of root fillings according to tooth's type, position and curvature. The results showed that 75,49%, 82,84% and 90,69% of root filled canals had adequate length, density and taper respectively. Overall, the technical quality of root canal fillings performed by postgraduates students was acceptable in 60,78% of the cases.

  11. Study of Image Qualities From 6D Robot-Based CBCT Imaging System of Small Animal Irradiator.

    PubMed

    Sharma, Sunil; Narayanasamy, Ganesh; Clarkson, Richard; Chao, Ming; Moros, Eduardo G; Zhang, Xin; Yan, Yulong; Boerma, Marjan; Paudel, Nava; Morrill, Steven; Corry, Peter; Griffin, Robert J

    2017-01-01

    To assess the quality of cone beam computed tomography images obtained by a robotic arm-based and image-guided small animal conformal radiation therapy device. The small animal conformal radiation therapy device is equipped with a 40 to 225 kV X-ray tube mounted on a custom made gantry, a 1024 × 1024 pixels flat panel detector (200 μm resolution), a programmable 6 degrees of freedom robot for cone beam computed tomography imaging and conformal delivery of radiation doses. A series of 2-dimensional radiographic projection images were recorded in cone beam mode by placing and rotating microcomputed tomography phantoms on the "palm' of the robotic arm. Reconstructed images were studied for image quality (spatial resolution, image uniformity, computed tomography number linearity, voxel noise, and artifacts). Geometric accuracy was measured to be 2% corresponding to 0.7 mm accuracy on a Shelley microcomputed tomography QA phantom. Qualitative resolution of reconstructed axial computed tomography slices using the resolution coils was within 200 μm. Quantitative spatial resolution was found to be 3.16 lp/mm. Uniformity of the system was measured within 34 Hounsfield unit on a QRM microcomputed tomography water phantom. Computed tomography numbers measured using the linearity plate were linear with material density ( R 2 > 0.995). Cone beam computed tomography images of the QRM multidisk phantom had minimal artifacts. Results showed that the small animal conformal radiation therapy device is capable of producing high-quality cone beam computed tomography images for precise and conformal small animal dose delivery. With its high-caliber imaging capabilities, the small animal conformal radiation therapy device is a powerful tool for small animal research.

  12. Evaluation of the sparse coding super-resolution method for improving image quality of up-sampled images in computed tomography

    NASA Astrophysics Data System (ADS)

    Ota, Junko; Umehara, Kensuke; Ishimaru, Naoki; Ohno, Shunsuke; Okamoto, Kentaro; Suzuki, Takanori; Shirai, Naoki; Ishida, Takayuki

    2017-02-01

    As the capability of high-resolution displays grows, high-resolution images are often required in Computed Tomography (CT). However, acquiring high-resolution images takes a higher radiation dose and a longer scanning time. In this study, we applied the Sparse-coding-based Super-Resolution (ScSR) method to generate high-resolution images without increasing the radiation dose. We prepared the over-complete dictionary learned the mapping between low- and highresolution patches and seek a sparse representation of each patch of the low-resolution input. These coefficients were used to generate the high-resolution output. For evaluation, 44 CT cases were used as the test dataset. We up-sampled images up to 2 or 4 times and compared the image quality of the ScSR scheme and bilinear and bicubic interpolations, which are the traditional interpolation schemes. We also compared the image quality of three learning datasets. A total of 45 CT images, 91 non-medical images, and 93 chest radiographs were used for dictionary preparation respectively. The image quality was evaluated by measuring peak signal-to-noise ratio (PSNR) and structure similarity (SSIM). The differences of PSNRs and SSIMs between the ScSR method and interpolation methods were statistically significant. Visual assessment confirmed that the ScSR method generated a high-resolution image with sharpness, whereas conventional interpolation methods generated over-smoothed images. To compare three different training datasets, there were no significance between the CT, the CXR and non-medical datasets. These results suggest that the ScSR provides a robust approach for application of up-sampling CT images and yields substantial high image quality of extended images in CT.

  13. Endodontic radiography: who is reading the digital radiograph?

    PubMed

    Tewary, Shalini; Luzzo, Joseph; Hartwell, Gary

    2011-07-01

    Digital radiographic imaging systems have undergone tremendous improvements since their introduction. Advantages of digital radiographs over conventional films include lower radiation doses compared with conventional films, instantaneous images, archiving and sharing images easily, and manipulation of several radiographic properties that might help in diagnosis. A total of 6 observers including 2 endodontic residents, 3 endodontists, and 1 oral radiologist evaluated 150 molar digital periapical radiographs to determine which of the following conditions existed: normal periapical tissue, widened periodontal ligament, or presence of periapical radiolucency. The evaluators had full control over the radiograph's parameters of the Planmeca Dimaxis software program. All images were viewed on the same computer monitor with ideal vie-wing conditions. The same 6 observers evaluated the same 150 digital images 3 months later. The data were analyzed to determine how well the evaluators agreed with each other (interobserver agreement) for 2 rounds of observations and with themselves (intraobserver agreement). Fleiss kappa statistical analysis was used to measure the level of agreement among multiple raters. The overall Fleiss kappa value for interobserver agreement for the first round of interpretation was 0.34 (P < .001). The overall Fleiss kappa value for interobserver agreement for the second round of interpretation was 0.35 (P < .001). This resulted in fair (0.2-0.4) agreement among the 6 raters at both observation periods. A weighted kappa analysis was used to determine intraobserver agreement, which showed on average a moderate agreement. The results indicate that the interpretation of a dental radiograph is subjective, irrespective of whether conventional or digital radiographs are used. The factors that appeared to have the most impact were the years of experience of the examiner and familiarity of the operator with a given digital system. Copyright © 2011 American

  14. Brazilian young dental practitioners' use and acceptance of digital radiographic examinations

    PubMed Central

    de Faria Vasconcelos, Karla; do Nascimento, Eduarda Helena Leandro; Oliveira, Matheus Lima; Freitas, Deborah Queiroz; Haiter-Neto, Francisco

    2016-01-01

    Purpose The aim of this study was to investigate the use and acceptance of digital radiographic examinations by Brazilian dental practitioners in daily practice and to evaluate the advances that have occurred over the past 5 years. Materials and Methods Dental practitioners enrolled in extension courses at the Piracicaba Dental School, University of Campinas, Brazil, responded to a self-administered questionnaire in the years 2011 and 2015. They were asked about sociodemographic factors and their knowledge and use of digital radiographic examinations. Descriptive analysis was performed, as well as the chi-square and Fisher exact tests, with a significance level of 5% (α=0.05). Results A total of 181 participants responded to the questionnaire in the years 2011 and 2015. Most of the respondents worked in private practice, had graduated within the last 5 years, and were between 20 and 30 years old. In 2011, 55.6% of respondents reported having ever used digital radiographic examinations, while in 2015 this number increased significantly to 85.4% (p<.0001), out of which 71.4% preferred it to conventional images. Moreover, 21.4% of respondents reported having used digital radiographic examinations for more than 3 years. A significant increase in use of intraoral digital radiography (p=0.0316) was observed in 2015. In both years, image quality and high cost were indicated, respectively, as the main advantage and disadvantage of digital radiographic examinations. Conclusion This study showed that digital radiology has become more common in Brazil over the past 5 years. Most of the Brazilian dental practitioners evaluated in 2015 used digital radiographic examinations. PMID:28035301

  15. Regional and socioeconomic disparities in emergency department use of radiographic imaging for acute pediatric sinusitis.

    PubMed

    Sedaghat, Ahmad R; Cunningham, Michael J; Ishman, Stacey L

    2014-01-01

    Acute pediatric sinusitis (APS) is a common complication of pediatric upper respiratory tract infections. Children with all degrees of APS severity may present to emergency departments (EDs) for evaluation and management. This study was designed to analyze the use of imaging in APS presenting to U.S. EDs. A cross-sectional analysis of the 2008 National Emergency Department Sample database was performed. One hundred one thousand six hundred sixty children, aged ≤18 years, assigned at least one ICD9 code for APS were identified. Current procedural terminology codes for sinus plain film radiographs, computed tomography (CT), and magnetic resonance imaging identified children who underwent sinus imaging. Association of performance of sinus imaging was sought with multiple predictor variables including clinicodemographic and hospital characteristics. The use of any imaging was associated with older age (odds ratio [OR] = 1.07; p < 0.001), male gender (OR = 1.57; p < 0.001), and diagnosis of chronic rhinosinusitis (OR = 2.46; p < 0.001). Imaging was more common in metropolitan teaching (OR = 1.40;0 p < 0.001) and nonteaching (OR = 5.64; p < 0.001) hospitals. Markers of higher socioeconomic status--private health insurance (OR = 1.37; p < 0.001) and higher income level (OR = 1.96; p < 0.001)--were associated with greater use of imaging, especially CT scans. The use of ED imaging in APS is appropriately associated with factors known to be associated with APS complications. However, additional disparities with respect to regional and socioeconomic factors exist. Interventions to eliminate these health care disparities in use of imaging resources may lead to quality improvement in care and outcomes for APS.

  16. Digital mammography--DQE versus optimized image quality in clinical environment: an on site study

    NASA Astrophysics Data System (ADS)

    Oberhofer, Nadia; Fracchetti, Alessandro; Springeth, Margareth; Moroder, Ehrenfried

    2010-04-01

    The intrinsic quality of the detection system of 7 different digital mammography units (5 direct radiography DR; 2 computed radiography CR), expressed by DQE, has been compared with their image quality/dose performances in clinical use. DQE measurements followed IEC 62220-1-2 using a tungsten test object for MTF determination. For image quality assessment two different methods have been applied: 1) measurement of contrast to noise ratio (CNR) according to the European guidelines and 2) contrast-detail (CD) evaluation. The latter was carried out with the phantom CDMAM ver. 3.4 and the commercial software CDMAM Analyser ver. 1.1 (both Artinis) for automated image analysis. The overall image quality index IQFinv proposed by the software has been validated. Correspondence between the two methods has been shown figuring out a linear correlation between CNR and IQFinv. All systems were optimized with respect to image quality and average glandular dose (AGD) within the constraints of automatic exposure control (AEC). For each equipment, a good image quality level was defined by means of CD analysis, and the corresponding CNR value considered as target value. The goal was to achieve for different PMMA-phantom thicknesses constant image quality, that means the CNR target value, at minimum dose. All DR systems exhibited higher DQE and significantly better image quality compared to CR systems. Generally switching, where available, to a target/filter combination with an x-ray spectrum of higher mean energy permitted dose savings at equal image quality. However, several systems did not allow to modify the AEC in order to apply optimal radiographic technique in clinical use. The best ratio image quality/dose was achieved by a unit with a-Se detector and W anode only recently available on the market.

  17. Combining independent decisions increases diagnostic accuracy of reading lumbosacral radiographs and magnetic resonance imaging.

    PubMed

    Kurvers, Ralf H J M; de Zoete, Annemarie; Bachman, Shelby L; Algra, Paul R; Ostelo, Raymond

    2018-01-01

    Diagnosing the causes of low back pain is a challenging task, prone to errors. A novel approach to increase diagnostic accuracy in medical decision making is collective intelligence, which refers to the ability of groups to outperform individual decision makers in solving problems. We investigated whether combining the independent ratings of chiropractors, chiropractic radiologists and medical radiologists can improve diagnostic accuracy when interpreting diagnostic images of the lumbosacral spine. Evaluations were obtained from two previously published studies: study 1 consisted of 13 raters independently rating 300 lumbosacral radiographs; study 2 consisted of 14 raters independently rating 100 lumbosacral magnetic resonance images. In both studies, raters evaluated the presence of "abnormalities", which are indicators of a serious health risk and warrant immediate further examination. We combined independent decisions of raters using a majority rule which takes as final diagnosis the decision of the majority of the group. We compared the performance of the majority rule to the performance of single raters. Our results show that with increasing group size (i.e., increasing the number of independent decisions) both sensitivity and specificity increased in both data-sets, with groups consistently outperforming single raters. These results were found for radiographs and MR image reading alike. Our findings suggest that combining independent ratings can improve the accuracy of lumbosacral diagnostic image reading.

  18. Outcomes of Patellofemoral Arthroplasty Based on Radiographic Severity.

    PubMed

    deDeugd, Casey M; Pareek, Ayoosh; Krych, Aaron J; Cummings, Nancy M; Dahm, Diane L

    2017-04-01

    Patellofemoral arthroplasty (PFA) is increasingly performed for symptomatic patellofemoral arthritis. The purpose of this study was to evaluate the outcomes of PFA based on preoperative radiographic severity of patellofemoral arthritis. All patients who underwent PFA for isolated patellofemoral arthritis between 2002 and 2013 and had undergone preoperative magnetic resonance imaging were identified. Radiographic severity of patellofemoral arthritis was classified according to the Iwano classification system. Groups were divided between mild (grade 0-I) and moderate to severe (grade II-IV) patellofemoral arthritis. Clinical outcomes were evaluated using the Knee Society scores (KSS), University of California at Los Angeles (UCLA) and Tegner scores. Seventy-five knees in 55 patients met inclusion criteria. Mean age was 51 years (range, 36 to 81), and mean follow-up was 3 years (range, 2 to 10). All patients had grade IV patellofemoral chondromalacia and/or significant subchondral cyst formation and edema on magnetic resonance imaging. On plain radiographs, there were no patients with Iwano grade 0, 21 grade I, 15 grade II, 21 grade III, and 18 grade IV patellofemoral arthritis. There was significantly more improvement in KSS pain (P = .046), KSS function (P = .02), University of California at Los Angeles (UCLA) (P = .046) and Tegner (P = .008) scores in the Iwano grade II-IV group vs the Iwano grade I group. Patient-reported pain quality improved significantly more following PFA in the grade II-IV group (P = .04). Patients with evidence of mild patellofemoral arthritis on plain radiographs demonstrated less improvement in pain and function after PFA than those with more advanced patellofemoral arthritis. Caution should be used when considering PFA for patients with minimal radiographic evidence of patellofemoral arthritis. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Clinical comparative study with a large-area amorphous silicon flat-panel detector: image quality and visibility of anatomic structures on chest radiography.

    PubMed

    Fink, Christian; Hallscheidt, Peter J; Noeldge, Gerd; Kampschulte, Annette; Radeleff, Boris; Hosch, Waldemar P; Kauffmann, Günter W; Hansmann, Jochen

    2002-02-01

    The objective of this study was to compare clinical chest radiographs of a large-area, flat-panel digital radiography system and a conventional film-screen radiography system. The comparison was based on an observer preference study of image quality and visibility of anatomic structures. Routine follow-up chest radiographs were obtained from 100 consecutive oncology patients using a large-area, amorphous silicon flat-panel detector digital radiography system (dose equivalent to a 400-speed film system). Hard-copy images were compared with previous examinations of the same individuals taken on a conventional film-screen system (200-speed). Patients were excluded if changes in the chest anatomy were detected or if the time interval between the examinations exceeded 1 year. Observer preference was evaluated for the image quality and the visibility of 15 anatomic structures using a five-point scale. Dose measurements with a chest phantom showed a dose reduction of approximately 50% with the digital radiography system compared with the film-screen radiography system. The image quality and the visibility of all but one anatomic structure of the images obtained with the digital flat-panel detector system were rated significantly superior (p < or = 0.0003) to those obtained with the conventional film-screen radiography system. The image quality and visibility of anatomic structures on the images obtained by the flat-panel detector system were perceived as equal or superior to the images from conventional film-screen chest radiography. This was true even though the radiation dose was reduced approximately 50% with the digital flat-panel detector system.

  20. Preliminayr Study on Diffraction Enhanced Radiographic Imaging for a Canine Model of Cartilage Damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muehleman,C.; Li, J.; Zhong, Z.

    2006-01-01

    Objective: To demonstrate the ability of a novel radiographic technique, Diffraction Enhanced Radiographic Imaging (DEI), to render high contrast images of canine knee joints for identification of cartilage lesions in situ. Methods: DEI was carried out at the X-15A beamline at Brookhaven National Laboratory on intact canine knee joints with varying levels of cartilage damage. Two independent observers graded the DE images for lesions and these grades were correlated to the gross morphological grade. Results: The correlation of gross visual grades with DEI grades for the 18 canine knee joints as determined by observer 1 (r2=0.8856, P=0.001) and observer 2more » (r2=0.8818, P=0.001) was high. The overall weighted ? value for inter-observer agreement was 0.93, thus considered high agreement. Conclusion: The present study is the first study for the efficacy of DEI for cartilage lesions in an animal joint, from very early signs through erosion down to subchondral bone, representing the spectrum of cartilage changes occurring in human osteoarthritis (OA). Here we show that DEI allows the visualization of cartilage lesions in intact canine knee joints with good accuracy. Hence, DEI may be applicable for following joint degeneration in animal models of OA.« less

  1. Effect of exposure factors on image quality in screening mammography.

    PubMed

    Alkhalifah, K; Brindabhan, A; Alsaeed, R

    2017-11-01

    The aim of this research was to study the effect of exposure factors on image quality for digital screening mammography units in Kuwait which use Tungsten (W) targets with Rhodium (Rh) and Silver (Ag) as filters. Mammography Accreditation Phantom Model 015 was imaged using a Hologic Selenia Digital mammography unit with W targets and Rh and Ag filters. Four images, each at 26, 28, 30, and 32 kVp, were obtained using each target-filter combination (W/Rh and W/Ag). The images were evaluated by five senior technologists for the number of specks, fibers and masses visible on each image. Statistical analysis was carried out using non-parametric tests at p = 0.05 level. There were significant changes in the visibility of fibers and specks between different kVp values with W/Rh (p < 0.001). However, with W/Ag combination, significant differences were observed in the fibers only (p < 0.001). Among the kVp values used, 28 kV emerged as the optimal value. Comparison of images obtained with the two filter materials, led to significant differences in the visibility of fibers and specks (p < 0.008). At 32 kVp, there were significant differences in the visibility of specks only (p < 0.008). A W/Rh target-filter combination provides better image quality than that provided by W/Ag. In particular, 30 and 32 kVp X-ray beams produce higher quality images than the lower kV values. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  2. Knee Images Digital Analysis (KIDA): a novel method to quantify individual radiographic features of knee osteoarthritis in detail.

    PubMed

    Marijnissen, A C A; Vincken, K L; Vos, P A J M; Saris, D B F; Viergever, M A; Bijlsma, J W J; Bartels, L W; Lafeber, F P J G

    2008-02-01

    Radiography is still the golden standard for imaging features of osteoarthritis (OA), such as joint space narrowing, subchondral sclerosis, and osteophyte formation. Objective assessment, however, remains difficult. The goal of the present study was to evaluate a novel digital method to analyse standard knee radiographs. Standardized radiographs of 20 healthy and 55 OA knees were taken in general practise according to the semi-flexed method by Buckland-Wright. Joint Space Width (JSW), osteophyte area, subchondral bone density, joint angle, and tibial eminence height were measured as continuous variables using newly developed Knee Images Digital Analysis (KIDA) software on a standard PC. Two observers evaluated the radiographs twice, each on two different occasions. The observers were blinded to the source of the radiographs and to their previous measurements. Statistical analysis to compare measurements within and between observers was performed according to Bland and Altman. Correlations between KIDA data and Kellgren & Lawrence (K&L) grade were calculated and data of healthy knees were compared to those of OA knees. Intra- and inter-observer variations for measurement of JSW, subchondral bone density, osteophytes, tibial eminence, and joint angle were small. Significant correlations were found between KIDA parameters and K&L grade. Furthermore, significant differences were found between healthy and OA knees. In addition to JSW measurement, objective evaluation of osteophyte formation and subchondral bone density is possible on standard radiographs. The measured differences between OA and healthy individuals suggest that KIDA allows detection of changes in time, although sensitivity to change has to be demonstrated in long-term follow-up studies.

  3. Evaluation of radiographic, computed tomographic, and cadaveric anatomy of the head of boa constrictors.

    PubMed

    Banzato, Tommaso; Russo, Elisa; Di Toma, Anna; Palmisano, Giuseppe; Zotti, Alessandro

    2011-12-01

    To evaluate the radiographic, computed tomographic (CT), and cadaveric anatomy of the head of boa constrictors. 4 Boa constrictor imperator cadavers. Cadavers weighed 3.4 to 5.6 kg and had a body length ranging from 189 to 221 cm. Radiographic and CT images were obtained with a high-detail screen-film combination, and conventional CT was performed with a slice thickness of 1.5 mm. Radiographic images were obtained in ventrodorsal, dorsoventral, and left and right laterolateral recumbency; CT images were obtained with the animals positioned in ventral recumbency directly laying on a plastic support. At the end of the radiographic and CT imaging session, 2 heads were sectioned following a stratigraphic approach; the other 2, carefully maintained in the same position on the plastic support, were moved into a freezer (-20°C) until completely frozen and then sectioned into 3-mm slices, respecting the imaging protocol. The frozen sections were cleaned and then photographed on each side. Anatomic structures were identified and labeled on gross anatomic images and on the corresponding CT or radiographic image with the aid of available literature. Radiographic and CT images provided high detail for visualization of bony structures; soft tissues were not easily identified on radiographic and CT images. Results provide an atlas of stratigraphic and cross-sectional gross anatomy and radiographic and CT anatomy of the heads of boa constrictors that might be useful in the interpretation of any imaging modality in this species.

  4. Design and evaluation of learning strategies for a group of radiographers in radiostereometric analysis (RSA).

    PubMed

    Muharemovic, O; Troelsen, A; Thomsen, M G; Kallemose, T; Gosvig, K K

    2017-11-01

    The purpose of this study was to design and evaluate a radiostereometric analysis (RSA) program aimed at radiographers in order to increase their cognitive and practical skills, thereby increasing image quality and minimizing exposure repetition. Twenty radiographers were randomized into two identically sized study groups. Training consisted of a theoretical and practical workshop using a phantom. Tests were performed to compare the effect of training to nontraining, and the effect of time duration on the maintenance of RSA skills. The effect of training was measured by a written test and three defined parameters influencing image quality. Group A reduced significantly (p < 0.001) by 31.3 mm (21-31%) the distance between the centrum of the prosthesis (CP) and the centrum of the calibration field (CCF) and increased the number of beads (NB) visible by 3.6 (out of 18). A further significant reduction of 5.1 mm (p = 0.023), 1.0 bead more (p < 0.001) and a 2.1 (p = 0.022) point better rotation of the prosthesis (RP) was registered two months later. Group B was tested twice without training and no significant improvement was registered. One month after training group B had experienced overall significant improvement on a par with group A. It is realistic to implement an RSA X-ray training program where radiographers significantly improve their theoretical and practical skills in centering the CP closer to the CCF, NB and RP. A duration of up to two months after training does not influence the quality of participants' performance. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  5. A study of the quality of duplicated radiographs.

    PubMed

    Erales, F A; Manson-Hing, L R

    1979-01-01

    The resolution, contrast, and clinical appearance of radiographs and duplicate radiographs made with two types of duplicating film were compared. Duplicating conditions evaluated were type and shape of light, light-film distance, type of exposure surface, and developer temperature. Major observations were as follows: both Kodak and DuPont films produced clinically acceptable duplicates; Kodak film was faster; DuPont film responded better in incandescent photoflood light than Kodak film; clear glass with appropriate light-film distance was the best exposure surface.

  6. Radiographic anatomy of the foot and ankle—part 4: the metatarsals.

    PubMed

    Christman, Robert A

    2015-01-01

    The normal radiographic anatomy of the foot and ankle, aside from my previous work, has been addressed only superficially or sparingly in the medical literature. This project correlates the detailed radiographic anatomy of the entire adult foot and ankle (two-dimensional) to osteology (three-dimensional). Each bone's position was determined after meticulous examination and correlation to an articulated skeleton relative to the image receptor and direction of the x-ray beam, with correlation to the radiograph for confirmation. Images of each foot and distal leg bone ("front" and "back" perspectives) are presented alongside a corresponding radiographic image for comparison. The normal gross and radiographic anatomy is correlated and described for each radiographic positioning technique. Foundational knowledge is provided that future researchers can use as a baseline ("normal") and that students and practitioners can use for comparison when interpreting radiographs and distinguishing abnormal findings. The results of the original project, owing to its broad scope, have been divided into five parts: the lower leg, the greater tarsus, the lesser tarsus, the metatarsals (the focus of this article), and the phalanges.

  7. Radiographic anatomy of the foot and ankle-part 5. The phalanges.

    PubMed

    Christman, Robert A

    2015-03-01

    The normal radiographic anatomy of the foot and ankle, aside from my previous work, has been addressed only superficially or sparingly in the medical literature. This project correlates the detailed radiographic anatomy of the entire adult foot and ankle (two-dimensional) to osteology (three-dimensional). Each bone's position was determined after meticulous examination and correlation to an articulated skeleton relative to the image receptor and direction of the x-ray beam, with correlation to the radiograph for confirmation. Images of each foot and distal leg bone ("front" and "back" perspectives) are presented alongside a corresponding radiographic image for comparison. The normal gross and radiographic anatomy is correlated and described for each radiographic positioning technique. Foundational knowledge is provided that future researchers can use as a baseline ("normal") and that students and practitioners can use for comparison when interpreting radiographs and distinguishing abnormal findings. The results of the original project, owing to its broad scope, have been divided into five parts: the lower leg, the greater tarsus, the lesser tarsus, the metatarsals, and the phalanges (the focus of this article).

  8. High-Throughput Classification of Radiographs Using Deep Convolutional Neural Networks.

    PubMed

    Rajkomar, Alvin; Lingam, Sneha; Taylor, Andrew G; Blum, Michael; Mongan, John

    2017-02-01

    The study aimed to determine if computer vision techniques rooted in deep learning can use a small set of radiographs to perform clinically relevant image classification with high fidelity. One thousand eight hundred eighty-five chest radiographs on 909 patients obtained between January 2013 and July 2015 at our institution were retrieved and anonymized. The source images were manually annotated as frontal or lateral and randomly divided into training, validation, and test sets. Training and validation sets were augmented to over 150,000 images using standard image manipulations. We then pre-trained a series of deep convolutional networks based on the open-source GoogLeNet with various transformations of the open-source ImageNet (non-radiology) images. These trained networks were then fine-tuned using the original and augmented radiology images. The model with highest validation accuracy was applied to our institutional test set and a publicly available set. Accuracy was assessed by using the Youden Index to set a binary cutoff for frontal or lateral classification. This retrospective study was IRB approved prior to initiation. A network pre-trained on 1.2 million greyscale ImageNet images and fine-tuned on augmented radiographs was chosen. The binary classification method correctly classified 100 % (95 % CI 99.73-100 %) of both our test set and the publicly available images. Classification was rapid, at 38 images per second. A deep convolutional neural network created using non-radiological images, and an augmented set of radiographs is effective in highly accurate classification of chest radiograph view type and is a feasible, rapid method for high-throughput annotation.

  9. Coronal and Intraradicular Appearances Affect Radiographic Perception of the Periapical Region.

    PubMed

    Strong, Julie W; Woodmansey, Karl F; Khademi, John A; Hatton, John F

    2017-05-01

    The influence of the radiographic appearances of the coronal and intraradicular areas on periapical radiographic interpretation has been minimally evaluated in dentistry and endodontics. The purpose of this study was to evaluate the effects that the coronal and intraradicular radiographic appearance has on endodontists' radiographic interpretations of periapical areas. In a split-group study design using an online survey format, 2 pairs of digital periapical radiographic images were evaluated by 2 groups (A and B) of endodontist readers for the presence of a periapical finding. The images in each pair were identical except that 1 image of each image pairs had coronal restorations and/or root canal fillings altered using Adobe Photoshop software (Adobe Systems, San Jose, CA). The periapical areas were not altered. Using a 5-point Likert scale, the endodontist readers were asked to "Please evaluate the periapical area(s)." A Mann-Whitney U test was used to statistically evaluate the difference between the groups. Significance was set at P < .01. There were 417 readers in group A and 442 readers in group B. The Mann-Whitney U test showed a significant difference in the responses between the groups for both image pairs (P < .01). Because the periapical areas of the image pairs were unaltered, the differing coronal and intraradicular areas of the radiographs appear to have influenced endodontists' interpretations of the periapical areas. This finding has implications for all radiographic outcome assessments. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Quality aspects of digital radiography in general dental practice.

    PubMed

    Hellén-Halme, Kristina

    2007-01-01

    The number of dentists who have converted from conventional film radiography to digital radiography continues to grow. A digital system has numerous advantages, but there are also many new aspects to consider. The overall aim of this thesis was to study how digital radiography was used in general dental practices. The specific aims were to study how different factors affected image quality. To determine whether there were any differences in image quality between conventional film radiographs and digital radiographs, 4863 images (540 cases) were evaluated. The cases had been sent to the Swedish Dental Insurance Office for prior treatment approval. The image quality of digital radiographs was found to be significantly lower than that of film radiographs. This result led to a questionnaire study of dentists experienced in digital radiography. In 2003, a questionnaire was sent to the 139 general practice dentists who worked with digital radiography in Skine, Sweden; the response rate was 94%. Many general practice dentists had experienced several problems (65%), and less than half of the digital systems (40%) underwent some kind of quality control. One of the weaker links in the technical chain of digital radiography appeared to be the monitor. A field study to 19 dentists at their clinics found that the brightness and contrast settings of the monitors had to be adjusted to obtain the subjectively best image quality. The ambient light in the evaluation room was also found to affect the diagnostic outcome of low-contrast patterns in radiographs. To evaluate the effects of ambient light and technical adjustments of the monitor, a study using standardised set-ups was designed. Seven observers evaluated radiographs of 100 extracted human teeth for approximal caries under five different combinations of brightness and contrast settings on two different occasions with high and low ambient light levels in the evaluation room. The ability to diagnose carious lesions was found

  11. An Automatic Image Processing Workflow for Daily Magnetic Resonance Imaging Quality Assurance.

    PubMed

    Peltonen, Juha I; Mäkelä, Teemu; Sofiev, Alexey; Salli, Eero

    2017-04-01

    The performance of magnetic resonance imaging (MRI) equipment is typically monitored with a quality assurance (QA) program. The QA program includes various tests performed at regular intervals. Users may execute specific tests, e.g., daily, weekly, or monthly. The exact interval of these measurements varies according to the department policies, machine setup and usage, manufacturer's recommendations, and available resources. In our experience, a single image acquired before the first patient of the day offers a low effort and effective system check. When this daily QA check is repeated with identical imaging parameters and phantom setup, the data can be used to derive various time series of the scanner performance. However, daily QA with manual processing can quickly become laborious in a multi-scanner environment. Fully automated image analysis and results output can positively impact the QA process by decreasing reaction time, improving repeatability, and by offering novel performance evaluation methods. In this study, we have developed a daily MRI QA workflow that can measure multiple scanner performance parameters with minimal manual labor required. The daily QA system is built around a phantom image taken by the radiographers at the beginning of day. The image is acquired with a consistent phantom setup and standardized imaging parameters. Recorded parameters are processed into graphs available to everyone involved in the MRI QA process via a web-based interface. The presented automatic MRI QA system provides an efficient tool for following the short- and long-term stability of MRI scanners.

  12. Automatic Synthesis of Panoramic Radiographs from Dental Cone Beam Computed Tomography Data.

    PubMed

    Luo, Ting; Shi, Changrong; Zhao, Xing; Zhao, Yunsong; Xu, Jinqiu

    2016-01-01

    In this paper, we propose an automatic method of synthesizing panoramic radiographs from dental cone beam computed tomography (CBCT) data for directly observing the whole dentition without the superimposition of other structures. This method consists of three major steps. First, the dental arch curve is generated from the maximum intensity projection (MIP) of 3D CBCT data. Then, based on this curve, the long axial curves of the upper and lower teeth are extracted to create a 3D panoramic curved surface describing the whole dentition. Finally, the panoramic radiograph is synthesized by developing this 3D surface. Both open-bite shaped and closed-bite shaped dental CBCT datasets were applied in this study, and the resulting images were analyzed to evaluate the effectiveness of this method. With the proposed method, a single-slice panoramic radiograph can clearly and completely show the whole dentition without the blur and superimposition of other dental structures. Moreover, thickened panoramic radiographs can also be synthesized with increased slice thickness to show more features, such as the mandibular nerve canal. One feature of the proposed method is that it is automatically performed without human intervention. Another feature of the proposed method is that it requires thinner panoramic radiographs to show the whole dentition than those produced by other existing methods, which contributes to the clarity of the anatomical structures, including the enamel, dentine and pulp. In addition, this method can rapidly process common dental CBCT data. The speed and image quality of this method make it an attractive option for observing the whole dentition in a clinical setting.

  13. Measuring Three-Dimensional Thorax Motion Via Biplane Radiographic Imaging: Technique and Preliminary Results.

    PubMed

    Baumer, Timothy G; Giles, Joshua W; Drake, Anne; Zauel, Roger; Bey, Michael J

    2016-01-01

    Measures of scapulothoracic motion are dependent on accurate imaging of the scapula and thorax. Advanced radiographic techniques can provide accurate measures of scapular motion, but the limited 3D imaging volume of these techniques often precludes measurement of thorax motion. To overcome this, a thorax coordinate system was defined based on the position of rib pairs and then compared to a conventional sternum/spine-based thorax coordinate system. Alignment of the rib-based coordinate system was dependent on the rib pairs used, with the rib3:rib4 pairing aligned to within 4.4 ± 2.1 deg of the conventional thorax coordinate system.

  14. Radiation levels and image quality in patients undergoing chest X-ray examinations

    NASA Astrophysics Data System (ADS)

    de Oliveira, Paulo Márcio Campos; do Carmo Santana, Priscila; de Sousa Lacerda, Marco Aurélio; da Silva, Teógenes Augusto

    2017-11-01

    Patient dose monitoring for different radiographic procedures has been used as a parameter to evaluate the performance of radiology services; skin entrance absorbed dose values for each type of examination were internationally established and recommended aiming patient protection. In this work, a methodology for dose evaluation was applied to three diagnostic services: one with a conventional film and two with digital computerized radiography processing techniques. The x-ray beam parameters were selected and "doses" (specifically the entrance surface and incident air kerma) were evaluated based on images approved in European criteria during postero-anterior (PA) and lateral (LAT) incidences. Data were collected from 200 patients related to 200 PA and 100 LAT incidences. Results showed that doses distributions in the three diagnostic services were very different; the best relation between dose and image quality was found in the institution with the chemical film processing. This work contributed for disseminating the radiation protection culture by emphasizing the need of a continuous dose reduction without losing the quality of the diagnostic image.

  15. Reducing Unnecessary Portable Pelvic Radiographs in Trauma Patients: A Resident-Driven Quality Improvement Initiative.

    PubMed

    Langer, Jessica M; Tsai, Emily B; Luhar, Aarti; McWilliams, Justin; Motamedi, Kambiz

    2015-09-01

    Quality improvement is increasingly important in the changing health care climate. We aim to establish a methodology and identify critical factors leading to successful implementation of a resident-led radiology quality improvement intervention at the institutional level. Under guidance of faculty mentors, the first-year radiology residents developed a quality improvement initiative to decrease unnecessary STAT pelvic radiographs (PXRs) in hemodynamically stable trauma patients who would additionally receive STAT pelvic CT scans. Development and implementation of this initiative required multiple steps, including: establishing resident and faculty leadership, gathering evidence from published literature, cultivating multidisciplinary support, and developing and implementing an institution-wide ordering algorithm. A visual aid and brief questionnaire were distributed to clinicians for use during treatment of trauma cases to ensure sustainability of the initiative. At multiple time points, pre- and post-intervention, residents performed a retrospective chart review to evaluate changes in imaging-ordering trends for trauma patients. Chart review showed a decline in the number of PXRs for hemodynamically stable trauma patients, as recommended in the ordering algorithm: 78% of trauma patients received both a PXR and a pelvic CT scan in the first 24 hours of the initiative, compared with 26% at 1 month; 24% at 6 months; and 18% at 10 to 12 months postintervention. The resident-led radiology quality improvement initiative created a shift in ordering culture at an institutional level. Development and implementation of this algorithm exemplified the impact of a multidisciplinary collaborative effort involving multiple departments and multiple levels of the medical hierarchy. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  16. Radiographic anatomy of the foot and ankle-part 2: the greater tarsus.

    PubMed

    Christman, Robert A

    2014-01-01

    Normal radiographic anatomy of the foot and ankle, aside from my previous work, has been addressed only superficially or sparingly in the medical literature. This project correlates detailed radiographic anatomy of the entire adult foot and ankle (two-dimensional) to osteology (three-dimensional). Each bone's position was determined after meticulous examination and correlation to an articulated skeleton relative to the image receptor and direction of the x-ray beam, with correlation to the radiograph for confirmation. Images of each foot and distal leg bone ("front" and "back" perspectives) are presented alongside a corresponding radiographic image for comparison. The normal gross and radiographic anatomy is correlated and described for each radiographic positioning technique. Foundational knowledge is provided that future researchers can use as a baseline ("normal") and that students and practitioners can use for comparison when interpreting radiographs and distinguishing abnormal findings. The results of the original project, owing to its broad scope, have been divided into five parts: the lower leg, the greater tarsus (the focus of this article), the lesser tarsus, the metatarsals, and the phalanges.

  17. Enhancement of chest radiographs using eigenimage processing

    NASA Astrophysics Data System (ADS)

    Bones, Philip J.; Butler, Anthony P. H.; Hurrell, Michael

    2006-08-01

    Frontal chest radiographs ("chest X-rays") are routinely used by medical personnel to assess patients for a wide range of suspected disorders. Often large numbers of images need to be analyzed. Furthermore, at times the images need to analyzed ("reported") when no radiological expert is available. A system which enhances the images in such a way that abnormalities are more obvious is likely to reduce the chance that an abnormality goes unnoticed. The authors previously reported the use of principal components analysis to derive a basis set of eigenimages from a training set made up of images from normal subjects. The work is here extended to investigate how best to emphasize the abnormalities in chest radiographs. Results are also reported for various forms of image normalizing transformations used in performing the eigenimage processing.

  18. Are magnetic resonance imaging or radiographic findings correlated with clinical prognosis in spinal cord neuropathy?

    PubMed Central

    Neshat Halati, Fatemeh; Vajhi, Alireza; Molazem, Mohammad; Dehghan, Mohammad Mehdi; Ansari, Fereshteh

    2016-01-01

    Dogs presented to the Small Animal Hospital of Veterinary Medicine, University of Tehran were included in the present study if spinal or intervertebral disc involvement was suspected. Clinical signs were recorded as well as general information of the patient such as age, breed and sex. Sixty dogs were examined radiographically and two standard orthogonal lateral and ventrodorsal projections were taken from the suspected region. Then magnetic resonance imaging (MRI) was performed for all patients. Agreement between MRI and radiographic findings, comparison of sex and breed with diagnostic imaging grades, comparison between diagnostic imaging grades and mean age, recovery rate after surgery or medical treatment, effects of diagnostic imaging severity grades on surgical or medical referrals were evaluated statistically. There were no significant association between age, sex and breed and frequency of the intervertebral disk disease. Intervertebral disc involvements between L2-L3 and T13-L1 were estimated as the most frequent sites of involvements. Sensitivity and specificity of radiography were evaluated 90.0% and 46.0%, respectively, by considering the MRI as a gold standard modality. There was a significant association between severity of disease in the MRI with referral to surgery and medical treatment. The recovery rate after surgery was significantly higher than medical treatment. These results can be used as a foundation for other studies with more focuses on details of injury and larger group of patients. PMID:27872724

  19. ISSLS PRIZE IN BIOENGINEERING SCIENCE 2018: dynamic imaging of degenerative spondylolisthesis reveals mid-range dynamic lumbar instability not evident on static clinical radiographs.

    PubMed

    Dombrowski, Malcolm E; Rynearson, Bryan; LeVasseur, Clarissa; Adgate, Zach; Donaldson, William F; Lee, Joon Y; Aiyangar, Ameet; Anderst, William J

    2018-04-01

    Degenerative spondylolisthesis (DS) in the setting of symptomatic lumbar spinal stenosis is commonly treated with spinal fusion in addition to decompression with laminectomy. However, recent studies have shown similar clinical outcomes after decompression alone, suggesting that a subset of DS patients may not require spinal fusion. Identification of dynamic instability could prove useful for predicting which patients are at higher risk of post-laminectomy destabilization necessitating fusion. The goal of this study was to determine if static clinical radiographs adequately characterize dynamic instability in patients with lumbar degenerative spondylolisthesis (DS) and to compare the rotational and translational kinematics in vivo during continuous dynamic flexion activity in DS versus asymptomatic age-matched controls. Seven patients with symptomatic single level lumbar DS (6 M, 1 F; 66 ± 5.0 years) and seven age-matched asymptomatic controls (5 M, 2 F age 63.9 ± 6.4 years) underwent biplane radiographic imaging during continuous torso flexion. A volumetric model-based tracking system was used to track each vertebra in the radiographic images using subject-specific 3D bone models from high-resolution computed tomography (CT). In vivo continuous dynamic sagittal rotation (flexion/extension) and AP translation (slip) were calculated and compared to clinical measures of intervertebral flexion/extension and AP translation obtained from standard lateral flexion/extension radiographs. Static clinical radiographs underestimate the degree of AP translation seen on dynamic in vivo imaging (1.0 vs 3.1 mm; p = 0.03). DS patients demonstrated three primary motion patterns compared to a single kinematic pattern in asymptomatic controls when analyzing continuous dynamic in vivo imaging. 3/7 (42%) of patients with DS demonstrated aberrant mid-range motion. Continuous in vivo dynamic imaging in DS reveals a spectrum of aberrant motion with significantly greater

  20. Social image quality

    NASA Astrophysics Data System (ADS)

    Qiu, Guoping; Kheiri, Ahmed

    2011-01-01

    Current subjective image quality assessments have been developed in the laboratory environments, under controlledconditions, and are dependent on the participation of limited numbers of observers. In this research, with the help of Web 2.0 and social media technology, a new method for building a subjective image quality metric has been developed where the observers are the Internet users. A website with a simple user interface that enables Internet users from anywhere at any time to vote for a better quality version of a pair of the same image has been constructed. Users' votes are recorded and used to rank the images according to their perceived visual qualities. We have developed three rank aggregation algorithms to process the recorded pair comparison data, the first uses a naive approach, the second employs a Condorcet method, and the third uses the Dykstra's extension of Bradley-Terry method. The website has been collecting data for about three months and has accumulated over 10,000 votes at the time of writing this paper. Results show that the Internet and its allied technologies such as crowdsourcing offer a promising new paradigm for image and video quality assessment where hundreds of thousands of Internet users can contribute to building more robust image quality metrics. We have made Internet user generated social image quality (SIQ) data of a public image database available online (http://www.hdri.cs.nott.ac.uk/siq/) to provide the image quality research community with a new source of ground truth data. The website continues to collect votes and will include more public image databases and will also be extended to include videos to collect social video quality (SVQ) data. All data will be public available on the website in due course.

  1. The first radiographic image of a peripheral nerve disorder? Lipomatous macrodactyly (unrecognized lipomatosis of nerve).

    PubMed

    Mahan, Mark A; Prasad, Nikhil; Spinner, Robert J

    2015-06-01

    Lipomatosis of nerves (LN) involves benign fibro-fatty infiltration and is often associated with territorial overgrowth of soft tissue and bone; this distinctive disease pattern can be visualized on plain radiographs. We recently discovered a case (presented by Sir Robert Jones in 1898 to the Pathological Society of London) that indirectly represents a historical landmark in the imaging of peripheral nerves. The clinical findings and image, with obvious soft tissue and bone overgrowth, are pathognomonic for LN, making this one of the earliest radiological observations of a peripheral nerve lesion.

  2. Pediatric digital chest imaging.

    PubMed

    Tarver, R D; Cohen, M; Broderick, N J; Conces, D J

    1990-01-01

    The Philips Computed Radiography system performs well with pediatric portable chest radiographs, handling the throughout of a busy intensive care service 24 hours a day. Images are excellent and routinely provide a conventional (unenhanced) image and an edge-enhanced image. Radiation dose is decreased by the lowered frequency of repeat examinations and the ability of the plates to respond to a much lower dose and still provide an adequate image. The high quality and uniform density of serial PCR portable radiographs greatly enhances diagnostic content of the films. Decreased resolution has not been a problem clinically. Image manipulation and electronic transfer to remote viewing stations appear to be helpful and are currently being evaluated further. The PCR system provides a marked improvement in pediatric portable chest radiology.

  3. Validation of a new radiographic protocol for Asian elephant feet and description of their radiographic anatomy.

    PubMed

    Mumby, C; Bouts, T; Sambrook, L; Danika, S; Rees, E; Parry, A; Rendle, M; Masters, N; Weller, R

    2013-10-05

    Foot problems are extremely common in elephants and radiography is the only imaging method available but the radiographic anatomy has not been described in detail. The aims of this study were to develop a radiographic protocol for elephant feet using digital radiography, and to describe the normal radiographic anatomy of the Asian elephant front and hind foot. A total of fifteen cadaver foot specimens from captive Asian elephants were radiographed using a range of projections and exposures to determine the best radiographic technique. This was subsequently tested in live elephants in a free-contact setting. The normal radiographic anatomy of the Asian elephant front and hind foot was described with the use of three-dimensional models based on CT reconstructions. The projection angles that were found to be most useful were 65-70° for the front limb and 55-60° in the hind limb. The beam was centred 10-15 cm proximal to the cuticle in the front and 10-15 cm dorsal to the plantar edge of the sole in the hind foot depending on the size of the foot. The protocol developed can be used for larger-scale diagnostic investigations of captive elephant foot disorders, while the normal radiographic anatomy described can improve the diagnostic reliability of elephant feet radiography.

  4. Method of radiographic inspection of wooden members

    NASA Technical Reports Server (NTRS)

    Berry, Maggie L. (Inventor); Berry, Robert F., Jr. (Inventor)

    1990-01-01

    The invention is a method to be used for radiographic inspection of a wooden specimen for internal defects which includes the steps of introducing a radiopaque penetrant into any internal defects in the specimen through surface openings; passing a beam of radiation through a portion of the specimen to be inspected; and making a radiographic film image of the radiation passing through the specimen, with the radiopaque penetrant in the specimen absorbing the radiation passing through it, thereby enhancing the resulting image of the internal defects in the specimen.

  5. Shaped, lead-loaded acrylic filters for patient exposure reduction and image-quality improvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, J.E.; Stears, J.G.; Frank, E.D.

    1983-03-01

    Shaped filters that are constructed of lead-loaded acrylic material for use in patient radiography are discussed. Use of the filters will result in improved overall image quality with significant exposure reduction to the patient (approximately a 2X reduction in breast exposure and a 3X reduction in thyroid gland exposure). Detailed drawings of the shaped filters for scoliosis radiography, cervical spine radiography, and for long film changers in special procedures are provided. The use of the scoliosis filters is detailed and includes phantom and patient radiographs and dose reduction information.

  6. 3D-2D registration in mobile radiographs: algorithm development and preliminary clinical evaluation

    NASA Astrophysics Data System (ADS)

    Otake, Yoshito; Wang, Adam S.; Uneri, Ali; Kleinszig, Gerhard; Vogt, Sebastian; Aygun, Nafi; Lo, Sheng-fu L.; Wolinsky, Jean-Paul; Gokaslan, Ziya L.; Siewerdsen, Jeffrey H.

    2015-03-01

    An image-based 3D-2D registration method is presented using radiographs acquired in the uncalibrated, unconstrained geometry of mobile radiography. The approach extends a previous method for six degree-of-freedom (DOF) registration in C-arm fluoroscopy (namely ‘LevelCheck’) to solve the 9-DOF estimate of geometry in which the position of the source and detector are unconstrained. The method was implemented using a gradient correlation similarity metric and stochastic derivative-free optimization on a GPU. Development and evaluation were conducted in three steps. First, simulation studies were performed that involved a CT scan of an anthropomorphic body phantom and 1000 randomly generated digitally reconstructed radiographs in posterior-anterior and lateral views. A median projection distance error (PDE) of 0.007 mm was achieved with 9-DOF registration compared to 0.767 mm for 6-DOF. Second, cadaver studies were conducted using mobile radiographs acquired in three anatomical regions (thorax, abdomen and pelvis) and three levels of source-detector distance (~800, ~1000 and ~1200 mm). The 9-DOF method achieved a median PDE of 0.49 mm (compared to 2.53 mm for the 6-DOF method) and demonstrated robustness in the unconstrained imaging geometry. Finally, a retrospective clinical study was conducted with intraoperative radiographs of the spine exhibiting real anatomical deformation and image content mismatch (e.g. interventional devices in the radiograph that were not in the CT), demonstrating a PDE = 1.1 mm for the 9-DOF approach. Average computation time was 48.5 s, involving 687 701 function evaluations on average, compared to 18.2 s for the 6-DOF method. Despite the greater computational load, the 9-DOF method may offer a valuable tool for target localization (e.g. decision support in level counting) as well as safety and quality assurance checks at the conclusion of a procedure (e.g. overlay of planning data on the radiograph for verification of

  7. Radiographic technical quality of root canal treatment performed ex vivo by dental students at Valencia University Medical and Dental School, Spain

    PubMed Central

    Faus-Matoses, Vicente; Alegre-Domingo, Teresa; Faus-Llácer, Vicente J.

    2014-01-01

    Objectives: To evaluate radiographically the quality of root canal fillings and compare manual and rotary preparation performed on extracted teeth by undergraduate dental students. Study Design: A total of 561 premolars and molars extracted teeth were prepared using nickel-titanium rotary files or manual instrumentation and filled with gutta-percha using a cold lateral condensation technique, by 4th grade undergraduate students. Periapical radiographs were used to assess the technical quality of the root canal filling, evaluating three variables: length, density and taper. These data were recorded, scored and used to study the “technical success rate” and the “overall score”. The length of each root canal filling was classified as acceptable, short and overfilled, based on their relationship with the radiographic apex. Density and taper of filling were evaluated based on the presence of voids and the uniform tapering of the filling, respectively. Statistical analysis was used to evaluate the quality of root canal treatment, considering p < 0.05 as a statistical significant level. Results: The percentage of technical success was 44% and the overall score was 7.8 out of 10. Technical success and overall score were greater with rotary instruments (52% against 28% with a manual one, p < 0.001; 8.3 against 6.7 respectively, p < 0.001). Conclusions: It appears that inexperienced operators perform better root canal treatment (RCT) with the use of rotary instrumentation. Key words:Dental education, endodontics, rotary instrumentation, radiographs, root canal treatment, undergraduate students. PMID:24121911

  8. Improvement of the clinical use of computed radiography for mobile chest imaging: Image quality and patient dose

    NASA Astrophysics Data System (ADS)

    Rill, Lynn Neitzey

    Chest radiography is technically difficult because of the wide variation of tissue attenuations in the chest and limitations of screen-film systems. Mobile chest radiography, performed bedside on hospital inpatients, presents additional difficulties due to geometrical and equipment limitations inherent to mobile x-ray procedures and the severity of illness in patients. Computed radiography (CR) offers a new approach for mobile chest radiography by utilizing a photostimulable phosphor. Photostimulable phosphors are more efficient in absorbing lower-energy x-rays than standard intensifying screens and overcome some image quality limitations of mobile chest imaging, particularly because of the inherent latitude. This study evaluated changes in imaging parameters for CR to take advantage of differences between CR and screen-film radiography. Two chest phantoms, made of acrylic and aluminum, simulated x-ray attenuation for average-sized and large- sized adult chests. The phantoms contained regions representing the lungs, heart and subdiaphragm. Acrylic and aluminum disks (1.9 cm diameter) were positioned in the chest regions to make signal-to-noise ratio (SNR) measurements for different combinations of imaging parameters. Disk thicknesses (contrast) were determined from disk visibility. Effective dose to the phantom was also measured for technique combinations. The results indicated that using an anti-scatter grid and lowering x- ray tube potential improved the SNR significantly; however, the dose to the phantom also increased. An evaluation was performed to examine the clinical applicability of the observed improvements in SNR. Parameter adjustments that improved phantom SNRs by more than 50% resulted in perceived image quality improvements in the lung region of clinical mobile chest radiographs. Parameters that produced smaller improvements in SNR had no apparent effect on clinical image quality. Based on this study, it is recommended that a 3:1 grid be used for

  9. Neutron radiographic viewing system

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design, development and application of a neutron radiographic viewing system for use in nondestructive testing applications is considered. The system consists of a SEC vidicon camera, neutron image intensifier system, disc recorder, and TV readout. Neutron bombardment of the subject is recorded by an image converter and passed through an optical system into the SEC vidicon. The vidicon output may be stored, or processed for visual readout.

  10. Correlation of contrast-detail analysis and clinical image quality assessment in chest radiography with a human cadaver study.

    PubMed

    De Crop, An; Bacher, Klaus; Van Hoof, Tom; Smeets, Peter V; Smet, Barbara S; Vergauwen, Merel; Kiendys, Urszula; Duyck, Philippe; Verstraete, Koenraad; D'Herde, Katharina; Thierens, Hubert

    2012-01-01

    To determine the correlation between the clinical and physical image quality of chest images by using cadavers embalmed with the Thiel technique and a contrast-detail phantom. The use of human cadavers fulfilled the requirements of the institutional ethics committee. Clinical image quality was assessed by using three human cadavers embalmed with the Thiel technique, which results in excellent preservation of the flexibility and plasticity of organs and tissues. As a result, lungs can be inflated during image acquisition to simulate the pulmonary anatomy seen on a chest radiograph. Both contrast-detail phantom images and chest images of the Thiel-embalmed bodies were acquired with an amorphous silicon flat-panel detector. Tube voltage (70, 81, 90, 100, 113, 125 kVp), copper filtration (0.1, 0.2, 0.3 mm Cu), and exposure settings (200, 280, 400, 560, 800 speed class) were altered to simulate different quality levels. Four experienced radiologists assessed the image quality by using a visual grading analysis (VGA) technique based on European Quality Criteria for Chest Radiology. The phantom images were scored manually and automatically with use of dedicated software, both resulting in an inverse image quality figure (IQF). Spearman rank correlations between inverse IQFs and VGA scores were calculated. A statistically significant correlation (r = 0.80, P < .01) was observed between the VGA scores and the manually obtained inverse IQFs. Comparison of the VGA scores and the automated evaluated phantom images showed an even better correlation (r = 0.92, P < .001). The results support the value of contrast-detail phantom analysis for evaluating clinical image quality in chest radiography. © RSNA, 2011.

  11. Mastitis, a Radiographic, Clinical, and Histopathologic Review.

    PubMed

    Cheng, Lin; Reddy, Vijaya; Solmos, Gene; Watkins, Latanja; Cimbaluk, David; Bitterman, Pincas; Ghai, Ritu; Gattuso, Paolo

    2015-01-01

    Mastitis is a benign inflammatory process of the breast with heterogeneous histopathological findings, which clinically and radiographically may mimic a mammary carcinoma. We undertook a retrospective study on 37 cases of mastitis in our institution to correlate the radiographic imaging features and the clinical presentation with the histopathological findings. Histologically, there were 21 granulomatous, 7 fibrous, 3 plasma cell, 3 lupus, 2 lymphocytic, and 1 case of acute mastitis. Radiographically, 16/25 (64%) patients with ultrasound studies showed irregular hypoechoic masses suspicious for malignancy. Clinically, 38% of patients had an associated systemic disease. © 2015 Wiley Periodicals, Inc.

  12. A software program to measure the three-dimensional length of the spine from radiographic images: Validation and reliability assessment for adolescent idiopathic scoliosis.

    PubMed

    Berger, Steve; Hasler, Carol-Claudius; Grant, Caroline A; Zheng, Guoyan; Schumann, Steffen; Büchler, Philippe

    2017-01-01

    The aim of this study was to validate a new program which aims at measuring the three-dimensional length of the spine's midline based on two calibrated orthogonal radiographic images. The traditional uniplanar T1-S1 measurement method is not reflecting the actual three dimensional curvature of a scoliotic spine and is therefore not accurate. The Spinal Measurement Software (SMS) is an alternative to conveniently measure the true spine's length. The validity, inter- and intra-observer variability and usability of the program were evaluated. The usability was quantified based on a subjective questionnaire filled by eight participants using the program for the first time. The validity and variability were assessed by comparing the length of five phantom spines measured based on CT-scan data and on radiographic images with the SMS. The lengths were measured independently by each participant using both techniques. The SMS is easy and intuitive to use, even for non-clinicians. The SMS measured spinal length with an error below 2 millimeters compared to length obtained using CT scan datasets. The inter- and intra-observer variability of the SMS measurements was below 5 millimeters. The SMS provides accurate measurement of the spinal length based on orthogonal radiographic images. The software is easy to use and could easily integrate the clinical workflow and replace current approximations of the spinal length based on a single radiographic image such as the traditional T1-S1 measurement. Crown Copyright © 2016. Published by Elsevier Ireland Ltd. All rights reserved.

  13. [Application of T grain technique to the diagnosis of lung disease and analysis of its image quality].

    PubMed

    Liu, Xin-jun; Liu, Pei-cheng; Cai, Pei; Zhang, Dun; Yao, Shi-sheng

    2003-06-01

    To compare the image quality of T grain green sensitive film (TML-1) and Lanex Gd(2)O(2)S rare earth intensifying screen with that of XK-1 blue sensitive film and calcium tungstate (CaWO(4)) intensifying screen, and to study the application of T grain technic to the diagnosis of lung diseases. 160 coal miners were randomly selected to take both TML-1 and XK-1 chest film of high kV radiographs at the same time. Silver halide granule, fluorescence of intensifying screen, radiographic parameters, the density at different points in the lung and chest radiographs were observed. Silver grains in TML-1 film were more homogeneous in distribution than in XK-1 film. Luminous intensity of Lanex Gd(2)O(2)S rare earth intensifying screen was brighter than CaWO(4) intensifying screen in the same exposure. The exposure doses of TML-1 film was reduced to one third of XK-1 film. The density of chest radiographs was 0.24 to 2.74 in TML-1 film, and 0.30 to 2.60 in XK-1 film. There were greater exposure latitude and more informations in TML-1 film. By apertured-disc observation, the fine structure of lung in TML-1 film was clearer than in XK-1 film, the shape was more concrete and reliable, visualizability was stronger. T grain technique may obviously improve the clearness and resolution of image, and enhance the transmission of information, as well as increase the diagnostic informations.

  14. The radiographic anatomy of the normal ovine digit, the metacarpophalangeal and metatarsophalangeal joints.

    PubMed

    Duncan, Jennifer S; Singer, Ellen R; Devaney, Jane; Oultram, Joanne W H; Walby, Anna J; Lester, Bridie R; Williams, Helen J

    2013-03-01

    The aim of this project was to develop a detailed, accessible set of reference images of the normal radiographic anatomy of the ovine digit up to and including the metacarpo/metatatarsophalangeal joints. The lower front and hind limbs of 5 Lleyn ewes were radiographed using portable radiography equipment, a digital image processer and standard projections. Twenty images, illustrating the normal radiographic anatomy of the limb were selected, labelled and presented along with a detailed description and corresponding images of the bony skeleton. These images are aimed to be of assistance to veterinary surgeons, veterinary students and veterinary researchers by enabling understanding of the normal anatomy of the ovine lower limb, and allowing comparison with the abnormal.

  15. Bone suppression technique for chest radiographs

    NASA Astrophysics Data System (ADS)

    Huo, Zhimin; Xu, Fan; Zhang, Jane; Zhao, Hui; Hobbs, Susan K.; Wandtke, John C.; Sykes, Anne-Marie; Paul, Narinder; Foos, David

    2014-03-01

    High-contrast bone structures are a major noise contributor in chest radiographic images. A signal of interest in a chest radiograph could be either partially or completely obscured or "overshadowed" by the highly contrasted bone structures in its surrounding. Thus, removing the bone structures, especially the posterior rib and clavicle structures, is highly desirable to increase the visibility of soft tissue density. We developed an innovative technology that offers a solution to suppress bone structures, including posterior ribs and clavicles, on conventional and portable chest X-ray images. The bone-suppression image processing technology includes five major steps: 1) lung segmentation, 2) rib and clavicle structure detection, 3) rib and clavicle edge detection, 4) rib and clavicle profile estimation, and 5) suppression based on the estimated profiles. The bone-suppression software outputs an image with both the rib and clavicle structures suppressed. The rib suppression performance was evaluated on 491 images. On average, 83.06% (±6.59%) of the rib structures on a standard chest image were suppressed based on the comparison of computer-identified rib areas against hand-drawn rib areas, which is equivalent to about an average of one rib that is still visible on a rib-suppressed image based on a visual assessment. Reader studies were performed to evaluate reader performance in detecting lung nodules and pneumothoraces with and without a bone-suppression companion view. Results from reader studies indicated that the bone-suppression technology significantly improved radiologists' performance in the detection of CT-confirmed possible nodules and pneumothoraces on chest radiographs. The results also showed that radiologists were more confident in making diagnoses regarding the presence or absence of an abnormality after rib-suppressed companion views were presented

  16. Prediction of age and gender using digital radiographic method: A retrospective study.

    PubMed

    Poongodi, V; Kanmani, R; Anandi, M S; Krithika, C L; Kannan, A; Raghuram, P H

    2015-08-01

    To investigate age, sex based on gonial angle, width and breadth of the ramus of the mandible by digital orthopantomograph. A total of 200 panoramic radiographic images were selected. The age of the individuals ranged between 4 and 75 years of both the gender - males (113) and females (87) and selected radiographic images were measured using KLONK image measurement software tool with linear, angular measurement. The investigated radiographs were collected from the records of SRM Dental College, Department of Oral Medicine and Radiology. Radiographs with any pathology, facial deformities, if no observation of mental foramen, congenital deformities, magnification, and distortion were excluded. Mean, median, standard deviation, derived to check the first and third quartile, linear regression is used to check age and gender correlation with angle of mandible, height and width of the ramus of mandible. The radiographic method is a simpler and cost-effective method of age identification compared with histological and biochemical methods. Mandible is strongest facial bone after the skull, pelvic bone. It is validatory to predict age and gender by many previous studies. Radiographic and tomographic images have become an essential aid for human identification in forensic dentistry forensic dentists can choose the most appropriate one since the validity of age and gender estimation crucially depends on the method used and its proper application.

  17. Analyser-based mammography using single-image reconstruction.

    PubMed

    Briedis, Dahliyani; Siu, Karen K W; Paganin, David M; Pavlov, Konstantin M; Lewis, Rob A

    2005-08-07

    We implement an algorithm that is able to decode a single analyser-based x-ray phase-contrast image of a sample, converting it into an equivalent conventional absorption-contrast radiograph. The algorithm assumes the projection approximation for x-ray propagation in a single-material object embedded in a substrate of approximately uniform thickness. Unlike the phase-contrast images, which have both directional bias and a bias towards edges present in the sample, the reconstructed images are directly interpretable in terms of the projected absorption coefficient of the sample. The technique was applied to a Leeds TOR[MAM] phantom, which is designed to test mammogram quality by the inclusion of simulated microcalcifications, filaments and circular discs. This phantom was imaged at varying doses using three modalities: analyser-based synchrotron phase-contrast images converted to equivalent absorption radiographs using our algorithm, slot-scanned synchrotron imaging and imaging using a conventional mammography unit. Features in the resulting images were then assigned a quality score by volunteers. The single-image reconstruction method achieved higher scores at equivalent and lower doses than the conventional mammography images, but no improvement of visualization of the simulated microcalcifications, and some degradation in image quality at reduced doses for filament features.

  18. Development of a technique for contrast radiographic examination of the gastrointestinal tract in ball pythons (Python regius).

    PubMed

    Banzato, Tommaso; Russo, Elisa; Finotti, Luca; Zotti, Alessandro

    2012-07-01

    To develop a technique for radiographic evaluation of the gastrointestinal tract in ball pythons (Python regius). 10 ball python cadavers (5 males and 5 females) and 18 healthy adult ball pythons (10 males and 8 females). Live snakes were allocated to 3 groups (A, B, and C). A dose (25 mL/kg) of barium sulfate suspension at 3 concentrations (25%, 35%, and 45% [wt/vol]) was administered through an esophageal probe to snakes in groups A, B, and C, respectively. Each evaluation ended when all the contrast medium had reached the large intestine. Transit times through the esophagus, stomach, and small intestine were recorded. Imaging quality was evaluated by 3 investigators who assigned a grading score on the basis of predetermined criteria. Statistical analysis was conducted to evaluate differences in quality among the study groups. The esophagus and stomach had a consistent distribution pattern of contrast medium, whereas 3 distribution patterns of contrast medium were identified in the small intestine, regardless of barium concentration. Significant differences in imaging quality were detected among the 3 groups. Radiographic procedures were tolerated well by all snakes. The 35% concentration of contrast medium yielded the best imaging quality. Use of contrast medium for evaluation of the cranial portion of the gastrointestinal tract could be a reliable technique for the diagnosis of gastrointestinal diseases in ball pythons. However, results of this study may not translate to other snake species because of variables identified in this group of snakes.

  19. Application of newly developed Fluoro-QC software for image quality evaluation in cardiac X-ray systems.

    PubMed

    Oliveira, M; Lopez, G; Geambastiani, P; Ubeda, C

    2018-05-01

    A quality assurance (QA) program is a valuable tool for the continuous production of optimal quality images. The aim of this paper is to assess a newly developed automatic computer software for image quality (IR) evaluation in fluoroscopy X-ray systems. Test object images were acquired using one fluoroscopy system, Siemens Axiom Artis model (Siemens AG, Medical Solutions Erlangen, Germany). The software was developed as an ImageJ plugin. Two image quality parameters were assessed: high-contrast spatial resolution (HCSR) and signal-to-noise ratio (SNR). The time between manual and automatic image quality assessment procedures were compared. The paired t-test was used to assess the data. p Values of less than 0.05 were considered significant. The Fluoro-QC software generated faster IQ evaluation results (mean = 0.31 ± 0.08 min) than manual procedure (mean = 4.68 ± 0.09 min). The mean difference between techniques was 4.36 min. Discrepancies were identified in the region of interest (ROI) areas drawn manually with evidence of user dependence. The new software presented the results of two tests (HCSR = 3.06, SNR = 5.17) and also collected information from the DICOM header. Significant differences were not identified between manual and automatic measures of SNR (p value = 0.22) and HCRS (p value = 0.46). The Fluoro-QC software is a feasible, fast and free to use method for evaluating imaging quality parameters on fluoroscopy systems. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  20. SU-D-204-06: Dose and Image Quality Evaluation of a Low-Dose Slot-Scanning X-Ray System for Pediatric Orthopedic Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z; Hoerner, M; Lamoureux, R

    Purpose: Children in early teens with scoliosis require repeated radiographic exams over a number of years. The EOS (EOS imaging S.A., Paris, France) is a novel low-dose slot-scanning digital radiographic system designed to produce full-spine images of a free-standing patient. The radiation dose and image quality characteristics of the EOS were evaluated relative to those of a Computed Radiography (CR) system for scoliosis imaging. Methods: For dose evaluation, a full-torso anthropomorphic phantom was scanned five times using the default standard clinical protocols for both the EOS and a CR system, which include both posteroanterior and lateral full-spine views. Optically stimulatedmore » luminescent dosimeters (OSLDs), also known as nanoDots™ (Landauer, Inc., Glenwood, IL), were placed on the phantom’s surface to measure entrance skin dose. To assess image quality, MTF curves were generated from sampling the noise levels within the high-contrast regions of a line-pair phantom. Vertical and horizontal distortions were measured for the square line-pair phantom with the EOS system to evaluate the effects of geometric magnification and misalignment with the indicated imaging plane. Results: The entrance skin dose was measured to be 0.4 to 1.1 mGy for the EOS, and 0.7 to 3.6 mGy for the CR study. MTF comparison shows that CR greatly outperforms the EOS, despite both systems having a limiting resolution at 1.8 line-pairs per mm. Vertical distortion was unaffected by phantom positioning, because of the EOS slot-scanning geometry. Horizontal distortion increased linearly with miscentering distance. Conclusion: The EOS system resulted in approximately 70% lower radiation dose than CR for full-spine images. Image quality was found to be inferior to CR. Further investigation is required to see if EOS system is an acceptable modality for performing clinically diagnostic scoliosis examinations.« less

  1. Video enhancement of X-ray and neutron radiographs

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1973-01-01

    System was devised for displaying radiographs on television screen and enhancing fine detail in picture. System uses analog-computer circuits to process television signal from low-noise television camera. Enhanced images are displayed in black and white and can be controlled to vary degree of enhancement and magnification of details in either radiographic transparencies or opaque photographs.

  2. Ultrasound for diagnosing radiographically occult scaphoid fracture.

    PubMed

    Kwee, Robert M; Kwee, Thomas C

    2018-04-04

    To systematically review the literature on the performance of ultrasound in diagnosing radiographically occult scaphoid fracture. A systematic search was performed in the MEDLINE and Embase databases. Original studies investigating the performance of ultrasound in diagnosing radiographically occult scaphoid fracture in more than 10 patients were eligible for inclusion. Studies that included both radiographically apparent and occult scaphoid fractures (at initial radiography) were only included if independent data on radiographically occult fractures were reported. Methodological quality of the studies included was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool. Accuracy data were extracted. Sensitivity and specificity were pooled with a bivariate random-effects model. The inclusion criteria were met by 7 studies; total sample size comprised 314 patients. All studies, except 1, included cortical disruption of the scaphoid in their diagnostic criteria. The sensitivity and specificity of ultrasound in diagnosing radiographically occult scaphoid fracture ranged from 77.8% to 100% and from 71.4% to 100% respectively, with pooled estimates of 85.6% (95% CI: 73.9%, 92.6%) and 83.3% % (95% CI: 72.0%, 90.6%) respectively. Exclusion of two studies with a high risk of bias in any QUADAS-2 domain did not affect the pooled results. Ultrasound can diagnose radiographically occult scaphoid fracture with a fairly high degree of accuracy. Because of its relatively low costs and fairly high sensitivity, ultrasound seems more cost-effective than empiric cast immobilization and may be used when CT and MRI are not readily available.

  3. Imaging in syndesmotic injury: a systematic literature review.

    PubMed

    Krähenbühl, Nicola; Weinberg, Maxwell W; Davidson, Nathan P; Mills, Megan K; Hintermann, Beat; Saltzman, Charles L; Barg, Alexej

    2018-05-01

    To give a systematic overview of current diagnostic imaging options for assessment of the distal tibio-fibular syndesmosis. A systematic literature search across the following sources was performed: PubMed, ScienceDirect, Google Scholar, and SpringerLink. Forty-two articles were included and subdivided into three groups: group one consists of studies using conventional radiographs (22 articles), group two includes studies using computed tomography (CT) scans (15 articles), and group three comprises studies using magnet resonance imaging (MRI, 9 articles).The following data were extracted: imaging modality, measurement method, number of participants and ankles included, average age of participants, sensitivity, specificity, and accuracy of the measurement technique. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool was used to assess the methodological quality. The three most common techniques used for assessment of the syndesmosis in conventional radiographs are the tibio-fibular clear space (TFCS), the tibio-fibular overlap (TFO), and the medial clear space (MCS). Regarding CT scans, the tibio-fibular width (axial images) was most commonly used. Most of the MRI studies used direct assessment of syndesmotic integrity. Overall, the included studies show low probability of bias and are applicable in daily practice. Conventional radiographs cannot predict syndesmotic injuries reliably. CT scans outperform plain radiographs in detecting syndesmotic mal-reduction. Additionally, the syndesmotic interval can be assessed in greater detail by CT. MRI measurements achieve a sensitivity and specificity of nearly 100%; however, correlating MRI findings with patients' complaints is difficult, and utility with subtle syndesmotic instability needs further investigation. Overall, the methodological quality of these studies was satisfactory.

  4. WE-G-204-09: Medical Physics 2.0 in Practice: Automated QC Assessment of Clinical Chest Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, C; Willis, C; Nishino, T

    2015-06-15

    Purpose: To determine whether a proposed suite of objective image quality metrics for digital chest radiographs is useful for monitoring image quality in our clinical operation. Methods: Seventeen gridless AP Chest radiographs from a GE Optima portable digital radiography (DR) unit (Group 1), seventeen (routine) PA Chest radiographs from a GE Discovery DR unit (Group 2), and sixteen gridless (non-routine) PA Chest radiographs from the same Discovery DR unit (Group 3) were chosen for analysis. Groups were selected to represent “sub-standard” (Group 1), “standard-of-care” (Group 2), and images with a gross technical error (Group 3). Group 1 images were acquiredmore » with lower kVp (90 vs. 125), shorter source-to-image distance (127cm vs 183cm) and were expected to have lower quality than images in Group 2. Group 3 was expected to have degraded contrast versus Group 2.This evaluation was approved by the institutional Quality Improvement Assurance Board (QIAB). Images were anonymized and securely transferred to the Duke University Clinical Imaging Physics Group for analysis using software previously described{sup 1} and validated{sup 2}. Image quality for individual images was reported in terms of lung grey level(Lgl); lung noise(Ln); rib-lung contrast(RLc); rib sharpness(Rs); mediastinum detail(Md), noise(Mn), and alignment(Ma); subdiaphragm-lung contrast(SLc); and subdiaphragm area(Sa). Metrics were compared across groups. Results: Metrics agreed with published Quality Consistency Ranges with three exceptions: higher Lgl, lower RLc, and SDc. Higher bit depth (16 vs 12) accounted for higher Lgl values in our images. Values were most internally consistent for Group 2. The most sensitive metric for distinguishing between groups was Mn followed closely by Ln. The least sensitive metrics were Md and RLc. Conclusion: The software appears promising for objectively and automatically identifying substandard images in our operation. The results can be used to

  5. Evaluating radiographers' diagnostic accuracy in screen-reading mammograms: what constitutes a quality study?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debono, Josephine C, E-mail: josephine.debono@bci.org.au; Poulos, Ann E; Westmead Breast Cancer Institute, Westmead, New South Wales

    The aim of this study was to first evaluate the quality of studies investigating the diagnostic accuracy of radiographers as mammogram screen-readers and then to develop an adapted tool for determining the quality of screen-reading studies. A literature search was used to identify relevant studies and a quality evaluation tool constructed by combining the criteria for quality of Whiting, Rutjes, Dinnes et al. and Brealey and Westwood. This constructed tool was then applied to the studies and subsequently adapted specifically for use in evaluating quality in studies investigating diagnostic accuracy of screen-readers. Eleven studies were identified and the constructed toolmore » applied to evaluate quality. This evaluation resulted in the identification of quality issues with the studies such as potential for bias, applicability of results, study conduct, reporting of the study and observer characteristics. An assessment of the applicability and relevance of the tool for this area of research resulted in adaptations to the criteria and the development of a tool specifically for evaluating diagnostic accuracy in screen-reading. This tool, with further refinement and rigorous validation can make a significant contribution to promoting well-designed studies in this important area of research and practice.« less

  6. Analysis of physiological impact while reading stereoscopic radiographs

    NASA Astrophysics Data System (ADS)

    Unno, Yasuko Y.; Tajima, Takashi; Kuwabara, Takao; Hasegawa, Akira; Natsui, Nobutaka; Ishikawa, Kazuo; Hatada, Toyohiko

    2011-03-01

    A stereoscopic viewing technology is expected to improve diagnostic performance in terms of reading efficiency by adding one more dimension to the conventional 2D images. Although a stereoscopic technology has been applied to many different field including TV, movies and medical applications, physiological fatigue through reading stereoscopic radiographs has been concerned although no established physiological fatigue data have been provided. In this study, we measured the α-amylase concentration in saliva, heart rates and normalized tissue hemoglobin index (nTHI) in blood of frontal area to estimate physiological fatigue through reading both stereoscopic radiographs and the conventional 2D radiographs. In addition, subjective assessments were also performed. As a result, the pupil contraction occurred just after the reading of the stereoscopic images, but the subjective assessments regarding visual fatigue were nearly identical for the reading the conventional 2D and stereoscopic radiographs. The α-amylase concentration and the nTHI continued to decline while examinees read both 2D and stereoscopic images, which reflected the result of subjective assessment that almost half of the examinees reported to feel sleepy after reading. The subjective assessments regarding brain fatigue showed that there were little differences between 2D and stereoscopic reading. In summary, this study shows that the physiological fatigue caused by stereoscopic reading is equivalent to the conventional 2D reading including ocular fatigue and burden imposed on brain.

  7. Radiographic anatomy of juvenile bovine limbs.

    PubMed

    Hoey, S E; Biedrzycki, A H; Livesey, M J; Drees, R

    2016-11-26

    Juvenile bovine patients who present with clinical signs of lameness are commonly evaluated using radiographic techniques both within a hospital setting and in a farm environment. The radiographic development of the juvenile bovine skeleton is currently poorly documented. In this study, the limbs of four heifer calves were sequentially radiographed to assess development of the juvenile bovine appendicular skeleton in the first 12 months of life. Images were acquired at three weeks, three months, six months, nine months and one year of age. The normal radiographic anatomy of the fore limbs and hindlimbs and the changes over the first 12 months are described. The majority of physes remain open throughout this period, with the exception of the proximal physes of the proximal and middle phalanges, the proximal radial physis, and the proximal humeral physis which close radiographically between 9 months and 12 months of age, and fusion of the fourth and central tarsal bones occurs between 9 months and 12 months of age. The results of this study may aid in differentiating normal and abnormal anatomy in the juvenile bovine limb. British Veterinary Association.

  8. The x-ray light valve: a potentially low-cost, digital radiographic imaging system--a liquid crystal cell design for chest radiography.

    PubMed

    Szeto, Timothy C; Webster, Christie Ann; Koprinarov, Ivaylo; Rowlands, J A

    2008-03-01

    Digital x-ray radiographic systems are desirable as they offer high quality images which can be processed, transferred, and stored without secondary steps. However, current clinical systems are extraordinarily expensive in comparison to film-based systems. Thus, there is a need for an economical digital imaging system for general radiology. The x-ray light valve (XLV) is a novel digital x-ray detector concept with the potential for high image quality and low cost. The XLV is comprised of a photoconductive detector layer and liquid crystal (LC) cell physically coupled in a sandwich structure. Upon exposure to x rays, charge is collected at the surface of the photoconductor, causing a change in the reflective properties of the LC cell. The visible image so formed can subsequently be digitized with an optical scanner. By choosing the properties of the LC cell in combination with the appropriate photoconductor thickness and bias potentials, the XLV can be optimized for various diagnostic imaging tasks. Specifically for chest radiography, we identified three potentially practical reflective cell designs by selecting from those commonly used in LC display technology. The relationship between reflectance and x-ray exposure (i.e., the characteristic curve) was determined for all three cells using a theoretical model. The results indicate that the reflective electrically controlled birefringence (r-ECB) cell is the preferred choice for chest radiography, provided that the characteristic curve can be shifted towards lower exposures. The feasibility of the shift of the characteristic curve is shown experimentally. The experimental results thus demonstrate that an XLV based on the r-ECB cell design exhibits a characteristic curve suitable for chest radiography.

  9. GPU accelerated generation of digitally reconstructed radiographs for 2-D/3-D image registration.

    PubMed

    Dorgham, Osama M; Laycock, Stephen D; Fisher, Mark H

    2012-09-01

    Recent advances in programming languages for graphics processing units (GPUs) provide developers with a convenient way of implementing applications which can be executed on the CPU and GPU interchangeably. GPUs are becoming relatively cheap, powerful, and widely available hardware components, which can be used to perform intensive calculations. The last decade of hardware performance developments shows that GPU-based computation is progressing significantly faster than CPU-based computation, particularly if one considers the execution of highly parallelisable algorithms. Future predictions illustrate that this trend is likely to continue. In this paper, we introduce a way of accelerating 2-D/3-D image registration by developing a hybrid system which executes on the CPU and utilizes the GPU for parallelizing the generation of digitally reconstructed radiographs (DRRs). Based on the advancements of the GPU over the CPU, it is timely to exploit the benefits of many-core GPU technology by developing algorithms for DRR generation. Although some previous work has investigated the rendering of DRRs using the GPU, this paper investigates approximations which reduce the computational overhead while still maintaining a quality consistent with that needed for 2-D/3-D registration with sufficient accuracy to be clinically acceptable in certain applications of radiation oncology. Furthermore, by comparing implementations of 2-D/3-D registration on the CPU and GPU, we investigate current performance and propose an optimal framework for PC implementations addressing the rigid registration problem. Using this framework, we are able to render DRR images from a 256×256×133 CT volume in ~24 ms using an NVidia GeForce 8800 GTX and in ~2 ms using NVidia GeForce GTX 580. In addition to applications requiring fast automatic patient setup, these levels of performance suggest image-guided radiation therapy at video frame rates is technically feasible using relatively low cost PC

  10. A new anisotropy index on trabecular bone radiographic images using the fast Fourier transform

    PubMed Central

    Brunet-Imbault, Barbara; Lemineur, Gerald; Chappard, Christine; Harba, Rachid; Benhamou, Claude-Laurent

    2005-01-01

    Background The degree of anisotropy (DA) on radiographs is related to bone structure, we present a new index to assess DA. Methods In a region of interest from calcaneus radiographs, we applied a Fast Fourier Transform (FFT). All the FFT spectra involve the horizontal and vertical components corresponding respectively to longitudinal and transversal trabeculae. By visual inspection, we measured the spreading angles: Dispersion Longitudinal Index (DLI) and Dispersion Transverse Index (DTI) and calculated DA = 180/(DLI+DTI). To test the reliability of DA assessment, we synthesized images simulating radiological projections of periodic structures with elements more or less disoriented. Results Firstly, we tested synthetic images which comprised a large variety of structures from highly anisotropic structure to the almost isotropic, DA was ranging from 1.3 to 3.8 respectively. The analysis of the FFT spectra was performed by two observers, the Coefficients of Variation were 1.5% and 3.1 % for intra-and inter-observer reproducibility, respectively. In 22 post-menopausal women with osteoporotic fracture cases and 44 age-matched controls, DA values were respectively 1.87 ± 0.15 versus 1.72 ± 0.18 (p = 0.001). From the ROC analysis, the Area Under Curve (AUC) were respectively 0.65, 0.62, 0.64, 0.77 for lumbar spine, femoral neck, total femoral BMD and DA. Conclusion The highest DA values in fracture cases suggest that the structure is more anisotropic in osteoporosis due to preferential deletion of trabeculae in some directions. PMID:15927072

  11. Validity of radiographic assessment of the knee joint space using automatic image analysis.

    PubMed

    Komatsu, Daigo; Hasegawa, Yukiharu; Kojima, Toshihisa; Seki, Taisuke; Ikeuchi, Kazuma; Takegami, Yasuhiko; Amano, Takafumi; Higuchi, Yoshitoshi; Kasai, Takehiro; Ishiguro, Naoki

    2016-09-01

    The present study investigated whether there were differences between automatic and manual measurements of the minimum joint space width (mJSW) on knee radiographs. Knee radiographs of 324 participants in a systematic health screening were analyzed using the following three methods: manual measurement of film-based radiographs (Manual), manual measurement of digitized radiographs (Digital), and automatic measurement of digitized radiographs (Auto). The mean mJSWs on the medial and lateral sides of the knees were determined using each method, and measurement reliability was evaluated using intra-class correlation coefficients. Measurement errors were compared between normal knees and knees with radiographic osteoarthritis. All three methods demonstrated good reliability, although the reliability was slightly lower with the Manual method than with the other methods. On the medial and lateral sides of the knees, the mJSWs were the largest in the Manual method and the smallest in the Auto method. The measurement errors of each method were significantly larger for normal knees than for radiographic osteoarthritis knees. The mJSW measurements are more accurate and reliable with the Auto method than with the Manual or Digital method, especially for normal knees. Therefore, the Auto method is ideal for the assessment of the knee joint space.

  12. A systematic review of the association between radiographic and clinical osteoarthritis of hip and knee.

    PubMed

    Kinds, M B; Welsing, P M J; Vignon, E P; Bijlsma, J W J; Viergever, M A; Marijnissen, A C A; Lafeber, F P J G

    2011-07-01

    There is ongoing debate on whether an association between radiographic and clinical osteoarthritis (OA) exists. We hypothesized that the inconsistency in the detection of an association might be caused by different definitions of OA, by different radiographic protocols, and by scoring methods for radiographic damage and symptoms. The goal of this study was to evaluate which methodological criteria are important to detect an association between radiographic and clinical OA of hip and knee. A literature search was performed with the keywords 'OA', 'hip', 'knee', 'radiographic', and 'clinical' and results were screened for relevant studies. Quality criteria for study characteristics and methodology were developed. Studies were classified according to these criteria and the presence of an association between radiographic and clinical OA was scored. The importance of methodological quality and patient characteristics on the presence of an association was evaluated. The literature search resulted in 39 studies describing an association between radiographic and clinical OA. The frequency of an association between radiographic and clinical OA outcome measures diminished when less quality criteria were fulfilled. Specifically the criterion for standardized outcome measures appeared important in the detection of an association. The association was not influenced by patient characteristics. Only four studies were identified that fulfilled all quality criteria and in these studies an association was found for the knee joint and an inconsistent association was found for the hip joint. Methodological quality criteria are of importance to reveal an association between radiographic and clinical OA. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  13. Homogeneous Canine Chest Phantom Construction: A Tool for Image Quality Optimization.

    PubMed

    Pavan, Ana Luiza Menegatti; Rosa, Maria Eugênia Dela; Giacomini, Guilherme; Bacchim Neto, Fernando Antonio; Yamashita, Seizo; Vulcano, Luiz Carlos; Duarte, Sergio Barbosa; Miranda, José Ricardo de Arruda; de Pina, Diana Rodrigues

    2016-01-01

    Digital radiographic imaging is increasing in veterinary practice. The use of radiation demands responsibility to maintain high image quality. Low doses are necessary because workers are requested to restrain the animal. Optimizing digital systems is necessary to avoid unnecessary exposure, causing the phenomenon known as dose creep. Homogeneous phantoms are widely used to optimize image quality and dose. We developed an automatic computational methodology to classify and quantify tissues (i.e., lung tissue, adipose tissue, muscle tissue, and bone) in canine chest computed tomography exams. The thickness of each tissue was converted to simulator materials (i.e., Lucite, aluminum, and air). Dogs were separated into groups of 20 animals each according to weight. Mean weights were 6.5 ± 2.0 kg, 15.0 ± 5.0 kg, 32.0 ± 5.5 kg, and 50.0 ± 12.0 kg, for the small, medium, large, and giant groups, respectively. The one-way analysis of variance revealed significant differences in all simulator material thicknesses (p < 0.05) quantified between groups. As a result, four phantoms were constructed for dorsoventral and lateral views. In conclusion, the present methodology allows the development of phantoms of the canine chest and possibly other body regions and/or animals. The proposed phantom is a practical tool that may be employed in future work to optimize veterinary X-ray procedures.

  14. Homogeneous Canine Chest Phantom Construction: A Tool for Image Quality Optimization

    PubMed Central

    2016-01-01

    Digital radiographic imaging is increasing in veterinary practice. The use of radiation demands responsibility to maintain high image quality. Low doses are necessary because workers are requested to restrain the animal. Optimizing digital systems is necessary to avoid unnecessary exposure, causing the phenomenon known as dose creep. Homogeneous phantoms are widely used to optimize image quality and dose. We developed an automatic computational methodology to classify and quantify tissues (i.e., lung tissue, adipose tissue, muscle tissue, and bone) in canine chest computed tomography exams. The thickness of each tissue was converted to simulator materials (i.e., Lucite, aluminum, and air). Dogs were separated into groups of 20 animals each according to weight. Mean weights were 6.5 ± 2.0 kg, 15.0 ± 5.0 kg, 32.0 ± 5.5 kg, and 50.0 ± 12.0 kg, for the small, medium, large, and giant groups, respectively. The one-way analysis of variance revealed significant differences in all simulator material thicknesses (p < 0.05) quantified between groups. As a result, four phantoms were constructed for dorsoventral and lateral views. In conclusion, the present methodology allows the development of phantoms of the canine chest and possibly other body regions and/or animals. The proposed phantom is a practical tool that may be employed in future work to optimize veterinary X-ray procedures. PMID:27101001

  15. Using compressed images in multimedia education

    NASA Astrophysics Data System (ADS)

    Guy, William L.; Hefner, Lance V.

    1996-04-01

    The classic radiologic teaching file consists of hundreds, if not thousands, of films of various ages, housed in paper jackets with brief descriptions written on the jackets. The development of a good teaching file has been both time consuming and voluminous. Also, any radiograph to be copied was unavailable during the reproduction interval, inconveniencing other medical professionals needing to view the images at that time. These factors hinder motivation to copy films of interest. If a busy radiologist already has an adequate example of a radiological manifestation, it is unlikely that he or she will exert the effort to make a copy of another similar image even if a better example comes along. Digitized radiographs stored on CD-ROM offer marked improvement over the copied film teaching files. Our institution has several laser digitizers which are used to rapidly scan radiographs and produce high quality digital images which can then be converted into standard microcomputer (IBM, Mac, etc.) image format. These images can be stored on floppy disks, hard drives, rewritable optical disks, recordable CD-ROM disks, or removable cartridge media. Most hospital computer information systems include radiology reports in their database. We demonstrate that the reports for the images included in the users teaching file can be copied and stored on the same storage media as the images. The radiographic or sonographic image and the corresponding dictated report can then be 'linked' together. The description of the finding or findings of interest on the digitized image is thus electronically tethered to the image. This obviates the need to write much additional detail concerning the radiograph, saving time. In addition, the text on this disk can be indexed such that all files with user specified features can be instantly retrieve and combined in a single report, if desired. With the use of newer image compression techniques, hundreds of cases may be stored on a single CD

  16. Variability amongst radiographers in the categorization of clinical acceptability for digital trauma radiography

    NASA Astrophysics Data System (ADS)

    Decoster, Robin; Toomey, Rachel; Smits, Dirk; Mol, Harrie; Verhelle, Filip; Butler, Marie-Louise

    2016-03-01

    Introduction: Radiographers evaluate anatomical structures to judge clinical acceptability of a radiograph. Whether a radiograph is deemed acceptable for diagnosis or not depends on the individual decision of the radiographer. Individual decisions cause variation in the accepted image quality. To minimise these variations definitions of acceptability, such as in RadLex, were developed. On which criteria radiographers attribute a RadLex categories to radiographs is unknown. Insight into these criteria helps to further optimise definitions and reduce variability in acceptance between radiographers. Therefore, this work aims the evaluation of the correlation between the RadLex classification and the evaluation of anatomical structures, using a Visual Grading Analysis (VGA) Methods: Four radiographers evaluated the visibility of five anatomical structures of 25 lateral cervical spine radiographs on a secondary class display with a VGA. They judged clinical acceptability of each radiograph using RadLex. Relations between VGAS and RadLex category were analysed with Kendall's Tau correlation and Nagelkerke pseudo-R². Results: The overall VGA score (VGAS) and the RadLex score correlate (rτ= 0.62, p<0.01, R2=0.72) strongly. The observers' evaluation of contrast between bone, air (trachea) and soft tissue has low value in predicting (rτ=0.55, p<0.01, R2=0.03) the RadLex score. The reproduction of spinous processes (rτ=0.67, p<0.01, R2=0.31) and the evaluation of the exposure (rτ=0.65, p<0.01, R2=0.56) have a strong correlation with high predictive value for the RadLex score. Conclusion: RadLex scores and VGAS correlate positively, strongly and significantly. The predictive value of bony structures may support the use of these in the judgement of clinical acceptability. Considerable inter-observer variations in the VGAS within a certain RadLex category, suggest that observers use of observer specific cut

  17. Computer enhancement of radiographs

    NASA Technical Reports Server (NTRS)

    Dekaney, A.; Keane, J.; Desautels, J.

    1973-01-01

    Examination of three relevant noise processes and the image degradation associated with Marshall Space Flight Center's (MSFC) X-ray/scanning system was conducted for application to computer enhancement of radiographs using MSFC's digital filtering techniques. Graininess of type M, R single coat and R double coat X-ray films was quantified as a function of density level using root-mean-square (RMS) granularity. Quantum mottle (including film grain) was quantified as a function of the above film types, exposure level, specimen material and thickness, and film density using RMS granularity and power spectral density (PSD). For various neutral-density levels the scanning device used in digital conversion of radiographs was examined for noise characteristics which were quantified by RMS granularity and PSD. Image degradation of the entire pre-enhancement system (MG-150 X-ray device; film; and optronics scanner) was measured using edge targets to generate modulation transfer functions (MTF). The four parameters were examined as a function of scanning aperture sizes of approximately 12.5 25 and 50 microns.

  18. Reduction of radiation exposure while maintaining high-quality fluoroscopic images during interventional cardiology using novel x-ray tube technology with extra beam filtering.

    PubMed

    den Boer, A; de Feyter, P J; Hummel, W A; Keane, D; Roelandt, J R

    1994-06-01

    Radiographic technology plays an integral role in interventional cardiology. The number of interventions continues to increase, and the associated radiation exposure to patients and personnel is of major concern. This study was undertaken to determine whether a newly developed x-ray tube deploying grid-switched pulsed fluoroscopy and extra beam filtering can achieve a reduction in radiation exposure while maintaining fluoroscopic images of high quality. Three fluoroscopic techniques were compared: continuous fluoroscopy, pulsed fluoroscopy, and a newly developed high-output pulsed fluoroscopy with extra filtering. To ascertain differences in the quality of images and to determine differences in patient entrance and investigator radiation exposure, the radiated volume curve was measured to determine the required high voltage levels (kVpeak) for different object sizes for each fluoroscopic mode. The fluoroscopic data of 124 patient procedures were combined. The data were analyzed for radiographic projections, image intensifier field size, and x-ray tube kilovoltage levels (kVpeak). On the basis of this analysis, a reference procedure was constructed. The reference procedure was tested on a phantom or dummy patient by all three fluoroscopic modes. The phantom was so designed that the kilovoltage requirements for each projection were comparable to those needed for the average patient. Radiation exposure of the operator and patient was measured during each mode. The patient entrance dose was measured in air, and the operator dose was measured by 18 dosimeters on a dummy operator. Pulsed compared with continuous fluoroscopy could be performed with improved image quality at lower kilovoltages. The patient entrance dose was reduced by 21% and the operator dose by 54%. High-output pulsed fluoroscopy with extra beam filtering compared with continuous fluoroscopy improved the image quality, lowered the kilovoltage requirements, and reduced the patient entrance dose by 55% and

  19. Are radiographs needed when MR imaging is performed for non-acute knee symptoms in patients younger than 45 years of age?

    PubMed Central

    ter Braak, Bert P. M.; van Erkel, Arian R.; Bloem, Rolf M.; Napoleon, L. J.; Coene, M. N.; van Luijt, Peter A.; de Lange, Sam; Bloem, Johan L.

    2007-01-01

    Objective The objective was to determine the value of radiographs in young adults with non-acute knee symptoms who are scheduled for magnetic resonance imaging (MRI). Materials and methods Nine hundred and sixty-one consecutive patients aged between 16 and 45 years with knee symptoms of at least 4 weeks’ duration were prospectively included in three participating hospitals. After applying exclusion criteria, 798 patients remained. Exclusion criteria were previous knee surgery (including arthroscopy) or MRI, history of rheumatoid arthritis, clinical diagnosis of retropatellar chondromalacia, contra-indication for MRI and recent trauma. We identified two groups: group A with no history of trauma (n = 332), and group B with an old (>4 weeks) history of trauma (n = 466). Patients had a standardized history taken, and underwent a physical exam, antero-posterior (AP) and lateral radiographs and MRI. We evaluated the radiographs and MRI for osseous lesions, articular surface lesions, fractures, osteoarthritis, loose bodies, bone marrow edema and incidental findings. Subsequently, patients with osseous abnormalities (Kellgren grade 1 and 2 excluded) on radiographs and a matched control group was evaluated again using MRI without radiographs. Results Median duration of symptoms was 20 weeks. In group A, radiographs showed 36 osseous abnormalities in 332 patients (10.8%). Only 13 of these, all Kellgren grade 1 osteoarthritis, were not confirmed on MRI. MRI showed 72 (21.7%) additional abnormalities not confirmed on radiographs. In group B, radiographs showed 40 osseous abnormalities (8.6%) in 466 patients. Only 15 of these, all Kellgren grade 1 osteoarthritis, were not confirmed on MRI. MRI showed 194 (41.6%) additional abnormalities not confirmed on radiographs. The second evaluation of MRI without radiographs in 34 patients was identical to the first MRI evaluation. Common lesions were significantly more often diagnosed with MRI than with radiographs

  20. Radiographic applications of spatial frequency multiplexing

    NASA Technical Reports Server (NTRS)

    Macovski, A.

    1981-01-01

    The application of spacial frequency encoding techniques which allow different regions of the X-ray spectrum to be encoded on conventional radiographs was studied. Clinical considerations were reviewed, as were experimental studies involving the encoding and decoding of X-ray images at different energies and the subsequent processing of the data to produce images of specific materials in the body.

  1. Methods and Reliability of Radiographic Vertebral Fracture Detection in Older Men: The Osteoporotic Fractures in Men Study

    PubMed Central

    Cawthon, Peggy M.; Haslam, Jane; Fullman, Robin; Peters, Katherine W.; Black, Dennis; Ensrud, Kristine E.; Cummings, Steven R.; Orwoll, Eric S.; Barrett-Connor, Elizabeth; Marshall, Lynn; Steiger, Peter; Schousboe, John T.

    2014-01-01

    We describe the methods and reliability of radiographic vertebral fracture assessment in MrOS, a cohort of community dwelling men aged ≥65 yrs. Lateral spine radiographs were obtained at Visit 1 (2000-2) and 4.6 years later (Visit 2). Using a workflow tool (SpineAnalyzer™, Optasia Medical), a physician reader completed semi-quantitative (SQ) scoring. Prior to SQ scoring, technicians performed “triage” to reduce physician reader workload, whereby clearly normal spine images were eliminated from SQ scoring with all levels assumed to be SQ=0 (no fracture, “triage negative”); spine images with any possible fracture or abnormality were passed to the physician reader as “triage positive” images. Using a quality assurance sample of images (n=20 participants; 8 with baseline only and 12 with baseline and follow-up images) read multiple times, we calculated intra-reader kappa statistics and percent agreement for SQ scores. A subset of 494 participants' images were read regardless of triage classification to calculate the specificity and sensitivity of triage. Technically adequate images were available for 5958 of 5994 participants at Visit 1, and 4399 of 4423 participants at Visit 2. Triage identified 3215 (53.9%) participants with radiographs that required further evaluation by the physician reader. For prevalent fractures at Visit 1 (SQ≥1), intra-reader kappa statistics ranged from 0.79-0.92; percent agreement ranged from 96.9%-98.9%; sensitivity of the triage was 96.8% and specificity of triage was 46.3%. In conclusion, SQ scoring had excellent intra-rater reliability in our study. The triage process reduces expert reader workload without hindering the ability to identify vertebral fractures. PMID:25003811

  2. Artificial intelligence for analyzing orthopedic trauma radiographs.

    PubMed

    Olczak, Jakub; Fahlberg, Niklas; Maki, Atsuto; Razavian, Ali Sharif; Jilert, Anthony; Stark, André; Sköldenberg, Olof; Gordon, Max

    2017-12-01

    Background and purpose - Recent advances in artificial intelligence (deep learning) have shown remarkable performance in classifying non-medical images, and the technology is believed to be the next technological revolution. So far it has never been applied in an orthopedic setting, and in this study we sought to determine the feasibility of using deep learning for skeletal radiographs. Methods - We extracted 256,000 wrist, hand, and ankle radiographs from Danderyd's Hospital and identified 4 classes: fracture, laterality, body part, and exam view. We then selected 5 openly available deep learning networks that were adapted for these images. The most accurate network was benchmarked against a gold standard for fractures. We furthermore compared the network's performance with 2 senior orthopedic surgeons who reviewed images at the same resolution as the network. Results - All networks exhibited an accuracy of at least 90% when identifying laterality, body part, and exam view. The final accuracy for fractures was estimated at 83% for the best performing network. The network performed similarly to senior orthopedic surgeons when presented with images at the same resolution as the network. The 2 reviewer Cohen's kappa under these conditions was 0.76. Interpretation - This study supports the use for orthopedic radiographs of artificial intelligence, which can perform at a human level. While current implementation lacks important features that surgeons require, e.g. risk of dislocation, classifications, measurements, and combining multiple exam views, these problems have technical solutions that are waiting to be implemented for orthopedics.

  3. A clinico-radiographic analysis of sagittal condylar guidance determined by protrusive interocclusal registration and panoramic radiographic images in humans

    PubMed Central

    Prasad, Krishna D.; Shah, Namrata; Hegde, Chethan

    2012-01-01

    Purpose: To evaluate the correlation between sagittal condylar guidance obtained by protrusive interocclusal records and panoramic radiograph tracing methods in human dentulous subjects. Materials and Methods: The sagittal condylar guidance was determined in 75 dentulous subjects by protrusive interocclusal records using Aluwax through a face bow transfer (HANAU™ Spring Bow, Whip Mix Corporation, USA) to a semi-adjustable articulator (HANAU™ Wide-Vue Articulator, Whip Mix Corporation, USA). In the same subjects, the sagittal outline of the articular eminence and glenoid fossa was traced in panoramic radiographs. The sagittal condylar path inclination was constructed by joining the heights of curvature in the glenoid fossa and the corresponding articular eminence. This was then related to the constructed Frankfurt's horizontal plane to determine the radiographic angle of sagittal condylar guidance. Results: A strong positive correlation existed between right and left condylar guidance by the protrusive interocclusal method (P 0.000) and similarly by the radiographic method (P 0.013). The mean difference between the condylar guidance obtained using both methods were 1.97° for the right side and 3.18° for the left side. This difference between the values by the two methods was found to be highly significant for the right (P 0.003) and left side (P 0.000), respectively. The sagittal condylar guidance obtained from both methods showed a significant positive correlation on right (P 0.000) and left side (P 0.015), respectively. Conclusion: Panoramic radiographic tracings of the sagittal condylar path guidance may be made relative to the Frankfurt's horizontal reference plane and the resulting condylar guidance angles used to set the condylar guide settings of semi-adjustable articulators. PMID:23633793

  4. In vitro comparison between the image obtained using PSP plates and Kodak E-speed films.

    PubMed

    Petel, R; Yaroslavsky, L; Kaffe, I

    2014-07-01

    The aim of this study was to compare the intra-oral radiographic images obtained by a PSP digital radiography system ("Orex", Israel) with that obtained using Kodak Ultra speed films in terms of image quality, radiation dosage and diagnostic value. The physical measurement of image quality was conducted with an aluminum step-wedge. Radiation dosage was measured with a dosimeter. Fog and base levels were measured by developing unexposed films and scanning unexposed PSP plates. The in vitro model included preparation and radiographic evaluation of approximal artificial lesions in premolars and molars in depths ranging from 0.25 mm to 1.00 mm. Radiographs were evaluated for the existence of a lesion and its size by 8 experienced clinicians. Relative contrast was similar in both methods. The resolving power of the digital system was lower than that of the E-speed film. As for the subjective evaluation of artificial lesions, there was no significant difference between the two methods excluding those tooth images without lesions, where the analog method was found to be more accurate. The PSP system ("Orex") provides good image quality and diagnostic information with reduced exposure when compared with E-speed film.

  5. Image quality assessment metric for frame accumulated image

    NASA Astrophysics Data System (ADS)

    Yu, Jianping; Li, Gang; Wang, Shaohui; Lin, Ling

    2018-01-01

    The medical image quality determines the accuracy of diagnosis, and the gray-scale resolution is an important parameter to measure image quality. But current objective metrics are not very suitable for assessing medical images obtained by frame accumulation technology. Little attention was paid to the gray-scale resolution, basically based on spatial resolution and limited to the 256 level gray scale of the existing display device. Thus, this paper proposes a metric, "mean signal-to-noise ratio" (MSNR) based on signal-to-noise in order to be more reasonable to evaluate frame accumulated medical image quality. We demonstrate its potential application through a series of images under a constant illumination signal. Here, the mean image of enough images was regarded as the reference image. Several groups of images by different frame accumulation and their MSNR were calculated. The results of the experiment show that, compared with other quality assessment methods, the metric is simpler, more effective, and more suitable for assessing frame accumulated images that surpass the gray scale and precision of the original image.

  6. A radiographic scanning technique for cores

    USGS Publications Warehouse

    Hill, G.W.; Dorsey, M.E.; Woods, J.C.; Miller, R.J.

    1979-01-01

    A radiographic scanning technique (RST) can produce single continuous radiographs of cores or core sections up to 1.5 m long and up to 30 cm wide. Changing a portable industrial X-ray unit from the normal still-shot mode to a scanning mode requires simple, inexpensive, easily constructed, and highly durable equipment. Additional components include a conveyor system, antiscatter cylinder-diaphragm, adjustable sample platform, developing tanks, and a contact printer. Complete cores, half cores, sample slabs or peels may be scanned. Converting the X-ray unit from one mode to another is easy and can be accomplished without the use of special tools. RST provides the investigator with a convenient, continuous, high quality radiograph, saves time and money, and decreases the number of times cores have to be handled. ?? 1979.

  7. Recognition and prevention of computed radiography image artifacts.

    PubMed

    Hammerstrom, Kevin; Aldrich, John; Alves, Len; Ho, Andrew

    2006-09-01

    Initiated by complaints of image artifacts, a thorough visual and radiographic investigation of 197 Fuji, 35 Agfa, and 37 Kodak computed radiography (CR) cassettes with imaging plates (IPs) in clinical use at four radiology departments was performed. The investigation revealed that the physical deterioration of the cassettes and IPs was more extensive than previously believed. It appeared that many of the image artifacts were the direct result of premature wear of the cassettes and imaging plates. The results indicate that a quality control program for CR cassettes and IPs is essential and should include not only cleaning of the cassettes and imaging plates on a regular basis, but also visual and radiographic image inspection to limit the occurrence of image artifacts and to prolong the life cycle of the CR equipment.

  8. Fluoroscopic and radiographic evaluation of tracheal collapse in dogs: 62 cases (2001-2006).

    PubMed

    Macready, Dawn M; Johnson, Lynelle R; Pollard, Rachel E

    2007-06-15

    To compare the use of radiography and fluoroscopy for detection and grading of tracheal collapse in dogs. Retrospective case series. Animals-62 dogs with tracheal collapse. For each dog, tracheal collapse was confirmed fluoroscopically and lateral cervical and thoracic radiographic views were reviewed. A board-certified radiologist (who was unaware of the dogs' clinical history) evaluated the cervical, thoracic inlet, thoracic, carinal, and main stem bronchial regions in all fluoroscopic videos and radiographic images for evidence of collapse. Cervical, thoracic inlet, thoracic, and carinal regions in both radio-graphic and fluoroscopic studies were graded for collapse (0%, 25%, 50%, 75%, or 100% decrease in diameter). Lateral cervical and thoracic radiographic images were available for 54 dogs, and inspiratory and expiratory lateral cervical and thoracic radiographic images were available for 8 dogs. For detection of tracheal collapse, assessment of radiographic views was sensitive and had the best negative predictive value in the cervical and thoracic inlet regions. Assessment of radiographic views was most specific and had the best positive predictive value in the thoracic inlet, thoracic, carina, and main stem bronchial regions. Radiography underestimated the degree of collapse in all areas. Review of inspiratory and expiratory views improved the accuracy of radiography for tracheal collapse diagnosis only slightly. Compared with fluoroscopy, radiography underestimated the frequency and degree of tracheal collapse. However, radiography appears to be useful for screening dogs with potential tracheal collapse.

  9. Application of Deconvolution Algorithm of Point Spread Function in Improving Image Quality: An Observer Preference Study on Chest Radiography.

    PubMed

    Chae, Kum Ju; Goo, Jin Mo; Ahn, Su Yeon; Yoo, Jin Young; Yoon, Soon Ho

    2018-01-01

    To evaluate the preference of observers for image quality of chest radiography using the deconvolution algorithm of point spread function (PSF) (TRUVIEW ART algorithm, DRTECH Corp.) compared with that of original chest radiography for visualization of anatomic regions of the chest. Prospectively enrolled 50 pairs of posteroanterior chest radiographs collected with standard protocol and with additional TRUVIEW ART algorithm were compared by four chest radiologists. This algorithm corrects scattered signals generated by a scintillator. Readers independently evaluated the visibility of 10 anatomical regions and overall image quality with a 5-point scale of preference. The significance of the differences in reader's preference was tested with a Wilcoxon's signed rank test. All four readers preferred the images applied with the algorithm to those without algorithm for all 10 anatomical regions (mean, 3.6; range, 3.2-4.0; p < 0.001) and for the overall image quality (mean, 3.8; range, 3.3-4.0; p < 0.001). The most preferred anatomical regions were the azygoesophageal recess, thoracic spine, and unobscured lung. The visibility of chest anatomical structures applied with the deconvolution algorithm of PSF was superior to the original chest radiography.

  10. Intraoral radiographs texture analysis for dental implant planning.

    PubMed

    Mundim, Mayara B V; Dias, Danilo R; Costa, Ronaldo M; Leles, Cláudio R; Azevedo-Marques, Paulo M; Ribeiro-Rotta, Rejane F

    2016-11-01

    Computer vision extracts features or attributes from images improving diagnosis accuracy and aiding in clinical decisions. This study aims to investigate the feasibility of using texture analysis of periapical radiograph images as a tool for dental implant treatment planning. Periapical radiograph images of 127 jawbone sites were obtained before and after implant placement. From the superimposition of the pre- and post-implant images, four regions of interest (ROI) were delineated on the pre-implant images for each implant site: mesial, distal and apical peri-implant areas and a central area. Each ROI was analysed using Matlab® software and seven image attributes were extracted: mean grey level (MGL), standard deviation of grey levels (SDGL), coefficient of variation (CV), entropy (En), contrast, correlation (Cor) and angular second moment (ASM). Images were grouped by bone types-Lekholm and Zarb classification (1,2,3,4). Peak insertion torque (PIT) and resonance frequency analysis (RFA) were recorded during implant placement. Differences among groups were tested for each image attribute. Agreement between measurements of the peri-implant ROIs and overall ROI (peri-implant + central area) was tested, as well as the association between primary stability measures (PIT and RFA) and texture attributes. Differences among bone type groups were found for MGL (p = 0.035), SDGL (p = 0.024), CV (p < 0.001) and En (p < 0.001). The apical ROI showed a significant difference from the other regions for all attributes, except Cor. Concordance correlation coefficients were all almost perfect (ρ > 0.93), except for ASM (ρ = 0.62). Texture attributes were significantly associated with the implant stability measures. Texture analysis of periapical radiographs may be a reliable non-invasive quantitative method for the assessment of jawbone and prediction of implant stability, with potential clinical applications. Copyright © 2016 Elsevier Ireland Ltd

  11. TNF blockers inhibit spinal radiographic progression in ankylosing spondylitis by reducing disease activity: results from the Swiss Clinical Quality Management cohort

    PubMed Central

    Molnar, Christoph; Scherer, Almut; de Hooge, Manouk; Micheroli, Raphael; Exer, Pascale; Kissling, Rudolf O; Tamborrini, Giorgio; Wildi, Lukas M; Nissen, Michael J; Zufferey, Pascal; Bernhard, Jürg; Weber, Ulrich; Landewé, Robert B M; Ciurea, Adrian

    2018-01-01

    Objectives To analyse the impact of tumour necrosis factor inhibitors (TNFis) on spinal radiographic progression in ankylosing spondylitis (AS). Methods Patients with AS in the Swiss Clinical Quality Management cohort with up to 10 years of follow-up and radiographic assessments every 2 years were included. Radiographs were scored by two readers according to the modified Stoke Ankylosing Spondylitis Spine Score (mSASSS) with known chronology. The relationship between TNFi use before a 2-year radiographic interval and progression within the interval was investigated using binomial generalised estimating equation models with adjustment for potential confounding and multiple imputation of missing values. Ankylosing Spondylitis Disease Activity Score (ASDAS) was regarded as mediating the effect of TNFi on progression and added to the model in a sensitivity analysis. Results A total of 432 patients with AS contributed to data for 616 radiographic intervals. Radiographic progression was defined as an increase in ≥2 mSASSS units in 2 years. Mean (SD) mSASSS increase was 0.9 (2.6) units in 2 years. Prior use of TNFi reduced the odds of progression by 50% (OR 0.50, 95% CI 0.28 to 0.88) in the multivariable analysis. While no direct effect of TNFi on progression was present in an analysis including time-varying ASDAS (OR 0.61, 95% CI 0.34 to 1.08), the indirect effect, via a reduction in ASDAS, was statistically significant (OR 0.75, 95% CI 0.59 to 0.97). Conclusion TNFis are associated with a reduction of spinal radiographic progression in patients with AS. This effect seems mediated through the inhibiting effect of TNFi on disease activity. PMID:28939631

  12. Segmentation of ribs in digital chest radiographs

    NASA Astrophysics Data System (ADS)

    Cong, Lin; Guo, Wei; Li, Qiang

    2016-03-01

    Ribs and clavicles in posterior-anterior (PA) digital chest radiographs often overlap with lung abnormalities such as nodules, and cause missing of these abnormalities, it is therefore necessary to remove or reduce the ribs in chest radiographs. The purpose of this study was to develop a fully automated algorithm to segment ribs within lung area in digital radiography (DR) for removal of the ribs. The rib segmentation algorithm consists of three steps. Firstly, a radiograph was pre-processed for contrast adjustment and noise removal; second, generalized Hough transform was employed to localize the lower boundary of the ribs. In the third step, a novel bilateral dynamic programming algorithm was used to accurately segment the upper and lower boundaries of ribs simultaneously. The width of the ribs and the smoothness of the rib boundaries were incorporated in the cost function of the bilateral dynamic programming for obtaining consistent results for the upper and lower boundaries. Our database consisted of 93 DR images, including, respectively, 23 and 70 images acquired with a DR system from Shanghai United-Imaging Healthcare Co. and from GE Healthcare Co. The rib localization algorithm achieved a sensitivity of 98.2% with 0.1 false positives per image. The accuracy of the detected ribs was further evaluated subjectively in 3 levels: "1", good; "2", acceptable; "3", poor. The percentages of good, acceptable, and poor segmentation results were 91.1%, 7.2%, and 1.7%, respectively. Our algorithm can obtain good segmentation results for ribs in chest radiography and would be useful for rib reduction in our future study.

  13. Artificial intelligence for analyzing orthopedic trauma radiographs

    PubMed Central

    Olczak, Jakub; Fahlberg, Niklas; Maki, Atsuto; Razavian, Ali Sharif; Jilert, Anthony; Stark, André; Sköldenberg, Olof

    2017-01-01

    Background and purpose — Recent advances in artificial intelligence (deep learning) have shown remarkable performance in classifying non-medical images, and the technology is believed to be the next technological revolution. So far it has never been applied in an orthopedic setting, and in this study we sought to determine the feasibility of using deep learning for skeletal radiographs. Methods — We extracted 256,000 wrist, hand, and ankle radiographs from Danderyd’s Hospital and identified 4 classes: fracture, laterality, body part, and exam view. We then selected 5 openly available deep learning networks that were adapted for these images. The most accurate network was benchmarked against a gold standard for fractures. We furthermore compared the network’s performance with 2 senior orthopedic surgeons who reviewed images at the same resolution as the network. Results — All networks exhibited an accuracy of at least 90% when identifying laterality, body part, and exam view. The final accuracy for fractures was estimated at 83% for the best performing network. The network performed similarly to senior orthopedic surgeons when presented with images at the same resolution as the network. The 2 reviewer Cohen’s kappa under these conditions was 0.76. Interpretation — This study supports the use for orthopedic radiographs of artificial intelligence, which can perform at a human level. While current implementation lacks important features that surgeons require, e.g. risk of dislocation, classifications, measurements, and combining multiple exam views, these problems have technical solutions that are waiting to be implemented for orthopedics. PMID:28681679

  14. Retinal Image Quality During Accommodation

    PubMed Central

    López-Gil, N.; Martin, J.; Liu, T.; Bradley, A.; Díaz-Muñoz, D.; Thibos, L.

    2013-01-01

    Purpose We asked if retinal image quality is maximum during accommodation, or sub-optimal due to accommodative error, when subjects perform an acuity task. Methods Subjects viewed a monochromatic (552nm), high-contrast letter target placed at various viewing distances. Wavefront aberrations of the accommodating eye were measured near the endpoint of an acuity staircase paradigm. Refractive state, defined as the optimum target vergence for maximising retinal image quality, was computed by through-focus wavefront analysis to find the power of the virtual correcting lens that maximizes visual Strehl ratio. Results Despite changes in ocular aberrations and pupil size during binocular viewing, retinal image quality and visual acuity typically remain high for all target vergences. When accommodative errors lead to sub-optimal retinal image quality, acuity and measured image quality both decline. However, the effect of accommodation errors of on visual acuity are mitigated by pupillary constriction associated with accommodation and binocular convergence and also to binocular summation of dissimilar retinal image blur. Under monocular viewing conditions some subjects displayed significant accommodative lag that reduced visual performance, an effect that was exacerbated by pharmacological dilation of the pupil. Conclusions Spurious measurement of accommodative error can be avoided when the image quality metric used to determine refractive state is compatible with the focusing criteria used by the visual system to control accommodation. Real focusing errors of the accommodating eye do not necessarily produce a reliably measurable loss of image quality or clinically significant loss of visual performance, probably because of increased depth-of-focus due to pupil constriction. When retinal image quality is close to maximum achievable (given the eye’s higher-order aberrations), acuity is also near maximum. A combination of accommodative lag, reduced image quality, and reduced

  15. Evaluation of cassette-based digital radiography detectors using standardized image quality metrics: AAPM TG-150 Draft Image Detector Tests.

    PubMed

    Li, Guang; Greene, Travis C; Nishino, Thomas K; Willis, Charles E

    2016-09-08

    The purpose of this study was to evaluate several of the standardized image quality metrics proposed by the American Association of Physics in Medicine (AAPM) Task Group 150. The task group suggested region-of-interest (ROI)-based techniques to measure nonuniformity, minimum signal-to-noise ratio (SNR), number of anomalous pixels, and modulation transfer function (MTF). This study evaluated the effects of ROI size and layout on the image metrics by using four different ROI sets, assessed result uncertainty by repeating measurements, and compared results with two commercially available quality control tools, namely the Carestream DIRECTVIEW Total Quality Tool (TQT) and the GE Healthcare Quality Assurance Process (QAP). Seven Carestream DRX-1C (CsI) detectors on mobile DR systems and four GE FlashPad detectors in radiographic rooms were tested. Images were analyzed using MATLAB software that had been previously validated and reported. Our values for signal and SNR nonuniformity and MTF agree with values published by other investigators. Our results show that ROI size affects nonuniformity and minimum SNR measurements, but not detection of anomalous pixels. Exposure geometry affects all tested image metrics except for the MTF. TG-150 metrics in general agree with the TQT, but agree with the QAP only for local and global signal nonuniformity. The difference in SNR nonuniformity and MTF values between the TG-150 and QAP may be explained by differences in the calculation of noise and acquisition beam quality, respectively. TG-150's SNR nonuniformity metrics are also more sensitive to detector nonuniformity compared to the QAP. Our results suggest that fixed ROI size should be used for consistency because nonuniformity metrics depend on ROI size. Ideally, detector tests should be performed at the exact calibration position. If not feasible, a baseline should be established from the mean of several repeated measurements. Our study indicates that the TG-150 tests can be

  16. Evaluation of cassette‐based digital radiography detectors using standardized image quality metrics: AAPM TG‐150 Draft Image Detector Tests

    PubMed Central

    Greene, Travis C.; Nishino, Thomas K.; Willis, Charles E.

    2016-01-01

    The purpose of this study was to evaluate several of the standardized image quality metrics proposed by the American Association of Physics in Medicine (AAPM) Task Group 150. The task group suggested region‐of‐interest (ROI)‐based techniques to measure nonuniformity, minimum signal‐to‐noise ratio (SNR), number of anomalous pixels, and modulation transfer function (MTF). This study evaluated the effects of ROI size and layout on the image metrics by using four different ROI sets, assessed result uncertainty by repeating measurements, and compared results with two commercially available quality control tools, namely the Carestream DIRECTVIEW Total Quality Tool (TQT) and the GE Healthcare Quality Assurance Process (QAP). Seven Carestream DRX‐1C (CsI) detectors on mobile DR systems and four GE FlashPad detectors in radiographic rooms were tested. Images were analyzed using MATLAB software that had been previously validated and reported. Our values for signal and SNR nonuniformity and MTF agree with values published by other investigators. Our results show that ROI size affects nonuniformity and minimum SNR measurements, but not detection of anomalous pixels. Exposure geometry affects all tested image metrics except for the MTF. TG‐150 metrics in general agree with the TQT, but agree with the QAP only for local and global signal nonuniformity. The difference in SNR nonuniformity and MTF values between the TG‐150 and QAP may be explained by differences in the calculation of noise and acquisition beam quality, respectively. TG‐150's SNR nonuniformity metrics are also more sensitive to detector nonuniformity compared to the QAP. Our results suggest that fixed ROI size should be used for consistency because nonuniformity metrics depend on ROI size. Ideally, detector tests should be performed at the exact calibration position. If not feasible, a baseline should be established from the mean of several repeated measurements. Our study indicates that the TG

  17. Two new methods to increase the contrast of track-etch neutron radiographs

    NASA Technical Reports Server (NTRS)

    Morley, J.

    1973-01-01

    In one method, fluorescent dye is deposited into tracks of radiograph and viewed under ultraviolet light. In second method, track-etch radiograph is placed between crossed polaroid filters, exposed to diffused light and resulting image is projected onto photographic film.

  18. Quality assurance in digital dental radiography--justification and dose reduction in dental and maxillofacial radiology.

    PubMed

    Hellstern, F; Geibel, M-A

    2012-01-01

    To evaluate the implementation of quality assurance requirements for digital dental radiography in routine clinical practice. The results should be discussed by radiation protection authorities in the context of the relevant legal requirements and current debates on radiation protection. Two hundred digital dental radiographs were randomly selected from the digital database of the Department of Dentistry's Dental and Maxillofacial Surgery Clinic, Ulm University, and evaluated for various aspects of image quality and compliance with radiographic documentation requirements. The dental films were prepared by different radiology assistants (RAs) using one of two digital intraoral radiographic systems: Sirona Heliodent DS, 60 kV, focal spot size: 0.7 mm (group A) or KaVo Gendex 765 DC, 65 kV, focal spot size: 0.4 mm (group B). Radiographic justification was documented in 70.5% of cases, and the radiographic findings in 76.5%. Both variables were documented in the patient records as well as in the software in 14% of cases. Clinical documentation of the required information (name of the responsible dentist and radiology assistant, date, patient name, department, tube voltage, tube current, exposure time, type of radiograph, film size, department and serial number of the dental radiograph) was 100% complete in all cases. Moreover, the department certified according to DIN ISO 9001:2008 specifications demonstrated complete clinical documentation of radiographic justifications and radiographic findings. The entire dentition was visible on 83% of the digital films. The visible area corresponded to the target region on 85.7% of the digital dental radiographs. Seven to 8.5% of the images were classified as "hypometric" or "hypermetric". This study indicates that improvements in radiology training and continuing education fordentists and dental staff performing x-ray examinations are needed to ensure consistent high quality of digital dental radiography. Implementation of

  19. The optimal balance between quality and efficiency in proton radiography imaging technique at various proton beam energies: A Monte Carlo study.

    PubMed

    Biegun, A K; van Goethem, M-J; van der Graaf, E R; van Beuzekom, M; Koffeman, E N; Nakaji, T; Takatsu, J; Visser, J; Brandenburg, S

    2017-09-01

    Proton radiography is a novel imaging modality that allows direct measurement of the proton energy loss in various tissues. Currently, due to the conversion of so-called Hounsfield units from X-ray Computed Tomography (CT) into relative proton stopping powers (RPSP), the uncertainties of RPSP are 3-5% or higher, which need to be minimized down to 1% to make the proton treatment plans more accurate. In this work, we simulated a proton radiography system, with position-sensitive detectors (PSDs) and a residual energy detector (RED). The simulations were built using Geant4, a Monte Carlo simulation toolkit. A phantom, consisting of several materials was placed between the PSDs of various Water Equivalent Thicknesses (WET), corresponding to an ideal detector, a gaseous detector, silicon and plastic scintillator detectors. The energy loss radiograph and the scattering angle distributions of the protons were studied for proton beam energies of 150MeV, 190MeV and 230MeV. To improve the image quality deteriorated by the multiple Coulomb scattering (MCS), protons with small angles were selected. Two ways of calculating a scattering angle were considered using the proton's direction and position. A scattering angle cut of 8.7mrad was applied giving an optimal balance between quality and efficiency of the radiographic image. For the three proton beam energies, the number of protons used in image reconstruction with the direction method was half the number of protons kept using the position method. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Development of a detector model for generation of synthetic radiographs of cargo containers

    NASA Astrophysics Data System (ADS)

    White, Timothy A.; Bredt, Ofelia P.; Schweppe, John E.; Runkle, Robert C.

    2008-05-01

    Creation of synthetic cargo-container radiographs that possess attributes of their empirical counterparts requires accurate models of the imaging-system response. Synthetic radiographs serve as surrogate data in studies aimed at determining system effectiveness for detecting target objects when it is impractical to collect a large set of empirical radiographs. In the case where a detailed understanding of the detector system is available, an accurate detector model can be derived from first-principles. In the absence of this detail, it is necessary to derive empirical models of the imaging-system response from radiographs of well-characterized objects. Such a case is the topic of this work, where we demonstrate the development of an empirical model of a gamma-ray radiography system with the intent of creating a detector-response model that translates uncollided photon transport calculations into realistic synthetic radiographs. The detector-response model is calibrated to field measurements of well-characterized objects thus incorporating properties such as system sensitivity, spatial resolution, contrast and noise.

  1. Development of a muon radiographic imaging electronic board system for a stable solar power operation

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Tanaka, H. K. M.; Tanaka, M.

    2010-02-01

    Cosmic-ray muon radiography is a method that is used to study the internal structure of volcanoes. We have developed a muon radiographic imaging board with a power consumption low enough to be powered by a small solar power system. The imaging board generates an angular distribution of the muons. Used for real-time reading, the method may facilitate the prediction of eruptions. For real-time observations, the Ethernet is employed, and the board works as a web server for a remote operation. The angular distribution can be obtained from a remote PC via a network using a standard web browser. We have collected and analyzed data obtained from a 3-day field study of cosmic-ray muons at a Satsuma-Iwojima volcano. The data provided a clear image of the mountain ridge as a cosmic-ray muon shadow. The measured performance of the system is sufficient for a stand-alone cosmic-ray muon radiography experiment.

  2. JPEG2000 still image coding quality.

    PubMed

    Chen, Tzong-Jer; Lin, Sheng-Chieh; Lin, You-Chen; Cheng, Ren-Gui; Lin, Li-Hui; Wu, Wei

    2013-10-01

    This work demonstrates the image qualities between two popular JPEG2000 programs. Two medical image compression algorithms are both coded using JPEG2000, but they are different regarding the interface, convenience, speed of computation, and their characteristic options influenced by the encoder, quantization, tiling, etc. The differences in image quality and compression ratio are also affected by the modality and compression algorithm implementation. Do they provide the same quality? The qualities of compressed medical images from two image compression programs named Apollo and JJ2000 were evaluated extensively using objective metrics. These algorithms were applied to three medical image modalities at various compression ratios ranging from 10:1 to 100:1. Following that, the quality of the reconstructed images was evaluated using five objective metrics. The Spearman rank correlation coefficients were measured under every metric in the two programs. We found that JJ2000 and Apollo exhibited indistinguishable image quality for all images evaluated using the above five metrics (r > 0.98, p < 0.001). It can be concluded that the image quality of the JJ2000 and Apollo algorithms is statistically equivalent for medical image compression.

  3. Comparison of technique errors of intraoral radiographs taken on film v photostimulable phosphor (PSP) plates.

    PubMed

    Zhang, Wenjian; Huynh, Carolyn P; Abramovitch, Kenneth; Leon, Inga-Lill K; Arvizu, Liliana

    2012-06-01

    The objective of this study was to compare the technical errors of intraoral radiographs exposed on film v photostimulable phosphor (PSP) plates. The intraoral radiographic images exposed on phantoms from preclinical practical exams of dental and dental hygiene students were used. Each exam consisted of 10 designated periapical and bitewing views. A total of 107 film sets and 122 PSP sets were evaluated for technique errors, including placement, elongation, foreshortening, overlapping, cone cut, receptor bending, density, mounting, dot in apical area, and others. Some errors were further subcategorized as minor, major, or remake depending on the severity. The percentages of radiographs with various errors were compared between film and PSP by the Fisher's Exact Test. Compared with film, there was significantly less PSP foreshortening, elongation, and bending errors, but significantly more placement and overlapping errors. Using a wrong sized receptor due to the similarity of the color of the package sleeves is a unique PSP error. Optimum image quality is attainable with PSP plates as well as film. When switching from film to a PSP digital environment, more emphasis is necessary for placing the PSP plates, especially those with excessive packet edge, and then correcting the corresponding angulation for the beam alignment. Better design for improving intraoral visibility and easy identification of different sized PSP will improve the clinician's technical performance with this receptor.

  4. Segmentation of lung fields using Chan-Vese active contour model in chest radiographs

    NASA Astrophysics Data System (ADS)

    Sohn, Kiwon

    2011-03-01

    A CAD tool for chest radiographs consists of several procedures and the very first step is segmentation of lung fields. We develop a novel methodology for segmentation of lung fields in chest radiographs that can satisfy the following two requirements. First, we aim to develop a segmentation method that does not need a training stage with manual estimation of anatomical features in a large training dataset of images. Secondly, for the ease of implementation, it is desirable to apply a well established model that is widely used for various image-partitioning practices. The Chan-Vese active contour model, which is based on Mumford-Shah functional in the level set framework, is applied for segmentation of lung fields. With the use of this model, segmentation of lung fields can be carried out without detailed prior knowledge on the radiographic anatomy of the chest, yet in some chest radiographs, the trachea regions are unfavorably segmented out in addition to the lung field contours. To eliminate artifacts from the trachea, we locate the upper end of the trachea, find a vertical center line of the trachea and delineate it, and then brighten the trachea region to make it less distinctive. The segmentation process is finalized by subsequent morphological operations. We randomly select 30 images from the Japanese Society of Radiological Technology image database to test the proposed methodology and the results are shown. We hope our segmentation technique can help to promote of CAD tools, especially for emerging chest radiographic imaging techniques such as dual energy radiography and chest tomosynthesis.

  5. Are reporting radiographers fulfilling the role of advanced practitioner?

    PubMed

    Milner, R C; Snaith, B

    2017-02-01

    Advanced practice roles are emerging in all disciplines at a rapid pace and reporting radiographers are ideally placed to work at such level. Advanced practitioners should demonstrate expert practice and show progression into three other areas of higher level practice. Most existing literature has focussed on the image interpretation aspect of the role, however there is little evidence that plain film reporting radiographers are undertaking activities beyond image interpretation and fulfilling the role of advanced practitioner. Letters were posted to every acute NHS trust in the UK, inviting reporting radiographers to complete an online survey. Both quantitative and qualitative information was sought regarding demographics and roles supplementary to reporting. A total of 205 responses were analysed; 83.3% of reporting radiographers describe themselves as advanced practitioner, however significantly less are showing progression into the four core functions of higher level practice. A total of 97.0% undertake expert practice, 54.7% have a leadership role, 19.8% provide expert lectures and 71.1% have roles encompassing service development or research, though most of these fall into the service development category. 34.5% felt that they were aware of the differences between extended and advanced practice though much less (9.3%) could correctly articulate the difference. Few individuals are aware of the difference between extended and advanced practice. Though the majority of plain film reporting radiographers identify themselves as advanced practitioners, significantly less evidence all four core functions of higher level practice. The number of individuals undertaking research and providing expert-level education is low. Copyright © 2016 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  6. TNF blockers inhibit spinal radiographic progression in ankylosing spondylitis by reducing disease activity: results from the Swiss Clinical Quality Management cohort.

    PubMed

    Molnar, Christoph; Scherer, Almut; Baraliakos, Xenofon; de Hooge, Manouk; Micheroli, Raphael; Exer, Pascale; Kissling, Rudolf O; Tamborrini, Giorgio; Wildi, Lukas M; Nissen, Michael J; Zufferey, Pascal; Bernhard, Jürg; Weber, Ulrich; Landewé, Robert B M; van der Heijde, Désirée; Ciurea, Adrian

    2018-01-01

    To analyse the impact of tumour necrosis factor inhibitors (TNFis) on spinal radiographic progression in ankylosing spondylitis (AS). Patients with AS in the Swiss Clinical Quality Management cohort with up to 10 years of follow-up and radiographic assessments every 2 years were included. Radiographs were scored by two readers according to the modified Stoke Ankylosing Spondylitis Spine Score (mSASSS) with known chronology. The relationship between TNFi use before a 2-year radiographic interval and progression within the interval was investigated using binomial generalised estimating equation models with adjustment for potential confounding and multiple imputation of missing values. Ankylosing Spondylitis Disease Activity Score (ASDAS) was regarded as mediating the effect of TNFi on progression and added to the model in a sensitivity analysis. A total of 432 patients with AS contributed to data for 616 radiographic intervals. Radiographic progression was defined as an increase in ≥2 mSASSS units in 2 years. Mean (SD) mSASSS increase was 0.9 (2.6) units in 2 years. Prior use of TNFi reduced the odds of progression by 50% (OR 0.50, 95% CI 0.28 to 0.88) in the multivariable analysis. While no direct effect of TNFi on progression was present in an analysis including time-varying ASDAS (OR 0.61, 95% CI 0.34 to 1.08), the indirect effect, via a reduction in ASDAS, was statistically significant (OR 0.75, 95% CI 0.59 to 0.97). TNFis are associated with a reduction of spinal radiographic progression in patients with AS. This effect seems mediated through the inhibiting effect of TNFi on disease activity. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Process perspective on image quality evaluation

    NASA Astrophysics Data System (ADS)

    Leisti, Tuomas; Halonen, Raisa; Kokkonen, Anna; Weckman, Hanna; Mettänen, Marja; Lensu, Lasse; Ritala, Risto; Oittinen, Pirkko; Nyman, Göte

    2008-01-01

    The psychological complexity of multivariate image quality evaluation makes it difficult to develop general image quality metrics. Quality evaluation includes several mental processes and ignoring these processes and the use of a few test images can lead to biased results. By using a qualitative/quantitative (Interpretation Based Quality, IBQ) methodology, we examined the process of pair-wise comparison in a setting, where the quality of the images printed by laser printer on different paper grades was evaluated. Test image consisted of a picture of a table covered with several objects. Three other images were also used, photographs of a woman, cityscape and countryside. In addition to the pair-wise comparisons, observers (N=10) were interviewed about the subjective quality attributes they used in making their quality decisions. An examination of the individual pair-wise comparisons revealed serious inconsistencies in observers' evaluations on the test image content, but not on other contexts. The qualitative analysis showed that this inconsistency was due to the observers' focus of attention. The lack of easily recognizable context in the test image may have contributed to this inconsistency. To obtain reliable knowledge of the effect of image context or attention on subjective image quality, a qualitative methodology is needed.

  8. Retinal image quality during accommodation.

    PubMed

    López-Gil, Norberto; Martin, Jesson; Liu, Tao; Bradley, Arthur; Díaz-Muñoz, David; Thibos, Larry N

    2013-07-01

    We asked if retinal image quality is maximum during accommodation, or sub-optimal due to accommodative error, when subjects perform an acuity task. Subjects viewed a monochromatic (552 nm), high-contrast letter target placed at various viewing distances. Wavefront aberrations of the accommodating eye were measured near the endpoint of an acuity staircase paradigm. Refractive state, defined as the optimum target vergence for maximising retinal image quality, was computed by through-focus wavefront analysis to find the power of the virtual correcting lens that maximizes visual Strehl ratio. Despite changes in ocular aberrations and pupil size during binocular viewing, retinal image quality and visual acuity typically remain high for all target vergences. When accommodative errors lead to sub-optimal retinal image quality, acuity and measured image quality both decline. However, the effect of accommodation errors of on visual acuity are mitigated by pupillary constriction associated with accommodation and binocular convergence and also to binocular summation of dissimilar retinal image blur. Under monocular viewing conditions some subjects displayed significant accommodative lag that reduced visual performance, an effect that was exacerbated by pharmacological dilation of the pupil. Spurious measurement of accommodative error can be avoided when the image quality metric used to determine refractive state is compatible with the focusing criteria used by the visual system to control accommodation. Real focusing errors of the accommodating eye do not necessarily produce a reliably measurable loss of image quality or clinically significant loss of visual performance, probably because of increased depth-of-focus due to pupil constriction. When retinal image quality is close to maximum achievable (given the eye's higher-order aberrations), acuity is also near maximum. A combination of accommodative lag, reduced image quality, and reduced visual function may be a useful

  9. EFFECT OF QUALITY OF CHEST RADIOGRAPHS ON THE CATEGORIZATION OF COALWORKERS' PNEUMOCONIOSIS

    PubMed Central

    Pearson, N. G.; Ashford, J. R.; Morgan, D. C.; Pasqual, R. S. H.; Rae, S.

    1965-01-01

    An investigation into the effect of variations in radiographic technical quality on pneumoconiosis reading standards in the Pneumoconiosis Field Research of the National Coal Board is reported. From the group of men for whom retake films had been obtained because of unsatisfactory technique of the originals, a trial series of pairs and triplets of films showing differing technique was assembled. A total of 778 films was read for pneumoconiosis and assessed for technical quality by four readers. The quality was assessed in terms of three separate factors, viz., density (at high, medium, and low levels), contrast (satisfactory and unsatisfactory), and definition (satisfactory and unsatisfactory). The intra and inter observer consistency of this assessment was estimated, and the effect of techical quality on the reading of pneumoconiosis category was determined. A tendency for lower pneumoconiosis readings to be recorded on films with unsatisfactory technique was demonstrated. A random 10% sample of the best available films (those on which routine pneumoconiosis readings have been made) for all men examined since the beginning of the research was also read for technical quality. Of the total of 4,188 films, 80% were considered satisfactory. It appeared that films taken on second surveys were, in general, of rather better quality than those taken on first surveys. The physical attributes of the men examined had some effect on the technical standards, the proportion of unsatisfactory films rising with increasing values of the weight/sitting height ratio and being greater in men with pneumoconiosis categories 1 and A and in the middle age group. The tendency for lower pneumoconiosis readings to be recorded on films with unsatisfactory technique is in contrast to the results of work previously published. Different criteria for the selection of films and the assessment of technical quality, and possibly differing reading conventions, make comparison with other work

  10. Image quality scaling of electrophotographic prints

    NASA Astrophysics Data System (ADS)

    Johnson, Garrett M.; Patil, Rohit A.; Montag, Ethan D.; Fairchild, Mark D.

    2003-12-01

    Two psychophysical experiments were performed scaling overall image quality of black-and-white electrophotographic (EP) images. Six different printers were used to generate the images. There were six different scenes included in the experiment, representing photographs, business graphics, and test-targets. The two experiments were split into a paired-comparison experiment examining overall image quality, and a triad experiment judging overall similarity and dissimilarity of the printed images. The paired-comparison experiment was analyzed using Thurstone's Law, to generate an interval scale of quality, and with dual scaling, to determine the independent dimensions used for categorical scaling. The triad experiment was analyzed using multidimensional scaling to generate a psychological stimulus space. The psychophysical results indicated that the image quality was judged mainly along one dimension and that the relationships among the images can be described with a single dimension in most cases. Regression of various physical measurements of the images to the paired comparison results showed that a small number of physical attributes of the images could be correlated with the psychophysical scale of image quality. However, global image difference metrics did not correlate well with image quality.

  11. A multicenter study analyzing the relationship of a standardized radiographic scoring system of adolescent idiopathic scoliosis and the Scoliosis Research Society outcomes instrument.

    PubMed

    Wilson, Philip L; Newton, Peter O; Wenger, Dennis R; Haher, Thomas; Merola, Andrew; Lenke, Larry; Lowe, Thomas; Clements, David; Betz, Randy

    2002-09-15

    A multicenter study examining the association between radiographic and outcomes measures in adolescent idiopathic scoliosis. To evaluate the association between an objective radiographic scoring system and patient quality of life measures as determined by the Scoliosis Research Society outcomes instrument. Although surgical correction of scoliosis has been reported to be positively correlated with patient outcomes, studies to date have been unable to demonstrate an association between radiographic measures of deformity and outcomes measures in patients with adolescent idiopathic scoliosis. A standardized radiographic deformity scoring system and the Scoliosis Research Society outcome tool were used prospectively in seven scoliosis centers to collect data on patients with adolescent idiopathic scoliosis. A total of 354 data points for 265 patients consisting of those with nonoperative or preoperative curves >or=10 degrees, as well as those with surgically treated curves, were analyzed. Correlation analysis was performed to identify significant relationships between any of the radiographic measures, the Harms Study Group radiographic deformity scores (total, sagittal, coronal), and the seven Scoliosis Research Society outcome domains (Total Pain, General Self-Image, General Function, Activity, Postoperative Self-Image, Postoperative Function, and Satisfaction) as well as Scoliosis Research Society outcomes instrument total scores. Radiographic measures that were identified as significantly correlated with Scoliosis Research Society outcome scores were then entered into a stepwise regression analysis. The coronal measures of thoracic curve and lumbar curve magnitude were found to be significantly correlated with the Total Pain, General Self-Image, and total Scoliosis Research Society scores (P < 0.0001). The thoracic and upper thoracic curve magnitudes were also correlated with General Function (P < 0.002). The "coronal" subscore as well as the "total" score of the

  12. Film and digital periapical radiographs for the measurement of apical root shortening.

    PubMed

    El-Angbawi, Ahmed M F; McIntyre, Grant T; Bearn, David R; Thomson, Donald J

    2012-12-01

    The aim of this study was to compare the accuracy and agreement of scanned film and digital periapical radiographs for the measurement of apical root shortening. Twenty-four film and digital [phosphor plate sensor (PPS)] periapical radiographs were taken using the long-cone paralleling technique for six extracted teeth before and after 1mm of apical root trimming. All teeth were mounted using a typodont and the radiographs were recorded using a film holder and polysiloxane occlusal index for each tooth to ensure standardization during the different radiographic exposures. The film radiographs were scanned and the tooth length measurements for the scanned film and digital (PPS) images were calculated using Image-J-Link 1.4 software (http://rebweb.nih.gov/ij/index.html) for the two groups. The accuracy and agreement among the tooth length measurements from each group and the true tooth length measurements were calculated using intra-class correlation (ICC) tests and Bland and Altman plots. A high level of agreement was found between the true tooth length measurements and the scanned film measurements (ICC=0.979, limit of agreement 0.579 to -0.565) and the digital (PPS) radiograph measurements (ICC= 0.979, limit of agreement 0.596 to -0.763). Moreover, a high level of agreement was found between the scanned film and digital (PPS) radiographs for the measurement of tooth length ICC=0.991, limit of agreement 0.411-0.231. Film and digital (PPS) periapical radiographs are accurate methods for measuring apical root shortening with a high level of agreement. Key words:Root shortening, measurement, periapical radiographs, film, digital.

  13. Adult sail sign: radiographic and computed tomographic features.

    PubMed

    Lee, Yu-Jin; Han, Daehee; Koh, Young Hwan; Zo, Joo Hee; Kim, Sang-Hyun; Kim, Deog Kyeom; Lee, Jeong Sang; Moon, Hyeon Jong; Kim, Jong Seung; Chun, Eun Ju; Youn, Byung Jae; Lee, Chang Hyun; Kim, Sam Soo

    2008-02-01

    The sail sign is a well-known radiographic feature of the pediatric chest. This sign can be observed in an adult population as well, but for a different reason. To investigate the sail sign appearing in adult chest radiography. Based on two anecdotal adult cases in which frontal chest radiographs showed the sail sign, we prospectively screened radiographs of 10,238 patients to determine the incidence of the sail sign found in adults in their 40s or older. The cause of the sail sign was assessed using computed tomography (CT). The sail sign was revealed in 10 (seven males, three females; median age 60.6 years) of 10,238 patients. Of these 10 patients with a sail sign on frontal radiographs, eight underwent CT. The frontal radiographs of these 10 patients showed a concave superior margin toward the lung in nine patients, a concave inferior margin in five, and a double-lined inferior margin in three. Lateral radiographs disclosed a focal opacity over the minor fissure in five of six patients, which was either fuzzy (n = 4) or sharp (n = 1) in its upper margin, and was sometimes double lined in the inferior margin (n = 3). CT revealed the anterior mediastinal fat to be the cause of the radiographic sail sign, which stretched laterally from the mediastinum to insinuate into the minor fissure. The incidence of sail sign on adult chest radiographs is about 0.1%. The sign is specific enough to eliminate the need for more sophisticated imaging.

  14. Development Of A Dynamic Radiographic Capability Using High-Speed Video

    NASA Astrophysics Data System (ADS)

    Bryant, Lawrence E.

    1985-02-01

    High-speed video equipment can be used to optically image up to 2,000 full frames per second or 12,000 partial frames per second. X-ray image intensifiers have historically been used to image radiographic images at 30 frames per second. By combining these two types of equipment, it is possible to perform dynamic x-ray imaging of up to 2,000 full frames per second. The technique has been demonstrated using conventional, industrial x-ray sources such as 150 Kv and 300 Kv constant potential x-ray generators, 2.5 MeV Van de Graaffs, and linear accelerators. A crude form of this high-speed radiographic imaging has been shown to be possible with a cobalt 60 source. Use of a maximum aperture lens makes best use of the available light output from the image intensifier. The x-ray image intensifier input and output fluors decay rapidly enough to allow the high frame rate imaging. Data are presented on the maximum possible video frame rates versus x-ray penetration of various thicknesses of aluminum and steel. Photographs illustrate typical radiographic setups using the high speed imaging method. Video recordings show several demonstrations of this technique with the played-back x-ray images slowed down up to 100 times as compared to the actual event speed. Typical applications include boiling type action of liquids in metal containers, compressor operation with visualization of crankshaft, connecting rod and piston movement and thermal battery operation. An interesting aspect of this technique combines both the optical and x-ray capabilities to observe an object or event with both external and internal details with one camera in a visual mode and the other camera in an x-ray mode. This allows both kinds of video images to appear side by side in a synchronized presentation.

  15. A new technique for radiographic measurement of acetabular cup orientation.

    PubMed

    Derbyshire, Brian; Diggle, Peter J; Ingham, Christopher J; Macnair, Rory; Wimhurst, James; Jones, Henry Wynn

    2014-02-01

    Accurate radiographic measurement of acetabular cup orientation is required in order to assess susceptibility to impingement, dislocation, and edge loading wear. In this study, the accuracy and precision of a new radiographic cup orientation measurement system were assessed and compared to those of two commercially available systems. Two types of resurfacing hip prostheses and an uncemented prosthesis were assessed. Radiographic images of each prosthesis were created with the cup set at different, known angles of version and inclination in a measurement jig. The new system was the most accurate and precise and could repeatedly measure version and inclination to within a fraction of a degree. In addition it has a facility to distinguish cup retroversion from anteversion on anteroposterior radiographs. © 2013.

  16. Atlas of Radiographic Features of Osteoarthritis of the Ankle and Hindfoot

    PubMed Central

    Kraus, Virginia Byers; Kilfoil, Terrence M; Hash, Thomas W.; McDaniel, Gary; Renner, Jordan B; Carrino, John A.; Adams, Samuel

    2015-01-01

    Objective To develop a radiographic atlas of osteoarthritis (OA) for use as a template and guide for standardized scoring of radiographic features of OA of the ankle and hindfoot joints. Method Under Institutional Review Board approval, ankle and hindfoot images were selected from a cohort study and from among cases that underwent ankle radiography during a 6-month period at Duke University Medical Center. Missing OA pathology was obtained through supplementation of cases with the assistance of a foot and ankle specialist in Orthopaedic surgery and a musculoskeletal radiologist. Images were obtained and reviewed without patient identifying information. Images went through multiple rounds of review and final images were selected by consensus of the study team. For intra-rater and inter-rater reliability, the kappa statistic was calculated for two readings by 3 musculoskeletal radiologists, a minimum of two weeks apart, of ankle and hindfoot radiographs from 30 anonymized subjects. Results The atlas demonstrates individual radiographic features (osteophyte and joint space narrowing) and Kellgren Lawrence grade for all aspects of the talocrural (ankle joint proper) and talocalcaneal (subtalar) joints. Reliability of scoring based on the atlas was quite good to excellent for most features indicated. Additional examples of ankle joint findings are illustrated including sclerosis, os trigonum, subchondral cysts and talar tilt. Conclusions It is anticipated that this atlas will assist with standardization of scoring of ankle and hindfoot OA by basic and clinical OA researchers. PMID:26318654

  17. Atlas of radiographic features of osteoarthritis of the ankle and hindfoot.

    PubMed

    Kraus, V B; Kilfoil, T M; Hash, T W; McDaniel, G; Renner, J B; Carrino, J A; Adams, S

    2015-12-01

    To develop a radiographic atlas of osteoarthritis (OA) for use as a template and guide for standardized scoring of radiographic features of OA of the ankle and hindfoot joints. Under Institutional Review Board approval, ankle and hindfoot images were selected from a cohort study and from among cases that underwent ankle radiography during a 6-month period at Duke University Medical Center. Missing OA pathology was obtained through supplementation of cases with the assistance of a foot and ankle specialist in Orthopaedic surgery and a musculoskeletal radiologist. Images were obtained and reviewed without patient identifying information. Images went through multiple rounds of review and final images were selected by consensus of the study team. For intra-rater and inter-rater reliability, the kappa statistic was calculated for two readings by three musculoskeletal radiologists, a minimum of two weeks apart, of ankle and hindfoot radiographs from 30 anonymized subjects. The atlas demonstrates individual radiographic features (osteophyte and joint space narrowing (JSN)) and Kellgren-Lawrence grade for all aspects of the talocrural (ankle joint proper) and talocalcaneal (subtalar) joints. Reliability of scoring based on the atlas was quite good to excellent for most features indicated. Additional examples of ankle joint findings are illustrated including sclerosis, os trigonum, subchondral cysts and talar tilt. It is anticipated that this atlas will assist with standardization of scoring of ankle and hindfoot OA by basic and clinical OA researchers. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  18. Foreign object detection and removal to improve automated analysis of chest radiographs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogeweg, Laurens; Sanchez, Clara I.; Melendez, Jaime

    2013-07-15

    Purpose: Chest radiographs commonly contain projections of foreign objects, such as buttons, brassier clips, jewellery, or pacemakers and wires. The presence of these structures can substantially affect the output of computer analysis of these images. An automated method is presented to detect, segment, and remove foreign objects from chest radiographs.Methods: Detection is performed using supervised pixel classification with a kNN classifier, resulting in a probability estimate per pixel to belong to a projected foreign object. Segmentation is performed by grouping and post-processing pixels with a probability above a certain threshold. Next, the objects are replaced by texture inpainting.Results: The methodmore » is evaluated in experiments on 257 chest radiographs. The detection at pixel level is evaluated with receiver operating characteristic analysis on pixels within the unobscured lung fields and an A{sub z} value of 0.949 is achieved. Free response operator characteristic analysis is performed at the object level, and 95.6% of objects are detected with on average 0.25 false positive detections per image. To investigate the effect of removing the detected objects through inpainting, a texture analysis system for tuberculosis detection is applied to images with and without pathology and with and without foreign object removal. Unprocessed, the texture analysis abnormality score of normal images with foreign objects is comparable to those with pathology. After removing foreign objects, the texture score of normal images with and without foreign objects is similar, while abnormal images, whether they contain foreign objects or not, achieve on average higher scores.Conclusions: The authors conclude that removal of foreign objects from chest radiographs is feasible and beneficial for automated image analysis.« less

  19. Effect of Picture Archiving and Communication System Image Manipulation on the Agreement of Chest Radiograph Interpretation in the Neonatal Intensive Care Unit.

    PubMed

    Castro, Denise A; Naqvi, Asad Ahmed; Vandenkerkhof, Elizabeth; Flavin, Michael P; Manson, David; Soboleski, Donald

    2016-01-01

    Variability in image interpretation has been attributed to differences in the interpreters' knowledge base, experience level, and access to the clinical scenario. Picture archiving and communication system (PACS) has allowed the user to manipulate the images while developing their impression of the radiograph. The aim of this study was to determine the agreement of chest radiograph (CXR) impressions among radiologists and neonatologists and help determine the effect of image manipulation with PACS on report impression. Prospective cohort study included 60 patients from the Neonatal Intensive Care Unit undergoing CXRs. Three radiologists and three neonatologists reviewed two consecutive frontal CXRs of each patient. Each physician was allowed manipulation of images as needed to provide a decision of "improved," "unchanged," or "disease progression" lung disease for each patient. Each physician repeated the process once more; this time, they were not allowed to individually manipulate the images, but an independent radiologist presets the image brightness and contrast to best optimize the CXR appearance. Percent agreement and opposing reporting views were calculated between all six physicians for each of the two methods (allowing and not allowing image manipulation). One hundred percent agreement in image impression between all six observers was only seen in 5% of cases when allowing image manipulation; 100% agreement was seen in 13% of the cases when there was no manipulation of the images. Agreement in CXR interpretation is poor; the ability to manipulate the images on PACS results in a decrease in agreement in the interpretation of these studies. New methods to standardize image appearance and allow improved comparison with previous studies should be sought to improve clinician agreement in interpretation consistency and advance patient care.

  20. Radiographic Detectability of Retained Neuropatties in a Cadaver Model.

    PubMed

    Luo, Wangjian Thomas; Almack, Robert; Mawson, John B; Cochrane, David Douglas

    2015-08-01

    Counts are the commonest method used to ensure that all sponges and neuropatties are removed from a surgical site before closure. When the count is not reconciled, plain radiographs of the operative site are taken to determine whether the missing patty has been left in the wound. The purpose of this study was to describe the detectability of commonly used neuropatties in the clinical setting using digital technologies. Neuropatties were implanted into the anterior and posterior cranial fossae and the thoracolumbar extradural space of a mature male cadaver. Four neuropatty sizes were used: 3 × 1 in, 2 × ½ in, ½ × ½ in, and ¼ × ¼ in. Neuropatties, with size and location chosen at random, were placed in the surgical sites and anteroposterior/posterior-anterior and lateral radiographs were taken using standard portable digital radiographic equipment. Six clinicians reviewed the digital images for the presence or absence of neuropatties. The readers were not aware of the number and size of the patties that were included in each image. The detectability of neuropatties is dependent on the size of the neuropatty's radiopaque marker and the operative site. Neuropatties measuring 2 × ½ in and 3 × 1 in were detected reliably regardless of the operative site. ¼ × ¼ in neuropatties were poorly detected by neurosurgeons and radiologists in all three operative sites. Readers of various experience and background were similar in their ability to detect neuropatties under these conditions. Under simulated operating room conditions and using currently available neuropatties and plain radiograph imaging technology, small ¼-in and ½-in neuropatties are poorly visible/detectable on digital images. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Radiographers' perceptions of their professional rights in diagnostic radiography: a qualitative interview study.

    PubMed

    Matilainen, Kati; Ahonen, Sanna-Mari; Kankkunen, Päivi; Kangasniemi, Mari

    2017-03-01

    Considering the ethics of each profession is important as inter-professional collaboration increases. Professional ethics creates a basis for radiographers' work, as it includes values and principles, together with rights and duties that guide and support professionals. However, little is known about radiographers' rights when it comes to professional ethics. The aim of this study was to describe radiographers' perceptions and experiences of their professional rights. The ultimate aim was to increase the understanding of professional ethics in this context and support radiographers' ethical pondering in diagnostic radiography. A qualitative method was used. Semistructured group interviews with 15 radiographers were conducted in spring 2013 at two publicly provided diagnostic imaging departments in Finland. Data were analysed by inductive content analysis. All the participants were women, and they had worked as radiographers for an average of 18 years. Based on our analysis, radiographers' professional rights consisted of rights related to their expertise in radiography and the rights related to working conditions that ensured their wellbeing. Expertise-based rights included rights to plan, conduct and assess radiological care with patient advocacy. Radiographers have the right to contribute to a culture of safe radiation in their organisation and to use their professional knowledge to achieve their main target, which is the safe imaging of patients. Radiographers also have right to work in conditions that support their well-being, including the legal rights stated in their employment contract, as well as their rights concerning resources at work. Radiographers' professional rights are an elementary and multidimensional part of their clinical practice. In future, more theoretical and empirical research is needed to deepen the understanding of their rights in the clinical practice and support radiographers on issues related to this aspect of their work. © 2016

  2. The quality assessment of radial and tangential neutron radiography beamlines of TRR

    NASA Astrophysics Data System (ADS)

    Choopan Dastjerdi, M. H.; Movafeghi, A.; Khalafi, H.; Kasesaz, Y.

    2017-07-01

    To achieve a quality neutron radiographic image in a relatively short exposure time, the neutron radiography beam must be of good quality and relatively high neutron flux. Characterization of a neutron radiography beam, such as determination of the image quality and the neutron flux, is vital for producing quality radiographic images and also provides a means to compare the quality of different neutron radiography facilities. This paper provides a characterization of the radial and tangential neutron radiography beamlines at the Tehran research reactor. This work includes determination of the facilities category according to the American Society for Testing and Materials (ASTM) standards, and also uses the gold foils to determine the neutron beam flux. The radial neutron beam is a Category I neutron radiography facility, the highest possible quality level according to the ASTM. The tangential beam is a Category IV neutron radiography facility. Gold foil activation experiments show that the measured neutron flux for radial beamline with length-to-diameter ratio (L/D) =150 is 6.1× 106 n cm-2 s-1 and for tangential beamline with (L/D)=115 is 2.4× 104 n cm-2 s-1.

  3. Radiographer-led plan selection for bladder cancer radiotherapy: initiating a training programme and maintaining competency.

    PubMed

    McNair, H A; Hafeez, S; Taylor, H; Lalondrelle, S; McDonald, F; Hansen, V N; Huddart, R

    2015-04-01

    The implementation of plan of the day selection for patients receiving radiotherapy (RT) for bladder cancer requires efficient and confident decision-making. This article describes the development of a training programme and maintenance of competency. Cone beam CT (CBCT) images acquired on patients receiving RT for bladder cancer were assessed to establish baseline competency and training needs. A training programme was implemented, and observers were asked to select planning target volumes (PTVs) on two groups of 20 patients' images. After clinical implementation, the PTVs chosen were reviewed offline, and an audit performed after 3 years. A mean of 73% (range, 53-93%) concordance rate was achieved prior to training. Subsequent to training, the mean score decreased to 66% (Round 1), then increased to 76% (Round 2). Six radiographers and two clinicians successfully completed the training programme. An independent observer reviewed the images offline after clinical implementation, and a 91% (126/139) concordance rate was achieved. During the audit, 125 CBCT images from 13 patients were reviewed by a single observer and concordance was 92%. Radiographer-led selection of plan of the day was implemented successfully with the use of a training programme and continual assessment. Quality has been maintained over a period of 3 years. The training programme was successful in achieving and maintaining competency for a plan of the day technique.

  4. Effect of localizer radiograph on radiation dose associated with automatic exposure control: human cadaver and patient study.

    PubMed

    Singh, Sarabjeet; Petrovic, Dean; Jamnik, Ethen; Aran, Shima; Pourjabbar, Sarvenaz; Kave, Maggie L; Bradley, Stephen E; Choy, Garry; Kalra, Mannudeep K

    2014-01-01

    To evaluate the effect of localizing radiograph on computed tomography (CT) radiation dose associated with automatic exposure control with a human cadaver and patient study. Institutional review board approved the study with a waiver of informed consent. Two chest CT image series with fixed tube current and combined longitudinal-angular automatic exposure control (AEC) were acquired in a human cadaver (64-year-old man) after each of the 8 combinations of localizer radiographs (anteroposterior [AP], AP lateral, AP-posteroanterior [PA], lateral AP, lateral PA, PA, PA-AP, and PA lateral). Applied effective milliampere second, volume CT dose index (CTDIvol) and image noise were recorded for all 24-image series. Volume CT dose indexes were also recorded in 20 patients undergoing chest and abdominal CT after PA and PA-lateral radiographs with the use of AEC. Data were analyzed using analysis of variance and linear correlation tests. With AEC, the CTDIvol fluctuates with the number and projection of localizer radiographs (P < 0.0001). Lowest CTDIvol values are seen when 2 orthogonal localizer radiographs are acquired, whereas highest values are seen when single PA or AP-PA projection localizer radiographs are acquired for planning (P < 0.0001). In 20 patients, CT scanning with AEC after acquisition of 2 orthogonal projection localizer radiographs was associated with significant reduction in radiation dose compared to PA projection radiographs alone (P < 0.0001). When scanning with AEC, acquisition of 2 orthogonal localizer radiographs is associated with lower CTDIvol compared to a single localizer radiograph.

  5. A parameterized logarithmic image processing method with Laplacian of Gaussian filtering for lung nodule enhancement in chest radiographs.

    PubMed

    Chen, Sheng; Yao, Liping; Chen, Bao

    2016-11-01

    The enhancement of lung nodules in chest radiographs (CXRs) plays an important role in the manual as well as computer-aided detection (CADe) lung cancer. In this paper, we proposed a parameterized logarithmic image processing (PLIP) method combined with the Laplacian of a Gaussian (LoG) filter to enhance lung nodules in CXRs. We first applied several LoG filters with varying parameters to an original CXR to enhance the nodule-like structures as well as the edges in the image. We then applied the PLIP model, which can enhance lung nodule images with high contrast and was beneficial in extracting effective features for nodule detection in the CADe scheme. Our method combined the advantages of both the PLIP algorithm and the LoG algorithm, which can enhance lung nodules in chest radiographs with high contrast. To test our nodule enhancement method, we tested a CADe scheme, with a relatively high performance in nodule detection, using a publically available database containing 140 nodules in 140 CXRs enhanced through our nodule enhancement method. The CADe scheme attained a sensitivity of 81 and 70 % with an average of 5.0 frame rate (FP) and 2.0 FP, respectively, in a leave-one-out cross-validation test. By contrast, the CADe scheme based on the original image recorded a sensitivity of 77 and 63 % at 5.0 FP and 2.0 FP, respectively. We introduced the measurement of enhancement by entropy evaluation to objectively assess our method. Experimental results show that the proposed method obtains an effective enhancement of lung nodules in CXRs for both radiologists and CADe schemes.

  6. Full-Mouth Intraoral Radiographic Survey in Rabbits.

    PubMed

    Regalado, Adriana; Legendre, Loïc

    2017-09-01

    Dental pathologies are highly prevalent in pet rabbit populations, making oral radiography an essential tool in the evaluation of lagomorph dentitions. The unique anatomy of the rabbit's mouth limits the examination of the conscious animal to the rostral portion of it's mouth. In addition, the oral examination of an aradicular hypsodont tooth is restricted to the short coronal fraction of its crown. Erstwhile images obtained by the extraoral technique were once considered the most practical and informative tool in rabbit dentistry; however, limited visualization of the key structures of individual teeth became the major drawback of this technique. As new imaging technologies are becoming widely available and affordable for veterinarians, intraoral radiography offers the ability to prevent, diagnose, and treat oral pathologies in lagomorphs. This article describes a step-by-step procedure to obtain a full-mouth radiographic survey in rabbits. For this technique, a standard dental X-ray generator and intraoral storage phosphor plates are used while applying the bisecting angle technique. Among the advantages of this technique are detailed visualization of internal and external dental structures, identification of early lesions, and detection of occult pathologies. Furthermore, intraoral images offer superior resolution and higher diagnostic quality with minimal radiation exposure, making this method safer for the veterinarian, staff members, and their patients.

  7. Justification of radiographic examinations: What are the key issues?

    PubMed

    Vom, Jason; Williams, Imelda

    2017-09-01

    Justification of radiographic examinations is the practice of evaluating requested radiological examinations to assess for clinical merit and appropriateness based on clinical notes and patient information. This implies that justification in radiography requires the evaluation of requested examinations, the justification of exposures being applied and determining whether patients fit the recommended criteria for the procedure. Medico-legal requirements by the professional registration body, the Medical Radiation Practice Board of Australia (MRPBA), identify justification as an advocated and obligatory practice for radiographers. Yet, justification remains an inconsistent practice implemented amongst Australian radiographers. This review aims to identify associated barriers inhibiting the consistent practice of justification and the hesitance by radiographers in practicing justification responsibilities. It also recommends a change in workplace culture which encourages radiographers to accept a more autonomous role that cultivates critical thinking, reflection and research-informed decision making as justification will ultimately benefit patients. © 2017 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand Institute of Medical Radiation Technology.

  8. Magnetic resonance imaging is more sensitive than radiographs in detecting change in size of erosions in rheumatoid arthritis.

    PubMed

    Chen, Timothy S; Crues, John V; Ali, Muhammad; Troum, Orrin M

    2006-10-01

    To evaluate the technological performance of magnetic resonance imaging (MRI) with respect to projection radiography by determining the incidence of changes in the size of individual bone lesions in inflammatory arthritis, using serial high-resolution in-office MRI over short time intervals (8 months average followup), and by comparing the sensitivity of 3-view projection radiography with in-office MRI for detecting changes in size and number of individual erosions. MR examinations of the wrists and second and third metacarpophalangeal joints were performed using a portable in-office MR system in a total of 405 patients with inflammatory arthritis, from one rheumatologist's practice, who were undergoing aggressive disease modifying antirheumatic drug therapy. Of the patients, 156 were imaged at least twice, allowing evaluation of 246 followup examinations (mean followup interval of 8 months over a 2-year period). Baseline and followup plain radiographs were obtained in 165 patient intervals. Patients refused radiographic examination on 81 followup visits. MRI demonstrated no detectable changes in 124 of the 246 (50%) followup MRI examinations. An increase in the size or number of erosions was demonstrated in 74 (30%) examinations, a decrease in the size or number of erosions in 36 (15%), and both increases and decreases in erosions were seen in 11 (4%). In the 165 studies with followup radiographic comparisons, only one examination (0.8%) showed an erosion not seen on the prior examination and one (0.8%) showed an increase in a previously noted erosion. We showed that high-resolution in-office MRI with an average followup of 8 months detects changes in bony disease in 50% of compliant patients during aggressive treatment for inflammatory arthritis in a single rheumatologist's office practice. Plain radiography is insensitive for detecting changes in bone erosions for this patient population in this time frame.

  9. Automatic joint alignment measurements in pre- and post-operative long leg standing radiographs.

    PubMed

    Goossen, A; Weber, G M; Dries, S P M

    2012-01-01

    For diagnosis or treatment assessment of knee joint osteoarthritis it is required to measure bone morphometry from radiographic images. We propose a method for automatic measurement of joint alignment from pre-operative as well as post-operative radiographs. In a two step approach we first detect and segment any implants or other artificial objects within the image. We exploit physical characteristics and avoid prior shape information to cope with the vast amount of implant types. Subsequently, we exploit the implant delineations to adapt the initialization and adaptation phase of a dedicated bone segmentation scheme using deformable template models. Implant and bone contours are fused to derive the final joint segmentation and thus the alignment measurements. We evaluated our method on clinical long leg radiographs and compared both the initialization rate, corresponding to the number of images successfully processed by the proposed algorithm, and the accuracy of the alignment measurement. Ground truth has been generated by an experienced orthopedic surgeon. For comparison a second reader reevaluated the measurements. Experiments on two sets of 70 and 120 digital radiographs show that 92% of the joints could be processed automatically and the derived measurements of the automatic method are comparable to a human reader for pre-operative as well as post-operative images with a typical error of 0.7° and correlations of r = 0.82 to r = 0.99 with the ground truth. The proposed method allows deriving objective measures of joint alignment from clinical radiographs. Its accuracy and precision are on par with a human reader for all evaluated measurements.

  10. Comparison of a flexible versus a rigid breast compression paddle: pain experience, projected breast area, radiation dose and technical image quality.

    PubMed

    Broeders, Mireille J M; Ten Voorde, Marloes; Veldkamp, Wouter J H; van Engen, Ruben E; van Landsveld-Verhoeven, Cary; 't Jong-Gunneman, Machteld N L; de Win, Jos; Greve, Kitty Droogh-de; Paap, Ellen; den Heeten, Gerard J

    2015-03-01

    To compare pain, projected breast area, radiation dose and image quality between flexible (FP) and rigid (RP) breast compression paddles. The study was conducted in a Dutch mammographic screening unit (288 women). To compare both paddles one additional image with RP was made, consisting of either a mediolateral-oblique (MLO) or craniocaudal-view (CC). Pain experience was scored using the Numeric Rating Scale (NRS). Projected breast area was estimated using computer software. Radiation dose was estimated using the model by Dance. Image quality was reviewed by three radiologists and three radiographers. There was no difference in pain experience between both paddles (mean difference NRS: 0.08 ± 0.08, p = 0.32). Mean radiation dose was 4.5 % lower with FP (0.09 ± 0.01 p = 0.00). On MLO-images, the projected breast area was 0.79 % larger with FP. Paired evaluation of image quality indicated that FP removed fibroglandular tissue from the image area and reduced contrast in the clinically relevant retroglandular area at chest wall side. Although FP performed slightly better in the projected breast area, it moved breast tissue from the image area at chest wall side. RP showed better contrast, especially in the retroglandular area. We therefore recommend the use of RP for standard MLO and CC views.

  11. Image quality assessment and medical physics evaluation of different portable dental X-ray units.

    PubMed

    Pittayapat, Pisha; Oliveira-Santos, Christiano; Thevissen, Patrick; Michielsen, Koen; Bergans, Niki; Willems, Guy; Debruyckere, Deborah; Jacobs, Reinhilde

    2010-09-10

    Recently developed portable dental X-ray units increase the mobility of the forensic odontologists and allow more efficient X-ray work in a disaster field, especially when used in combination with digital sensors. This type of machines might also have potential for application in remote areas, military and humanitarian missions, dental care of patients with mobility limitation, as well as imaging in operating rooms. To evaluate radiographic image quality acquired by three portable X-ray devices in combination with four image receptors and to evaluate their medical physics parameters. Images of five samples consisting of four teeth and one formalin-fixed mandible were acquired by one conventional wall-mounted X-ray unit, MinRay 60/70 kVp, used as a clinical standard, and three portable dental X-ray devices: AnyRay 60 kVp, Nomad 60 kVp and Rextar 70 kVp, in combination with a phosphor image plate (PSP), a CCD, or a CMOS sensor. Three observers evaluated images for standard image quality besides forensic diagnostic quality on a 4-point rating scale. Furthermore, all machines underwent tests for occupational as well as patient dosimetry. Statistical analysis showed good quality imaging for all system, with the combination of Nomad and PSP yielding the best score. A significant difference in image quality between the combination of the four X-ray devices and four sensors was established (p<0.05). For patient safety, the exposure rate was determined and exit dose rates for MinRay at 60 kVp, MinRay at 70 kVp, AnyRay, Nomad and Rextar were 3.4 mGy/s, 4.5 mGy/s, 13.5 mGy/s, 3.8 mGy/s and 2.6 mGy/s respectively. The kVp of the AnyRay system was the most stable, with a ripple of 3.7%. Short-term variations in the tube output of all the devices were less than 10%. AnyRay presented higher estimated effective dose than other machines. Occupational dosimetry showed doses at the operator's hand being lowest with protective shielding (Nomad: 0.1 microGy). It was also low while

  12. Association between the Presence of Apical Periodontitis and Clinical Symptoms in Endodontic Patients Using Cone-beam Computed Tomography and Periapical Radiographs.

    PubMed

    Weissman, Jake; Johnson, James D; Anderson, Melissa; Hollender, Lars; Huson, Tim; Paranjpe, Avina; Patel, Shanon; Cohenca, Nestor

    2015-11-01

    Cone-beam computed tomographic (CBCT) imaging is a valuable adjunct to endodontic practice. Among the endodontic applications of CBCT imaging, it aids in the diagnosis of apical periodontitis, often in cases in which there is no evidence of pathosis identified by conventional imaging. The purpose of this study was to correlate the presence of apical periodontitis of teeth evaluated with 2-dimensional periapical (PA) radiographs and 3-dimensional CBCT volumes with clinical signs and symptoms. Clinical records were reviewed from patients examined at the graduate endodontics clinic. The examination included clinical examination, sensibility tests, PA radiographs, and limited field-of-view CBCT scans. Of 498 cases, 67 fulfilled the inclusion criteria and were evaluated for apical periodontitis and symptomology. CBCT slices and PA radiographs were evaluated by 2 board-certified endodontists and a board-certified oral and maxillofacial radiologist for the presence of apical periodontitis. Thirty eight of 67 teeth showed the presence of apical radiolucencies on PA radiographs and on CBCT imaging, whereas 14 teeth had no evidence of apical radiolucencies on either imaging modality. Fifteen cases showed the presence of apical radiolucencies visible on CBCT imaging that were not visible on PA radiographic images. The presence of apical radiolucencies on CBCT slices and PA radiographic images was correlated with clinical signs and symptoms, including the chief complaint. This research has important implications to prevent overexposure to radiation and to provide treatment for those patients with persistent symptoms lacking proper diagnosis based on conventional (2D) radiographs. Copyright © 2015. Published by Elsevier Inc.

  13. Comparison of clinical, radiographic, computed tomographic, and magnetic resonance imaging methods for early prediction of canine hip laxity and dysplasia.

    PubMed

    Ginja, Mário M D; Ferreira, António J; Jesus, Sandra S; Melo-Pinto, Pedro; Bulas-Cruz, José; Orden, Maria A; San-Roman, Fidel; Llorens-Pena, Maria P; Gonzalo-Orden, José M

    2009-01-01

    The purpose of the study was to use two palpation methods (Bardens and Ortolani), a radiographic distraction view, three computed tomography (CT) measurements (dorsolateral subluxation score, the lateral center-edge angle, and acetabular ventroversion angle) and two magnetic resonance (MR) imaging hip studies (synovial fluid and acetabular depth indices) in the early monitoring of hip morphology and laxity in 7-9 week old puppies; and in a follow-up study to compare their accuracy in predicting later hip laxity and dysplasia. The MR imaging study was performed with the dog in dorsal recumbency and the CT study with the animal in a weight-bearing position. There was no association between clinical laxity with later hip laxity or dysplasia. The dorsolateral subluxation score and the lateral center-edge angle were characterized by a weak negative correlation with later radiographic passive hip laxity (-0.26 < r < -0.38, P < 0.05) but its association with hip dysplasia was not significant. There was an association between early radiographic passive hip laxity and synovial fluid index with later passive hip laxity (0.41 < r < 0.55, P < 0.05) and this was significantly different in dysplastic vs. nondysplastic hips (P < 0.05). There was no association between the remaining variables and later hip laxity or dysplasia. The overlapping ranges of early passive hip laxity and synovial fluid index for hip dysplasia grades and the moderate correlations with the later passive hip laxity make the results of these variables unreliable for use in predicting hip laxity and dysplasia susceptibility.

  14. Psychophysical evaluation of the image quality of a dynamic flat-panel digital x-ray image detector using the threshold contrast detail detectability (TCDD) technique

    NASA Astrophysics Data System (ADS)

    Davies, Andrew G.; Cowen, Arnold R.; Bruijns, Tom J. C.

    1999-05-01

    We are currently in an era of active development of the digital X-ray imaging detectors that will serve the radiological communities in the new millennium. The rigorous comparative physical evaluations of such devices are therefore becoming increasingly important from both the technical and clinical perspectives. The authors have been actively involved in the evaluation of a clinical demonstration version of a flat-panel dynamic digital X-ray image detector (or FDXD). Results of objective physical evaluation of this device have been presented elsewhere at this conference. The imaging performance of FDXD under radiographic exposure conditions have been previously reported, and in this paper a psychophysical evaluation of the FDXD detector operating under continuous fluoroscopic conditions is presented. The evaluation technique employed was the threshold contrast detail detectability (TCDD) technique, which enables image quality to be measured on devices operating in the clinical environment. This approach addresses image quality in the context of both the image acquisition and display processes, and uses human observers to measure performance. The Leeds test objects TO[10] and TO[10+] were used to obtain comparative measurements of performance on the FDXD and two digital spot fluorography (DSF) systems, one utilizing a Plumbicon camera and the other a state of the art CCD camera. Measurements were taken at a range of detector entrance exposure rates, namely 6, 12, 25 and 50 (mu) R/s. In order to facilitate comparisons between the systems, all fluoroscopic image processing such as noise reduction algorithms, were disabled during the experiments. At the highest dose rate FDXD significantly outperformed the DSF comparison systems in the TCDD comparisons. At 25 and 12 (mu) R/s all three-systems performed in an equivalent manner and at the lowest exposure rate FDXD was inferior to the two DSF systems. At standard fluoroscopic exposures, FDXD performed in an equivalent

  15. Diagnostic imaging of infertility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winfield, A.C.; Wentz, A.C.

    1987-01-01

    This text presents a review of all the imaging modalities available in the diagnosis of infertility. This book integrates the perspectives of experts in ob/gyn, radiology, reproductive endocrinology, and urology. It's a one-of-a-kind ''how to'' guide to hysterosalpinography and infertility evaluation, providing complete clinical information on the techniques, pitfalls, problems encountered and differential diagnosis. Detailed descriptions accompany numerous high-quality illustrations to help correlate findings and give meaning to the radiographic and ultrasound images.

  16. NOVEL RADIOGRAPHIC TECHNIQUE FOR PREGNANCY DETECTION IN THE MANED WOLF (CHRYSOCYON BRACHYURUS) WITHOUT ANESTHESIA.

    PubMed

    Aitken-Palmer, Copper; A C Z M, Dipl; Ware, Lisa H; Braun, Lacey; Lang, Kenneth; Joyner, Priscilla H

    2017-03-01

    Maned wolves ( Chrysocyon brachyurus ) maintained in ex situ populations challenge veterinarians and managers with high neonatal mortality and parental incompetence. These challenges led to the development of a novel diagnostic approach for pregnancy detection using radiographic imaging without anesthesia or sedation. To do this, a specialized crate was constructed to easily contain a single maned wolf, allowing the capture of lateral projection radiographic images of the abdomen prior to and throughout a 66-day pregnancy (days 20, 34, 48, and 55 of 66). Radiographs taken at days 48 and 55 postbreeding showed evidence of neonatal skeleton mineralization, confirming pregnancy with two pups. The dam gave birth at day 66 to two pups. This technical report describes a novel approach without anesthesia for successful radiographic pregnancy detection and determination of litter size in the maned wolf, a midsize carnivore, using a specially constructed crate.

  17. Benefit-risk communication in paediatric imaging: What do referring physicians, radiographers and radiologists think, say and do?

    PubMed

    Portelli, J L; McNulty, J P; Bezzina, P; Rainford, L

    2018-02-01

    To assess how referrers and practitioners disclose benefit-risk information about medical imaging examinations to paediatric patients and their parents/guardians; to gauge their confidence in doing so; and to seek their opinion about who is responsible for disclosing such information. This study followed on from a previously published study, with a questionnaire distributed in staggered phases to 146 radiographers, 22 radiology practitioners, 55 emergency physicians and 43 paediatricians at a primary paediatric referral centre in Malta. The questionnaire sought details about referrers' and practitioners' practice of disclosing benefit-risk information, as well as their opinion about their confidence and responsibility to do so. An overall response rate of 63.2% (168/266) was achieved. Most referrers and practitioners would generally explain the purpose of the imaging examination, with fewer providing benefit-risk information. The content and the approach adopted to communicate benefit-risk information varied, at times considerably. While 75% (123/164) felt that the responsibility to provide benefit-risk information was a shared one between referrers and practitioners, only 32.1% (53/165) reported a high level of confidence in their own ability to do so. Our findings highlight potential knowledge and skills gaps amongst local referrers and practitioners. This needs addressing so as to ensure that paediatric patients and their parents/guardians are provided with adequate, reassuring and consistent information. Additionally, we recommend that local referrers and practitioners come together and develop a consensus document that can offer guidance on how to go about discussing the benefits and risks of paediatric imaging examinations. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  18. Outcome of recommendations for radiographic follow-up of pneumonia on outpatient chest radiography.

    PubMed

    Little, Brent P; Gilman, Matthew D; Humphrey, Kathryn L; Alkasab, Tarik K; Gibbons, Fiona K; Shepard, Jo-Anne O; Wu, Carol C

    2014-01-01

    Follow-up chest radiographs are frequently recommended by radiologists to document the clearing of radiographically suspected pneumonia. However, the clinical utility of follow-up radiography is not well understood. The purpose of this study was to examine the incidence of important pulmonary pathology revealed during follow-up imaging of suspected pneumonia on outpatient chest radiography. Reports of 29,138 outpatient chest radiography examinations performed at an academic medical center in 2008 were searched to identify cases in which the radiologist recommended follow-up chest radiography for presumed community-acquired pneumonia (n = 618). Descriptions of index radiographic abnormalities were recorded. Reports of follow-up imaging (radiography and CT) performed during the period from January 2008 to January 2010 were reviewed to assess the outcome of the index abnormality. Clinical history, demographics, microbiology, and pathology reports were reviewed and recorded. Compliance with follow-up imaging recommendations was 76.7%. In nine of 618 cases (1.5%), a newly diagnosed malignancy corresponded to the abnormality on chest radiography initially suspected to be pneumonia. In 23 of 618 cases (3.7%), an alternative nonmalignant disease corresponded with the abnormality on chest radiography initially suspected to be pneumonia. Therefore, in 32 of 618 patients (5.2%), significant new pulmonary diagnoses were established during follow-up imaging of suspected pneumonia. Follow-up imaging of radiographically suspected pneumonia leads to a small number of new diagnoses of malignancy and important nonmalignant diseases, which may alter patient management.

  19. Radiographer.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document, which is designed for use in developing a tech prep competency profile for the occupation of radiographer, lists technical competencies and competency builders for 18 units pertinent to the health technologies cluster in general as well as those specific to the occupation of radiographer. The following skill areas are covered in the…

  20. High Variability of Observed Weight Bearing During Standing Foot and Ankle Radiographs.

    PubMed

    Miller, Christopher P; Ghorbanhoseini, Mohammad; Ehrlichman, Lauren K; Walley, Kempland C; Ghaheri, Azadeh; Kwon, John Y

    2017-06-01

    Weight-bearing radiographs are a critical component of evaluating foot and ankle pathology. An underlying assumption is that patients are placing 50% of their body weight on the affected foot during image acquisition. The accuracy of weight bearing during radiographs is unknown and, presumably, variable, which may result in uncertain ability of the resultant radiographs to appropriately portray the pathology of interest. Fifty subjects were tested. The percentage body weight through the foot of interest was measured at the moment of radiographic image acquisition. The subject was then instructed to bear "half [their] weight" prior to the next radiograph. The percentage body weight was calculated and compared to ideal 50% weight bearing. The mean percentage body weight in trial 1 and 2 was 45.7% ± 3.2% ( P = .012 compared to the 50% mark) and 49.2% ± 2.4%, respectively ( P = .428 compared to 50%). The mean absolute difference in percentage weight bearing compared to 50% in trials 1 and 2 was 9.3% ± 2.3% and 5.8% ± 1.8%, respectively ( P = .005). For trial 1, 18/50 subjects were within the "ideal" (45%-55%) range for weight bearing compared to 32/50 on trial 2 ( P = .005). In trial 1, 24/50 subjects had "appropriate" (>45%) weight bearing compared to 39/50 on trial 2 ( P = .002). There was substantial variability in the weight applied during radiograph acquisition. This study raises questions regarding the assumptions, reliability, and interpretation when evaluating weight-bearing radiographs. Level III, comparative study.

  1. Reproducibility of sagittal radiographic parameters in adolescent idiopathic scoliosis-a guide to reference values using serial imaging.

    PubMed

    Hey, Hwee Weng Dennis; Wong, Gordon Chengyuan; Chan, Chloe Xiaoyun; Lau, Leok-Lim; Kumar, Naresh; Thambiah, Joseph Shantakumar; Ruiz, John Nathaniel; Liu, Ka-Po Gabriel; Wong, Hee-Kit

    2017-06-01

    Knowledge of sagittal radiographic parameters in adolescent idiopathic scoliosis (AIS) patients has not yet caught up with our understanding of their roles in patients with adult spinal deformity. It is likely that more emphasis will be placed in restoring sagittal parameters for AIS patients in the future. Therefore, we need to understand how these parameters may vary in AIS to facilitate management plans. This study aimed to determine the reproducibility of sagittal spinal parameters on lateral film radiographs in patients with AIS. This was a retrospective, comparative study conducted in a tertiary health-care institution from January 2013 to February 2016 (3-year period). All AIS patients who underwent deformity correction surgery from January 2013 to February 2016 and had two preoperative serial lateral radiographs taken within the time period of a month were included in the study. Radiographic sagittal spinal parameters including sagittal vertical axis (SVA), cervical lordosis (CL), thoracic kyphosis (TK), thoracolumbar alignment (TL), lumbar lordosis (LL); standard spinopelvic measurements such as pelvic incidence (PI), pelvic tilt (PT), sacral slope (SS); as well as end and apical vertebrae of cervical, thoracic, and lumbar curves were the outcome measures. All patient data were pooled from electronic medical records, and X-ray images were retrieved from Centricity Enterprise Web. Averaged X-ray measurements by two independent assessors were analyzed by comparing two radiographs of the same patients performed within a 1-month time period. Chi-squared and Wilcoxon signed-rank tests were used for categorical and continuous variables. The study cohort comprised 138 patients, 28 men and 110 women, with a mean age of 15 years (range 11-20). Between the two lateral X-rays, there was a mean difference of 0.79 cm in SVA (p<.001), 0.70° in LL (p=.033), and 0.73° in PT (p=.010). In the combined Lenke 1 and 2 subgroup, there was a similar 0.77 cm (p=.002), 0.79

  2. 42 CFR 37.51 - Interpreting and classifying chest radiographs-digital radiography systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... chest radiographic images provided for use with the Guidelines for the Use of the ILO International... standard digital images may be used for classifying digital chest images for pneumoconiosis. Modification of the appearance of the standard images using software tools is not permitted. (d) Viewing systems...

  3. 42 CFR 37.51 - Interpreting and classifying chest radiographs-digital radiography systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... standard digital chest radiographic images provided for use with the Guidelines for the Use of the ILO... NIOSH-approved standard digital images may be used for classifying digital chest images for pneumoconiosis. Modification of the appearance of the standard images using software tools is not permitted. (d...

  4. Assessing product image quality for online shopping

    NASA Astrophysics Data System (ADS)

    Goswami, Anjan; Chung, Sung H.; Chittar, Naren; Islam, Atiq

    2012-01-01

    Assessing product-image quality is important in the context of online shopping. A high quality image that conveys more information about a product can boost the buyer's confidence and can get more attention. However, the notion of image quality for product-images is not the same as that in other domains. The perception of quality of product-images depends not only on various photographic quality features but also on various high level features such as clarity of the foreground or goodness of the background etc. In this paper, we define a notion of product-image quality based on various such features. We conduct a crowd-sourced experiment to collect user judgments on thousands of eBay's images. We formulate a multi-class classification problem for modeling image quality by classifying images into good, fair and poor quality based on the guided perceptual notions from the judges. We also conduct experiments with regression using average crowd-sourced human judgments as target. We compute a pseudo-regression score with expected average of predicted classes and also compute a score from the regression technique. We design many experiments with various sampling and voting schemes with crowd-sourced data and construct various experimental image quality models. Most of our models have reasonable accuracies (greater or equal to 70%) on test data set. We observe that our computed image quality score has a high (0.66) rank correlation with average votes from the crowd sourced human judgments.

  5. Radiographic Study of Haematogenous Septic Arthritis in Dairy Calves.

    PubMed

    Constant, Caroline; Masseau, Isabelle; Babkine, Marie; Nichols, Sylvain; Francoz, David; Fecteau, Gilles; Marchionatti, Emma; Larde, Helene; Desrochers, Andre

    2018-06-16

     (1) To develop an evaluation grid to provide a systematic interpretation of calves' articular radiographs, (2) to describe radiographic lesions of septic arthritis in dairy calves less than 6 months of age, (3) to investigate potential associations between demographic data or synovial bacteriological culture results and radiographic lesions (4) to determine whether an association is present between radiographic lesions, their severity and the long-term outcome.  Medical records of 54 calves less than 180 days old treated for septic arthritis between 2009 and 2014 with radiographic images performed in the first 2 days after admission were reviewed.  Most common radiographic findings were increased articular joint space height ( n  = 49), irregularity of the articular surfaces ( n  = 24) and subchondral bone lysis ( n  = 24). The number of lesions observed and their severity were associated with older calves ( p  = 0.02), increased time between onset of clinical signs and admission ( p  = 0.0001) and the culture of Trueperella pyogenes within the joint ( p  = 0.02). The radiographic lesions associated with negative long-term prognosis were reduction in the joint space height ( p  = 0.01) and subchondral bone lysis on weight-bearing surfaces ( p  = 0.02).  An evaluation grid designed for veterinarians can facilitate systematic reading of articular radiographs and can be used for dairy calves with a presumptive diagnosis of septic arthritis. This diagnostic tool may aid in establishing a prognosis and decision-making process in terms of treatment. Schattauer GmbH Stuttgart.

  6. Unsupervised segmentation of lungs from chest radiographs

    NASA Astrophysics Data System (ADS)

    Ghosh, Payel; Antani, Sameer K.; Long, L. Rodney; Thoma, George R.

    2012-03-01

    This paper describes our preliminary investigations for deriving and characterizing coarse-level textural regions present in the lung field on chest radiographs using unsupervised grow-cut (UGC), a cellular automaton based unsupervised segmentation technique. The segmentation has been performed on a publicly available data set of chest radiographs. The algorithm is useful for this application because it automatically converges to a natural segmentation of the image from random seed points using low-level image features such as pixel intensity values and texture features. Our goal is to develop a portable screening system for early detection of lung diseases for use in remote areas in developing countries. This involves developing automated algorithms for screening x-rays as normal/abnormal with a high degree of sensitivity, and identifying lung disease patterns on chest x-rays. Automatically deriving and quantitatively characterizing abnormal regions present in the lung field is the first step toward this goal. Therefore, region-based features such as geometrical and pixel-value measurements were derived from the segmented lung fields. In the future, feature selection and classification will be performed to identify pathological conditions such as pulmonary tuberculosis on chest radiographs. Shape-based features will also be incorporated to account for occlusions of the lung field and by other anatomical structures such as the heart and diaphragm.

  7. Radiographic protocol and normal anatomy of the hind feet in the white rhinoceros (Ceratotherium simum).

    PubMed

    Dudley, Robert J; Wood, Simon P; Hutchinson, John R; Weller, Renate

    2015-01-01

    Foot pathology is a common and important health concern in captive rhinoceroses worldwide, but osteopathologies are rarely diagnosed, partly because of a lack of radiographic protocols. Here, we aimed to develop the first radiographic protocol for rhinoceros feet and describe the radiographic anatomy of the white rhinoceros (Ceratotherium simum) hind foot (pes). Computed tomographic images were obtained of nine cadaver pedes from seven different white rhinoceroses and assessed for pathology. A single foot deemed free of pathology was radiographed using a range of different projections and exposures to determine the best protocol. 3D models were produced from the CT images and were displayed with the real radiographs to describe the normal radiographic anatomy of the white rhinoceros pes. An optimal radiographic projection was determined for each bone in the rhinoceros pes focusing on highlighting areas where pathology has been previously described. The projections deemed to be most useful were D60Pr-PlDiO (digit III), D45Pr45M-PlDiLO (digit II), and D40Pr35L-PlDiLO (digit IV). The primary beam was centered 5-7 cm proximal to the cuticle on the digit of interest. Articular surfaces, ridges, grooves, tubercles, processes and fossae were identified. The radiographic protocol we have developed along with the normal radiographic anatomy we have described will allow for more accessible and effective diagnosis of white rhinoceros foot osteopathologies. © 2014 American College of Veterinary Radiology.

  8. Image Quality Ranking Method for Microscopy

    PubMed Central

    Koho, Sami; Fazeli, Elnaz; Eriksson, John E.; Hänninen, Pekka E.

    2016-01-01

    Automated analysis of microscope images is necessitated by the increased need for high-resolution follow up of events in time. Manually finding the right images to be analyzed, or eliminated from data analysis are common day-to-day problems in microscopy research today, and the constantly growing size of image datasets does not help the matter. We propose a simple method and a software tool for sorting images within a dataset, according to their relative quality. We demonstrate the applicability of our method in finding good quality images in a STED microscope sample preparation optimization image dataset. The results are validated by comparisons to subjective opinion scores, as well as five state-of-the-art blind image quality assessment methods. We also show how our method can be applied to eliminate useless out-of-focus images in a High-Content-Screening experiment. We further evaluate the ability of our image quality ranking method to detect out-of-focus images, by extensive simulations, and by comparing its performance against previously published, well-established microscopy autofocus metrics. PMID:27364703

  9. Global quality imaging: emerging issues.

    PubMed

    Lau, Lawrence S; Pérez, Maria R; Applegate, Kimberly E; Rehani, Madan M; Ringertz, Hans G; George, Robert

    2011-07-01

    Quality imaging may be described as "a timely access to and delivery of integrated and appropriate procedures, in a safe and responsive practice, and a prompt delivery of an accurately interpreted report by capable personnel in an efficient, effective, and sustainable manner." For this article, radiation safety is considered as one of the key quality elements. The stakeholders are the drivers of quality imaging. These include those that directly provide or use imaging procedures and others indirectly supporting the system. Imaging is indispensable in health care, and its use has greatly expanded worldwide. Globalization, consumer sophistication, communication and technological advances, corporatization, rationalization, service outsourcing, teleradiology, workflow modularization, and commoditization are reshaping practice. This article defines the emerging issues; an earlier article in the May 2011 issue described possible improvement actions. The issues that could threaten the quality use of imaging for all countries include workforce shortage; increased utilization, population radiation exposure, and cost; practice changes; and efficiency drive and budget constraints. In response to these issues, a range of quality improvement measures, strategies, and actions are used to maximize the benefits and minimize the risks. The 3 measures are procedure justification, optimization of image quality and radiation protection, and error prevention. The development and successful implementation of such improvement actions require leadership, collaboration, and the active participation of all stakeholders to achieve the best outcomes that we all advocate. Copyright © 2011 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  10. Automatic quality assessment of planetary images

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, P.; Muller, J.-P.

    2015-10-01

    A significant fraction of planetary images are corrupted beyond the point that much scientific meaning can be extracted. For example, transmission errors result in missing data which is unrecoverable. The available planetary image datasets include many such "bad data", which both occupy valuable scientific storage resources and create false impressions about planetary image availability for specific planetary objects or target areas. In this work, we demonstrate a pipeline that we have developed to automatically assess the quality of planetary images. Additionally, this method discriminates between different types of image degradation, such as low-quality originating from camera flaws or low-quality triggered by atmospheric conditions, etc. Examples of quality assessment results for Viking Orbiter imagery will be also presented.

  11. A computerized scheme of SARS detection in early stage based on chest image of digital radiograph

    NASA Astrophysics Data System (ADS)

    Zheng, Zhong; Lan, Rihui; Lv, Guozheng

    2004-05-01

    A computerized scheme for early severe acute respiratory syndrome(SARS) lesion detection in digital chest radiographs is presented in this paper. The total scheme consists of two main parts: the first part is to determine suspect lesions by the theory of locally orderless images(LOI) and their spatial features; the second part is to select real lesions among these suspect ones by their frequent features. The method we used in the second part is firstly developed by Katsuragawa et al with necessary modification. Preliminary results indicate that these features are good criterions to tell early SARS lesions apart from other normal lung structures.

  12. Comparative Analysis of Reconstructed Image Quality in a Simulated Chromotomographic Imager

    DTIC Science & Technology

    2014-03-01

    quality . This example uses five basic images a backlit bar chart with random intensity, 100 nm separation. A total of 54 initial target...compared for a variety of scenes. Reconstructed image quality is highly dependent on the initial target hypercube so a total of 54 initial target...COMPARATIVE ANALYSIS OF RECONSTRUCTED IMAGE QUALITY IN A SIMULATED CHROMOTOMOGRAPHIC IMAGER THESIS

  13. Detection of proximal caries using digital radiographic systems with different resolutions.

    PubMed

    Nikneshan, Sima; Abbas, Fatemeh Mashhadi; Sabbagh, Sedigheh

    2015-01-01

    Dental radiography is an important tool for detection of caries and digital radiography is the latest advancement in this regard. Spatial resolution is a characteristic of digital receptors used for describing the quality of images. This study was aimed to compare the diagnostic accuracy of two digital radiographic systems with three different resolutions for detection of noncavitated proximal caries. Diagnostic accuracy. Seventy premolar teeth were mounted in 14 gypsum blocks. Digora; Optime and RVG Access were used for obtaining digital radiographs. Six observers evaluated the proximal surfaces in radiographs for each resolution in order to determine the depth of caries based on a 4-point scale. The teeth were then histologically sectioned, and the results of histologic analysis were considered as the gold standard. Data were entered using SPSS version 18 software and the Kruskal-Wallis test was used for data analysis. P <0.05 was considered as statistically significant. No significant difference was found between different resolutions for detection of proximal caries (P > 0.05). RVG access system had the highest specificity (87.7%) and Digora; Optime at high resolution had the lowest specificity (84.2%). Furthermore, Digora; Optime had higher sensitivity for detection of caries exceeding outer half of enamel. Judgment of oral radiologists for detection of the depth of caries had higher reliability than that of restorative dentistry specialists. The three resolutions of Digora; Optime and RVG access had similar accuracy in detection of noncavitated proximal caries.

  14. Guest Editorial Image Quality

    NASA Astrophysics Data System (ADS)

    Cheatham, Patrick S.

    1982-02-01

    The term image quality can, unfortunately, apply to anything from a public relations firm's discussion to a comparison between corner drugstores' film processing. If we narrow the discussion to optical systems, we clarify the problem somewhat, but only slightly. We are still faced with a multitude of image quality measures all different, and all couched in different terminology. Optical designers speak of MTF values, digital processors talk about summations of before and after image differences, pattern recognition engineers allude to correlation values, and radar imagers use side-lobe response values measured in decibels. Further complexity is introduced by terms such as information content, bandwidth, Strehl ratios, and, of course, limiting resolution. The problem is to compare these different yardsticks and try to establish some concrete ideas about evaluation of a final image. We need to establish the image attributes which are the most important to perception of the image in question and then begin to apply the different system parameters to those attributes.

  15. Standardized radiographic interpretation of thoracic tuberculosis in children.

    PubMed

    Concepcion, Nathan David P; Laya, Bernard F; Andronikou, Savvas; Daltro, Pedro A N; Sanchez, Marion O; Uy, Jacqueline Austine U; Lim, Timothy Reynold U

    2017-09-01

    There is a lack of standardized approach and terminology to classify the diverse spectrum of manifestations in tuberculosis. It is important to recognize the different clinical and radiographic patterns to guide treatment. As a result of changing epidemiology, there is considerable overlap in the radiologic presentations of primary tuberculosis and post-primary tuberculosis. In this article we promote a standardized approach in clinical and radiographic classification for children suspected of having or diagnosed with childhood tuberculosis. We propose standardized terms to diminish confusion and miscommunication, which can affect management. In addition, we present pitfalls and limitations of imaging.

  16. Proton energy and scattering angle radiographs to improve proton treatment planning: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Biegun, A. K.; Takatsu, J.; Nakaji, T.; van Goethem, M. J.; van der Graaf, E. R.; Koffeman, E. N.; Visser, J.; Brandenburg, S.

    2016-12-01

    The novel proton radiography imaging technique has a large potential to be used in direct measurement of the proton energy loss (proton stopping power, PSP) in various tissues in the patient. The uncertainty of PSPs, currently obtained from translation of X-ray Computed Tomography (xCT) images, should be minimized from 3-5% or higher to less than 1%, to make the treatment plan with proton beams more accurate, and thereby better treatment for the patient. With Geant4 we simulated a proton radiography detection system with two position-sensitive and residual energy detectors. A complex phantom filled with various materials (including tissue surrogates), was placed between the position sensitive detectors. The phantom was irradiated with 150 MeV protons and the energy loss radiograph and scattering angles were studied. Protons passing through different materials in the phantom lose energy, which was used to create a radiography image of the phantom. The multiple Coulomb scattering of a proton traversing different materials causes blurring of the image. To improve image quality and material identification in the phantom, we selected protons with small scattering angles. A good quality proton radiography image, in which various materials can be recognized accurately, and in combination with xCT can lead to more accurate relative stopping powers predictions.

  17. Quality of Life in Symptomatic Individuals After Anterior Cruciate Ligament Reconstruction, With and Without Radiographic Knee Osteoarthritis.

    PubMed

    Filbay, Stephanie R; Ackerman, Ilana N; Dhupelia, Sanjay; Arden, Nigel K; Crossley, Kay M

    2018-05-01

    Study Design Clinical measurement, cross-sectional. Background Individuals who have undergone anterior cruciate ligament (ACL) reconstruction commonly experience long-term impairments in quality of life (QoL), which may be related to persistent knee symptoms or radiographic osteoarthritis (ROA). Understanding the impact of knee symptoms and ROA on QoL after ACL reconstruction may assist in the development of appropriate management strategies. Objectives To (1) compare QoL between groups of individuals after ACL reconstruction (including those who are symptomatic with ROA, symptomatic without ROA, and asymptomatic [unknown ROA status]), and (2) identify specific aspects of QoL impairment in symptomatic individuals with and without ROA post ACL reconstruction. Methods One hundred thirteen participants completed QoL measures (Knee injury and Osteoarthritis Outcome Score QoL subscale [KOOS-QoL], Anterior Cruciate Ligament Quality of Life [ACL-QoL], Assessment of Quality of Life-8 Dimensions [AQoL-8D]) 5 to 20 years after ACL reconstruction. Eighty-one symptomatic individuals underwent radiographs, and 32 asymptomatic individuals formed a comparison group. Radiographic osteoarthritis was defined as a Kellgren-Lawrence grade of 2 or greater for the tibiofemoral and/or patellofemoral joints. Mann-Whitney U tests compared outcomes between groups. Individual ACL-QoL items were used to explore specific aspects of QoL. Results In symptomatic individuals after ACL reconstruction, ROA was related to worse knee-related outcomes on the KOOS-QoL (median, 50; interquartile range [IQR], 38-69 versus median, 69; IQR, 56-81; P<.001) and the ACL-QoL (median, 51; IQR, 38-71 versus median, 66; IQR, 50-82; P = .04). The AQoL-8D scores showed that health-related QoL was impaired in both symptomatic groups compared to the asymptomatic group. The ACL-QoL item scores revealed greater limitations and concern surrounding sport and exercise and social/emotional difficulties in the symptomatic

  18. SU-F-I-02: Comparative Analysis and Constancy Check of Image Quality Parameters for Three Linear Accelerators Per TG 142 Protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altundal, Y; Pokhrel, D; Jiang, H

    Purpose: To compare image quality parameters and assessing the image stability of three different linear accelerators (linac) for 2D and 3D imaging modalities: planar kV, MV images and cone-beam CT (CBCT). Methods: QCkV1, QC-3 and Cathpan-600 phantoms were utilized to acquire kV, MV and CBCT images respectively on monthly basis per TG142 QA protocol for over 2 years on 21Ex, NovalisTx and TrueBeam linacs. DICOM images were analyzed with the help of QA analysis software: PIPsPro from Standard Imaging. For planar kV and MV images, planar spatial resolution, contrast to noise ratio (CNR) and noise; for CBCT, HU values weremore » collected and analyzed. Results: Two years of monthly QA measurements were analyzed for the planar and CBCT images. Values were normalized to the mean and the standard deviations (STD) are presented. For the kV planar radiographic images the STD of spatial resolution for f30, f40, f50, CNR and noise for 21Ex are 0.006, 0.011, 0.013, 0.046, 0.026; Novalis-Tx are 0.009, 0.016, 0.016, 0.067, 0.053 ; TrueBeam are 0.007, 0.005, 0.009, 0.017, 0.016 respectively. For the MV planar radiographic images, the STD of spatial resolution for f30, f40, f50, CNR and noise for 21Ex are 0.009, 0.010, 0.008, 0.023, 0.023; for Novalix-Tx are 0.012, 0.010, 0.008, 0.029, 0.023 and for TrueBeam are 0.010, 0.010, 0.007, 0.022, 0.022 respectively. For the CBCT images, HU constancies of Air, Polystyrene, Teflon, PMP, LDPE and Delrin for 21Ex are 0.014, 0.070, 0.031, 0.053, 0.076, 0.087; for Novalis Tx are 0.019, 0.047, 0.035, 0.059, 0.077, 0.087 and for TrueBeam are 0.011, 0.044, 0.025, 0.044, 0.056, 0.020 respectively. Conclusion: These Imaging QA results demonstrated that the TrueBeam, performed better in terms of image quality stability for both kV planer and CBCT images as well as EPID MV images, however other two linacs were also satisfied TG142 guidelines.« less

  19. Radiographic detection of artificial intra-bony defects in the edentulous area.

    PubMed

    Van Assche, N; Jacobs, R; Coucke, W; van Steenberghe, D; Quirynen, M

    2009-03-01

    Since intra-bony pathologies might jeopardize implant outcome, their preoperative detection is crucial. In sixteen human cadaver bloc sections from upper and lower jaws, artificial defects with progressively increasing size (n=7) have been created. From each respective defect, analogue and digital intra-oral radiographs were taken, the latter processed via a periodontal filter and afterwards presented in black-white as well as in colour, resulting in three sets of 7 images per bloc section. Eight observers were asked to diagnosis an eventual defect on randomly presented radiographs, and at another occasion to rank each set based on the defect size. The clinicians were only able to identify a defect, when the junctional area was involved, except for bony pieces with a very homogeneous structure. For longitudinal evaluation of healing bone (e.g. after tooth extraction), colour digital images can be recommended. These observations indicate that intra-oral radiographs are not always reliable for the detection of any intra-bony defect.

  20. Radiographic Features of Acute Patellar Tendon Rupture.

    PubMed

    Fazal, Muhammad Ali; Moonot, Pradeep; Haddad, Fares

    2015-11-01

    The purpose of our study was to assess soft tissue features of acute patellar tendon rupture on lateral knee radiograph that would facilitate early diagnosis. The participants were divided into two groups of 35 patients each. There were 28 men and seven women with a mean age of 46 years in the control group and 26 men and nine women with a mean age of 47 years in the rupture group. The lateral knee radiograph of each patient was evaluated for Insall-Salvati ratio for patella alta, increased density of the infrapatellar fat pad, appearance of the soft tissue margin of the patellar tendon and bony avulsions. In the rupture group there were three consistent soft tissue radiographic features in addition to patellar alta. These were increased density of infrapatellar fat pad; loss of sharp, well-defined linear margins of the patellar tendon and angulated wavy margin of the patellar tendon while in the control group these features were not observed. The soft tissue radiographic features described in the rupture group are consistent and reliable. When coupled with careful clinical assessment, these will aid in early diagnosis and further imaging will be seldom required. © 2015 Chinese Orthopaedic Association and Wiley Publishing Asia Pty Ltd.

  1. Comparisons of NIF convergent ablation simulations with radiograph data.

    PubMed

    Olson, R E; Hicks, D G; Meezan, N B; Koch, J A; Landen, O L

    2012-10-01

    A technique for comparing simulation results directly with radiograph data from backlit capsule implosion experiments will be discussed. Forward Abel transforms are applied to the kappa*rho profiles of the simulation. These provide the transmission ratio (optical depth) profiles of the simulation. Gaussian and top hat blurs are applied to the simulated transmission ratio profiles in order to account for the motion blurring and imaging slit resolution of the experimental measurement. Comparisons between the simulated transmission ratios and the radiograph data lineouts are iterated until a reasonable backlighter profile is obtained. This backlighter profile is combined with the blurred, simulated transmission ratios to obtain simulated intensity profiles that can be directly compared with the radiograph data. Examples will be shown from recent convergent ablation (backlit implosion) experiments at the NIF.

  2. Reliability and accuracy analysis of a new semiautomatic radiographic measurement software in adult scoliosis.

    PubMed

    Aubin, Carl-Eric; Bellefleur, Christian; Joncas, Julie; de Lanauze, Dominic; Kadoury, Samuel; Blanke, Kathy; Parent, Stefan; Labelle, Hubert

    2011-05-20

    Radiographic software measurement analysis in adult scoliosis. To assess the accuracy as well as the intra- and interobserver reliability of measuring different indices on preoperative adult scoliosis radiographs using a novel measurement software that includes a calibration procedure and semiautomatic features to facilitate the measurement process. Scoliosis requires a careful radiographic evaluation to assess the deformity. Manual and computer radiographic process measures have been studied extensively to determine the reliability and reproducibility in adolescent idiopathic scoliosis. Most studies rely on comparing given measurements, which are repeated by the same user or by an expert user. A given measure with a small intra- or interobserver error might be deemed as good repeatability, but all measurements might not be truly accurate because the ground-truth value is often unknown. Thorough accuracy assessment of radiographic measures is necessary to assess scoliotic deformities, compare these measures at different stages or to permit valid multicenter studies. Thirty-four sets of adult scoliosis digital radiographs were measured two times by three independent observers using a novel radiographic measurement software that includes semiautomatic features to facilitate the measurement process. Twenty different measures taken from the Spinal Deformity Study Group radiographic measurement manual were performed on the coronal and sagittal images. Intra- and intermeasurer reliability for each measure was assessed. The accuracy of the measurement software was also assessed using a physical spine model in six different scoliotic configurations as a true reference. The majority of the measures demonstrated good to excellent intra- and intermeasurer reliability, except for sacral obliquity. The standard variation of all the measures was very small: ≤ 4.2° for Cobb angles, ≤ 4.2° for the kyphosis, ≤ 5.7° for the lordosis, ≤ 3.9° for the pelvic angles, and

  3. An Underwater Color Image Quality Evaluation Metric.

    PubMed

    Yang, Miao; Sowmya, Arcot

    2015-12-01

    Quality evaluation of underwater images is a key goal of underwater video image retrieval and intelligent processing. To date, no metric has been proposed for underwater color image quality evaluation (UCIQE). The special absorption and scattering characteristics of the water medium do not allow direct application of natural color image quality metrics especially to different underwater environments. In this paper, subjective testing for underwater image quality has been organized. The statistical distribution of the underwater image pixels in the CIELab color space related to subjective evaluation indicates the sharpness and colorful factors correlate well with subjective image quality perception. Based on these, a new UCIQE metric, which is a linear combination of chroma, saturation, and contrast, is proposed to quantify the non-uniform color cast, blurring, and low-contrast that characterize underwater engineering and monitoring images. Experiments are conducted to illustrate the performance of the proposed UCIQE metric and its capability to measure the underwater image enhancement results. They show that the proposed metric has comparable performance to the leading natural color image quality metrics and the underwater grayscale image quality metrics available in the literature, and can predict with higher accuracy the relative amount of degradation with similar image content in underwater environments. Importantly, UCIQE is a simple and fast solution for real-time underwater video processing. The effectiveness of the presented measure is also demonstrated by subjective evaluation. The results show better correlation between the UCIQE and the subjective mean opinion score.

  4. Blind image quality assessment based on aesthetic and statistical quality-aware features

    NASA Astrophysics Data System (ADS)

    Jenadeleh, Mohsen; Masaeli, Mohammad Masood; Moghaddam, Mohsen Ebrahimi

    2017-07-01

    The main goal of image quality assessment (IQA) methods is the emulation of human perceptual image quality judgments. Therefore, the correlation between objective scores of these methods with human perceptual scores is considered as their performance metric. Human judgment of the image quality implicitly includes many factors when assessing perceptual image qualities such as aesthetics, semantics, context, and various types of visual distortions. The main idea of this paper is to use a host of features that are commonly employed in image aesthetics assessment in order to improve blind image quality assessment (BIQA) methods accuracy. We propose an approach that enriches the features of BIQA methods by integrating a host of aesthetics image features with the features of natural image statistics derived from multiple domains. The proposed features have been used for augmenting five different state-of-the-art BIQA methods, which use statistical natural scene statistics features. Experiments were performed on seven benchmark image quality databases. The experimental results showed significant improvement of the accuracy of the methods.

  5. Conversion from film to image plates for transfer method neutron radiography of nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craft, Aaron E.; Papaioannou, Glen C.; Chichester, David L.

    This paper summarizes efforts to characterize and qualify a computed radiography (CR) system for neutron radiography of irradiated nuclear fuel at Idaho National Laboratory (INL). INL has multiple programs that are actively developing, testing, and evaluating new nuclear fuels. Irradiated fuel experiments are subjected to a number of sequential post-irradiation examination techniques that provide insight into the overall behavior and performance of the fuel. One of the first and most important of these exams is neutron radiography, which provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Results from neutronmore » radiography are often the driver for subsequent examinations of the PIE program. Features of interest that can be evaluated using neutron radiography include irradiation-induced swelling, isotopic and fuel-fragment redistribution, plate deformations, and fuel fracturing. The NRAD currently uses the foil-film transfer technique with film for imaging fuel. INL is pursuing multiple efforts to advance its neutron imaging capabilities for evaluating irradiated fuel and other applications, including conversion from film to CR image plates. Neutron CR is the current state-of-the-art for neutron imaging of highly-radioactive objects. Initial neutron radiographs of various types of nuclear fuel indicate that radiographs can be obtained of comparable image quality currently obtained using film. This paper provides neutron radiographs of representative irradiated fuel pins along with neutron radiographs of standards that informed the qualification of the neutron CR system for routine use. Additionally, this paper includes evaluations of some of the CR scanner parameters and their effects on image quality.« less

  6. Image quality assessment using deep convolutional networks

    NASA Astrophysics Data System (ADS)

    Li, Yezhou; Ye, Xiang; Li, Yong

    2017-12-01

    This paper proposes a method of accurately assessing image quality without a reference image by using a deep convolutional neural network. Existing training based methods usually utilize a compact set of linear filters for learning features of images captured by different sensors to assess their quality. These methods may not be able to learn the semantic features that are intimately related with the features used in human subject assessment. Observing this drawback, this work proposes training a deep convolutional neural network (CNN) with labelled images for image quality assessment. The ReLU in the CNN allows non-linear transformations for extracting high-level image features, providing a more reliable assessment of image quality than linear filters. To enable the neural network to take images of any arbitrary size as input, the spatial pyramid pooling (SPP) is introduced connecting the top convolutional layer and the fully-connected layer. In addition, the SPP makes the CNN robust to object deformations to a certain extent. The proposed method taking an image as input carries out an end-to-end learning process, and outputs the quality of the image. It is tested on public datasets. Experimental results show that it outperforms existing methods by a large margin and can accurately assess the image quality on images taken by different sensors of varying sizes.

  7. Diagnostic radiograph based 3D bone reconstruction framework: application to the femur.

    PubMed

    Gamage, P; Xie, S Q; Delmas, P; Xu, W L

    2011-09-01

    Three dimensional (3D) visualization of anatomy plays an important role in image guided orthopedic surgery and ultimately motivates minimally invasive procedures. However, direct 3D imaging modalities such as Computed Tomography (CT) are restricted to a minority of complex orthopedic procedures. Thus the diagnostics and planning of many interventions still rely on two dimensional (2D) radiographic images, where the surgeon has to mentally visualize the anatomy of interest. The purpose of this paper is to apply and validate a bi-planar 3D reconstruction methodology driven by prominent bony anatomy edges and contours identified on orthogonal radiographs. The results obtained through the proposed methodology are benchmarked against 3D CT scan data to assess the accuracy of reconstruction. The human femur has been used as the anatomy of interest throughout the paper. The novelty of this methodology is that it not only involves the outer contours of the bony anatomy in the reconstruction but also several key interior edges identifiable on radiographic images. Hence, this framework is not simply limited to long bones, but is generally applicable to a multitude of other bony anatomies as illustrated in the results section. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Radiographic inspection of porosity in pure titanium dumbbell castings.

    PubMed

    Nuñez, Juliana Maria Costa; Takahashi, Jessica Mie Ferreira Koyama; Henriques, Guilherme Elias Pessanha; Nóbilo, Mauro Antônio de Arruda; Consani, Rafael Leonardo Xediek; Mesquita, Marcelo Ferraz

    2011-09-01

      Titanium frameworks are frequently indicated for implant supported prostheses; however, voids are usually encountered inside cast titanium.   This study aimed to confirm the efficacy of a radiographic technique for inspection of porosity in commercially pure titanium castings with different diameter.   Sixty dumbbell rods (n=20) with a central 1.5, 2.0 and 3.5mm diameter were prepared by lost-wax casting. Cast specimens were finished and polished and submitted to radiographic examination (90kV, 15mA, 0.6s and 10-13mm of distance) using periapical film. The radiographs were visually analysed for the presence of porosity in the extension of the dumbbell or in the central portion of the rods. Data were submitted to Pearson Chi-square test (5%).   The tested radiographic method proved to be suitable for the evaluation of cast frameworks. Internal porosities were observed in most of the specimens (91.7%) (p=0.0005); however, only 20% occurred on the central portion of the rods (p=0.612).   Internal porosities can be visualised through radiographs and occur mostly in small diameter structures. The radiographic evaluation of metal structures can improve the quality of frameworks and thereby potentially increase the longevity of the rehabilitation. © 2010 The Gerodontology Society and John Wiley & Sons A/S.

  9. The study of surgical image quality evaluation system by subjective quality factor method

    NASA Astrophysics Data System (ADS)

    Zhang, Jian J.; Xuan, Jason R.; Yang, Xirong; Yu, Honggang; Koullick, Edouard

    2016-03-01

    GreenLightTM procedure is an effective and economical way of treatment of benign prostate hyperplasia (BPH); there are almost a million of patients treated with GreenLightTM worldwide. During the surgical procedure, the surgeon or physician will rely on the monitoring video system to survey and confirm the surgical progress. There are a few obstructions that could greatly affect the image quality of the monitoring video, like laser glare by the tissue and body fluid, air bubbles and debris generated by tissue evaporation, and bleeding, just to name a few. In order to improve the physician's visual experience of a laser surgical procedure, the system performance parameter related to image quality needs to be well defined. However, since image quality is the integrated set of perceptions of the overall degree of excellence of an image, or in other words, image quality is the perceptually weighted combination of significant attributes (contrast, graininess …) of an image when considered in its marketplace or application, there is no standard definition on overall image or video quality especially for the no-reference case (without a standard chart as reference). In this study, Subjective Quality Factor (SQF) and acutance are used for no-reference image quality evaluation. Basic image quality parameters, like sharpness, color accuracy, size of obstruction and transmission of obstruction, are used as subparameter to define the rating scale for image quality evaluation or comparison. Sample image groups were evaluated by human observers according to the rating scale. Surveys of physician groups were also conducted with lab generated sample videos. The study shows that human subjective perception is a trustworthy way of image quality evaluation. More systematic investigation on the relationship between video quality and image quality of each frame will be conducted as a future study.

  10. Modified-BRISQUE as no reference image quality assessment for structural MR images.

    PubMed

    Chow, Li Sze; Rajagopal, Heshalini

    2017-11-01

    An effective and practical Image Quality Assessment (IQA) model is needed to assess the image quality produced from any new hardware or software in MRI. A highly competitive No Reference - IQA (NR - IQA) model called Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) initially designed for natural images were modified to evaluate structural MR images. The BRISQUE model measures the image quality by using the locally normalized luminance coefficients, which were used to calculate the image features. The modified-BRISQUE model trained a new regression model using MR image features and Difference Mean Opinion Score (DMOS) from 775 MR images. Two types of benchmarks: objective and subjective assessments were used as performance evaluators for both original and modified-BRISQUE models. There was a high correlation between the modified-BRISQUE with both benchmarks, and they were higher than those for the original BRISQUE. There was a significant percentage improvement in their correlation values. The modified-BRISQUE was statistically better than the original BRISQUE. The modified-BRISQUE model can accurately measure the image quality of MR images. It is a practical NR-IQA model for MR images without using reference images. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The GIK-Archive of sediment core radiographs with documentation

    NASA Astrophysics Data System (ADS)

    Grobe, Hannes; Winn, Kyaw; Werner, Friedrich; Driemel, Amelie; Schumacher, Stefanie; Sieger, Rainer

    2017-12-01

    The GIK-Archive of radiographs is a collection of X-ray negative and photographic images of sediment cores based on exposures taken since the early 1960s. During four decades of marine geological work at the University of Kiel, Germany, several thousand hours of sampling, careful preparation and X-raying were spent on producing a unique archive of sediment radiographs from several parts of the World Ocean. The archive consists of more than 18 500 exposures on chemical film that were digitized, geo-referenced, supplemented with metadata and archived in the data library PANGAEA®. With this publication, the images have become available open-access for use by the scientific community at https://doi.org/10.1594/PANGAEA.854841.

  12. Diagnostic Yield of Recommendations for Chest CT Examination Prompted by Outpatient Chest Radiographic Findings

    PubMed Central

    Harvey, H. Benjamin; Gilman, Matthew D.; Wu, Carol C.; Cushing, Matthew S.; Halpern, Elkan F.; Zhao, Jing; Pandharipande, Pari V.; Shepard, Jo-Anne O.

    2015-01-01

    Purpose To evaluate the diagnostic yield of recommended chest computed tomography (CT) prompted by abnormalities detected on outpatient chest radiographic images. Materials and Methods This HIPAA-compliant study had institutional review board approval; informed consent was waived. Reports of all outpatient chest radiographic examinations performed at a large academic center during 2008 (n = 29 138) were queried to identify studies that included a recommendation for a chest CT imaging. The radiology information system was queried for these patients to determine if a chest CT examination was obtained within 1 year of the index radiographic examination that contained the recommendation. For chest CT examinations obtained within 1 year of the index chest radiographic examination and that met inclusion criteria, chest CT images were reviewed to determine if there was an abnormality that corresponded to the chest radiographic finding that prompted the recommendation. All corresponding abnormalities were categorized as clinically relevant or not clinically relevant, based on whether further work-up or treatment was warranted. Groups were compared by using t test and Fisher exact test with a Bonferroni correction applied for multiple comparisons. Results There were 4.5% (1316 of 29138 [95% confidence interval {CI}: 4.3%, 4.8%]) of outpatient chest radiographic examinations that contained a recommendation for chest CT examination, and increasing patient age (P < .001) and positive smoking history (P = .001) were associated with increased likelihood of a recommendation for chest CT examination. Of patients within this subset who met inclusion criteria, 65.4% (691 of 1057 [95% CI: 62.4%, 68.2%) underwent a chest CT examination within the year after the index chest radiographic examination. Clinically relevant corresponding abnormalities were present on chest CT images in 41.4% (286 of 691 [95% CI: 37.7%, 45.2%]) of cases, nonclinically relevant corresponding abnormalities in

  13. Cemento-osseous dysplasia of the jaw bones: key radiographic features

    PubMed Central

    Alsufyani, NA; Lam, EWN

    2011-01-01

    Objective The purpose of this study is to assess possible diagnostic differences between general dentists (GPs) and oral and maxillofacial radiologists (RGs) in the identification of pathognomonic radiographic features of cemento-osseous dysplasia (COD) and its interpretation. Methods Using a systematic objective survey instrument, 3 RGs and 3 GPs reviewed 50 image sets of COD and similarly appearing entities (dense bone island, cementoblastoma, cemento-ossifying fibroma, fibrous dysplasia, complex odontoma and sclerosing osteitis). Participants were asked to identify the presence or absence of radiographic features and then to make an interpretation of the images. Results RGs identified a well-defined border (odds ratio (OR) 6.67, P < 0.05); radiolucent periphery (OR 8.28, P < 0.005); bilateral occurrence (OR 10.23, P < 0.01); mixed radiolucent/radiopaque internal structure (OR 10.53, P < 0.01); the absence of non-concentric bony expansion (OR 7.63, P < 0.05); and the association with anterior and posterior teeth (OR 4.43, P < 0.05) as key features of COD. Consequently, RGs were able to correctly interpret 79.3% of COD cases. In contrast, GPs identified the absence of root resorption (OR 4.52, P < 0.05) and the association with anterior and posterior teeth (OR 3.22, P = 0.005) as the only key features of COD and were able to correctly interpret 38.7% of COD cases. Conclusions There are statistically significant differences between RGs and GPs in the identification and interpretation of the radiographic features associated with COD (P < 0.001). We conclude that COD is radiographically discernable from other similarly appearing entities only if the characteristic radiographic features are correctly identified and then correctly interpreted. PMID:21346079

  14. Cemento-osseous dysplasia of the jaw bones: key radiographic features.

    PubMed

    Alsufyani, N A; Lam, E W N

    2011-03-01

    The purpose of this study is to assess possible diagnostic differences between general dentists (GPs) and oral and maxillofacial radiologists (RGs) in the identification of pathognomonic radiographic features of cemento-osseous dysplasia (COD) and its interpretation. Using a systematic objective survey instrument, 3 RGs and 3 GPs reviewed 50 image sets of COD and similarly appearing entities (dense bone island, cementoblastoma, cemento-ossifying fibroma, fibrous dysplasia, complex odontoma and sclerosing osteitis). Participants were asked to identify the presence or absence of radiographic features and then to make an interpretation of the images. RGs identified a well-defined border (odds ratio (OR) 6.67, P < 0.05); radiolucent periphery (OR 8.28, P < 0.005); bilateral occurrence (OR 10.23, P < 0.01); mixed radiolucent/radiopaque internal structure (OR 10.53, P < 0.01); the absence of non-concentric bony expansion (OR 7.63, P < 0.05); and the association with anterior and posterior teeth (OR 4.43, P < 0.05) as key features of COD. Consequently, RGs were able to correctly interpret 79.3% of COD cases. In contrast, GPs identified the absence of root resorption (OR 4.52, P < 0.05) and the association with anterior and posterior teeth (OR 3.22, P = 0.005) as the only key features of COD and were able to correctly interpret 38.7% of COD cases. There are statistically significant differences between RGs and GPs in the identification and interpretation of the radiographic features associated with COD (P < 0.001). We conclude that COD is radiographically discernable from other similarly appearing entities only if the characteristic radiographic features are correctly identified and then correctly interpreted.

  15. SU-E-I-91: Development of a Compact Radiographic Simulator Using Microsoft Kinect.

    PubMed

    Ono, M; Kozono, K; Aoki, M; Mizoguchi, A; Kamikawa, Y; Umezu, Y; Arimura, H; Toyofuku, F

    2012-06-01

    Radiographic simulator system is useful for learning radiographic techniques and confirmation of positioning before x-ray irradiation. Conventional x-ray simulators have drawbacks in cost and size, and are only applicable to situations in which position of the object does not change. Therefore, we have developed a new radiographic simulator system using an infrared-ray based three-dimensional shape measurement device (Microsoft Kinect). We made a computer program using OpenCV and OpenNI for processing of depth image data obtained from Kinect, and calculated the exact distance from Kinect to the object by calibration. Theobject was measured from various directions, and positional relationship between the x-ray tube and the object was obtained. X-ray projection images were calculated by projecting x-rays onto the mathematical three-dimensional CT data of a head phantom with almost the same size. The object was rotated from 0 degree (standard position) through 90 degrees in increments of 10 degrees, and the accuracy of the measured rotation angle values was evaluated. In order to improve the computational time, the projection image size was changed (512*512, 256*256, and 128*128). The x-ray simulation images corresponding to the radiographic images produced by using the x-ray tube were obtained. The three-dimensional position of the object was measured with good precision from 0 to 50 degrees, but above 50 degrees, measured position error increased with the increase of the rotation angle. The computational time and image size were 30, 12, and 7 seconds for 512*512, 256*256, and 128*128, respectively. We could measure the three-dimensional position of the object using properly calibrated Kinect sensor, and obtained projection images at relatively high-speed using the three-dimensional CTdata. It was suggested that this system can be used for obtaining simulated projection x-ray images before x-ray exposure by attaching this device onto an x-ray tube. © 2012 American

  16. Routine Chest Radiographs After Central Line Insertion: Mandatory Postprocedural Evaluation or Unnecessary Waste of Resources?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucey, Brian; Varghese, Jose C.; Haslam, Philip

    1999-09-15

    Purpose: To study the cost and impact on patient management of the routine performance of chest radiographs in patients undergoing imaged-guided central venous catheter insertion. Methods: Six hundred and twenty-one catheters placed in 489 patients over a 42-month period formed the study group. Catheters were placed in the right internal jugular vein (425), left internal jugular vein (133), and subclavian veins (63). At the end of the procedure fluoroscopy was used to assess catheter position and check for complications. A postprocedural chest radiograph was obtained in all patients. Results: Postprocedural chest fluoroscopy showed no evidence of pneumothorax, hemothorax, or mediastinalmore » hematoma. Inappropriate catheter tip position or catheter kinks were noted with 90 catheters. These problems were all corrected while the patient was on the interventional table. Postprocedural chest radiographs showed no complications but proximal catheter tip migration was noted in six of 621 catheters (1%). These latter six catheters required further manipulation. The total technical and related charges for the postprocedural chest radiographs in this series were estimated at Pounds 15,525. Conclusion: Postprocedural chest radiographs after image-guided central venous catheter insertion are not routinely required. A postprocedural chest radiograph can be performed on a case-by-case basis at the discretion of the interventional radiologist.« less

  17. Scatter Reduction In Conventional Radiographic Tomography Using Rotating Apertures

    NASA Astrophysics Data System (ADS)

    Rudin, Stephen; Bednarek, Daniel R.

    1981-08-01

    Since images in conventional radiographic tomography are in-herently low in subject contrast, it is essential that scattered radiation be prevented from reaching the image receptor. Scanning beam or slit radiographic techniques are known to be the most efficient scatter elimination methods, yet have been inapplicable to this area of radiography. In this work it is shown that the scanning beam method using rotating aperture wheel (RAW) devices can be used in conventional tomography. One coder wheel between the x-ray tube and patient and two scatter discriminator wheels between the patient and image recep-tor form sections of the RAW "projection cone" with the lines of radia-tion from the x-ray source forming the "flux pyramid." As long as the projection cone follows the motion of the x-ray flux pyramid (with the ratios of the distances between the x-ray source, RAWs, patient, and image receptor kept constant throughout the motion) any RAW pattern may be used. Simple relations are given which describe the geometric constraints for various tomographic motions. As in any application of scanning slit techniques, it is possible to use the excellent scatter elimination capabilities of a RAW device either to improve image contrast or to reduce patient dose.

  18. [Investigation of the accurate measurement of the basic imaging properties for the digital radiographic system based on flat panel detector].

    PubMed

    Katayama, R; Sakai, S; Sakaguchi, T; Maeda, T; Takada, K; Hayabuchi, N; Morishita, J

    2008-07-20

    PURPOSE/AIM OF THE EXHIBIT: The purpose of this exhibit is: 1. To explain "resampling", an image data processing, performed by the digital radiographic system based on flat panel detector (FPD). 2. To show the influence of "resampling" on the basic imaging properties. 3. To present accurate measurement methods of the basic imaging properties of the FPD system. 1. The relationship between the matrix sizes of the output image and the image data acquired on FPD that automatically changes depending on a selected image size (FOV). 2. The explanation of the image data processing of "resampling". 3. The evaluation results of the basic imaging properties of the FPD system using two types of DICOM image to which "resampling" was performed: characteristic curves, presampled MTFs, noise power spectra, detective quantum efficiencies. CONCLUSION/SUMMARY: The major points of the exhibit are as follows: 1. The influence of "resampling" should not be disregarded in the evaluation of the basic imaging properties of the flat panel detector system. 2. It is necessary for the basic imaging properties to be measured by using DICOM image to which no "resampling" is performed.

  19. Retrospective evaluation of exposure index (EI) values from plain radiographs reveals important considerations for quality improvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mothiram, Ursula; Brennan, Patrick C; Robinson, John

    2013-12-15

    Following X-ray exposure, radiographers receive immediate feedback on detector exposure in the form of the exposure index (EI). To identify whether radiographers are meeting manufacturer-recommended EI (MREI) ranges for routine chest, abdomen and pelvis X-ray examinations under a variety of conditions and to examine factors affecting the EI. Data on 5000 adult X-ray examinations including the following variables were collected: examination parameters, EI values, patient gender, date of birth, date and time of examination, grid usage and the presence of implant or prosthesis. Descriptive statistics were used to summarize each data set and the Mann–Whitney U test was used tomore » determine significant differences, with P < 0.05 indicating significance for all tests. Most examinations demonstrated EI values that were outside the MREI ranges, with significantly higher median EI values recorded for female patient radiographs than those for male patients for all manufacturers, indicating higher detector exposures for all units except for Philips digital radiography (DR), where increased EI values indicate lower exposure (P = 0.01). Median EI values for out of hours radiography were also significantly higher compared with normal working hours for all technologies (P ≤ 0.02). Significantly higher median EI values were demonstrated for Philips DR chest X-rays without as compared to those with the employment of a grid (P = 0.03), while significantly lower median EI values were recorded for Carestream Health computed radiography (CR) chest X-rays when an implant or prosthesis was present (P = 0.02). Non-adherence to MREIs has been demonstrated with EI value discrepancies being dependent on patient gender, time/day of exposure, grid usage and the presence of an implant or prosthesis. Retrospective evaluation of EI databases is a valuable tool to assess the need of quality improvement in routine DR.« less

  20. Quantitative image quality evaluation of MR images using perceptual difference models

    PubMed Central

    Miao, Jun; Huo, Donglai; Wilson, David L.

    2008-01-01

    The authors are using a perceptual difference model (Case-PDM) to quantitatively evaluate image quality of the thousands of test images which can be created when optimizing fast magnetic resonance (MR) imaging strategies and reconstruction techniques. In this validation study, they compared human evaluation of MR images from multiple organs and from multiple image reconstruction algorithms to Case-PDM and similar models. The authors found that Case-PDM compared very favorably to human observers in double-stimulus continuous-quality scale and functional measurement theory studies over a large range of image quality. The Case-PDM threshold for nonperceptible differences in a 2-alternative forced choice study varied with the type of image under study, but was ≈1.1 for diffuse image effects, providing a rule of thumb. Ordering the image quality evaluation models, we found in overall Case-PDM ≈ IDM (Sarnoff Corporation) ≈ SSIM [Wang et al. IEEE Trans. Image Process. 13, 600–612 (2004)] > mean squared error ≈ NR [Wang et al. (2004) (unpublished)] > DCTune (NASA) > IQM (MITRE Corporation). The authors conclude that Case-PDM is very useful in MR image evaluation but that one should probably restrict studies to similar images and similar processing, normally not a limitation in image reconstruction studies. PMID:18649487

  1. New requirements for digital radiographic testing of welds according to ISO standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zscherpel, U.; Ewert, U.; Jechow, M.

    Users of EN 14784-2 (general principles for computed radiography with phosphor imaging plates) reported about difficulties to achieve testing class B in weld testing with imaging plates. One of the reasons is the insufficient consideration of the inherent detector unsharpness (u{sub i}) in the minimum requirements. Digital detectors have a higher inherent unsharpness compared to film, which can even exceed the geometrical unsharpness (u{sub g}) of the typical contact technique. In EN 444 and ISO 5579 (general principles for film radiography) u{sub i} is neglected for the calculation of the minimum source-to-object distance (SOD), because it is small compared tomore » the geometric unsharpness (u{sub g}). Considering u{sub i} for digital detectors results in a new equation for SOD (see ISO/FDIS 17636-2). Therefore, the increase in total image unsharpness requires the compensation by a larger SOD to reduce u{sub g}. This contribution discusses the need for change of the SOD for different setups (detectors, focal spots, etc.) and explains the difference in image quality, achieved on basis of the extended equation of ISO/FDIS 17636-2. Furthermore, the detection of image quality indicators depends on the achieved Contrast-to-Noise ratio (CNR) and total image unsharpness. Both of them are essential parameters, which influence the contrast sensitivity. Additionally, new compensation principles (e.g. compensation of missing spatial resolution by enhanced contrast sensitivity) allow to widen the application range of digital detectors for radiographic weld testing.« less

  2. An Anatomic Study on Whether the Immature Patella is Centered on an Anteroposterior Radiograph.

    PubMed

    Kyriakedes, James C; Liu, Raymond W

    2017-03-01

    In the operating room, after first obtaining a proper lateral radiograph with the condyles superimposed, a 90-degree rotation of the intraoperative fluoroscopy unit does not always produce an anteroposterior (AP) image with the patella centered. The orthogonality of these 2 views has not been well determined in children. This study was comprised of a radiographic group (35 knees) and a cadaveric group (59 knees). Both cadaveric and clinical images were obtained by resting or positioning the femur with the posterior condyles overlapped, and then taking an orthogonal AP image. Centering of the patella was calculated and multiple regression analysis was performed to determine the relationship between patellar centering and age, sex, ethnicity, mechanical lateral distal femoral angle (mLDFA), medial proximal tibial angle (MPTA), and contralateral centering. Mean patellar centering, expressed as the lateral position of the patella with respect to the total condylar width, was 0.08±0.10 in the radiographic group and 0.06±0.03 in the cadaveric group. Positive (lateral) patellar centering in 1 knee had a statistically significant correlation with positive patellar centering in the contralateral knee in both the radiographs and the cadavers. In the radiographic group, there was a statistically significant correlation between femoral varus and valgus deformities and positive patellar centering. In the cadaveric group, there was a statistically significant correlation between tibial valgus and negative (medial) patellar centering. The patella in an immature knee is rarely perfectly centered on a true AP image, and is usually seated slightly laterally within the femoral condyles. Obtaining a true AP intraoperative radiograph is critical to analyzing and correcting valgus and varus deformities, and in the proper placement of implants. When addressing knee deformity one should consider obtaining an AP view orthogonal either to a perfect lateral of the knee or orthogonal to the

  3. A computerized method for automated identification of erect posteroanterior and supine anteroposterior chest radiographs

    NASA Astrophysics Data System (ADS)

    Kao, E.-Fong; Lin, Wei-Chen; Hsu, Jui-Sheng; Chou, Ming-Chung; Jaw, Twei-Shiun; Liu, Gin-Chung

    2011-12-01

    A computerized scheme was developed for automated identification of erect posteroanterior (PA) and supine anteroposterior (AP) chest radiographs. The method was based on three features, the tilt angle of the scapula superior border, the tilt angle of the clavicle and the extent of radiolucence in lung fields, to identify the view of a chest radiograph. The three indices Ascapula, Aclavicle and Clung were determined from a chest image for the three features. Linear discriminant analysis was used to classify PA and AP chest images based on the three indices. The performance of the method was evaluated by receiver operating characteristic analysis. The proposed method was evaluated using a database of 600 PA and 600 AP chest radiographs. The discriminant performances Az of Ascapula, Aclavicle and Clung were 0.878 ± 0.010, 0.683 ± 0.015 and 0.962 ± 0.006, respectively. The combination of the three indices obtained an Az value of 0.979 ± 0.004. The results indicate that the combination of the three indices could yield high discriminant performance. The proposed method could provide radiologists with information about the view of chest radiographs for interpretation or could be used as a preprocessing step for analyzing chest images.

  4. [Comparative Study of Patient Identifications for Conventional and Portable Chest Radiographs Utilizing ROC Analysis].

    PubMed

    Kawashima, Hiroki; Hayashi, Norio; Ohno, Naoki; Matsuura, Yukihiro; Sanada, Shigeru

    2015-08-01

    To evaluate the patient identification ability of radiographers, previous and current chest radiographs were assessed with observer study utilizing a receiver operating characteristics (ROCs) analysis. This study included portable and conventional chest radiographs from 43 same and 43 different patients. The dataset used in this study was divided into the three following groups: (1) a pair of portable radiographs, (2) a pair of conventional radiographs, and (3) a combination of each type of radiograph. Seven observers participated in this ROC study, which aimed to identify same or different patients, using these datasets. ROC analysis was conducted to calculate the average area under ROC curve obtained by each observer (AUCave), and a statistical test was performed using the multi-reader multi-case method. Comparable results were obtained with pairs of portable (AUCave: 0.949) and conventional radiographs (AUCave: 0.951). In a comparison between the same modality, there were no significant differences. In contrast, the ability to identify patients by comparing a portable and conventional radiograph (AUCave: 0.873) was lower than with the matching datasets (p=0.002 and p=0.004, respectively). In conclusion, the use of different imaging modalities reduces radiographers' ability to identify their patients.

  5. Radiographic and Thermal Testing, Aviation Quality Control (Advanced): 9227.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This unit of instruction deals with the study of X-ray and Gamma Ray Radiographic Testing and infra-red thermal testing of specimens without destruction. Theory and principles are covered in detail. Many known samples are used as standards and considerable laboratory and field use of this equipment is involved. Motion picture films and color…

  6. Retinal image quality assessment based on image clarity and content

    NASA Astrophysics Data System (ADS)

    Abdel-Hamid, Lamiaa; El-Rafei, Ahmed; El-Ramly, Salwa; Michelson, Georg; Hornegger, Joachim

    2016-09-01

    Retinal image quality assessment (RIQA) is an essential step in automated screening systems to avoid misdiagnosis caused by processing poor quality retinal images. A no-reference transform-based RIQA algorithm is introduced that assesses images based on five clarity and content quality issues: sharpness, illumination, homogeneity, field definition, and content. Transform-based RIQA algorithms have the advantage of considering retinal structures while being computationally inexpensive. Wavelet-based features are proposed to evaluate the sharpness and overall illumination of the images. A retinal saturation channel is designed and used along with wavelet-based features for homogeneity assessment. The presented sharpness and illumination features are utilized to assure adequate field definition, whereas color information is used to exclude nonretinal images. Several publicly available datasets of varying quality grades are utilized to evaluate the feature sets resulting in area under the receiver operating characteristic curve above 0.99 for each of the individual feature sets. The overall quality is assessed by a classifier that uses the collective features as an input vector. The classification results show superior performance of the algorithm in comparison to other methods from literature. Moreover, the algorithm addresses efficiently and comprehensively various quality issues and is suitable for automatic screening systems.

  7. Bone marrow edema pattern in advanced hip osteoarthritis: quantitative assessment with magnetic resonance imaging and correlation with clinical examination, radiographic findings, and histopathology.

    PubMed

    Taljanovic, Mihra S; Graham, Anna R; Benjamin, James B; Gmitro, Arthur F; Krupinski, Elizabeth A; Schwartz, Stephanie A; Hunter, Tim B; Resnick, Donald L

    2008-05-01

    To correlate the amount of bone marrow edema (BME) calculated by magnetic resonance imaging(MRI) with clinical findings, histopathology, and radiographic findings, in patients with advanced hip osteoarthritis(OA). The study was approved by The Institutional Human Subject Protection Committee. Coronal MRI of hips was acquired in 19 patients who underwent hip replacement. A spin echo (SE) sequence with four echoes and separate fast spin echo (FSE) proton density (PD)-weighted SE sequences of fat (F) and water (W) were acquired with water and fat suppression, respectively. T2 and water:fat ratio calculations were made for the outlined regions of interest. The calculated MRI values were correlated with the clinical, radiographic, and histopathologic findings. Analyses of variance were done on the MRI data for W/(W + F) and for T2 values (total and focal values) for the symptomatic and contralateral hips. The values were significantly higher in the study group. Statistically significant correlations were found between pain and total W/(W + F), pain and focal T2 values, and the number of microfractures and calculated BME for the focal W/(W + F) in the proximal femora. Statistically significant correlations were found between the radiographic findings and MRI values for total W/(W + F), focal W/(W + F) and focal T2 and among the radiographic findings, pain, and hip movement. On histopathology, only a small amount of BME was seen in eight proximal femora. The amount of BME in the OA hip, as measured by MRI, correlates with the severity of pain, radiographic findings, and number of microfractures.

  8. Remote Sensing Image Quality Assessment Experiment with Post-Processing

    NASA Astrophysics Data System (ADS)

    Jiang, W.; Chen, S.; Wang, X.; Huang, Q.; Shi, H.; Man, Y.

    2018-04-01

    This paper briefly describes the post-processing influence assessment experiment, the experiment includes three steps: the physical simulation, image processing, and image quality assessment. The physical simulation models sampled imaging system in laboratory, the imaging system parameters are tested, the digital image serving as image processing input are produced by this imaging system with the same imaging system parameters. The gathered optical sampled images with the tested imaging parameters are processed by 3 digital image processes, including calibration pre-processing, lossy compression with different compression ratio and image post-processing with different core. Image quality assessment method used is just noticeable difference (JND) subject assessment based on ISO20462, through subject assessment of the gathered and processing images, the influence of different imaging parameters and post-processing to image quality can be found. The six JND subject assessment experimental data can be validated each other. Main conclusions include: image post-processing can improve image quality; image post-processing can improve image quality even with lossy compression, image quality with higher compression ratio improves less than lower ratio; with our image post-processing method, image quality is better, when camera MTF being within a small range.

  9. Bone images from dual-energy subtraction chest radiography in the detection of rib fractures.

    PubMed

    Szucs-Farkas, Zsolt; Lautenschlager, Katrin; Flach, Patricia M; Ott, Daniel; Strautz, Tamara; Vock, Peter; Ruder, Thomas D

    2011-08-01

    To assess the sensitivity and image quality of chest radiography (CXR) with or without dual-energy subtracted (ES) bone images in the detection of rib fractures. In this retrospective study, 39 patients with 204 rib fractures and 24 subjects with no fractures were examined with a single exposure dual-energy subtraction digital radiography system. Three blinded readers first evaluated the non-subtracted posteroanterior and lateral chest radiographs alone, and 3 months later they evaluated the non-subtracted images together with the subtracted posteroanterior bone images. The locations of rib fractures were registered with confidence levels on a 3-grade scale. Image quality was rated on a 5-point scale. Marks by readers were compared with fracture localizations in CT as a standard of reference. The sensivity for fracture detection using both methods was very similar (34.3% with standard CXR and 33.5% with ES-CXR, p=0.92). At the patient level, both sensitivity (71.8%) and specificity (92.9%) with or without ES were identical. Diagnostic confidence was not significantly different (2.61 with CXR and 2.75 with ES-CXR, p=0.063). Image quality with ES was rated higher than that on standard CXR (4.08 vs. 3.74, p<0.001). Despite a better image quality, adding ES bone images to standard radiographs of the chest does not provide better sensitivity or improved diagnostic confidence in the detection of rib fractures. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  10. A method for the geometric and densitometric standardization of intraoral radiographs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duckworth, J.E.; Judy, P.F.; Goodson, J.M.

    1983-07-01

    The interpretation of dental radiographs for the diagnosis of periodontal disease conditions poses several difficulties. These include the inability to adequately reproduce the projection geometry and optical density of the exposures. In order to improve the ability to extract accurate quantitative information from a radiographic survey of periodontal status, a method was developed which provided for consistent reproduction of both geometric and densitometric exposure parameters. This technique employed vertical bitewing projections in holders customized to individual segments of the dentition. A copper stepwedge was designed to provide densitometric standardization, and wire markers were included to permit measurement of angular variation.more » In a series of 53 paired radiographs, measurement of alveolar crest heights was found to be reproducible within approximately 0.1 mm. This method provided a full mouth radiographic survey using seven films, each complete with internal standards suitable for computer-based image processing.« less

  11. Subjective matters: from image quality to image psychology

    NASA Astrophysics Data System (ADS)

    Fedorovskaya, Elena A.; De Ridder, Huib

    2013-03-01

    From the advent of digital imaging through several decades of studies, the human vision research community systematically focused on perceived image quality and digital artifacts due to resolution, compression, gamma, dynamic range, capture and reproduction noise, blur, etc., to help overcome existing technological challenges and shortcomings. Technological advances made digital images and digital multimedia nearly flawless in quality, and ubiquitous and pervasive in usage, provide us with the exciting but at the same time demanding possibility to turn to the domain of human experience including higher psychological functions, such as cognition, emotion, awareness, social interaction, consciousness and Self. In this paper we will outline the evolution of human centered multidisciplinary studies related to imaging and propose steps and potential foci of future research.

  12. Validation of automatic joint space width measurements in hand radiographs in rheumatoid arthritis.

    PubMed

    Schenk, Olga; Huo, Yinghe; Vincken, Koen L; van de Laar, Mart A; Kuper, Ina H H; Slump, Kees C H; Lafeber, Floris P J G; Bernelot Moens, Hein J

    2016-10-01

    Computerized methods promise quick, objective, and sensitive tools to quantify progression of radiological damage in rheumatoid arthritis (RA). Measurement of joint space width (JSW) in finger and wrist joints with these systems performed comparable to the Sharp-van der Heijde score (SHS). A next step toward clinical use, validation of precision and accuracy in hand joints with minimal damage, is described with a close scrutiny of sources of error. A recently developed system to measure metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints was validated in consecutive hand images of RA patients. To assess the impact of image acquisition, measurements on radiographs from a multicenter trial and from a recent prospective cohort in a single hospital were compared. Precision of the system was tested by comparing the joint space in mm in pairs of subsequent images with a short interval without progression of SHS. In case of incorrect measurements, the source of error was analyzed with a review by human experts. Accuracy was assessed by comparison with reported measurements with other systems. In the two series of radiographs, the system could automatically locate and measure 1003/1088 (92.2%) and 1143/1200 (95.3%) individual joints, respectively. In joints with a normal SHS, the average (SD) size of MCP joints was [Formula: see text] and [Formula: see text] in the two series of radiographs, and of PIP joints [Formula: see text] and [Formula: see text]. The difference in JSW between two serial radiographs with an interval of 6 to 12 months and unchanged SHS was [Formula: see text], indicating very good precision. Errors occurred more often in radiographs from the multicenter cohort than in a more recent series from a single hospital. Detailed analysis of the 55/1125 (4.9%) measurements that had a discrepant paired measurement revealed that variation in the process of image acquisition (exposure in 15% and repositioning in 57%) was a more frequent source of

  13. Validation of automatic joint space width measurements in hand radiographs in rheumatoid arthritis

    PubMed Central

    Schenk, Olga; Huo, Yinghe; Vincken, Koen L.; van de Laar, Mart A.; Kuper, Ina H. H.; Slump, Kees C. H.; Lafeber, Floris P. J. G.; Bernelot Moens, Hein J.

    2016-01-01

    Abstract. Computerized methods promise quick, objective, and sensitive tools to quantify progression of radiological damage in rheumatoid arthritis (RA). Measurement of joint space width (JSW) in finger and wrist joints with these systems performed comparable to the Sharp–van der Heijde score (SHS). A next step toward clinical use, validation of precision and accuracy in hand joints with minimal damage, is described with a close scrutiny of sources of error. A recently developed system to measure metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints was validated in consecutive hand images of RA patients. To assess the impact of image acquisition, measurements on radiographs from a multicenter trial and from a recent prospective cohort in a single hospital were compared. Precision of the system was tested by comparing the joint space in mm in pairs of subsequent images with a short interval without progression of SHS. In case of incorrect measurements, the source of error was analyzed with a review by human experts. Accuracy was assessed by comparison with reported measurements with other systems. In the two series of radiographs, the system could automatically locate and measure 1003/1088 (92.2%) and 1143/1200 (95.3%) individual joints, respectively. In joints with a normal SHS, the average (SD) size of MCP joints was 1.7±0.2 and 1.6±0.3  mm in the two series of radiographs, and of PIP joints 1.0±0.2 and 0.9±0.2  mm. The difference in JSW between two serial radiographs with an interval of 6 to 12 months and unchanged SHS was 0.0±0.1  mm, indicating very good precision. Errors occurred more often in radiographs from the multicenter cohort than in a more recent series from a single hospital. Detailed analysis of the 55/1125 (4.9%) measurements that had a discrepant paired measurement revealed that variation in the process of image acquisition (exposure in 15% and repositioning in 57%) was a more frequent source of error than

  14. Segmentation and determination of joint space width in foot radiographs

    NASA Astrophysics Data System (ADS)

    Schenk, O.; de Muinck Keizer, D. M.; Bernelot Moens, H. J.; Slump, C. H.

    2016-03-01

    Joint damage in rheumatoid arthritis is frequently assessed using radiographs of hands and feet. Evaluation includes measurements of the joint space width (JSW) and detection of erosions. Current visual scoring methods are timeconsuming and subject to inter- and intra-observer variability. Automated measurement methods avoid these limitations and have been fairly successful in hand radiographs. This contribution aims at foot radiographs. Starting from an earlier proposed automated segmentation method we have developed a novel model based image analysis algorithm for JSW measurements. This method uses active appearance and active shape models to identify individual bones. The model compiles ten submodels, each representing a specific bone of the foot (metatarsals 1-5, proximal phalanges 1-5). We have performed segmentation experiments using 24 foot radiographs, randomly selected from a large database from the rheumatology department of a local hospital: 10 for training and 14 for testing. Segmentation was considered successful if the joint locations are correctly determined. Segmentation was successful in only 14%. To improve results a step-by-step analysis will be performed. We performed JSW measurements on 14 randomly selected radiographs. JSW was successfully measured in 75%, mean and standard deviation are 2.30+/-0.36mm. This is a first step towards automated determination of progression of RA and therapy response in feet using radiographs.

  15. Attenuation and image noise level based online z-axis tube current modulation for CT scans independent with localizer radiograph: simulation study and results

    NASA Astrophysics Data System (ADS)

    Tian, Yi; Chen, Mahao; Kong, Jun

    2009-02-01

    With the online z-axis tube current modulation (OZTCM) technique proposed by this work, full automatic exposure control (AEC) for CT systems could be realized with online feedback not only for angular tube current modulation (TCM) but also for z-axis TCM either. Then the localizer radiograph was not required for TCM any more. OZTCM could be implemented with 2 schemes as attenuation based μ-OZTCM and image noise level based μ-OZTCM. Respectively the maximum attenuation of projection readings and standard deviation of reconstructed images can be used to modulate the tube current level in z-axis adaptively for each half (180 degree) or full (360 degree) rotation. Simulation results showed that OZTCM achieved better noise level than constant tube current scan case by using same total dose in mAs. The OZTCM can provide optimized base tube current level for angular TCM to realize an effective auto exposure control when localizer radiograph is not available or need to be skipped for simplified scan protocol in case of emergency procedure or children scan, etc.

  16. Feature maps driven no-reference image quality prediction of authentically distorted images

    NASA Astrophysics Data System (ADS)

    Ghadiyaram, Deepti; Bovik, Alan C.

    2015-03-01

    Current blind image quality prediction models rely on benchmark databases comprised of singly and synthetically distorted images, thereby learning image features that are only adequate to predict human perceived visual quality on such inauthentic distortions. However, real world images often contain complex mixtures of multiple distortions. Rather than a) discounting the effect of these mixtures of distortions on an image's perceptual quality and considering only the dominant distortion or b) using features that are only proven to be efficient for singly distorted images, we deeply study the natural scene statistics of authentically distorted images, in different color spaces and transform domains. We propose a feature-maps-driven statistical approach which avoids any latent assumptions about the type of distortion(s) contained in an image, and focuses instead on modeling the remarkable consistencies in the scene statistics of real world images in the absence of distortions. We design a deep belief network that takes model-based statistical image features derived from a very large database of authentically distorted images as input and discovers good feature representations by generalizing over different distortion types, mixtures, and severities, which are later used to learn a regressor for quality prediction. We demonstrate the remarkable competence of our features for improving automatic perceptual quality prediction on a benchmark database and on the newly designed LIVE Authentic Image Quality Challenge Database and show that our approach of combining robust statistical features and the deep belief network dramatically outperforms the state-of-the-art.

  17. Linear Calibration of Radiographic Mineral Density Using Video-Digitizing Methods

    NASA Technical Reports Server (NTRS)

    Martin, R. Bruce; Papamichos, Thomas; Dannucci, Greg A.

    1990-01-01

    Radiographic images can provide quantitative as well as qualitative information if they are subjected to densitometric analysis. Using modem video-digitizing techniques, such densitometry can be readily accomplished using relatively inexpensive computer systems. However, such analyses are made more difficult by the fact that the density values read from the radiograph have a complex, nonlinear relationship to bone mineral content. This article derives the relationship between these variables from the nature of the intermediate physical processes, and presents a simple mathematical method for obtaining a linear calibration function using a step wedge or other standard.

  18. Linear Calibration of Radiographic Mineral Density Using Video-Digitizing Methods

    NASA Technical Reports Server (NTRS)

    Martin, R. Bruce; Papamichos, Thomas; Dannucci, Greg A.

    1990-01-01

    Radiographic images can provide quantitative as well as qualitative information if they are subjected to densitometric analysis. Using modern video-digitizing techniques, such densitometry can be readily accomplished using relatively inexpensive computer systems. However, such analyses are made more difficult by the fact that the density values read from the radiograph have a complex, nonlinear relationship to bone mineral content. This article derives the relationship between these variables from the nature of the intermediate physical processes, and presents a simple mathematical method for obtaining a linear calibration function using a step wedge or other standard.

  19. Exploration of available feature detection and identification systems and their performance on radiographs

    NASA Astrophysics Data System (ADS)

    Wantuch, Andrew C.; Vita, Joshua A.; Jimenez, Edward S.; Bray, Iliana E.

    2016-10-01

    Despite object detection, recognition, and identification being very active areas of computer vision research, many of the available tools to aid in these processes are designed with only photographs in mind. Although some algorithms used specifically for feature detection and identification may not take explicit advantage of the colors available in the image, they still under-perform on radiographs, which are grayscale images. We are especially interested in the robustness of these algorithms, specifically their performance on a preexisting database of X-ray radiographs in compressed JPEG form, with multiple ways of describing pixel information. We will review various aspects of the performance of available feature detection and identification systems, including MATLABs Computer Vision toolbox, VLFeat, and OpenCV on our non-ideal database. In the process, we will explore possible reasons for the algorithms' lessened ability to detect and identify features from the X-ray radiographs.

  20. Rate of abnormal osteoarticular radiographic findings in pediatric patients.

    PubMed

    Petit, P; Sapin, C; Henry, G; Dahan, M; Panuel, M; Bourlière-Najean, B; Chaumoitre, K; Devred, P

    2001-04-01

    The objective of our study was to assess the rate of abnormal radiographic findings in the most frequent osteoarticular locations of traumatic injury in a pediatric population. During two periods of 12 weeks each, all patients admitted to the pediatric emergency department for osteoarticular trauma who underwent radiography were prospectively included in this study. A connection was drawn between the rate of abnormal radiographic findings for the seven most frequently radiographed locations and the clinical findings. Of 3128 locations of trauma in 2470 children, only 22% of the radiographic examinations were considered to reveal abnormal findings. In decreasing order, the hand and fingers, the ankle, the wrist, the knee, the elbow, the foot and toes, and the forearm were the most frequently examined locations. The rate of abnormal findings was 25.7% for the hand and fingers, 9.0% for the ankle, 42.5% for the wrist, 9.5% for the knee, 33.3% for the elbow, 18.3% for the foot, and 43.2% for the forearm. When only the direct sign of fracture was taken into account, these rates decreased for the ankle and knee to 2.6% and 1.9%, respectively. There was always a significant link between the degree of clinical suspicion and the rate of abnormal radiographic findings. However, fewer than 50% of the cases with high clinical suspicion of fracture were radiographically confirmed. It appears necessary, especially in cases of lower limb trauma, to evaluate clinical tests, including the implementation of the Ottawa ankle rules, to reduce the number of unnecessary radiographic examinations. This reduction will improve some parameters of children's quality of life and will significantly decrease the cost of emergency care.

  1. Objective quality assessment for multiexposure multifocus image fusion.

    PubMed

    Hassen, Rania; Wang, Zhou; Salama, Magdy M A

    2015-09-01

    There has been a growing interest in image fusion technologies, but how to objectively evaluate the quality of fused images has not been fully understood. Here, we propose a method for objective quality assessment of multiexposure multifocus image fusion based on the evaluation of three key factors of fused image quality: 1) contrast preservation; 2) sharpness; and 3) structure preservation. Subjective experiments are conducted to create an image fusion database, based on which, performance evaluation shows that the proposed fusion quality index correlates well with subjective scores, and gives a significant improvement over the existing fusion quality measures.

  2. The adult spinal cord injury without radiographic abnormalities syndrome: magnetic resonance imaging and clinical findings in adults with spinal cord injuries having normal radiographs and computed tomography studies.

    PubMed

    Kasimatis, Georgios B; Panagiotopoulos, Elias; Megas, Panagiotis; Matzaroglou, Charalambos; Gliatis, John; Tyllianakis, Minos; Lambiris, Elias

    2008-07-01

    Spinal cord injury without radiographic abnormalities (SCIWORA) is thought to represent mostly a pediatric entity and its incidence in adults is rather underreported. Some authors have also proposed the term spinal cord injury without radiologic evidence of trauma, as more precisely describing the condition of adult SCIWORA in the setting of cervical spondylosis. The purpose of the present study was to evaluate adult patients with cervical spine injuries and radiological-clinical examination discrepancy, and to discuss their characteristics and current management. During a 16-year period, 166 patients with a cervical spine injury were admitted in our institution (Level I trauma center). Upper cervical spine injuries (occiput to C2, 54 patients) were treated mainly by a Halo vest, whereas lower cervical spine injuries (C3-T1, 112 patients) were treated surgically either with an anterior, or posterior procedure, or both. Seven of these 166 patients (4.2%) had a radiologic-clinical mismatch, i.e., they presented with frank spinal cord injury with no signs of trauma, and were included in the study. Magnetic resonance imaging was available for 6 of 7 patients, showing intramedullary signal changes in 5 of 6 patients with varying degrees of compression from the disc and/or the ligamentum flavum, whereas the remaining patient had only traumatic herniation of the intervertebral disc and ligamentum flavum bulging. Follow-up period was 6.4 years on average (1-10 years). This retrospective chart review provides information on adult patients with cervical spinal cord injuries whose radiographs and computed tomography studies were normal. It furthers reinforces the pathologic background of SCIWORA in an adult population, when evaluated by magnetic resonance imaging. Particularly for patients with cervical spondylosis, special attention should be paid with regard to vascular compromise by predisposing factors such as smoking or vascular disease, since they probably contribute in

  3. No-reference image quality assessment for horizontal-path imaging scenarios

    NASA Astrophysics Data System (ADS)

    Rios, Carlos; Gladysz, Szymon

    2013-05-01

    There exist several image-enhancement algorithms and tasks associated with imaging through turbulence that depend on defining the quality of an image. Examples include: "lucky imaging", choosing the width of the inverse filter for image reconstruction, or stopping iterative deconvolution. We collected a number of image quality metrics found in the literature. Particularly interesting are the blind, "no-reference" metrics. We discuss ways of evaluating the usefulness of these metrics, even when a fully objective comparison is impossible because of the lack of a reference image. Metrics are tested on simulated and real data. Field data comes from experiments performed by the NATO SET 165 research group over a 7 km distance in Dayton, Ohio.

  4. Global quality imaging: improvement actions.

    PubMed

    Lau, Lawrence S; Pérez, Maria R; Applegate, Kimberly E; Rehani, Madan M; Ringertz, Hans G; George, Robert

    2011-05-01

    Workforce shortage, workload increase, workplace changes, and budget challenges are emerging issues around the world, which could place quality imaging at risk. It is important for imaging stakeholders to collaborate, ensure patient safety, improve the quality of care, and address these issues. There is no single panacea. A range of improvement measures, strategies, and actions are required. Examples of improvement actions supporting the 3 quality measures are described under 5 strategies: conducting research, promoting awareness, providing education and training, strengthening infrastructure, and implementing policies. The challenge is to develop long-term, cost-effective, system-based improvement actions that will bring better outcomes and underpin a sustainable future for quality imaging. In an imaging practice, these actions will result in selecting the right procedure (justification), using the right dose (optimization), and preventing errors along the patient journey. To realize this vision and implement these improvement actions, a range of expertise and adequate resources are required. Stakeholders should collaborate and work together. In today's globalized environment, collaboration is strength and provides synergy to achieve better outcomes and greater success. Copyright © 2011 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  5. Chest Radiographic Screening for Sarcoidosis in the Diagnosis of Patients with Active Uveitis.

    PubMed

    Groen, Fahriye; van Laar, Jan A M; Rothova, Aniki

    2017-06-01

    Although chest radiography is currently recommended for the initial evaluation of patients with new-onset uveitis, the efficacy of this diagnostic screening modality is not known. To evaluate the diagnostic value of chest radiographs in patients with active uveitis of recent onset in a tertiary center in Western Europe. A retrospective cross-sectional study was conducted by reviewing all chest imaging for adults with new-onset (<1 yr) uveitis of unknown origin undergoing initial evaluation in the Department of Ophthalmology at Erasmus University Medical Center (Rotterdam, the Netherlands). Radiographic findings were related to clinical and other imaging characteristics and to final diagnoses. Screening chest radiographs were abnormal for 30 of 200 patients (15%) included in this study. Twenty-two of the 200 patients (11%) had biopsy-confirmed sarcoidosis, and an additional 12 patients were presumed to have sarcoidosis. The finding of chest radiographic abnormalities interpreted as typical of sarcoidosis was specific (91%; 95% confidence interval, 85.9-94.4%) but not sensitive (64%; 95% confidence interval, 43.0-80.3%) for biopsy-confirmed sarcoidosis. The combination of elevated serum angiotensin-converting enzyme level and chest radiographic findings typical of sarcoidosis increased the sensitivity to 79%. Biopsy-confirmed sarcoidosis was more common in patients with panuveitis (17 of 84; 20%) compared to patients with other anatomical locations of uveitis (5 of 116, 4%; P < 0.001). One patient was diagnosed with active pulmonary and ocular tuberculosis. Abnormal chest radiographs were found in 15% of patients with active uveitis of unknown origin and onset within 1 year of referral to a tertiary center in the Netherlands. A majority of the abnormal chest radiographs showed findings compatible with a diagnosis of sarcoidosis.

  6. Guidance for Efficient Small Animal Imaging Quality Control.

    PubMed

    Osborne, Dustin R; Kuntner, Claudia; Berr, Stuart; Stout, David

    2017-08-01

    Routine quality control is a critical aspect of properly maintaining high-performance small animal imaging instrumentation. A robust quality control program helps produce more reliable data both for academic purposes and as proof of system performance for contract imaging work. For preclinical imaging laboratories, the combination of costs and available resources often limits their ability to produce efficient and effective quality control programs. This work presents a series of simplified quality control procedures that are accessible to a wide range of preclinical imaging laboratories. Our intent is to provide minimum guidelines for routine quality control that can assist preclinical imaging specialists in setting up an appropriate quality control program for their facility.

  7. Weld radiograph enigmas

    NASA Technical Reports Server (NTRS)

    Jemian, Wartan A.

    1986-01-01

    Weld radiograph enigmas are features observed on X-ray radiographs of welds. Some of these features resemble indications of weld defects, although their origin is different. Since they are not understood, they are a source of concern. There is a need to identify their causes and especially to measure their effect on weld mechanical properties. A method is proposed whereby the enigmas can be evaluated and rated, in relation to the full spectrum of weld radiograph indications. Thie method involves a signature and a magnitude that can be used as a quantitive parameter. The signature is generated as the diference between the microdensitometer trace across the radiograph and the computed film intensity derived from a thickness scan along the corresponding region of the sample. The magnitude is the measured difference in intensity between the peak and base line values of the signature. The procedure is demonstated by comparing traces across radiographs of a weld sample before and after the introduction of a hole and by a system based on a MacIntosh mouse used for surface profiling.

  8. Industrial X-Ray Imaging

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In 1990, Lewis Research Center jointly sponsored a conference with the U.S. Air Force Wright Laboratory focused on high speed imaging. This conference, and early funding by Lewis Research Center, helped to spur work by Silicon Mountain Design, Inc. to break the performance barriers of imaging speed, resolution, and sensitivity through innovative technology. Later, under a Small Business Innovation Research contract with the Jet Propulsion Laboratory, the company designed a real-time image enhancing camera that yields superb, high quality images in 1/30th of a second while limiting distortion. The result is a rapidly available, enhanced image showing significantly greater detail compared to image processing executed on digital computers. Current applications include radiographic and pathology-based medicine, industrial imaging, x-ray inspection devices, and automated semiconductor inspection equipment.

  9. A new screening pathway for identifying asymptomatic patients using dental panoramic radiographs

    NASA Astrophysics Data System (ADS)

    Hayashi, Tatsuro; Matsumoto, Takuya; Sawagashira, Tsuyoshi; Tagami, Motoki; Katsumata, Akitoshi; Hayashi, Yoshinori; Muramatsu, Chisako; Zhou, Xiangrong; Iida, Yukihiro; Matsuoka, Masato; Katagi, Kiyoji; Fujita, Hiroshi

    2012-03-01

    To identify asymptomatic patients is the challenging task and the essential first step in diagnosis. Findings of dental panoramic radiographs include not only dental conditions but also radiographic signs that are suggestive of possible systemic diseases such as osteoporosis, arteriosclerosis, and maxillary sinusitis. Detection of such signs on panoramic radiographs has a potential to provide supplemental benefits for patients. However, it is not easy for general dental practitioners to pay careful attention to such signs. We addressed the development of a computer-aided detection (CAD) system that detects radiographic signs of pathology on panoramic images, and the design of the framework of new screening pathway by cooperation of dentists and our CAD system. The performance evaluation of our CAD system showed the sensitivity and specificity in the identification of osteoporotic patients were 92.6 % and 100 %, respectively, and those of the maxillary sinus abnormality were 89.6 % and 73.6 %, respectively. The detection rate of carotid artery calcifications that suggests the need for further medical evaluation was approximately 93.6 % with 4.4 false-positives per image. To validate the utility of the new screening pathway, preliminary clinical trials by using our CAD system were conducted. To date, 223 panoramic images were processed and 4 asymptomatic patients with suspected osteoporosis, 7 asymptomatic patients with suspected calcifications, and 40 asymptomatic patients with suspected maxillary sinusitis were detected in our initial trial. It was suggested that our new screening pathway could be useful to identify asymptomatic patients with systemic diseases.

  10. The effect of image sharpness on quantitative eye movement data and on image quality evaluation while viewing natural images

    NASA Astrophysics Data System (ADS)

    Vuori, Tero; Olkkonen, Maria

    2006-01-01

    The aim of the study is to test both customer image quality rating (subjective image quality) and physical measurement of user behavior (eye movements tracking) to find customer satisfaction differences in imaging technologies. Methodological aim is to find out whether eye movements could be quantitatively used in image quality preference studies. In general, we want to map objective or physically measurable image quality to subjective evaluations and eye movement data. We conducted a series of image quality tests, in which the test subjects evaluated image quality while we recorded their eye movements. Results show that eye movement parameters consistently change according to the instructions given to the user, and according to physical image quality, e.g. saccade duration increased with increasing blur. Results indicate that eye movement tracking could be used to differentiate image quality evaluation strategies that the users have. Results also show that eye movements would help mapping between technological and subjective image quality. Furthermore, these results give some empirical emphasis to top-down perception processes in image quality perception and evaluation by showing differences between perceptual processes in situations when cognitive task varies.

  11. Digital transillumination in caries detection versus radiographic and clinical methods: an in-vivo study

    PubMed Central

    Lara-Capi, Cynthia; Lingström, Peter; Lai, Gianfranco; Cocco, Fabio; Simark-Mattsson, Charlotte; Campus, Guglielmo

    2017-01-01

    Objectives: This article aimed to evaluate: (a) the agreement between a near-infrared light transillumination device and clinical and radiographic examinations in caries lesion detection and (b) the reliability of images captured by the transillumination device. Methods: Two calibrated examiners evaluated the caries status in premolars and molars on 52 randomly selected subjects by comparing the transillumination device with a clinical examination for the occlusal surfaces and by comparing the transillumination device with a radiographic examination (bitewing radiographs) for the approximal surfaces. Forty-eight trained dental hygienists evaluated and reevaluated 30 randomly selected images 1-month later. Results: A high concordance between transillumination method and clinical examination (kappa = 0.99) was detected for occlusal caries lesions, while for approximal surfaces, the transillumination device identified a higher number of lesions with respect to bitewing (kappa = 0.91). At the dentinal level, the two methods identified the same number of caries lesions (kappa = 1), whereas more approximal lesions were recorded using the transillumination device in the enamel (kappa = 0.24). The intraexaminer reliability was substantial/almost perfect in 59.4% of the participants. Conclusions: The transillumination method showed a high concordance compared with traditional methods (clinical examination and bitewing radiographs). Caries detection reliability using the transillumination device images showed a high intraexaminer agreement. Transillumination showed to be a reliable method and as effective as traditional methods in caries detection. PMID:28191797

  12. Objective quality assessment of tone-mapped images.

    PubMed

    Yeganeh, Hojatollah; Wang, Zhou

    2013-02-01

    Tone-mapping operators (TMOs) that convert high dynamic range (HDR) to low dynamic range (LDR) images provide practically useful tools for the visualization of HDR images on standard LDR displays. Different TMOs create different tone-mapped images, and a natural question is which one has the best quality. Without an appropriate quality measure, different TMOs cannot be compared, and further improvement is directionless. Subjective rating may be a reliable evaluation method, but it is expensive and time consuming, and more importantly, is difficult to be embedded into optimization frameworks. Here we propose an objective quality assessment algorithm for tone-mapped images by combining: 1) a multiscale signal fidelity measure on the basis of a modified structural similarity index and 2) a naturalness measure on the basis of intensity statistics of natural images. Validations using independent subject-rated image databases show good correlations between subjective ranking score and the proposed tone-mapped image quality index (TMQI). Furthermore, we demonstrate the extended applications of TMQI using two examples-parameter tuning for TMOs and adaptive fusion of multiple tone-mapped images.

  13. Quality metrics for sensor images

    NASA Technical Reports Server (NTRS)

    Ahumada, AL

    1993-01-01

    Methods are needed for evaluating the quality of augmented visual displays (AVID). Computational quality metrics will help summarize, interpolate, and extrapolate the results of human performance tests with displays. The FLM Vision group at NASA Ames has been developing computational models of visual processing and using them to develop computational metrics for similar problems. For example, display modeling systems use metrics for comparing proposed displays, halftoning optimizing methods use metrics to evaluate the difference between the halftone and the original, and image compression methods minimize the predicted visibility of compression artifacts. The visual discrimination models take as input two arbitrary images A and B and compute an estimate of the probability that a human observer will report that A is different from B. If A is an image that one desires to display and B is the actual displayed image, such an estimate can be regarded as an image quality metric reflecting how well B approximates A. There are additional complexities associated with the problem of evaluating the quality of radar and IR enhanced displays for AVID tasks. One important problem is the question of whether intruding obstacles are detectable in such displays. Although the discrimination model can handle detection situations by making B the original image A plus the intrusion, this detection model makes the inappropriate assumption that the observer knows where the intrusion will be. Effects of signal uncertainty need to be added to our models. A pilot needs to make decisions rapidly. The models need to predict not just the probability of a correct decision, but the probability of a correct decision by the time the decision needs to be made. That is, the models need to predict latency as well as accuracy. Luce and Green have generated models for auditory detection latencies. Similar models are needed for visual detection. Most image quality models are designed for static imagery

  14. Low-cost oblique illumination: an image quality assessment.

    PubMed

    Ruiz-Santaquiteria, Jesus; Espinosa-Aranda, Jose Luis; Deniz, Oscar; Sanchez, Carlos; Borrego-Ramos, Maria; Blanco, Saul; Cristobal, Gabriel; Bueno, Gloria

    2018-01-01

    We study the effectiveness of several low-cost oblique illumination filters to improve overall image quality, in comparison with standard bright field imaging. For this purpose, a dataset composed of 3360 diatom images belonging to 21 taxa was acquired. Subjective and objective image quality assessments were done. The subjective evaluation was performed by a group of diatom experts by psychophysical test where resolution, focus, and contrast were assessed. Moreover, some objective nonreference image quality metrics were applied to the same image dataset to complete the study, together with the calculation of several texture features to analyze the effect of these filters in terms of textural properties. Both image quality evaluation methods, subjective and objective, showed better results for images acquired using these illumination filters in comparison with the no filtered image. These promising results confirm that this kind of illumination filters can be a practical way to improve the image quality, thanks to the simple and low cost of the design and manufacturing process. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  15. Centralized automated quality assurance for large scale health care systems. A pilot method for some aspects of dental radiography.

    PubMed

    Benn, D K; Minden, N J; Pettigrew, J C; Shim, M

    1994-08-01

    President Clinton's Health Security Act proposes the formation of large scale health plans with improved quality assurance. Dental radiography consumes 4% ($1.2 billion in 1990) of total dental expenditure yet regular systematic office quality assurance is not performed. A pilot automated method is described for assessing density of exposed film and fogging of unexposed processed film. A workstation and camera were used to input intraoral radiographs. Test images were produced from a phantom jaw with increasing exposure times. Two radiologists subjectively classified the images as too light, acceptable, or too dark. A computer program automatically classified global grey level histograms from the test images as too light, acceptable, or too dark. The program correctly classified 95% of 88 clinical films. Optical density of unexposed film in the range 0.15 to 0.52 measured by computer was reliable to better than 0.01. Further work is needed to see if comprehensive centralized automated radiographic quality assurance systems with feedback to dentists are feasible, are able to improve quality, and are significantly cheaper than conventional clerical methods.

  16. Postoperative Evaluation of Reduction Loss in Proximal Humeral Fractures: A Comparison of Plain Radiographs and Computed Tomography.

    PubMed

    Jia, Xiao-Yang; Chen, Yan-Xi; Qiang, Min-Fei; Zhang, Kun; Li, Hao-Bo; Jiang, Yu-Chen; Zhang, Yi-Jie

    2017-05-01

    To compare postoperative CT images with plain radiographs for measuring prognostic factors of reduction loss of fractures of the proximal part of the humerus. A total of 65 patients who sustained fractures of the proximal humerus treated with locking plates from June 2012 to October 2015 were retrospectively analyzed. There were 24 men and 41 women, with a mean age of 60.0 years (range, 22-76 years). According to the Neer classification system of proximal humeral fracture, there were 26 two-part, 27 three-part and 12 four-part fractures of the proximal part of the humerus, and all fractures were treated with open reduction and internal fixation (ORIF) using locked plating. All postoperative CT images and plain radiographs of the patients were obtained. Prognostic factors of the reduction loss were the change of neck shaft angle (NSA) and the change of humeral head height (HHH). The change of NSA and HHH were evaluated by the difference between postoperative initial and final follow-up measurement. Reduction loss was defined as the change ≥10° for NSA or ≥5 mm for HHH. The NSA and HHH were measured using plain radiographs and 3-D CT images, both initially and at final follow-up. The paired t-test was used for comparison of NSA, change of NSA, HHH, and change of HHH between two image modalities. The differences between two image modalities in the assessment of reduction loss were examined using the χ 2 -test (McNemar test). Intraclass correlation coefficients (ICC) were used to assess the intra-observer and inter-observer reliability. 3-D CT images (ICC range, 0.834-0.967) were more reliable in all parameters when compared with plain radiographs (ICC range, 0.598-0.915). Significant differences were found between the two image modalities in all parameters (plain radiographs: initial NSA = 133.6° ± 3.8°, final NSA = 130.0° ± 1.9°, initial HHH = 17.9 ± 0.9 mm, final HHH = 15.8 ± 1.5 mm; 3-D CT: initial NSA = 131.4° ± 3.4°, final NSA = 128.8° ± 1.7

  17. Intercomparison of methods for image quality characterization. I. Modulation transfer function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samei, Ehsan; Ranger, Nicole T.; Dobbins, James T. III

    The modulation transfer function (MTF) and the noise power spectrum (NPS) are widely recognized as the most relevant metrics of resolution and noise performance in radiographic imaging. These quantities have commonly been measured using various techniques, the specifics of which can have a bearing on the accuracy of the results. As a part of a study aimed at comparing the relative performance of different techniques, in this paper we report on a comparison of two established MTF measurement techniques: one using a slit test device [Dobbins et al., Med. Phys. 22, 1581-1593 (1995)] and another using a translucent edge testmore » device [Samei et al., Med. Phys. 25, 102-113 (1998)], with one another and with a third technique using an opaque edge test device recommended by a new international standard (IEC 62220-1, 2003). The study further aimed to substantiate the influence of various acquisition and processing parameters on the estimated MTF. The slit test device was made of 2 mm thick Pb slabs with a 12.5 {mu}m opening. The translucent edge test device was made of a laminated and polished Pt{sub 0.9}Ir{sub 0.1} alloy foil of 0.1 mm thickness. The opaque edge test device was made of a 2 mm thick W slab. All test devices were imaged on a representative indirect flat-panel digital radiographic system using three published beam qualities: 70 kV with 0.5 mm Cu filtration, 70 kV with 19 mm Al filtration, and 74 kV with 21 mm Al filtration (IEC-RQA5). The latter technique was also evaluated in conjunction with two external beam-limiting apertures (per IEC 62220-1), and with the tube collimator limiting the beam to the same area achieved with the apertures. The presampled MTFs were deduced from the acquired images by Fourier analysis techniques, and the results analyzed for relative values and the influence of impacting parameters. The findings indicated that the measurement technique has a notable impact on the resulting MTF estimate, with estimates from the overall IEC

  18. Intercomparison of methods for image quality characterization. I. Modulation transfer function.

    PubMed

    Samei, Ehsan; Ranger, Nicole T; Dobbins, James T; Chen, Ying

    2006-05-01

    The modulation transfer function (MTF) and the noise power spectrum (NPS) are widely recognized as the most relevant metrics of resolution and noise performance in radiographic imaging. These quantities have commonly been measured using various techniques, the specifics of which can have a bearing on the accuracy of the results. As a part of a study aimed at comparing the relative performance of different techniques, in this paper we report on a comparison of two established MTF measurement techniques: one using a slit test device [Dobbins et al., Med. Phys. 22, 1581-1593 (1995)] and another using a translucent edge test device [Samei et al., Med. Phys. 25, 102-113 (1998)], with one another and with a third technique using an opaque edge test device recommended by a new international standard (IEC 62220-1, 2003). The study further aimed to substantiate the influence of various acquisition and processing parameters on the estimated MTF. The slit test device was made of 2 mm thick Pb slabs with a 12.5 microm opening. The translucent edge test device was made of a laminated and polished Pt(0.9)Ir(0.1). alloy foil of 0.1 mm thickness. The opaque edge test device was made of a 2 mm thick W slab. All test devices were imaged on a representative indirect flat-panel digital radiographic system using three published beam qualities: 70 kV with 0.5 mm Cu filtration, 70 kV with 19 mm Al filtration, and 74 kV with 21 mm Al filtration (IEC-RQA5). The latter technique was also evaluated in conjunction with two external beam-limiting apertures (per IEC 62220-1), and with the tube collimator limiting the beam to the same area achieved with the apertures. The presampled MTFs were deduced from the acquired images by Fourier analysis techniques, and the results analyzed for relative values and the influence of impacting parameters. The findings indicated that the measurement technique has a notable impact on the resulting MTF estimate, with estimates from the overall IEC method 4

  19. A Dynamic Image Quality Evaluation of Videofluoroscopy Images: Considerations for Telepractice Applications.

    PubMed

    Burns, Clare L; Keir, Benjamin; Ward, Elizabeth C; Hill, Anne J; Farrell, Anna; Phillips, Nick; Porter, Linda

    2015-08-01

    High-quality fluoroscopy images are required for accurate interpretation of videofluoroscopic swallow studies (VFSS) by speech pathologists and radiologists. Consequently, integral to developing any system to conduct VFSS remotely via telepractice is ensuring that the quality of the VFSS images transferred via the telepractice system is optimized. This study evaluates the extent of change observed in image quality when videofluoroscopic images are transmitted from a digital fluoroscopy system to (a) current clinical equipment (KayPentax Digital Swallowing Workstation, and b) four different telepractice system configurations. The telepractice system configurations consisted of either a local C20 or C60 Cisco TelePresence System (codec unit) connected to the digital fluoroscopy system and linked to a second remote C20 or C60 Cisco TelePresence System via a network running at speeds of either 2, 4 or 6 megabits per second (Mbit/s). Image quality was tested using the NEMA XR 21 Phantom, and results demonstrated some loss in spatial resolution, low contrast detectability and temporal resolution for all transferred images when compared to the fluoroscopy source. When using higher capacity codec units and/or the highest bandwidths to support data transmission, image quality transmitted through the telepractice system was found to be comparable if not better than the current clinical system. This study confirms that telepractice systems can be designed to support fluoroscopy image transfer and highlights important considerations when developing telepractice systems for VFSS analysis to ensure high-quality radiological image reproduction.

  20. Clinical imaging of the pancreas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, G.; Gardiner, R.

    1987-01-01

    Featuring more than 300 high-quality radiographs and scan images, clinical imaging of the pancreas systematically reviews all appropriate imaging modalities for diagnosing and evaluating a variety of commonly encountered pancreatic disorders. After presenting a succinct overview of pancreatic embryology, anatomy, and physiology, the authors establish the clinical indications-including postoperative patient evaluation-for radiologic examination of the pancreas. The diagnostic capabilities and limitations of currently available imaging techniques for the pancreas are thoroughly assessed, with carefully selected illustrations depicting the types of images and data obtained using these different techniques. The review of acute and chronic pancreatitis considers the clinical features andmore » possible complications of their variant forms and offers guidance in selecting appropriate imaging studies.« less

  1. Learning to rank for blind image quality assessment.

    PubMed

    Gao, Fei; Tao, Dacheng; Gao, Xinbo; Li, Xuelong

    2015-10-01

    Blind image quality assessment (BIQA) aims to predict perceptual image quality scores without access to reference images. State-of-the-art BIQA methods typically require subjects to score a large number of images to train a robust model. However, subjective quality scores are imprecise, biased, and inconsistent, and it is challenging to obtain a large-scale database, or to extend existing databases, because of the inconvenience of collecting images, training the subjects, conducting subjective experiments, and realigning human quality evaluations. To combat these limitations, this paper explores and exploits preference image pairs (PIPs) such as the quality of image Ia is better than that of image Ib for training a robust BIQA model. The preference label, representing the relative quality of two images, is generally precise and consistent, and is not sensitive to image content, distortion type, or subject identity; such PIPs can be generated at a very low cost. The proposed BIQA method is one of learning to rank. We first formulate the problem of learning the mapping from the image features to the preference label as one of classification. In particular, we investigate the utilization of a multiple kernel learning algorithm based on group lasso to provide a solution. A simple but effective strategy to estimate perceptual image quality scores is then presented. Experiments show that the proposed BIQA method is highly effective and achieves a performance comparable with that of state-of-the-art BIQA algorithms. Moreover, the proposed method can be easily extended to new distortion categories.

  2. Intraradicular Appearances Affect Radiographic Interpretation of the Periapical Area.

    PubMed

    Biscontine, Ana C; Diliberto, Adam J; Hatton, John F; Woodmansey, Karl F

    2017-12-01

    No research exists evaluating the influences of specific variables such as obturation length, radiodensity, or the presence of voids on interpretation of periradicular area. The purpose of this study was to evaluate the effects of obturation length, radiodensity, and the presence of voids on the radiographic interpretations of periapical areas. In a Web-based survey, 3 test image groups of variable obturation lengths, radiodensities, and numbers of voids were presented to observers for evaluation of the periapical areas. Intracanal areas of the images were altered by using Adobe Photoshop to create 3 test image groups. Each observer reviewed 2 control images and 1 image from each test image group. Responses were recorded in a 5-point Likert-type scale. Within each test image group, the periapical areas were identical. Kruskal-Wallis, Mann-Whitney U, and Cliff's delta statistical tests were used to analyze results. A total of 748 observer responses were analyzed. Significant differences (P ≤ .01) in the median Likert-type scale responses were identified between the following paired groups: 3 mm short and 1 mm short, 3 mm short and flush, lower radiodensity and higher radiodensity, lower radiodensity and intermediate radiodensity, no voids and several voids, and several voids and single void. Effect sizes ranged from 0.19 to 0.41. Significant differences were noted within all 3 test image groups: length, radiodensity, and presence of voids. Length of obturation had the largest effect on interpretation of the periapical area, with the 3 mm short radiographic obturation length image interpreted less favorably. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Simulation of a complete X-ray digital radiographic system for industrial applications.

    PubMed

    Nazemi, E; Rokrok, B; Movafeghi, A; Choopan Dastjerdi, M H

    2018-05-19

    Simulating X-ray images is of great importance in industry and medicine. Using such simulation permits us to optimize parameters which affect image's quality without the limitations of an experimental procedure. This study revolves around a novel methodology to simulate a complete industrial X-ray digital radiographic system composed of an X-ray tube and a computed radiography (CR) image plate using Monte Carlo N Particle eXtended (MCNPX) code. In the process of our research, an industrial X-ray tube with maximum voltage of 300 kV and current of 5 mA was simulated. A 3-layer uniform plate including a polymer overcoat layer, a phosphor layer and a polycarbonate backing layer was also defined and simulated as the CR imaging plate. To model the image formation in the image plate, at first the absorbed dose was calculated in each pixel inside the phosphor layer of CR imaging plate using the mesh tally in MCNPX code and then was converted to gray value using a mathematical relationship determined in a separate procedure. To validate the simulation results, an experimental setup was designed and the images of two step wedges created out of aluminum and steel were captured by the experiments and compared with the simulations. The results show that the simulated images are in good agreement with the experimental ones demonstrating the ability of the proposed methodology for simulating an industrial X-ray imaging system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Radiographic Abnormalities in the Feet of Diabetic Patients with Neuropathy and Foot Ulceration.

    PubMed

    Viswanathan, Vijay; Kumpatla, Satyavani; Rao, V Narayan

    2014-11-01

    People with diabetic neuropathy are frequently prone to several bone and joint abnormalities. Simple radiographic findings have been proven to be quite useful in the detection of such abnormalities, which might be helpful not only for early diagnosis but also in following the course of diabetes through stages of reconstruction of the ulcerated foot.The present study was designed to identify the common foot abnormalities in south Indian diabetic subjects with and without neuropathy using radiographic imaging. About 150 (M:F 94:56) subjects with type 2 diabetes were categorised into three groups: Group I (50 diabetic patients), Group II (50 patients with neuropathy), and Group III (50 diabetic patients with both neuropathy and foot ulceration). Demographic details, duration of diabetes and HbA1c values were recorded. Vibration perception threshold was measured for assessment of neuropathy. Bone and joint abnormalities in the feet and legs of the study subjects were identified using standardised dorsi-plantar and lateral weight-bearing radiographs. Radiographic findings of the study subjects revealed that those with both neuropathy and foot ulceration and a longer duration of diabetes had more number of bone and joint abnormalities. Subjects with neuropathy alone also showed presence of several abnormalities, including periosteal reaction, osteopenia, and Charcot changes. The present findings highlight the impact of neuropathy and duration of diabetes on the development of foot abnormalities in subjects with diabetes. Using radiographic imaging can help in early identification of abnormalities and better management of the diabetic foot.

  5. The utility of plain radiographs in the initial evaluation of knee pain amongst sports medicine patients.

    PubMed

    Alaia, Michael J; Khatib, Omar; Shah, Mehul; A Bosco, Joseph; M Jazrawi, Laith; Strauss, Eric J

    2015-08-01

    To evaluate whether screening radiographs as part of the initial workup of knee pain impacts clinical decision-making in a sports medicine practice. A questionnaire was completed by the attending orthopaedic surgeon following the initial office visit for 499 consecutive patients presenting to the sports medicine centre with a chief complaint of knee pain. The questionnaire documented patient age, duration of symptoms, location of knee pain, associated mechanical symptoms, history of trauma within the past 2 weeks, positive findings on plain radiographs, whether magnetic resonance imaging was ordered, and whether plain radiographs impacted the management decisions for the patient. Patients were excluded if they had prior X-rays, history of malignancy, ongoing pregnancy, constitutional symptoms as well as those patients with prior knee surgery or intra-articular infections. Statistical analyses were then performed to determine which factors were more likely do correspond with diagnostic radiographs. Overall, initial screening radiographs did not change management in 72 % of the patients assessed in the office. The mean age of patients in whom radiographs did change management was 57.9 years compared to 37.1 years in those patients where plain radiograph did not change management (p < 0.0001). Plain radiographs had no impact on clinical management in 97.3 % of patients younger than 40. In patients whom radiographs did change management, radiographs were more likely to influence management if patients were over age forty, had pain for over 6 months, had medial or diffuse pain, or had mechanical symptoms. A basic cost analysis revealed that the cost of a clinically useful radiographic series in a patient under 40 years of age was $7,600, in contrast to $413 for a useful series in patients above the age of 40. Data from the current study support the hypothesis that for the younger patient population, routine radiographic imaging as a screening tool may be of

  6. Standardizing Quality Assessment of Fused Remotely Sensed Images

    NASA Astrophysics Data System (ADS)

    Pohl, C.; Moellmann, J.; Fries, K.

    2017-09-01

    The multitude of available operational remote sensing satellites led to the development of many image fusion techniques to provide high spatial, spectral and temporal resolution images. The comparison of different techniques is necessary to obtain an optimized image for the different applications of remote sensing. There are two approaches in assessing image quality: 1. Quantitatively by visual interpretation and 2. Quantitatively using image quality indices. However an objective comparison is difficult due to the fact that a visual assessment is always subject and a quantitative assessment is done by different criteria. Depending on the criteria and indices the result varies. Therefore it is necessary to standardize both processes (qualitative and quantitative assessment) in order to allow an objective image fusion quality evaluation. Various studies have been conducted at the University of Osnabrueck (UOS) to establish a standardized process to objectively compare fused image quality. First established image fusion quality assessment protocols, i.e. Quality with No Reference (QNR) and Khan's protocol, were compared on varies fusion experiments. Second the process of visual quality assessment was structured and standardized with the aim to provide an evaluation protocol. This manuscript reports on the results of the comparison and provides recommendations for future research.

  7. High-quality compressive ghost imaging

    NASA Astrophysics Data System (ADS)

    Huang, Heyan; Zhou, Cheng; Tian, Tian; Liu, Dongqi; Song, Lijun

    2018-04-01

    We propose a high-quality compressive ghost imaging method based on projected Landweber regularization and guided filter, which effectively reduce the undersampling noise and improve the resolution. In our scheme, the original object is reconstructed by decomposing of regularization and denoising steps instead of solving a minimization problem in compressive reconstruction process. The simulation and experimental results show that our method can obtain high ghost imaging quality in terms of PSNR and visual observation.

  8. Image quality evaluation of full reference algorithm

    NASA Astrophysics Data System (ADS)

    He, Nannan; Xie, Kai; Li, Tong; Ye, Yushan

    2018-03-01

    Image quality evaluation is a classic research topic, the goal is to design the algorithm, given the subjective feelings consistent with the evaluation value. This paper mainly introduces several typical reference methods of Mean Squared Error(MSE), Peak Signal to Noise Rate(PSNR), Structural Similarity Image Metric(SSIM) and feature similarity(FSIM) of objective evaluation methods. The different evaluation methods are tested by Matlab, and the advantages and disadvantages of these methods are obtained by analyzing and comparing them.MSE and PSNR are simple, but they are not considered to introduce HVS characteristics into image quality evaluation. The evaluation result is not ideal. SSIM has a good correlation and simple calculation ,because it is considered to the human visual effect into image quality evaluation,However the SSIM method is based on a hypothesis,The evaluation result is limited. The FSIM method can be used for test of gray image and color image test, and the result is better. Experimental results show that the new image quality evaluation algorithm based on FSIM is more accurate.

  9. Paediatric lateral humeral condyle fractures: internal oblique radiographs alter the course of conservative treatment.

    PubMed

    Kurtulmuş, Tuhan; Sağlam, Necdet; Saka, Gursel; Avcı, Cem Coşkun; Uğurlar, Meriç; Türker, Mehmet

    2014-10-01

    At first presentation of paediatric humeral lateral condyle fractures, radiological methods such as computerised tomography, ultrasonography, magnetic resonance imaging, arthrography, and internal oblique radiography are used to determine stability. Very few studies show which radiological method should be used to evaluate displacement at follow-up for conservatively treated patients. This study aimed to show that internal oblique radiography is a simple, effective method to determine the subsequent development of fracture displacement in patients with an initially non-displaced or minimally displaced fracture. In this retrospective study, 27 paediatric patients with non-displaced or minimally displaced (<2 mm) humerus lateral condyle fracture were evaluated by elbow anteroposterior radiograph. The degree of fracture displacement was evaluated by anteroposterior then by internal oblique radiographs. The first follow-up was made between the 5th and 8th day and thereafter at intervals of 7-10 days. Of the 27 patients identified with non-displaced or minimally displaced (<2 mm) fracture from the initial anteroposterior radiograph, 16 were accepted as displacement >2 mm as a result of the evaluation of the internal oblique radiography and underwent surgery. At follow-up, 2 of 11 patients were defined with displacement from anteroposterior and internal oblique radiographs and 4 from the internal oblique radiographs and underwent surgery. Conservative treatment was applied to 5 patients. Internal oblique radiography is the best imaging showing subsequent fracture displacement in initially non-displaced or minimally displaced humerus lateral condyle fractures. At the first week follow-up, anteroposterior and particularly internal oblique radiographs should be taken of conservatively treated patients.

  10. Osteoporosis Imaging: State of the Art and Advanced Imaging

    PubMed Central

    2012-01-01

    Osteoporosis is becoming an increasingly important public health issue, and effective treatments to prevent fragility fractures are available. Osteoporosis imaging is of critical importance in identifying individuals at risk for fractures who would require pharmacotherapy to reduce fracture risk and also in monitoring response to treatment. Dual x-ray absorptiometry is currently the state-of-the-art technique to measure bone mineral density and to diagnose osteoporosis according to the World Health Organization guidelines. Motivated by a 2000 National Institutes of Health consensus conference, substantial research efforts have focused on assessing bone quality by using advanced imaging techniques. Among these techniques aimed at better characterizing fracture risk and treatment effects, high-resolution peripheral quantitative computed tomography (CT) currently plays a central role, and a large number of recent studies have used this technique to study trabecular and cortical bone architecture. Other techniques to analyze bone quality include multidetector CT, magnetic resonance imaging, and quantitative ultrasonography. In addition to quantitative imaging techniques measuring bone density and quality, imaging needs to be used to diagnose prevalent osteoporotic fractures, such as spine fractures on chest radiographs and sagittal multidetector CT reconstructions. Radiologists need to be sensitized to the fact that the presence of fragility fractures will alter patient care, and these fractures need to be described in the report. This review article covers state-of-the-art imaging techniques to measure bone mineral density, describes novel techniques to study bone quality, and focuses on how standard imaging techniques should be used to diagnose prevalent osteoporotic fractures. © RSNA, 2012 PMID:22438439

  11. Examples of subjective image quality enhancement in multimedia

    NASA Astrophysics Data System (ADS)

    Klíma, Miloš; Pazderák, Jiří; Fliegel, Karel

    2007-09-01

    The subjective image quality is an important issue in all multimedia imaging systems with a significant impact onto QoS (Quality of Service). For long time the image fidelity criterion was widely applied in technical systems esp. in both television and image source compression fields but the optimization of subjective perception quality and fidelity approach (such as the minimum of MSE) are very different. The paper presents an experimental testing of three different digital techniques for the subjective image quality enhancement - color saturation, edge enhancement, denoising operators and noise addition - well known from both the digital photography and video. The evaluation has been done for extensive operator parameterization and the results are summarized and discussed. It has been demonstrated that there are relevant types of image corrections improving to some extent the subjective perception of the image. The above mentioned techniques have been tested for five image tests with significantly different image characteristics (fine details, large saturated color areas, high color contrast, easy-to-remember colors etc.). The experimental results show the way to optimized use of image enhancing operators. Finally the concept of impressiveness as a new possible expression of subjective quality improvement is presented and discussed.

  12. Performance evaluation of no-reference image quality metrics for face biometric images

    NASA Astrophysics Data System (ADS)

    Liu, Xinwei; Pedersen, Marius; Charrier, Christophe; Bours, Patrick

    2018-03-01

    The accuracy of face recognition systems is significantly affected by the quality of face sample images. The recent established standardization proposed several important aspects for the assessment of face sample quality. There are many existing no-reference image quality metrics (IQMs) that are able to assess natural image quality by taking into account similar image-based quality attributes as introduced in the standardization. However, whether such metrics can assess face sample quality is rarely considered. We evaluate the performance of 13 selected no-reference IQMs on face biometrics. The experimental results show that several of them can assess face sample quality according to the system performance. We also analyze the strengths and weaknesses of different IQMs as well as why some of them failed to assess face sample quality. Retraining an original IQM by using face database can improve the performance of such a metric. In addition, the contribution of this paper can be used for the evaluation of IQMs on other biometric modalities; furthermore, it can be used for the development of multimodality biometric IQMs.

  13. dipIQ: Blind Image Quality Assessment by Learning-to-Rank Discriminable Image Pairs.

    PubMed

    Ma, Kede; Liu, Wentao; Liu, Tongliang; Wang, Zhou; Tao, Dacheng

    2017-05-26

    Objective assessment of image quality is fundamentally important in many image processing tasks. In this work, we focus on learning blind image quality assessment (BIQA) models which predict the quality of a digital image with no access to its original pristine-quality counterpart as reference. One of the biggest challenges in learning BIQA models is the conflict between the gigantic image space (which is in the dimension of the number of image pixels) and the extremely limited reliable ground truth data for training. Such data are typically collected via subjective testing, which is cumbersome, slow, and expensive. Here we first show that a vast amount of reliable training data in the form of quality-discriminable image pairs (DIP) can be obtained automatically at low cost by exploiting largescale databases with diverse image content. We then learn an opinion-unaware BIQA (OU-BIQA, meaning that no subjective opinions are used for training) model using RankNet, a pairwise learning-to-rank (L2R) algorithm, from millions of DIPs, each associated with a perceptual uncertainty level, leading to a DIP inferred quality (dipIQ) index. Extensive experiments on four benchmark IQA databases demonstrate that dipIQ outperforms state-of-the-art OU-BIQA models. The robustness of dipIQ is also significantly improved as confirmed by the group MAximum Differentiation (gMAD) competition method. Furthermore, we extend the proposed framework by learning models with ListNet (a listwise L2R algorithm) on quality-discriminable image lists (DIL). The resulting DIL Inferred Quality (dilIQ) index achieves an additional performance gain.

  14. Radiographic landmarks for locating the femoral origin of the superficial medial collateral ligament.

    PubMed

    Hartshorn, Timothy; Otarodifard, Karimdad; White, Eric A; Hatch, George F Rick

    2013-11-01

    Little has been written about the use of radiographic landmarks for locating the origin of the superficial medial collateral ligament (sMCL). A standardized radiographic landmark for the sMCL origin using intraoperative fluoroscopic imaging may be of value in aiding the surgeon in accurate femoral tunnel placement in the setting of extensive soft tissue disruption and bony attrition. To determine a reproducible radiographic landmark that will assist in correct femoral tunnel placement in sMCL repair and reconstruction. Descriptive laboratory study. Ten fresh-frozen unmatched human cadaveric knees were dissected, and the origin of the sMCL was exposed. A 2-mm metallic marker was then placed at the center of the femoral origin of the sMCL. True lateral fluoroscopically assisted digital radiographs were obtained of the knee with the posterior and distal femoral condyles overlapping in a standardized fashion. With the use of computer software, reference lines were drawn on the images, creating 4 quadrants. Two independent examiners performed quantitative measurements of the sMCL origin in relation to this axis and to the Blumensaat line. Mean measurements showed the sMCL origin to be closely related to the intersection point of the Blumensaat line and a line drawn distally from the posterior femoral cortex on a true lateral radiograph. The sMCL origin was found at a mean point 1.6 ± 4.3 mm posterior and 4.9 ± 2.1 mm proximal to the intersection of a line paralleling the posterior femoral cortex and a line drawn perpendicular to the posterior femoral cortical line, where it intersects the Blumensaat line. In 5 of 10 specimens, the center of the sMCL origin fell precisely on the Blumensaat line. The remaining specimens had sMCL origins anterior to the Blumensaat line. The femoral origin of the sMCL was found in the proximal and posterior quadrants in 8 of 10 specimens. With a relatively small amount of deviation, the sMCL origin can be consistently identified on a true

  15. A comparison of the diagnostic utility of two image receptors for panoramic radiography.

    PubMed

    Carmichael, F A; Hirschmann, P N; Scaife, B; Sheard, L; Mackenzie, A

    2000-01-01

    To compare the diagnostic utility of two screen-film systems for panoramic radiography, one based on green and the other on ultraviolet light. Two hundred consecutive adult patients with teeth in all four quadrants requiring panoramic radiographs were randomly allocated to one of two groups. One group was imaged with OGA L (CEA AB, Strängnäs, Sweden) film using Lanex Regular (Eastman Kodak, Rochester, NY, USA) screens (the Lanex group). The other group was imaged using Ultra-Vision (Dupont UK Limited, Hertfordshire, UK) film and screens (the Ultra-vision group). Two different panoramic machines were used, a Planmeca (Planmeca OY, Helsinki, Finland) and Cranex (Soredex Orion Corporation, Helsinki, Finland). The radiographs were evaluated by two radiographers for overall quality and any faults recorded. Two dental radiologists evaluated the crestal and apical areas of every standing tooth on a 4-point scale. The likelihood of getting a high-quality image with the different films was modelled using logistic regression, adjusting for the radiologist and the area of the tooth being examined. Inter- and intra-examiner agreement was calculated using Kappa and weighted Kappa where appropriate. The radiographers recorded no significant differences in positioning errors between the two groups of film. However, the films produced on the Cranex were less likely to be recorded as excellent. The radiologists' interexaminer agreement for the lower molars and upper incisors was only moderate at best (kappa = 0.56). No significant differences were found between the likelihood of the two types of film providing a high-quality image. Crestal areas were more likely to be scored well than apical areas. There were no differences in ease of discerning apical and crestal areas between the two screen-film systems. There was only poor to moderate agreement between the two radiologists. Ultra-Vision can be recommended as an alternative to existing rare earth systems for panoramic

  16. Evaluation of the usefulness of color digital summation radiography in temporally sequential digital radiographs: a phantom study.

    PubMed

    Ogata, Yuji; Naito, Hiroaki; Tomiyama, Noriyuki; Hamada, Seiki; Kozuka, Takenori; Koyama, Mitsuhiro; Tsubamoto, Mitusko; Murai, Sachiko; Ueguchi, Takashi; Matsumoto, Mitsuhiro; Tamura, Shinichi; Nakamura, Hironobu; Johkoh, Takeshi

    2006-04-01

    The purpose of this study was to assess the usefulness of color digital summation radiography (CDSR) for detection of nodules on chest radiographs by observers with different levels of experience. A total of 30 radiographs of chest phantoms with abnormalities and 30 normal ones were arranged at random. Set A was conventional radiographs only. Set B consisted of both conventional radiographs and CDSR images, which were colored with magenta. Five chest radiologists and five residents evaluated both image sets on a TFT monitor. The observers were asked to rate each image set using a continuous rating scale. The reading time for each set was also recorded. In set A, the performance of chest radiologists was significantly superior to that of the residents (P < 0.05). However, in set B, there was no significant difference in the performance of the chest radiologists and the residents. In both observer groups, the mean reading time per case in set B was significantly shorter than that in set A (P < 0.01). By using CDSR, the detection capability of observers with little experience improves and is comparable to that of experienced observers. Moreover, the reading time becomes much shorter using CDSR.

  17. High-resolution axial MR imaging of tibial stress injuries

    PubMed Central

    2012-01-01

    Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries. PMID:22574840

  18. SU-E-I-48: The Behavior of AEC in Scan Regions Outside the Localizer Radiograph FOV: An In Phantom Study of CT Systems From Four Vendors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supanich, M; Bevins, N

    Purpose: This review of scanners from 4 major manufacturers examines the clinical impact of performing CT scans that extend into areas of the body that were not acquired in the CT localizer radiograph. Methods: Anthropomorphic chest and abdomen phantoms were positioned together on the tables of CT scanners from 4 different vendors. All of the scanners offered an Automatic Exposure Control (AEC) option with both lateral and axial tube current modulation. A localizer radiograph was taken covering the entire extent of both phantoms and then the scanner's Chest-Abdomen-Pelvis (CAP) study was performed with the clinical AEC settings employed and themore » scan and reconstruction range extending from the superior portion of the chest phantom through the inferior portion of the abdomen phantom. A new study was then initiated with a localizer radiograph extending the length of the chest phantom (not covering the abdomen phantom). The same CAP protocol and AEC settings were then used to scan and reconstruct the entire length of both phantoms. Scan parameters at specific locations in the abdomen phantom from both studies were investigated using the information contained in the DICOM metadata of the reconstructed images. Results: The AEC systems on all scanners utilized different tube current settings in the abdomen phantom for the scan completed without the full localizer radiograph. The AEC system behavior was also scanner dependent with the default manual tube current, the maximum tube current and the tube current at the last known position observed as outcomes. Conclusion: The behavior of the AEC systems of CT scanners in regions not covered by the localizer radiograph is vendor dependent. To ensure optimal image quality and radiation exposure it is important to include the entire planned scan region in the localizer radiograph.« less

  19. Physical performance and radiographic and clinical vertebral fractures in older men.

    PubMed

    Cawthon, Peggy M; Blackwell, Terri L; Marshall, Lynn M; Fink, Howard A; Kado, Deborah M; Ensrud, Kristine E; Cauley, Jane A; Black, Dennis; Orwoll, Eric S; Cummings, Steven R; Schousboe, John T

    2014-09-01

    In men, the association between poor physical performance and likelihood of incident vertebral fractures is unknown. Using data from the MrOS study (N = 5958), we describe the association between baseline physical performance (walking speed, grip strength, leg power, repeat chair stands, narrow walk [dynamic balance]) and incidence of radiographic and clinical vertebral fractures. At baseline and follow-up an average of 4.6 years later, radiographic vertebral fractures were assessed using semiquantitative (SQ) scoring on lateral thoracic and lumbar radiographs. Logistic regression modeled the association between physical performance and incident radiographic vertebral fractures (change in SQ grade ≥1 from baseline to follow-up). Every 4 months after baseline, participants self-reported fractures; clinical vertebral fractures were confirmed by centralized radiologist review of the baseline study radiograph and community-acquired spine images. Proportional hazards regression modeled the association between physical performance with incident clinical vertebral fractures. Multivariate models were adjusted for age, bone mineral density (BMD, by dual-energy X-ray absorptiometry [DXA]), clinical center, race, smoking, height, weight, history of falls, activity level, and comorbid medical conditions; physical performance was analyzed as quartiles. Of 4332 men with baseline and repeat radiographs, 192 (4.4%) had an incident radiographic vertebral fracture. With the exception of walking speed, poorer performance on repeat chair stands, leg power, narrow walk, and grip strength were each associated in a graded manner with an increased risk of incident radiographic vertebral fracture (p for trend across quartiles <0.001). In addition, men with performance in the worst quartile on three or more exams had an increased risk of radiographic fracture (odds ratio [OR] = 1.81, 95% confidence interval [CI] 1.33-2.45) compared with men with better performance on all exams

  20. Congenital lumbar spinal stenosis: a prospective, control-matched, cohort radiographic analysis.

    PubMed

    Singh, Kern; Samartzis, Dino; Vaccaro, Alexander R; Nassr, Ahmad; Andersson, Gunnar B; Yoon, S Tim; Phillips, Frank M; Goldberg, Edward J; An, Howard S

    2005-01-01

    Degenerative lumbar spinal stenosis manifests primarily after the sixth decade of life as a result of facet hypertrophy and degenerative disc disease. Congenital stenosis, on the other hand, presents earlier in age with similar clinical findings but with multilevel involvement and fewer degenerative changes. These patients may have subtle anatomic variations of the lumbar spine that may increase the likelihood of thecal sac compression. However, to the authors' knowledge, no quantitative studies have addressed various radiographic parameters of symptomatic, congenitally stenotic individuals to normal subjects. To radiographically quantify and compare the anatomy of the lumbar spine in symptomatic, congenitally stenotic individuals to age- and sex-matched, asymptomatic, nonstenotic controlled individuals. A prospective, control-matched, cohort radiographic analysis. Axial and sagittal magnetic resonance imaging (MRI) and lateral, lumbar, plain radiographs of 20 surgically treated patients who were given a clinical diagnosis of congenital lumbar stenosis by the senior author were randomized with images of 20, asymptomatic age- and sex-matched subjects. MRIs and lateral, lumbar, plain radiographs were independently quantitatively assessed by two individuals. Measurements obtained from the axial MRIs included: midline anterior-posterior (AP) vertebral body diameter, vertebral body width, midline AP canal diameter, canal width, spinal canal cross-sectional area, pedicle length, and pedicle width. From the sagittal MRIs, the following measurements were calculated: AP vertebral body diameter, vertebral body height, and AP canal diameter at the mid-vertebral level. On the lateral, lumbar, plain radiograph (L3 level), the AP diameters of the vertebral body spinal canal were measured. The images of these 40 individuals were then randomized and distributed in a blinded fashion to five separate spine surgeons who graded the presence and severity of congenital stenosis

  1. First experiences with in-vivo x-ray dark-field imaging of lung cancer in mice

    NASA Astrophysics Data System (ADS)

    Gromann, Lukas B.; Scherer, Kai; Yaroshenko, Andre; Bölükbas, Deniz A.; Hellbach, Katharina; Meinel, Felix G.; Braunagel, Margarita; Eickelberg, Oliver; Reiser, Maximilian F.; Pfeiffer, Franz; Meiners, Silke; Herzen, Julia

    2017-03-01

    Purpose: The purpose of the present study was to evaluate if x-ray dark-field imaging can help to visualize lung cancer in mice. Materials and Methods: The experiments were performed using mutant mice with high-grade adenocarcinomas. Eight animals with pulmonary carcinoma and eight control animals were imaged in radiography mode using a prototype small-animal x-ray dark-field scanner and three of the cancerous ones additionally in CT mode. After imaging, the lungs were harvested for histological analysis. To determine their diagnostic value, x-ray dark-field and conventional attenuation images were analyzed by three experienced readers in a blind assessment. Results radiographic imaging: The lung nodules were much clearer visualized on the dark-field radiographs compared to conventional radiographs. The loss of air-tissue interfaces in the tumor leads to a significant loss of x-ray scattering, reflected in a strong dark-field signal change. The difference between tumor and healthy tissue in terms of x-ray attenuation is significantly less pronounced. Furthermore, the signal from the overlaying structures on conventional radiographs complicates the detection of pulmonary carcinoma. Results CT imaging: The very first in-vivo CT-imaging results are quite promising as smaller tumors are often better visible in the dark-field images. However the imaging quality is still quite low, especially in the attenuation images due to un-optimized scanning parameters. Conclusion: We found a superior diagnostic performance of dark-field imaging compared to conventional attenuation based imaging, especially when it comes to the detection of small lung nodules. These results support the motivation to further develop this technique and translate it towards a clinical environment.

  2. Observer agreement in the reporting of knee and lumbar spine magnetic resonance (MR) imaging examinations: selectively trained MR radiographers and consultant radiologists compared with an index radiologist.

    PubMed

    Brealey, S; Piper, K; King, D; Bland, M; Caddick, J; Campbell, P; Gibbon, A; Highland, A; Jenkins, N; Petty, D; Warren, D

    2013-10-01

    To assess agreement between trained radiographers and consultant radiologists compared with an index radiologist when reporting on magnetic resonance imaging (MRI) examinations of the knee and lumbar spine and to examine the subsequent effect of discordant reports on patient management and outcome. At York Hospital two MR radiographers, two consultant radiologists and an index radiologist reported on a prospective, random sample of 326 MRI examinations. The radiographers reported in clinical practice conditions and the radiologists during clinical practice. An independent consultant radiologist compared these reports with the index radiologist report for agreement. Orthopaedic surgeons then assessed whether the discordance between reports was clinically important. Overall observer agreement with the index radiologist was comparable between observers and ranged from 54% to 58%; for the knee it was 46-57% and for the lumbar spine was 56-66%. There was a very small observed difference of 0.6% (95% CI -11.9 to 13.0) in mean agreement between the radiographers and radiologists (P=0.860). For the knee, lumbar spine and overall, radiographers' discordant reports, when compared with the index radiologist, were less likely to have a clinically important effect on patient outcome than the radiologists' discordant reports. Less than 10% of observer's reports were sufficiently discordant with the index radiologist's reports to be clinically important. Carefully selected MR radiographers with postgraduate education and training reported in clinical practice conditions on specific MRI examinations of the knee and lumbar spine to a level of agreement comparable with non-musculoskeletal consultant radiologists. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Achieving quality in cardiovascular imaging: proceedings from the American College of Cardiology-Duke University Medical Center Think Tank on Quality in Cardiovascular Imaging.

    PubMed

    Douglas, Pamela; Iskandrian, Ami E; Krumholz, Harlan M; Gillam, Linda; Hendel, Robert; Jollis, James; Peterson, Eric; Chen, Jersey; Masoudi, Frederick; Mohler, Emile; McNamara, Robert L; Patel, Manesh R; Spertus, John

    2006-11-21

    Cardiovascular imaging has enjoyed both rapid technological advances and sustained growth, yet less attention has been focused on quality than in other areas of cardiovascular medicine. To address this deficit, representatives from cardiovascular imaging societies, private payers, government agencies, the medical imaging industry, and experts in quality measurement met, and this report provides an overview of the discussions. A consensus definition of quality in imaging and a convergence of opinion on quality measures across imaging modalities was achieved and are intended to be the start of a process culminating in the development, dissemination, and adoption of quality measures for all cardiovascular imaging modalities.

  4. Radiograph and passive data analysis using mixed variable optimization

    DOEpatents

    Temple, Brian A.; Armstrong, Jerawan C.; Buescher, Kevin L.; Favorite, Jeffrey A.

    2015-06-02

    Disclosed herein are representative embodiments of methods, apparatus, and systems for performing radiography analysis. For example, certain embodiments perform radiographic analysis using mixed variable computation techniques. One exemplary system comprises a radiation source, a two-dimensional detector for detecting radiation transmitted through a object between the radiation source and detector, and a computer. In this embodiment, the computer is configured to input the radiographic image data from the two-dimensional detector and to determine one or more materials that form the object by using an iterative analysis technique that selects the one or more materials from hierarchically arranged solution spaces of discrete material possibilities and selects the layer interfaces from the optimization of the continuous interface data.

  5. Naturalness and interestingness of test images for visual quality evaluation

    NASA Astrophysics Data System (ADS)

    Halonen, Raisa; Westman, Stina; Oittinen, Pirkko

    2011-01-01

    Balanced and representative test images are needed to study perceived visual quality in various application domains. This study investigates naturalness and interestingness as image quality attributes in the context of test images. Taking a top-down approach we aim to find the dimensions which constitute naturalness and interestingness in test images and the relationship between these high-level quality attributes. We compare existing collections of test images (e.g. Sony sRGB images, ISO 12640 images, Kodak images, Nokia images and test images developed within our group) in an experiment combining quality sorting and structured interviews. Based on the data gathered we analyze the viewer-supplied criteria for naturalness and interestingness across image types, quality levels and judges. This study advances our understanding of subjective image quality criteria and enables the validation of current test images, furthering their development.

  6. [Optimal beam quality for chest digital radiography].

    PubMed

    Oda, Nobuhiro; Tabata, Yoshito; Nakano, Tsutomu

    2014-11-01

    To investigate the optimal beam quality for chest computed radiography (CR), we measured the radiographic contrast and evaluated the image quality of chest CR using various X-ray tube voltages. The contrast between lung and rib or heart increased on CR images obtained by lowering the tube voltage from 140 to 60 kV, but the degree of increase was less. Scattered radiation was reduced on CR images with a lower tube voltage. The Wiener spectrum of CR images with a low tube voltage showed a low value under identical conditions of amount of light stimulated emission. The quality of chest CR images obtained using a lower tube voltage (80 kV and 100 kV) was evaluated as being superior to those obtained with a higher tube voltage (120 kV and 140 kV). Considering the problem of tube loading and exposure in clinical applications, a tube voltage of 90 to 100 kV (0.1 mm copper filter backed by 0.5 mm aluminum) is recommended for chest CR.

  7. Learning Receptive Fields and Quality Lookups for Blind Quality Assessment of Stereoscopic Images.

    PubMed

    Shao, Feng; Lin, Weisi; Wang, Shanshan; Jiang, Gangyi; Yu, Mei; Dai, Qionghai

    2016-03-01

    Blind quality assessment of 3D images encounters more new challenges than its 2D counterparts. In this paper, we propose a blind quality assessment for stereoscopic images by learning the characteristics of receptive fields (RFs) from perspective of dictionary learning, and constructing quality lookups to replace human opinion scores without performance loss. The important feature of the proposed method is that we do not need a large set of samples of distorted stereoscopic images and the corresponding human opinion scores to learn a regression model. To be more specific, in the training phase, we learn local RFs (LRFs) and global RFs (GRFs) from the reference and distorted stereoscopic images, respectively, and construct their corresponding local quality lookups (LQLs) and global quality lookups (GQLs). In the testing phase, blind quality pooling can be easily achieved by searching optimal GRF and LRF indexes from the learnt LQLs and GQLs, and the quality score is obtained by combining the LRF and GRF indexes together. Experimental results on three publicly 3D image quality assessment databases demonstrate that in comparison with the existing methods, the devised algorithm achieves high consistent alignment with subjective assessment.

  8. Improving high resolution retinal image quality using speckle illumination HiLo imaging

    PubMed Central

    Zhou, Xiaolin; Bedggood, Phillip; Metha, Andrew

    2014-01-01

    Retinal image quality from flood illumination adaptive optics (AO) ophthalmoscopes is adversely affected by out-of-focus light scatter due to the lack of confocality. This effect is more pronounced in small eyes, such as that of rodents, because the requisite high optical power confers a large dioptric thickness to the retina. A recently-developed structured illumination microscopy (SIM) technique called HiLo imaging has been shown to reduce the effect of out-of-focus light scatter in flood illumination microscopes and produce pseudo-confocal images with significantly improved image quality. In this work, we adopted the HiLo technique to a flood AO ophthalmoscope and performed AO imaging in both (physical) model and live rat eyes. The improvement in image quality from HiLo imaging is shown both qualitatively and quantitatively by using spatial spectral analysis. PMID:25136486

  9. Improving high resolution retinal image quality using speckle illumination HiLo imaging.

    PubMed

    Zhou, Xiaolin; Bedggood, Phillip; Metha, Andrew

    2014-08-01

    Retinal image quality from flood illumination adaptive optics (AO) ophthalmoscopes is adversely affected by out-of-focus light scatter due to the lack of confocality. This effect is more pronounced in small eyes, such as that of rodents, because the requisite high optical power confers a large dioptric thickness to the retina. A recently-developed structured illumination microscopy (SIM) technique called HiLo imaging has been shown to reduce the effect of out-of-focus light scatter in flood illumination microscopes and produce pseudo-confocal images with significantly improved image quality. In this work, we adopted the HiLo technique to a flood AO ophthalmoscope and performed AO imaging in both (physical) model and live rat eyes. The improvement in image quality from HiLo imaging is shown both qualitatively and quantitatively by using spatial spectral analysis.

  10. Reliability and validity of soft copy images based on flat-panel detector in pneumoconiosis classification: comparison with the analog radiographs.

    PubMed

    Lee, Won-Jeong; Choi, Byung-Soon

    2013-06-01

    The aim of this study was to evaluate the reliability and validity of soft copy images based on flat-panel detector of digital radiography (DR-FPD soft copy images) compared to analog radiographs (ARs) in pneumoconiosis classification and diagnosis. DR-FPD soft copy images and ARs from 349 subjects were independently read by four-experienced readers according to the International Labor Organization 2000 guidelines. DR-FPD soft copy images were used to obtain consensus reading (CR) by all readers as the gold standard. Reliability and validity were evaluated by a κ and receiver operating characteristic analysis, respectively. In small opacity, overall interreader agreement of DR-FPD soft copy images was significantly higher than that of ARs, but it was not significantly different in large opacity and costophrenic angle obliteration. In small opacity, agreement of DR-FPD soft copy images with CR was significantly higher than that of ARs with CR. It was also higher than that of ARs with CR in pleural plaque and thickening. Receiver operating characteristic areas were not different significantly between DR-FPD soft copy images and ARs. DR-FPD soft copy images showed accurate and reliable results in pneumoconiosis classification and diagnosis compared to ARs. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  11. Chest radiographic characteristics of community-acquired Legionella pneumonia in the elderly.

    PubMed

    Zhang, Zhigang; Liu, Xinmin; Chen, Luzeng; Qiu, Jianxing

    2014-01-01

    Legionella is an important community-acquired pneumonia pathogen. Although the elderly are especially susceptible to Legionella, few studies have looked at comparative radiographic features of Legionella pneumonia in this population. The aim of this study was to explore the chest radiographic characteristics of community-acquired Legionella pneumonia in the elderly. Serial chest radiographs obtained in 34 patients hospitalized with serologically proven Legionella pneumonia were retrospectively reviewed. Chest X-ray features of an aged group of ≥ 65 years were assessed and compared with a non-aged group of <65 years old with regard to initial patterns and distributions of pulmonary abnormalities, accompanying signs, and progression. The most common initial presentation was a patchy alveolar infiltrate involving a single lobe, most often the lower lobe. There was no middle or lingular lobe involvement in the aged group patients, but bilateral pleural effusion was significantly more common in this group. In the aged group patients, radiographic progression following adequate therapy, despite a clinical response, was more often noted and the radiographs were less likely to have returned to the premorbid state at discharge, but the differences were not significant between the two groups. The discrepancy between imaging findings and clinical symptoms seems more prominent in community-acquired Legionella pneumonia in the elderly.

  12. Lessions learned in WISE image quality

    NASA Astrophysics Data System (ADS)

    Kendall, Martha; Duval, Valerie G.; Larsen, Mark F.; Heinrichsen, Ingolf H.; Esplin, Roy W.; Shannon, Mark; Wright, Edward L.

    2010-08-01

    The Wide-Field Infrared Survey Explorer (WISE) mission launched in December of 2009 is a true success story. The mission is performing beyond expectations on-orbit and maintained cost and schedule throughout. How does such a thing happen? A team constantly focused on mission success is a key factor. Mission success is more than a program meeting its ultimate science goals; it is also meeting schedule and cost goals to avoid cancellation. The WISE program can attribute some of its success in achieving the image quality needed to meet science goals to lessons learned along the way. A requirement was missed in early decomposition, the absence of which would have adversely affected end-to-end system image quality. Fortunately, the ability of the cross-organizational team to focus on fixing the problem without pointing fingers or waiting for paperwork was crucial in achieving a timely solution. Asking layman questions early in the program could have revealed requirement flowdown misunderstandings between spacecraft control stability and image processing needs. Such is the lesson learned with the WISE spacecraft Attitude Determination & Control Subsystem (ADCS) jitter control and the image data reductions needs. Spacecraft motion can affect image quality in numerous ways. Something as seemingly benign as different terminology being used by teammates in separate groups working on data reduction, spacecraft ADCS, the instrument, mission operations, and the science proved to be a risk to system image quality. While the spacecraft was meeting the allocated jitter requirement , the drift rate variation need was not being met. This missing need was noticed about a year before launch and with a dedicated team effort, an adjustment was made to the spacecraft ADCS control. WISE is meeting all image quality requirements on-orbit thanks to a diligent team noticing something was missing before it was too late and applying their best effort to find a solution.

  13. Image Quality in High-resolution and High-cadence Solar Imaging

    NASA Astrophysics Data System (ADS)

    Denker, C.; Dineva, E.; Balthasar, H.; Verma, M.; Kuckein, C.; Diercke, A.; González Manrique, S. J.

    2018-03-01

    Broad-band imaging and even imaging with a moderate bandpass (about 1 nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160 Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 June 4 and 5. A small region of interest, which was selected for fast-imaging performance, covered these contrast-rich features and their neighborhood, which were part of Active Region NOAA 12661. Modifications of the MFGS algorithm uncover the field- and structure-dependency of this image-quality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50 Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration.

  14. Usefulness of Chest Radiographs for Scoliosis Screening: A Comparison with Thoraco-Lumbar Standing Radiographs

    PubMed Central

    Oh, Chang Hyun; Kim, Chan Gyu; Lee, Myoung Seok; Park, Hyeong-Chun; Park, Chong Oon

    2012-01-01

    Purpose The purposes of this study were to evaluate the usefulness and limitations of chest radiographs in scoliosis screening and to compare these results with those of thoraco-lumbar standing radiographs (TLSR). Materials and Methods During Korean conscription, 419 males were retrospectively examined using both chest radiographs and TLSR to confirm the scoliosis and Cobb angle at the Regional Military Manpower. We compared the types of spinal curves and Cobb angles as measured from different radiographs. Results In the pattern of spinal curves, the overall matching rate of chest radiographs using TLSR was about 58.2% (244 of 419 cases). Cobb angle differences between chest radiographs and TLSR with meaningful difference was observed in 156 cases (37.2%); a relatively high proportion (9.5%) of Cobb angle differences more than 10 degrees was also observed. The matching rate of both spinal curve types and Cobb angle accuracy between chest radiographs and TLSR was 27.9% (117 among 419 cases). Chest radiographs for scoliosis screening were observed with 93.94% of sensitivity and 61.67% of specificity in thoracic curves; however, less than 40% of sensitivity (38.27%, 20.00%, and 25.80%) and more than 95% of specificity (97.34%, 99.69%, and 98.45%) were observed in thoraco-lumbar, lumbar, and double major curves, respectively. Conclusion The accuracy of chest radiographs for scoliosis screening was low. The incidence of thoracic curve scoliosis was overestimated and lumbar curve scoliosis was easily missed by chest radiography. Scoliosis screening using chest radiography has limited values, nevertheless, it is useful method for detecting thoracic curve scoliosis. PMID:23074120

  15. The Importance of Quality in Ventilation-Perfusion Imaging.

    PubMed

    Mann, April; DiDea, Mario; Fournier, France; Tempesta, Daniel; Williams, Jessica; LaFrance, Norman

    2018-06-01

    As the health care environment continues to change and morph into a system focusing on increased quality and evidence-based outcomes, nuclear medicine technologists must be reminded that they play a critical role in achieving high-quality, interpretable images used to drive patient care, treatment, and best possible outcomes. A survey performed by the Quality Committee of the Society of Nuclear Medicine and Molecular Imaging Technologist Section demonstrated that a clear knowledge gap exists among technologists regarding their understanding of quality, how it is measured, and how it should be achieved by all practicing technologists regardless of role and education level. Understanding of these areas within health care, in conjunction with the growing emphasis on evidence-based outcomes, quality measures, and patient satisfaction, will ultimately elevate the role of nuclear medicine technologists today and into the future. The nuclear medicine role now requires technologists to demonstrate patient assessment skills, practice safety procedures with regard to staff and patients, provide patient education and instruction, and provide physicians with information to assist with the interpretation and outcome of the study. In addition, the technologist must be able to evaluate images by performing technical analysis, knowing the demonstrated anatomy and pathophysiology, and assessing overall quality. Technologists must also be able to triage and understand the disease processes being evaluated and how nuclear medicine diagnostic studies may drive care and treatment. Therefore, it is imperative that nuclear medicine technologists understand their role in the achievement of a high-quality, interpretable study by applying quality principles and understanding and using imaging techniques beyond just basic protocols for every type of disease or system being imaged. This article focuses on quality considerations related to ventilation-perfusion imaging. It provides insight on

  16. Automated image quality assessment for chest CT scans.

    PubMed

    Reeves, Anthony P; Xie, Yiting; Liu, Shuang

    2018-02-01

    Medical image quality needs to be maintained at standards sufficient for effective clinical reading. Automated computer analytic methods may be applied to medical images for quality assessment. For chest CT scans in a lung cancer screening context, an automated quality assessment method is presented that characterizes image noise and image intensity calibration. This is achieved by image measurements in three automatically segmented homogeneous regions of the scan: external air, trachea lumen air, and descending aorta blood. Profiles of CT scanner behavior are also computed. The method has been evaluated on both phantom and real low-dose chest CT scans and results show that repeatable noise and calibration measures may be realized by automated computer algorithms. Noise and calibration profiles show relevant differences between different scanners and protocols. Automated image quality assessment may be useful for quality control for lung cancer screening and may enable performance improvements to automated computer analysis methods. © 2017 American Association of Physicists in Medicine.

  17. On pictures and stuff: image quality and material appearance

    NASA Astrophysics Data System (ADS)

    Ferwerda, James A.

    2014-02-01

    Realistic images are a puzzle because they serve as visual representations of objects while also being objects themselves. When we look at an image we are able to perceive both the properties of the image and the properties of the objects represented by the image. Research on image quality has typically focused improving image properties (resolution, dynamic range, frame rate, etc.) while ignoring the issue of whether images are serving their role as visual representations. In this paper we describe a series of experiments that investigate how well images of different quality convey information about the properties of the objects they represent. In the experiments we focus on the effects that two image properties (contrast and sharpness) have on the ability of images to represent the gloss of depicted objects. We found that different experimental methods produced differing results. Specifically, when the stimulus images were presented using simultaneous pair comparison, observers were influenced by the surface properties of the images and conflated changes in image contrast and sharpness with changes in object gloss. On the other hand, when the stimulus images were presented sequentially, observers were able to disregard the image plane properties and more accurately match the gloss of the objects represented by the different quality images. These findings suggest that in understanding image quality it is useful to distinguish between quality of the imaging medium and the quality of the visual information represented by that medium.

  18. Perceptibility curve test for digital radiographs before and after correction for attenuation and correction for attenuation and visual response.

    PubMed

    Li, G; Welander, U; Yoshiura, K; Shi, X-Q; McDavid, W D

    2003-11-01

    Two digital image processing methods, correction for X-ray attenuation and correction for attenuation and visual response, have been developed. The aim of the present study was to compare digital radiographs before and after correction for attenuation and correction for attenuation and visual response by means of a perceptibility curve test. Radiographs were exposed of an aluminium test object containing holes ranging from 0.03 mm to 0.30 mm with increments of 0.03 mm. Fourteen radiographs were exposed with the Dixi system (Planmeca Oy, Helsinki, Finland) and twelve radiographs were exposed with the F1 iOX system (Fimet Oy, Monninkylä, Finland) from low to high exposures covering the full exposure ranges of the systems. Radiographs obtained from the Dixi and F1 iOX systems were 12 bit and 8 bit images, respectively. Original radiographs were then processed for correction for attenuation and correction for attenuation and visual response. Thus, two series of radiographs were created. Ten viewers evaluated all the radiographs in the same random order under the same viewing conditions. The object detail having the lowest perceptible contrast was recorded for each observer. Perceptibility curves were plotted according to the mean of observer data. The perceptibility curves for processed radiographs obtained with the F1 iOX system are higher than those for originals in the exposure range up to the peak, where the curves are basically the same. For radiographs exposed with the Dixi system, perceptibility curves for processed radiographs are higher than those for originals for all exposures. Perceptibility curves show that for 8 bit radiographs obtained from the F1 iOX system, the contrast threshold was increased in processed radiographs up to the peak, while for 12 bit radiographs obtained with the Dixi system, the contrast threshold was increased in processed radiographs for all exposures. When comparisons were made between radiographs corrected for attenuation and

  19. Development of optimized techniques and requirements for computer enhancement of structural weld radiographs. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Adams, J. R.; Hawley, S. W.; Peterson, G. R.; Salinger, S. S.; Workman, R. A.

    1971-01-01

    A hardware and software specification covering requirements for the computer enhancement of structural weld radiographs was considered. Three scanning systems were used to digitize more than 15 weld radiographs. The performance of these systems was evaluated by determining modulation transfer functions and noise characteristics. Enhancement techniques were developed and applied to the digitized radiographs. The scanning parameters of spot size and spacing and film density were studied to optimize the information content of the digital representation of the image.

  20. Effects of the use of multi-layer filter on radiation exposure and the quality of upper airway radiographs compared to the traditional copper filter.

    PubMed

    Klandima, Somphan; Kruatrachue, Anchalee; Wongtapradit, Lawan; Nithipanya, Narong; Ratanaprakarn, Warangkana

    2014-06-01

    The problem of image quality in a large number of upper airway obstructed patients is the superimposition of the airway over the bone of the spine on the AP view. This problem was resolved by increasing KVp to high KVp technique and adding extra radiographic filters (copper filter) to reduce the sharpness of the bone and increase the clarity of the airway. However, this raises a concern that patients might be receiving an unnecessarily higher dose of radiation, as well as the effectiveness of the invented filter compared to the traditional filter. To evaluate the level of radiation dose that patients receive with the use of multi-layer filter compared to non-filter and to evaluate the image quality of the upper airways between using the radiographic filter (multi-layer filter) and the traditional filter (copperfilter). The attenuation curve of both filter materials was first identified. Then, both the filters were tested with Alderson Rando phantom to determine the appropriate exposure. Using the method described, a new type of filter called the multi-layer filter for imaging patients was developed. A randomized control trial was then performed to compare the effectiveness of the newly developed multi-layer filter to the copper filter. The research was conducted in patients with upper airway obstruction treated at Queen Sirikit National Institute of Child Health from October 2006 to September 2007. A total of 132 patients were divided into two groups. The experimental group used high kVp technique with multi-layer filter, while the control group used copper filter. A comparison of film interpretation between the multi-layer filter and the copper filter was made by a number of radiologists who were blinded to both to the technique and type of filter used. Patients had less radiation from undergoing the kVp technique with copper filter and multi-layer filter compared to the conventional technique, where no filter is used. Patients received approximately 65.5% less

  1. Reduced reference image quality assessment via sub-image similarity based redundancy measurement

    NASA Astrophysics Data System (ADS)

    Mou, Xuanqin; Xue, Wufeng; Zhang, Lei

    2012-03-01

    The reduced reference (RR) image quality assessment (IQA) has been attracting much attention from researchers for its loyalty to human perception and flexibility in practice. A promising RR metric should be able to predict the perceptual quality of an image accurately while using as few features as possible. In this paper, a novel RR metric is presented, whose novelty lies in two aspects. Firstly, it measures the image redundancy by calculating the so-called Sub-image Similarity (SIS), and the image quality is measured by comparing the SIS between the reference image and the test image. Secondly, the SIS is computed by the ratios of NSE (Non-shift Edge) between pairs of sub-images. Experiments on two IQA databases (i.e. LIVE and CSIQ databases) show that by using only 6 features, the proposed metric can work very well with high correlations between the subjective and objective scores. In particular, it works consistently well across all the distortion types.

  2. Survey of dental radiographic services in private dental clinics in Damascus, Syria.

    PubMed

    Salti, L; Whaites, E J

    2002-03-01

    To perform a radiographic survey of private dental clinics in Damascus, Syria using a postal questionnaire to produce recommendations for improving the quality of dental radiographic services and education in Syria. Three hundred private dental clinics in Damascus were surveyed using a postal questionnaire (in English and Arabic) containing 27 questions on demographic information, equipment, techniques, selection criteria, frequency of examinations, and undergraduate/ postgraduate education. Two hundred and two (67%) dentists responded of which 95% graduated in Syria. The results showed a general lack of knowledge and understanding of dental radiography. Sixty four per cent did not know the kVp setting of their equipment, 73% used D-speed film, 57% did not use film holders and beam aiming devices, 25% did not use a viewing box. In addition, 45% of known equipment operated at 50 kVp or less and 16% was over 20 years old. No meaningful selection criteria existed with a wide variation in type and frequency of radiographs used for different clinical conditions. Syrian undergraduate training in dental radiology was minimal and there was no postgraduate education in the speciality. Several areas of the radiographic service in Damascus fall short of current recommendations on good practice. Recommendations are made to improve the service, the quality of undergraduate education and to establish postgraduate education.

  3. Noise Estimation and Quality Assessment of Gaussian Noise Corrupted Images

    NASA Astrophysics Data System (ADS)

    Kamble, V. M.; Bhurchandi, K.

    2018-03-01

    Evaluating the exact quantity of noise present in an image and quality of an image in the absence of reference image is a challenging task. We propose a near perfect noise estimation method and a no reference image quality assessment method for images corrupted by Gaussian noise. The proposed methods obtain initial estimate of noise standard deviation present in an image using the median of wavelet transform coefficients and then obtains a near to exact estimate using curve fitting. The proposed noise estimation method provides the estimate of noise within average error of +/-4%. For quality assessment, this noise estimate is mapped to fit the Differential Mean Opinion Score (DMOS) using a nonlinear function. The proposed methods require minimum training and yields the noise estimate and image quality score. Images from Laboratory for image and Video Processing (LIVE) database and Computational Perception and Image Quality (CSIQ) database are used for validation of the proposed quality assessment method. Experimental results show that the performance of proposed quality assessment method is at par with the existing no reference image quality assessment metric for Gaussian noise corrupted images.

  4. Image quality metrics for volumetric laser displays

    NASA Astrophysics Data System (ADS)

    Williams, Rodney D.; Donohoo, Daniel

    1991-08-01

    This paper addresses the extensions to the image quality metrics and related human factors research that are needed to establish the baseline standards for emerging volume display technologies. The existing and recently developed technologies for multiplanar volume displays are reviewed with an emphasis on basic human visual issues. Human factors image quality metrics and guidelines are needed to firmly establish this technology in the marketplace. The human visual requirements and the display design tradeoffs for these prototype laser-based volume displays are addressed and several critical image quality issues identified for further research. The American National Standard for Human Factors Engineering of Visual Display Terminal Workstations (ANSIHFS-100) and other international standards (ISO, DIN) can serve as a starting point, but this research base must be extended to provide new image quality metrics for this new technology for volume displays.

  5. Cone beam computed tomography radiation dose and image quality assessments.

    PubMed

    Lofthag-Hansen, Sara

    2010-01-01

    Diagnostic radiology has undergone profound changes in the last 30 years. New technologies are available to the dental field, cone beam computed tomography (CBCT) as one of the most important. CBCT is a catch-all term for a technology comprising a variety of machines differing in many respects: patient positioning, volume size (FOV), radiation quality, image capturing and reconstruction, image resolution and radiation dose. When new technology is introduced one must make sure that diagnostic accuracy is better or at least as good as the one it can be expected to replace. The CBCT brand tested was two versions of Accuitomo (Morita, Japan): 3D Accuitomo with an image intensifier as detector, FOV 3 cm x 4 cm and 3D Accuitomo FPD with a flat panel detector, FOVs 4 cm x 4 cm and 6 cm x 6 cm. The 3D Accuitomo was compared with intra-oral radiography for endodontic diagnosis in 35 patients with 46 teeth analyzed, of which 41 were endodontically treated. Three observers assessed the images by consensus. The result showed that CBCT imaging was superior with a higher number of teeth diagnosed with periapical lesions (42 vs 32 teeth). When evaluating 3D Accuitomo examinations in the posterior mandible in 30 patients, visibility of marginal bone crest and mandibular canal, important anatomic structures for implant planning, was high with good observer agreement among seven observers. Radiographic techniques have to be evaluated concerning radiation dose, which requires well-defined and easy-to-use methods. Two methods: CT dose index (CTDI), prevailing method for CT units, and dose-area product (DAP) were evaluated for calculating effective dose (E) for both units. An asymmetric dose distribution was revealed when a clinical situation was simulated. Hence, the CTDI method was not applicable for these units with small FOVs. Based on DAP values from 90 patient examinations effective dose was estimated for three diagnostic tasks: implant planning in posterior mandible and

  6. Cartographic quality of ERTS-1 images

    NASA Technical Reports Server (NTRS)

    Welch, R. I.

    1973-01-01

    Analyses of simulated and operational ERTS images have provided initial estimates of resolution, ground resolution, detectability thresholds and other measures of image quality of interest to earth scientists and cartographers. Based on these values, including an approximate ground resolution of 250 meters for both RBV and MSS systems, the ERTS-1 images appear suited to the production and/or revision of planimetric and photo maps of 1:500,000 scale and smaller for which map accuracy standards are compatible with the imaged detail. Thematic mapping, although less constrained by map accuracy standards, will be influenced by measurement thresholds and errors which have yet to be accurately determined for ERTS images. This study also indicates the desirability of establishing a quantitative relationship between image quality values and map products which will permit both engineers and cartographers/earth scientists to contribute to the design requirements of future satellite imaging systems.

  7. Image Quality Assessment of High-Resolution Satellite Images with Mtf-Based Fuzzy Comprehensive Evaluation Method

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Luo, Z.; Zhang, Y.; Guo, F.; He, L.

    2018-04-01

    A Modulation Transfer Function (MTF)-based fuzzy comprehensive evaluation method was proposed in this paper for the purpose of evaluating high-resolution satellite image quality. To establish the factor set, two MTF features and seven radiant features were extracted from the knife-edge region of image patch, which included Nyquist, MTF0.5, entropy, peak signal to noise ratio (PSNR), average difference, edge intensity, average gradient, contrast and ground spatial distance (GSD). After analyzing the statistical distribution of above features, a fuzzy evaluation threshold table and fuzzy evaluation membership functions was established. The experiments for comprehensive quality assessment of different natural and artificial objects was done with GF2 image patches. The results showed that the calibration field image has the highest quality scores. The water image has closest image quality to the calibration field, quality of building image is a little poor than water image, but much higher than farmland image. In order to test the influence of different features on quality evaluation, the experiment with different weights were tested on GF2 and SPOT7 images. The results showed that different weights correspond different evaluating effectiveness. In the case of setting up the weights of edge features and GSD, the image quality of GF2 is better than SPOT7. However, when setting MTF and PSNR as main factor, the image quality of SPOT7 is better than GF2.

  8. Influence of reconstruction algorithms on image quality in SPECT myocardial perfusion imaging.

    PubMed

    Davidsson, Anette; Olsson, Eva; Engvall, Jan; Gustafsson, Agnetha

    2017-11-01

    We investigated if image- and diagnostic quality in SPECT MPI could be maintained despite a reduced acquisition time adding Depth Dependent Resolution Recovery (DDRR) for image reconstruction. Images were compared with filtered back projection (FBP) and iterative reconstruction using Ordered Subsets Expectation Maximization with (IRAC) and without (IRNC) attenuation correction (AC). Stress- and rest imaging for 15 min was performed on 21 subjects with a dual head gamma camera (Infinia Hawkeye; GE Healthcare), ECG-gating with 8 frames/cardiac cycle and a low-dose CT-scan. A 9 min acquisition was generated using five instead of eight gated frames and was reconstructed with DDRR, with (IRACRR) and without AC (IRNCRR) as well as with FBP. Three experienced nuclear medicine specialists visually assessed anonymized images according to eight criteria on a four point scale, three related to image quality and five to diagnostic confidence. Statistical analysis was performed using Visual Grading Regression (VGR). Observer confidence in statements on image quality was highest for the images that were reconstructed using DDRR (P<0·01 compared to FBP). Iterative reconstruction without DDRR was not superior to FBP. Interobserver variability was significant for statements on image quality (P<0·05) but lower in the diagnostic statements on ischemia and scar. The confidence in assessing ischemia and scar was not different between the reconstruction techniques (P = n.s.). SPECT MPI collected in 9 min, reconstructed with DDRR and AC, produced better image quality than the standard procedure. The observers expressed the highest diagnostic confidence in the DDRR reconstruction. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  9. Image gathering and restoration - Information and visual quality

    NASA Technical Reports Server (NTRS)

    Mccormick, Judith A.; Alter-Gartenberg, Rachel; Huck, Friedrich O.

    1989-01-01

    A method is investigated for optimizing the end-to-end performance of image gathering and restoration for visual quality. To achieve this objective, one must inevitably confront the problems that the visual quality of restored images depends on perceptual rather than mathematical considerations and that these considerations vary with the target, the application, and the observer. The method adopted in this paper is to optimize image gathering informationally and to restore images interactively to obtain the visually preferred trade-off among fidelity resolution, sharpness, and clarity. The results demonstrate that this method leads to significant improvements in the visual quality obtained by the traditional digital processing methods. These traditional methods allow a significant loss of visual quality to occur because they treat the design of the image-gathering system and the formulation of the image-restoration algorithm as two separate tasks and fail to account for the transformations between the continuous and the discrete representations in image gathering and reconstruction.

  10. Skill Assessment in the Interpretation of 3D Fracture Patterns from Radiographs

    PubMed Central

    Rojas-Murillo, Salvador; Hanley, Jessica M; Kreiter, Clarence D; Karam, Matthew D; Anderson, Donald D

    2016-01-01

    Abstract Background Interpreting two-dimensional radiographs to ascertain the three-dimensional (3D) position and orientation of fracture planes and bone fragments is an important component of orthopedic diagnosis and clinical management. This skill, however, has not been thoroughly explored and measured. Our primary research question is to determine if 3D radiographic image interpretation can be reliably assessed, and whether this assessment varies by level of training. A test designed to measure this skill among orthopedic surgeons would provide a quantitative benchmark for skill assessment and training research. Methods Two tests consisting of a series of online exercises were developed to measure this skill. Each exercise displayed a pair of musculoskeletal radiographs. Participants selected one of three CT slices of the same or similar fracture patterns that best matched the radiographs. In experiment 1, 10 orthopedic residents and staff responded to nine questions. In experiment 2, 52 residents from both orthopedics and radiology responded to 12 questions. Results Experiment 1 yielded a Cronbach alpha of 0.47. Performance correlated with experience; r(8) = 0.87, p<0.01, suggesting that the test could be both valid and reliable with a slight increase in test length. In experiment 2, after removing three non-discriminating items, the Cronbach coefficient alpha was 0.28 and performance correlated with experience; r(50) = 0.25, p<0.10. Conclusions Although evidence for reliability and validity was more compelling with the first experiment, the analyses suggest motivation and test duration are important determinants of test efficacy. The interpretation of radiographs to discern 3D information is a promising and a relatively unexplored area for surgical skill education and assessment. The online test was useful and reliable. Further test development is likely to increase test effectiveness. Clinical Relevance Accurately interpreting radiographic images is an

  11. Factors affecting radiographers' organizational commitment.

    PubMed

    Akroyd, Duane; Jackowski, Melissa B; Legg, Jeffrey S

    2007-01-01

    A variety of factors influence employees' attitudes toward their workplace and commitment to the organization that employs them. However, these factors have not been well documented among radiologic technologists. To determine the predictive ability of selected organizational, leadership, work-role and demographic variables on organizational commitment for a national sample of radiographers. Three thousand radiographers registered by the American Registry of Radiologic Technologists working full time in clinical settings were surveyed by mail regarding their commitment to their employers, leadership within the organization that employs them, employer support and demographic information. Overall, radiographers were found to have only a moderate level of commitment to their employers. Among the factors that significantly affected commitment were the radiographer's educational level, perceived level of organizational support, role clarity and organizational leadership. The results of this study could provide managers and supervisors with insights on how to empower and challenge radiographers and offer opportunities that will enhance radiographers' commitment to the organization, thus reducing costly turnover and improving employee performance.

  12. Are We Using Abdominal Radiographs Appropriately in the Management of Pediatric Constipation?

    PubMed

    Beinvogl, Beate; Sabharwal, Sabina; McSweeney, Maireade; Nurko, Samuel

    2017-12-01

    To identify the reasons why pediatric gastroenterologists obtain abdominal radiographs in the management of pediatric constipation. This was a prospective study surveying providers regarding their rationale, interpretation, resultant change, and confidence in their management before and after obtaining KUBs in patients seen for suspected constipation. Demographics and clinical findings were obtained from medical records. A total of 24 providers were surveyed after 72 patient encounters. Reasons for obtaining an abdominal radiograph included evaluation of stool burden (70%), need for a clean out (35%), fecal impaction (27%), cause of abdominal pain (24%), demonstration of stool burden to families (14%), assessment of response to therapy (13%), or encopresis (10%). The plan was changed in 47.6% of cases based on radiographic findings. In cases in which a plan was outlined before obtaining the radiograph (69%), the initial plan was implemented on average in 52.5%. In cases with no plans before obtaining the radiograph, previously unconsidered plans were implemented in 8.7%. Provider confidence in the management plan increased from 2.4 ± 2.7 to 4.1 ± 1.8 (P < .05) after the abdominal radiograph. Abdominal radiographs commonly are obtained by pediatric gastroenterologists in the evaluation and management of constipation. The majority used it to make a diagnosis, and nearly one-half changed their management based on the imaging findings. Overall, they reported an improved confidence in their management plan, despite evidence that radiographic findings poorly correlate with clinical severity. This study highlights the need for further provider education regarding the recommendations delineated in existing constipation guidelines. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Accuracy and consistency of radiographic interpretation among clinical instructors using two viewing systems.

    PubMed

    Lanning, Sharon K; Best, Al M; Temple, Henry J; Richards, Philip S; Carey, Allison; McCauley, Laurie K

    2006-02-01

    Accurate and consistent radiographic interpretation among clinical instructors is needed for assessment of teaching, student performance, and patient care. The purpose of this investigation was to determine if the method of radiographic viewing affects accuracy and consistency of instructors' determinations of bone loss. Forty-one clinicians who provide instruction in a dental school clinical teaching program (including periodontists, general dentists, periodontal graduate students, and dental hygienists) quantified bone loss for up to twenty-five teeth into four descriptive categories using a view box for plain film viewing or a projection system for digitized image viewing. Ratings were compared to the correct category as determined by direct measurement using the Schei ruler. Agreement with the correct choice for the view box and projection system was 70.2 percent and 64.5 percent, respectively. The mean difference was better for a projection system due to small rater error by graduate students. Projection system ratings were slightly less consistent than view box ratings. Dental hygiene faculty ratings were the most consistent but least accurate. Although the projection system resulted in slightly reduced accuracy and consistency among instructors, training sessions utilizing a single method for projecting digitized radiographic images have their advantages and may positively influence dental education and patient care by enhancing accuracy and consistency of radiographic interpretation among instructors.

  14. SU-F-I-73: Surface Dose from KV Diagnostic Beams From An On-Board Imager On a Linac Machine Using Different Imaging Techniques and Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, I; Hossain, S; Syzek, E

    Purpose: To quantitatively investigate the surface dose deposited in patients imaged with a kV on-board-imager mounted on a radiotherapy machine using different clinical imaging techniques and filters. Methods: A high sensitivity photon diode is used to measure the surface dose on central-axis and at an off-axis-point which is mounted on the top of a phantom setup. The dose is measured for different imaging techniques that include: AP-Pelvis, AP-Head, AP-Abdomen, AP-Thorax, and Extremity. The dose measurements from these imaging techniques are combined with various filtering techniques that include: no-filter (open-field), half-fan bowtie (HF), full-fan bowtie (FF) and Cu-plate filters. The relativemore » surface dose for different imaging and filtering techniques is evaluated quantiatively by the ratio of the dose relative to the Cu-plate filter. Results: The lowest surface dose is deposited with the Cu-plate filter. The highest surface dose deposited results from open fields without filter and it is nearly a factor of 8–30 larger than the corresponding imaging technique with the Cu-plate filter. The AP-Abdomen technique delivers the largest surface dose that is nearly 2.7 times larger than the AP-Head technique. The smallest surface dose is obtained from the Extremity imaging technique. Imaging with bowtie filters decreases the surface dose by nearly 33% in comparison with the open field. The surface doses deposited with the HF or FF-bowtie filters are within few percentages. Image-quality of the radiographic images obtained from the different filtering techniques is similar because the Cu-plate eliminates low-energy photons. The HF- and FF-bowtie filters generate intensity-gradients in the radiographs which affects image-quality in the different imaging technique. Conclusion: Surface dose from kV-imaging decreases significantly with the Cu-plate and bowtie-filters compared to imaging without filters using open-field beams. The use of Cu-plate filter does not

  15. The effect of image quality and forensic expertise in facial image comparisons.

    PubMed

    Norell, Kristin; Läthén, Klas Brorsson; Bergström, Peter; Rice, Allyson; Natu, Vaidehi; O'Toole, Alice

    2015-03-01

    Images of perpetrators in surveillance video footage are often used as evidence in court. In this study, identification accuracy was compared for forensic experts and untrained persons in facial image comparisons as well as the impact of image quality. Participants viewed thirty image pairs and were asked to rate the level of support garnered from their observations for concluding whether or not the two images showed the same person. Forensic experts reached their conclusions with significantly fewer errors than did untrained participants. They were also better than novices at determining when two high-quality images depicted the same person. Notably, lower image quality led to more careful conclusions by experts, but not for untrained participants. In summary, the untrained participants had more false negatives and false positives than experts, which in the latter case could lead to a higher risk of an innocent person being convicted for an untrained witness. © 2014 American Academy of Forensic Sciences.

  16. Incorporating digital imaging into dental hygiene practice.

    PubMed

    Saxe, M J; West, D J

    1997-01-01

    The objective of this paper is to describe digital imaging technology: available modalities, scientific imaging process, advantages and limitations, and applications to dental hygiene practice. Advances in technology have created innovative imaging modalities for intraoral radiography that eliminate film as the traditional image receptor. Digital imaging generates instantaneous radiographic images on a display monitor following exposure. Advantages include lower patient exposure per image and elimination of film processing. Digital imaging enhances diagnostic capabilities and, therefore, treatment decisions by the oral healthcare provider. Utilization of digital imaging technology for intraoral radiography will advance the practice of dental hygiene. Although spatial resolution is inferior to conventional film, digital imaging provides adequate resolution to diagnose oral diseases. Dental hygienists must evaluate new technologies in radiography to continue providing quality care while reducing patient exposure to ionizing radiation.

  17. Model-based segmentation of hand radiographs

    NASA Astrophysics Data System (ADS)

    Weiler, Frank; Vogelsang, Frank

    1998-06-01

    An important procedure in pediatrics is to determine the skeletal maturity of a patient from radiographs of the hand. There is great interest in the automation of this tedious and time-consuming task. We present a new method for the segmentation of the bones of the hand, which allows the assessment of the skeletal maturity with an appropriate database of reference bones, similar to the atlas based methods. The proposed algorithm uses an extended active contour model for the segmentation of the hand bones, which incorporates a-priori knowledge of shape and topology of the bones in an additional energy term. This `scene knowledge' is integrated in a complex hierarchical image model, that is used for the image analysis task.

  18. Quality measures in applications of image restoration.

    PubMed

    Kriete, A; Naim, M; Schafer, L

    2001-01-01

    We describe a new method for the estimation of image quality in image restoration applications. We demonstrate this technique on a simulated data set of fluorescent beads, in comparison with restoration by three different deconvolution methods. Both the number of iterations and a regularisation factor are varied to enforce changes in the resulting image quality. First, the data sets are directly compared by an accuracy measure. These values serve to validate the image quality descriptor, which is developed on the basis of optical information theory. This most general measure takes into account the spectral energies and the noise, weighted in a logarithmic fashion. It is demonstrated that this method is particularly helpful as a user-oriented method to control the output of iterative image restorations and to eliminate the guesswork in choosing a suitable number of iterations.

  19. Blind image quality assessment without training on human opinion scores

    NASA Astrophysics Data System (ADS)

    Mittal, Anish; Soundararajan, Rajiv; Muralidhar, Gautam S.; Bovik, Alan C.; Ghosh, Joydeep

    2013-03-01

    We propose a family of image quality assessment (IQA) models based on natural scene statistics (NSS), that can predict the subjective quality of a distorted image without reference to a corresponding distortionless image, and without any training results on human opinion scores of distorted images. These `completely blind' models compete well with standard non-blind image quality indices in terms of subjective predictive performance when tested on the large publicly available `LIVE' Image Quality database.

  20. A descriptive study of the radiographic density of implant restorative cements.

    PubMed

    Wadhwani, Chandur; Hess, Timothy; Faber, Thomas; Piñeyro, Alfonso; Chen, Curtis S K

    2010-05-01

    Cementation of implant prostheses is a common practice. Excess cement in the gingival sulcus may harm the periodontal tissues. Identification of the excess cement may be possible with the use of radiographs if the cement has sufficient radiopacity. The purpose of this study was to compare the radiographic density of different cements used for implant prostheses. Eight different cements were compared: TempBond Original (TBO), TempBond NE (TBN), Fleck's (FL), Dycal (DY), RelyX Unicem (RXU), RelyX Luting (RXL), Improv (IM), and Premier Implant Cement (PIC). Specimen disks, 2 mm in thickness, were radiographed. Images were made using photostimulable phosphor (PSP) plates with standardized exposure values. The average grey level of the central area of each specimen disk was selected and measured in pixels using a software analysis program, ImageTool, providing an average grey level value representative of radiodensity for each of the 8 cements. The radiodensity was determined using the grey level values of the test materials, which were recorded and compared to a standard aluminum step wedge. An equivalent thickness of aluminum in millimeters was calculated using best straight line fit estimates. To assess contrast effects by varying the exposure settings, a second experiment using 1-mm-thick cement specimens radiographed at both 60 kVp and 70 kVp was conducted. The PSP plates with specimens were measured for a grey level value comparison to the standard aluminum step wedge, using the same software program. The highest grey level values were recorded for the zinc cements (TBO, TBN, and FL), with the 1-mm specimen detectable at both 60- and 70-kVp settings. A lower grey level was recorded for DY, indicative of a lower radiodensity compared to the zinc cements, but higher than RXL and RXU. The implant-specific cements had the lowest grey level values. IM could only be detected in 2-mm-thick sections with a lower aluminum equivalence value than the previously mentioned

  1. Image quality classification for DR screening using deep learning.

    PubMed

    FengLi Yu; Jing Sun; Annan Li; Jun Cheng; Cheng Wan; Jiang Liu

    2017-07-01

    The quality of input images significantly affects the outcome of automated diabetic retinopathy (DR) screening systems. Unlike the previous methods that only consider simple low-level features such as hand-crafted geometric and structural features, in this paper we propose a novel method for retinal image quality classification (IQC) that performs computational algorithms imitating the working of the human visual system. The proposed algorithm combines unsupervised features from saliency map and supervised features coming from convolutional neural networks (CNN), which are fed to an SVM to automatically detect high quality vs poor quality retinal fundus images. We demonstrate the superior performance of our proposed algorithm on a large retinal fundus image dataset and the method could achieve higher accuracy than other methods. Although retinal images are used in this study, the methodology is applicable to the image quality assessment and enhancement of other types of medical images.

  2. [Comparative evaluation of six different body regions of the dog using analog and digital radiography].

    PubMed

    Meyer-Lindenberg, Andrea; Ebermaier, Christine; Wolvekamp, Pim; Tellhelm, Bernd; Meutstege, Freek J; Lang, Johann; Hartung, Klaus; Fehr, Michael; Nolte, Ingo

    2008-01-01

    In this study the quality of digital and analog radiography in dogs was compared. For this purpose, three conventional radiographs (varying in exposure) and three digital radiographs (varying in MUSI-contrast [MUSI = MUlti Scale Image Contrast], the main post-processing parameter) of six different body regions of the dog were evaluated (thorax, abdomen, skull, femur, hip joints, elbow). The quality of the radiographs was evaluated by eight veterinary specialists familiar with radiographic images using a questionnaire based on details of each body region significant in obtaining a radiographic diagnosis. In the first part of the study the overall quality of the radiographs was evaluated. Within one region, 89.5% (43/48) chose a digital radiograph as the best image. Divided into analog and digital groups, the digital image with the highest MUSI-contrast was most often considered the best, while the analog image considered the best varied between the one with the medium and the one with the longest exposure time. In the second part of the study, each image was rated for the visibility of specific, diagnostically important details. After summarisation of the scores for each criterion, divided into analog and digital imaging, the digital images were rated considerably superior to conventional images. The results of image comparison revealed that digital radiographs showed better image detail than radiographs taken with the analog technique in all six areas of the body.

  3. Investigating the use of an antiscatter grid in chest radiography for average adults with a computed radiography imaging system

    PubMed Central

    Wood, T J; Avery, G; Balcam, S; Needler, L; Smith, A; Saunderson, J R; Beavis, A W

    2015-01-01

    Objective: The aim of this study was to investigate via simulation a proposed change to clinical practice for chest radiography. The validity of using a scatter rejection grid across the diagnostic energy range (60–125 kVp), in conjunction with appropriate tube current–time product (mAs) for imaging with a computed radiography (CR) system was investigated. Methods: A digitally reconstructed radiograph algorithm was used, which was capable of simulating CR chest radiographs with various tube voltages, receptor doses and scatter rejection methods. Four experienced image evaluators graded images with a grid (n = 80) at tube voltages across the diagnostic energy range and varying detector air kermas. These were scored against corresponding images reconstructed without a grid, as per current clinical protocol. Results: For all patients, diagnostic image quality improved with the use of a grid, without the need to increase tube mAs (and therefore patient dose), irrespective of the tube voltage used. Increasing tube mAs by an amount determined by the Bucky factor made little difference to image quality. Conclusion: A virtual clinical trial has been performed with simulated chest CR images. Results indicate that the use of a grid improves diagnostic image quality for average adults, without the need to increase tube mAs, even at low tube voltages. Advances in knowledge: Validated with images containing realistic anatomical noise, it is possible to improve image quality by utilizing grids for chest radiography with CR systems without increasing patient exposure. Increasing tube mAs by an amount determined by the Bucky factor is not justified. PMID:25571914

  4. Development and testing of texture discriminators for the analysis of trabecular bone in proximal femur radiographs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, M. B.; Carballido-Gamio, J.; Fritscher, K.

    2009-11-15

    Purpose: Texture analysis of femur radiographs may serve as a potential low cost technique to predict osteoporotic fracture risk and has received considerable attention in the past years. A further application of this technique may be the measurement of the quality of specific bone compartments to provide useful information for treatment of bone fractures. Two challenges of texture analysis are the selection of the best suitable texture measure and reproducible placement of regions of interest (ROIs). The goal of this in vitro study was to automatically place ROIs in radiographs of proximal femur specimens and to calculate correlations between variousmore » different texture analysis methods and the femurs' anchorage strength. Methods: Radiographs were obtained from 14 femoral specimens and bone mineral density (BMD) was measured in the femoral neck. Biomechanical testing was performed to assess the anchorage strength in terms of failure load, breakaway torque, and number of cycles. Images were segmented using a framework that is based on the usage of level sets and statistical in-shape models. Five ROIs were automatically placed in the head, upper and lower neck, trochanteric, and shaft compartment in an atlas subject. All other subjects were registered rigidly, affinely, and nonlinearly, and the resulting transformation was used to map the five ROIs onto the individual femora. Results: In each ROI, texture features were extracted using gray level co-occurence matrices (GLCM), third-order GLCM, morphological gradients (MGs), Minkowski dimensions (MDs), Minkowski functionals (MFs), Gaussian Markov random fields, and scaling index method (SIM). Coefficients of determination for each texture feature with parameters of anchorage strength were computed. In a stepwise multiregression analysis, the most predictive parameters were identified in different models. Texture features were highly correlated with anchorage strength estimated by the failure load of up to R

  5. AXIS: an instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF.

    PubMed

    Hall, G N; Izumi, N; Tommasini, R; Carpenter, A C; Palmer, N E; Zacharias, R; Felker, B; Holder, J P; Allen, F V; Bell, P M; Bradley, D; Montesanti, R; Landen, O L

    2014-11-01

    Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV-200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.

  6. [Imaging of pleural diseases: evaluation of imaging methods based on chest radiography].

    PubMed

    Poyraz, Necdet; Kalkan, Havva; Ödev, Kemal; Ceran, Sami

    2017-03-01

    The most commonly employed radiologic method in diagnosis of pleural diseases is conventional chest radiograph. The commonest chest- X-Ray findings are the presence of pleural effusion and thickening. Small pleural effusions are not readily identified on posteroanterior chest radiograph. However, lateral decubitus chest radiograph and chest ultrasonography may show small pleural effusions. These are more efficient methods than posteroanterior chest radiograph in the erect position for demonstrating small amounts of free pleural effusions. Chest ultrasonograph may be able to help in distinguishing the pleural pathologies from parenchymal lesions. On chest radiograph pleural effusions or pleural thickening may obscure the visibility of the underlying disease or parenchymal abnormality. Thus, computed tomography (CT) may provide additional information of determining the extent and severity of pleural disease and may help to differentiate malign pleural lesions from the benign ones. Moreover, CT may provide the differentiation of parenchmal abnormalities from pleural pathologies. CT (coronal and sagittal reformatted images) that also show invasion of chest wall, mediastinum and diaphragm, as well as enlarged hilar or mediastinal lymph nodes. Standart non-invasive imaging techniques may be supplemented with magnetic resonans imaging (MRI).

  7. Image aesthetic quality evaluation using convolution neural network embedded learning

    NASA Astrophysics Data System (ADS)

    Li, Yu-xin; Pu, Yuan-yuan; Xu, Dan; Qian, Wen-hua; Wang, Li-peng

    2017-11-01

    A way of embedded learning convolution neural network (ELCNN) based on the image content is proposed to evaluate the image aesthetic quality in this paper. Our approach can not only solve the problem of small-scale data but also score the image aesthetic quality. First, we chose Alexnet and VGG_S to compare for confirming which is more suitable for this image aesthetic quality evaluation task. Second, to further boost the image aesthetic quality classification performance, we employ the image content to train aesthetic quality classification models. But the training samples become smaller and only using once fine-tuning cannot make full use of the small-scale data set. Third, to solve the problem in second step, a way of using twice fine-tuning continually based on the aesthetic quality label and content label respective is proposed, the classification probability of the trained CNN models is used to evaluate the image aesthetic quality. The experiments are carried on the small-scale data set of Photo Quality. The experiment results show that the classification accuracy rates of our approach are higher than the existing image aesthetic quality evaluation approaches.

  8. OFF-SITE SMARTPHONE VS. STANDARD WORKSTATION IN THE RADIOGRAPHIC DIAGNOSIS OF SMALL INTESTINAL MECHANICAL OBSTRUCTION IN DOGS AND CATS.

    PubMed

    Noel, Peter G; Fischetti, Anthony J; Moore, George E; Le Roux, Alexandre B

    2016-09-01

    Off-site consultations by board-certified veterinary radiologists benefit residents and emergency clinicians by providing immediate feedback and potentially improving patient outcome. Smartphone devices and compressed images transmitted by email or text greatly facilitate availability of these off-site consultations. Criticism of a smartphone interface for off-site consultation is mostly directed at image degradation relative to the standard radiographic viewing room and monitors. The purpose of this retrospective, cross-sectional, methods comparison study was to compare the accuracy of abdominal radiographs in two imaging interfaces (Joint Photographic Experts Group, off-site, smartphone vs. Digital Imaging and Communications in Medicine, on-site, standard workstation) for the diagnosis of small intestinal mechanical obstruction in vomiting dogs and cats. Two board-certified radiologists graded randomized abdominal radiographs using a five-point Likert scale for the presence of mechanical obstruction in 100 dogs or cats presenting for vomiting. The area under the receiver operator characteristic curves for both imaging interfaces was high. The accuracy of the smartphone and traditional workstation was not statistically significantly different for either reviewer (P = 0.384 and P = 0.536). Correlation coefficients were 0.821 and 0.705 for each reviewer when the same radiographic study was viewed in different formats. Accuracy differences between radiologists were potentially related to years of experience. We conclude that off-site expert consultation with a smartphone provides an acceptable interface for accurate diagnosis of small intestinal mechanical obstruction in dogs and cat. © 2016 American College of Veterinary Radiology.

  9. Cross-layer Energy Optimization Under Image Quality Constraints for Wireless Image Transmissions.

    PubMed

    Yang, Na; Demirkol, Ilker; Heinzelman, Wendi

    2012-01-01

    Wireless image transmission is critical in many applications, such as surveillance and environment monitoring. In order to make the best use of the limited energy of the battery-operated cameras, while satisfying the application-level image quality constraints, cross-layer design is critical. In this paper, we develop an image transmission model that allows the application layer (e.g., the user) to specify an image quality constraint, and optimizes the lower layer parameters of transmit power and packet length, to minimize the energy dissipation in image transmission over a given distance. The effectiveness of this approach is evaluated by applying the proposed energy optimization to a reference ZigBee system and a WiFi system, and also by comparing to an energy optimization study that does not consider any image quality constraint. Evaluations show that our scheme outperforms the default settings of the investigated commercial devices and saves a significant amount of energy at middle-to-large transmission distances.

  10. Retinal Image Quality Assessment for Spaceflight-Induced Vision Impairment Study

    NASA Technical Reports Server (NTRS)

    Vu, Amanda Cadao; Raghunandan, Sneha; Vyas, Ruchi; Radhakrishnan, Krishnan; Taibbi, Giovanni; Vizzeri, Gianmarco; Grant, Maria; Chalam, Kakarla; Parsons-Wingerter, Patricia

    2015-01-01

    Long-term exposure to space microgravity poses significant risks for visual impairment. Evidence suggests such vision changes are linked to cephalad fluid shifts, prompting a need to directly quantify microgravity-induced retinal vascular changes. The quality of retinal images used for such vascular remodeling analysis, however, is dependent on imaging methodology. For our exploratory study, we hypothesized that retinal images captured using fluorescein imaging methodologies would be of higher quality in comparison to images captured without fluorescein. A semi-automated image quality assessment was developed using Vessel Generation Analysis (VESGEN) software and MATLAB® image analysis toolboxes. An analysis of ten images found that the fluorescein imaging modality provided a 36% increase in overall image quality (two-tailed p=0.089) in comparison to nonfluorescein imaging techniques.

  11. Radionuclide Imaging of Musculoskeletal Injuries in Athletes with Negative Radiographs.

    PubMed

    Nagle, C E; Freitas, J E

    1987-06-01

    In brief: Radionuclide bone scans can be useful in the diagnostic evaluation of musculoskeletal injuries in athletes. Bone scans can detect shinsplints, stress fractures, and muscle injuries before they are detectable on radiographs. Prognosis can be accurately assessed, allowing appropriate treatment to proceed without delay. The authors discuss the use of bone scans and identify musculoskeletal injuries that are associated with specific sports, such as stress fracture of the femur (soccer), tibia (running), scapula (gymnastics), and pars interarticularis (football or lacrosse).

  12. Comparison of edge analysis techniques for the determination of the MTF of digital radiographic systems.

    PubMed

    Samei, Ehsan; Buhr, Egbert; Granfors, Paul; Vandenbroucke, Dirk; Wang, Xiaohui

    2005-08-07

    The modulation transfer function (MTF) is well established as a metric to characterize the resolution performance of a digital radiographic system. Implemented by various laboratories, the edge technique is currently the most widespread approach to measure the MTF. However, there can be differences in the results attributed to differences in the analysis technique employed. The objective of this study was to determine whether comparable results can be obtained from different algorithms processing identical images representative of those of current digital radiographic systems. Five laboratories participated in a round-robin evaluation of six different algorithms including one prescribed in the International Electrotechnical Commission (IEC) 62220-1 standard. The algorithms were applied to two synthetic and 12 real edge images from different digital radiographic systems including CR, and direct- and indirect-conversion detector systems. The results were analysed in terms of variability as well as accuracy of the resulting presampled MTFs. The results indicated that differences between the individual MTFs and the mean MTF were largely below 0.02. In the case of the two simulated edge images, all algorithms yielded similar results within 0.01 of the expected true MTF. The findings indicated that all algorithms tested in this round-robin evaluation, including the IEC-prescribed algorithm, were suitable for accurate MTF determination from edge images, provided the images are not excessively noisy. The agreement of the MTF results was judged sufficient for the measurement of the MTF necessary for the determination of the DQE.

  13. Inspecting Pipe Radiographically Through Asbestos Insulation

    NASA Technical Reports Server (NTRS)

    Gianettino, David P.

    1994-01-01

    Welds between sections of insulated steampipe located and inspected radiographically. Unless need to repair defective weld, one avoids cost, time, and hazard of removing asbestos insulation. Enables inspectors to locate and evaluate nondestructively any weld in pipe system, without shutting down steam. Hidden weld joints first located by use of low-power fluoroscope, moved along pipe while technician observes fluoroscopic image. Low-energy x rays from fluoroscope penetrate insulation but not pipe. Weld bead appears in silhouette on fluoroscope screen. Technician then accurately marks weld sites on insulation for later inspection.

  14. Automated method and system for the alignment and correlation of images from two different modalities

    DOEpatents

    Giger, Maryellen L.; Chen, Chin-Tu; Armato, Samuel; Doi, Kunio

    1999-10-26

    A method and system for the computerized registration of radionuclide images with radiographic images, including generating image data from radiographic and radionuclide images of the thorax. Techniques include contouring the lung regions in each type of chest image, scaling and registration of the contours based on location of lung apices, and superimposition after appropriate shifting of the images. Specific applications are given for the automated registration of radionuclide lungs scans with chest radiographs. The method in the example given yields a system that spatially registers and correlates digitized chest radiographs with V/Q scans in order to correlate V/Q functional information with the greater structural detail of chest radiographs. Final output could be the computer-determined contours from each type of image superimposed on any of the original images, or superimposition of the radionuclide image data, which contains high activity, onto the radiographic chest image.

  15. Association between findings on palmarodorsal radiographic images and detection of a fracture in the proximal sesamoid bones of forelimbs obtained from cadavers of racing Thoroughbreds.

    PubMed

    Anthenill, Lucy A; Stover, Susan M; Gardner, Ian A; Hill, Ashley E; Lee, Christina M; Anderson, Mark L; Barr, Bradd C; Read, Deryck H; Johnson, Bill J; Woods, Leslie W; Daft, Barbara M; Kinde, Hailu; Moore, Janet D; Farman, Cynthia A; Odani, Jenee S; Pesavento, Patricia A; Uzal, Francisco A; Case, James T; Ardans, Alex A

    2006-05-01

    To determine the distribution for limbs and bones in horses with fractures of the proximal sesamoid bones and relationships with findings on palmarodorsal radiographic images. Proximal sesamoid bones obtained from both forelimbs of cadavers of 328 racing Thoroughbreds. Osteophytes; large vascular channels; and fracture location, orientation, configuration, and margin distinctness were categorized by use of high-detail contact palmarodorsal radiographs. Distributions of findings were determined. Relationships between radiographic findings and fracture characteristics were examined by use of chi2 and logistic regression techniques. Fractures were detected in 136 (41.5%) horses. Biaxial fractures were evident in 109 (80%) horses with a fracture. Osteophytes and large vascular channels were evident in 266 (81%) and 325 (99%) horses, respectively. Medial bones typically had complete transverse or split transverse simple fractures, indistinct fracture margins, > 1 vascular channel that was > 1 mm in width, and osteophytes in abaxial wing and basilar middle or basilar abaxial locations. Lateral bones typically had an oblique fracture and distinct fracture margins. Odds of proximal sesamoid bone fracture were approximately 2 to 5 times higher in bones without radiographic evidence of osteophytes or large vascular channels, respectively. Biaxial fractures of proximal sesamoid bones were common in cadavers of racing Thoroughbreds. Differences between medial and lateral bones for characteristics associated with fracture may relate to differences in fracture pathogeneses for these bones. Osteophytes and vascular channels were common findings; however, fractures were less likely to occur in bones with these features.

  16. Segmenting lung fields in serial chest radiographs using both population-based and patient-specific shape statistics.

    PubMed

    Shi, Y; Qi, F; Xue, Z; Chen, L; Ito, K; Matsuo, H; Shen, D

    2008-04-01

    This paper presents a new deformable model using both population-based and patient-specific shape statistics to segment lung fields from serial chest radiographs. There are two novelties in the proposed deformable model. First, a modified scale invariant feature transform (SIFT) local descriptor, which is more distinctive than the general intensity and gradient features, is used to characterize the image features in the vicinity of each pixel. Second, the deformable contour is constrained by both population-based and patient-specific shape statistics, and it yields more robust and accurate segmentation of lung fields for serial chest radiographs. In particular, for segmenting the initial time-point images, the population-based shape statistics is used to constrain the deformable contour; as more subsequent images of the same patient are acquired, the patient-specific shape statistics online collected from the previous segmentation results gradually takes more roles. Thus, this patient-specific shape statistics is updated each time when a new segmentation result is obtained, and it is further used to refine the segmentation results of all the available time-point images. Experimental results show that the proposed method is more robust and accurate than other active shape models in segmenting the lung fields from serial chest radiographs.

  17. Quality Improvement of Liver Ultrasound Images Using Fuzzy Techniques.

    PubMed

    Bayani, Azadeh; Langarizadeh, Mostafa; Radmard, Amir Reza; Nejad, Ahmadreza Farzaneh

    2016-12-01

    Liver ultrasound images are so common and are applied so often to diagnose diffuse liver diseases like fatty liver. However, the low quality of such images makes it difficult to analyze them and diagnose diseases. The purpose of this study, therefore, is to improve the contrast and quality of liver ultrasound images. In this study, a number of image contrast enhancement algorithms which are based on fuzzy logic were applied to liver ultrasound images - in which the view of kidney is observable - using Matlab2013b to improve the image contrast and quality which has a fuzzy definition; just like image contrast improvement algorithms using a fuzzy intensification operator, contrast improvement algorithms applying fuzzy image histogram hyperbolization, and contrast improvement algorithms by fuzzy IF-THEN rules. With the measurement of Mean Squared Error and Peak Signal to Noise Ratio obtained from different images, fuzzy methods provided better results, and their implementation - compared with histogram equalization method - led both to the improvement of contrast and visual quality of images and to the improvement of liver segmentation algorithms results in images. Comparison of the four algorithms revealed the power of fuzzy logic in improving image contrast compared with traditional image processing algorithms. Moreover, contrast improvement algorithm based on a fuzzy intensification operator was selected as the strongest algorithm considering the measured indicators. This method can also be used in future studies on other ultrasound images for quality improvement and other image processing and analysis applications.

  18. Cone Beam Computed Tomographic imaging in orthodontics.

    PubMed

    Scarfe, W C; Azevedo, B; Toghyani, S; Farman, A G

    2017-03-01

    Over the last 15 years, cone beam computed tomographic (CBCT) imaging has emerged as an important supplemental radiographic technique for orthodontic diagnosis and treatment planning, especially in situations which require an understanding of the complex anatomic relationships and surrounding structures of the maxillofacial skeleton. CBCT imaging provides unique features and advantages to enhance orthodontic practice over conventional extraoral radiographic imaging. While it is the responsibility of each practitioner to make a decision, in tandem with the patient/family, consensus-derived, evidence-based clinical guidelines are available to assist the clinician in the decision-making process. Specific recommendations provide selection guidance based on variables such as phase of treatment, clinically-assessed treatment difficulty, the presence of dental and/or skeletal modifying conditions, and pathology. CBCT imaging in orthodontics should always be considered wisely as children have conservatively, on average, a three to five times greater radiation risk compared with adults for the same exposure. The purpose of this paper is to provide an understanding of the operation of CBCT equipment as it relates to image quality and dose, highlight the benefits of the technique in orthodontic practice, and provide guidance on appropriate clinical use with respect to radiation dose and relative risk, particularly for the paediatric patient. © 2017 Australian Dental Association.

  19. Radiographic localization of unerupted mandibular anterior teeth.

    PubMed

    Jacobs, S G

    2000-10-01

    The parallax method and the use of 2 radiographs taken at right angles to each other are the 2 methods generally used to accurately localize teeth. For the parallax method, the combination of a rotational panoramic radiograph with an occlusal radiograph is recommended. This combination involves a vertical x-ray tube shift. Three case reports are presented that illustrate: (1) how this combination can accurately localize unerupted mandibular anterior teeth, (2) how a deceptive appearance of the labiolingual position of the unerupted tooth can be produced in an occlusal radiograph, (3) how increasing the vertical angle of the tube for the occlusal radiograph makes the tube shift easier to discern, (4) why occlusal radiographs are preferable to periapical radiographs for tube shifts, and (5) how localization can also be carried out with 2 radiographs at right angles to each other, one of which is an occlusal radiograph taken with the x-ray tube directed along the long axis of the reference tooth.

  20. Radiographic artifacts.

    PubMed

    Kirberger, R M; Roos, C J

    1995-06-01

    Radiographic artifacts commonly occur, particularly with hand processing. The artifacts may originate between the X-ray tube and the cassette as extraneous material on the patient or contamination of positioning aids, or result from debris within the cassette, or damage to, or staining of the screens. These artifacts are white to grey, may have a constant or different position on follow-up radiographs, and their size and shape are reflective of the inciting cause. A number of artifacts may occur in the darkroom during handling, developing, fixing and drying of the film. White to shiny artifacts are caused by the contamination of films with fixer, inability of developer to reach parts of the film or loss of emulsion from the developed film. Black artifacts result from improper handling or storage of films, resulting in exposure to light, or from pressure marks or static electricity discharges. Dropped levels of hand-processing chemicals may result in a variety of tide-marks on films. Most radiographic artifacts can be prevented by proper storage and handling of films and by optimal darkroom technique.

  1. Technical Note: Confirming the prescribed angle of CT localizer radiographs and c-arm projection acquisitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szczykutowicz, Timothy P., E-mail: tszczykutowicz@uwhealth.org; Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706

    2016-02-15

    Purpose: Accurate CT radiograph angle is not usually important in diagnostic CT. However, there are applications in radiation oncology and interventional radiology in which the orientation of the x-ray source and detector with respect to the patient is clinically important. The authors present a method for measuring the accuracy of the tube/detector assembly with respect to the prescribed tube/detector position for CT localizer, fluoroscopic, and general radiograph imaging using diagnostic, mobile, and c-arm based CT systems. Methods: A mathematical expression relating the x-ray projection of two metal BBs is related to gantry angle. Measurement of the BBs at a prescribedmore » gantry (i.e., c-arm) angle can be obtained and using this relation the prescribed versus actual gantry angle compared. No special service mode or proprietary information is required, only access to projection images is required. Projection images are available in CT via CT localizer radiographs and in the interventional setting via fluorography. Results: The technique was demonstrated on two systems, a mobile CT scanner and a diagnostic CT scanner. The results confirmed a known issue with the mobile scanner and accurately described the CT localizer angle of the diagnostic system tested. Conclusions: This method can be used to quantify gantry angle, which is important when projection images are used for procedure guidance, such as in brachytherapy and interventional radiology applications.« less

  2. Mammography with and without radiolucent positioning sheets: Comparison of projected breast area, pain experience, radiation dose and technical image quality.

    PubMed

    Timmers, Janine; Voorde, Marloes Ten; Engen, Ruben E van; Landsveld-Verhoeven, Cary van; Pijnappel, Ruud; Greve, Kitty Droogh-de; Heeten, Gerard J den; Broeders, Mireille J M

    2015-10-01

    To compare projected breast area, image quality, pain experience and radiation dose between mammography performed with and without radiolucent positioning sheets. 184 women screened in the Dutch breast screening programme (May-June 2012) provided written informed consent to have one additional image taken with positioning sheets. 5 cases were excluded (missing data). Pain was scored using the Numeric Rating Scale. Radiation dose was estimated using the Dance model and projected breast area using computer software. Two radiologists and two radiographers assessed image quality. With positioning sheets significantly more pectoral muscle, lateral and medial breast tissue was projected (CC-views) and more and deeper depicted pectoral muscle (MLO-views). In contrast, visibility of white and darker areas was better on images without positioning sheets, radiologists were therefore better able to detect abnormalities (MLO-views). Women experienced more pain with positioning sheets (MLO-views only, mean difference NRS 0.98; SD 1.71; p=0,00). Mammograms with positioning sheets showed more breast tissue. Increased breast thickness after compression with sheets resulted in less visibility of white and darker areas and thus reduced detection of abnormalities. Also, women experienced more pain (MLO-views) due to the sheet material. A practical consideration is the fact that more subcutaneous fat tissue and skin are being pulled forward leading to folds in the nipple area. On balance, improvement to the current design is required before implementation in screening practice can be considered. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Radiographic localization of unerupted maxillary anterior teeth using the vertical tube shift technique: the history and application of the method with some case reports.

    PubMed

    Jacobs, S G

    1999-10-01

    The preferred means of radiographic localization is the parallax method introduced by Clark in 1910. He used 2 periapical radiographs and shifted the tube in the horizontal plane. In 1952, Richards appreciated that a vertical tube shift could also be carried out. No major changes then occurred in the technique until Keur, in Australia, in 1986 replaced the periapical radiographs with occlusal radiographs. This modification enables a greater tube movement and therefore a greater shift of the image of the impacted tooth; it also ensures that the whole of the tooth is captured on the radiograph. For the vertical tube shift, Keur introduced the use of a rotational panoramic radiograph with an occlusal radiograph. In 1987, Southall and Gravely discussed this vertical tube shift combination in the English dental literature, and it is now the preferred combination of radiographs for localizing impacted maxillary anterior teeth. Jacobs introduced this method to the American literature in 1999, but it has yet to gain acceptance in the continental European literature. Jacobs recommended, when using this combination, to routinely increase the vertical angulation for the occlusal radiograph by 10 degrees to achieve a greater image shift. Four case reports are presented in this article. Three have photographs taken at surgical exposure to illustrate how the position of the impacted tooth can be accurately predicted by appropriate interpretation of the radiographs.

  4. Assessment of radiation protection practices among radiographers in Lagos, Nigeria.

    PubMed

    Eze, Cletus Uche; Abonyi, Livinus Chibuzo; Njoku, Jerome; Irurhe, Nicholas Kayode; Olowu, Oluwabola

    2013-11-01

    Use of ionising radiation in diagnostic radiography could lead to hazards such as somatic and genetic damages. Compliance to safe work and radiation protection practices could mitigate such risks. The aim of the study was to assess the knowledge and radiation protection practices among radiographers in Lagos, Nigeria. The study was a prospective cross sectional survey. Convenience sampling technique was used to select four x-ray diagnostic centres in four tertiary hospitals in Lagos metropolis. Data were analysed with Epi- info software, version 3.5.1. Average score on assessment of knowledge was 73%. Most modern radiation protection instruments were lacking in all the centres studied. Application of shielding devices such as gonad shield for protection was neglected mostly in government hospitals. Most x-ray machines were quite old and evidence of quality assurance tests performed on such machines were lacking. Radiographers within Lagos metropolis showed an excellent knowledge of radiation protection within the study period. Adherence to radiation protection practices among radiographers in Lagos metropolis during the period studied was, however, poor. Radiographers in Lagos, Nigeria should embrace current trends in radiation protection and make more concerted efforts to apply their knowledge in protecting themselves and patients from harmful effects of ionising radiation.

  5. Quality evaluation of no-reference MR images using multidirectional filters and image statistics.

    PubMed

    Jang, Jinseong; Bang, Kihun; Jang, Hanbyol; Hwang, Dosik

    2018-09-01

    This study aimed to develop a fully automatic, no-reference image-quality assessment (IQA) method for MR images. New quality-aware features were obtained by applying multidirectional filters to MR images and examining the feature statistics. A histogram of these features was then fitted to a generalized Gaussian distribution function for which the shape parameters yielded different values depending on the type of distortion in the MR image. Standard feature statistics were established through a training process based on high-quality MR images without distortion. Subsequently, the feature statistics of a test MR image were calculated and compared with the standards. The quality score was calculated as the difference between the shape parameters of the test image and the undistorted standard images. The proposed IQA method showed a >0.99 correlation with the conventional full-reference assessment methods; accordingly, this proposed method yielded the best performance among no-reference IQA methods for images containing six types of synthetic, MR-specific distortions. In addition, for authentically distorted images, the proposed method yielded the highest correlation with subjective assessments by human observers, thus demonstrating its superior performance over other no-reference IQAs. Our proposed IQA was designed to consider MR-specific features and outperformed other no-reference IQAs designed mainly for photographic images. Magn Reson Med 80:914-924, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  6. Validation of no-reference image quality index for the assessment of digital mammographic images

    NASA Astrophysics Data System (ADS)

    de Oliveira, Helder C. R.; Barufaldi, Bruno; Borges, Lucas R.; Gabarda, Salvador; Bakic, Predrag R.; Maidment, Andrew D. A.; Schiabel, Homero; Vieira, Marcelo A. C.

    2016-03-01

    To ensure optimal clinical performance of digital mammography, it is necessary to obtain images with high spatial resolution and low noise, keeping radiation exposure as low as possible. These requirements directly affect the interpretation of radiologists. The quality of a digital image should be assessed using objective measurements. In general, these methods measure the similarity between a degraded image and an ideal image without degradation (ground-truth), used as a reference. These methods are called Full-Reference Image Quality Assessment (FR-IQA). However, for digital mammography, an image without degradation is not available in clinical practice; thus, an objective method to assess the quality of mammograms must be performed without reference. The purpose of this study is to present a Normalized Anisotropic Quality Index (NAQI), based on the Rényi entropy in the pseudo-Wigner domain, to assess mammography images in terms of spatial resolution and noise without any reference. The method was validated using synthetic images acquired through an anthropomorphic breast software phantom, and the clinical exposures on anthropomorphic breast physical phantoms and patient's mammograms. The results reported by this noreference index follow the same behavior as other well-established full-reference metrics, e.g., the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). Reductions of 50% on the radiation dose in phantom images were translated as a decrease of 4dB on the PSNR, 25% on the SSIM and 33% on the NAQI, evidencing that the proposed metric is sensitive to the noise resulted from dose reduction. The clinical results showed that images reduced to 53% and 30% of the standard radiation dose reported reductions of 15% and 25% on the NAQI, respectively. Thus, this index may be used in clinical practice as an image quality indicator to improve the quality assurance programs in mammography; hence, the proposed method reduces the subjectivity

  7. Quality Improvement of Liver Ultrasound Images Using Fuzzy Techniques

    PubMed Central

    Bayani, Azadeh; Langarizadeh, Mostafa; Radmard, Amir Reza; Nejad, Ahmadreza Farzaneh

    2016-01-01

    Background: Liver ultrasound images are so common and are applied so often to diagnose diffuse liver diseases like fatty liver. However, the low quality of such images makes it difficult to analyze them and diagnose diseases. The purpose of this study, therefore, is to improve the contrast and quality of liver ultrasound images. Methods: In this study, a number of image contrast enhancement algorithms which are based on fuzzy logic were applied to liver ultrasound images - in which the view of kidney is observable - using Matlab2013b to improve the image contrast and quality which has a fuzzy definition; just like image contrast improvement algorithms using a fuzzy intensification operator, contrast improvement algorithms applying fuzzy image histogram hyperbolization, and contrast improvement algorithms by fuzzy IF-THEN rules. Results: With the measurement of Mean Squared Error and Peak Signal to Noise Ratio obtained from different images, fuzzy methods provided better results, and their implementation - compared with histogram equalization method - led both to the improvement of contrast and visual quality of images and to the improvement of liver segmentation algorithms results in images. Conclusion: Comparison of the four algorithms revealed the power of fuzzy logic in improving image contrast compared with traditional image processing algorithms. Moreover, contrast improvement algorithm based on a fuzzy intensification operator was selected as the strongest algorithm considering the measured indicators. This method can also be used in future studies on other ultrasound images for quality improvement and other image processing and analysis applications. PMID:28077898

  8. Dose and diagnostic image quality in digital tomosynthesis imaging of facial bones in pediatrics

    NASA Astrophysics Data System (ADS)

    King, J. M.; Hickling, S.; Elbakri, I. A.; Reed, M.; Wrogemann, J.

    2011-03-01

    The purpose of this study was to evaluate the use of digital tomosynthesis (DT) for pediatric facial bone imaging. We compared the eye lens dose and diagnostic image quality of DT facial bone exams relative to digital radiography (DR) and computed tomography (CT), and investigated whether we could modify our current DT imaging protocol to reduce patient dose while maintaining sufficient diagnostic image quality. We measured the dose to the eye lens for all three modalities using high-sensitivity thermoluminescent dosimeters (TLDs) and an anthropomorphic skull phantom. To assess the diagnostic image quality of DT compared to the corresponding DR and CT images, we performed an observer study where the visibility of anatomical structures in the DT phantom images were rated on a four-point scale. We then acquired DT images at lower doses and had radiologists indicate whether the visibility of each structure was adequate for diagnostic purposes. For typical facial bone exams, we measured eye lens doses of 0.1-0.4 mGy for DR, 0.3-3.7 mGy for DT, and 26 mGy for CT. In general, facial bone structures were visualized better with DT then DR, and the majority of structures were visualized well enough to avoid the need for CT. DT imaging provides high quality diagnostic images of the facial bones while delivering significantly lower doses to the lens of the eye compared to CT. In addition, we found that by adjusting the imaging parameters, the DT effective dose can be reduced by up to 50% while maintaining sufficient image quality.

  9. Imaging quality evaluation method of pixel coupled electro-optical imaging system

    NASA Astrophysics Data System (ADS)

    He, Xu; Yuan, Li; Jin, Chunqi; Zhang, Xiaohui

    2017-09-01

    With advancements in high-resolution imaging optical fiber bundle fabrication technology, traditional photoelectric imaging system have become ;flexible; with greatly reduced volume and weight. However, traditional image quality evaluation models are limited by the coupling discrete sampling effect of fiber-optic image bundles and charge-coupled device (CCD) pixels. This limitation substantially complicates the design, optimization, assembly, and evaluation image quality of the coupled discrete sampling imaging system. Based on the transfer process of grayscale cosine distribution optical signal in the fiber-optic image bundle and CCD, a mathematical model of coupled modulation transfer function (coupled-MTF) is established. This model can be used as a basis for following studies on the convergence and periodically oscillating characteristics of the function. We also propose the concept of the average coupled-MTF, which is consistent with the definition of traditional MTF. Based on this concept, the relationships among core distance, core layer radius, and average coupled-MTF are investigated.

  10. Patient-Directed Valgus Stress Radiograph of the Knee: A New and Novel Technique.

    PubMed

    Mauerhan, David R; Cook, Kyle D; Botts, Tonia D; Williams, Sherita T

    2016-01-01

    The radiographic investigation of patients with medial-compartment osteoarthritis of the knee is a critical element in the decision-making process of determining whether the patient is a candidate for unicompartmental or total knee arthroplasty. A valgus stress radiograph of the affected knee is an essential part of this radiographic investigation. Historically, this has been performed with manual stress applied by the surgeon or the radiologic technologist; thus, this examination requires 2 individuals to complete. In addition to being inefficient, 1 individual is exposed to radiation, which can be undesirable over many exposures and in a long career. For these reasons, we instituted a quality improvement project to develop a method of obtaining the valgus stress view with 1 technologist that would obviate these concerns. Of 78 examinations performed, 5 studies did not show complete correction of the varus deformity. Of these, 3 showed complete correction on a manual valgus stress radiograph, and 2 did not. Three patients displayed collapse of the lateral compartment, indicating a nonfunctional lateral compartment. The remaining 70 patients had identical radiographic results with both the manual and patient-directed valgus stress.

  11. Pneumothorax detection in chest radiographs using local and global texture signatures

    NASA Astrophysics Data System (ADS)

    Geva, Ofer; Zimmerman-Moreno, Gali; Lieberman, Sivan; Konen, Eli; Greenspan, Hayit

    2015-03-01

    A novel framework for automatic detection of pneumothorax abnormality in chest radiographs is presented. The suggested method is based on a texture analysis approach combined with supervised learning techniques. The proposed framework consists of two main steps: at first, a texture analysis process is performed for detection of local abnormalities. Labeled image patches are extracted in the texture analysis procedure following which local analysis values are incorporated into a novel global image representation. The global representation is used for training and detection of the abnormality at the image level. The presented global representation is designed based on the distinctive shape of the lung, taking into account the characteristics of typical pneumothorax abnormalities. A supervised learning process was performed on both the local and global data, leading to trained detection system. The system was tested on a dataset of 108 upright chest radiographs. Several state of the art texture feature sets were experimented with (Local Binary Patterns, Maximum Response filters). The optimal configuration yielded sensitivity of 81% with specificity of 87%. The results of the evaluation are promising, establishing the current framework as a basis for additional improvements and extensions.

  12. [Quality control of laser imagers].

    PubMed

    Winkelbauer, F; Ammann, M; Gerstner, N; Imhof, H

    1992-11-01

    Multiformat imagers based on laser systems are used for documentation in an increasing number of investigations. The specific problems of quality control are explained and the persistence of film processing in these imager systems of different configuration with (Machine 1: 3M-Laser-Imager-Plus M952 with connected 3M Film-Processor, 3M-Film IRB, X-Rax Chemical Mixer 3M-XPM, 3M-Developer and Fixer) or without (Machine 2: 3M-Laser-Imager-Plus M952 with separate DuPont-Cronex Film-processor, Kodak IR-Film, Kodak Automixer, Kodak-Developer and Fixer) connected film processing unit are investigated. In our checking based on DIN 6868 and ONORM S 5240 we found persistence of film processing in the equipment with directly adapted film processing unit according to DIN and ONORM. The checking of film persistence as demanded by DIN 6868 in these equipment could therefore be performed in longer periods. Systems with conventional darkroom processing comparatively show plain increased fluctuation, and hence the demanded daily control is essential to guarantee appropriate reaction and constant quality of documentation.

  13. Photogrammetry in 3d Modelling of Human Bone Structures from Radiographs

    NASA Astrophysics Data System (ADS)

    Hosseinian, S.; Arefi, H.

    2017-05-01

    Photogrammetry can have great impact on the success of medical processes for diagnosis, treatment and surgeries. Precise 3D models which can be achieved by photogrammetry improve considerably the results of orthopedic surgeries and processes. Usual 3D imaging techniques, computed tomography (CT) and magnetic resonance imaging (MRI), have some limitations such as being used only in non-weight-bearing positions, costs and high radiation dose(for CT) and limitations of MRI for patients with ferromagnetic implants or objects in their bodies. 3D reconstruction of bony structures from biplanar X-ray images is a reliable and accepted alternative for achieving accurate 3D information with low dose radiation in weight-bearing positions. The information can be obtained from multi-view radiographs by using photogrammetry. The primary step for 3D reconstruction of human bone structure from medical X-ray images is calibration which is done by applying principles of photogrammetry. After the calibration step, 3D reconstruction can be done using efficient methods with different levels of automation. Because of the different nature of X-ray images from optical images, there are distinct challenges in medical applications for calibration step of stereoradiography. In this paper, after demonstrating the general steps and principles of 3D reconstruction from X-ray images, a comparison will be done on calibration methods for 3D reconstruction from radiographs and they are assessed from photogrammetry point of view by considering various metrics such as their camera models, calibration objects, accuracy, availability, patient-friendly and cost.

  14. Assessment of radiation protection awareness and knowledge about radiological examination doses among Italian radiographers.

    PubMed

    Paolicchi, F; Miniati, F; Bastiani, L; Faggioni, L; Ciaramella, A; Creonti, I; Sottocornola, C; Dionisi, C; Caramella, D

    2016-04-01

    To evaluate radiation protection basic knowledge and dose assessment for radiological procedures among Italian radiographers A validated questionnaire was distributed to 780 participants with balanced demographic characteristics and geographic distribution. Only 12.1 % of participants attended radiation protection courses on a regular basis. Despite 90 % of radiographers stating to have sufficient awareness of radiation protection issues, most of them underestimated the radiation dose of almost all radiological procedures. About 5 % and 4 % of the participants, respectively, claimed that pelvis magnetic resonance imaging and abdominal ultrasound exposed patients to radiation. On the contrary, 7.0 % of the radiographers stated that mammography does not use ionising radiation. About half of participants believed that radiation-induced cancer is not dependent on age or gender and were not able to differentiate between deterministic and stochastic effects. Young radiographers (with less than 3 years of experience) showed a higher level of knowledge compared with the more experienced radiographers. There is a substantial need for radiographers to improve their awareness of radiation protection issues and their knowledge of radiological procedures. Specific actions such as regular training courses for both undergraduate and postgraduate students as well as for working radiographers must be considered in order to assure patient safety during radiological examinations. • Radiographers should improve their knowledge on radiation protection issues. • Only 12.1 % of participants attended radiation protection courses on a regular basis. • Specific actions must be considered in order to increase knowledge and awareness.

  15. Analysis of polyethylene wear in plain radiographs

    PubMed Central

    2009-01-01

    Background and purpose Two-dimensional computerized radiographic techniques are frequently used to measure in vivo polyethylene (PE) wear after total hip arthroplasty (THA), and several variables in the clinical set-up may influence the amount of wear that is measured. We compared the repeatability and concurrent validity of linear PE wear on plain radiographs using the same software but a different number of radiographs. Methods We used either 1, 2, or 6 anteroposterior (AP) hip radiographs of 11 patients from a clinical THA series with 12 years of follow-up, and measured the PE wear with the software PolyWare 3D Pro. Repeatability within and concurrent validity between the different numbers of radiograph strategies were assessed using limits of agreement (LOAs) and bias. Results Observed median wear (range) in mm was 3.4 (1.6–4.6), 2.3 (0.7–4.9), and 4.0 (2.6–6.2) for the 1-, 2-, and 6-radiograph strategies. For repeatability, no bias (p > 0.41) was observed. LOAs around the bias were ± 0.6, ± 0.4, and ± 1.2 mm for the 1-, 2-, and 6-radiograph strategies. For concurrent validity, a bias (± LOA) between all pairwise comparisons was observed (p < 0.02) with 0.8 mm (± 2.5) between the 1- and 2-radiograph strategies, 1.0 mm (± 2.2) between the 1- and 6-radiograph strategies, and 1.8 mm (± 1.2) between the 2- and 6-radiograph strategies. Interpretation The number of radiographs used for wear measurement with a shadow-casting analysis method on plain AP radiographs influences the amount of linear wear measured. Results of PE wear obtained with PolyWare in studies using a different number of radiographs are not comparable. PMID:19995318

  16. Deep supervised dictionary learning for no-reference image quality assessment

    NASA Astrophysics Data System (ADS)

    Huang, Yuge; Liu, Xuesong; Tian, Xiang; Zhou, Fan; Chen, Yaowu; Jiang, Rongxin

    2018-03-01

    We propose a deep convolutional neural network (CNN) for general no-reference image quality assessment (NR-IQA), i.e., accurate prediction of image quality without a reference image. The proposed model consists of three components such as a local feature extractor that is a fully CNN, an encoding module with an inherent dictionary that aggregates local features to output a fixed-length global quality-aware image representation, and a regression module that maps the representation to an image quality score. Our model can be trained in an end-to-end manner, and all of the parameters, including the weights of the convolutional layers, the dictionary, and the regression weights, are simultaneously learned from the loss function. In addition, the model can predict quality scores for input images of arbitrary sizes in a single step. We tested our method on commonly used image quality databases and showed that its performance is comparable with that of state-of-the-art general-purpose NR-IQA algorithms.

  17. Radiographic evaluation of positional atelectasis in sedated dogs breathing room air versus 100% oxygen.

    PubMed

    Barletta, Michele; Almondia, Donna; Williams, Jamie; Crochik, Sonia; Hofmeister, Erik

    2014-10-01

    This study documents the degree of positional atelectasis in sedated dogs receiving 100% oxygen (O(2)) versus room air. Initial lateral recumbency was determined by an orthopedic study and initial treatment (O(2) or room air) was randomized. Each dog was maintained in lateral recumbency for 15 min, at which time ventrodorsal (VD) and opposite lateral thoracic radiographs were obtained. Each dog was then maintained in the opposite lateral recumbency and received the other treatment for 15 min, followed by a VD and opposite lateral radiograph. Radiographs were scored for severity of pulmonary pattern and mediastinal shift by 3 radiologists. Dogs breathing O(2) had significantly higher scores than dogs breathing room air. If radiographically detectable dependent atelectasis is present, repeat thoracic images following manual positive ventilation and/or position change to the opposite lateral recumbency should be made to rule out the effect of O(2) positional atelectasis and avoid misdiagnosis.

  18. Radiographic evaluation of positional atelectasis in sedated dogs breathing room air versus 100% oxygen

    PubMed Central

    Barletta, Michele; Almondia, Donna; Williams, Jamie; Crochik, Sonia; Hofmeister, Erik

    2014-01-01

    This study documents the degree of positional atelectasis in sedated dogs receiving 100% oxygen (O2) versus room air. Initial lateral recumbency was determined by an orthopedic study and initial treatment (O2 or room air) was randomized. Each dog was maintained in lateral recumbency for 15 min, at which time ventrodorsal (VD) and opposite lateral thoracic radiographs were obtained. Each dog was then maintained in the opposite lateral recumbency and received the other treatment for 15 min, followed by a VD and opposite lateral radiograph. Radiographs were scored for severity of pulmonary pattern and mediastinal shift by 3 radiologists. Dogs breathing O2 had significantly higher scores than dogs breathing room air. If radiographically detectable dependent atelectasis is present, repeat thoracic images following manual positive ventilation and/or position change to the opposite lateral recumbency should be made to rule out the effect of O2 positional atelectasis and avoid misdiagnosis. PMID:25320389

  19. Tarsal navicular stress fractures: radiographic evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlov, H.; Torg, J.S.; Freiberger, R.H.

    1983-09-01

    Tarsal navicular stress fractures are a potential source of disabling foot pain in physically active individuals. The diagnosis of tarsal navicular stress fracture requires a high index of clinical and radiographic suspicion because the fracture is only rarely evident on routine radiographs or standard tomograms. The radiographic diagnosis of a tarsal navicular stress fracture may require anatomic anteroposterior tomograms or a radionuclide bone scan with plantar views. Radiographic examinations of 23 fractures in 21 patients are evaluated.

  20. Quantitative imaging methods in osteoporosis.

    PubMed

    Oei, Ling; Koromani, Fjorda; Rivadeneira, Fernando; Zillikens, M Carola; Oei, Edwin H G

    2016-12-01

    Osteoporosis is characterized by a decreased bone mass and quality resulting in an increased fracture risk. Quantitative imaging methods are critical in the diagnosis and follow-up of treatment effects in osteoporosis. Prior radiographic vertebral fractures and bone mineral density (BMD) as a quantitative parameter derived from dual-energy X-ray absorptiometry (DXA) are among the strongest known predictors of future osteoporotic fractures. Therefore, current clinical decision making relies heavily on accurate assessment of these imaging features. Further, novel quantitative techniques are being developed to appraise additional characteristics of osteoporosis including three-dimensional bone architecture with quantitative computed tomography (QCT). Dedicated high-resolution (HR) CT equipment is available to enhance image quality. At the other end of the spectrum, by utilizing post-processing techniques such as the trabecular bone score (TBS) information on three-dimensional architecture can be derived from DXA images. Further developments in magnetic resonance imaging (MRI) seem promising to not only capture bone micro-architecture but also characterize processes at the molecular level. This review provides an overview of various quantitative imaging techniques based on different radiological modalities utilized in clinical osteoporosis care and research.

  1. Preoperative thoracic radiographic findings in dogs presenting for gastric dilatation-volvulus (2000-2010): 101 cases.

    PubMed

    Green, Jaime L; Cimino Brown, Dorothy; Agnello, Kimberly A

    2012-10-01

    To identify the incidence of clinically significant findings on preoperative thoracic radiographs in dogs with gastric dilatation-volvulus (GDV) and to determine if those findings are associated with survival. Retrospective study from 2000 to 2010. Urban university small animal teaching hospital. One hundred and one dogs diagnosed with GDV that had thoracic radiographs obtained preoperatively, and medical records available with the following information available: signalment, time of presentation, respiratory status, plasma lactate, presence of cardiac arrhythmias, reason for thoracic radiographs, radiographic findings, and outcome. None. Findings on preoperative thoracic radiographs included small vena cava (40%), esophageal dilation (39%), microcardia (34%), aspiration pneumonia (14%), cardiomegaly (5%), pulmonary nodule (4%), pulmonary edema (2%), sternal lymphadenopathy (1%), and pulmonary bullae (1%). Eighty-four percent of dogs (85 out of 101) survived to discharge. Dogs without cardiomegaly on presenting thoracic radiographs had a 10.2 greater odds of surviving to discharge. The most common findings on preoperative thoracic radiographs include esophageal dilation, microcardia, and a small vena cava while the incidence of pulmonary nodules was low. A negative association between survival and presence of cardiomegaly on preoperative thoracic radiographs in dogs with GDV supports the need to obtain these images for prognostic information in spite of the emergency surgical nature of the GDV. The main limitations of this study include the possibilities of type I and type II errors, the retrospective nature of the study, and the lack of well-defined criteria for obtaining thoracic radiographs. © Veterinary Emergency and Critical Care Society 2012.

  2. Do postoperative radiographically verified technical success, improved cosmesis, and trunk shift corroborate with patient-reported outcomes in Lenke 1C adolescent idiopathic scoliosis?

    PubMed

    Sharma, Shallu; Bünger, Cody Eric; Andersen, Thomas; Sun, Haolin; Wu, Chunsen; Hansen, Ebbe Stender

    2015-07-01

    To examine correlation between postoperative radiographic and cosmetic improvements in Lenke 1C adolescent idiopathic scoliosis (AIS) with patients' self-rated outcomes of health and disability at follow-up as determined by the Scoliosis Research Society questionnaire (SRS-30), Oswestry Disability Index score (ODI) and measure of overall health quality Euroqol-5d (EQ-5D). 24 Lenke 1C scoliosis patients, mean age 16.5 (12.8-38.1) years, treated with posterior pedicle screw-only construct, were included. The coronal profile indices (radiographic and cosmetic) regarding magnitude of spinal deformity and truncal balance were measured preoperatively, postoperatively and at final follow-up. A comprehensive index of overall back symmetry was also measured by means of the Posterior Trunk Symmetry Index (POTSI). Pearson's correlation analysis determined the association between the radiographic-cosmetic indices and patient-rated outcomes. Mean follow-up for the cohort was 4.4 (±1.86) years. The thoracic apical vertebra-first thoracic vertebra horizontal distance (AV-TI) correction had significant correlation with function, self-image, and mental health SRS-30 scores (0.55, 0.54, 0.66). Similarly, thoracic apical vertebra horizontal translation from central sacral vertical line (AV-CSVL) correction at follow-up had significant correlation with self-image and management domains (0.57, 0.50). Follow-up POTSI correlated well with SRS-30 and EQ-5D scores (r = -0.64, -0.54). Postoperative leftward trunk shift/spinal imbalance did not influence overall cosmesis and outcomes; significant spinal realignment was evident in follow-up resulting in physiological balance and acceptable cosmesis and outcomes. Significant, but less than "perfect" correlations were observed between the radiographic, cosmetic measures and patient-rated outcomes. Thoracic AV-CSVL, AV-T1 correction and POTSI associated significantly with SRS-30 scores. Whereas, thoracic Cobb angle, Cobb correction, and

  3. Image quality assessment for CT used on small animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cisneros, Isabela Paredes, E-mail: iparedesc@unal.edu.co; Agulles-Pedrós, Luis, E-mail: lagullesp@unal.edu.co

    Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters usingmore » an acrylic phantom and then, using the computational tool MATLAB, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.« less

  4. Image quality assessment for CT used on small animals

    NASA Astrophysics Data System (ADS)

    Cisneros, Isabela Paredes; Agulles-Pedrós, Luis

    2016-07-01

    Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters using an acrylic phantom and then, using the computational tool MatLab, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.

  5. Image quality prediction - An aid to the Viking lander imaging investigation on Mars

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Wall, S. D.

    1976-01-01

    Image quality criteria and image quality predictions are formulated for the multispectral panoramic cameras carried by the Viking Mars landers. Image quality predictions are based on expected camera performance, Mars surface radiance, and lighting and viewing geometry (fields of view, Mars lander shadows, solar day-night alternation), and are needed in diagnosis of camera performance, in arriving at a preflight imaging strategy, and revision of that strategy should the need arise. Landing considerations, camera control instructions, camera control logic, aspects of the imaging process (spectral response, spatial response, sensitivity), and likely problems are discussed. Major concerns include: degradation of camera response by isotope radiation, uncertainties in lighting and viewing geometry and in landing site local topography, contamination of camera window by dust abrasion, and initial errors in assigning camera dynamic ranges (gains and offsets).

  6. Radiographic localization of unerupted teeth: further findings about the vertical tube shift method and other localization techniques.

    PubMed

    Jacobs, S G

    2000-10-01

    The parallax method (image/tube shift method, Clark's rule, Richards' buccal object rule) is recommended to localize unerupted teeth. Richards' contribution to the development of the parallax method is discussed. The favored method for localization uses a rotational panoramic radiograph in combination with an occlusal radiograph involving a vertical shift of the x-ray tube. The use of this combination when localizing teeth and supernumeraries in the premolar region is illustrated. When taking an occlusal radiograph to localize an unerupted maxillary canine, clinical situations are presented where modification of the vertical angulation of the tube of 70 degrees to 75 degrees or of the horizontal position of the tube is warranted. The limitations of axial (true, cross-sectional, vertex) occlusal radiographs are also explored.

  7. Subjective evaluation of compressed image quality

    NASA Astrophysics Data System (ADS)

    Lee, Heesub; Rowberg, Alan H.; Frank, Mark S.; Choi, Hyung-Sik; Kim, Yongmin

    1992-05-01

    Lossy data compression generates distortion or error on the reconstructed image and the distortion becomes visible as the compression ratio increases. Even at the same compression ratio, the distortion appears differently depending on the compression method used. Because of the nonlinearity of the human visual system and lossy data compression methods, we have evaluated subjectively the quality of medical images compressed with two different methods, an intraframe and interframe coding algorithms. The evaluated raw data were analyzed statistically to measure interrater reliability and reliability of an individual reader. Also, the analysis of variance was used to identify which compression method is better statistically, and from what compression ratio the quality of a compressed image is evaluated as poorer than that of the original. Nine x-ray CT head images from three patients were used as test cases. Six radiologists participated in reading the 99 images (some were duplicates) compressed at four different compression ratios, original, 5:1, 10:1, and 15:1. The six readers agree more than by chance alone and their agreement was statistically significant, but there were large variations among readers as well as within a reader. The displacement estimated interframe coding algorithm is significantly better in quality than that of the 2-D block DCT at significance level 0.05. Also, 10:1 compressed images with the interframe coding algorithm do not show any significant differences from the original at level 0.05.

  8. Computerized method for detection of vertebral fractures on lateral chest radiographs based on morphometric data

    NASA Astrophysics Data System (ADS)

    Kasai, Satoshi; Li, Feng; Shiraishi, Junji; Li, Qiang; Straus, Christopher; Vokes, Tamara; MacMahon, Heber; Doi, Kunio

    2007-03-01

    Vertebral fractures are the most common osteoporosis-related fractures. It is important to detect vertebral fractures, because they are associated with increased risk of subsequent fractures, and because pharmacologic therapy can reduce the risk of subsequent fractures. Although vertebral fractures are often not clinically recognized, they can be visualized on lateral chest radiographs taken for other purposes. However, only 15-60% of vertebral fractures found on lateral chest radiographs are mentioned in radiology reports. The purpose of this study was to develop a computerized method for detection of vertebral fractures on lateral chest radiographs in order to assist radiologists' image interpretation. Our computerized method is based on the automated identification of upper and lower vertebral edges. In order to develop the scheme, radiologists provided morphometric data for each identifiable vertebra, which consisted of six points for each vertebra, for 25 normals and 20 cases with severe fractures. Anatomical information was obtained from morphometric data of normal cases in terms of vertebral heights, heights of vertebral disk spaces, and vertebral centerline. Computerized detection of vertebral fractures was based on the reduction in the heights of fractured vertebrae compared to adjacent vertebrae and normal reference data. Vertebral heights from morphometric data on normal cases were used as reference. On 138 chest radiographs (20 with fractures) the sensitivity of our method for detection of fracture cases was 95% (19/20) with 0.93 (110/118) false-positives per image. In conclusion, the computerized method would be useful for detection of potentially overlooked vertebral fractures on lateral chest radiographs.

  9. Relationship between Investigative Biomarkers and Radiographic Grading in Patients with Knee Osteoarthritis

    PubMed Central

    Anitua, Eduardo; Sánchez, Mikel; de la Fuente, Maria; Azofra, Juan; Zalduendo, Mar; Aguirre, Jose J.; Andía, Isabel

    2009-01-01

    Objective. To examine new investigative biomarkers and their relevance for radiographic severity in knee osteoarthritis. Methods. The group comprised 63 patients with 73 knees examined. Patients were divided according to radiographic severity to allow for comparison of biomarker levels. Hyaluronic acid (HA), matrix metalloproteases (MMP-1, MMP-3 and MMP-13), tissue inhibitors of metalloproteases (TIMP-1 and TIMP-2), platelet-derived growth factor (PDGF-AB), transformed growth factor (TGF-β), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF) and insulin-like growth factor (IGF-I) were measured on synovial fluid and in plasma releasate at a single time point. Principal component analysis (PCA) followed by analysis of covariance were applied to evaluate data. Results. Four different groups of biomarker were identified in plasma releasates. The first (platelet number, PDGF-AB and TGF-β) and second groups (HA and IGF-I) were related to radiographic severity, P = .005 and P = .022, respectively. The third (MMP-1 and TIMP-2) and fourth groups (MMP-3 and TIMP-1) represented the catabolic balance, but were not associated to radiographic grading. Three different clusters of biomarkers were found in synovial fluid but did not show any significant association to radiographic grading. Conclusions. New imaging approaches to assess structural deterioration and correlation with biomarker levels are warranted to advance in OA research. PMID:20130801

  10. Ionising radiation risk disclosure: When should radiographers assume a duty to inform?

    PubMed

    Younger, C W E; Douglas, C; Warren-Forward, H

    2018-05-01

    Autonomy is a fundamental patient right for ethical practice, and informed consent is the mechanism by which health care professionals ensure this right has been respected. The ethical notion of informed consent has evolved alongside legal developments. Under Australian law, a provider who fails to disclose risk may be found to be in breach of a duty of disclosure, potentially facing legal consequences if the patient experiences harm that is attributable to an undisclosed risk. These consequences may include the common law tort of negligence. Ionising radiation, in the form of a medical imaging examination, has the potential to cause harm. However, stochastic effects cannot be attributable to a specific ionising radiation event. What then is the role of the Australian medical imaging service provider in disclosing ionising radiation risk? The ethical and legal principles of informed consent, and the duty of information provision to the patient are investigated. These general principles are then applied to the specific and unusual case of ionising radiation, and what responsibilities apply to the medical imaging provider. Finally, the legal, professional and ethical duties of the radiographer to disclose information to their patients are investigated. Australian law is unclear as to whether a radiographer has a common law responsibility to disclose radiation risk. There is ambiguity as to whether stochastic ionising radiation risk could be considered a legal disclosure responsibility. While it is unlikely that not disclosing risk will have medicolegal consequences, doing so represents sound ethical practice. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  11. Classification of Regional Radiographic Emphysematous Patterns Using Low-Attenuation Gap Length Matrix

    NASA Astrophysics Data System (ADS)

    Tan, Kok Liang; Tanaka, Toshiyuki; Nakamura, Hidetoshi; Shirahata, Toru; Sugiura, Hiroaki

    The standard computer-tomography-based method for measuring emphysema uses percentage of area of low attenuation which is called the pixel index (PI). However, the PI method is susceptible to the problem of averaging effect and this causes the discrepancy between what the PI method describes and what radiologists observe. Knowing that visual recognition of the different types of regional radiographic emphysematous tissues in a CT image can be fuzzy, this paper proposes a low-attenuation gap length matrix (LAGLM) based algorithm for classifying the regional radiographic lung tissues into four emphysema types distinguishing, in particular, radiographic patterns that imply obvious or subtle bullous emphysema from those that imply diffuse emphysema or minor destruction of airway walls. Neural network is used for discrimination. The proposed LAGLM method is inspired by, but different from, former texture-based methods like gray level run length matrix (GLRLM) and gray level gap length matrix (GLGLM). The proposed algorithm is successfully validated by classifying 105 lung regions that are randomly selected from 270 images. The lung regions are hand-annotated by radiologists beforehand. The average four-class classification accuracies in the form of the proposed algorithm/PI/GLRLM/GLGLM methods are: 89.00%/82.97%/52.90%/51.36%, respectively. The p-values from the correlation analyses between the classification results of 270 images and pulmonary function test results are generally less than 0.01. The classification results are useful for a followup study especially for monitoring morphological changes with progression of pulmonary disease.

  12. Review of Image Quality Measures for Solar Imaging

    NASA Astrophysics Data System (ADS)

    Popowicz, Adam; Radlak, Krystian; Bernacki, Krzysztof; Orlov, Valeri

    2017-12-01

    Observations of the solar photosphere from the ground encounter significant problems caused by Earth's turbulent atmosphere. Before image reconstruction techniques can be applied, the frames obtained in the most favorable atmospheric conditions (the so-called lucky frames) have to be carefully selected. However, estimating the quality of images containing complex photospheric structures is not a trivial task, and the standard routines applied in nighttime lucky imaging observations are not applicable. In this paper we evaluate 36 methods dedicated to the assessment of image quality, which were presented in the literature over the past 40 years. We compare their effectiveness on simulated solar observations of both active regions and granulation patches, using reference data obtained by the Solar Optical Telescope on the Hinode satellite. To create images that are affected by a known degree of atmospheric degradation, we employed the random wave vector method, which faithfully models all the seeing characteristics. The results provide useful information about the method performances, depending on the average seeing conditions expressed by the ratio of the telescope's aperture to the Fried parameter, D/r0. The comparison identifies three methods for consideration by observers: Helmli and Scherer's mean, the median filter gradient similarity, and the discrete cosine transform energy ratio. While the first method requires less computational effort and can be used effectively in virtually any atmospheric conditions, the second method shows its superiority at good seeing (D/r0<4). The third method should mainly be considered for the post-processing of strongly blurred images.

  13. Evaluating imaging quality between different ghost imaging systems based on the coherent-mode representation

    NASA Astrophysics Data System (ADS)

    Shen, Qian; Bai, Yanfeng; Shi, Xiaohui; Nan, Suqin; Qu, Lijie; Li, Hengxing; Fu, Xiquan

    2017-07-01

    The difference in imaging quality between different ghost imaging schemes is studied by using coherent-mode representation of partially coherent fields. It is shown that the difference mainly relies on the distribution changes of the decomposition coefficients of the object imaged when the light source is fixed. For a new-designed imaging scheme, we only need to give the distribution of the decomposition coefficients and compare them with that of the existing imaging system, thus one can predict imaging quality. By choosing several typical ghost imaging systems, we theoretically and experimentally verify our results.

  14. Real-Time Radiographic In-Situ Characterization Of Ply Lift In Composite Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Beshears, Ronald D.; Doering, Edward R.

    2006-01-01

    The problem of ply lifting in composite materials is a significant issue for various aerospace and military applications. A fundamental element in the prevention or mitigation of ply lift is determination of the timing of the ply lifting event during exposure of the composite material to flight conditions. The Marshall Space Flight Center s Nondestructive Evaluation Team developed a real-time radiographic technique for the detection of ply lift in carbon phenolic ablative materials in situ during live firings of subscale test motors in support of NASA s Reusable Solid Rocket Motor program, using amorphous silicon detector panels. The radiographic method has successfully detected ply lifting in seven consecutive carbon phenolic converging cones attached to solid fuel torches, providing the time of ply lift initiation in each test. Post-processing of the radiographic images improved the accuracy of timing measurements and allowed measurement of the ply lifting height as a function of time. Radiographic data correlated well with independent pressure and temperature measurements that indicate the onset of ply lift in the nozzle material.

  15. Guidelines for the use of chest radiographs in community-acquired pneumonia in children and adolescents.

    PubMed

    Andronikou, Savvas; Lambert, Elena; Halton, Jarred; Hilder, Lucy; Crumley, Iona; Lyttle, Mark D; Kosack, Cara

    2017-10-01

    National guidance from the United Kingdom and the United States on community-acquired pneumonia in children states that chest radiographs are not recommended routinely in uncomplicated cases. The main reason in the ambulatory setting is that there is no evidence of a substantial impact on clinical outcomes. However clinical practice and adherence to guidance is multifactorial and includes the clinical context (developed vs. developing world), the confidence of the attending physician, the changing incidence of complications (according to the success of immunisation programs), the availability of alternative imaging (and its relationship to perceived risks of radiation) and the reliability of the interpretation of imaging. In practice, chest radiographs are performed frequently for suspected pneumonia in children. Time pressures facing clinicians at the front line, difficulties in distinguishing which children require admission, restricted bed numbers for admissions, imaging-resource limitations, perceptions regarding risk from procedures, novel imaging modalities and the probability of other causes for the child's presentation all need to be factored into a guideline. Other drivers that often weigh in, depending on the setting, include cost-effectiveness and the fear of litigation. Not all guidelines designed for the developed world can therefore be applied to the developing world, and practice guidelines require regular review in the context of new information. In addition, radiologists must improve radiographic diagnosis of pneumonia, reach consensus on the interpretive terminology that clarifies their confidence regarding the presence of pneumonia and act to replace one imaging technique with another whenever there is proof of improved accuracy or reliability.

  16. Impact of image quality on OCT angiography based quantitative measurements.

    PubMed

    Al-Sheikh, Mayss; Ghasemi Falavarjani, Khalil; Akil, Handan; Sadda, SriniVas R

    2017-01-01

    To study the impact of image quality on quantitative measurements and the frequency of segmentation error with optical coherence tomography angiography (OCTA). Seventeen eyes of 10 healthy individuals were included in this study. OCTA was performed using a swept-source device (Triton, Topcon). Each subject underwent three scanning sessions 1-2 min apart; the first two scans were obtained under standard conditions and for the third session, the image quality index was reduced using application of a topical ointment. En face OCTA images of the retinal vasculature were generated using the default segmentation for the superficial and deep retinal layer (SRL, DRL). Intraclass correlation coefficient (ICC) was used as a measure for repeatability. The frequency of segmentation error, motion artifact, banding artifact and projection artifact was also compared among the three sessions. The frequency of segmentation error, and motion artifact was statistically similar between high and low image quality sessions (P = 0.707, and P = 1 respectively). However, the frequency of projection and banding artifact was higher with a lower image quality. The vessel density in the SRL was highly repeatable in the high image quality sessions (ICC = 0.8), however, the repeatability was low, comparing the high and low image quality measurements (ICC = 0.3). In the DRL, the repeatability of the vessel density measurements was fair in the high quality sessions (ICC = 0.6 and ICC = 0.5, with and without automatic artifact removal, respectively) and poor comparing high and low image quality sessions (ICC = 0.3 and ICC = 0.06, with and without automatic artifact removal, respectively). The frequency of artifacts is higher and the repeatability of the measurements is lower with lower image quality. The impact of image quality index should be always considered in OCTA based quantitative measurements.

  17. AXIS: An instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, G. N., E-mail: hall98@llnl.gov; Izumi, N.; Tommasini, R.

    2014-11-15

    Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detectormore » for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV–200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.« less

  18. Toward the detection of abnormal chest radiographs the way radiologists do it

    NASA Astrophysics Data System (ADS)

    Alzubaidi, Mohammad; Patel, Ameet; Panchanathan, Sethuraman; Black, John A., Jr.

    2011-03-01

    Computer Aided Detection (CADe) and Computer Aided Diagnosis (CADx) are relatively recent areas of research that attempt to employ feature extraction, pattern recognition, and machine learning algorithms to aid radiologists in detecting and diagnosing abnormalities in medical images. However, these computational methods are based on the assumption that there are distinct classes of abnormalities, and that each class has some distinguishing features that set it apart from other classes. However, abnormalities in chest radiographs tend to be very heterogeneous. The literature suggests that thoracic (chest) radiologists develop their ability to detect abnormalities by developing a sense of what is normal, so that anything that is abnormal attracts their attention. This paper discusses an approach to CADe that is based on a technique called anomaly detection (which aims to detect outliers in data sets) for the purpose of detecting atypical regions in chest radiographs. However, in order to apply anomaly detection to chest radiographs, it is necessary to develop a basis for extracting features from corresponding anatomical locations in different chest radiographs. This paper proposes a method for doing this, and describes how it can be used to support CADe.

  19. The relationship between clinical characteristics, radiographic osteoarthritis and 3D bone area: data from the osteoarthritis initiative.

    PubMed

    Barr, A J; Dube, B; Hensor, E M A; Kingsbury, S R; Peat, G; Bowes, M A; Conaghan, P G

    2014-10-01

    Radiographic measures of osteoarthritis (OA) are based upon two dimensional projection images. Active appearance modelling (AAM) of knee magnetic resonance imaging (MRI) enables accurate, 3D quantification of joint structures in large cohorts. This cross-sectional study explored the relationship between clinical characteristics, radiographic measures of OA and 3D bone area (tAB). Clinical data and baseline paired radiographic and MRI data, from the medial compartment of one knee of 2588 participants were obtained from the NIH Osteoarthritis Initiative (OAI). The medial femur (MF) and tibia (MT) tAB were calculated using AAM. 'OA-attributable' tAB (OA-tAB) was calculated using data from regression models of tAB of knees without OA. Associations between OA-tAB and radiographic measures of OA were investigated using linear regression. In univariable analyses, height, weight, and age in female knees without OA explained 43.1%, 32.1% and 0.1% of the MF tAB variance individually and 54.4% when included simultaneously in a multivariable model. Joint space width (JSW), osteophytes and sclerosis explained just 5.3%, 14.9% and 10.1% of the variance of MF OA-tAB individually and 17.4% when combined. Kellgren Lawrence (KL) grade explained approximately 20% of MF OA-tAB individually. Similar results were seen for MT OA-tAB. Height explained the majority of variance in tAB, confirming an allometric relationship between body and joint size. Radiographic measures of OA, derived from a single radiographic projection, accounted for only a small amount of variation in 3D knee OA-tAB. The additional structural information provided by 3D bone area may explain the lack of a substantive relationship with these radiographic OA measures. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Topological image texture analysis for quality assessment

    NASA Astrophysics Data System (ADS)

    Asaad, Aras T.; Rashid, Rasber Dh.; Jassim, Sabah A.

    2017-05-01

    Image quality is a major factor influencing pattern recognition accuracy and help detect image tampering for forensics. We are concerned with investigating topological image texture analysis techniques to assess different type of degradation. We use Local Binary Pattern (LBP) as a texture feature descriptor. For any image construct simplicial complexes for selected groups of uniform LBP bins and calculate persistent homology invariants (e.g. number of connected components). We investigated image quality discriminating characteristics of these simplicial complexes by computing these models for a large dataset of face images that are affected by the presence of shadows as a result of variation in illumination conditions. Our tests demonstrate that for specific uniform LBP patterns, the number of connected component not only distinguish between different levels of shadow effects but also help detect the infected regions as well.