Sample records for radiological safety program

  1. Manned space flight nuclear system safety. Volume 6: Space base nuclear system safety plan

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A qualitative identification of the steps required to assure the incorporation of radiological system safety principles and objectives into all phases of a manned space base program are presented. Specific areas of emphasis include: (1) radiological program management, (2) nuclear system safety plan implementation, (3) impact on program, and (4) summary of the key operation and design guidelines and requirements. The plan clearly indicates the necessity of considering and implementing radiological system safety recommendations as early as possible in the development cycle to assure maximum safety and minimize the impact on design and mission plans.

  2. IRQN award paper: Operational rounds: a practical administrative process to improve safety and clinical services in radiology.

    PubMed

    Donnelly, Lane F; Dickerson, Julie M; Lehkamp, Todd W; Gessner, Kevin E; Moskovitz, Jay; Hutchinson, Sally

    2008-11-01

    As part of a patient safety program in the authors' department of radiology, operational rounds have been instituted. This process consists of radiology leaders' visiting imaging divisions at the site of imaging and discussing frontline employees' concerns about patient safety, the quality of care, and patient and family satisfaction. Operational rounds are executed at a time to optimize the number of attendees. Minutes that describe the issues identified, persons responsible for improvement, and updated improvement plan status are available to employees online. Via this process, multiple patient safety and other issues have been identified and remedied. The authors believe that the process has improved patient safety, the quality of care, and the efficiency of operations. Since the inception of the safety program, the mean number of days between serious safety events involving radiology has doubled. The authors review the background around such walk rounds, describe their particular program, and give multiple illustrative examples of issues identified and improvement plans put in place.

  3. Safety coaches in radiology: decreasing human error and minimizing patient harm.

    PubMed

    Dickerson, Julie M; Koch, Bernadette L; Adams, Janet M; Goodfriend, Martha A; Donnelly, Lane F

    2010-09-01

    Successful programs to improve patient safety require a component aimed at improving safety culture and environment, resulting in a reduced number of human errors that could lead to patient harm. Safety coaching provides peer accountability. It involves observing for safety behaviors and use of error prevention techniques and provides immediate feedback. For more than a decade, behavior-based safety coaching has been a successful strategy for reducing error within the context of occupational safety in industry. We describe the use of safety coaches in radiology. Safety coaches are an important component of our comprehensive patient safety program.

  4. OPERATION CASTLE. Radiological Safety. Volume 1

    DTIC Science & Technology

    1985-09-01

    OPERATION CASTLE Radiological Safety Final Report Volume I Headquarters Joint Task Force Seven Technical Branch, J-3 Division Washington, DC...Spring 1954 EXTRACTED VERSION DTIC -uECTE MAR031986 NOTICE: This is an extract of Operation CASTLE, Radiological Safety, Final Report, Volume I ...SYMBOL (If jpQiictbl») ■ i PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 8c AOORESS (G(y, SU(t tncl ZIRCod») 10 SOURCE OF FUNDING NUMBERS PROGRAM

  5. Proceedings from the first Global Summit on Radiological Quality and Safety.

    PubMed

    Stern, Eric J; Adam, E Jane; Bettman, Michael A; Brink, James A; Dreyer, Keith J; Frija, Guy; Keefer, Raina; Mildenberger, Peter; Remedios, Denis; Vock, Peter

    2014-10-01

    The ACR, the European Society of Radiology, and the International Society of Radiology held the first joint Global Summit on Radiological Quality and Safety in May 2013. The program was divided into 3 day-long themes: appropriateness of imaging, radiation protection/infrastructure, and quality and safety. Participants came from global organizations, including the International Atomic Energy Agency, the World Health Organization, and other institutions; industry and patient advocacy groups with an interest in imaging were also represented. The goal was to exchange ideas and solutions and share concerns to arrive at a better and more uniform approach to quality and safety. Participants were asked to use the information presented to develop strategies and tactics to harmonize and promote best practices worldwide. These strategies were summarized at the conclusion of the meeting. Copyright © 2014 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  6. NCRP Program Area Committee 3: Nuclear and Radiological Security and Safety [Update on the Ncrp Program Area Committee 3 Activities: Nuclear And Radiological Security and Safety

    DOE PAGES

    Ansari, Armin; Buddemeier, Brooke

    2018-02-01

    The National Council on Radiation Protection and Measurements (NCRP) Program Area Committee (PAC) 3 covers the broad subject of nuclear and radiological security and safety and provides guidance and recommendations for response to nuclear and radiological incidents of both an accidental and deliberate nature. In 2017, PAC 3 Scientific Committee 3-1 completed the development of Guidance for Emergency Responder Dosimetry, and began development of a companion commentary on operational aspects of that guidance. PAC 3 members also organized the technical program for the 2017 Annual Meeting of the NCRP on “Assessment of National Efforts in Emergency Preparedness for Nuclear Terrorism:more » Is There a Need for Realignment to Close Remaining Gaps.” Based on discussions and presentations at the annual meeting, PAC 3 is working to develop a commentary on the subject that could serve as a roadmap for focusing our national efforts on the most pressing needs for preparing the nation for nuclear and radiological emergencies. PAC 3 is also engaged in active discussions, exploring the landscape of priority issues for its future activities. Lastly, an important consideration in this discussion is the extent of NCRP’s present and potential future resources to support the work of its scientific committees.« less

  7. NCRP Program Area Committee 3: Nuclear and Radiological Security and Safety [Update on the Ncrp Program Area Committee 3 Activities: Nuclear And Radiological Security and Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ansari, Armin; Buddemeier, Brooke

    The National Council on Radiation Protection and Measurements (NCRP) Program Area Committee (PAC) 3 covers the broad subject of nuclear and radiological security and safety and provides guidance and recommendations for response to nuclear and radiological incidents of both an accidental and deliberate nature. In 2017, PAC 3 Scientific Committee 3-1 completed the development of Guidance for Emergency Responder Dosimetry, and began development of a companion commentary on operational aspects of that guidance. PAC 3 members also organized the technical program for the 2017 Annual Meeting of the NCRP on “Assessment of National Efforts in Emergency Preparedness for Nuclear Terrorism:more » Is There a Need for Realignment to Close Remaining Gaps.” Based on discussions and presentations at the annual meeting, PAC 3 is working to develop a commentary on the subject that could serve as a roadmap for focusing our national efforts on the most pressing needs for preparing the nation for nuclear and radiological emergencies. PAC 3 is also engaged in active discussions, exploring the landscape of priority issues for its future activities. Lastly, an important consideration in this discussion is the extent of NCRP’s present and potential future resources to support the work of its scientific committees.« less

  8. 10 CFR 835.901 - Radiation safety training.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Radiation Safety Training § 835.901 Radiation safety... radiation exposure; (2) Basic radiological fundamentals and radiation protection concepts; (3) Physical... comply with the documented radiation protection program. (e) Radiation safety training shall be provided...

  9. 10 CFR 835.901 - Radiation safety training.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Radiation Safety Training § 835.901 Radiation safety... radiation exposure; (2) Basic radiological fundamentals and radiation protection concepts; (3) Physical... comply with the documented radiation protection program. (e) Radiation safety training shall be provided...

  10. 10 CFR 835.901 - Radiation safety training.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Radiation Safety Training § 835.901 Radiation safety... radiation exposure; (2) Basic radiological fundamentals and radiation protection concepts; (3) Physical... comply with the documented radiation protection program. (e) Radiation safety training shall be provided...

  11. Tiger Team Assessment of the Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-11-01

    The purpose of the safety and health assessment was to determine the effectiveness of representative safety and health programs at the Los Alamos National Laboratory (LANL). Within the safety and health programs at LANL, performance was assessed in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Explosives Safety, Natural Phenomena, and Medical Services.

  12. Westinghouse corporate development of a decision software program for Radiological Evaluation Decision Input (REDI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bush, T.S.

    1995-03-01

    In December 1992, the Department of Energy (DOE) implemented the DOE Radiological Control Manual (RCM). Westinghouse Idaho Nuclear Company, Inc. (WINCO) submitted an implementation plan showing how compliance with the manual would be achieved. This implementation plan was approved by DOE in November 1992. Although WINCO had already been working under a similar Westinghouse RCM, the DOE RCM brought some new and challenging requirements. One such requirement was that of having procedure writers and job planners create the radiological input in work control procedures. Until this time, that information was being provided by radiological engineering or a radiation safety representative.more » As a result of this requirement, Westinghouse developed the Radiological Evaluation Decision Input (REDI) program.« less

  13. Evaluation of radiological dispersion/consequence codes supporting DOE nuclear facility SARs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Kula, K.R.; Paik, I.K.; Chung, D.Y.

    1996-12-31

    Since the early 1990s, the authorization basis documentation of many U.S. Department of Energy (DOE) nuclear facilities has been upgraded to comply with DOE orders and standards. In this process, many safety analyses have been revised. Unfortunately, there has been nonuniform application of software, and the most appropriate computer and engineering methodologies often are not applied. A DOE Accident Phenomenology and Consequence (APAC) Methodology Evaluation Program was originated at the request of DOE Defense Programs to evaluate the safety analysis methodologies used in nuclear facility authorization basis documentation and to define future cost-effective support and development initiatives. Six areas, includingmore » source term development (fire, spills, and explosion analysis), in-facility transport, and dispersion/ consequence analysis (chemical and radiological) are contained in the APAC program. The evaluation process, codes considered, key results, and recommendations for future model and software development of the Radiological Dispersion/Consequence Working Group are summarized in this paper.« less

  14. Expanding the scope of practice for radiology managers: radiation safety duties.

    PubMed

    Orders, Amy B; Wright, Donna

    2003-01-01

    In addition to financial responsibilities and patient care duties, many medical facilities also expect radiology department managers to wear "safety" hats and complete fundamental quality control/quality assurance, conduct routine safety surveillance in the department, and to meet regulatory demands in the workplace. All managers influence continuous quality improvement initiatives, from effective utilization of resource and staffing allocations, to efficacy of patient scheduling tactics. It is critically important to understand continuous quality improvement (CQI) and its relationship with the radiology manager, specifically quality assurance/quality control in routine work, as these are the fundamentals of institutional safety, including radiation safety. When an institution applies for a registration for radiation-producing devices or a license for the use of radioactive materials, the permit granting body has specific requirements, policies and procedures that must be satisfied in order to be granted a permit and to maintain it continuously. In the 32 U.S. Agreement states, which are states that have radiation safety programs equivalent to the Nuclear Regulatory Commission programs, individual facilities apply for permits through the local governing body of radiation protection. Other states are directly licensed by the Nuclear Regulatory Commission and associated regulatory entities. These regulatory agencies grant permits, set conditions for use in accordance with state and federal laws, monitor and enforce radiation safety activities, and audit facilities for compliance with their regulations. Every radiology department and associated areas of radiation use are subject to inspection and enforcement policies in order to ensure safety of equipment and personnel. In today's business practice, department managers or chief technologists may actively participate in the duties associated with institutional radiation safety, especially in smaller institutions, while other facilities may assign the duties and title of "radiation safety officer" to a radiologist or other management, per the requirements of regulatory agencies in that state. Radiation safety in a medical setting can be delineated into two main categories--equipment and personnel requirements--each having very specific guidelines. The literature fails to adequately address the blatant link between radiology department managers and radiation safety duties. The breadth and depth of this relationship is of utmost concern and warrants deeper insight as the demands of the regulatory agencies increase with the new advances in technology, procedures and treatments associated with radiation-producing devices and radioactive materials.

  15. Creating a comprehensive customer service program to help convey critical and acute results of radiology studies.

    PubMed

    Towbin, Alexander J; Hall, Seth; Moskovitz, Jay; Johnson, Neil D; Donnelly, Lane F

    2011-01-01

    Communication of acute or critical results between the radiology department and referring clinicians has been a deficiency of many radiology departments. The failure to perform or document these communications can lead to poor patient care, patient safety issues, medical-legal issues, and complaints from referring clinicians. To mitigate these factors, a communication and documentation tool was created and incorporated into our departmental customer service program. This article will describe the implementation of a comprehensive customer service program in a hospital-based radiology department. A comprehensive customer service program was created in the radiology department. Customer service representatives were hired to answer the telephone calls to the radiology reading rooms and to help convey radiology results. The radiologists, referring clinicians, and customer service representatives were then linked via a novel workflow management system. This workflow management system provided tools to help facilitate the communication needs of each group. The number of studies with results conveyed was recorded from the implementation of the workflow management system. Between the implementation of the workflow management system on August 1, 2005, and June 1, 2009, 116,844 radiology results were conveyed to the referring clinicians and documented in the system. This accounts for more than 14% of the 828,516 radiology cases performed in this time frame. We have been successful in creating a comprehensive customer service program to convey and document communication of radiology results. This program has been widely used by the ordering clinicians as well as radiologists since its inception.

  16. Key Performance Indicators in the Evaluation of the Quality of Radiation Safety Programs.

    PubMed

    Schultz, Cheryl Culver; Shaffer, Sheila; Fink-Bennett, Darlene; Winokur, Kay

    2016-08-01

    Beaumont is a multiple hospital health care system with a centralized radiation safety department. The health system operates under a broad scope Nuclear Regulatory Commission license but also maintains several other limited use NRC licenses in off-site facilities and clinics. The hospital-based program is expansive including diagnostic radiology and nuclear medicine (molecular imaging), interventional radiology, a comprehensive cardiovascular program, multiple forms of radiation therapy (low dose rate brachytherapy, high dose rate brachytherapy, external beam radiotherapy, and gamma knife), and the Research Institute (including basic bench top, human and animal). Each year, in the annual report, data is analyzed and then tracked and trended. While any summary report will, by nature, include items such as the number of pieces of equipment, inspections performed, staff monitored and educated and other similar parameters, not all include an objective review of the quality and effectiveness of the program. Through objective numerical data Beaumont adopted seven key performance indicators. The assertion made is that key performance indicators can be used to establish benchmarks for evaluation and comparison of the effectiveness and quality of radiation safety programs. Based on over a decade of data collection, and adoption of key performance indicators, this paper demonstrates one way to establish objective benchmarking for radiation safety programs in the health care environment.

  17. Informatics in radiology: evaluation of an e-learning platform for teaching medical students competency in ordering radiologic examinations.

    PubMed

    Marshall, Nina L; Spooner, Muirne; Galvin, P Leo; Ti, Joanna P; McElvaney, N Gerald; Lee, Michael J

    2011-01-01

    A preliminary audit of orders for computed tomography was performed to evaluate the typical performance of interns ordering radiologic examinations. According to the audit, the interns showed only minimal improvement after 8 months of work experience. The online radiology ordering module (ROM) program included baseline assessment of student performance (part I), online learning with the ROM (part II), and follow-up assessment of performance with simulated ordering with the ROM (part III). A curriculum blueprint determined the content of the ROM program, with an emphasis on practical issues, including provision of logistic information, clinical details, and safety-related information. Appropriate standards were developed by a committee of experts, and detailed scoring systems were devised for assessment. The ROM program was successful in addressing practical issues in a simulated setting. In the part I assessment, the mean score for noting contraindications for contrast media was 24%; this score increased to 59% in the part III assessment (P = .004). Similarly, notification of methicillin-resistant Staphylococcus aureus status and pregnancy status and provision of referring physician contact information improved significantly. The quality of the clinical notes was stable, with good initial scores. Part III testing showed overall improvement, with the mean score increasing from 61% to 76% (P < .0001). In general, medical students lack the core knowledge that is needed for good-quality ordering of radiology services, and the experience typically afforded to interns does not address this lack of knowledge. The ROM program was a successful intervention that resulted in statistically significant improvements in the quality of radiologic examination orders, particularly with regard to logistic and radiation safety issues.

  18. NCRP Program Area Committee 2: Operational Radiation Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pryor, Kathryn H.; Goldin, Eric M.

    2016-02-29

    Program Area Committee 2 of the National Council on Radiation Protection and Measurements provides guidance for radiation safety in occupational settings in a variety of industries and activities. The committee completed three reports in recent years covering recommendations for the development and administration of radiation safety programs for smaller educational institutions, requirements for self-assessment programs that improve radiation safety and identify and correct deficiencies, and a comprehensive process for effective investigation of radiological incidents. Ongoing work includes a report on sealed radioactive source controls and oversight of a report on radioactive nanomaterials focusing on gaps within current radiation safety programs.more » Future efforts may deal with operational radiation safety programs in fields such as the safe use of handheld and portable X-Ray fluorescence analyzers, occupational airborne radioactive contamination, unsealed radioactive sources, or industrial accelerators.« less

  19. 10 CFR 70.62 - Safety program and integrated safety analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Radiological hazards related to possessing or processing licensed material at its facility; (ii) Chemical hazards of licensed material and hazardous chemicals produced from licensed material; (iii) Facility... performed by a team with expertise in engineering and process operations. The team shall include at least...

  20. Nuclear safety policy working group recommendations on nuclear propulsion safety for the space exploration initiative

    NASA Technical Reports Server (NTRS)

    Marshall, Albert C.; Lee, James H.; Mcculloch, William H.; Sawyer, J. Charles, Jr.; Bari, Robert A.; Cullingford, Hatice S.; Hardy, Alva C.; Niederauer, George F.; Remp, Kerry; Rice, John W.

    1993-01-01

    An interagency Nuclear Safety Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program. These recommendations, which are contained in this report, should facilitate the implementation of mission planning and conceptual design studies. The NSPWG has recommended a top-level policy to provide the guiding principles for the development and implementation of the SEI nuclear propulsion safety program. In addition, the NSPWG has reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. These recommendations should be useful for the development of the program's top-level requirements for safety functions (referred to as Safety Functional Requirements). The safety requirements and guidelines address the following topics: reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, safeguards, risk/reliability, operational safety, ground testing, and other considerations.

  1. Proceedings of the international meeting on thermal nuclear reactor safety. Vol. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Separate abstracts are included for each of the papers presented concerning current issues in nuclear power plant safety; national programs in nuclear power plant safety; radiological source terms; probabilistic risk assessment methods and techniques; non LOCA and small-break-LOCA transients; safety goals; pressurized thermal shocks; applications of reliability and risk methods to probabilistic risk assessment; human factors and man-machine interface; and data bases and special applications.

  2. Radiological and microwave Protection at NRL, January - December 1983

    DTIC Science & Technology

    1984-06-27

    reduced to background. 18 Surveys with TLD badges were made on pulsed electron beam machines in Buildings 101 and A68 throughout the year. The Gamble...calibration of radiation dosimetry systems required by the Laboratory’s radiological safety program, or by other Laboratory or Navy groups. The Section...provides consultation and assistance on dosimetry problems to the Staff, Laboratory, and Navy. The Section maintains and calibrates fixed-field radiac

  3. Training in Radiological Protection: Curricula and Programming.

    ERIC Educational Resources Information Center

    International Atomic Energy Agency, Vienna (Austria).

    A summary of training programs relating to radiation health and safety is presented in this report. Training courses are primarily categorized into five types, respectively, for specialists, personnel whose work is closely related to radiation, radiation users, nuclear installation staff, and the general public. To meet the present world needs,…

  4. An interagency space nuclear propulsion safety policy for SEI - Issues and discussion

    NASA Technical Reports Server (NTRS)

    Marshall, A. C.; Sawyer, J. C., Jr.

    1991-01-01

    An interagency Nuclear Safety Policy Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative nuclear propulsion program to facilitate the implementation of mission planning and conceptual design studies. The NSPWG developed a top level policy to provide the guiding principles for the development and implementation of the nuclear propulsion safety program and the development of Safety Functional Requirements. In addition, the NSPWG reviewed safety issues for nuclear propulsion and recommended top level safety requirements and guidelines to address these issues. Safety topics include reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, safeguards, risk/reliability, operational safety, ground testing, and other considerations. In this paper the emphasis is placed on the safety policy and the issues and considerations that are addressed by the NSPWG recommendations.

  5. NSPWG-recommended safety requirements and guidelines for SEI nuclear propulsion

    NASA Technical Reports Server (NTRS)

    Marshall, Albert C.; Sawyer, J. C., Jr.; Bari, Robert A.; Brown, Neil W.; Cullingford, Hatice S.; Hardy, Alva C.; Lee, James H.; Mcculloch, William H.; Niederauer, George F.; Remp, Kerry

    1992-01-01

    An interagency Nuclear Safety Policy Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program to facilitate the implementation of mission planning and conceptual design studies. The NSPWG developed a top-level policy to provide the guiding principles for the development and implementation of the nuclear propulsion safety program and the development of safety functional requirements. In addition, the NSPWG reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. Safety requirements were developed for reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, and safeguards. Guidelines were recommended for risk/reliability, operational safety, flight trajectory and mission abort, space debris and meteoroids, and ground test safety. In this paper the specific requirements and guidelines will be discussed.

  6. Why Isn't There More High-fidelity Simulation Training in Diagnostic Radiology? Results of a Survey of Academic Radiologists.

    PubMed

    Cook, Tessa S; Hernandez, Jessica; Scanlon, Mary; Langlotz, Curtis; Li, Chun-Der L

    2016-07-01

    Despite its increasing use in training other medical specialties, high-fidelity simulation to prepare diagnostic radiology residents for call remains an underused educational resource. To attempt to characterize the barriers toward adoption of this technology, we conducted a survey of academic radiologists and radiology trainees. An Institutional Review Board-approved survey was distributed to the Association of University Radiologists members via e-mail. Survey results were collected electronically, tabulated, and analyzed. A total of 68 survey responses representing 51 programs were received from program directors, department chairs, chief residents, and program administrators. The most common form of educational activity for resident call preparation was lectures. Faculty supervised "baby call" was also widely reported. Actual simulated call environments were quite rare with only three programs reporting this type of educational activity. Barriers to the use of simulation include lack of faculty time, lack of faculty expertise, and lack of perceived need. High-fidelity simulation can be used to mimic the high-stress, high-stakes independent call environment that the typical radiology resident encounters during the second year of training, and can provide objective data for program directors to assess the Accreditation Council of Graduate Medical Education milestones. We predict that this technology will begin to supplement traditional diagnostic radiology teaching methods and to improve patient care and safety in the next decade. Published by Elsevier Inc.

  7. Procedures manual for the ORNL Radiological Survey Activities (RASA) Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myrick, T.E.; Berven, B.A.; Cottrell, W.D.

    The portion of the radiological survey program performed by ORNL is the subject of this Procedures Manual. The RASA group of the Health and Safety Research Division (HASRD) at ORNL is responsible for the planning, conducting, and reporting of the results of radiological surveys at specified sites and associated vicinity properties. The results of these surveys are used by DOE in determining the need for and extent of remedial actions. Upon completion of the necessary remedial actions, the ORNL-RASA group or other OOS contractor may be called upon to verify the effectiveness of the remedial action. Information from these postremedialmore » action surveys is included as part of the data base used by DOE in certifying a site for unrestricted use.« less

  8. OFF-SITE ENVIRONMENTAL MONITORING REPORT. RADIATION MONITORING AROUND UNITED STATES NUCLEAR TEST AREAS, CALENDAR YEAR 1985

    EPA Science Inventory

    The EMSL-LV operates an Off-Site Radiological Safety Program around the NTS and other sites as requested by the Department of Energy (DOE) under an Interagency Agreement between DOE and EPA. This report, prepared in accordance with DOE guidelines (DOE85a), covers the program acti...

  9. Fundamentals of quality and safety in diagnostic radiology.

    PubMed

    Bruno, Michael A; Nagy, Paul

    2014-12-01

    The most fundamental aspects of quality and safety in radiology are reviewed, including a brief history of the quality and safety movement as applied to radiology, the overarching considerations of organizational culture, team building, choosing appropriate goals and metrics, and the radiologist's quality "tool kit." Copyright © 2014 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  10. Corporate Functional Management Evaluation of the LLNL Radiation Safety Organization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sygitowicz, L S

    2008-03-20

    A Corporate Assess, Improve, and Modernize review was conducted at Lawrence Livermore National Laboratory (LLNL) to evaluate the LLNL Radiation Safety Program and recommend actions to address the conditions identified in the Internal Assessment conducted July 23-25, 2007. This review confirms the findings of the Internal Assessment of the Institutional Radiation Safety Program (RSP) including the noted deficiencies and vulnerabilities to be valid. The actions recommended are a result of interviews with about 35 individuals representing senior management through the technician level. The deficiencies identified in the LLNL Internal Assessment of the Institutional Radiation Safety Program were discussed with Radiationmore » Safety personnel team leads, customers of Radiation Safety Program, DOE Livermore site office, and senior ES&H management. There are significant issues with the RSP. LLNL RSP is not an integrated, cohesive, consistently implemented program with a single authority that has the clear roll and responsibility and authority to assure radiological operations at LLNL are conducted in a safe and compliant manner. There is no institutional commitment to address the deficiencies that are identified in the internal assessment. Some of these deficiencies have been previously identified and corrective actions have not been taken or are ineffective in addressing the issues. Serious funding and staffing issues have prevented addressing previously identified issues in the Radiation Calibration Laboratory, Internal Dosimetry, Bioassay Laboratory, and the Whole Body Counter. There is a lack of technical basis documentation for the Radiation Calibration Laboratory and an inadequate QA plan that does not specify standards of work. The Radiation Safety Program lack rigor and consistency across all supported programs. The implementation of DOE Standard 1098-99 Radiological Control can be used as a tool to establish this consistency across LLNL. The establishment of a site wide ALARA Committee and administrative control levels would focus attention on improved processes. Currently LLNL issues dosimeters to a large number of employees and visitors that do not enter areas requiring dosimetry. This includes 25,000 visitor TLDs per year. Dosimeters should be issued to only those personnel who enter areas where dosimetry is required.« less

  11. Activities carried out by the American College of Radiology in cooperation with the National Institute for Occupational Safety and Health. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-09-28

    Activities carried out by the American College of Radiology are described. Guidelines on radiographic techniques for radiological technicians were developed. Annual training sessions for technologists and physicians were conducted by the American College of Radiology Task Force on Pneumoconiosis. Regulations for performing chest x rays were reviewed. Program activities such as the 12-point International Labor Organization (ILO) classification scale for diagnosis of coal workers' pneumoconiosis, and the reporting form for use of the 1980 ILO classification system were reviewed. The American College of Radiology maintained liaison between NIOSH and other medical specialty societies such as the American College of Chestmore » Physicians, the College of American Pathologists, the American Medical Association, and the American Osteopathic College of Radiology. The American College of Radiology assisted NIOSH with the initiation, development, and maintenance of a quality control method to monitor and advise physicians on the reading of radiographs.« less

  12. Precision Radiology Residency Training: Special Distinction Tracks for Noninterpretative Professional Development.

    PubMed

    Snyder, Elizabeth; Solnes, Lilja; Horton, Karen M; Johnson, Pamela T

    2018-06-01

    The role of a radiologist has expanded beyond the tripartite mission of patient care, education, and research to include cross-specialty consultation for patient management, innovative solutions to improve health-care quality and safety, device design, and policy advocacy. As such, radiology residency programs should incorporate formalized training to prepare residents for these various professional roles. Since the 2015-2016 academic year, five training tracks focused on noninterpretative skills have been integrated into our residency training program: Clinician Educator, Quality Improvement, Entrepreneurship/Innovation, Health Policy Advocacy, and High-Value Care. Each track is longitudinal, with a set of requirements throughout the residents' training necessary to achieve certification at graduation. To date nine residents have participated in the programs, including two who received distinction in two separate tracks. Residents in each of the tracks have implemented successful initiatives related to the focus area. As such, these tracks enrich training by ensuring that residents make meaningful contributions to the department and institution during their training and disseminate successful initiatives through presentation at national meetings and publications. The duration of a radiology residency and resources available in an academic center provide opportunities for residency program directors to advance residents' skills in important noninterpretative components of radiology practice. Regardless of whether residents pursue academic medicine or private practice, these skills are necessary for graduates to become valuable members of a radiology practice and serve as national leaders in the field of radiology. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  13. Operation GREENHOUSE-1951

    DTIC Science & Technology

    1983-06-15

    GREENHOUSE, DOG. 107 28 Runit Island radiological safety survey results following GREENHOUSE, DOG. 108 29 Estimate of maximum possible exposure at Parry...Enjebi Island radiological safety survey results following GREENHOUSE, EASY. 116 35 GREENHOUSE, EASY flight patterns. 118 36 Surface radex area and ship...positions during GREENHOUSE, GEORGE. 120 37 GREENHOUSE, GEORGE flight patterns. 122 38 Eleleron, Aomon, and Bijire island radiological safety survey

  14. OFFSITE ENVIRONMENTAL MONITORING REPORT: RADIATION MONITORING AROUND UNITED STATES NUCLEAR TEST AREAS, CALENDAR YEAR 1980

    EPA Science Inventory

    The U.S. Environmental Protection Agency's Environmental Monitoring Systems Laboratory in Las Vegas continued its Offsite Radiological Safety Program for the Nevada Test Site (NTS) and other sites of past underground nuclear tests. For each test, the Laboratory provided airborne ...

  15. The American Board of Radiology Perspective on Maintenance of Certification: Part IV: Practice quality improvement in radiologic physics.

    PubMed

    Frey, G Donald; Ibbott, Geoffrey S; Morin, Richard L; Paliwal, Bhudatt R; Thomas, Stephen R; Bosma, Jennifer

    2007-11-01

    Recent initiatives of the American Board of Medical Specialties (ABMS) in the area of maintenance of certification (MOC) have been reflective of the response of the medical community to address public concerns regarding quality of care, medical error reduction, and patient safety. In March 2000, the 24 member boards of the ABMS representing all medical subspecialties in the USA agreed to initiate specialty-specific maintenance of certification (MOC) programs. The American Board of Radiology (ABR) MOC program for diagnostic radiology, radiation oncology, and radiologic physics has been developed, approved by the ABMS, and initiated with full implementation for all three disciplines beginning in 2007. The overriding objective of MOC is to improve the quality of health care through diplomate-initiated learning and quality improvement. The four component parts to the MOC process are: Part I: Professional standing, Part II: Evidence of life long learning and periodic self-assessment, Part III: Cognitive expertise, and Part IV: Evaluation of performance in practice (with the latter being the focus of this paper). The key components of Part IV require a physicist-based response to demonstrate commitment to practice quality improvement (PQI) and progress in continuing individual competence in practice. Diplomates of radiologic physics must select a project to be completed over the ten-year cycle that potentially can improve the quality of the diplomate's individual or systems practice and enhance the quality of care. Five categories have been created from which an individual radiologic physics diplomate can select one required PQI project: (1) Safety for patients, employees, and the public, (2) accuracy of analyses and calculations, (3) report turnaround time and communication issues, (4) practice guidelines and technical standards, and (5) surveys (including peer review of self-assessment reports). Each diplomate may select a project appropriate for an individual, participate in a project within a clinical department, participate in a peer review of a self-assessment report, or choose a qualified national project sponsored by a society. Once a project has been selected, the steps are: (1) Collect baseline data relevant to the chosen project, (2) review and analyze the data, (3) create and implement an improvement plan, (4) remeasure and track, and (5) report participation to the ABR, using the template provided by the ABR. These steps begin in Year 2, following training in Year 1. Specific examples of individual PQI projects for each of the three disciplines of radiologic physics are provided. Now, through the MOC programs, the relationship between the radiologic physicist and the ABR will be continuous through the diplomate's professional career. The ABR is committed to providing an effective infrastructure that will promote and assist the process of continuing professional development including the enhancement of practice quality improvement for radiologic physicists.

  16. Ensuring the safety of surgical teams when managing casualties of a radiological dirty bomb.

    PubMed

    Williams, Geraint; O'Malley, Michael; Nocera, Antony

    2010-09-01

    The capacity for surgical teams to ensure their own safety when dealing with the consequences caused by the detonation of a radiological dirty bomb is primarily determined by prior knowledge, familiarity and training for this type of event. This review article defines the associated radiological terminology with an emphasis on the personal safety of surgical team members in respect to the principles of radiological protection. The article also describes a technique for use of hand held radiation monitors and will discuss the identification and management of radiologically contaminated patients who may pose a significant danger to the surgical team. 2010 Elsevier Ltd. All rights reserved.

  17. OFF-SITE ENVIRONMENTAL MONITORING REPORT: RADIATION MONITORING AROUND UNITED STATES NUCLEAR TEST AREAS, CALENDAR YEAR 1986

    EPA Science Inventory

    The principal activity at the NTS is testing of nuclear devices, though other related projects are also conducted. The principal activities of the Off-Site Radiological Safety Program are routine environmental monitoring for radioactive materials in various media and for radiatio...

  18. OFFSITE ENVIRONMENTAL MONITORING REPORT. RADIATION MONITORING AROUND UNITED STATES NUCLEAR TEST AREAS, CALENDAR YEAR 1982

    EPA Science Inventory

    A principal activity of the Offsite Radiological Safety Program is routine environmental monitoring for radioactive materials in various media and for radiation in areas which may be affected by nuclear tests. It is conducted to document compliance with standards, to identify tre...

  19. Assessment of radiological protection systems among diagnostic radiology facilities in North East India.

    PubMed

    Singh, Thokchom Dewan; Jayaraman, T; Arunkumar Sharma, B

    2017-03-01

    This study aims to assess the adequacy level of radiological protection systems available in the diagnostic radiology facilities located in three capital cities of North East (NE) India. It further attempts to understand, using a multi-disciplinary approach, how the safety codes/standards in diagnostic radiology framed by the Atomic Energy Regulatory Board (AERB) and the International Atomic Energy Agency (IAEA) to achieve adequate radiological protection in facilities, have been perceived, conceptualized, and applied accordingly in these facilities. About 30 diagnostic radiology facilities were randomly selected from three capitals of states in NE India; namely Imphal (Manipur), Shillong (Meghalaya) and Guwahati (Assam). A semi-structured questionnaire developed based on a multi-disciplinary approach was used for this study. It was observed that radiological practices undertaken in these facilities were not exactly in line with safety codes/standards in diagnostic radiology of the AERB and the IAEA. About 50% of the facilities had registered/licensed x-ray equipment with the AERB. More than 80% of the workers did not use radiation protective devices, although these devices were available in the facilities. About 85% of facilities had no institutional risk management system. About 70% of the facilities did not carry out periodic quality assurance testing of their x-ray equipment or surveys of radiation leakage around the x-ray room, and did not display radiation safety indicators in the x-ray rooms. Workers in these facilities exhibited low risk perception about the risks associated with these practices. The majority of diagnostic radiology facilities in NE India did not comply with the radiological safety codes/standards framed by the AERB and IAEA. The study found inadequate levels of radiological protection systems in the majority of facilities. This study suggests a need to establish firm measures that comply with the radiological safety codes/standards of the AERB and IAEA to protect patients, workers and the public of this region.

  20. Radiation Exposure in X-Ray and CT Examinations

    MedlinePlus

    ... disease. See the X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety page for more information. top of page ... and Radiation Safety X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Videos related to Radiation Dose in X- ...

  1. Mixed methods study on the use of and attitudes towards safety checklists in interventional radiology.

    PubMed

    Munn, Zachary; Giles, Kristy; Aromataris, Edoardo; Deakin, Anita; Schultz, Timothy; Mandel, Catherine; Peters, Micah Dj; Maddern, Guy; Pearson, Alan; Runciman, William

    2018-02-01

    The use of safety checklists in interventional radiology is an intervention aimed at reducing mortality and morbidity. Currently there is little known about their practical use in Australian radiology departments. The primary aim of this mixed methods study was to evaluate how safety checklists (SC) are used and completed in radiology departments within Australian hospitals, and attitudes towards their use as described by Australian radiologists. A mixed methods approach employing both quantitative and qualitative techniques was used for this study. Direct observations of checklist use during radiological procedures were performed to determine compliance. Medical records were also audited to investigate whether there was any discrepancy between practice (actual care measured by direct observation) and documentation (documented care measured by an audit of records). A focus group with Australian radiologists was conducted to determine attitudes towards the use of checklists. Among the four participating radiology departments, overall observed mean completion of the components of the checklist was 38%. The checklist items most commonly observed to be addressed by the operating theatre staff as noted during observations were correct patient (80%) and procedure (60%). Findings from the direct observations conflicted with the medical record audit, where there was a higher percentage of completion (64% completion) in comparison to the 38% observed. The focus group participants spoke of barriers to the use of checklists, including the culture of radiology departments. This is the first study of safety checklist use in radiology within Australia. Overall completion was low across the sites included in this study. Compliance data collected from observations differed markedly from reported compliance in medical records. There remain significant barriers to the proper use of safety checklists in Australian radiology departments. © 2017 The Royal Australian and New Zealand College of Radiologists.

  2. Tritium glovebox stripper system seismic design evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinnell, J. J.; Klein, J. E.

    2015-09-01

    The use of glovebox confinement at US Department of Energy (DOE) tritium facilities has been discussed in numerous publications. Glovebox confinement protects the workers from radioactive material (especially tritium oxide), provides an inert atmosphere for prevention of flammable gas mixtures and deflagrations, and allows recovery of tritium released from the process into the glovebox when a glovebox stripper system (GBSS) is part of the design. Tritium recovery from the glovebox atmosphere reduces emissions from the facility and the radiological dose to the public. Location of US DOE defense programs facilities away from public boundaries also aids in reducing radiological dosesmore » to the public. This is a study based upon design concepts to identify issues and considerations for design of a Seismic GBSS. Safety requirements and analysis should be considered preliminary. Safety requirements for design of GBSS should be developed and finalized as a part of the final design process.« less

  3. Radiological Safety Handbook.

    ERIC Educational Resources Information Center

    Army Ordnance Center and School, Aberdeen Proving Ground, MD.

    Written to be used concurrently with the U.S. Army's Radiological Safety Course, this publication discusses the causes, sources, and detection of nuclear radiation. In addition, the transportation and disposal of radioactive materials are covered. The report also deals with the safety precautions to be observed when working with lasers, microwave…

  4. Double Fellowships in Radiology: A Survey of 2014 Graduating Fellows.

    PubMed

    Wong, Thomas Y; Moriarity, Andrew; Lall, Neil; Hoffmann, Jason C; Katz, Douglas S; Flug, Jonathan A

    Radiology fellowship training has evolved from being an uncommon option to being a near requisite for post-training employment in the United States. A subset of fellows elect to pursue second fellowships with potentially substantial implications on both the private sector and academic radiology workforce. The purpose of this study was to assess the proportion of current radiology fellows pursuing multiple years of post-residency fellowship training. After obtaining IRB approval, an anonymous web-based survey was emailed to 1,269 radiology fellows listed as "completing fellowship" in the American College of Radiology database in June 2014. Questions were asked regarding current fellowship training, post-fellowship employment plans, and individual experience pursuing employment. Results were analyzed using the survey analytical software. There were 219 responses received, representing a 17.3% response rate. Ten-percent of respondents were currently completing their second radiology fellowship. Of those completing their first year of fellowship training, 11% indicated plans to complete a second radiology fellowship. This survey provides a snapshot of the percentage of radiology trainees who pursue a second year of fellowship training, currently in the range of 10%. Pursuing a second radiology fellowship may represent a safety net to a substantial subset of fellows who are not able to obtain satisfactory employment following training. Academic programs who rely heavily on fellows should be aware of the proportion of fellows pursuing two fellowships and should be prepared to adapt should this change over time. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. FDA working to ensure the safety of medical devices used in the pediatric population.

    PubMed

    Flack, Marilyn Neder; Gross, Thomas P; Reid, Joy Samuels; Mills, Thalia T; Francis, Jacqueline

    2012-12-01

    Special initiatives exist in FDA's Center for Devices and Radiological Health (CDRH), the Center for Drug Evaluation and Research, and the Center for Biologics Evaluation and Research to ensure the safety and effectiveness of medical products used in the vulnerable pediatric population. This article focuses on the special programs, projects, and special studies implemented by CDRH to ensure this safety and effectiveness in devices used in pediatric patients throughout the devices' total product life-cycles. Pediatricians play a major role in keeping medical devices safe for use in children by reporting device problems to FDA. Published by Elsevier Inc.

  6. History and Organizations for Radiological Protection.

    PubMed

    Kang, Keon Wook

    2016-02-01

    International Commission on Radiological Protection (ICRP), an independent international organization established in 1925, develops, maintains, and elaborates radiological protection standards, legislation, and guidelines. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) provides scientific evidence. World Health Organization (WHO) and International Atomic Energy Agency (IAEA) utilise the ICRP recommendations to implement radiation protection in practice. Finally, radiation protection agencies in each country adopt the policies, and adapt them to each situation. In Korea, Nuclear Safety and Security Commission is the governmental body for nuclear safety regulation and Korea Institute of Nuclear Safety is a public organization for technical support and R&D in nuclear safety and radiation protection.

  7. American College of Radiology-American Brachytherapy Society practice parameter for electronically generated low-energy radiation sources.

    PubMed

    Devlin, Phillip M; Gaspar, Laurie E; Buzurovic, Ivan; Demanes, D Jeffrey; Kasper, Michael E; Nag, Subir; Ouhib, Zoubir; Petit, Joshua H; Rosenthal, Seth A; Small, William; Wallner, Paul E; Hartford, Alan C

    This collaborative practice parameter technical standard has been created between the American College of Radiology and American Brachytherapy Society to guide the usage of electronically generated low energy radiation sources (ELSs). It refers to the use of electronic X-ray sources with peak voltages up to 120 kVp to deliver therapeutic radiation therapy. The parameter provides a guideline for utilizing ELS, including patient selection and consent, treatment planning, and delivery processes. The parameter reviews the published clinical data with regard to ELS results in skin, breast, and other cancers. This technical standard recommends appropriate qualifications of the involved personnel. The parameter reviews the technical issues relating to equipment specifications as well as patient and personnel safety. Regarding suggestions for educational programs with regard to this parameter,it is suggested that the training level for clinicians be equivalent to that for other radiation therapies. It also suggests that ELS must be done using the same standards of quality and safety as those in place for other forms of radiation therapy. Copyright © 2017 American Brachytherapy Society and American College of Radiology. Published by Elsevier Inc. All rights reserved.

  8. OPERATION CASTLE. Radiological Safety. Volume 2

    DTIC Science & Technology

    1985-09-01

    d.’ That, orcopt as noted sbovo, a radiolocical safety program similar to that of CaSTIS, bo planned for future operations» e. That research and...sane manner as that for liONGEL’iT, indicated l60 nr/hr at 1830M, 3 March« The infinity dose of the UTHUK natives was computed at 58r« The decision...status of /JLUK mt pot up f o» .. consideratioa aprroxlmatoly 200CM, 2 March. This atoll ha» a reported. ^ population of 401; The infinity dose wa

  9. Importance of establishing radiation protection culture in Radiology Department.

    PubMed

    Ploussi, Agapi; Efstathopoulos, Efstathios P

    2016-02-28

    The increased use of ionization radiation for diagnostic and therapeutic purposes, the rapid advances in computed tomography as well as the high radiation doses delivered by interventional procedures have raised serious safety and health concerns for both patients and medical staff and have necessitated the establishment of a radiation protection culture (RPC) in every Radiology Department. RPC is a newly introduced concept. The term culture describes the combination of attitudes, beliefs, practices and rules among the professionals, staff and patients regarding to radiation protection. Most of the time, the challenge is to improve rather than to build a RPC. The establishment of a RPC requires continuing education of the staff and professional, effective communication among stakeholders of all levels and implementation of quality assurance programs. The RPC creation is being driven from the highest level. Leadership, professionals and associate societies are recognized to play a vital role in the embedding and promotion of RPC in a Medical Unit. The establishment of a RPC enables the reduction of the radiation dose, enhances radiation risk awareness, minimizes unsafe practices, and improves the quality of a radiation protection program. The purpose of this review paper is to describe the role and highlight the importance of establishing a strong RPC in Radiology Departments with an emphasis on promoting RPC in the Interventional Radiology environment.

  10. Reductions in High-End Imaging Utilization With Radiology Review and Consultation.

    PubMed

    Ingraham, Bailey; Miller, Kristen; Iaia, Alberto; Sneider, Michael B; Naqvi, Shabbir; Evans, Kimberly; Gheyi, Vinay; Anzilotti, Kert

    2016-09-01

    Following the uptake of value-based purchasing in concert with health care reform in the United States, providers, insurers, and patients are looking for ways to reduce excessive, dangerous, and/or inappropriate high-end imaging utilization (HEIU). Inappropriate HEIU is associated with patient safety risks due to unnecessary exposure to radiation, misappropriation of scarce equipment resources and staff, complications to clinical care, and needless, excessive costs for the patient, hospital, and payer. This paper presents a cost-effective radiology-initiated improvement program piloted in the Christiana Hospital Coordinated Care Network. The pilot demonstrated the effectiveness of regulating high-end imaging orders through radiologists' review of requests of the order as part of the consult process. Over the 2014-2015 fiscal year, 2,177 high-end imaging orders were reviewed by 26 radiologists for approval, rejection, or recommendation of an alternate examination. Of the orders, 86.7% (1887) were approved, 4.0% (87) were rejected, and 9.3% (203) received recommendation for an alternate examination. Based on improved patient safety, cost savings, and appropriate resource use, these findings suggest that radiologists' review can effectively reduce excessive HEIU. This method, with an appropriate algorithm to assist with handling a larger volume of orders, would be ideal to implement systemwide to manage HEIU cost efficiency, simultaneously providing radiologists with more control in their area of expertise and positively impacting quality, safety, and value-based purchasing goals. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  11. A Checklist to Improve Patient Safety in Interventional Radiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koetser, Inge C. J.; Vries, Eefje N. de; Delden, Otto M. van

    2013-04-15

    To develop a specific RADiological Patient Safety System (RADPASS) checklist for interventional radiology and to assess the effect of this checklist on health care processes of radiological interventions. On the basis of available literature and expert opinion, a prototype checklist was developed. The checklist was adapted on the basis of observation of daily practice in a tertiary referral centre and evaluation by users. To assess the effect of RADPASS, in a series of radiological interventions, all deviations from optimal care were registered before and after implementation of the checklist. In addition, the checklist and its use were evaluated by interviewingmore » all users. The RADPASS checklist has two parts: A (Planning and Preparation) and B (Procedure). The latter part comprises checks just before starting a procedure (B1) and checks concerning the postprocedural care immediately after completion of the procedure (B2). Two cohorts of, respectively, 94 and 101 radiological interventions were observed; the mean percentage of deviations of the optimal process per intervention decreased from 24 % before implementation to 5 % after implementation (p < 0.001). Postponements and cancellations of interventions decreased from 10 % before implementation to 0 % after implementation. Most users agreed that the checklist was user-friendly and increased patient safety awareness and efficiency. The first validated patient safety checklist for interventional radiology was developed. The use of the RADPASS checklist reduced deviations from the optimal process by three quarters and was associated with less procedure postponements.« less

  12. Investigation of injury/illness data at a nuclear facility. Part II

    DOE PAGES

    Cournoyer, Michael E.; Garcia, Vincent E.; Sandoval, Arnold N.; ...

    2015-07-01

    At Los Alamos National Laboratory (LANL), there are several nuclear facilities, accelerator facilities, radiological facilities, explosives sites, moderate- and high-hazard non-nuclear facilities, biosciences laboratory, etc. The Plutonium Science and Manufacturing Directorate (ADPSM) provides special nuclear material research, process development, technology demonstration, and manufacturing capabilities. ADPSM manages the LANL Plutonium Facility. Within the Radiological Control Area at TA-55 (PF-4), chemical and metallurgical operations with plutonium and other hazardous materials are performed. LANL Health and Safety Programs investigate injury and illness data. In this study, statistically significant trends have been identified and compared for LANL, ADPSM, and PF-4 injury/illness cases. A previouslymore » described output metric is used to measures LANL management progress towards meeting its operational safety objectives and goals. Timelines are used to determine trends in Injury/Illness types. Pareto Charts are used to prioritize causal factors. The data generated from analysis of Injury/Illness data have helped identify and reduce the number of corresponding causal factors.« less

  13. American Society for Radiation Oncology (ASTRO) and American College of Radiology (ACR) Practice Guideline for the Performance of High-Dose-Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Beth A.; Demanes, D. Jeffrey; Ibbott, Geoffrey S.

    2011-03-01

    High-Dose-Rate (HDR) brachytherapy is a safe and efficacious treatment option for patients with a variety of different malignancies. Careful adherence to established standards has been shown to improve the likelihood of procedural success and reduce the incidence of treatment-related morbidity. A collaborative effort of the American College of Radiology (ACR) and American Society for Therapeutic Radiation Oncology (ASTRO) has produced a practice guideline for HDR brachytherapy. The guideline defines the qualifications and responsibilities of all the involved personnel, including the radiation oncologist, physicist and dosimetrists. Review of the leading indications for HDR brachytherapy in the management of gynecologic, thoracic, gastrointestinal,more » breast, urologic, head and neck, and soft tissue tumors is presented. Logistics with respect to the brachytherapy implant procedures and attention to radiation safety procedures and documentation are presented. Adherence to these practice guidelines can be part of ensuring quality and safety in a successful HDR brachytherapy program.« less

  14. ORNL necessary and sufficient standards for environment, safety, and health. Final report of the Identification Team for other industrial, radiological, and non-radiological hazard facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-07-01

    This Necessary and Sufficient (N and S) set of standards is for Other Industrial, Radiological, and Non-Radiological Hazard Facilities at Oak Ridge National Laboratory (ORNL). These facility classifications are based on a laboratory-wide approach to classify facilities by hazard category. An analysis of the hazards associated with the facilities at ORNL was conducted in 1993. To identify standards appropriate for these Other Industrial, Radiological, and Non-Radiological Hazard Facilities, the activities conducted in these facilities were assessed, and the hazards associated with the activities were identified. A preliminary hazards list was distributed to all ORNL organizations. The hazards identified in priormore » hazard analyses are contained in the list, and a category of other was provided in each general hazard area. A workshop to assist organizations in properly completing the list was held. Completed hazard screening lists were compiled for each ORNL division, and a master list was compiled for all Other Industrial, Radiological Hazard, and Non-Radiological facilities and activities. The master list was compared against the results of prior hazard analyses by research and development and environment, safety, and health personnel to ensure completeness. This list, which served as a basis for identifying applicable environment, safety, and health standards, appears in Appendix A.« less

  15. Radiology Resident Supply and Demand: A Regional Perspective.

    PubMed

    Pfeifer, Cory M

    2017-09-01

    Radiology was subject to crippling deficits in the number of jobs available to graduates of training programs from 2012 through 2015. As the specialty transitions to the assimilation of osteopathic training programs and the welcoming of direct competition from new integrated interventional radiology programs, the assessment of growth in radiology training positions over the 10 years preceding this pivotal time will serve to characterize the genesis of the crisis while inspiring stakeholders to avoid similar negative fluctuations in the future. The number of per capita radiology trainees in each region was derived from data published by the National Resident Matching Program, as were annual match statistics over the years 2012 through 2016. Data regarding new interventional radiology and diagnostic radiology enrollees were also obtained from the National Resident Matching Program. The seven states with the most per capita radiology residents were in the Mid-Atlantic and Northeastern United States in both 2006 and 2016, and three of these seven also showed the greatest per capita growth over the course of the 10 years studied. New radiology programs were accredited during the peak of the job shortage. Integrated interventional radiology training created 24 de novo radiology residents in the 2017 match. Fill rates are weakly positively correlated with program size. Unregulated radiology program growth persisted during the decade leading up to 2016. The region with the fewest jobs available since 2012 is also home to the greatest number of per capita radiology residents. Numerous published opinions during the crisis did not result in enforced policy change. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  16. Columbus Closure Project Released without Radiological Restrictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, G.

    2007-07-01

    The Columbus Closure Project (CCP), a historic radiological research complex, was cleaned up for future use without radiological restriction in 2006. The CCP research and development site contributed to national defense, nuclear fuel fabrication, and the development of safe nuclear reactors in the United States until 1988 when research activities were concluded for site decommissioning. In November of 2003, the Ohio Field Office of the U.S. Department of Energy contracted ECC/E2 Closure Services, LLC (Closure Services) to complete the removal of radioactive contamination from of a 1955 era nuclear sciences area consisting of a large hot cell facility, research reactormore » building and underground piping. The project known as the Columbus Closure Project (CCP) was completed in 27 months and brought to a close 16 years of D and D in Columbus, Ohio. This paper examines the project innovations and challenges presented during the Columbus Closure Project. The examination of the CCP includes the project regulatory environment, the CS safety program, accelerated clean up innovation, project execution strategies and management of project waste issues and the regulatory approach to site release 'without radiological restrictions'. (authors)« less

  17. [Survey and analysis of radiation safety education at radiological technology schools].

    PubMed

    Ohba, Hisateru; Ogasawara, Katsuhiko; Aburano, Tamio

    2004-10-01

    We carried out a questionnaire survey of all radiological technology schools, to investigate the status of radiation safety education. The questionnaire consisted of questions concerning full-time teachers, measures being taken for the Radiation Protection Supervisor Qualifying Examination, equipment available for radiation safety education, radiation safety education for other departments, curriculum of radiation safety education, and related problems. The returned questionnaires were analyzed according to different groups categorized by form of education and type of establishment. The overall response rate was 55%, and there were statistically significant differences in the response rates among the different forms of education. No statistically significant differences were found in the items relating to full-time teachers, measures for Radiation Protection Supervisor Qualifying Examination, and radiation safety education for other departments, either for the form of education or type of establishment. Queries on the equipment used for radiation safety education revealed a statistically significant difference in unsealed radioisotope institutes among the forms of education. In terms of curriculum, the percentage of radiological technology schools which dealt with neither the shielding calculation method for radiation facilities nor with the control of medical waste was found to be approximately 10%. Other educational problems that were indicated included shortages of full-time teachers and equipment for radiation safety education. In the future, in order to improve radiation safety education at radiological technology schools, we consider it necessary to develop unsealed radioisotope institutes, to appoint more full-time teachers, and to educate students about risk communication.

  18. Analysis of documentary support for environmental restoration programs in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nechaev, A.F.; Projaev, V.V.

    1995-12-31

    Taking into account an importance of an adequate regulations for ensuring of radiological safety of the biosphere and for successful implementation of environmental restoration projects, contents of legislative and methodical documents as well as their comprehensitivity and substantiation are subjected to critical analysis. It is shown that there is much scope for further optimization of and improvements in regulatory basis both on Federal and regional levels.

  19. Department of Defense Chemical, Biological, Radiological, and Nuclear Defense Program, Annual Report to Congress, 2004

    DTIC Science & Technology

    2004-05-01

    foldable/ portable emergency smoke hoods with extended gas sorption capabilities and regenerable, biological pathogen-destroying and gas-sorbing...traditional agents. • Cyanide Countermeasures – Potential pretreatment compounds (e.g., methemoglobin formers and sulfide donors) and regimen are being...evaluated for safety and efficacy as pretreatments. • Nerve agent antidotes – New nerve agent antidote compounds that are water soluble, have a broader

  20. Roadmap to a Sustainable Structured Trusted Employee Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coates, Cameron W; Eisele, Gerhard R

    2013-08-01

    Organizations (facility, regulatory agency, or country) have a compelling interest in ensuring that individuals who occupy sensitive positions affording access to chemical biological, radiological and nuclear (CBRN) materials facilities and programs are functioning at their highest level of reliability. Human reliability and human performance relate not only to security but also focus on safety. Reliability has a logical and direct relationship to trustworthiness for the organization is placing trust in their employees to conduct themselves in a secure, safe, and dependable manner. This document focuses on providing an organization with a roadmap to implementing a successful and sustainable Structured Trustedmore » Employee Program (STEP).« less

  1. Westinghouse Hanford Company health and safety performance report. Fourth quarter calendar year 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lansing, K.A.

    1995-03-01

    Detailed information pertaining to As Low As Reasonably Achievable/Contamination Control Improvement Project (ALARA/CCIP) activities are outlined. Improved commitment to the WHC ALARA/CCIP Program was experienced throughout FY 1994. During CY 1994, 17 of 19 sitewide ALARA performance goals were completed on or ahead of schedule. Estimated total exposure by facility for CY 1994 is listed in tables by organization code for each dosimeter frequency. Facilities/areas continue to utilize the capabilities of the RPR tracking system in conjunction with the present site management action-tracking system to manage deficiencies, trend performance, and develop improved preventive efforts. Detailed information pertaining to occupational injuries/illnessesmore » are provided. The Industrial Safety and Hygiene programs are described which have generated several key initiatives that are believed responsible for improved safety performance. A breakdown of CY 1994 occupational injuries/illnesses by type, affected body group, cause, job type, age/gender, and facility is provided. The contributing experience of each WHC division/department in attaining this significant improvement is described along with tables charting specific trends. The Radiological Control Program is on schedule to meet all RL Site Management System milestones and program commitments.« less

  2. Final Environmental Impact Statement (EIS) for the Space Nuclear Thermal Propulsion (SNTP) program

    NASA Astrophysics Data System (ADS)

    1991-09-01

    A program has been proposed to develop the technology and demonstrate the feasibility of a high-temperature particle bed reactor (PBR) propulsion system to be used to power an advanced second stage nuclear rocket engine. The purpose of this Final Environmental Impact Statement (FEIS) is to assess the potential environmental impacts of component development and testing, construction of ground test facilities, and ground testing. Major issues and goals of the program include the achievement and control of predicted nuclear power levels; the development of materials that can withstand the extremely high operating temperatures and hydrogen flow environments; and the reliable control of cryogenic hydrogen and hot gaseous hydrogen propellant. The testing process is designed to minimize radiation exposure to the environment. Environmental impact and mitigation planning are included for the following areas of concern: (1) Population and economy; (2) Land use and infrastructure; (3) Noise; (4) Cultural resources; (5) Safety (non-nuclear); (6) Waste; (7) Topography; (8) Geology; (9) Seismic activity; (10) Water resources; (11) Meteorology/Air quality; (12) Biological resources; (13) Radiological normal operations; (14) Radiological accidents; (15) Soils; and (16) Wildlife habitats.

  3. Efficient radiologic reading environment by using an open-source macro program as connection software.

    PubMed

    Lee, Young Han

    2012-01-01

    The objectives are (1) to introduce an easy open-source macro program as connection software and (2) to illustrate the practical usages in radiologic reading environment by simulating the radiologic reading process. The simulation is a set of radiologic reading process to do a practical task in the radiologic reading room. The principal processes are: (1) to view radiologic images on the Picture Archiving and Communicating System (PACS), (2) to connect the HIS/EMR (Hospital Information System/Electronic Medical Record) system, (3) to make an automatic radiologic reporting system, and (4) to record and recall information of interesting cases. This simulation environment was designed by using open-source macro program as connection software. The simulation performed well on the Window-based PACS workstation. Radiologists practiced the steps of the simulation comfortably by utilizing the macro-powered radiologic environment. This macro program could automate several manual cumbersome steps in the radiologic reading process. This program successfully acts as connection software for the PACS software, EMR/HIS, spreadsheet, and other various input devices in the radiologic reading environment. A user-friendly efficient radiologic reading environment could be established by utilizing open-source macro program as connection software. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Patient safety during radiological examinations: a nationwide survey of residency training hospitals in Taiwan.

    PubMed

    Lee, Yuan-Hao; Chen, Clayton Chi-Chang; Lee, San-Kan; Chen, Cheng-Yu; Wan, Yung-Liang; Guo, Wan-Yuo; Cheng, Amy; Chan, Wing P

    2016-09-20

    Variations in radiological examination procedures and patient load lead to variations in standards of care related to patient safety and healthcare quality. To understand the status of safety measures to protect patients undergoing radiological examinations at residency training hospitals in Taiwan, a follow-up survey evaluating the full spectrum of diagnostic radiology procedures was conducted. Questionnaires covering 12 patient safety-related themes throughout the examination procedures were mailed to the departments of diagnostic radiology with residency training programmes in 19 medical centres (with >500 beds) and 17 smaller local institutions in Taiwan. After receiving the responses, all themes in 2014 were compared between medical centres and local institutions by using χ(2) or 2-sample t-tests. Radiology Directors or Technology Chiefs of medical centres and local institutions in Taiwan participated in this survey by completing and returning the questionnaires. The response rates of medical centres and local institutions were 95% and 100%, respectively. As indicated, large medical centres carried out more frequent clinically ordered, radiologist-guided patient education to prepare patients for specific examinations (CT, 28% vs 6%; special procedures, 78% vs 44%) and incident review and analysis (89% vs 47%); however, they required significantly longer access time for MRI examinations (7.00±29.50 vs 3.50±3.50 days), had more yearly incidents of large-volume contrast-medium extravasation (2.75±1.00 vs 1.00±0.75 cases) and blank radiographs (41% vs 8%), lower monthly rates of suboptimal (but interpretable) radiographs (0.00±0.01% vs 0.64±1.84%) and high-risk reminder reporting (0.01±0.16% vs 1.00±1.75%) than local institutions. Our study elucidates the status of patient safety in diagnostic radiology in Taiwan, thereby providing helpful information to improve patient safety guidelines needed for medical imaging in the future. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. Making the invisible visible: a qualitative study of the values, attitudes and norms of radiologists relating to radiation safety.

    PubMed

    Fridell, Kent; Ekberg, Jessica

    2016-06-01

    Some shortcomings regarding safety have emerged in inspections by the Swedish Radiation Safety Authority of Swedish radiology departments which perform 5.4 million radiological examinations and 100 000 nuclear scans annually. To ensure safety in the healthcare system and to build a strong environment of radiation protection for patients (and for employees) there must be a strong culture of safety. To understand an organization's behaviour, decisions and actions it is important to study its cultural values. The aims of this study were to discuss how values, attitudes and norms affect radiologists' decisions as well as how they influence the implementation of various radiation protection measures. To investigate this, focus group interviews and in-depth individual interviews were performed in a sample from a number of radiology departments at hospitals in Sweden. The results show that the core value was derived from the patients' perspective with the focus on the knowledge that he or she has come to the healthcare system for a particular reason: to discover disease or, in the best case, to be declared healthy. The majority attitudes were based on experiences associated with aspects that the radiologist could not influence. This often concerns increased pressure on radiology investigations from clinics in the various operational units. Under the concept of norms, the radiologists in the study requested that the development of regulations and guidelines should be connected to issues of justification for various radiological queries.

  6. Radiology Undergraduate and Resident Curricula: A Narrative Review of the Literature

    PubMed Central

    Linaker, Kathleen L.

    2015-01-01

    Objective The purpose of this study was to examine the literature regarding radiology curricula for both undergraduates and residents. Methods A review of the literature was performed using relevant key words. Articles were retrieved through December 2012 using PubMed, ScienceDirect, ERIC, Proquest, and ICL databases along with a manual review of references. Results Of the 4716 unique abstracts reviewed by the author, 142 were found to be relevant to the purpose of this study. Undergraduate radiology education, radiology curriculum, and radiology pedagogy vary widely between disciplines and between colleges within disciplines. Formal radiology education is not taught at all medical programs and little radiology training is incorporated into non-radiology residencies. This results in some medical graduates not being taught how to interpret basic radiology images and not learning contraindications and indications for ordering diagnostic imaging tests. There are no definitive studies examining how to incorporate radiology into the curriculum, how to teach radiology to either undergraduates or residents, or how to assess this clinical competency. Conclusions This review shows that radiology education is perceived to be important in undergraduate and residency programs. However, some programs do not include radiology training, thus graduates from those programs do not learn radiology essentials. PMID:26770172

  7. Barriers to Safety Event Reporting in an Academic Radiology Department: Authority Gradients and Other Human Factors.

    PubMed

    Siewert, Bettina; Swedeen, Suzanne; Brook, Olga R; Eisenberg, Ronald L; Hochman, Mary

    2018-05-15

    Purpose To investigate barriers to reporting safety concerns in an academic radiology department and to evaluate the role of human factors, including authority gradients, as potential barriers to safety concern reporting. Materials and Methods In this institutional review board-approved, HIPAA-compliant retrospective study, an online questionnaire link was emailed four times to all radiology department staff members (n = 648) at a tertiary care institution. Survey questions included frequency of speaking up about safety concerns, perceived barriers to speaking up, and the annual number of safety concerns that respondents were unsuccessful in reporting. Respondents' sex, role in the department, and length of employment were recorded. Statistical analysis was performed with the Fisher exact test. Results The survey was completed by 363 of the 648 employees (56%). Of those 363 employees, 182 (50%) reported always speaking up about safety concerns, 134 (37%) reported speaking up most of the time, 36 (10%) reported speaking up sometimes, seven (2%) reported rarely speaking up, and four (1%) reported never speaking up. Thus, 50% of employees spoke up about safety concerns less than 100% of the time. The most frequently reported barriers to speaking up included high reporting threshold (69%), reluctance to challenge someone in authority (67%), fear of disrespect (53%), and lack of listening (52%). Conclusion Of employees in a large academic radiology department, 50% do not attain 100% reporting of safety events. The most common human barriers to speaking up are high reporting threshold, reluctance to challenge authority, fear of disrespect, and lack of listening, which suggests that existing authority gradients interfere with full reporting of safety concerns. © RSNA, 2018.

  8. Patient Safety in Interventional Radiology: A CIRSE IR Checklist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, M. J., E-mail: mlee@rcsi.ie; Fanelli, F.; Haage, P.

    2012-04-15

    Interventional radiology (IR) is an invasive speciality with the potential for complications as with other invasive specialities. The World Health Organization (WHO) produced a surgical safety checklist to decrease the morbidity and mortality associated with surgery. The Cardiovascular and Interventional Society of Europe (CIRSE) set up a task force to produce a checklist for IR. Use of the checklist will, we hope, reduce the incidence of complications after IR procedures. It has been modified from the WHO surgical safety checklist and the RAD PASS from Holland.

  9. Leadership and management in quality radiology

    PubMed Central

    2007-01-01

    The practice of medical imaging and interventional radiology are undergoing rapid change in recent years due to technological advances, workload escalation, workforce shortage, globalisation, corporatisation, commercialisation and commoditisation of healthcare. These professional and economical changes are challenging the established norm but may bring new opportunities. There is an increasing awareness of and interest in the quality of care and patient safety in medical imaging and interventional radiology. Among the professional organisations, a range of quality systems are available to address individual, facility and system needs. To manage the limited resources successfully, radiologists and professional organisations must be leaders and champion for the cause of quality care and patient safety. Close collaboration with other stakeholders towards the development and management of proactive, long-term, system-based strategies and infrastructures will underpin a sustainable future in quality radiology. The International Radiology Quality Network can play a useful facilitating role in this worthwhile but challenging endeavour. PMID:21614284

  10. Safety and efficacy for new techniques and imaging using new equipment to support European legislation: an EU coordination action.

    PubMed

    Zoetelief, J; Faulkner, K

    2008-01-01

    The past two decades have witnessed a technologically driven revolution in radiology. At the centre of these developments has been the use of computing. These developments have also been driven by the introduction of new detector and imaging devices in radiology and nuclear medicine, as well as the widespread application of computing techniques to enhance and extract information within the images acquired. Further advances have been introduced into digital practice. These technological developments, however, have not been matched by justification and optimisation studies to ensure that these new imaging devices and techniques are as effective as they might be, or performed at the lowest possible dose. The work programme of the SENTINEL Coordination Action was subdivided into eight work packages: functional performance and standards; efficacy and safety in digital radiology, dentistry and nuclear medicine, cardiology, interventional radiology, population screening/sensitive groups; justification, ethics and efficacy; good practice guidance and training; and project management. The intention of the work programme was to underwrite the safety, efficacy and ethical aspects of digital practice as well as to protect and add value to the equipment used in radiology.

  11. Factors Influencing the Gender Breakdown of Academic Radiology Residency Programs.

    PubMed

    Campbell, James C; Yoon, Sora C; Cater, Sarah Wallace; Grimm, Lars J

    2017-07-01

    To determine the gender distribution of radiology residency programs and identify associations with radiology departmental factors. The residency programs affiliated with the top 50 research medical school from US News and World Report were identified. The gender of all radiology residency graduates from each program from 2011 to 2015 were collected. Radiology departmental factors were collected: gender of chairperson, gender of program director, gender of faculty, geographic location, and city population of the residency program. The median percentage of female radiology faculty and residents were calculated and classified as above or below the median. Comparisons were made between residency programs and departmental factors via a Pearson χ 2 univariate test or logistic regression. There were 618 (27.9%) female and 1,598 (72.1%) male residents in our study, with a median female representation of 26.4% in each program. Programs with a female residency program director were significantly more likely to have an above-median percentage of female residents versus a male program director (68.4% versus 38.7%, P = .04). Programs in the Northeast (70.6%) and West (70.0%) had higher above-median female representation than the South (10.0%) and Midwest (38.5%, P < .01). There was no association with city population size (P = .40), gender of faculty (P = .40), residency size (P = .91), or faculty size (P = .15). Radiology residency programs with a female residency program director and those in the Northeast or West have a greater concentration of female residents. Residency programs that aim to increase female representation should investigate modifiable factors that can improve their recruitment practices. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  12. Experimental Fuels Facility Re-categorization Based on Facility Segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiss, Troy P.; Andrus, Jason

    The Experimental Fuels Facility (EFF) (MFC-794) at the Materials and Fuels Complex (MFC) located on the Idaho National Laboratory (INL) Site was originally constructed to provide controlled-access, indoor storage for radiological contaminated equipment. Use of the facility was expanded to provide a controlled environment for repairing contaminated equipment and characterizing, repackaging, and treating waste. The EFF facility is also used for research and development services, including fuel fabrication. EFF was originally categorized as a LTHC-3 radiological facility based on facility operations and facility radiological inventories. Newly planned program activities identified the need to receive quantities of fissionable materials in excessmore » of the single parameter subcritical limit in ANSI/ANS-8.1, “Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors” (identified as “criticality list” quantities in DOE-STD-1027-92, “Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports,” Attachment 1, Table A.1). Since the proposed inventory of fissionable materials inside EFF may be greater than the single parameter sub-critical limit of 700 g of U-235 equivalent, the initial re-categorization is Hazard Category (HC) 2 based upon a potential criticality hazard. This paper details the facility hazard categorization performed for the EFF. The categorization was necessary to determine (a) the need for further safety analysis in accordance with LWP-10802, “INL Facility Categorization,” and (b) compliance with 10 Code of Federal Regulations (CFR) 830, Subpart B, “Safety Basis Requirements.” Based on the segmentation argument presented in this paper, the final hazard categorization for the facility is LTHC-3. Department of Energy Idaho (DOE-ID) approval of the final hazard categorization determined by this hazard assessment document (HAD) was required per the DOE-ID Supplemental Guidance for DOE-STD-1027-92 based on the proposed downgrade of the initial facility categorization of Hazard Category 2.« less

  13. Operation CASTLE. Radiological Safety

    DTIC Science & Technology

    1981-04-01

    Electronic Section . . . .. 42 5.3 Photodosimetry and Records Section . . . . . . . 43 5.3.1 Film Packet . . . . . . . . . . 43 5.3.2 Dosimeters ...Accuracy of Du Pont Film Packet 559 as a Personnel Dosimeter . . . 61 A.2 Relative Sensitivity of Films Behind Lead Filters . 61 A.3 Variations of...project and Holmes and Narver (H&N) supervisory personnel as radiological- safety monitors. Three schools were conducted: osle at the Nevada Proving

  14. ESR statement on radiation protection: globalisation, personalised medicine and safety (the GPS approach).

    PubMed

    2013-12-01

    In keeping with its responsibility for the radiation protection of patients undergoing radiological examinations and procedures, as well as of staff who are getting exposed, and with due regard to requirements under European Directives, the European Society of Radiology (ESR) issues this statement. It provides a holistic approach, termed as Globalisation (indicating all the steps and involving all stakeholders), Personalisation (referring to patient-centric) and Safety-thus called GPS. While being conscious that there is need to increase access of radiological imaging, ESR is aware about the increasing inappropriate medical exposures to ionising radiation and wide variation in patient doses for the same examination. The ESR is convinced that the different components of radiation protection are often interrelated and cannot be considered in isolation The ESR's GPS approach stands for: Globalisation (indicating all the steps and involving all stakeholders), Personalisation (referring to patient-centric) and Safety-thus called GPS It can be anticipated that enhanced protection of patients in Europe will result through the GPS approach. Although the focus is on patient safety, staff safety issues will find a place wherever pertinent.

  15. Radiological safety status and quality assurance audit of medical X-ray diagnostic installations in India.

    PubMed

    Sonawane, A U; Singh, Meghraj; Sunil Kumar, J V K; Kulkarni, Arti; Shirva, V K; Pradhan, A S

    2010-10-01

    We conducted a radiological safety and quality assurance (QA) audit of 118 medical X-ray diagnostic machines installed in 45 major hospitals in India. The main objective of the audit was to verify compliance with the regulatory requirements stipulated by the national regulatory body. The audit mainly covered accuracy check of accelerating potential (kVp), linearity of tube current (mA station) and timer, congruence of radiation and optical field, and total filtration; in addition, we also reviewed medical X-ray diagnostic installations with reference to room layout of X-ray machines and conduct of radiological protection survey. A QA kit consisting of a kVp Test-O-Meter (ToM) (Model RAD/FLU-9001), dose Test-O-Meter (ToM) (Model 6001), ionization chamber-based radiation survey meter model Gun Monitor and other standard accessories were used for the required measurements. The important areas where there was noncompliance with the national safety code were: inaccuracy of kVp calibration (23%), lack of congruence of radiation and optical field (23%), nonlinearity of mA station (16%) and timer (9%), improper collimator/diaphragm (19.6%), faulty adjustor knob for alignment of field size (4%), nonavailability of warning light (red light) at the entrance of the X-ray room (29%), and use of mobile protective barriers without lead glass viewing window (14%). The present study on the radiological safety status of diagnostic X-ray installations may be a reasonably good representation of the situation in the country as a whole. The study contributes significantly to the improvement of radiological safety by the way of the steps already taken and by providing a vital feed back to the national regulatory body.

  16. Women as radiologists: are there barriers to entry and advancement?

    PubMed

    Baker, Stephen R; Barry, Maureen; Chaudhry, Hamaira; Hubbi, Basil

    2006-02-01

    In consideration of the fact that women constitute only 25% of radiology residents, even though they constitute 45% of medical students, this study was conducted to determine if the trend of women choosing radiology as a career differs from that for other medical specialties and if there are differences on the basis of the gender of program directors or geographic location. The authors also wished to determine if constraints exist that prevent women from advancing into positions of leadership in radiology. The percentage of women in each of the 186 radiology residency programs was compiled to determine the mean and standard deviation of women represented and from those data to examine if there were patterns of exclusion related to program size, location, or the gender of program directors. The membership and committee lists of the ACR and the Radiological Society of North America (RSNA) were examined to gauge the participation of women as leaders in these 2 organizations, as were the mastheads of Radiology and the American Journal of Roentgenology. The number of female chairs of academic departments was also examined. Over the past decade, the percentage of women in diagnostic radiology residencies has remained remarkably constant at or slightly above 25%. There was no discernable prejudice against women applicants by program size, location, or program director gender. In both the ACR and the RSNA, women are represented in positions of leadership approximately in proportion to their percentage in the general membership. Journal mastheads have fewer women than might be expected given the participation of women in academic radiology. There are a small but increasing number of women chairing academic radiology departments. The relatively low percentage of women in diagnostic radiology residencies is not a reflection of the gender of program directors. Women are represented in positions of influence and authority in major organizations in American radiology in proportion to the overall number of women in the organization. However, women continue to be underrepresented in radiology chair positions. Explanations must be sought for the relative unattractiveness of radiology to prospective women residents and barriers to the advancement of women in academic radiology.

  17. Basis for Interim Operation for Fuel Supply Shutdown Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BENECKE, M.W.

    2003-02-03

    This document establishes the Basis for Interim Operation (BIO) for the Fuel Supply Shutdown Facility (FSS) as managed by the 300 Area Deactivation Project (300 ADP) organization in accordance with the requirements of the Project Hanford Management Contract procedure (PHMC) HNF-PRO-700, ''Safety Analysis and Technical Safety Requirements''. A hazard classification (Benecke 2003a) has been prepared for the facility in accordance with DOE-STD-1027-92 resulting in the assignment of Hazard Category 3 for FSS Facility buildings that store N Reactor fuel materials (303-B, 3712, and 3716). All others are designated Industrial buildings. It is concluded that the risks associated with the currentmore » and planned operational mode of the FSS Facility (uranium storage, uranium repackaging and shipment, cleanup, and transition activities, etc.) are acceptable. The potential radiological dose and toxicological consequences for a range of credible uranium storage building have been analyzed using Hanford accepted methods. Risk Class designations are summarized for representative events in Table 1.6-1. Mitigation was not considered for any event except the random fire event that exceeds predicted consequences based on existing source and combustible loading because of an inadvertent increase in combustible loading. For that event, a housekeeping program to manage transient combustibles is credited to reduce the probability. An additional administrative control is established to protect assumptions regarding source term by limiting inventories of fuel and combustible materials. Another is established to maintain the criticality safety program. Additional defense-in-depth controls are established to perform fire protection system testing, inspection, and maintenance to ensure predicted availability of those systems, and to maintain the radiological control program. It is also concluded that because an accidental nuclear criticality is not credible based on the low uranium enrichment, the form of the uranium, and the required controls, a Criticality Alarm System (CAS) is not required as allowed by DOE Order 420.1 (DOE 2000).« less

  18. Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference; Sessions 1--8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    First, M.W.

    1991-02-01

    Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)

  19. Quality improvement in neonatal digital radiography: implementing the basic quality improvement tools.

    PubMed

    Eslamy, Hedieh K; Newman, Beverley; Weinberger, Ed

    2014-12-01

    A quality improvement (QI) program may be implemented using the plan-do-study-act cycle (as a model for making improvements) and the basic QI tools (used to visually display and analyze variation in data). Managing radiation dose has come to the forefront as a safety goal for radiology departments. This is especially true in the pediatric population, which is more radiosensitive than the adult population. In this article, we use neonatal digital radiography to discuss developing a QI program with the principle goals of decreasing the radiation dose, decreasing variation in radiation dose, and optimizing image quality. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Mississippi Curriculum Framework for Medical Radiologic Technology (Radiography) (CIP: 51.0907--Medical Radiologic Technology). Postsecondary Programs.

    ERIC Educational Resources Information Center

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which is intended for use by community and junior colleges throughout Mississippi, contains curriculum frameworks for the course sequences in the radiologic technology program. Presented in the introductory section are a description of the program and suggested course sequence. Section I lists baseline competencies for the program,…

  1. Sample Based Unit Liter Dose Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JENSEN, L.

    The Tank Waste Characterization Program has taken many core samples, grab samples, and auger samples from the single-shell and double-shell tanks during the past 10 years. Consequently, the amount of sample data available has increased, both in terms of quantity of sample results and the number of tanks characterized. More and better data is available than when the current radiological and toxicological source terms used in the Basis for Interim Operation (BIO) (FDH 1999a) and the Final Safety Analysis Report (FSAR) (FDH 1999b) were developed. The Nuclear Safety and Licensing (NS and L) organization wants to use the new datamore » to upgrade the radiological and toxicological source terms used in the BIO and FSAR. The NS and L organization requested assistance in producing a statistically based process for developing the source terms. This report describes the statistical techniques used and the assumptions made to support the development of a new radiological source term for liquid and solid wastes stored in single-shell and double-shell tanks. The results given in this report are a revision to similar results given in an earlier version of the document (Jensen and Wilmarth 1999). The main difference between the results in this document and the earlier version is that the dose conversion factors (DCF) for converting {mu}Ci/g or {mu}Ci/L to Sv/L (sieverts per liter) have changed. There are now two DCFs, one based on ICRP-68 and one based on ICW-71 (Brevick 2000).« less

  2. 75 FR 12770 - Agency Information Collection Activities: Submission for OMB Review; Comment Request, OMB No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ...; Radiological Emergency Preparedness Program Alert and Notification Phone Survey AGENCY: Federal Emergency...; OMB No. 1660-NEW; FEMA Form 111, Radiological Emergency Preparedness Program Alert and Notification...: Radiological Emergency Preparedness Program Alert and Notification Phone Survey. Type of information collection...

  3. Medical student radiology curriculum: what skills do residency program directors believe are essential for medical students to attain?

    PubMed

    Kondo, Kimi L; Swerdlow, Mathew

    2013-03-01

    The purpose of this study was to identify radiology topics considered essential by residency program directors who will be working with our graduates. Secondary goals were to survey their satisfaction with incoming residents' radiology knowledge, inquire if radiology training was provided in their programs, and identify differences among specialties. A questionnaire was mailed to all residency program directors in emergency medicine, family medicine, internal medicine, pediatrics, and general surgery programs that accepted our graduates between 2005 and 2010. Program directors were asked to rate a list of radiology knowledge and skills topics as essential or nonessential and to answer several questions regarding their residents and programs. Ninety-nine surveys were completed (51.3% response rate). Seven skills were considered essential by 90% or more of all respondents. On average, program directors identified 18/28 topics as essential prior to beginning their residency. The mean number identified as essential did not differ by program (F4, 93 = 0.732, P = .572). Based on analyses of variance comparing each topic by program, the importance of six topics differed significantly. Program directors generally agreed that incoming residents had adequate radiology skills and knowledge when they started their residencies. One hundred percent of the responding emergency medicine, family medicine, and pediatrics programs and 70% to 80% of the general surgery and internal medicine programs provide radiology training. There is high agreement among program directors regarding imaging topics they consider essential. Topics considered essential by more than 60% should comprise our core curriculum for all students while less essential topics can be included in elective or program specific curricula. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  4. 75 FR 19985 - Fee for Services To Support FEMA's Offsite Radiological Emergency Preparedness Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2010-0007] Fee for Services To Support FEMA's Offsite Radiological Emergency Preparedness Program AGENCY: Federal... Radiological Emergency Preparedness (REP) Program. DATES: This hourly rate is effective for FY 2010 (October 1...

  5. Radiological Source Terms for Tank Farms Safety Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    COWLEY, W.L.

    2000-06-27

    This document provides Unit Liter Dose factors, atmospheric dispersion coefficients, breathing rates and instructions for using and customizing these factors for use in calculating radiological doses for accident analyses in the Hanford Tank Farms.

  6. COMPARE/Radiology, an interactive Web-based radiology teaching program evaluation of user response.

    PubMed

    Wagner, Matthias; Heckemann, Rolf A; Nömayr, Anton; Greess, Holger; Bautz, Werner A; Grunewald, Markus

    2005-06-01

    The aim of this study is to assess user benefits of COMPARE/Radiology, a highly interactive World Wide Web-based training program for radiology, as perceived by its users. COMPARE/Radiology (http://www.idr.med.uni-erlangen.de/compare.htm), an interactive training program based on 244 teaching cases, was created by the authors and made publicly available on the Internet. An anonymous survey was conducted among users to investigate the composition of the program's user base and assess the acceptance of the training program. In parallel, Web access data were collected and analyzed using descriptive statistics. The group of responding users (n = 1370) consisted of 201 preclinical medical students (14.7%), 314 clinical medical students (22.9%), 359 residents in radiology (26.2%), and 205 users of other professions (14.9%). A majority of respondents (1230; 89%) rated the interactivity of COMPARE/Radiology as good or excellent. Many respondents use COMPARE/Radiology for self-study (971; 70%) and for teaching others (600; 43%). Web access statistics show an increase in number of site visits from 1248 in December 2002 to 4651 in April 2004. Users appreciate the benefits of COMPARE/Radiology. The interactive instructional design was rated positively by responding users. The popularity of the site is growing, evidenced by the number of network accesses during the observation period.

  7. An Assessment of Radiology Residency Program Websites.

    PubMed

    Hansberry, David R; Bornstein, Jonathan; Agarwal, Nitin; McClure, Kristen E; Deshmukh, Sandeep P; Long, Suzanne

    2018-04-01

    When prospective radiology residents decide where to apply to residency, many will use the Internet as a resource to garner information. Therefore, it is important for residency programs to produce and maintain an informative and comprehensive website. Here, we review 179 radiology residency program websites for 19 criteria including various aspects related to the residency application process, benefits, didactics, research, clinical training, and faculty leadership. We evaluated 179 radiology residency program websites for the inclusion of 19 different criteria. Criteria for information not available directly on the website and links with no information were considered not present. Only 12 of the 179 (6.7%) program websites had at least 80% of the 19 criteria. In addition, 41 programs (23%) had less than 50% of the criteria listed on their websites. Websites ranged from having 16% of the criteria to as much as 95%. Although previous studies have shown that prospective radiology resident applicants are influenced by intangibles like current resident satisfaction and academic reputation, they have also shown that applicants are influenced by the educational curriculum, clinical training, program resources, research opportunities, and quality of faculty. Therefore, it is imperative to provide online resources for prospective candidates in an attempt for residency programs to remain competitive in recruiting high-quality US medical student graduates. These findings suggest there is room for improving the comprehensiveness of information provided on radiology residency program websites. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  8. Asian Radiology Forum 2015 for Building an Asian Friendship: A Step toward the Vigorous Intersociety Collaboration in Asia

    PubMed Central

    Kim, Ho Sung; Choi, Jung-Ah

    2016-01-01

    According to the reports presented at the Asian Radiology Forum 2015, organized by the Korean Society of Radiology (KSR) during the Korean Congress of Radiology (KCR) in September 2015 in Seoul, there is an increasing need to promote international exchange and collaboration amongst radiology societies in Asian countries. The Asian Radiology Forum was first held by KSR and the national delegates of Asian radiological partner societies, who attended this meeting with the aim of discussing selected subjects of global relevance in radiology. In 2015, current stands, pros and cons, and future plans for inter-society collaboration between each Asian radiological partner societies were primarily discussed. The Asian radiology societies have international collaborations with each other through various activities, such as joint symposia, exchange programs, social exchange, and international membership. The advantages of continuing inter-society collaboration in most of the Asian radiology societies include international speakers, diverse clinical research, and cutting edge technology; while limited range of financial and human resources, language barrier, differences in goals and expectations are claimed as disadvantages. With regard to the future, most of the Asian radiology societies focus on expanding partner societies and enhancing globalization and collaboration programs through various international meetings and exchange programs. PMID:26957902

  9. Radiation safety and medical education: development and integration of a dedicated educational module into a radiology clerkship, outcomes assessment, and survey of medical students' perceptions.

    PubMed

    Koontz, Nicholas A; Gunderman, Richard B

    2012-04-01

    This study assesses the effect on medical student understanding of a new radiobiology and radiation safety module in a fourth-year radiology clerkship. A dedicated radiobiology and radiation safety module was incorporated into the fourth-year medical school radiology clerkship at our institution. Student understanding of the material was assessed via pretest and posttest. Statistical analysis was performed to assess significance of changes in student performance. In addition, we surveyed student perceptions of the importance of this material in medical education and practice. Monthly pretest mean scores ranged from 47.8% to 55.6%, with an average monthly pretest score of 50.3%. Monthly posttest mean scores ranged from 77.3% to 91.2%, with an average monthly posttest score of 83.9%. The improvement in exam scores after the educational intervention was statistically significant (all P < .01). The introduction of a new educational module can significantly improve medical student understanding of radiobiology and radiation safety. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.

  10. Using SAFRAN Software to Assess Radiological Hazards from Dismantling of Tammuz-2 Reactor Core at Al-tuwaitha Nuclear Site

    NASA Astrophysics Data System (ADS)

    Abed Gatea, Mezher; Ahmed, Anwar A.; jundee kadhum, Saad; Ali, Hasan Mohammed; Hussein Muheisn, Abbas

    2018-05-01

    The Safety Assessment Framework (SAFRAN) software has implemented here for radiological safety analysis; to verify that the dose acceptance criteria and safety goals are met with a high degree of confidence for dismantling of Tammuz-2 reactor core at Al-tuwaitha nuclear site. The activities characterizing, dismantling and packaging were practiced to manage the generated radioactive waste. Dose to the worker was considered an endpoint-scenario while dose to the public has neglected due to that Tammuz-2 facility is located in a restricted zone and 30m berm surrounded Al-tuwaitha site. Safety assessment for dismantling worker endpoint-scenario based on maximum external dose at component position level in the reactor pool and internal dose via airborne activity while, for characterizing and packaging worker endpoints scenarios have been done via external dose only because no evidence for airborne radioactivity hazards outside the reactor pool. The in-situ measurements approved that reactor core components are radiologically activated by Co-60 radioisotope. SAFRAN results showed that the maximum received dose for workers are (1.85, 0.64 and 1.3mSv/y) for activities dismantling, characterizing and packaging of reactor core components respectively. Hence, the radiological hazards remain below the low level hazard and within the acceptable annual dose for workers in radiation field

  11. ABR Core examination preparation: results of a survey of fourth-year radiology residents who took the 2013 examination.

    PubMed

    Shetty, Anup S; Grajo, Joseph R; Decker, Summer; Heitkamp, Darel E; DeStigter, Kristen K; Mezwa, Duane G; Deitte, Lori

    2015-01-01

    A survey was administered to fourth-year radiology residents after receiving their results from the first American Board of Radiology (ABR) Core examination in 2013. The purpose was to gather information regarding resources and study strategies to share with program directors and future resident classes. An online survey was distributed to examinees nationwide. The survey included free-response and multiple choice questions that covered examination results, perceived value of enumerated study resources, case-based and didactic teaching conferences, board reviews, study materials for noninterpretive skills, multidisciplinary conference attendance, and free-form comments. Two hundred sixty-six of 1186 residents who took the Core examination responded to the survey. Some resources demonstrated a significant difference in perceived value between residents who passed the examination and residents who failed, including internal board reviews (1.10, P < .01), daily didactic conferences (1.51, P < .01), and daily case conferences (1.43, P < .01). Residents who passed reported that conferences and review sessions at their institutions were modified with multiple choice questions, audience response, and integration of clinical physics and patient safety topics compared to residents who failed. Radiology residents and residency programs have adapted their preparations for the ABR Core examination in a variety of ways. Certain practices and study tools, including daily conferences and internal board reviews, had greater perceived value by residents who passed the examination than by residents who failed. This survey provides insights that can be used to assess and modify current preparation strategies for the ABR Core examination. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  12. Environmental radiology assessment in Lahad Datu, Sabah

    NASA Astrophysics Data System (ADS)

    Siti Fharhana, Yusof; Wan Muhamad Saridan, Wan Hassan; Ahmad Termizi, Ramli; Mohd Hilmi, Sahini; Mohammad Syazwan, Mohd Sanusi; Nor Afifah, Basri; Nor Zati Hani, Abu Hanifah

    2017-10-01

    Monitoring terrestial gamma radiation is crucial to prepare a baseline data for environmental radiological protection. Radiological research was carried out in Lahad Datu, Sabah to obtain the radioactivity status and terrestrial gamma radiation level in the area. We measure the terrestrial gamma radiation dose rates and analyse the radioactivity concentration of primordial radionuclides for radiological risk assessment. We identified that the annual estimation of dose effective for public is below the public dose limit, 1 mSv per year. Public and environment safety and health are remain secure. The obtained data and results can be used as reference for environmental radiology protection.

  13. The association of departmental leadership gender with that of faculty and residents in radiology.

    PubMed

    Shah, Anand; Braga, Larissa; Braga-Baiak, Andresa; Jacobs, Danny O; Pietrobon, Ricardo

    2007-08-01

    Although the number of women graduating from medical school continues to increase, their representation in radiology residency programs has not increased over the past 10 years. We examined whether the gender of radiology faculty and residents differed according to the gender of the departmental leadership. We issued an anonymous Web-based survey via e-mail to all 188 radiology residency program directors listed in the Fellowship and Residency Electronic Interactive Database (FREIDA Online). Data regarding the gender of the department chairperson, residency program director, faculty, and residents were collected. The institutional review board granted a waiver for this study, and all subjects provided informed consent. Of the 84 program directors who responded, 9 (10.7%) were chaired by females and 75 (89.3%) by males; residency program director positions were held by 36 (42.9%) females and 48 (57.1%) males. More programs were located in the northeastern United States (n = 31, 36.9%) than in any other region, and more were self-described as academic (n = 36, 42.9%) than any other practice type. Programs that were led by a male chairperson had a similar proportion of female faculty (25.2% versus 27.3%; P = .322) and residents (26.2% versus 27.4%; P = .065) compared with those led by a female. Similarly, radiology departments with a male residency program director had a similar proportion of female residents (24.8% versus 28.7%; P = .055) compared with programs with a female residency program director. The gender composition of radiology faculty and residents does not differ significantly according to the gender of the departmental chairperson or residency program director. Nevertheless, there continues to be a disparity in the representation of women among radiology faculty and residents.

  14. 2009 Annual Health Physics Report for the HEU Transparency Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radev, R

    2010-04-14

    During the 2009 calendar year, Lawrence Livermore National Laboratory (LLNL) provided health physics support for the Highly Enriched Uranium (HEU) Transparency Program for external and internal radiation protection. LLNL also provided technical expertise related to BDMS radioactive sources and Russian radiation safety regulatory compliance. For the calendar year 2009, there were 159 person-trips that required dose monitoring of the U.S. monitors. Of the 159 person-trips, 149 person-trips were SMVs and 10 person-trips were Transparency Monitoring Office (TMO) trips. There were 4 monitoring visits by TMO monitors to facilities other than UEIE and 10 to UEIE itself. LLNL's Hazard Control Departmentmore » laboratories provided the dosimetry services for the HEU Transparency monitors. In 2009, the HEU Transparency activities in Russia were conducted in a radiologically safe manner for the HEU Transparency monitors in accordance with the expectations of the HEU Transparency staff, NNSA and DOE. The HEU Transparency Program now has over fifteen years of successful experience in developing and providing health and safety support in meeting its technical objectives.« less

  15. [eLearning-radiology.com--sustainability for quality assurance].

    PubMed

    Ketelsen, D; Talanow, R; Uder, M; Grunewald, M

    2009-04-01

    The aim of the study was to analyze the availability of published radiological e-learning tools and to establish a solution for quality assurance. Substantial pubmed research was performed to identify radiological e-learning tools. 181 e-learning programs were selected. As examples two databases expanding their programs with external links, Compare (n = 435 external links) and TNT-Radiology (n = 1078 external links), were evaluated. A concept for quality assurance was developed by an international taskforce. At the time of assessment, 56.4 % (102 / 181) of the investigated e-learning tools were accessible at their original URL. A subgroup analysis of programs published 5 to 8 years ago showed significantly inferior availability to programs published 3 to 5 years ago (p < 0.01). The analysis of external links showed 49.2 % and 61.0 % accessible links for the programs Compare (published 2003) and TNT-Radiology (published 2006), respectively. As a consequence, the domain www.eLearning-radiology.com was developed by the taskforce and published online. This tool allows authors to present their programs and users to evaluate the e-learning tools depending on several criteria in order to remove inoperable links and to obtain information about the complexity and quality of the e-learning tools. More than 50 % of investigated radiological e-learning tools on the Internet were not accessible after a period of 5 to 8 years. As a consequence, an independent, international tool for quality assurance was designed and published online under www.eLearning-radiology.com .

  16. 44 CFR 354.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PREPAREDNESS FEE FOR SERVICES TO SUPPORT FEMA'S OFFSITE RADIOLOGICAL EMERGENCY PREPAREDNESS PROGRAM § 354.1... the amounts that we anticipate to obligate for our Radiological Emergency Preparedness (REP) Program... established in the Treasury a Radiological Emergency Preparedness Fund, to be available under the Atomic...

  17. Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings (40 CFR Part 192)

    EPA Pesticide Factsheets

    This regulation sets standards for the protection of public health, safety, and the environment from radiological and non-radiological hazards from uranium and thorium ore processing and disposal of associated wastes.

  18. Contrast reaction training in US radiology residencies: a COARDRI study.

    PubMed

    LeBedis, Christina A; Rosenkrantz, Andrew B; Otero, Hansel J; Decker, Summer J; Ward, Robert J

    To perform a survey-based assessment of current contrast reaction training in US diagnostic radiology residency programs. An electronic survey was distributed to radiology residency program directors from 9/2015-11/2015. 25.7% of programs responded. 95.7% of those who responded provide contrast reaction management training. 89.4% provide didactic lectures (occurring yearly in 71.4%). 37.8% provide hands-on simulation training (occurring yearly in 82.3%; attended by both faculty and trainees in 52.9%). Wide variability in contrast reaction education in US diagnostic radiology residency programs reveals an opportunity to develop and implement a national curriculum. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Generic radiological characterization protocol for surveys conducted for DOE remedial action programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berven, B.A.; Cottrell, W.D.; Leggett, R.W.

    1986-05-01

    This report describes goals and methodology that can be used by radiological survey contractors in surveys at properties associated with the Department of Energy's remedial action programs. The description includes: (1) a general discussion of the history of the remedial action programs; (2) the types of surveys that may be employed by the Radiological Survey Activities (RASA) contractor; (3) generic survey methods that may be used during radiological surveys; and (4) a format for presenting information and data in a survey report. 9 refs.

  20. Health effects model for nuclear power plant accident consequence analysis. Part I. Introduction, integration, and summary. Part II. Scientific basis for health effects models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, J.S.; Moeller, D.W.; Cooper, D.W.

    1985-07-01

    Analysis of the radiological health effects of nuclear power plant accidents requires models for predicting early health effects, cancers and benign thyroid nodules, and genetic effects. Since the publication of the Reactor Safety Study, additional information on radiological health effects has become available. This report summarizes the efforts of a program designed to provide revised health effects models for nuclear power plant accident consequence modeling. The new models for early effects address four causes of mortality and nine categories of morbidity. The models for early effects are based upon two parameter Weibull functions. They permit evaluation of the influence ofmore » dose protraction and address the issue of variation in radiosensitivity among the population. The piecewise-linear dose-response models used in the Reactor Safety Study to predict cancers and thyroid nodules have been replaced by linear and linear-quadratic models. The new models reflect the most recently reported results of the follow-up of the survivors of the bombings of Hiroshima and Nagasaki and permit analysis of both morbidity and mortality. The new models for genetic effects allow prediction of genetic risks in each of the first five generations after an accident and include information on the relative severity of various classes of genetic effects. The uncertainty in modeloling radiological health risks is addressed by providing central, upper, and lower estimates of risks. An approach is outlined for summarizing the health consequences of nuclear power plant accidents. 298 refs., 9 figs., 49 tabs.« less

  1. 10 CFR 72.32 - Emergency Plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... emergencies. Radiological/Health Physics, Medical, and Fire drills shall be conducted annually. Semiannual... onsite exercises to test response to simulated emergencies. Radiological/Health Physics, Medical, and... this action is immediately needed to protect the public health and safety and no action consistent with...

  2. Improving clinical instruction: comparison of literature.

    PubMed

    Giordano, Shelley

    2008-01-01

    Clinical education in radiologic technology and athletic training is similar in that both programs use clinical sites and clinical instructors to instruct and evaluate student competency. The purpose of this paper is to review and compare the literature from radiologic technology and athletic training clinical education. The literature for this review was obtained using ProQuest and PubMed databases, from the years 1998 to 2006. Research is available for both radiologic technology and athletic training and provides a good comparison. Radiologic technology students experience various clinical stressors that can be remedied by properly trained clinical instructors and instructors who spend quality time with students. The opinions regarding the necessary behaviors of clinical instructors vary between program directors, clinical instructors and students. Cooperation and communication between programs and clinical instructors is important for students to achieve clinical success. A comparison of the literature demonstrates that radiologic technology and athletic training programs are similar; thus, ideas from athletic training can be applied to radiologic technology clinical education.

  3. The Importance of Human-Computer Interaction in Radiology E-learning.

    PubMed

    den Harder, Annemarie M; Frijlingh, Marissa; Ravesloot, Cécile J; Oosterbaan, Anne E; van der Gijp, Anouk

    2016-04-01

    With the development of cross-sectional imaging techniques and transformation to digital reading of radiological imaging, e-learning might be a promising tool in undergraduate radiology education. In this systematic review of the literature, we evaluate the emergence of image interaction possibilities in radiology e-learning programs and evidence for effects of radiology e-learning on learning outcomes and perspectives of medical students and teachers. A systematic search in PubMed, EMBASE, Cochrane, ERIC, and PsycInfo was performed. Articles were screened by two authors and included when they concerned the evaluation of radiological e-learning tools for undergraduate medical students. Nineteen articles were included. Seven studies evaluated e-learning programs with image interaction possibilities. Students perceived e-learning with image interaction possibilities to be a useful addition to learning with hard copy images and to be effective for learning 3D anatomy. Both e-learning programs with and without image interaction possibilities were found to improve radiological knowledge and skills. In general, students found e-learning programs easy to use, rated image quality high, and found the difficulty level of the courses appropriate. Furthermore, they felt that their knowledge and understanding of radiology improved by using e-learning. In conclusion, the addition of radiology e-learning in undergraduate medical education can improve radiological knowledge and image interpretation skills. Differences between the effect of e-learning with and without image interpretation possibilities on learning outcomes are unknown and should be subject to future research.

  4. Waste Isolation Pilot Plant Site Environmental Report for 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooda, Balwan S.; Allen, Vivian L.

    This 1998 annual Site Environmental Report (SER) was prepared in accordance with U.S. Department of Energy (DOE) Order 5400.1, ''General Environmental Protection Program''; DOE Order 231.1, ''Environmental Safety and Health Reporting''; the ''Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance'' (DOE/EH-0173T); and the Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an SER to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of the SER is to provide a comprehensive description of operational environmental monitoring activities, an abstract of environmental activities conducted tomore » characterize site environmental management performance, to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during calendar year ( CY) 1998. The content of this SER is not restricted to a synopsis of the required data. Information pertaining to new and continued monitoring and compliance activities during CY 1998 are also included.« less

  5. A probabilistic safety analysis of incidents in nuclear research reactors.

    PubMed

    Lopes, Valdir Maciel; Agostinho Angelo Sordi, Gian Maria; Moralles, Mauricio; Filho, Tufic Madi

    2012-06-01

    This work aims to evaluate the potential risks of incidents in nuclear research reactors. For its development, two databases of the International Atomic Energy Agency (IAEA) were used: the Research Reactor Data Base (RRDB) and the Incident Report System for Research Reactor (IRSRR). For this study, the probabilistic safety analysis (PSA) was used. To obtain the result of the probability calculations for PSA, the theory and equations in the paper IAEA TECDOC-636 were used. A specific program to analyse the probabilities was developed within the main program, Scilab 5.1.1. for two distributions, Fischer and chi-square, both with the confidence level of 90 %. Using Sordi equations, the maximum admissible doses to compare with the risk limits established by the International Commission on Radiological Protection (ICRP) were obtained. All results achieved with this probability analysis led to the conclusion that the incidents which occurred had radiation doses within the stochastic effects reference interval established by the ICRP-64.

  6. Defining quality in radiology.

    PubMed

    Blackmore, C Craig

    2007-04-01

    The introduction of pay for performance in medicine represents an opportunity for radiologists to define quality in radiology. Radiology quality can be defined on the basis of the production model that currently drives reimbursement, codifying the role of radiologists as being limited to the production of timely and accurate radiology reports produced in conditions of maximum patient safety and communicated in a timely manner. Alternately, quality in radiology can also encompass the professional role of radiologists as diagnostic imaging specialists responsible for the appropriate use, selection, interpretation, and application of imaging. Although potentially challenging to implement, the professional model for radiology quality is a comprehensive assessment of the ways in which radiologists add value to patient care. This essay is a discussion of the definition of radiology quality and the implications of that definition.

  7. Development and initial evaluation of a training program for peripherally inserted central catheter (PICC) placement for radiology residents and technicians.

    PubMed

    Dabadie, A; Soussan, J; Mancini, J; Vidal, V; Bartoli, J M; Gorincour, G; Petit, P

    2016-09-01

    The goals of this study were to develop and evaluate a joint theoretical/practical training course for radiology residents and technicians and to start a collaborative practice agreement enabling radiology technicians to perform PICC placement under the responsibility of an interventional radiologist. A joint training session based on literature evidences and international recommendations was designed. Participants were assessed before and after training, and were also asked to evaluate the program one month after completion of the training course. Practical post-training mentoring guidelines were laid down for radiologists supervising technicians. From January to April 2014, 6 radiology residents and 12 radiology technicians from the two interventional radiology departments of the University hospitals in Marseille took part in the training program. For both residents and technicians, significant improvement was observed between pretraining and post-training assessment. The majority of participants were satisfied with the program. Our experience suggests that combined theoretical and practical training in PICC placement allows improving technical skill and yields high degrees of satisfaction for both radiology residents and technicians. A collaborative practice agreement is now formally established to enable radiologists to delegate PICC placement procedures to radiology technicians. Copyright © 2016 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  8. The impact of council directive 2011/70/EURATOM and IAEA joint convention review meetings on the ongoing establishment of the Portuguese regulatory framework and on the future of national radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paiva, Isabel; Trindade, Romao B.

    Council Directive 2011/70/EURATOM of 19 July 2011, establishing a Community framework for the responsible and safe management of spent fuel and radioactive waste will enter in force August 2013 in all EU Member States. Portugal has already started preparing its legislative framework to accommodate the new legislative piece. However, the first report of Portugal to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management of the IAEA, in Vienna, 2012, has shown that Portugal still has many steps to overcome to establish a successful and effective basic regulatory framework. The existencemore » of many competent authorities related to the radiological protection area and a newly independent commission that is still looking on how to fulfill its regulator role in other areas such as the radioactive waste management makes quite challenging the full application of the new directive as well as compliance that Portugal will have to show in the next Joint Convention review meeting in order to meet the obligations of the Convention. In this paper, the reality of the regulatory Portuguese framework on radiological protection, nuclear safety and radioactive waste management is presented. Discussion of the future impact of the new legislation and its consequences such as the need to setup the national program on radioactive waste management is critical discussed. (authors)« less

  9. Nevada Test Site Environmental Report 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathy Wills

    2008-09-01

    The Nevada Test Site Environmental Report 2007 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollutionmore » prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2007. This NTSER was prepared to satisfy DOE Order 231.1A, Environment, Safety and Health Reporting. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This report meets these objectives for the NTS and three offsite Nevada facilities mentioned in this report.« less

  10. 21 CFR 1010.4 - Variances.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (formerly the Radiation Control for Health and Safety Act of 1968), and: (i) The scope of the requested... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) RADIOLOGICAL HEALTH... and Radiological Health, Food and Drug Administration, may grant a variance from one or more...

  11. Surface radiological investigations at White Wing Scrap Yard, Oak Ridge Reservation, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, J.K.; Rodriguez, R.E.; Uziel, M.S.

    1991-09-01

    A surface radiological scoping survey of accessible areas at the White Wing Scrap Yard (Waste Area Grouping 11 (WAG 11)) was conducted intermittently from December 1989 through July 1991 by members of the Measurement Applications and Development Group, Health and Safety Research Division, Oak Ridge National Laboratory (ORNL) at the request of Environmental Restoration Program personnel at ORNL. The White Wing Scrap Yard is an estimated 30-acre, predominately wooded area located on the western edge of East Fork Ridge in the McNew Hollow area on the US Department of Energy's Oak Ridge Reservation. The scrap yard was formerly used formore » aboveground storage of contaminated material (e.g., steel tanks, metal, glass, concrete, and miscellaneous industrial trash) from the Oak Ridge K-25 Site, Oak Ridge Y-12 Plant, and ORNL. The purposes of this cursory investigation were (1) to provide an updated contamination status of the site by locating and interpreting the presence, nature, and extent of surface radiological contamination and (2) to provide a basis for the formulation of interim corrective action to limit human exposures to radioactivity and minimize the potential for contaminant dispersion. 13 refs., 17 figs., 5 tabs.« less

  12. Foreign body aspiration in a child detected through emergency department radiology reporting: a case report.

    PubMed

    Crawford, Nigel W

    2007-08-01

    Foreign-body aspiration remains a leading cause of mortality in children under 3 years despite child-safety initiatives. This case report describes a classic history of peanut aspiration in a young child. Unfortunately, the diagnosis was delayed and only detected the next day through radiology review. The clinical history is paramount and this case highlights how emergency radiology reporting can minimize morbidity.

  13. The radiological impact of electricity generation by U.K. coal and nuclear systems.

    PubMed

    Robson, A

    1984-05-01

    Radiological impact is discussed for U.K. coal and nuclear power cycles under normal operation. The type having the greater impact depends on the radiological basis of the comparison, the particular nuclear reactor system considered and whether or not the whole fuel cycle, especially irradiated nuclear fule reprocessing , is included in the analysis. More importantly, the various impacts are shown to be generally acceptable in an absolute sense i.e. exposures are less than and usually low in comparison with radiological safety guidelines and everyday natural radiation exposures.

  14. Key Performance Indicators in Radiology: You Can't Manage What You Can't Measure.

    PubMed

    Harvey, H Benjamin; Hassanzadeh, Elmira; Aran, Shima; Rosenthal, Daniel I; Thrall, James H; Abujudeh, Hani H

    2016-01-01

    Quality assurance (QA) is a fundamental component of every successful radiology operation. A radiology QA program must be able to efficiently and effectively monitor and respond to quality problems. However, as radiology QA has expanded into the depths of radiology operations, the task of defining and measuring quality has become more difficult. Key performance indicators (KPIs) are highly valuable data points and measurement tools that can be used to monitor and evaluate the quality of services provided by a radiology operation. As such, KPIs empower a radiology QA program to bridge normative understandings of health care quality with on-the-ground quality management. This review introduces the importance of KPIs in health care QA, a framework for structuring KPIs, a method to identify and tailor KPIs, and strategies to analyze and communicate KPI data that would drive process improvement. Adopting a KPI-driven QA program is both good for patient care and allows a radiology operation to demonstrate measurable value to other health care stakeholders. Copyright © 2015 Mosby, Inc. All rights reserved.

  15. The New Interventional Radiology Pathways: Options for Implementation.

    PubMed

    Recht, Michael; McKinney, J Mark; Alleman, Anthony M; Lowe, Lisa H; Spies, James B

    2016-07-01

    The new interventional radiology (IR) pathways have generated much discussion with articles and editorials pointing out perceived advantages and disadvantages compared to the current pathways. To briefly review, under the new system, there are three pathways to enter IR: the integrated (INT) IR residency, the independent (IND) IR residency, and the early specialization in interventional radiology (ESIR) program. The pathways have been designed to provide maximum flexibility to programs for implementation and to radiology residents for planning their subspecialty training. As a result, there are many potential permutations for these training programs, and understanding the variety of options can be a challenge at first. We offer three potential solutions, based on the different circumstances or requirements a department might face. The first two solutions involve integrated programs created through newly funded and converted diagnostic radiology slots, respectively. The third involves establishing ESIR and IND programs only. Hopefully, the examples provided will be useful for those currently planning for the future of their IR training programs. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  16. Radiation safety standards and their application: international policies and current issues.

    PubMed

    González, Abel J

    2004-09-01

    This paper briefly describes the current policies of the United Nations Scientific Committee on the Effects of Atomic Radiation and the International Commission on Radiological Protection and how these policies are converted into international radiation safety standards by the International Atomic Energy Agency, which is the only global organization-within the United Nations family of international agencies-with a statutory mandate not only to establish such standards but also to provide for their application. It also summarizes the current status of the established corpus of such international standards, and of it foreseeable evolution, as well as of legally binding undertakings by countries around the world that are linked to these standards. Moreover, this paper also reviews some major current global issues related to the application of international standards, including the following: strengthening of national infrastructures for radiation safety, including technical cooperation programs for assisting developing countries; occupational radiation safety challenges, including the protection of pregnant workers and their unborn children, dealing with working environments with high natural radiation levels, and occupational attributability of health effects (probability of occupational causation); restricting discharges of radioactive substances into the environment: reviewing current international policies vis-a-vis the growing concern on the radiation protection of the "environment;" radiological protection of patients undergoing radiodiagnostic and radiotherapeutic procedures: the current International Action Plan; safety and security of radiation sources: post-11 September developments; preparedness and response to radiation emergencies: enhancing the international network; safe transport of radioactive materials: new apprehensions; safety of radioactive waste management: concerns and connections with radiation protection; and radioactive residues remaining after the termination of activities: radiation protection response to the forthcoming wave of decommissioning of installations with radioactive materials. The ultimate aim of this paper is to encourage information exchange, cooperation, and collaboration within the radiation protection professional community. In particular, the paper tries to facilitate consolidation of the growing international regime on radiation safety, including the expansion of legally binding undertakings by countries, the strengthening of the current corpus of international radiation safety standards, and the development of international provisions for ensuring the proper worldwide application of these standards, such as a system of international appraisals by peer review.

  17. Radiologic Technology Program Standards.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    This publication contains statewide standards for the radiologic technology program in Georgia. The standards are divided into 12 categories; Foundations (philosophy, purpose, goals, program objectives, availability, evaluation); Admissions (admission requirements, provisional admission requirements, recruitment, evaluation and planning); Program…

  18. Operational radiological support for the US manned space program

    NASA Technical Reports Server (NTRS)

    Golightly, Michael J.; Hardy, Alva C.; Atwell, William; Weyland, Mark D.; Kern, John; Cash, Bernard L.

    1993-01-01

    Radiological support for the manned space program is provided by the Space Radiation Analysis Group at NASA/JSC. This support ensures crew safety through mission design analysis, real-time space environment monitoring, and crew exposure measurements. Preflight crew exposure calculations using mission design information are used to ensure that crew exposures will remain within established limits. During missions, space environment conditions are continuously monitored from within the Mission Control Center. In the event of a radiation environment enhancement, the impact to crew exposure is assessed and recommendations are provided to flight management. Radiation dosimeters are placed throughout the spacecraft and provided to each crewmember. During a radiation contingency, the crew could be requested to provide dosimeter readings. This information would be used for projecting crew dose enhancements. New instrumentation and computer technology are being developed to improve the support. Improved instruments include tissue equivalent proportional counter (TEPC)-based dosimeters and charged particle telescopes. Data from these instruments will be telemetered and will provide flight controllers with unprecedented information regarding the radiation environment in and around the spacecraft. New software is being acquired and developed to provide 'smart' space environmental data displays for use by flight controllers.

  19. Fourth-year medical student opinions and basic knowledge regarding the field of radiology.

    PubMed

    Prezzia, Charles; Vorona, Gregory; Greenspan, Robin

    2013-03-01

    This study evaluates the opinions and knowledge of fourth-year US medical students regarding radiology and analyzes the influence of a required or nonrequired radiology rotation as a reflection of the effectiveness of radiology medical student education. Our institutional review board granted exempt status. An invitation e-mail was sent to 137 US medical schools. Upon receiving approval a second email was sent containing our voluntary anonymous online survey hyperlink to forward to their fourth-year class. Survey topics included demographics, radiology educational experiences, attitudes toward the field, and basic radiology knowledge. Responses were collected between August 4 and September 26, 2011. A total of 444 fourth-year medical students from 37 medical schools participated: 89% planned to enter a nonradiology specialty, 10.8% were required to take a dedicated radiology rotation, 34.9% completed one, 77% planned to complete one by graduation, 88.4% thought radiology often changes patient care or is at least as important as physical exam, 91.4% underestimated the cancer risk of an abdomen and pelvis computed tomography by at least one order of magnitude, and 72.9% by at least two orders. Seventy-seven percent had never heard of the American College of Radiology (ACR) Appropriateness Criteria. Respondents underestimated the potential risks of magnetic resonance imaging (MRI); with 58.3% aware intravenous gadolinium can cause nephrogenic systemic fibrosis and 79.4% aware of potential injury from metallic projectiles. 40.4% indicated that non-radiologist clinicians in specific medical specialties interpret their respective imaging studies at least as accurately as corresponding subspecialty radiologists. Other results include student opinions regarding teleradiology, radiologist lifestyle, and compensation. Fourth-year medical students recognize the importance of radiology but are poorly informed regarding radiation safety, MRI safety, and ACR Appropriateness Criteria, despite 34.9% having a dedicated rotation. This highlights the need for adoption of the Alliance of Medical Student Educators in Radiology curriculum. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  20. Mobile technology in radiology resident education.

    PubMed

    Korbage, Aiham C; Bedi, Harprit S

    2012-06-01

    The authors hypothesized that ownership of a mobile electronic device would result in more time spent learning radiology. Current trends in radiology residents' studying habits, their use of electronic and printed radiology learning resources, and how much of the funds allotted to them are being used toward printed vs electronic education tools were assessed in this study. A survey study was conducted among radiology residents across the United States from June 13 to July 5, 2011. Program directors listed in the Association of Program Directors in Radiology e-mail list server received an e-mail asking for residents to participate in an online survey. The questionnaire consisted of 12 questions and assessed the type of institution, the levels of training of the respondents, and book funds allocated to residents. It also assessed the residents' study habits, access to portable devices, and use of printed and electronic radiology resources. Radiology residents are adopters of new technologies, with 74% owning smart phones and 37% owning tablet devices. Respondents spend nearly an equal amount of time learning radiology from printed textbooks as they do from electronic resources. Eighty-one percent of respondents believe that they would spend more time learning radiology if provided with tablet devices. There is considerable use of online and electronic resources and mobile devices among the current generation of radiology residents. Benefits, such as more study time, may be obtained by radiology programs that incorporate tablet devices into the education of their residents. Copyright © 2012 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  1. Image-Directed Fine-needle Aspiration Biopsy of the Thyroid with Safety-engineered Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sibbitt, Randy R., E-mail: THESIBB2@aol.com; Palmer, Dennis J., E-mail: lyonscreek@aol.com; Sibbitt, Wilmer L., E-mail: wsibbitt@salud.unm.edu

    2011-10-15

    Purpose: The purpose of the present study was to integrate safety-engineered devices into outpatient fine-needle aspiration (FNA) biopsy of the thyroid in an interventional radiology practice. Materials and Methods: The practice center is a tertiary referral center for image-directed FNA thyroid biopsies in difficult patients referred by the primary care physician, endocrinologist, or otolaryngologist. As a departmental quality of care and safety improvement program, we instituted integration of safety devices into our thyroid biopsy procedures and determined the effect on outcome (procedural pain, diagnostic biopsies, inadequate samples, complications, needlesticks to operator, and physician satisfaction) before institution of safety devices (54more » patients) and after institution of safety device implementation (56 patients). Safety devices included a patient safety technology-the mechanical aspirating syringe (reciprocating procedure device), and a health care worker safety technology (antineedlestick safety needle). Results: FNA of thyroid could be readily performed with the safety devices. Safety-engineered devices resulted in a 49% reduction in procedural pain scores (P < 0.0001), a 56% reduction in significant pain (P < 0.002), a 21% increase in operator satisfaction (P < 0.0001), and a 5% increase in diagnostic specimens (P = 0.5). No needlesticks to health care workers or patient injuries occurred during the study. Conclusions: Safety-engineered devices to improve both patient and health care worker safety can be successfully integrated into diagnostic FNA of the thyroid while maintaining outcomes and improving safety.« less

  2. Radiology Technician (AFSC 90370).

    ERIC Educational Resources Information Center

    Sobczak, James

    This five-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for radiology technicians. Covered in the individual volumes are radiographic fundamentals (x-ray production; primary beams; exposure devices; film, film holders, and darkrooms; control of film quality; and environmental safety);…

  3. Practical Implications for an Effective Radiology Residency Quality Improvement Program for Milestone Assessment.

    PubMed

    Leddy, Rebecca; Lewis, Madelene; Ackerman, Susan; Hill, Jeanne; Thacker, Paul; Matheus, Maria; Tipnis, Sameer; Gordon, Leonie

    2017-01-01

    Utilization of a radiology resident-specific quality improvement (QI) program and curriculum based on the Accreditation Council for Graduate Medical Education (ACGME) milestones can enable a program's assessment of the systems-based practice component and prepare residents for QI implementation post graduation. This article outlines the development process, curriculum, QI committee formation, and resident QI project requirements of one institution's designated radiology resident QI program. A method of mapping the curriculum to the ACGME milestones and assessment of resident competence by postgraduate year level is provided. Sample projects, challenges to success, and lessons learned are also described. Survey data of current trainees and alumni about the program reveal that the majority of residents and alumni responders valued the QI curriculum and felt comfortable with principles and understanding of QI. The most highly valued aspect of the program was the utilization of a resident education committee. The majority of alumni responders felt the residency quality curriculum improved understanding of QI, assisted with preparation for the American Board of Radiology examination, and prepared them for QI in their careers. In addition to the survey results, outcomes of resident project completion and resident scholarly activity in QI are evidence of the success of this program. It is hoped that this description of our experiences with a radiology resident QI program, in accordance with the ACGME milestones, may facilitate the development of successful QI programs in other diagnostic radiology residencies. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  4. 30 CFR 57.15006 - Protective equipment and clothing for hazards and irritants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and irritants. 57.15006 Section 57.15006 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL... environment, chemical hazards, radiological hazards, or mechancial irritants are encountered in a manner...

  5. 30 CFR 57.15006 - Protective equipment and clothing for hazards and irritants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and irritants. 57.15006 Section 57.15006 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL... environment, chemical hazards, radiological hazards, or mechancial irritants are encountered in a manner...

  6. 30 CFR 57.15006 - Protective equipment and clothing for hazards and irritants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and irritants. 57.15006 Section 57.15006 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL... environment, chemical hazards, radiological hazards, or mechancial irritants are encountered in a manner...

  7. 30 CFR 57.15006 - Protective equipment and clothing for hazards and irritants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and irritants. 57.15006 Section 57.15006 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL... environment, chemical hazards, radiological hazards, or mechancial irritants are encountered in a manner...

  8. 30 CFR 57.15006 - Protective equipment and clothing for hazards and irritants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and irritants. 57.15006 Section 57.15006 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL... environment, chemical hazards, radiological hazards, or mechancial irritants are encountered in a manner...

  9. Dental Radiology I Student Guide [and Instructor Guide].

    ERIC Educational Resources Information Center

    Fox Valley Technical Coll., Appleton, WI.

    The dental radiology student and instructor guides provide instruction in the following units: (1) x-ray physics; (2) x-ray production; (3) radiation health and safety; (4) radiographic anatomy and pathology; (5) darkroom setup and chemistry; (6) bisecting angle technique; (7) paralleling technique; (8) full mouth survey technique--composition and…

  10. Evaluation of Stress and a Stress-Reduction Program Among Radiologic Technologists.

    PubMed

    Reingold, Lynn

    2015-01-01

    To investigate stress levels and causes of stress among radiologic technologists and determine whether an intervention could reduce stress in a selected radiologic technologist population. Demographic characteristics and data on preintervention stress sources and levels were collected through Internet-based questionnaires. A 6-week, self-administered, mindfulness-based stress-reduction program was conducted as a pilot intervention with 42 radiologic technologists from the Veterans Administration Medical Center. Data also were collected postintervention. Identified sources of stress were compared with findings from previous studies. Some radiologic technologists experienced improvement in their perceptions of stress after the intervention. Sources of stress for radiologic technologists were similar to those shown in earlier research, including inconsistent management, poor management communication, conflicting demands, long work hours, excessive workloads, lack of work breaks, and time pressures. The mindfulness-based stress-reduction program is an example of an inexpensive method that could improve personal well-being, reduce work errors, improve relationships in the workplace, and increase job satisfaction. More research is needed to determine the best type of intervention for stress reduction in a larger radiologic technologist population.

  11. Radiation protection program for early detection of breast cancer in a mammography facility

    NASA Astrophysics Data System (ADS)

    Villagomez Casimiro, Mariana; Ruiz Trejo, Cesar; Espejo Fonseca, Ruby

    2014-11-01

    Mammography is the best tool for early detection of Breast Cancer. In this diagnostic radiology modality it is necessary to establish the criteria to ensure the proper use and operation of the equipment used to obtain mammographic images in order to contribute to the safe use of ionizing radiation. The aim of the work was to implement at FUCAM-AC the radiation protection program which must be established for patients and radiation workers according to Mexican standards [1-4]. To achieve this goal, radiation protection and quality control manuals were elaborated [5]. Furthermore, a quality control program (QCP) in the mammography systems (analog/digital), darkroom included, has been implemented. Daily sensitometry, non-variability of the image quality, visualizing artifacts, revision of the equipment mechanical stability, compression force and analysis of repetition studies are some of the QCP routine tests that must be performed by radiological technicians of this institution as a set of actions to ensure the protection of patients. Image quality and patients dose assessment were performed on 4 analog equipment installed in 2 mobile units. In relation to dose assessment, all equipment passed the acceptance criteria (<3 mGy per projection). The image quality test showed that most images (70%)- presented artifacts. A brief summary of the results of quality control tests applied to the equipment and film processor are presented. To maintain an adequate level of quality and safety at FUCAM-AC is necessary that the proposed radiation protection program in this work is applied.

  12. Does gender impact upon application rejection rate among Canadian radiology residency applicants?

    PubMed

    Baerlocher, Mark O; Walker, Michelle

    2005-10-01

    To determine if and how gender ratios have changed within Canadian radiology, and to determine if gender discrimination occurs at the level of the radiology resident selection committee. The Canadian Medical Association, Canadian Association of Radiologists, Canadian Institute for Health Information, Royal College of Physicians and Surgeons of Canada, and Canadian Residency Matching Service provided gender-specific data. We compared the proportion of female applicants who ranked a radiology program as their top choice and were rejected from any radiology program with the corresponding proportion for male applicants. The numbers of women and men being awarded an MD from a Canadian university equalized nearly a decade ago. Women continue to be numerically underrepresented among practicing radiologists; however, the proportion of women continues to increase so that there is 1 female radiologist in practice to every 3 male radiologists in practice in 2005. More male medical students ranked a radiology residency training program as their top choice in the residency match; however, of those who did, they were as likely as women to be rejected from a radiology residency training program. Grouping all female and male graduating medical students participating in the residency match and ranking a radiology residency as their top choice between 1993 and 2004, the odds of men being rejected were 1.4 times (95% CI 0.99-1.9, p = 0.07) greater than for women. There continues to be more men than women radiologists in practice; however, the female-to-male ratio continues to increase. Our data suggest that discrimination against female applicants at the level of radiology residency selection does not occur.

  13. INTERNATIONAL COOPERATION ON RADIOLOGICAL THREAT REDUCTION PROGRAMS IN RUSSIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landers, Christopher C.; Tatyrek, Aaron P.

    Since its inception in 2004, the United States Department of Energy’s Global Threat Reduction Initiative (GTRI) has provided the Russian Federation with significant financial and technical assistance to secure its highly vulnerable and dangerous radiological material. The three program areas of this assistance are the removal of radioisotope thermoelectric generators (RTG), the physical protection of vulnerable in-use radiological material of concern, and the recovery of disused or abandoned radiological material of concern. Despite the many successes of the GTRI program in Russia, however, there is still a need for increased international cooperation in these efforts. Furthermore, concerns exist over howmore » the Russian government will ensure that the security of its radiological materials provided through GTRI will be sustained. This paper addresses these issues and highlights the successes of GTRI efforts and ongoing activities.« less

  14. General Employee Training Live, Course 15503

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabel, Daniel Glen; Hughes, Heather

    This training at Los Alamos National Laboratory contains the following sections: Introduction to the Laboratory, Institutional Quality Assurance, Facilities, Policies, Procedures, and Other Requirements, Safety Expectations, Worker Protection: Occupational Safety and Health, Industrial Hygiene and Safety, Lockout/Tagout, General Employee Radiological Training, Fire Protection, Security, Emergency Operations, Occupational Health, and Environment.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The role of the Radiation Safety Officer at a medical facility can be complicated. The complexity of the position is based on the breadth of services provided at the institution and the nature of the radioactive materials license. Medical practices are constantly changing and the use of ionizing radiation continues to rise in this area. Some of the newer medical applications involving radiation have unique regulatory and safety issues that must be addressed. Oversight of the uses of radiation start at the local level (radiation safety officer, radiation safety committee) and are heavily impacted by outside agencies (i.e. Nuclear Regulatorymore » Commission, State Radiologic Health, The Joint Commission (TJC), etc). This session will provide both an overview of regulatory oversight and essential compliance practices as well as practical ways to assess and introduce some of the new applications utilizing radioactive materials into your medical facility. Learning Objectives: Regulatory Compliance and Safety with New Radiotherapies: Spheres and Ra-223 (Lance Phillips) Understand the radioactive materials license amendment process to add new radiotherapies (i.e., SIR-Spheres, Therasphere, Xofigo). Understand the AU approval process for microspheres and Xofigo. Examine the training and handling requirements for new procedures. Understand the process involved with protocol development, SOP in order to define roles and responsibilities. The RSO and The RSC: Challenges and Opportunities (Colin Dimock) Understand how to form an effective Committee. Examine what the Committee does for the Program and the RSO. Understand the importance of Committee engagement. Discuss the balance of the complimentary roles of the RSO and the Committee. The Alphabet Soup of Regulatory Compliance: Being Prepared for Inspections (Linda Kroger) Recognize the various regulatory bodies and organizations with oversight or impact in Nuclear Medicine, Radiology and Radiation Oncology. Examine 10CFR35 requirements as they relate to the everyday practice of Nuclear Medicine and Radiation Oncology. Understand the nature of available guidance documents (e.g., NUREG 1556). Examine the commonalities between TJC and CMS preparedness.« less

  16. MO-AB-201-02: The RSO and The RSC: Challenges and Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimock, C.

    2015-06-15

    The role of the Radiation Safety Officer at a medical facility can be complicated. The complexity of the position is based on the breadth of services provided at the institution and the nature of the radioactive materials license. Medical practices are constantly changing and the use of ionizing radiation continues to rise in this area. Some of the newer medical applications involving radiation have unique regulatory and safety issues that must be addressed. Oversight of the uses of radiation start at the local level (radiation safety officer, radiation safety committee) and are heavily impacted by outside agencies (i.e. Nuclear Regulatorymore » Commission, State Radiologic Health, The Joint Commission (TJC), etc). This session will provide both an overview of regulatory oversight and essential compliance practices as well as practical ways to assess and introduce some of the new applications utilizing radioactive materials into your medical facility. Learning Objectives: Regulatory Compliance and Safety with New Radiotherapies: Spheres and Ra-223 (Lance Phillips) Understand the radioactive materials license amendment process to add new radiotherapies (i.e., SIR-Spheres, Therasphere, Xofigo). Understand the AU approval process for microspheres and Xofigo. Examine the training and handling requirements for new procedures. Understand the process involved with protocol development, SOP in order to define roles and responsibilities. The RSO and The RSC: Challenges and Opportunities (Colin Dimock) Understand how to form an effective Committee. Examine what the Committee does for the Program and the RSO. Understand the importance of Committee engagement. Discuss the balance of the complimentary roles of the RSO and the Committee. The Alphabet Soup of Regulatory Compliance: Being Prepared for Inspections (Linda Kroger) Recognize the various regulatory bodies and organizations with oversight or impact in Nuclear Medicine, Radiology and Radiation Oncology. Examine 10CFR35 requirements as they relate to the everyday practice of Nuclear Medicine and Radiation Oncology. Understand the nature of available guidance documents (e.g., NUREG 1556). Examine the commonalities between TJC and CMS preparedness.« less

  17. MO-AB-201-03: The Alphabet Soup of Regulatory Compliance: Being Prepared for Inspections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroger, L.

    2015-06-15

    The role of the Radiation Safety Officer at a medical facility can be complicated. The complexity of the position is based on the breadth of services provided at the institution and the nature of the radioactive materials license. Medical practices are constantly changing and the use of ionizing radiation continues to rise in this area. Some of the newer medical applications involving radiation have unique regulatory and safety issues that must be addressed. Oversight of the uses of radiation start at the local level (radiation safety officer, radiation safety committee) and are heavily impacted by outside agencies (i.e. Nuclear Regulatorymore » Commission, State Radiologic Health, The Joint Commission (TJC), etc). This session will provide both an overview of regulatory oversight and essential compliance practices as well as practical ways to assess and introduce some of the new applications utilizing radioactive materials into your medical facility. Learning Objectives: Regulatory Compliance and Safety with New Radiotherapies: Spheres and Ra-223 (Lance Phillips) Understand the radioactive materials license amendment process to add new radiotherapies (i.e., SIR-Spheres, Therasphere, Xofigo). Understand the AU approval process for microspheres and Xofigo. Examine the training and handling requirements for new procedures. Understand the process involved with protocol development, SOP in order to define roles and responsibilities. The RSO and The RSC: Challenges and Opportunities (Colin Dimock) Understand how to form an effective Committee. Examine what the Committee does for the Program and the RSO. Understand the importance of Committee engagement. Discuss the balance of the complimentary roles of the RSO and the Committee. The Alphabet Soup of Regulatory Compliance: Being Prepared for Inspections (Linda Kroger) Recognize the various regulatory bodies and organizations with oversight or impact in Nuclear Medicine, Radiology and Radiation Oncology. Examine 10CFR35 requirements as they relate to the everyday practice of Nuclear Medicine and Radiation Oncology. Understand the nature of available guidance documents (e.g., NUREG 1556). Examine the commonalities between TJC and CMS preparedness.« less

  18. Strengths and Deficiencies in the Content of US Radiology Private Practices' Websites.

    PubMed

    Johnson, Evan J; Doshi, Ankur M; Rosenkrantz, Andrew B

    2017-03-01

    The Internet provides a potentially valuable mechanism for radiology practices to communicate with patients and enhance the patient experience. The aim of this study was to assess the websites of US radiology private practices, with attention to the frequency of content of potential patient interest. The 50 largest private practice radiology facilities in the United States were identified from RadiologyBusiness.com. Websites were reviewed for information content and functionality. Content regarding radiologists' names, medical schools, residencies, fellowships, photographs, and board certification status; contact for billing questions; and ability to make online payments was present on 80% to 98% of sites. Content regarding examination preparation, contrast use, examination duration, description of examination experience, scheduling information, directions, privacy policy, radiologists' role in interpretation, and ACR accreditation was present on 60% to 78%. Content regarding accepted insurers, delivery of results to referrers, report turnaround times, radiologists' years of experience, radiation safety, and facility hours was present on 40% to 58%. Content regarding technologist certification, registration forms, instructions for requesting a study on disc, educational videos, and patient testimonials was present on 20% to 38%. Content regarding examination prices, patient satisfaction scores, peer review, online scheduling, online report and image access, and parking was present on <20%. Radiology practices' websites most frequently provided information regarding their radiologists' credentials, as well as billing and payment options. Information regarding quality, safety, and the examination experience, as well as non-payment-related online functionality, was less common. These findings regarding the most common deficiencies may be useful for radiology practices in expanding their websites' content, thereby improving communication and potentially the patient experience. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  19. Medical student knowledge regarding radiology before and after a radiological anatomy module: implications for vertical integration and self-directed learning.

    PubMed

    Murphy, Kevin P; Crush, Lee; O'Malley, Eoin; Daly, Fergus E; O'Tuathaigh, Colm M P; O'Connor, Owen J; Cryan, John F; Maher, Michael M

    2014-10-01

    To examine the impact that anatomy-focused radiology teaching has on non-examined knowledge regarding radiation safety and radiology as a specialty. First-year undergraduate medical students completed surveys prior to and after undertaking the first-year anatomy programme that incorporates radiological anatomy. Students were asked opinions on preferred learning methodology and tested on understanding of radiology as a specialty and radiation safety. Pre-module and post-module response rates were 93 % (157/168) and 85 % (136/160), respectively. Pre-module and post-module, self-directed learning (SDL) ranked eighth (of 11) for preferred gross-anatomy teaching formats. Correct responses regarding radiologist/radiographer roles varied from 28-94 % on 16 questions with 4/16 significantly improving post-module. Identification of modalities that utilise radiation significantly improved for five of eight modalities post-module but knowledge regarding relative amount of modality-specific radiation use was variable pre-module and post-module. SDL is not favoured as an anatomy teaching method. Exposure of students to a radiological anatomy module delivered by senior clinical radiologists improved basic knowledge regarding ionising radiation use, but there was no improvement in knowledge regarding radiation exposure relative per modality. A possible explanation is that students recall knowledge imparted in didactic lectures but do little reading around the subject when the content is not examined. • Self-directed learning is not favoured as a gross anatomy teaching format amongst medical students. • An imaging anatomy-focused module improved basic knowledge regarding ionising radiation use. • Detailed knowledge of modality-specific radiation exposure remained suboptimal post-module. • Knowledge of roles within a clinical radiology department showed little change post-module.

  20. Design and implementation of wireless dose logger network for radiological emergency decision support system.

    PubMed

    Gopalakrishnan, V; Baskaran, R; Venkatraman, B

    2016-08-01

    A decision support system (DSS) is implemented in Radiological Safety Division, Indira Gandhi Centre for Atomic Research for providing guidance for emergency decision making in case of an inadvertent nuclear accident. Real time gamma dose rate measurement around the stack is used for estimating the radioactive release rate (source term) by using inverse calculation. Wireless gamma dose logging network is designed, implemented, and installed around the Madras Atomic Power Station reactor stack to continuously acquire the environmental gamma dose rate and the details are presented in the paper. The network uses XBee-Pro wireless modules and PSoC controller for wireless interfacing, and the data are logged at the base station. A LabView based program is developed to receive the data, display it on the Google Map, plot the data over the time scale, and register the data in a file to share with DSS software. The DSS at the base station evaluates the real time source term to assess radiation impact.

  1. Design and implementation of wireless dose logger network for radiological emergency decision support system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopalakrishnan, V.; Baskaran, R.; Venkatraman, B.

    A decision support system (DSS) is implemented in Radiological Safety Division, Indira Gandhi Centre for Atomic Research for providing guidance for emergency decision making in case of an inadvertent nuclear accident. Real time gamma dose rate measurement around the stack is used for estimating the radioactive release rate (source term) by using inverse calculation. Wireless gamma dose logging network is designed, implemented, and installed around the Madras Atomic Power Station reactor stack to continuously acquire the environmental gamma dose rate and the details are presented in the paper. The network uses XBee–Pro wireless modules and PSoC controller for wireless interfacing,more » and the data are logged at the base station. A LabView based program is developed to receive the data, display it on the Google Map, plot the data over the time scale, and register the data in a file to share with DSS software. The DSS at the base station evaluates the real time source term to assess radiation impact.« less

  2. 21 CFR 1000.55 - Recommendation for quality assurance programs in diagnostic radiology facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Recommendation for quality assurance programs in... Recommendations § 1000.55 Recommendation for quality assurance programs in diagnostic radiology facilities. (a) Applicability. Quality assurance programs as described in paragraph (c) of this section are recommended for all...

  3. 21 CFR 1000.55 - Recommendation for quality assurance programs in diagnostic radiology facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Recommendation for quality assurance programs in... Recommendations § 1000.55 Recommendation for quality assurance programs in diagnostic radiology facilities. (a) Applicability. Quality assurance programs as described in paragraph (c) of this section are recommended for all...

  4. 21 CFR 1000.55 - Recommendation for quality assurance programs in diagnostic radiology facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Recommendation for quality assurance programs in... Recommendations § 1000.55 Recommendation for quality assurance programs in diagnostic radiology facilities. (a) Applicability. Quality assurance programs as described in paragraph (c) of this section are recommended for all...

  5. AUTOMATED RADIOLOGICAL MONITORING AT A RUSSIAN MINISTRY OF DEFENCE NAVAL SITE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MOSKOWITZ,P.D.; POMERVILLE,J.; GAVRILOV,S.

    2001-02-25

    The Arctic Military Environmental Cooperation (AMEC) Program is a cooperative effort between the military establishments of the Kingdom of Norway, the Russian Federation, and the US. This paper discusses joint activities conducted over the past year among Norwegian, Russian, and US technical experts on a project to develop, demonstrate and implement automated radiological monitoring at Russian Navy facilities engaged in the dismantlement of nuclear-powered strategic ballistic missile launching submarines. Radiological monitoring is needed at these facilities to help protect workers engaged in the dismantlement program and the public living within the footprint of routine and accidental radiation exposure areas. Bymore » providing remote stand-alone monitoring, the Russian Navy will achieve added protection due to the defense-in-depth strategy afforded by local (at the site), regional (Kola) and national-level (Moscow) oversight. The system being implemented at the Polyaminsky Russian Naval Shipyard was developed from a working model tested at the Russian Institute for Nuclear Safety, Moscow, Russia. It includes Russian manufactured terrestrial and underwater gamma detectors, smart controllers for graded sampling, radio-modems for offsite transmission of the data, and a data fusion/display system: The data fusion/display system is derived from the Norwegian Picasso AMEC Environmental Monitoring software package. This computer package allows monitoring personnel to review the real-time and historical status of monitoring at specific sites and objects and to establish new monitoring protocols as required, for example, in an off-normal accident situation. Plans are being developed to implement the use of this system at most RF Naval sites handling spent nuclear fuel.« less

  6. AUTOMATED RADIOLOGICAL MONITORING AT A RUSSIAN MINISTRY OF DEFENSE NAVAL SITE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MOSKOWITZ,P.D.; POMERVILLE,J.; GAVRILOV,S.

    2001-02-25

    The Arctic Military Environmental Cooperation (AMEC) Program is a cooperative effort between the military establishments of the Kingdom of Norway, the Russian Federation, and the US. This paper discusses joint activities conducted over the past year among Norwegian, Russian, and US technical experts on a project to develop, demonstrate and implement automated radiological monitoring at Russian Navy facilities engaged in the dismantlement of nuclear-powered strategic ballistic missile launching submarines. Radiological monitoring is needed at these facilities to help protect workers engaged in the dismantlement program and the public living within the footprint of routine and accidental radiation exposure areas. Bymore » providing remote stand-alone monitoring, the Russian Navy will achieve added protection due to the defense-in-depth strategy afforded by local (at the site), regional (Kola) and national-level (Moscow) oversight. The system being implemented at the Polyaminsky Russian Naval Shipyard was developed from a working model tested at the Russian Institute for Nuclear Safety, Moscow, Russia. It includes Russian manufactured terrestrial and underwater gamma detectors, smart controllers for graded sampling, radio-modems for offsite transmission of the data, and a data fusion/display system: The data fusion/display system is derived from the Norwegian Picasso AMEC Environmental Monitoring software package. This computer package allows monitoring personnel to review the real-time and historical status of monitoring at specific sites and objects and to establish new monitoring protocols as required, for example, in an off-normal accident situation. Plans are being developed to implement the use of this system at most RF Naval sites handling spent nuclear fuel.« less

  7. 3D simulation as a tool for improving the safety culture during remediation work at Andreeva Bay.

    PubMed

    Chizhov, K; Sneve, M K; Szőke, I; Mazur, I; Mark, N K; Kudrin, I; Shandala, N; Simakov, A; Smith, G M; Krasnoschekov, A; Kosnikov, A; Kemsky, I; Kryuchkov, V

    2014-12-01

    Andreeva Bay in northwest Russia hosts one of the former coastal technical bases of the Northern Fleet. Currently, this base is designated as the Andreeva Bay branch of Northwest Center for Radioactive Waste Management (SevRAO) and is a site of temporary storage (STS) for spent nuclear fuel (SNF) and other radiological waste generated during the operation and decommissioning of nuclear submarines and ships. According to an integrated expert evaluation, this site is the most dangerous nuclear facility in northwest Russia. Environmental rehabilitation of the site is currently in progress and is supported by strong international collaboration. This paper describes how the optimization principle (ALARA) has been adopted during the planning of remediation work at the Andreeva Bay STS and how Russian-Norwegian collaboration greatly contributed to ensuring the development and maintenance of a high level safety culture during this process. More specifically, this paper describes how integration of a system, specifically designed for improving the radiological safety of workers during the remediation work at Andreeva Bay, was developed in Russia. It also outlines the 3D radiological simulation and virtual reality based systems developed in Norway that have greatly facilitated effective implementation of the ALARA principle, through supporting radiological characterisation, work planning and optimization, decision making, communication between teams and with the authorities and training of field operators.

  8. What's New in 10 Years? A Revised Cardiothoracic Curriculum for Diagnostic Radiology Residency with Goals and Objectives Related to General Competencies.

    PubMed

    Nguyen, Elsie T; Ackman, Jeanne B; Rajiah, Prabhakar; Little, Brent; Wu, Carol; Bueno, Juliana M; Gilman, Mathew D; Christensen, Jared D; Madan, Rachna; Laroia, Archana T; Lee, Christopher; Kanne, Jeffrey P; Collins, Jannette

    2016-07-01

    This is a cardiothoracic curriculum document for radiology residents meant to serve not only as a study guide for radiology residents but also as a teaching and curriculum reference for radiology educators and radiology residency program directors. This document represents a revision of a cardiothoracic radiology resident curriculum that was published 10 years ago in Academic Radiology. The sections that have been significantly revised, expanded, or added are (1) lung cancer screening, (2) lung cancer genomic profiling, (3) lung adenocarcinoma revised nomenclature, (4) lung biopsy technique, (5) nonvascular thoracic magnetic resonance, (6) updates to the idiopathic interstitial pneumonias, (7) cardiac computed tomography updates, (8) cardiac magnetic resonance updates, and (9) new and emerging techniques in cardiothoracic imaging. This curriculum was written and endorsed by the Education Committee of the Society of Thoracic Radiology. This curriculum operates in conjunction with the Accreditation Council for Graduate Medical Education (ACGME) milestones project that serves as a framework for semiannual evaluation of resident physicians as they progress through their training in an ACGME-accredited residency or fellowship programs. This cardiothoracic curriculum document is meant to serve not only as a more detailed guide for radiology trainees, educators, and program directors but also complementary to and guided by the ACGME milestones. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  9. Disruption of Radiologist Workflow.

    PubMed

    Kansagra, Akash P; Liu, Kevin; Yu, John-Paul J

    2016-01-01

    The effect of disruptions has been studied extensively in surgery and emergency medicine, and a number of solutions-such as preoperative checklists-have been implemented to enforce the integrity of critical safety-related workflows. Disruptions of the highly complex and cognitively demanding workflow of modern clinical radiology have only recently attracted attention as a potential safety hazard. In this article, we describe the variety of disruptions that arise in the reading room environment, review approaches that other specialties have taken to mitigate workflow disruption, and suggest possible solutions for workflow improvement in radiology. Copyright © 2015 Mosby, Inc. All rights reserved.

  10. Manned space flight nuclear system safety. Volume 3: Reactor system preliminary nuclear safety analysis. Part 3: Nuclear Safety Analysis Document (NSAD)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Nuclear safety analysis as applied to a space base mission is presented. The nuclear safety analysis document summarizes the mission and the credible accidents/events which may lead to nuclear hazards to the general public. The radiological effects and associated consequences of the hazards are discussed in detail. The probability of occurrence is combined with the potential number of individuals exposed to or above guideline values to provide a measure of accident and total mission risk. The overall mission risk has been determined to be low with the potential exposure to or above 25 rem limited to less than 4 individuals per every 1000 missions performed. No radiological risk to the general public occurs during the prelaunch phase at KSC. The most significant risks occur from prolonged exposure to reactor debris following land impact generally associated with the disposal phase of the mission where fission product inventories can be high.

  11. Distribution of scholarly publications among academic radiology departments.

    PubMed

    Morelli, John N; Bokhari, Danial

    2013-03-01

    The aim of this study was to determine whether the distribution of publications among academic radiology departments in the United States is Gaussian (ie, the bell curve) or Paretian. The search affiliation feature of the PubMed database was used to search for publications in 3 general radiology journals with high Impact Factors, originating at radiology departments in the United States affiliated with residency training programs. The distribution of the number of publications among departments was examined using χ(2) test statistics to determine whether it followed a Pareto or a Gaussian distribution more closely. A total of 14,219 publications contributed since 1987 by faculty members in 163 departments with residency programs were available for assessment. The data acquired were more consistent with a Pareto (χ(2) = 80.4) than a Gaussian (χ(2) = 659.5) distribution. The mean number of publications for departments was 79.9 ± 146 (range, 0-943). The median number of publications was 16.5. The majority (>50%) of major radiology publications from academic departments with residency programs originated in <10% (n = 15 of 178) of such departments. Fifteen programs likewise produced no publications in the surveyed journals. The number of publications in journals with high Impact Factors published by academic radiology departments more closely fits a Pareto rather than a normal distribution. Copyright © 2013 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  12. Radiological protection, safety and security issues in the industrial and medical applications of radiation sources

    NASA Astrophysics Data System (ADS)

    Vaz, Pedro

    2015-11-01

    The use of radiation sources, namely radioactive sealed or unsealed sources and particle accelerators and beams is ubiquitous in the industrial and medical applications of ionizing radiation. Besides radiological protection of the workers, members of the public and patients in routine situations, the use of radiation sources involves several aspects associated to the mitigation of radiological or nuclear accidents and associated emergency situations. On the other hand, during the last decade security issues became burning issues due to the potential malevolent uses of radioactive sources for the perpetration of terrorist acts using RDD (Radiological Dispersal Devices), RED (Radiation Exposure Devices) or IND (Improvised Nuclear Devices). A stringent set of international legally and non-legally binding instruments, regulations, conventions and treaties regulate nowadays the use of radioactive sources. In this paper, a review of the radiological protection issues associated to the use of radiation sources in the industrial and medical applications of ionizing radiation is performed. The associated radiation safety issues and the prevention and mitigation of incidents and accidents are discussed. A comprehensive discussion of the security issues associated to the global use of radiation sources for the aforementioned applications and the inherent radiation detection requirements will be presented. Scientific, technical, legal, ethical, socio-economic issues are put forward and discussed.

  13. Improving Patient Safety: Avoiding Unread Imaging Exams in the National VA Enterprise Electronic Health Record.

    PubMed

    Bastawrous, Sarah; Carney, Benjamin

    2017-06-01

    In the current digital and filmless age of radiology, rates of unread radiology exams remain low, however, may still exist in unique environments. Veterans Affairs (VA) health care systems may experience higher rates of unread exams due to coexistence of Veterans Health Information Systems and Technology Architecture (VistA) imaging and commercial picture archiving and communication systems (PACS). The purpose of this patient safety initiative was to identify any unread exams and causes leading to unread exams. Following approval by departmental quality assurance committee, a comprehensive review was performed of all radiology exams within VistA imaging from July 1, 2009 to June 30, 2014 to identify unread radiology exams. Over the 5-year period, the total unread exam rate was calculated to be 0.17%, with the highest yearly unread exam rate of 0.25%. The leading majority of unread exam type was plain radiographs. Analysis revealed unfinished dictations, unassociated accession numbers, technologist errors, and inefficient radiologist work lists as top contributors to unread exams. Once unread radiology exams were discovered and the causes identified, valuable process changes were implemented within our department to ensure simultaneous tracking of all unread exams in VistA imaging as well as the commercial PACS.

  14. Continuous quality improvement programs provide new opportunities to drive value innovation initiatives in hospital-based radiology practices.

    PubMed

    Steele, Joseph R; Schomer, Don F

    2009-07-01

    Imaging services constitute a huge portion of the of the total dollar investment within the health care enterprise. Accordingly, this generates competition among medical specialties organized along service lines for their pieces of the pie and increased scrutiny from third-party payers and government regulators. These market and political forces create challenge and opportunity for a hospital-based radiology practice. Clearly, change that creates or builds greater value for patients also creates sustainable competitive advantage for a radiology practice. The somewhat amorphous concept of quality constitutes a significant value driver for innovation in this scenario. Quality initiatives and programs seek to define and manage this amorphous concept and provide tools for a radiology practice to create or build more value. Leadership and the early adoption of these inevitable programs by a radiology practice strengthens relationships with hospital partners and slows the attrition of imaging service lines to competitors.

  15. Radiology Teacher: a free, Internet-based radiology teaching file server.

    PubMed

    Talanow, Roland

    2009-12-01

    Teaching files are an essential ingredient in residency education. The online program Radiology Teacher was developed to allow the creation of interactive and customized teaching files in real time. Online access makes it available anytime and anywhere, and it is free of charge, user tailored, and easy to use. No programming skills, additional plug-ins, or installations are needed, allowing its use even on protected intranets. Special effects for enhancing the learning experience as well as the linking and the source code are created automatically by the program. It may be used in different modes by individuals and institutions to share cases from multiple authors in a single database. Radiology Teacher is an easy-to-use automatic teaching file program that may enhance users' learning experiences by offering different modes of user-defined presentations.

  16. A reference standard-based quality assurance program for radiology.

    PubMed

    Liu, Patrick T; Johnson, C Daniel; Miranda, Rafael; Patel, Maitray D; Phillips, Carrie J

    2010-01-01

    The authors have developed a comprehensive radiology quality assurance (QA) program that evaluates radiology interpretations and procedures by comparing them with reference standards. Performance metrics are calculated and then compared with benchmarks or goals on the basis of published multicenter data and meta-analyses. Additional workload for physicians is kept to a minimum by having trained allied health staff members perform the comparisons of radiology reports with the reference standards. The performance metrics tracked by the QA program include the accuracy of CT colonography for detecting polyps, the false-negative rate for mammographic detection of breast cancer, the accuracy of CT angiography detection of coronary artery stenosis, the accuracy of meniscal tear detection on MRI, the accuracy of carotid artery stenosis detection on MR angiography, the accuracy of parathyroid adenoma detection by parathyroid scintigraphy, the success rate for obtaining cortical tissue on ultrasound-guided core biopsies of pelvic renal transplants, and the technical success rate for peripheral arterial angioplasty procedures. In contrast with peer-review programs, this reference standard-based QA program minimizes the possibilities of reviewer bias and erroneous second reviewer interpretations. The more objective assessment of performance afforded by the QA program will provide data that can easily be used for education and management conferences, research projects, and multicenter evaluations. Additionally, such performance data could be used by radiology departments to demonstrate their value over nonradiology competitors to referring clinicians, hospitals, patients, and third-party payers. Copyright 2010 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  17. Radiation Protection in Canada

    PubMed Central

    Williams, N.

    1965-01-01

    The main emphasis of a provincial radiation protection program is on ionizing radiation produced by machines, although assistance is given to the Federal Radiation Protection Division in its program relating to radioactive substances. The basis for the Saskatchewan program of radiation protection is the Radiological Health Act 1961. An important provision of the Act is annual registration of radiation equipment. The design of the registration form encourages a “do-it-yourself” radiation and electrical safety inspection. Installations are inspected every two years by a radiation health officer. Two hundred and twenty-one deficiencies were found during inspection of 224 items of radiation equipment, the commonest being failure to use personal film badges. Insufficient filtration of the beam, inadequate limitation of the beam, and unnecessary exposure of operators were other common faults. Physicians have a responsibility to weigh the potential advantages against the hazards when requesting radiographic or fluoroscopic procedures. PMID:14282164

  18. Evolution of the Preliminary Clinical Year and the Case for a Categorical Diagnostic Radiology Residency.

    PubMed

    Pfeifer, Cory M

    2016-07-01

    While other specialties traditionally utilizing a segregated clinical internship year have slowly progressed toward integrated training curricula, diagnostic radiology has been slow to adopt this path. The aim of this study was to analyze the trends in stand-alone preliminary clinical years as well as the shift toward categorical residencies currently being undertaken in other specialties. Advantages of mimicking the trends of other specialties and current integrated radiology programs are discussed. The perception of diagnostic radiology as a competitive specialty is explored, and the prospect of change as a recruiting tool is examined. Data assimilated by the NRMP from 1994 through 2016 were processed and analyzed. The total number of postgraduate year (PGY) 1 preliminary year programs has remained relatively constant over the past 10 years despite a gradual increase in overall NRMP applicants. The proportion of these programs offered as a transitional year declined from 31% in 1994 to 20% in 2016. The proportion of categorical anesthesiology positions gradually rose from 43% in 2007 to 70% in 2016. The fraction of categorical neurology positions increased from 30% in 2007 to 59% in 2016. The percentage of diagnostic radiology programs beginning at the PGY 1 level has been relatively constant at 12% to 14% since 2007. Dermatology has increased advanced (PGY 2) positions while decreasing categorical (PGY 1) positions. Those matching in diagnostic radiology have performed at a high level compared with the composite NRMP average since 2007. In the 2015 match, there were 65 diagnostic radiology programs that did not fill all of their offered positions. Of the institutions housing these programs, only 22% of them had preliminary internal medicine or transitional year positions available after the match. In response to the evolving nature of health care and graduate medical education, other specialties are gradually shifting toward curricular structures that begin at the PGY 1 level. By considering such a transition, diagnostic radiology would be well served to position itself as a valuable clinical specialty while maintaining a lesser dependence on other specialties to train its physicians. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  19. Normal operation and maintenance safety lessons from the ITER US PbLi test blanket module program for a US FNSF and DEMO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. C. Cadwallader; C. P. C. Wong; M. Abdou

    2014-10-01

    A leading power reactor breeding blanket candidate for a fusion demonstration power plant (DEMO) being pursued by the US Fusion Community is the Dual Coolant Lead Lithium (DCLL) concept. The safety hazards associated with the DCLL concept as a reactor blanket have been examined in several US design studies. These studies identify the largest radiological hazards as those associated with the dust generation by plasma erosion of plasma blanket module first walls, oxidation of blanket structures at high temperature in air or steam, inventories of tritium bred in or permeating through the ferritic steel structures of the blanket module andmore » blanket support systems, and the 210Po and 203Hg produced in the PbLi breeder/coolant. What these studies lack is the scrutiny associated with a licensing review of the DCLL concept. An insight into this process was gained during the US participation in the International Thermonuclear Experimental Reactor (ITER) Test Blanket Module (TBM) Program. In this paper we discuss the lessons learned during this activity and make safety proposals for the design of a Fusion Nuclear Science Facility (FNSF) or a DEMO that employs a lead lithium breeding blanket.« less

  20. Practical solutions for staff recruitment & retention.

    PubMed

    Vander Hoek, N

    2001-01-01

    There are three essential topics for radiology managers to consider in light of persistent staffing shortages: support of the profession and educational programs, perks as recruitment tools and incentives as retention tools. Some activities that can help support departments and educational programs for radiologic technologists are job shadowing, training for volunteer services, advanced placement for school applicants, sponsoring an educational program or clinical training site, creating a positive work environment and supporting outreach projects geared to local high schools. Traditional perks used in recruitment efforts have included relocation assistance, travel and lodging expenses during the interview process, loan repayment, scholarships and sign-on bonuses. Some common incentives for retaining employees are tuition reimbursement, cross training, availability of educational resources, continuing education opportunities, professional development and incremental increases in salary. There are many other tools that can be used, such as career ladders, creating an environment conducive to teamwork or a more personal atmosphere and showcasing talents of various staff members. There is much overlap among these suggestions in support of the profession and educational programs, recruitment and retention of qualified staff radiologic technologists. Radiology managers can and should be creative in developing different programs to build loyalty and commitment to a radiology department.

  1. Feminist theoretical perspectives on ethics in radiology.

    PubMed

    Condren, Mary

    2009-07-01

    The substantive safety of radiological and other medical procedures can be radically reduced by unconscious factors governing scientific thought. In addition, the historical exclusion of women from these disciplines has possibly skewed their development in directions that now need to be addressed. This paper focuses on three such factors: gendered libidos that privilege risk taking over prevention, fragmented forms of knowledge that encourage displaced forms of responsibility and group dynamics that discourage critique of accepted practices and limit the definition of one's group. The substantive safety of the practice and scientific contribution of radiologists might be considerably enhanced were the focus to switch from radiology to diagnosis. Such enlargement might redefine the brief of radiologists towards preventing as well as curing; evaluating some non-invasive and low-tech options, adopting some inclusive paradigms of clinical ecology and enlarging group identities to include those currently excluded through geography or social class from participating in the benefits of science.

  2. A report on the current status of grand rounds in radiology residency programs in the United States.

    PubMed

    Yablon, Corrie M; Wu, Jim S; Slanetz, Priscilla J; Eisenberg, Ronald L

    2011-12-01

    A national needs assessment of radiology program directors was performed to characterize grand rounds (GR) programs, assess the perceived educational value of GR programs, and determine the impact of the recent economic downturn on GR. A 28-question survey was developed querying the organizational logistics of GR programs, types of speakers, content of talks, honoraria, types of speakers invited, response to the economic downturn, types of speaker interaction with residents, and perceived educational value of GR. Questions were in multiple-choice, yes-or-no, and five-point Likert-type formats. The survey was distributed to the program directors of all radiology residencies within the United States. Fifty-seven of 163 programs responded, resulting in a response rate of 36%. Thirty-eight programs (67%) were university residencies and 10 (18%) were university affiliated. Eighty-two percent of university and 60% of university-affiliated residencies had their own GR programs, while only 14% of community and no military residencies held GR. GR were held weekly in 18% of programs, biweekly in 8%, monthly in 42%, bimonthly in 16%, and less frequently than every 2 months in 16%. All 38 programs hosting GR reported a broad spectrum of presentations, including talks on medical education (66%), clinical and evidence-based medicine (55%), professionalism (45%), ethics (45%), quality assurance (34%), global health (26%), and resident presentations (26%). All programs invited speakers from outside the institution, but there was variability with regard to the frequency of visits and whether invited speakers were from out of town. As a result of recent economic events, one radiology residency (3%) completely canceled its GR program. Others decreased the number of speakers from outside their cities (40%) or decreased the number of speakers from within their own cities (16%). Honoraria were paid to speakers by 95% of responding programs. Most program directors (79%) who had their own GR programs either strongly agreed or agreed that GR are an essential component of any academic radiology department, and this opinion was shared by a majority of all respondents (68%). Almost all respondents (97%) either strongly agreed or agreed that general radiologic education of imaging subspecialists is valuable in an academic radiology department. A majority (65%) either strongly agreed or agreed that attendance at GR should be expected of all attending radiologists. GR programs among radiology residencies tend to have similar formats involving invited speakers, although the frequency, types of talks, and honoraria may vary slightly. Most programs value GR, and all programs integrate GR within resident education to some degree. The recent economic downturn has led to a decrease in the number of invited visiting speakers but not to a decrease in the amounts of honoraria. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  3. 77 FR 59001 - Fee for Services To Support FEMA's Offsite Radiological Emergency Preparedness Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-25

    ... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2012-0028] Fee for Services To Support FEMA's Offsite Radiological Emergency Preparedness Program AGENCY: Federal... Emergency Preparedness (REP) Program. DATES: This hourly rate is effective for FY 2014 (October 1, 2013, to...

  4. The Importance of Building and Enhancing Worldwide Industry Cooperation in the Areas of Radiological Protection, Waste Management and Decommissioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saint-Pierre, S.

    2006-07-01

    The slow or stagnant rate of nuclear power generation development in many developed countries over the last two decades has resulted in a significant shortage in the population of mid-career nuclear industry professionals. This shortage is even more pronounced in some specific areas of expertise such as radiological protection, waste management and decommissioning. This situation has occurred at a time when the renaissance of nuclear power and the globalization of the nuclear industry are steadily gaining momentum and when the industry's involvement in international and national debates in these three fields of expertise (and the industry's impact on these debates)more » is of vital importance. This paper presents the World Nuclear Association (WNA) approach to building and enhancing worldwide industry cooperation in radiological protection, waste management and decommissioning, which is manifested through the activities of the two WNA working groups on radiological protection (RPWG) and on waste management and decommissioning (WM and DWG). This paper also briefly describes the WNA's participatory role, as of summer 2005, in the International Atomic Energy Agency (IAEA) standard development committees on radiation safety (RASSC), waste safety (WASSC) and nuclear safety (NUSSC). This participation provides the worldwide nuclear industry with an opportunity to be part of IAEA's discussions on shaping changes to the control regime of IAEA safety standards. The review (and the prospect of a revision) of IAEA safety standards, which began in October 2005, makes this WNA participation and the industry ' s involvement at the national level timely and important. All of this excellent industry cooperation and team effort is done through 'collegial' exchanges between key industry experts, which help tackle important issues more effectively. The WNA is continuously looking to enhance its worldwide industry representation in these fields of expertise through the RPWG and WM and DWG. (authors)« less

  5. Educational treasures in radiology: a free online program for Radiology Boards preparation.

    PubMed

    Talanow, Roland

    2011-01-01

    An objective tool is desired, which optimally prepares for Radiology boards examination. Such program should prepare examinees with pertinent radiological contents and simulations as expected in the real examination. Many countries require written boards examinations for Radiology certification eligibility. No objective measure exists to tell if the examinee is ready to pass the exam or not. Time pressure and computer environment might be unfamiliar to examinees. Traditional preparation lectures don't simulate the "real" Radiology exam because they don't provide the special environment with multiple choice questions and timing. This online program consists of 4 parts. The entry section allows to create questions with additional fields for comprehensive information. Sections include Pediatrics/Mammography/GI/IR/Nucs/Thoracic/Musculoskeletal/GU/Neuro/Ultrasound/Cardiac/OB/GYN and Miscellaneous. Experienced radiologists and educators evaluate and release/delete these entries in the administrator section. In the exam section users can create (un)timed customized exams for individual needs and learning pace. Exams can either include all sections or only specific sections to gear learning towards areas with weaker performance. Comprehensive statistics unveil the user's strengths and weaknesses to help focussing on "weak" areas. In the search section a comprehensive search and review can be performed by searching the entire database for keywords/topics or only searching within specific sections. www.RadiologyBoards.org is a new working concept of Radiology boards preparation to detect and improve the examinee's weaknesses and finally to increase the examinee's confidence level for the final exam. It is beneficial for Radiology residents and also board certified radiologists to refresh/maintain radiological knowledge.

  6. A Model Curriculum for Multiskilled Education in the Radiologic Sciences.

    ERIC Educational Resources Information Center

    Jensen, Steven C.; Grey, Michael L.

    1995-01-01

    Explains how multiskilled cross-trained health professionals provide cost-effective health care. Outlines a baccalaureate program in radiologic science with specialization in radiology therapy, medical sonography, or advanced imaging. (SK)

  7. "I Just bought my residents iPads… now what?" The integration of mobile devices into radiology resident education.

    PubMed

    Bedi, Harprit S; Yucel, Edgar K

    2013-10-01

    This article describes how mobile technologies can improve the way we teach radiology and offers ideas to bridge the clinical gap with technology. Radiology programs across the country are purchasing iPads and other mobile devices for their residents. Many programs, however, do not have a concrete vision for how a mobile device can enhance the learning environment.

  8. MO-AB-201-01: Regulatory Compliance and Safety with New Radiotherapies: Spheres and Ra-223

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, L.

    2015-06-15

    The role of the Radiation Safety Officer at a medical facility can be complicated. The complexity of the position is based on the breadth of services provided at the institution and the nature of the radioactive materials license. Medical practices are constantly changing and the use of ionizing radiation continues to rise in this area. Some of the newer medical applications involving radiation have unique regulatory and safety issues that must be addressed. Oversight of the uses of radiation start at the local level (radiation safety officer, radiation safety committee) and are heavily impacted by outside agencies (i.e. Nuclear Regulatorymore » Commission, State Radiologic Health, The Joint Commission (TJC), etc). This session will provide both an overview of regulatory oversight and essential compliance practices as well as practical ways to assess and introduce some of the new applications utilizing radioactive materials into your medical facility. Learning Objectives: Regulatory Compliance and Safety with New Radiotherapies: Spheres and Ra-223 (Lance Phillips) Understand the radioactive materials license amendment process to add new radiotherapies (i.e., SIR-Spheres, Therasphere, Xofigo). Understand the AU approval process for microspheres and Xofigo. Examine the training and handling requirements for new procedures. Understand the process involved with protocol development, SOP in order to define roles and responsibilities. The RSO and The RSC: Challenges and Opportunities (Colin Dimock) Understand how to form an effective Committee. Examine what the Committee does for the Program and the RSO. Understand the importance of Committee engagement. Discuss the balance of the complimentary roles of the RSO and the Committee. The Alphabet Soup of Regulatory Compliance: Being Prepared for Inspections (Linda Kroger) Recognize the various regulatory bodies and organizations with oversight or impact in Nuclear Medicine, Radiology and Radiation Oncology. Examine 10CFR35 requirements as they relate to the everyday practice of Nuclear Medicine and Radiation Oncology. Understand the nature of available guidance documents (e.g., NUREG 1556). Examine the commonalities between TJC and CMS preparedness.« less

  9. Perceived barriers to online education by radiologic science educators.

    PubMed

    Kowalczyk, Nina K

    2014-01-01

    Radiologic science programs continue to adopt the use of blended online education in their curricula, with an increase in the use of online courses since 2009. However, perceived barriers to the use of online education formats persist in the radiologic science education community. An electronic survey was conducted to explore the current status of online education in the radiologic sciences and to identify barriers to providing online courses. A random sample of 373 educators from radiography, radiation therapy, and nuclear medicine technology educational programs accredited by the Joint Review Committee on Education in Radiologic Technology and Joint Review Committee on Educational Programs in Nuclear Medicine Technology was chosen to participate in this study. A qualitative analysis of self-identified barriers to online teaching was conducted. Three common themes emerged: information technology (IT) training and support barriers, student-related barriers, and institutional barriers. Online education is not prevalent in the radiologic sciences, in part because of the need for the clinical application of radiologic science course content, but online course activity has increased substantially in radiologic science education, and blended or hybrid course designs can effectively provide opportunities for student-centered learning. Further development is needed to increase faculty IT self-efficacy and to educate faculty regarding pedagogical methods appropriate for online course delivery. To create an excellent online learning environment, educators must move beyond technology issues and focus on providing quality educational experiences for students.

  10. Virtual environments simulation in research reactor

    NASA Astrophysics Data System (ADS)

    Muhamad, Shalina Bt. Sheik; Bahrin, Muhammad Hannan Bin

    2017-01-01

    Virtual reality based simulations are interactive and engaging. It has the useful potential in improving safety training. Virtual reality technology can be used to train workers who are unfamiliar with the physical layout of an area. In this study, a simulation program based on the virtual environment at research reactor was developed. The platform used for virtual simulation is 3DVia software for which it's rendering capabilities, physics for movement and collision and interactive navigation features have been taken advantage of. A real research reactor was virtually modelled and simulated with the model of avatars adopted to simulate walking. Collision detection algorithms were developed for various parts of the 3D building and avatars to restrain the avatars to certain regions of the virtual environment. A user can control the avatar to move around inside the virtual environment. Thus, this work can assist in the training of personnel, as in evaluating the radiological safety of the research reactor facility.

  11. DOE Partnerships with States, Tribes and Other Federal Programs Help Responders Prepare for Challenges Involving Transport of Radioactive Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsha Keister

    2001-02-01

    DOE Partnerships with States, Tribes and Other Federal Programs Help Responders Prepare for Challenges Involving Transport of Radioactive Materials Implementing adequate institutional programs and validating preparedness for emergency response to radiological transportation incidents along or near U.S. Department of Energy (DOE) shipping corridors poses unique challenges to transportation operations management. Delayed or insufficient attention to State and Tribal preparedness needs may significantly impact the transportation operations schedule and budget. The DOE Transportation Emergency Preparedness Program (TEPP) has successfully used a cooperative planning process to develop strong partnerships with States, Tribes, Federal agencies and other national programs to support responder preparednessmore » across the United States. DOE TEPP has found that building solid partnerships with key emergency response agencies ensures responders have access to the planning, training, technical expertise and assistance necessary to safely, efficiently and effectively respond to a radiological transportation accident. Through the efforts of TEPP over the past fifteen years, partnerships have resulted in States and Tribal Nations either using significant portions of the TEPP planning resources in their programs and/or adopting the Modular Emergency Response Radiological Transportation Training (MERRTT) program into their hazardous material training curriculums to prepare their fire departments, law enforcement, hazardous materials response teams, emergency management officials, public information officers and emergency medical technicians for responding to transportation incidents involving radioactive materials. In addition, through strong partnerships with Federal Agencies and other national programs TEPP provided technical expertise to support a variety of radiological response initiatives and assisted several programs with integration of the nationally recognized MERRTT program into other training venues, thus ensuring consistency of radiological response curriculums delivered to responders. This presentation will provide an overview of the steps to achieve coordination, to avoid redundancy, and to highlight several of the successful partnerships TEPP has formed with States, Tribes, Federal agencies and other national programs. Events, accident scenarios, and training where TEPP was proven to be integral in building the radiological response capabilities for first responders to actual radiological incidents are also highlighted. Participants will gain an appreciation for the collaborative efforts States and Tribes are engaging in with the DOE to ensure that responders all along the DOE transportation corridors are adequately prepared to respond to shipments of radioactive materials through their communities.« less

  12. Essentials and guidelines of an accredited educational program for the radiographer.

    PubMed

    1980-01-01

    The Essentials were initially adopted in 1944, and revised in 1955, 1969, and 1978. They were adopted by the American College of Radiology, the American Medical Association, The American Society of Radiologic Technologists, and the Program Review Committee of the Joint Review Committee on Education in Radiologic Technology. The Essentials, which represent the minimum accreditation standards for an educational program, are printed here in regular type face. The extent to which a program complies with these standards determines its accreditation status; the Essentials, therefore, include all requirements for which an accredited program is held accountable. The Guidelines, explanatory documents that clarify the Essentials, are printed in italic. Guidelines provide examples, etc., to assist in interpreting the Essentials.

  13. Criticality Safety Basics for INL FMHs and CSOs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    V. L. Putman

    2012-04-01

    Nuclear power is a valuable and efficient energy alternative in our energy-intensive society. However, material that can generate nuclear power has properties that require this material be handled with caution. If improperly handled, a criticality accident could result, which could severely harm workers. This document is a modular self-study guide about Criticality Safety Principles. This guide's purpose it to help you work safely in areas where fissionable nuclear materials may be present, avoiding the severe radiological and programmatic impacts of a criticality accident. It is designed to stress the fundamental physical concepts behind criticality controls and the importance of criticalitymore » safety when handling fissionable materials outside nuclear reactors. This study guide was developed for fissionable-material-handler and criticality-safety-officer candidates to use with related web-based course 00INL189, BEA Criticality Safety Principles, and to help prepare for the course exams. These individuals must understand basic information presented here. This guide may also be useful to other Idaho National Laboratory personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. This guide also includes additional information that will not be included in 00INL189 tests. The additional information is in appendices and paragraphs with headings that begin with 'Did you know,' or with, 'Been there Done that'. Fissionable-material-handler and criticality-safety-officer candidates may review additional information at their own discretion. This guide is revised as needed to reflect program changes, user requests, and better information. Issued in 2006, Revision 0 established the basic text and integrated various programs from former contractors. Revision 1 incorporates operation and program changes implemented since 2006. It also incorporates suggestions, clarifications, and additional information from readers and from personnel who took course 00INL189. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that fissionable material handlers and criticality safety officers must understand. The reorganization is based on and consistent with changes made to course 00INL189 due to a review of course exam results and to discussions with personnel who conduct area-specific training.« less

  14. Environmental sampling plan for Kwajalein Atoll Lagoon: 2017 Kwajalein sampling event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, T. F.

    2017-07-01

    Since the early 1980s, the U.S DOE Marshall Islands Program at LLNL has provided radiological monitoring of the marine and terrestrial environment at nuclear affected atolls in the northern Marshall Islands. The fundamental aim of these studies was to identify the level and distribution of key residual fallout radionuclide in the environment, improve understanding of prevalent radiation exposure pathways, and develop predictive dose assessments for resettled and resettling atoll population groups. These data and information were essential in terms of guiding the development of effective and environmentally protective remedial measures, and promoting potential actions to improve on food safety andmore » security.« less

  15. Radiation protection program for early detection of breast cancer in a mammography facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariana, Villagomez Casimiro, E-mail: marjim10-66@ciencias.unam.mx, E-mail: cesar@fisica.unam.mx; Cesar, Ruiz Trejo, E-mail: marjim10-66@ciencias.unam.mx, E-mail: cesar@fisica.unam.mx; Ruby, Espejo Fonseca

    Mammography is the best tool for early detection of Breast Cancer. In this diagnostic radiology modality it is necessary to establish the criteria to ensure the proper use and operation of the equipment used to obtain mammographic images in order to contribute to the safe use of ionizing radiation. The aim of the work was to implement at FUCAM-AC the radiation protection program which must be established for patients and radiation workers according to Mexican standards [1–4]. To achieve this goal, radiation protection and quality control manuals were elaborated [5]. Furthermore, a quality control program (QCP) in the mammography systemsmore » (analog/digital), darkroom included, has been implemented. Daily sensitometry, non-variability of the image quality, visualizing artifacts, revision of the equipment mechanical stability, compression force and analysis of repetition studies are some of the QCP routine tests that must be performed by radiological technicians of this institution as a set of actions to ensure the protection of patients. Image quality and patients dose assessment were performed on 4 analog equipment installed in 2 mobile units. In relation to dose assessment, all equipment passed the acceptance criteria (<3 mGy per projection). The image quality test showed that most images (70%)– presented artifacts. A brief summary of the results of quality control tests applied to the equipment and film processor are presented. To maintain an adequate level of quality and safety at FUCAM-AC is necessary that the proposed radiation protection program in this work is applied.« less

  16. File format for normalizing radiological concentration exposure rate and dose rate data for the effects of radioactive decay and weathering processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, Terrence D.

    2017-04-01

    This report specifies the electronic file format that was agreed upon to be used as the file format for normalized radiological data produced by the software tool developed under this TI project. The NA-84 Technology Integration (TI) Program project (SNL17-CM-635, Normalizing Radiological Data for Analysis and Integration into Models) investigators held a teleconference on December 7, 2017 to discuss the tasks to be completed under the TI program project. During this teleconference, the TI project investigators determined that the comma-separated values (CSV) file format is the most suitable file format for the normalized radiological data that will be outputted frommore » the normalizing tool developed under this TI project. The CSV file format was selected because it provides the requisite flexibility to manage different types of radiological data (i.e., activity concentration, exposure rate, dose rate) from other sources [e.g., Radiological Assessment and Monitoring System (RAMS), Aerial Measuring System (AMS), Monitoring and Sampling). The CSV file format also is suitable for the file format of the normalized radiological data because this normalized data can then be ingested by other software [e.g., RAMS, Visual Sampling Plan (VSP)] used by the NA-84’s Consequence Management Program.« less

  17. 10 CFR 820.61 - Secretarial officer.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... environment, safety and health matters shall exercise this authority with respect to provisions relating to radiological protection of workers, the public and the environment. This authority may not be further delegated. ... Safety Requirement relates may grant a temporary or permanent exemption from that requirement as...

  18. 10 CFR 820.61 - Secretarial officer.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... environment, safety and health matters shall exercise this authority with respect to provisions relating to radiological protection of workers, the public and the environment. This authority may not be further delegated. ... Safety Requirement relates may grant a temporary or permanent exemption from that requirement as...

  19. 10 CFR 820.61 - Secretarial officer.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... environment, safety and health matters shall exercise this authority with respect to provisions relating to radiological protection of workers, the public and the environment. This authority may not be further delegated. ... Safety Requirement relates may grant a temporary or permanent exemption from that requirement as...

  20. 10 CFR 820.61 - Secretarial officer.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... environment, safety and health matters shall exercise this authority with respect to provisions relating to radiological protection of workers, the public and the environment. This authority may not be further delegated. ... Safety Requirement relates may grant a temporary or permanent exemption from that requirement as...

  1. 10 CFR 820.61 - Secretarial officer.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... environment, safety and health matters shall exercise this authority with respect to provisions relating to radiological protection of workers, the public and the environment. This authority may not be further delegated. ... Safety Requirement relates may grant a temporary or permanent exemption from that requirement as...

  2. Investigation of the radiological safety concerns and medical history of the late Joseph T. Harding, former employee of the Paducah Gaseous Diffusion Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallario, E.J.; Wolfe, H.R.

    1981-03-01

    An ex-employee's claims that inadequate enforcement of radiation safety regulations allowed excess radiation exposure thereby causing his deteriorating health was not substantiated by a thorough investigation.

  3. 10 CFR 2.101 - Filing of application.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... application dealing with radiological health and safety and environmental matters, notice of receipt will be... determination as to whether an application for a limited work authorization, construction permit, operating... Director, Office of Nuclear Material Safety and Safeguards, as appropriate. Amendments to the application...

  4. 76 FR 55932 - National Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... Preparedness, the Strategic Foresight Initiative (SFI), the Emergency Management Institute, and the Radiological Emergency Preparedness (REP) Program. Additionally, members appointed on June 15, 2011, will be... radiological emergency preparedness. More information on the REP Program can be found online at http://www.fema...

  5. How to optimize radiological images captured from digital cameras, using the Adobe Photoshop 6.0 program.

    PubMed

    Chalazonitis, A N; Koumarianos, D; Tzovara, J; Chronopoulos, P

    2003-06-01

    Over the past decade, the technology that permits images to be digitized and the reduction in the cost of digital equipment allows quick digital transfer of any conventional radiological film. Images then can be transferred to a personal computer, and several software programs are available that can manipulate their digital appearance. In this article, the fundamentals of digital imaging are discussed, as well as the wide variety of optional adjustments that the Adobe Photoshop 6.0 (Adobe Systems, San Jose, CA) program can offer to present radiological images with satisfactory digital imaging quality.

  6. Sedation/anaesthesia in paediatric radiology

    PubMed Central

    Arlachov, Y; Ganatra, R H

    2012-01-01

    Objectives In this article we will give a comprehensive literature review on sedation/general anaesthesia (S/GA) and discuss the international variations in practice and options available for S/GA for imaging children. Methods The key articles were obtained primarily from PubMed, MEDLINE, ERIC, NHS Evidence and The Cochrane Library. Results Recently, paediatric radiology has seen a surge of diagnostic and therapeutic procedures, some of which require children to be still and compliant for up to 1 h. It is difficult and sometimes even impossible to obtain quick and high-quality images without employing sedating techniques in certain children. As with any medical procedure, S/GA in radiological practice is not without risks and can have potentially disastrous consequences if mismanaged. In order to reduce any complications and practice safety in radiological units, it is imperative to carry out pre-sedation assessments of children, obtain parental/guardian consent, monitor them closely before, during and after the procedure and have adequate equipment, a safe environment and a well-trained personnel. Conclusion Although the S/GA techniques, sedative drugs and personnel involved vary from country to country, the ultimate goal of S/GA in radiology remains the same; namely, to provide safety and comfort for the patients. Advances in knowledge Imaging children under general anaesthesia is becoming routine and preferred by operators because it ensures patient conformity and provides a more controlled environment. PMID:22898157

  7. Gamma-Ray imaging for nuclear security and safety: Towards 3-D gamma-ray vision

    NASA Astrophysics Data System (ADS)

    Vetter, Kai; Barnowksi, Ross; Haefner, Andrew; Joshi, Tenzing H. Y.; Pavlovsky, Ryan; Quiter, Brian J.

    2018-01-01

    The development of portable gamma-ray imaging instruments in combination with the recent advances in sensor and related computer vision technologies enable unprecedented capabilities in the detection, localization, and mapping of radiological and nuclear materials in complex environments relevant for nuclear security and safety. Though multi-modal imaging has been established in medicine and biomedical imaging for some time, the potential of multi-modal data fusion for radiological localization and mapping problems in complex indoor and outdoor environments remains to be explored in detail. In contrast to the well-defined settings in medical or biological imaging associated with small field-of-view and well-constrained extension of the radiation field, in many radiological search and mapping scenarios, the radiation fields are not constrained and objects and sources are not necessarily known prior to the measurement. The ability to fuse radiological with contextual or scene data in three dimensions, in analog to radiological and functional imaging with anatomical fusion in medicine, provides new capabilities enhancing image clarity, context, quantitative estimates, and visualization of the data products. We have developed new means to register and fuse gamma-ray imaging with contextual data from portable or moving platforms. These developments enhance detection and mapping capabilities as well as provide unprecedented visualization of complex radiation fields, moving us one step closer to the realization of gamma-ray vision in three dimensions.

  8. 75 FR 20913 - Center for Devices and Radiological Health; New Address Information

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... information for the Center for Devices and Radiological Health (CDRH). All filings and other documents that... components of the agency's CDRH. The changes are the result of the relocation of these offices to FDA's White... with FDA Form 3500A. You may obtain the coding manual from CDRH's Web site at http://www.fda.gov/Safety...

  9. Efficacy and safety of nivolumab in Japanese patients with previously untreated advanced melanoma: A phase II study.

    PubMed

    Yamazaki, Naoya; Kiyohara, Yoshio; Uhara, Hisashi; Uehara, Jiro; Fujimoto, Manabu; Takenouchi, Tatsuya; Otsuka, Masaki; Uchi, Hiroshi; Ihn, Hironobu; Minami, Hironobu

    2017-06-01

    Treating advanced or recurrent melanoma remains a challenge. Cancer cells can evade the immune system by blocking T-cell activation through overexpression of the inhibitory receptor programmed death 1 (PD-1) ligands. The PD-1 inhibitor nivolumab blocks the inhibitory signal in T cells, thus overcoming the immune resistance of cancer cells. Nivolumab has shown promising anticancer activity in various cancers. We carried out a single-arm, open-label, multicenter, phase II study to investigate the efficacy and safety of nivolumab in previously untreated Japanese patients with advanced melanoma. Twenty-four patients with stage III/IV or recurrent melanoma were enrolled and received i.v. nivolumab 3 mg/kg every 2 weeks until disease progression or unacceptable toxicity. The primary endpoint was overall response rate evaluated by an independent radiology review committee. The independent radiology review committee-assessed overall response rate was 34.8% (90% confidence interval, 20.8-51.9), and the overall survival rate at 18 months was 56.5% (90% confidence interval, 38.0-71.4). Treatment-related adverse events (AEs) of grade 3 or 4 only occurred in three patients (12.5%). Two patients discontinued nivolumab because of AEs, but all AEs were considered manageable by early diagnosis and appropriate treatment. Subgroup analyses showed that nivolumab was clinically beneficial and tolerable regardless of BRAF genotype, and that patients with treatment-related select AEs and with vitiligo showed tendency for better survival. In conclusion, nivolumab showed favorable efficacy and safety profiles in Japanese patients with advanced or recurrent melanoma, with or without BRAF mutations. (Trial registration no. JapicCTI-142533.). © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  10. Radio-ecological characterization and radiological assessment in support of regulatory supervision of legacy sites in northwest Russia.

    PubMed

    Sneve, M K; Kiselev, M; Shandala, N K

    2014-05-01

    The Norwegian Radiation Protection Authority has been implementing a regulatory cooperation program in the Russian Federation for over 10 years, as part of the Norwegian government's Plan of Action for enhancing nuclear and radiation safety in northwest Russia. The overall long-term objective has been the enhancement of safety culture and includes a special focus on regulatory supervision of nuclear legacy sites. The initial project outputs included appropriate regulatory threat assessments, to determine the hazardous situations and activities which are most in need of enhanced regulatory supervision. In turn, this has led to the development of new and updated norms and standards, and related regulatory procedures, necessary to address the often abnormal conditions at legacy sites. This paper presents the experience gained within the above program with regard to radio-ecological characterization of Sites of Temporary Storage for spent nuclear fuel and radioactive waste at Andreeva Bay and Gremikha in the Kola Peninsula in northwest Russia. Such characterization is necessary to support assessments of the current radiological situation and to support prospective assessments of its evolution. Both types of assessments contribute to regulatory supervision of the sites. Accordingly, they include assessments to support development of regulatory standards and guidance concerning: control of radiation exposures to workers during remediation operations; emergency preparedness and response; planned radionuclide releases to the environment; development of site restoration plans, and waste treatment and disposal. Examples of characterization work are presented which relate to terrestrial and marine environments at Andreeva Bay. The use of this data in assessments is illustrated by means of the visualization and assessment tool (DATAMAP) developed as part of the regulatory cooperation program, specifically to help control radiation exposure in operations and to support regulatory analysis of management options. For assessments of the current radiological situation, the types of data needed include information about the distribution of radionuclides in environmental media. For prognostic assessments, additional data are needed about the landscape features, on-shore and off-shore hydrology, geochemical properties of soils and sediments, and possible continuing source terms from continuing operations and on-site disposal. It is anticipated that shared international experience in legacy site characterization can be useful in the next steps. Although the output has been designed to support regulatory evaluation of these particular sites in northwest Russia, the methods and techniques are considered useful examples for application elsewhere, as well as providing relevant input to the International Atomic Energy Agency's international Working Forum for the Regulatory Supervision of Legacy Sites. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Student Perceptions of Online Radiologic Science Courses.

    PubMed

    Papillion, Erika; Aaron, Laura

    2017-03-01

    To evaluate student perceptions of the effectiveness of online radiologic science courses by examining various learning activities and course characteristics experienced in the online learning environment. A researcher-designed electronic survey was used to obtain results from students enrolled in the clinical portion of a radiologic science program that offers online courses. The survey consisted of elements associated with demographics, experience, and perceptions related to online radiologic science courses. Surveys were sent to 35 program directors of Joint Review Committee on Education in Radiologic Technology-accredited associate and bachelor's degree programs with requests to share the survey with students. The 38 students who participated in the survey identified 4 course characteristics most important for effective online radiologic science courses: a well-organized course, timely instructor feedback, a variety of learning activities, and informative documents, such as course syllabus, calendar, and rubrics. Learner satisfaction is a successful indicator of engagement in online courses. Descriptive statistical analysis indicated that elements related to the instructor's role is one of the most important components of effectiveness in online radiologic science courses. This role includes providing an organized course with informative documents, a variety of learning activities, and timely feedback and communication. Although online courses should provide many meaningful learning activities that appeal to a wide range of learning styles, the nature of the course affects the types of learning activities used and therefore could decrease the ability to vary learning activities. ©2017 American Society of Radiologic Technologists.

  12. Improving the interactivity and functionality of Web-based radiology teaching files with the Java programming language.

    PubMed

    Eng, J

    1997-01-01

    Java is a programming language that runs on a "virtual machine" built into World Wide Web (WWW)-browsing programs on multiple hardware platforms. Web pages were developed with Java to enable Web-browsing programs to overlay transparent graphics and text on displayed images so that the user could control the display of labels and annotations on the images, a key feature not available with standard Web pages. This feature was extended to include the presentation of normal radiologic anatomy. Java programming was also used to make Web browsers compatible with the Digital Imaging and Communications in Medicine (DICOM) file format. By enhancing the functionality of Web pages, Java technology should provide greater incentive for using a Web-based approach in the development of radiology teaching material.

  13. Knowledge management: Role of the the Radiation Safety Information Computational Center (RSICC)

    NASA Astrophysics Data System (ADS)

    Valentine, Timothy

    2017-09-01

    The Radiation Safety Information Computational Center (RSICC) at Oak Ridge National Laboratory (ORNL) is an information analysis center that collects, archives, evaluates, synthesizes and distributes information, data and codes that are used in various nuclear technology applications. RSICC retains more than 2,000 software packages that have been provided by code developers from various federal and international agencies. RSICC's customers (scientists, engineers, and students from around the world) obtain access to such computing codes (source and/or executable versions) and processed nuclear data files to promote on-going research, to ensure nuclear and radiological safety, and to advance nuclear technology. The role of such information analysis centers is critical for supporting and sustaining nuclear education and training programs both domestically and internationally, as the majority of RSICC's customers are students attending U.S. universities. Additionally, RSICC operates a secure CLOUD computing system to provide access to sensitive export-controlled modeling and simulation (M&S) tools that support both domestic and international activities. This presentation will provide a general review of RSICC's activities, services, and systems that support knowledge management and education and training in the nuclear field.

  14. 44 CFR 353.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... LICENSEE RADIOLOGICAL EMERGENCY PLANS AND PREPAREDNESS § 353.3 Definitions. As used in this part, the... and preparedness such as provision of support for the preparation of offsite radiological emergency... appropriate. (h) REP means FEMA's Radiological Emergency Preparedness Program. (i) Fiscal Year means Federal...

  15. NSR&D Program Fiscal Year 2015 Funded Research Stochastic Modeling of Radioactive Material Releases Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrus, Jason P.; Pope, Chad; Toston, Mary

    2016-12-01

    Nonreactor nuclear facilities operating under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculatesmore » the radiation dose distribution associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. Users can also specify custom distributions through a user defined distribution option. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA, developed using the MATLAB coding framework, has a graphical user interface and can be installed on both Windows and Mac computers. SODA is a standalone software application and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC; rather it is viewed as an easy to use supplemental tool to help improve risk understanding and support better informed decisions. The SODA development project was funded through a grant from the DOE Nuclear Safety Research and Development Program.« less

  16. NSR&D Program Fiscal Year 2015 Funded Research Stochastic Modeling of Radioactive Material Releases Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrus, Jason P.; Pope, Chad; Toston, Mary

    Nonreactor nuclear facilities operating under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculatesmore » the radiation dose distribution associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. Users can also specify custom distributions through a user defined distribution option. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA, developed using the MATLAB coding framework, has a graphical user interface and can be installed on both Windows and Mac computers. SODA is a standalone software application and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC; rather it is viewed as an easy to use supplemental tool to help improve risk understanding and support better informed decisions. The SODA development project was funded through a grant from the DOE Nuclear Safety Research and Development Program.« less

  17. Teaching the Healthcare Economics Milestones to Radiology Residents: Our Pilot Curriculum Experience.

    PubMed

    Prober, Allen S; Mehan, William A; Bedi, Harprit S

    2016-07-01

    Since July 2013, the Accreditation Council for Graduate Medical Education (ACGME) has required radiology residency programs to implement a set of educational milestones to track residents' educational advancement in six core competencies, including Systems-based Practice. The healthcare economics subcompetency of Systems-based Practice has traditionally been relatively neglected, and given the new increased ACGME oversight, will specifically require greater focused attention. A multi-institutional health-care economics pilot curriculum combining didactic and practical components was implemented across five residency programs. The didactic portion included a package of online recorded presentations, reading, and testing materials developed by the American College of Radiology (ACR's) Radiology Leadership Institute. The practical component involved a series of local meetings led by program faculty with the production of a deliverable based on research of local reimbursement for a noncontrast head computed tomography. The capstone entailed the presentation of each program's deliverable during a live teleconference webcast with a Radiology Leadership Institute content expert acting as moderator and discussion leader. The pilot curriculum was well received by residents and faculty moderators, with 100% of survey respondents agreeing that the pilot met its objective of introducing how reimbursement works in American radiology in 2015 and how business terminology applies to their particular institutions. A health-care economics curriculum in the style of a Massive Open Online Course has strong potential to serve as many residency programs' method of choice in meeting the health-care economics milestones. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  18. Business intelligence for the radiologist: making your data work for you.

    PubMed

    Cook, Tessa S; Nagy, Paul

    2014-12-01

    Although it remains absent from most programs today, business intelligence (BI) has become an integral part of modern radiology practice management. BI facilitates the transition away from lack of understanding about a system and the data it produces toward incrementally more sophisticated comprehension of what has happened, could happen, and should happen. The individual components that make up BI are common across industries and include data extraction and transformation, process analysis and improvement, outcomes measures, performance assessment, graphical dashboarding, alerting, workflow analysis, and scenario modeling. As in other fields, these components can be directly applied in radiology to improve workflow, throughput, safety, efficacy, outcomes, and patient satisfaction. When approaching the subject of BI in radiology, it is important to know what data are available in your various electronic medical records, as well as where and how they are stored. In addition, it is critical to verify that the data actually represent what you think they do. Finally, it is critical for success to identify the features and limitations of the BI tools you choose to use and to plan your practice modifications on the basis of collected data. It is equally important to remember that BI plays a critical role in continuous process improvement; whichever BI tools you choose should be flexible to grow and evolve with your practice. Published by Elsevier Inc.

  19. Federal funding for health security in FY2015.

    PubMed

    Boddie, Crystal; Sell, Tara Kirk; Watson, Matthew

    2014-01-01

    Previous articles in this series have provided funding information for federal civilian biodefense programs and programs focused on radiological and nuclear preparedness and consequence management. This year the authors have expanded the focus of the analysis to US federal funding for health security. This article provides proposed funding amounts for FY2015, estimated amounts for FY2014, and actual amounts for FY2010 through FY2013 in 5 domains critical to health security: biodefense programs, radiological and nuclear programs, chemical programs, pandemic influenza and emerging infectious disease programs, and multiple-hazard and preparedness programs.

  20. Risk-Based Aviation Security: Diffusion and Acceptance

    DTIC Science & Technology

    2012-03-01

    Association ATR Automated Target Recognition BDO Behavior Detection Officer BIB Budget-In-Brief CBP Customs and Border Protection CDRH Center...Radiological Health ( CDRH ) (Cerra, 2006), the National Institute for Standards and Technology (NIST) (TSA, n.d. g), and the Johns Hopkins University Applied...safety related to AIT may have come from the Food and Drug Administration’s (FDA) Center for Devices and Radiological Health ( CDRH ), the National

  1. Leveraging Terminologies for Retrieval of Radiology Reports with Critical Imaging Findings

    PubMed Central

    Warden, Graham I.; Lacson, Ronilda; Khorasani, Ramin

    2011-01-01

    Introduction: Communication of critical imaging findings is an important component of medical quality and safety. A fundamental challenge includes retrieval of radiology reports that contain these findings. This study describes the expressiveness and coverage of existing medical terminologies for critical imaging findings and evaluates radiology report retrieval using each terminology. Methods: Four terminologies were evaluated: National Cancer Institute Thesaurus (NCIT), Radiology Lexicon (RadLex), Systemized Nomenclature of Medicine (SNOMED-CT), and International Classification of Diseases (ICD-9-CM). Concepts in each terminology were identified for 10 critical imaging findings. Three findings were subsequently selected to evaluate document retrieval. Results: SNOMED-CT consistently demonstrated the highest number of overall terms (mean=22) for each of ten critical findings. However, retrieval rate and precision varied between terminologies for the three findings evaluated. Conclusion: No single terminology is optimal for retrieving radiology reports with critical findings. The expressiveness of a terminology does not consistently correlate with radiology report retrieval. PMID:22195212

  2. Evolution of the Radiological Protection System and its Implementation.

    PubMed

    Lazo, Edward

    2016-02-01

    The International System of Radiological Protection, developed, maintained, and elaborated by the International Commission on Radiological Protection (ICRP) has, for the past 50 y, provided a robust framework for developing radiological protection policy, regulation, and application. It has, however, been evolving as a result of experience with its implementation, modernization of social awareness of a shrinking world where the Internet links everyone instantly, and increasing public interest in safety-related decisions. These currents have gently pushed the ICRP in recent years to focus more sharply on particular aspects of its system: optimization, prevailing circumstances, the use of effective dose and aspects of an individual's risk, and consideration of the independent implementation of the international system's elements. This paper will present these issues and their relevance to the ICRP system of protection and its evolution. The broader framework of radiological protection (e.g., science, philosophy, policy, regulation, implementation), of which the ICRP is an important element, will provide a global, equally evolving context for this characterization of the changing ICRP system of radiological protection.

  3. Accountable care organizations and radiology: threat or opportunity?

    PubMed

    Abramson, Richard G; Berger, Paul E; Brant-Zawadzki, Michael N

    2012-12-01

    Although the anticipated rise of accountable care organizations brings certain potential threats to radiologists, including direct threats to revenue and indirect systemic changes jeopardizing the bargaining leverage of radiology groups, accountable care organizations, and other integrated health care delivery models may provide radiology with an important opportunity to reassert its leadership and assume a more central role within health care systems. Capitalizing on this potential opportunity, however, will require radiology groups to abandon the traditional "film reader" mentality and engage actively in the design and implementation of nontraditional systems service lines aimed at adding differentiated value to larger health care organizations. Important interlinked and mutually reinforcing components of systems service lines, derived from radiology's core competencies, may include utilization management and decision support, IT leadership, quality and safety assurance, and operational enhancements to meet organizational goals. Such systems-oriented service products, tailored to the needs of individual integrated care entities and supported by objective performance metrics, may provide market differentiation to shield radiology from commoditization and could become an important source of new nonclinical revenue. Copyright © 2012 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  4. Federal Radiological Monitoring and Assessment Center Health and Safety Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FRMAC Health and Safety Working Group

    2012-03-20

    This manual is a tool to provide information to all responders and emergency planners and is suggested as a starting point for all organizations that provide personnel/assets for radiological emergency response. It defines the safety requirements for the protection of all emergency responders. The intent is to comply with appropriate regulations or provide an equal level of protection when the situation makes it necessary to deviate. In the event a situation arises which is not addressed in the manual, an appropriate management-level expert will define alternate requirements based on the specifics of the emergency situation. This manual is not intendedmore » to pertain to the general public.« less

  5. 10 CFR 835.501 - Radiological areas.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Radiological areas. 835.501 Section 835.501 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.501 Radiological areas. (a.... These authorizations shall specify radiation protection measures commensurate with the existing and...

  6. 10 CFR 835.501 - Radiological areas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Radiological areas. 835.501 Section 835.501 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.501 Radiological areas. (a.... These authorizations shall specify radiation protection measures commensurate with the existing and...

  7. 10 CFR 835.501 - Radiological areas.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Radiological areas. 835.501 Section 835.501 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.501 Radiological areas. (a.... These authorizations shall specify radiation protection measures commensurate with the existing and...

  8. 10 CFR 835.501 - Radiological areas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Radiological areas. 835.501 Section 835.501 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.501 Radiological areas. (a.... These authorizations shall specify radiation protection measures commensurate with the existing and...

  9. 10 CFR 835.501 - Radiological areas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Radiological areas. 835.501 Section 835.501 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.501 Radiological areas. (a.... These authorizations shall specify radiation protection measures commensurate with the existing and...

  10. Nevada National Security Site Environmental Report 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wills

    This Nevada National Security Site Environmental Report (NNSSER) was prepared to satisfy DOE Order DOE O 231.1B, “Environment, Safety and Health Reporting.” Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This NNSSERmore » summarizes data and compliance status for calendar year 2016 at the Nevada National Security Site (NNSS) and its two Nevada-based support facilities, the North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory–Nellis (RSL-Nellis). It also addresses environmental restoration (ER) projects conducted at the Tonopah Test Range (TTR) and the Nevada Test and Training Range (NTTR). NNSA/NFO directs the management and operation of the NNSS and six sites across the nation. In addition to the NNSA itself, the six sites include two in Nevada (NLVF and RSL-Nellis) and four in other states (RSL-Andrews in Maryland, Livermore Operations in California, Los Alamos Operations in New Mexico, and Special Technologies Laboratory in California). Los Alamos, Lawrence Livermore, and Sandia National Laboratories are the principal organizations that sponsor and implement the nuclear weapons programs at the NNSS. National Security Technologies, LLC (NSTec), is the current Management and Operating contractor accountable for the successful execution of work and ensuring that work is performed in compliance with environmental regulations. The six sites all provide support to enhance the NNSS as a location for its multiple missions. The three major NNSS missions include National Security/Defense, Environmental Management, and Nondefense. The major programs that support these missions are Stockpile Stewardship and Management, Nonproliferation and Counterterrorism, Nuclear Emergency Response, Strategic Partnership Projects, Environmental Restoration, Waste Management, Conservation and Renewable Energy, Other Research and Development, and Infrastructure. The major facilities that support the programs include the U1a Facility, Big Explosives Experimental Facility (BEEF), Device Assembly Facility, Dense Plasma Focus Facility, Joint Actinide Shock Physics Experimental Research Facility, Radiological/Nuclear Countermeasures Test and Evaluation Complex, Nonproliferation Test and Evaluation Complex (NPTEC), Radiological/Nuclear Weapons of Mass Destruction Incident Exercise Site, the Area 5 Radioactive Waste Management Complex (RWMC), and the Area 3 Radioactive Waste Management Site (RWMS).« less

  11. Trends in radiology and experimental research.

    PubMed

    Sardanelli, Francesco

    2017-01-01

    European Radiology Experimental , the new journal launched by the European Society of Radiology, is placed in the context of three general and seven radiology-specific trends. After describing the impact of population aging, personalized/precision medicine, and information technology development, the article considers the following trends: the tension between subspecialties and the unity of the discipline; attention to patient safety; the challenge of reproducibility for quantitative imaging; standardized and structured reporting; search for higher levels of evidence in radiology (from diagnostic performance to patient outcome); the increasing relevance of interventional radiology; and continuous technological evolution. The new journal will publish not only studies on phantoms, cells, or animal models but also those describing development steps of imaging biomarkers or those exploring secondary end-points of large clinical trials. Moreover, consideration will be given to studies regarding: computer modelling and computer aided detection and diagnosis; contrast materials, tracers, and theranostics; advanced image analysis; optical, molecular, hybrid and fusion imaging; radiomics and radiogenomics; three-dimensional printing, information technology, image reconstruction and post-processing, big data analysis, teleradiology, clinical decision support systems; radiobiology; radioprotection; and physics in radiology. The journal aims to establish a forum for basic science, computer and information technology, radiology, and other medical subspecialties.

  12. Breaking Bad News: A Survey of Radiology Residents' Experiences Communicating Results to Patients.

    PubMed

    Narayan, Anand; Dromi, Sergio; Meeks, Adam; Gomez, Erin; Lee, Bonmyong

    The practice of radiology often includes routine communication of diagnostic test results directly to patients in breast imaging and interventional radiology. There is increasing interest in expanding direct communication throughout radiology. Though these conversations can substantially affect patient well-being, there is limited evidence indicating that radiology residents are specifically taught methods to effectively convey imaging results to patients. Our purpose is to evaluate resident experience communicating imaging results to patients. An IRB-approved study with a total of 11 pilot-tested questions was used. Surveyed programs included radiology residents (PGY2-PGY5) at 2 urban residency programs. Online surveys were administered using SurveyMonkey and e-mailed to residents at both programs (starting November 20, 2015, completed March 31, 2016). Demographics were obtained with survey proportions compared using logistic regression (P < 0.05, statistically significant). A total of 73 residents responded (93.6% response rate) with similar response rates at each institution (P = 0.689). Most were male (71.2%) with 17.8% planning to go into breast imaging (21.9%, interventional radiology (IR)). Furthermore, 83.6% described no training in communicating radiology results to patients; 91.8% of residents communicated results with patients (87.7% diagnostic imaging tests and 57.5% biopsies). Residents most commonly communicated results in person (75.3%) followed by phone (64.4%), and 79.4% agreed or strongly agreed that additional training relaying results would be helpful. A large majority of radiology residents have communicated test results to patients, yet few have received training in how to communicate these results. A large majority of residents expressed interest in obtaining additional communication training. Additional research is required to determine ideal methods to educate residents on communicating test results. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Handheld technology acceptance in radiologic science education and training programs

    NASA Astrophysics Data System (ADS)

    Powers, Kevin Jay

    The purpose of this study was to explore the behavioral intention of directors of educational programs in the radiologic sciences to adopt handheld devices to aid in managing student clinical data. Handheld devices were described to participants as a technology representing a class of mobile electronic devices including, but not limited to, personal digital assistants such as a Palm TX, Apple iPod Touch, Apple iPad or Hewlett Packard iPaq, and cellular or smartphones with third generation mobile capabilities such as an Apple iPhone, Blackberry or Android device. The study employed a non-experimental, cross-sectional survey design to determine the potential of adopting handheld technologies based on the constructs of Davis's (1989) Technology Acceptance Model. An online self-report questionnaire survey instrument was used to gather study data from 551 entry level radiologic science programs specializing in radiography, radiation therapy, nuclear medicine and medical sonography. The study design resulted in a single point in time assessment of the relationship between the primary constructs of the Technology Acceptance Model: perceived usefulness and perceived ease of use, and the behavioral intention of radiography program directors to adopt the information technology represented by hand held devices. Study results provide justification for investing resources to promote the adoption of mobile handheld devices in radiologic science programs and study findings serve as a foundation for further research involving technology adoption in the radiologic sciences.

  14. Work plan for the radiological survey for the David Witherspoon, Incorporated, Landfill-1630 site, Knoxville, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    This work plan establishes the methods and requirements for performing a radiological survey at the David Witherspoon, Incorporated, Landfill-1630 Site, Knoxville, Tennessee (DWI 1630 Site) in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). The radiological survey will identify the radiological contamination level of the equipment and debris stored at the DWI 1630 Site. The data generated from the survey activities will support the decisions for characterization of the equipment/debris and aid in subsequent disposition and waste handling. The survey activities to be performed under this work plan include an equipment radiological survey,more » a walkover survey, and an immunoassay testing for polychlorinated biphenyls (PCBs). This work plan includes a quality assurance (QA)/quality control (QC) project plan, a health and safety (H&S) plan, and a waste management plan.« less

  15. Radioactive Waste Management Complex low-level waste radiological performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsitemore » receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.« less

  16. Efficacy of radiation safety glasses in interventional radiology.

    PubMed

    van Rooijen, Bart D; de Haan, Michiel W; Das, Marco; Arnoldussen, Carsten W K P; de Graaf, R; van Zwam, Wim H; Backes, Walter H; Jeukens, Cécile R L P N

    2014-10-01

    This study was designed to evaluate the reduction of the eye lens dose when wearing protective eyewear in interventional radiology and to identify conditions that optimize the efficacy of radiation safety glasses. The dose reduction provided by different models of radiation safety glasses was measured on an anthropomorphic phantom head. The influence of the orientation of the phantom head on the dose reduction was studied in detail. The dose reduction in interventional radiological practice was assessed by dose measurements on radiologists wearing either leaded or no glasses or using a ceiling suspended screen. The different models of radiation safety glasses provided a dose reduction in the range of a factor of 7.9-10.0 for frontal exposure of the phantom. The dose reduction was strongly reduced when the head is turned to the side relative to the irradiated volume. The eye closest to the tube was better protected due to side shielding and eyewear curvature. In clinical practice, the mean dose reduction was a factor of 2.1. Using a ceiling suspended lead glass shield resulted in a mean dose reduction of a factor of 5.7. The efficacy of radiation protection glasses depends on the orientation of the operator's head relative to the irradiated volume. Glasses can offer good protection to the eye under clinically relevant conditions. However, the performance in clinical practice in our study was lower than expected. This is likely related to nonoptimized room geometry and training of the staff as well as measurement methodology.

  17. Are we failing to communicate? Internet-based patient education materials and radiation safety.

    PubMed

    Hansberry, David R; Ramchand, Tekchand; Patel, Shyam; Kraus, Carl; Jung, Jin; Agarwal, Nitin; Gonzales, Sharon F; Baker, Stephen R

    2014-09-01

    Patients frequently turn to the Internet when seeking answers to healthcare related inquiries including questions about the effects of radiation when undergoing radiologic studies. We investigate the readability of online patient education materials concerning radiation safety from multiple Internet resources. Patient education material regarding radiation safety was downloaded from 8 different websites encompassing: (1) the Centers for Disease Control and Prevention, (2) the Environmental Protection Agency, (3) the European Society of Radiology, (4) the Food and Drug Administration, (5) the Mayo Clinic, (6) MedlinePlus, (7) the Nuclear Regulatory Commission, and (8) the Society of Pediatric Radiology. From these 8 resources, a total of 45 articles were analyzed for their level of readability using 10 different readability scales. The 45 articles had a level of readability ranging from 9.4 to the 17.2 grade level. Only 3/45 (6.7%) were written below the 10th grade level. No statistical difference was seen between the readability level of the 8 different websites. All 45 articles from all 8 websites failed to meet the recommendations set forth by the National Institutes of Health and American Medical Association that patient education resources be written between the 3rd and 7th grade level. Rewriting the patient education resources on radiation safety from each of these 8 websites would help many consumers of healthcare information adequately comprehend such material. Copyright © 2014. Published by Elsevier Ireland Ltd.

  18. Effect of changes in technical parameters in radiological safety

    NASA Astrophysics Data System (ADS)

    Avendaño, Ge; Fernandez, C.

    2007-11-01

    This work analyzes the generation of secondary radiation that affects the professionals of health during interventional X ray procedures in first level hospitals. The research objectives were, on the one hand, to quantify the amount of radiation and to compare it with norms in force with respect to magnitudes, and on the other hand to evaluate the elements of protection used. The measurements will help to improve the radiological safety, to assess the eventuality of risks and, in the last term, to the possibility of norms modification for the improvement of the protection, especially that of the personnel who daily make a certain amount of interventional procedures guided by radiation, like angiographic cine applications, using continuous or pulsed fluoroscopy. The motivation of the study is in the suspicion that present interventionism is made with a false sensation of safety, based only in the use of lead apron and protection elements incorporated in the equipment by the manufacturer, nevertheless not always the health personnel are conscious that an excessive proximity with the tube and the patient body becomes a risky source of secondary and scattered radiation. The obtained results allow us to demonstrate the existence of conditions of risk, even possible iatrogenic events, in particular when the procedures imply the use of certain techniques of radiographic exploration, thus reaching the conclusion that the radiographic methodology must be changed in order to rationalize so much?. In order to achieve this we propose modifications to the present norms and legislation referred to the radiological safety in Chile.

  19. Views of radiology program directors on the role of mentorship in the training of radiology residents.

    PubMed

    Donovan, Andrea

    2010-03-01

    The successful mentoring of resident physicians has been linked to several beneficial outcomes for trainees including increased research productivity, improved career satisfaction, and retention in academics. Female residents may have greater difficulty establishing mentoring relationships than male residents. The purpose of this study was to assess the attitudes of radiology residency program directors toward the subject of mentorship, to determine the prevalence of formal mentoring programs, and to evaluate several issues specifically pertaining to the mentoring of female residents. An anonymous, voluntary survey was sent to 156 members of the Association of Program Directors in Radiology. The survey assessed views on mentorship during residency training, the potential role of mentorship in resident career development, and the prevalence of mentorship programs in residency programs. Subanalyses evaluated survey responses according to program director sex. Seventy program directors (45%) responded to the survey. The majority of respondents (85%) agreed it is important for residents to have mentors, but only 52% thought that current residents had identified mentors. Compared with male program directors, female program directors differed in their views on the role of mentorship and of the importance of female resident access to female mentors. Program directors consider mentoring relationships to be an important resource for resident professional development and a potential resource to increase the proportion of residents pursuing academic careers and positions of leadership. Female residents may have specific mentoring needs that should be explored with further study.

  20. Radiological Technology. Secondary Curriculum Guide.

    ERIC Educational Resources Information Center

    Simpson, Bruce; And Others

    This curriculum guide was designed for use in postsecondary radiological technology education programs in Georgia. Its purpose is to provide for the development of entry level skills in radiological technology in the areas of knowledge, theoretical structure, tool usage, diagnostic ability, related supportive skills, and occupational survival…

  1. 2011 Annual Health Physics Report for the HEU transparency Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radev, R

    2012-04-30

    During the 2008 calendar year, Lawrence Livermore National Laboratory (LLNL) provided health physics support for the Highly Enriched Uranium (HEU) Transparency Program for external and internal radiation protection. They also provided technical expertise related to BDMS radioactive sources and Russian radiation safety regulatory compliance. For the calendar year 2008, there were 158 person-trips that required dose monitoring of the U.S. monitors. Of the 158 person-trips, 148 person-trips were SMVs and 10 person-trips were Transparency Monitoring Office (TMO) trips. There were 6 monitoring visits by TMO monitors to facilities other than UEIE and 8 to UEIE itself. There were three monitoringmore » visits (source changes) that were back-to-back with a total of 24 monitors. LLNL's Hazard Control Department laboratories provided the dosimetry services for the HEU Transparency monitors. In 2008, the HEU Transparency activities in Russia were conducted in a radiologically safe manner for the HEU Transparency monitors in accordance with the expectations of the HEU Transparency staff, NNSA and DOE. The HEU Transparency now has thirteen years of successful experience in developing and providing health and safety support in meeting its technical objectives.« less

  2. 2008 Annual Health Physics Report for the HEU Transparency Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radev, R.

    2009-03-24

    During the 2008 calendar year, Lawrence Livermore National Laboratory (LLNL) provided health physics support for the Highly Enriched Uranium (HEU) Transparency Program for external and internal radiation protection. They also provided technical expertise related to BDMS radioactive sources and Russian radiation safety regulatory compliance. For the calendar year 2008, there were 158 person-trips that required dose monitoring of the U.S. monitors. Of the 158 person-trips, 148 person-trips were SMVs and 10 person-trips were Transparency Monitoring Office (TMO) trips. There were 6 monitoring visits by TMO monitors to facilities other than UEIE and 8 to UEIE itself. There were three monitoringmore » visits (source changes) that were back-to-back with a total of 24 monitors. LLNL’s Hazard Control Department laboratories provided the dosimetry services for the HEU Transparency monitors. In 2008, the HEU Transparency activities in Russia were conducted in a radiologically safe manner for the HEU Transparency monitors in accordance with the expectations of the HEU Transparency staff, NNSA and DOE. The HEU Transparency now has thirteen years of successful experience in developing and providing health and safety support in meeting its technical objectives.« less

  3. Anticipated Supply and Demand for Independent Interventional Radiology Residency Positions: A Survey of Department Chairs.

    PubMed

    Herwald, Sanna E; Spies, James B; Yucel, E Kent

    2017-02-01

    The first participants in the independent interventional radiology (IR) residency match will begin prerequisite diagnostic radiology (DR) residencies before the anticipated launch of the independent IR programs in 2020. The aim of this study was to estimate the competitiveness level of the first independent IR residency matches before these applicants have already committed to DR residencies and possibly early specialization in IR (ESIR) programs. The Society of Chairs of Academic Radiology Departments (SCARD) Task Force on the IR Residency distributed a survey to all active SCARD members using SurveyMonkey. The survey requested the number of planned IR residency and ESIR positions. The average, minimum, and maximum of the range of planned independent IR residency positions were compared with the average, maximum, and minimum, respectively, of the range of planned ESIR positions, to model matches of average, high, and low competitiveness. Seventy-four active SCARD members (56%) answered at least one survey question. The respondents' programs planned to fill, in total, 98 to 102 positions in integrated IR residency programs, 61 to 76 positions in independent IR residency programs, and 50 to 77 positions in ESIR DR residency programs each year. The ranges indicate the uncertainty of some programs regarding the number of positions. The survey suggests that participating programs will fill sufficient independent IR residency positions to accommodate all ESIR applicants in a match year of average or low competitiveness, but not in a match year of high competitiveness. This suggestion does not account for certain difficult-to-predict factors that may affect the independent IR residency match. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  4. Recommendations for Radiologic Technology Workforce Development.

    ERIC Educational Resources Information Center

    Collins, Dale E.

    A literature review was conducted to establish criteria for the development and establishment of an associate degree program in radiologic technology in Alaska, where traditional education programs had been slow to respond to the current personnel shortage. The information was obtained from a variety of state, regional, and national organizations…

  5. Relationship Between Dental Hygiene Students' Performance in an Oral Radiology Course and the National Board Dental Hygiene Examination: A Retrospective Study.

    PubMed

    Liang, Hui; DeWald, Janice P; Solomon, Eric S

    2018-02-01

    Dental hygiene students' performance in oral radiology courses may give an early indication of their readiness prior to taking the National Board Dental Hygiene Examination (NBDHE). The aim of this study was to determine the relationship between dental hygiene students' performance in an oral radiology lecture course and their performance on the NBDHE. Data were collected for all 117 dental hygiene students at Texas A&M University College of Dentistry from 2006 to 2009 who took the NBDHE during their second year of the program. Their final grades and scores on three written section examinations in an oral radiology course taken in their first year were compared with their overall NBDHE scores and raw scores on the oral radiology and case study sections. Moderate correlations (0.3

  6. Vital area identification for U.S. Nuclear Regulatory Commission nuclear power reactor licensees and new reactor applicants.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehead, Donnie Wayne; Varnado, G. Bruce

    2008-09-01

    U.S. Nuclear Regulatory Commission nuclear power plant licensees and new reactor applicants are required to provide protection of their plants against radiological sabotage, including the placement of vital equipment in vital areas. This document describes a systematic process for the identification of the minimum set of areas that must be designated as vital areas in order to ensure that all radiological sabotage scenarios are prevented. Vital area identification involves the use of logic models to systematically identify all of the malicious acts or combinations of malicious acts that could lead to radiological sabotage. The models available in the plant probabilisticmore » risk assessment and other safety analyses provide a great deal of the information and basic model structure needed for the sabotage logic model. Once the sabotage logic model is developed, the events (or malicious acts) in the model are replaced with the areas in which the events can be accomplished. This sabotage area logic model is then analyzed to identify the target sets (combinations of areas the adversary must visit to cause radiological sabotage) and the candidate vital area sets (combinations of areas that must be protected against adversary access to prevent radiological sabotage). Any one of the candidate vital area sets can be selected for protection. Appropriate selection criteria will allow the licensee or new reactor applicant to minimize the impacts of vital area protection measures on plant safety, cost, operations, or other factors of concern.« less

  7. Medical malpractice tort reform.

    PubMed

    Ottenwess, David M; Lamberti, Meagan A; Ottenwess, Stephanie P; Dresevic, Adrienne D

    2011-01-01

    A tort is generally defined as a civil wrong which causes an injury, for which a victim may seek damages, typically in the form of money damages, against the alleged wrongdoer. An overview of the tort system is detailed, specifically in the context of a medical malpractice lawsuit, in order to provide a better understanding of the practical evolution of medical malpractice litigation and its proposed reforms. Rising premiums and defensive medicine are also discussed as part of the tort reform dialogue. Because medical malpractice litigation will never disappear entirely, implementing sound risk management and compliance programs are critical to every radiology department in order to improve the safety and quality of the care that its radiologists and technologists provide.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, M.R.

    A pneumatically deployed membrane system was used to conduct radiological surveys of the pipes and drains at a Department of Energy (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP) site in Adrian, Michigan. Remedial action consisted of the removal of residual radioactive sludge and oil. The innovative technology was used to transport a high-sensitivity probe specifically designed for this application, through designated pipes and drains. Use of this system made it possible to survey over 1,000 linear ft of underground drain line in one week, with no significant safety hazards. This was the first time this technology had been fieldmore » tested at a site, resulting in cost savings of more than $1.5 million.« less

  9. Personal Protective Equipment in Animal Research

    PubMed Central

    Villano, Jason S; Follo, Janet M; Chappell, Mark G; Jr, Morris T Collins

    2017-01-01

    The occupational health and safety program is an integral component of a comprehensive animal care and use program. It is important to mitigate the risk of exposures of animal care and research personnel to allergens and physical, chemical, radiologic, and biologic hazards during the conduct of various tasks. This need is especially true in infectious disease and biocontainment research. One aspect of the program is the provision of personal protective equipment (PPE). Commercially available PPE should be carefully evaluated based on their material composition and performance according to manufacturer data. To help institutions and end users by providing them guidance on choosing appropriate PPE, we here discuss the regulatory framework, device standards, and materials engineering for various PPE, including gloves, shoe covers, head caps, gowns, aprons, masks, hearing and eye protection devices, and respirators. Ultimately, the choice of appropriate PPE is based on the risk assessment, which should include consideration for personnel comfort, correct device fitting, and the containment level for the hazard used. PMID:28662749

  10. Application of failure mode and effect analysis in a radiology department.

    PubMed

    Thornton, Eavan; Brook, Olga R; Mendiratta-Lala, Mishal; Hallett, Donna T; Kruskal, Jonathan B

    2011-01-01

    With increasing deployment, complexity, and sophistication of equipment and related processes within the clinical imaging environment, system failures are more likely to occur. These failures may have varying effects on the patient, ranging from no harm to devastating harm. Failure mode and effect analysis (FMEA) is a tool that permits the proactive identification of possible failures in complex processes and provides a basis for continuous improvement. This overview of the basic principles and methodology of FMEA provides an explanation of how FMEA can be applied to clinical operations in a radiology department to reduce, predict, or prevent errors. The six sequential steps in the FMEA process are explained, and clinical magnetic resonance imaging services are used as an example for which FMEA is particularly applicable. A modified version of traditional FMEA called Healthcare Failure Mode and Effect Analysis, which was introduced by the U.S. Department of Veterans Affairs National Center for Patient Safety, is briefly reviewed. In conclusion, FMEA is an effective and reliable method to proactively examine complex processes in the radiology department. FMEA can be used to highlight the high-risk subprocesses and allows these to be targeted to minimize the future occurrence of failures, thus improving patient safety and streamlining the efficiency of the radiology department. RSNA, 2010

  11. Factors Influencing Radiology Residents' Fellowship Training and Practice Preferences in Canada.

    PubMed

    Mok, Philip S; Probyn, Linda; Finlay, Karen

    2016-05-01

    The study aimed to examine the postresidency plans of Canadian radiology residents and factors influencing their fellowship choices and practice preferences, including interest in teaching and research. Institutional ethics approval was obtained at McMaster University. Electronic surveys were sent to second to fifth-year residents at all 16 radiology residency programs across Canada. Each survey assessed factors influencing fellowship choices and practice preferences. A total of 103 (31%) Canadian radiology residents responded to the online survey. Over 89% from English-speaking programs intended to pursue fellowship training compared to 55% of residents from French-speaking programs. The most important factors influencing residents' decision to pursue fellowship training were enhanced employability (46%) and personal interest (47%). Top fellowship choices were musculoskeletal imaging (19%), body imaging (17%), vascular or interventional (14%), neuroradiology (8%), and women's imaging (7%). Respondents received the majority of their fellowship information from peers (68%), staff radiologists (61%), and university websites (58%). Approximately 59% planned on practicing at academic institutions and stated that lifestyle (43%), job prospects (29%), and teaching opportunities (27%) were the most important factors influencing their decisions. A total of 89% were interested in teaching but only 46% were interested in incorporating research into their future practice. The majority of radiology residents plan on pursuing fellowship training and often receive their fellowship information from informal sources such as peers and staff radiologists. Fellowship directors can incorporate recruitment strategies such as mentorship programs and improving program websites. There is a need to increase resident participation in research to advance the future of radiology. Copyright © 2016 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  12. Radiology resident teaching skills improvement: impact of a resident teacher training program.

    PubMed

    Donovan, Andrea

    2011-04-01

    Teaching is considered an essential competency for residents to achieve during their training. Instruction in teaching skills may assist radiology residents in becoming more effective teachers and increase their overall satisfaction with teaching. The purposes of this study were to survey radiology residents' teaching experiences during residency and to assess perceived benefits following participation in a teaching skills development course. Study participants were radiology residents with membership in the American Alliance of Academic Chief Residents in Radiology or the Siemens AUR Radiology Resident Academic Development Program who participated in a 1.5-hour workshop on teaching skills development at the 2010 Association of University Radiologists meeting. Participants completed a self-administered, precourse questionnaire that addressed their current teaching strategies, as well as the prevalence and structure of teaching skills training opportunities at their institutions. A second postcourse questionnaire enabled residents to evaluate the seminar and assessed new knowledge and skill acquisition. Seventy-eight residents completed the precourse and postcourse questionnaires. The vast majority of respondents indicated that they taught medical students (72 of 78 [92.3%]). Approximately 20% of residency programs (17 of 78) provided residents with formal didactic programs on teaching skills. Fewer than half (46.8%) of the resident respondents indicated that they received feedback on their teaching from attending physicians (36 of 77), and only 18% (13 of 78) routinely gave feedback to their own learners. All of the course participants agreed or strongly agreed that this workshop was helpful to them as teachers. Few residency programs had instituted resident teacher training curricula. A resident teacher training workshop was perceived as beneficial by the residents, and they reported improvement in their teaching skills. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  13. Federal Funding for Health Security in FY2015

    PubMed Central

    Sell, Tara Kirk; Watson, Matthew

    2014-01-01

    Previous articles in this series have provided funding information for federal civilian biodefense programs and programs focused on radiological and nuclear preparedness and consequence management. This year the authors have expanded the focus of the analysis to US federal funding for health security. This article provides proposed funding amounts for FY2015, estimated amounts for FY2014, and actual amounts for FY2010 through FY2013 in 5 domains critical to health security: biodefense programs, radiological and nuclear programs, chemical programs, pandemic influenza and emerging infectious disease programs, and multiple-hazard and preparedness programs. PMID:24988432

  14. Research Challenges and Opportunities for Clinically Oriented Academic Radiology Departments.

    PubMed

    Decker, Summer J; Grajo, Joseph R; Hazelton, Todd R; Hoang, Kimberly N; McDonald, Jennifer S; Otero, Hansel J; Patel, Midhir J; Prober, Allen S; Retrouvey, Michele; Rosenkrantz, Andrew B; Roth, Christopher G; Ward, Robert J

    2016-01-01

    Between 2004 and 2012, US funding for the biomedical sciences decreased to historic lows. Health-related research was crippled by receiving only 1/20th of overall federal scientific funding. Despite the current funding climate, there is increased pressure on academic radiology programs to establish productive research programs. Whereas larger programs have resources that can be utilized at their institutions, small to medium-sized programs often struggle with lack of infrastructure and support. To address these concerns, the Association of University Radiologists' Radiology Research Alliance developed a task force to explore any untapped research productivity potential in these smaller radiology departments. We conducted an online survey of faculty at smaller clinically funded programs and found that while they were interested in doing research and felt it was important to the success of the field, barriers such as lack of resources and time were proving difficult to overcome. One potential solution proposed by this task force is a collaborative structured research model in which multiple participants from multiple institutions come together in well-defined roles that allow for an equitable distribution of research tasks and pooling of resources and expertise. Under this model, smaller programs will have an opportunity to share their unique perspective on how to address research topics and make a measureable impact on the field of radiology as a whole. Through a health services focus, projects are more likely to succeed in the context of limited funding and infrastructure while simultaneously providing value to the field. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  15. Handheld Technology Acceptance in Radiologic Science Education and Training Programs

    ERIC Educational Resources Information Center

    Powers, Kevin Jay

    2012-01-01

    The purpose of this study was to explore the behavioral intention of directors of educational programs in the radiologic sciences to adopt handheld devices to aid in managing student clinical data. Handheld devices were described to participants as a technology representing a class of mobile electronic devices including, but not limited to,…

  16. Student Perceptions of Educational Quality in Radiologic Technology Programs: A Comparative Analysis of Specialized and Institutional Accreditation

    ERIC Educational Resources Information Center

    Vander Hoek, Nancy

    2012-01-01

    The purpose of this study was to determine if students' perceptions of quality differed between Joint Review Committee on Education in Radiologic Technology (JRCERT) accredited and non JRCERT-accredited radiography programs using the quality dimensions of curriculum, faculty, facilities and equipment, integrity, student outcomes, and overall…

  17. A Pointing Out and Naming Paradigm to Support Radiological Teaching and Case-Oriented Learning.

    ERIC Educational Resources Information Center

    Van Cleynenbreugel, J.; And Others

    1994-01-01

    The use of computer programs for authoring and presenting case materials in professional instruction in radiology is discussed. A workstation-based multimedia program for presenting and annotating images accompanied by both voice and text is described. Comments are also included on validity results and student response. (MSE)

  18. Radioactivity teaching: Environmental consequences of the radiological accident in Goiânia (Brazil)

    NASA Astrophysics Data System (ADS)

    Anjos, R. M.; Facure, A.; Lima, E. L. N.; Gomes, P. R. S.; Santos, M. S.; Brage, J. A. P.; Okuno, E.; Yoshimura, E. M.; Umisedo, N. K.

    2001-03-01

    Ionizing radiation and its effects on human beings, radiation protection, and radiological accident prevention are topics usually not included in the physics courses at the Brazilian universities. As a consequence, high school teachers are not able to enlighten their students when radiological or nuclear accidents occur. This paper presents a teaching program on ionizing radiation physics, to be applied to undergraduate physics students and to physics high school teachers. It is based on the environmental consequences of the 1987 radiological accident in Goiânia. This program was applied to two undergraduate physics students, in 1999, at the Universidade Federal Fluminense, Brazil. Results of the gamma ray spectrometry measurements of samples collected in Goiânia by the students are presented.

  19. Preventing tuberculosis in healthcare workers of the radiology department: a Malaysian perspective.

    PubMed

    Tan, Lh; Kamarulzaman, A

    2006-01-01

    Tuberculosis (TB) is a well recognised occupational hazard for healthcare workers (HCWs). Concerns on the safety of healthcare settings in Malaysia was raised following a report of 25 HCWs working in 11 general hospitals in Malaysia who were infected with TB in 2004 being publicised in the media recently. As the disease burden in general is high in Malaysia, due attention should be given to this disease in our healthcare facilities including the radiology department, an often neglected area in TB infection control programmes. This article focuses on the key control measures that can be implemented in radiology departments in a developing country with limited resources.

  20. Bikini scientific resurvey. Volume II. Report of the technical director. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1947-12-01

    Contents: Island and Reef Geology; Submarine Geology; Drilling Operations; Radiobiology Studies; Reef and Lagoon Fishes; Pelagic Fishes; Taxonomy and Teratology of Fishes; Invertebrate Embryology; Vertebrate Embryology; Reef and Lagoon Algae; Chemical Effects of Organisms Upon Sea Water; The Insect Population; Marine Invertebrates; Land Animals; Plankton Studies; Counter-Room Activities; Radiochemical Analyses; Soils Chemistry; Low-Level Radiation Studies; Army Engineering Studies; Aerological Data; Bacteriological Investigations; Radiological Safety; Radiological Health; Technical Director's Summary.

  1. Resources planning for radiological incidents management

    NASA Astrophysics Data System (ADS)

    Hamid, Amy Hamijah binti Ab.; Rozan, Mohd Zaidi Abd; Ibrahim, Roliana; Deris, Safaai; Yunus, Muhd. Noor Muhd.

    2017-01-01

    Disastrous radiation and nuclear meltdown require an intricate scale of emergency health and social care capacity planning framework. In Malaysia, multiple agencies are responsible for implementing radiological and nuclear safety and security. This research project focused on the Radiological Trauma Triage (RTT) System. This system applies patient's classification based on their injury and level of radiation sickness. This classification prioritizes on the diagnostic and treatment of the casualties which include resources estimation of the medical delivery system supply and demand. Also, this system consists of the leading rescue agency organization and disaster coordinator, as well as the technical support and radiological medical response teams. This research implemented and developed the resources planning simulator for radiological incidents management. The objective of the simulator is to assist the authorities in planning their resources while managing the radiological incidents within the Internal Treatment Area (ITA), Reception Area Treatment (RAT) and Hospital Care Treatment (HCT) phases. The majority (75%) of the stakeholders and experts, who had been interviewed, witnessed and accepted that the simulator would be effective to resolve various types of disaster and resources management issues.

  2. International Intercomparison Exercise for Nuclear Accident Dosimetry at the DAF Using GODIVA-IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickman, David; Hudson, Becka

    The Nuclear Criticality Safety Program operated under the direction of Dr. Jerry McKamy completed the first NNSA Nuclear Accident Dosimetry exercise on May 27, 2016. Participants in the exercise were from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), Savanah River Site (SRS), Pacific Northwest National Laboratory (PNNL), US Navy, the Atomic Weapons Establishment (United Kingdom) under the auspices of JOWOG 30, and the Institute for Radiological Protection and Nuclear Safety (France) by special invitation and NCSP memorandum of understanding. This exercise was the culmination of a series of Integral Experiment Requests (IER) thatmore » included the establishment of the Nuclear Criticality Experimental Research Center, (NCERC) the startup of the Godiva Reactor (IER-194), the establishment of a the Nuclear Accident Dosimetry Laboratory (NAD LAB) in Mercury, NV, and the determination of reference dosimetry values for the mixed neutron and photon radiation field of Godiva within NCERC.« less

  3. 76 FR 10602 - Medicare Program; Public Meetings in Calendar Year 2011 for All New Public Requests for Revisions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    .../Biologicals/Radiopharmaceuticals/Radiologic Imaging Agents). 2. Wednesday, May 18, 2011, 9 a.m. to 5 p.m. e.d.t. (Drugs/ Biologicals/Radiopharmaceuticals/Radiologic Imaging Agents). 3. Tuesday, May 24, 2011, 9... not need the second day of Drugs/Biologicals/ Radiopharmaceuticals/Radiologic Imaging Agents Public...

  4. 75 FR 8971 - Medicare Program; Public Meetings in Calendar Year 2010 for All New Public Requests for Revisions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    .../Biologicals/Radiopharmaceuticals/Radiologic Imaging Agents). 2. Wednesday, May 5, 2010, 9 a.m. to 5 p.m., e.d.t. (Drugs/ Biologicals/Radiopharmaceuticals/Radiologic Imaging Agents). 3. Tuesday, May 25, 2010, 9... not need the second day of Drugs/Biologicals/ Radiopharmaceuticals/Radiologic Imaging Agents Public...

  5. The Effectiveness of Computer-Based Hypermedia Teaching Modules for Radiology Residents.

    ERIC Educational Resources Information Center

    Azevedo, Roger; And Others

    This paper explains the rationale for utilizing computer-based, hypermedia tutorials for radiology education and presents the results of a field test of this educational technique. It discusses the development of the hypermedia tutorials at Montreal General Hospital (Quebec, Canada) in 1991-92 and their use in the radiology residency program. The…

  6. Radiology Aide. Instructor Key [and] Student Manual.

    ERIC Educational Resources Information Center

    Hartwein, Jon; Dunham, John

    This manual can be used independently by students in secondary health occupations programs or by persons receiving on-the-job training in a radiology department. The manual includes an instructor's key that provides answers to the activity sheets and unit evaluations. The manual consists of the following five units: (1) orientation to radiology;…

  7. Radiological Defense. Planning and Operations Guide. Revised.

    ERIC Educational Resources Information Center

    Office of Civil Defense (DOD), Washington, DC.

    This guide is a reprint of published and draft materials from the Federal Civil Defense Guide. This guide is intended to assist the student in planning, developing, implementing and operating a local, county, or state radiological defense (RADEF) system. The state and local radiological defense program objectives are to create an effective and…

  8. Value management program: performance, quantification, and presentation of imaging value-added actions.

    PubMed

    Patel, Samir

    2015-03-01

    Health care is in a state of transition, shifting from volume-based success to value-based success. Hospital executives and referring physicians often do not understand the total value a radiology group provides. A template for easy, cost-effective implementation in clinical practice for most radiology groups to demonstrate the value they provide to their clients (patients, physicians, health care executives) has not been well described. A value management program was developed to document all of the value-added activities performed by on-site radiologists, quantify them in terms of time spent on each activity (investment), and present the benefits to internal and external stakeholders (outcomes). The radiology value-added matrix is the platform from which value-added activities are categorized and synthesized into a template for defining investments and outcomes. The value management program was first implemented systemwide in 2013. Across all serviced locations, 9,931.75 hours were invested. An annual executive summary report template demonstrating outcomes is given to clients. The mean and median individual value-added hours per radiologist were 134.52 and 113.33, respectively. If this program were extrapolated to the entire field of radiology, approximately 30,000 radiologists, this would have resulted in 10,641,161 uncompensated value-added hours documented in 2013, with an estimated economic value of $2.21 billion. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, Ernest; Su, Jiann-Cherng; Peretz, Fred

    The primary purpose of the preclosure radiological safety assessment (that this document supports) is to identify risk factors for disposal operations, to aid in design for the deep borehole field test (DBFT) engineering demonstration.

  10. Toxicological and radiological safety of chicken meat irradiated with 7.5 MeV X-rays

    NASA Astrophysics Data System (ADS)

    Song, Beom-Seok; Lee, Yunjong; Park, Jong-Heum; Kim, Jae-Kyung; Park, Ha-Young; Kim, Dong-Ho; Kim, Chang-Jong; Kang, Il-Jun

    2018-03-01

    This study was conducted to evaluate the toxicological and radiological safety of chicken meat that had been irradiated at 30 kGy with 7.5 MeV X-rays. In a sub-chronic toxicity study, ICR mice were fed X-ray-irradiated chicken meat at 2500 mg/kg body weight daily for 90 days, and no mortality or abnormal clinical signs were observed throughout the study period. However, several hematological and serum biochemical parameters of the ICR mice differed significantly from those in the control group; nevertheless, the observed values were all within the normal range for the respective parameters. In addition, no toxicological effects were determined in male or female mice. Furthermore, no differences in gamma-ray spectrometric patterns were detected between the non-irradiated and irradiated samples, indicating that the radioactivity induced by 7.5 MeV X-ray irradiation was below the detection limit. These results tentatively suggest that chicken meat irradiated with 7.5 MeV X-rays would be safe for human consumption in terms of toxicology and radiology.

  11. WE-AB-213-01: AAPM Projects and Collaborations in Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shulman, A.

    AAPM projects and collaborations in Africa Adam Shulman (AA-SC Chair) The African Affairs Subcommittee (AA-SC) of the AAPM will present a multi-institutional approach to medical physics support in Africa. Current work to increase the quality of care and level of safety for the medical physics practice in Senegal, Ghana, and Zimbabwe will be presented, along with preliminary projects in Nigeria and Botswana. Because the task of addressing the needs of medical physics in countries across Africa is larger than one entity can accomplish on its own, the AA-SC has taken the approach of joining forces with multiple organizations such asmore » Radiating Hope and TreatSafely (NGO’s), the IAEA, companies like BrainLab, Varian and Elekta, medical volunteers and academic institutions such as NYU and Washington University. Elements of current projects include: 1) Distance training and evaluation of the quality of contouring and treatment planning, teaching treatment planning and other subjects, and troubleshooting using modern telecommunications technology in Senegal, Ghana, and Zimbabwe; 2) Assistance in the transition from 2D to 3D in Senegal and Zimbabwe; 3) Assistance in the transition from 3D to IMRT using in-house compensators in Senegal; 4) Modernizing the cancer center in Senegal and increasing safety and; 5) Training on on 3D techniques in Ghana; 6) Assisting a teaching and training radiation oncology center to be built in Zimbabwe; 7) Working with the ISEP Program in Sub-Saharan Africa; 8) Creating instructional videos on linac commissioning; 9) Working on a possible collaboration to train physicists in Nigeria. Building on past achievements, the subcommittee seeks to make a larger impact on the continent, as the number and size of projects increases and more human resources become available. The State of Medical Physics Collaborations and Projects in Latin America Sandra Guzman (Peru) The lack of Medical Physicists (MP) in many Latin American (LA) countries leads to recruitment of professionals with incomplete education. In most LA countries only one MP responsible for each Center is currently mandated. Currently there is a large disparity among MP training programs and there is significant debate about the standards of MP graduate education in many LA countries. There are no commonly recognized academic programs, not enough clinical training sites and clinical training is not typically considered as part of the MP work. Economic pressures and high workloads also impede the creation of more training centers. The increasing need of qualified MPs require establishing a coordinated system of national Education & Training Centers (ETC), to meet the international standards of education and training in Medical Physics. This shortfall calls for support of organizations such as the IOMP, AAPM, ALFIM, IAEA, etc. Examples from various LA countries, as well as some proposed solutions, will be presented. In particular, we will discuss the resources that the AAPM and its members can offer to support regional programs. The ‘Medical Imaging’ physicist in the emerging world: Challenges and opportunities - Caridad Borrás (WGNIMP Chair) While the role of radiation therapy physicists in the emerging world is reasonably well established, the role of medical imaging physicists is not. The only perceived needs in radiology departments are equipment quality control and radiation protection, tasks that can be done by a technologist or a service engineer. To change the situation, the International Basic Safety Standard, which is adopted/adapted world-wide as national radiation protection regulations, states: “For diagnostic radiological procedures and image guided interventional procedures, the requirements of these Standards for medical imaging, calibration, dosimetry and quality assurance, including the acceptance and commissioning of medical radiological equipment, are fulfilled by or under the oversight of, or with the documented advice of a medical physicist, whose degree of involvement is determined by the complexity of the radiological procedures and the associated radiation risks”. Details on how these requirements can be carried out in resource-limited settings will be described. IAEA support to medical physics in Africa and Latin America: achievements and challenges Ahmed Meghzifene (IAEA) Shortage of clinically qualified medical physicists in radiotherapy and imaging, insufficient and inadequate education and training programs, as well as a lack of professional recognition were identified as the main issues to be addressed by the IAEA. The IAEA developed a series of integrated projects aiming specifically at promoting the essential role of medical physicists in health care, developing harmonized guidelines on dosimetry and quality assurance, and supporting education and clinical training programs. The unique feature of the IAEA approach is support it provides for implementation of guidelines and education programs in Member States through its technical cooperation project. The presentation will summarize IAEA support to Latin America and Africa in the field of medical physics and will highlight how the new International Basic Safety Standards are expected to impact the medical physics practice in low and middle income countries. Learning Objectives: Learn about the shortage of qualified Medical Physicists in Africa and Latin America. Understand the reasons of this shortage. Learn about the ways to improve the situation and AAPM role in this process.« less

  12. WE-AB-213-00: Developments in International Medical Physics Collaborations in Africa and Latin America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The African Affairs Subcommittee (AA-SC) of the AAPM will present a multi-institutional approach to medical physics support in Africa. Current work to increase the quality of care and level of safety for the medical physics practice in Senegal, Ghana, and Zimbabwe will be presented, along with preliminary projects in Nigeria and Botswana. Because the task of addressing the needs of medical physics in countries across Africa is larger than one entity can accomplish on its own, the AA-SC has taken the approach of joining forces with multiple organizations such as Radiating Hope and TreatSafely (NGO’s), the IAEA, companies like BrainLab,more » Varian and Elekta, medical volunteers and academic institutions such as NYU and Washington University. Elements of current projects include: 1) Distance training and evaluation of the quality of contouring and treatment planning, teaching treatment planning and other subjects, and troubleshooting using modern telecommunications technology in Senegal, Ghana, and Zimbabwe; 2) Assistance in the transition from 2D to 3D in Senegal and Zimbabwe; 3) Assistance in the transition from 3D to IMRT using in-house compensators in Senegal; 4) Modernizing the cancer center in Senegal and increasing safety and; 5) Training on on 3D techniques in Ghana; 6) Assisting a teaching and training radiation oncology center to be built in Zimbabwe; 7) Working with the ISEP Program in Sub-Saharan Africa; 8) Creating instructional videos on linac commissioning; 9) Working on a possible collaboration to train physicists in Nigeria. Building on past achievements, the subcommittee seeks to make a larger impact on the continent, as the number and size of projects increases and more human resources become available. The State of Medical Physics Collaborations and Projects in Latin America Sandra Guzman (Peru) The lack of Medical Physicists (MP) in many Latin American (LA) countries leads to recruitment of professionals with incomplete education. In most LA countries only one MP responsible for each Center is currently mandated. Currently there is a large disparity among MP training programs and there is significant debate about the standards of MP graduate education in many LA countries. There are no commonly recognized academic programs, not enough clinical training sites and clinical training is not typically considered as part of the MP work. Economic pressures and high workloads also impede the creation of more training centers. The increasing need of qualified MPs require establishing a coordinated system of national Education & Training Centers (ETC), to meet the international standards of education and training in Medical Physics. This shortfall calls for support of organizations such as the IOMP, AAPM, ALFIM, IAEA, etc. Examples from various LA countries, as well as some proposed solutions, will be presented. In particular, we will discuss the resources that the AAPM and its members can offer to support regional programs. The ‘Medical Imaging’ physicist in the emerging world: Challenges and opportunities - Caridad Borrás (WGNIMP Chair) While the role of radiation therapy physicists in the emerging world is reasonably well established, the role of medical imaging physicists is not. The only perceived needs in radiology departments are equipment quality control and radiation protection, tasks that can be done by a technologist or a service engineer. To change the situation, the International Basic Safety Standard, which is adopted/adapted world-wide as national radiation protection regulations, states: “For diagnostic radiological procedures and image guided interventional procedures, the requirements of these Standards for medical imaging, calibration, dosimetry and quality assurance, including the acceptance and commissioning of medical radiological equipment, are fulfilled by or under the oversight of, or with the documented advice of a medical physicist, whose degree of involvement is determined by the complexity of the radiological procedures and the associated radiation risks”. Details on how these requirements can be carried out in resource-limited settings will be described. IAEA support to medical physics in Africa and Latin America: achievements and challenges Ahmed Meghzifene (IAEA) Shortage of clinically qualified medical physicists in radiotherapy and imaging, insufficient and inadequate education and training programs, as well as a lack of professional recognition were identified as the main issues to be addressed by the IAEA. The IAEA developed a series of integrated projects aiming specifically at promoting the essential role of medical physicists in health care, developing harmonized guidelines on dosimetry and quality assurance, and supporting education and clinical training programs. The unique feature of the IAEA approach is support it provides for implementation of guidelines and education programs in Member States through its technical cooperation project. The presentation will summarize IAEA support to Latin America and Africa in the field of medical physics and will highlight how the new International Basic Safety Standards are expected to impact the medical physics practice in low and middle income countries. Learning Objectives: Learn about the shortage of qualified Medical Physicists in Africa and Latin America. Understand the reasons of this shortage. Learn about the ways to improve the situation and AAPM role in this process.« less

  13. WE-AB-213-03: Challenges and Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borras, C.

    AAPM projects and collaborations in Africa Adam Shulman (AA-SC Chair) The African Affairs Subcommittee (AA-SC) of the AAPM will present a multi-institutional approach to medical physics support in Africa. Current work to increase the quality of care and level of safety for the medical physics practice in Senegal, Ghana, and Zimbabwe will be presented, along with preliminary projects in Nigeria and Botswana. Because the task of addressing the needs of medical physics in countries across Africa is larger than one entity can accomplish on its own, the AA-SC has taken the approach of joining forces with multiple organizations such asmore » Radiating Hope and TreatSafely (NGO’s), the IAEA, companies like BrainLab, Varian and Elekta, medical volunteers and academic institutions such as NYU and Washington University. Elements of current projects include: 1) Distance training and evaluation of the quality of contouring and treatment planning, teaching treatment planning and other subjects, and troubleshooting using modern telecommunications technology in Senegal, Ghana, and Zimbabwe; 2) Assistance in the transition from 2D to 3D in Senegal and Zimbabwe; 3) Assistance in the transition from 3D to IMRT using in-house compensators in Senegal; 4) Modernizing the cancer center in Senegal and increasing safety and; 5) Training on on 3D techniques in Ghana; 6) Assisting a teaching and training radiation oncology center to be built in Zimbabwe; 7) Working with the ISEP Program in Sub-Saharan Africa; 8) Creating instructional videos on linac commissioning; 9) Working on a possible collaboration to train physicists in Nigeria. Building on past achievements, the subcommittee seeks to make a larger impact on the continent, as the number and size of projects increases and more human resources become available. The State of Medical Physics Collaborations and Projects in Latin America Sandra Guzman (Peru) The lack of Medical Physicists (MP) in many Latin American (LA) countries leads to recruitment of professionals with incomplete education. In most LA countries only one MP responsible for each Center is currently mandated. Currently there is a large disparity among MP training programs and there is significant debate about the standards of MP graduate education in many LA countries. There are no commonly recognized academic programs, not enough clinical training sites and clinical training is not typically considered as part of the MP work. Economic pressures and high workloads also impede the creation of more training centers. The increasing need of qualified MPs require establishing a coordinated system of national Education & Training Centers (ETC), to meet the international standards of education and training in Medical Physics. This shortfall calls for support of organizations such as the IOMP, AAPM, ALFIM, IAEA, etc. Examples from various LA countries, as well as some proposed solutions, will be presented. In particular, we will discuss the resources that the AAPM and its members can offer to support regional programs. The ‘Medical Imaging’ physicist in the emerging world: Challenges and opportunities - Caridad Borrás (WGNIMP Chair) While the role of radiation therapy physicists in the emerging world is reasonably well established, the role of medical imaging physicists is not. The only perceived needs in radiology departments are equipment quality control and radiation protection, tasks that can be done by a technologist or a service engineer. To change the situation, the International Basic Safety Standard, which is adopted/adapted world-wide as national radiation protection regulations, states: “For diagnostic radiological procedures and image guided interventional procedures, the requirements of these Standards for medical imaging, calibration, dosimetry and quality assurance, including the acceptance and commissioning of medical radiological equipment, are fulfilled by or under the oversight of, or with the documented advice of a medical physicist, whose degree of involvement is determined by the complexity of the radiological procedures and the associated radiation risks”. Details on how these requirements can be carried out in resource-limited settings will be described. IAEA support to medical physics in Africa and Latin America: achievements and challenges Ahmed Meghzifene (IAEA) Shortage of clinically qualified medical physicists in radiotherapy and imaging, insufficient and inadequate education and training programs, as well as a lack of professional recognition were identified as the main issues to be addressed by the IAEA. The IAEA developed a series of integrated projects aiming specifically at promoting the essential role of medical physicists in health care, developing harmonized guidelines on dosimetry and quality assurance, and supporting education and clinical training programs. The unique feature of the IAEA approach is support it provides for implementation of guidelines and education programs in Member States through its technical cooperation project. The presentation will summarize IAEA support to Latin America and Africa in the field of medical physics and will highlight how the new International Basic Safety Standards are expected to impact the medical physics practice in low and middle income countries. Learning Objectives: Learn about the shortage of qualified Medical Physicists in Africa and Latin America. Understand the reasons of this shortage. Learn about the ways to improve the situation and AAPM role in this process.« less

  14. WE-AB-213-05: Closing Remarks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipman, Y.

    AAPM projects and collaborations in Africa Adam Shulman (AA-SC Chair) The African Affairs Subcommittee (AA-SC) of the AAPM will present a multi-institutional approach to medical physics support in Africa. Current work to increase the quality of care and level of safety for the medical physics practice in Senegal, Ghana, and Zimbabwe will be presented, along with preliminary projects in Nigeria and Botswana. Because the task of addressing the needs of medical physics in countries across Africa is larger than one entity can accomplish on its own, the AA-SC has taken the approach of joining forces with multiple organizations such asmore » Radiating Hope and TreatSafely (NGO’s), the IAEA, companies like BrainLab, Varian and Elekta, medical volunteers and academic institutions such as NYU and Washington University. Elements of current projects include: 1) Distance training and evaluation of the quality of contouring and treatment planning, teaching treatment planning and other subjects, and troubleshooting using modern telecommunications technology in Senegal, Ghana, and Zimbabwe; 2) Assistance in the transition from 2D to 3D in Senegal and Zimbabwe; 3) Assistance in the transition from 3D to IMRT using in-house compensators in Senegal; 4) Modernizing the cancer center in Senegal and increasing safety and; 5) Training on on 3D techniques in Ghana; 6) Assisting a teaching and training radiation oncology center to be built in Zimbabwe; 7) Working with the ISEP Program in Sub-Saharan Africa; 8) Creating instructional videos on linac commissioning; 9) Working on a possible collaboration to train physicists in Nigeria. Building on past achievements, the subcommittee seeks to make a larger impact on the continent, as the number and size of projects increases and more human resources become available. The State of Medical Physics Collaborations and Projects in Latin America Sandra Guzman (Peru) The lack of Medical Physicists (MP) in many Latin American (LA) countries leads to recruitment of professionals with incomplete education. In most LA countries only one MP responsible for each Center is currently mandated. Currently there is a large disparity among MP training programs and there is significant debate about the standards of MP graduate education in many LA countries. There are no commonly recognized academic programs, not enough clinical training sites and clinical training is not typically considered as part of the MP work. Economic pressures and high workloads also impede the creation of more training centers. The increasing need of qualified MPs require establishing a coordinated system of national Education & Training Centers (ETC), to meet the international standards of education and training in Medical Physics. This shortfall calls for support of organizations such as the IOMP, AAPM, ALFIM, IAEA, etc. Examples from various LA countries, as well as some proposed solutions, will be presented. In particular, we will discuss the resources that the AAPM and its members can offer to support regional programs. The ‘Medical Imaging’ physicist in the emerging world: Challenges and opportunities - Caridad Borrás (WGNIMP Chair) While the role of radiation therapy physicists in the emerging world is reasonably well established, the role of medical imaging physicists is not. The only perceived needs in radiology departments are equipment quality control and radiation protection, tasks that can be done by a technologist or a service engineer. To change the situation, the International Basic Safety Standard, which is adopted/adapted world-wide as national radiation protection regulations, states: “For diagnostic radiological procedures and image guided interventional procedures, the requirements of these Standards for medical imaging, calibration, dosimetry and quality assurance, including the acceptance and commissioning of medical radiological equipment, are fulfilled by or under the oversight of, or with the documented advice of a medical physicist, whose degree of involvement is determined by the complexity of the radiological procedures and the associated radiation risks”. Details on how these requirements can be carried out in resource-limited settings will be described. IAEA support to medical physics in Africa and Latin America: achievements and challenges Ahmed Meghzifene (IAEA) Shortage of clinically qualified medical physicists in radiotherapy and imaging, insufficient and inadequate education and training programs, as well as a lack of professional recognition were identified as the main issues to be addressed by the IAEA. The IAEA developed a series of integrated projects aiming specifically at promoting the essential role of medical physicists in health care, developing harmonized guidelines on dosimetry and quality assurance, and supporting education and clinical training programs. The unique feature of the IAEA approach is support it provides for implementation of guidelines and education programs in Member States through its technical cooperation project. The presentation will summarize IAEA support to Latin America and Africa in the field of medical physics and will highlight how the new International Basic Safety Standards are expected to impact the medical physics practice in low and middle income countries. Learning Objectives: Learn about the shortage of qualified Medical Physicists in Africa and Latin America. Understand the reasons of this shortage. Learn about the ways to improve the situation and AAPM role in this process.« less

  15. Use of the ICRP system for the protection of marine ecosystems.

    PubMed

    Telleria, D; Cabianca, T; Proehl, G; Kliaus, V; Brown, J; Bossio, C; Van der Wolf, J; Bonchuk, I; Nilsen, M

    2015-06-01

    The International Commission on Radiological Protection (ICRP) recently reinforced the international system of radiological protection, initially focused on humans, by identifying principles of environmental protection and proposing a framework for assessing impacts of ionising radiation on non-human species, based on a reference flora and fauna approach. For this purpose, ICRP developed dosimetric models for a set of Reference Animals and Plants, which are representative of flora and fauna in different environments (terrestrial, freshwater, marine), and produced criteria based on information on radiation effects, with the aim of evaluating the level of potential or actual radiological impacts, and as an input for decision making. The approach developed by ICRP for flora and fauna is consistent with the approach used to protect humans. The International Atomic Energy Agency (IAEA) includes considerations on the protection of the environment in its safety standards, and is currently developing guidelines to assess radiological impacts based on the aforementioned ICRP approach. This paper presents the method developed by IAEA, in a series of meetings with international experts, to enable assessment of the radiological impact to the marine environment in connection with the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter 1972 (London Convention 1972). This method is based on IAEA's safety standards and ICRP's recommendations, and was presented in 2013 for consideration by representatives of the contracting parties of the London Convention 1972; it was approved for inclusion in its procedures, and is in the process of being incorporated into guidelines. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. Image Gently(SM): a national education and communication campaign in radiology using the science of social marketing.

    PubMed

    Goske, Marilyn J; Applegate, Kimberly E; Boylan, Jennifer; Butler, Priscilla F; Callahan, Michael J; Coley, Brian D; Farley, Shawn; Frush, Donald P; Hernanz-Schulman, Marta; Jaramillo, Diego; Johnson, Neil D; Kaste, Sue C; Morrison, Gregory; Strauss, Keith J

    2008-12-01

    Communication campaigns are an accepted method for altering societal attitudes, increasing knowledge, and achieving social and behavioral change particularly within public health and the social sciences. The Image Gently(SM) campaign is a national education and awareness campaign in radiology designed to promote the need for and opportunities to decrease radiation to children when CT scans are indicated. In this article, the relatively new science of social marketing is reviewed and the theoretical basis for an effective communication campaign in radiology is discussed. Communication strategies are considered and the type of outcomes that should be measured are reviewed. This methodology has demonstrated that simple, straightforward safety messages on radiation protection targeted to medical professionals throughout the radiology community, utilizing multiple media, can affect awareness potentially leading to change in practice.

  17. Radiological control manual. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kloepping, R.

    1996-05-01

    This Lawrence Berkeley National Laboratory Radiological Control Manual (LBNL RCM) has been prepared to provide guidance for site-specific additions, supplements and interpretation of the DOE Radiological Control Manual. The guidance provided in this manual is one methodology to implement the requirements given in Title 10 Code of Federal Regulations Part 835 (10 CFR 835) and the DOE Radiological Control Manual. Information given in this manual is also intended to provide demonstration of compliance to specific requirements in 10 CFR 835. The LBNL RCM (Publication 3113) and LBNL Health and Safety Manual Publication-3000 form the technical basis for the LBNL RPPmore » and will be revised as necessary to ensure that current requirements from Rules and Orders are represented. The LBNL RCM will form the standard for excellence in the implementation of the LBNL RPP.« less

  18. Cybersecurity in radiology: Access of public hot spots and public Wi-Fi and prevention of cybercrimes and HIPAA violations.

    PubMed

    Gerard, Perry; Kapadia, Neil; Acharya, Jay; Chang, Patricia T; Lefkovitz, Zvi

    2013-12-01

    The purpose of this article is to review the steps that can be taken to ensure secure transfer of information over public and home networks, given the increasing utilization of mobile devices in radiology. With the rapid technologic developments in radiology, knowledge of various technical aspects is crucial for any practicing radiologist. Utilization of mobile devices, such as laptops, tablets, and even cellular phones, for reading radiologic studies has become increasingly prevalent. With such usage comes a need to ensure that both the user's and the patient's private information is protected. There are several steps that can be taken to protect sensitive information while using public networks. These steps include being diligent in reviewing the networks to which one connects, ensuring encrypted connections to web-sites, using strong passwords, and using a virtual private network and a firewall. As the role of information technology in modern radiology practice becomes more critical, these safety mechanisms must be addressed when viewing studies on any mobile device.

  19. Regulatory experience in applying a radiological environmental protection framework for existing and planned nuclear facilities.

    PubMed

    Mihok, S; Thompson, P

    2012-01-01

    Frameworks and methods for the radiological protection of non-human biota have been evolving rapidly at the International Commission on Radiological Protection and through various European initiatives. The International Atomic Energy Agency has incorporated a requirement for environmental protection in the latest revision of its Basic Safety Standards. In Canada, the Canadian Nuclear Safety Commission has been legally obligated to prevent unreasonable risk to the environment since 2000. Licensees have therefore been meeting generic legal requirements to demonstrate adequate control of releases of radioactive substances for the protection of both people and biota for many years. In the USA, in addition to the generic requirements of the Environmental Protection Agency and the Nuclear Regulatory Commission, Department of Energy facilities have also had to comply with specific dose limits after a standard assessment methodology was finalised in 2002. Canadian regulators developed a similar framework for biota dose assessment through a regulatory assessment under the Canadian Environmental Protection Act in the late 1990s. Since then, this framework has been applied extensively to satisfy legal requirements under the Canadian Environmental Assessment Act and the Nuclear Safety and Control Act. After approximately a decade of experience in applying these methods, it is clear that simple methods are fit for purpose, and can be used for making regulatory decisions for existing and planned nuclear facilities. Copyright © 2012. Published by Elsevier Ltd.

  20. The state of radiologic teaching practice in preclinical medical education: survey of American medical, osteopathic, and podiatric schools.

    PubMed

    Rubin, Zachary; Blackham, Kristine

    2015-04-01

    This study describes the state of preclinical radiology curricula in North American allopathic, osteopathic, and podiatric medical schools. An online survey of teaching methods, radiology topics, and future plans was developed. The Associations of American Medical Colleges, Colleges of Osteopathic Medicine, and Colleges of Podiatric Medicine listing for all US, Canadian, and Puerto Rican schools was used for contact information for directors of anatomy and/or radiology courses. Letters were sent via e-mail to 198 schools, with a link to the anonymous survey. Of 198 schools, 98 completed the survey (48%). Radiology curricula were integrated with other topics (91%), and taught by anatomists (42%) and radiologists (43%). The majority of time was spent on the topic of anatomy correlation (35%). Time spent teaching general radiology topics in the curriculum, such as physics (3%), modality differences (6%), radiation safety (2%), and contrast use (2%) was limited. Most schools had plans to implement an innovative teaching method in the near future (62%). The major challenges included limits on: time in the curriculum (73%); resources (32%); and radiology faculty participation (30%). A total of 82% reported that their curriculum did not model the suggestions made by the Alliance of Medical Student Educators in Radiology. This survey describes the current state of preclinical radiology teaching: curricula were nonstandard, integrated into other courses, and predominantly used for anatomy correlation. Other important contextual principles of the practice of radiology were seldom taught. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  1. Evaluation of Isotopic Data Mismatches on DOE-STD-1027 Facility Categorization Inventories for the K-1065 Complex and the Above Grade Storage Facility (AGSF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHugh, M.G.; Coleman, G.H.

    2006-07-01

    The contents of a safety basis (SB) are based upon the facility's purpose of operation, radiological inventory, and safety systems in place to mitigate any releases to the employees, general public and environment. Specifically, the radiological inventory is used for facility categorizations (e.g., Category 2, Category 3) and determining the material at risk used in the associated nuclear safety analysis calculations. Radiological inventory discrepancies, referred to as 'mismatches', have the potential to adversely impact the SB. This paper summarizes a process developed to: 1) identify these 'mismatches' based on a facility's radiological inventory, 2) categorize these 'mismatches' according to availablemore » data, and then 3) determine if these 'mismatches' yield either trivial or significant cumulative impacts on credited assumptions associated with a particular facility's SB. The two facilities evaluated for 'mismatches' were the K-1065 Complex and the Above Grade Storage Facility (AGSF). The randomly selected containers from each facility were obtained along with screening the radiological inventories found in the Waste Information Tracking System (WITS) database and the Request for Disposal (RFD) forms. Ideally, the radiological inventory, which is comprised of isotopic data for each container, is maintained in the WITS database. However, the RFD is the official repository record for isotopic data for each container. Historically, neither WITS nor the RFDs were required to contain isotopic data. Based on the WITS and RFD data, the containers were then categorized into five (5) separate conditions: Condition 1) Isotopic data in the RFD matches the isotopic data in WITS; Condition 2) Isotopic data in the RFD does not match the isotopic data in WITS; Condition 3) Isotopic data are in the RFD, but are not in WITS; Condition 4) No isotopic data in the RFD, but isotopic data are found in WITS; Condition 5) No isotopic data found in either the RFD or WITS. The results show trivial cumulative impacts (i.e., no inherent data biases) on credited assumptions associated with the K-1065 Complex and AGSF SBs. Recent random comparisons of WITS and RFDs continue to verify and validate that the administrative and procedural controls are adequate to ensure compliance with the SB for these facilities, thus providing a useful model for evaluating other facilities located at the Department of Energy's Oak Ridge Reservation (DOE-ORR). (authors)« less

  2. 78 FR 32309 - Distribution of Source Material to Exempt Persons and to General Licensees and Revision of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... align the requirements with current health and safety standards. Finally, the rule revises, clarifies... potential for uranium and thorium to produce health effects from both chemical toxicity and radiological... impacts to public health and safety. \\1\\ U.S. Department of Health and Human Services, Agency for Toxic...

  3. Technology assessment of medical devices at the Center for Devices and Radiological Health.

    PubMed

    Kessler, L; Richter, K

    1998-09-25

    We reviewed the Food and Drug Administration's regulatory process for medical devices and described the issues that arise in assessing device safety and effectiveness during the postmarket period. The Center for Devices and Radiological Health (CDRH), an organization within the Food and Drug Administration, has the legal authority and responsibility for ensuring that medical devices marketed in the United States are both reasonably safe and effective for their intended use. This is an enormous challenge given the diversity of medical devices and the large number of different types of devices on the market. Many scientific and regulatory activities are necessary to ensure device safety and effectiveness, including technology assessment, albeit in a manner quite different from that of conventional technology assessment. The basic approach taken at the CDRH to ensure device safety and effectiveness is to develop an understanding of the way in which a medical device works and how it will perform in clinical situations.

  4. 75 FR 45699 - Medicare Program: Changes to the Hospital Outpatient Prospective Payment System and CY 2010...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... part of the office-based and ancillary radiology payment methodology. This notice updates the CY 2010... covered ancillary radiology services to the lesser of the ASC rate or the amount calculated by multiplying... procedures and covered ancillary radiology services are determined using the amounts in the MPFS final rule...

  5. Auditor recommendations resulting from three clinical audit rounds in Finnish radiology units.

    PubMed

    Miettunen, Kirsi; Metsälä, Eija

    2017-06-01

    Background The purpose of clinical audits performed in radiology units is to reduce the radiation dose of patients and staff and to implement evidence-based best practices. Purpose To describe auditor recommendations in three Finnish clinical audit rounds performed in 2002-2014, and to determine if auditor recommendations have had any impact on improving medical imaging practice. Material and Methods The retrospective observational study was performed in radiology units holding a radiation safety license issued by the Finnish Radiation and Nuclear Safety Authority. The data comprised a systematic sample (n = 120) of auditor reports produced in three auditing rounds in these units during the years 2002-2014. The data were analyzed by descriptive methods and by using the Friedman two-way ANOVA test. Results The number of auditor recommendations given varied between clinical audit rounds and according to the type of imaging unit, as well as according to calculation method. Proportionally, the most recommendations in all three clinical audit rounds were given about defining and using quality assurance functions and about guidelines and practices for carrying out procedures involving radiation exposure. Demanding radiology units improved their practices more than basic imaging units towards the third round. Conclusion Auditor recommendations help to address the deficiencies in imaging practices. There is a need to develop uniform guidelines and to provide tutoring for clinical auditors in order to produce comparable clinical audit results.

  6. Introductory lecture series for first-year radiology residents: implementation, investment and assessment.

    PubMed

    Chapman, Teresa; Chew, Felix S

    2013-03-01

    A lecture series aimed at providing new radiology residents a rapid course on the fundamental concepts of professionalism, safety, and interpretation of diagnostic imaging was established. Evaluation of the course's educational value was attempted through surveys. Twenty-six live 45-minute lectures presented by 16 or 17 faculty members were organized exclusively for the first class of radiology residents, held over a 2-month period at the beginning of certain weekdays. Online surveys were conducted after the course to gather feedback from residents. Average resident rotation evaluation scores were measured over the first semester for the two classes before and after this new course implementation. The lecture series was successfully organized and implemented. A total of 33 residents sat through the course over three summers. Faculty reported a reasonable number of preparation hours, and 100% of residents indicated they valued the course. Comparison of class average evaluation scores before and after the existence of this 2-month course did not significantly change. This collection of introductory lectures on professionalism, safety, and diagnostic imaging, delivered early in the first year of the radiology residency, requires a reasonable number of invested preparation hours by the faculty but results in a universal increase in resident confidence. However, we were unable to demonstrate an objective improvement in resident performance on clinical rotations. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  7. PACS: implementation in the U.S. Department of Defense

    NASA Astrophysics Data System (ADS)

    Chacko, Anna K.; Wider, Ronald; Romlein, John R.; Cawthon, Michael A.; Richardson, Ronald R., Jr.; Lollar, H. William; Cook, Jay F.; Timboe, Harold L.; Johnson, Thomas G.; Fellows, Douglas W.

    2000-05-01

    The Department of Defense has been a leader in Radiology re- engineering for the past decade. Efforts have included the development of two landmark PACS specifications (MDIS and DIN- PACS), respective vendor selection and implementation programs. A Tri-Service (Army, Navy and Air Force) Radiology re-engineering program was initiated which identified transitioning to digital imaging, PACS and teleradiology as key enabling technologies in a changing business scenario. Subsequently, the systematic adjustment of procurement process for radiological imaging equipment included a focus on specifying PACS-capable-digital imaging modalities and mini- PACS as stepping stones to make the hospitals and health clinics PACS-ready. The success of the PACS and teleradiology program in the DOD is evidenced by the near filmless operation of most Army and Air Force Medical Centers, several community hospitals and several operational teleradiology constellations. Additionally, the MDIS PACSystem has become the commercial PACS product for General Electric Medical Systems. The DOD continues to forge ahead in the PACS arena by implementing advanced configurations and operational concepts such as the VRE (Virtual Radiology Environment), the negotiation of Regional Archiving and Regional PACS Maintenance Programs. Newer regulations (HIPAA, the FDA approval of digital mammography) have been promulgated impacting the culture and conduct of our business. Incorporating their requirements at the very outset will enable us to streamline the delivery of radiology. The DOD community has embraced the information age at multiple levels. The Healthcare portion of this community with these initiatives is integrating itself into DOD's future. The future holds great possibilities, promises and challenges for the DOD PACS programs.

  8. Sandia Review of High Bridge Associates Report: Comparison of Plutonium Disposition Alternatives: WIPP Diluted Plutonium Storage and MOX Fuel Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoemaker, Paul E.; Hardin, Ernest; Park, HeeHo Daniel

    The subject report from High Bridge Associates (HBA) was issued on March 2, 2016, in reaction to a U.S. Department of Energy (DOE) program decision to pursue down-blending of surplus Pu and geologic disposal at the Waste Isolation Pilot Plant (WIPP). Sandia National Laboratories was requested by the DOE to review the technical arguments presented in the HBA report. Specifically, this review is organized around three technical topics: criticality safety, radiological release limits, and thermal impacts. Questions raised by the report pertaining to legal and regulatory requirements, safeguards and security, international agreements, and costing of alternatives, are beyond the scopemore » of this review.« less

  9. Bioenvironmental and radiological-safety feasibility studies, Atlantic-Pacific Interoceanic Canal. Phase 2, Freshwater ecology: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Templeton, W.L.; Dean, J.M.; Watson, D.G.

    1968-06-28

    The purpose of this program is to conduct studies in the freshwater environment to acquire data needed to evaluate and predict the potential radiation hazards to human populations in the defined regions of proposed nuclear excavations in the Republics of Panama and Colombia. The results of the field surveys conducted in Phase II are presented in this report. Specifically, the data describes the elemental composition of the major components of the ecosystem, and reports the calculated stable element concentration factors for the major food organisms. This data provides baseline values from which predictions can be made of the potential maximummore » radionuclide intake by populations using this resource.« less

  10. Nevada National Security Site Environmental Report 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Wills, ed.

    2011-09-13

    This NNSSER was prepared to satisfy DOE Order DOE O 231.1B, “Environment, Safety and Health Reporting.” Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NNSA/NSO Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This NNSSER summarizes data and compliance status for calendar year 2010 at the Nevada Nationalmore » Security Site (NNSS) (formerly the Nevada Test Site) and its two support facilities, the North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory–Nellis (RSL-Nellis). It also addresses environmental restoration (ER) projects conducted at the Tonopah Test Range (TTR). Through a Memorandum of Agreement, NNSA/NSO is responsible for the oversight of TTR ER projects, and the Sandia Site Office of NNSA (NNSA/SSO) has oversight of all other TTR activities. NNSA/SSO produces the TTR annual environmental report available at http://www.sandia.gov/news/publications/environmental/index.html.« less

  11. Interactive Radiology teaching file system: the development of a MIRC-compliant and user-centered e-learning resource.

    PubMed

    dos-Santos, M; Fujino, A

    2012-01-01

    Radiology teaching usually employs a systematic and comprehensive set of medical images and related information. Databases with representative radiological images and documents are highly desirable and widely used in Radiology teaching programs. Currently, computer-based teaching file systems are widely used in Medicine and Radiology teaching as an educational resource. This work addresses a user-centered radiology electronic teaching file system as an instance of MIRC compliant medical image database. Such as a digital library, the clinical cases are available to access by using a web browser. The system has offered great opportunities to some Radiology residents interact with experts. This has been done by applying user-centered techniques and creating usage context-based tools in order to make available an interactive system.

  12. New Nuclear Emergency Prognosis system in Korea

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Ha; Jeong, Seung-Young; Park, Sang-Hyun; Lee, Kwan-Hee

    2016-04-01

    This paper reviews the status of assessment and prognosis system for nuclear emergency response in Korea, especially atmospheric dispersion model. The Korea Institute of Nuclear Safety (KINS) performs the regulation and radiological emergency preparedness of the nuclear facilities and radiation utilizations. Also, KINS has set up the "Radiological Emergency Technical Advisory Plan" and the associated procedures such as an emergency response manual in consideration of the IAEA Safety Standards GS-R-2, GS-G-2.0, and GS-G-2.1. The Radiological Emergency Technical Advisory Center (RETAC) organized in an emergency situation provides the technical advice on radiological emergency response. The "Atomic Computerized Technical Advisory System for nuclear emergency" (AtomCARE) has been developed to implement assessment and prognosis by RETAC. KINS developed Accident Dose Assessment and Monitoring (ADAMO) system in 2015 to reflect the lessons learned from Fukushima accident. It incorporates (1) the dose assessment on the entire Korean peninsula, Asia region, and global region, (2) multi-units accident assessment (3) applying new methodology of dose rate assessment and the source term estimation with inverse modeling, (4) dose assessment and monitoring with the environmental measurements result. The ADAMO is the renovated version of current FADAS of AtomCARE. The ADAMO increases the accuracy of the radioactive material dispersion with applying the LDAPS(Local Data Assimilation Prediction System, Spatial resolution: 1.5 km) and RDAPS(Regional Data Assimilation Prediction System, Spatial resolution: 12km) of weather prediction data, and performing the data assimilation of automatic weather system (AWS) data from Korea Meteorological Administration (KMA) and data from the weather observation tower at NPP site. The prediction model of the radiological material dispersion is based on the set of the Lagrangian Particle model and Lagrangian Puff model. The dose estimation methodology incorporate the dose assessment methods of IAEA, WHO, and USNRC. The dose assessment result will express on the GIS (GIS (Geographic Information System) to provide to the local- governments and the central government. Acknowledgements This research has been supported by the Nuclear Safety and Security Commission [Reference No.1305020-0315-SB110

  13. Ethnic and Gender Diversity in Radiology Fellowships.

    PubMed

    West, Derek L; Nguyen, HaiThuy

    2017-06-01

    The purpose of the study is to assess ethnic and gender diversity in US radiology fellowship programs from 2006 to 2013. Data for this study was obtained from Journal of the American Medical Association supplements publications from 2005 to 2006 to 2012-2013 (Gonzalez-Moreno, Innov Manag Policy Pract. 15(2):149, 2013; Nivet, Acad Med. 86(12):1487-9, 2011; Reede, Health Aff. 22(4):91-3, 2003; Chapman et al., Radiology 270(1):232-40, 2014; Getto, 2005; Rivo and Satcher, JAMA 270(9):1074-8, 1993; Schwartz et al., Otolaryngol Head Neck Surg. 149(1):71-6, 2013; Simon, Clin Orthop Relat Res. 360:253-9, 1999) and the US census 2010. For each year, Fisher's exact test was used to compare the percentage of women and under-represented minorities in each Accreditation Council for Graduate Medical Education (ACGME)-certified radiology fellowship to the percentage of women and under-represented minorities in (1) all ACGME-certified radiology fellowships combined, (2) radiology residents, (3) ACGME-certified fellows in all of medicine combined, (4) ACGME-certified residents in all of medicine combined, and (5) graduating medical students. Chi-Squared test was used to compare the percentage of women and under-represented minorities and the 2010 US census. p < 0.05 was used as indicator of significance. Interventional radiology and neuroradiology demonstrated the highest levels of disparities, compared to every level of medical education. Abdominal and musculoskeletal radiology fellowships demonstrated disparity patterns consistent with lack of female and URM medical graduates entering into radiology residency. All radiology fellowships demonstrated variable levels of gender and ethnic disparities. Outreach efforts, pipeline programs, and mentoring may be helpful in addressing this issue.

  14. Stochastic Modeling of Radioactive Material Releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrus, Jason; Pope, Chad

    2015-09-01

    Nonreactor nuclear facilities operated under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculatesmore » the radiation dose associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA was developed using the MATLAB coding framework. The software application has a graphical user input. SODA can be installed on both Windows and Mac computers and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC, rather it is viewed as an easy to use supplemental tool to help improve risk understanding and support better informed decisions. The work was funded through a grant from the DOE Nuclear Safety Research and Development Program.« less

  15. 10 CFR 960.5-2-3 - Meteorology.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REPOSITORY Preclosure Guidelines Preclosure Radiological Safety § 960.5-2-3 Meteorology. (a) Qualifying... operation and closure will not be likely to lead to radionuclide releases to an unrestricted area greater...

  16. Teaching physics to radiology residents.

    PubMed

    Hendee, William R

    2009-04-01

    The complexity of diagnostic imaging has expanded dramatically over the past two decades. Over the same period, the time and effort devoted to teaching physics (the science and technology of the discipline) have diminished. This paradox compromises the ability of future radiologists to master imaging technologies so that they are used in an efficient, safe, and cost-effective manner. This article addresses these issues. Efforts involving many professional organizations are under way to resolve the paradox of the expanding complexity of medical imaging contrasted with the declining emphasis on physics in radiology residency programs. These efforts should help to reestablish physics education as a core value in radiology residency programs.

  17. Spanish Radiology in the second half of the XX Century: a view from inside.

    PubMed

    Bonmatí, José

    2008-09-01

    Radiology was born in 1896 with the immediate recognition of the diagnostic value of X-rays in medicine and progressed throughout the XX Century with the increasing knowledge of its properties and clinical applications. By mid-century Radiology was a respected clinical specialty in advanced countries, the radiological report was a requirement in hospital practice and radiologists' opinions requested in scientific meetings. In the last decades of the century has had a spectacular expansion with the emergence of new imaging modalities and revolutionary technologies that have transformed the specialty worldwide. In Spain Radiology lagged behind needs and demand in 1950. Radiological practice was unregulated and performance of X-ray exams by non-radiologists was common. Teaching of Radiology was non-existent in Medical Schools or postgraduation. The diagnostic value of the specialty was unrecognized by physicians and the role of radiologists ignored. Most hospital radiology services were poorly equipped and functionally inadequate. The shadow of the Civil War (1936-39) was conditioning Radiology in the country. The point of inflexion in the development of Radiology in Spain was the inclusion of film reading sessions in the 1965 academic program of the Society of Radiology. It was in the presentation of cases at these conferences that Clinical Radiology found the finest demonstration ground and as a result was immediately adopted by radiologists and progressively applied in scientific meetings, clinical practices and training programs. Its influence was important in reforming hospital practice, legislation on specialization and education, as well as in national health care plans. At the end of the century radiology in Spain was at a par with the standards of other western nations. The author was a witness of the evolution of Radiology during his 50 years of professional life. This article does not pretend to be exhaustive in names or contributions. It is an overview of the period from the perspective of his past experience and seen from the distance of events that influenced the course of developments. I hope that those interested in the subject find that the effort has been worthwhile and helpful.

  18. Addressing the coming radiology crisis-the Society for Computer Applications in Radiology transforming the radiological interpretation process (TRIP) initiative.

    PubMed

    Andriole, Katherine P; Morin, Richard L; Arenson, Ronald L; Carrino, John A; Erickson, Bradley J; Horii, Steven C; Piraino, David W; Reiner, Bruce I; Seibert, J Anthony; Siegel, Eliot

    2004-12-01

    The Society for Computer Applications in Radiology (SCAR) Transforming the Radiological Interpretation Process (TRIP) Initiative aims to spearhead research, education, and discovery of innovative solutions to address the problem of information and image data overload. The initiative will foster interdisciplinary research on technological, environmental and human factors to better manage and exploit the massive amounts of data. TRIP will focus on the following basic objectives: improving the efficiency of interpretation of large data sets, improving the timeliness and effectiveness of communication, and decreasing medical errors. The ultimate goal of the initiative is to improve the quality and safety of patient care. Interdisciplinary research into several broad areas will be necessary to make progress in managing the ever-increasing volume of data. The six concepts involved are human perception, image processing and computer-aided detection (CAD), visualization, navigation and usability, databases and integration, and evaluation and validation of methods and performance. The result of this transformation will affect several key processes in radiology, including image interpretation; communication of imaging results; workflow and efficiency within the health care enterprise; diagnostic accuracy and a reduction in medical errors; and, ultimately, the overall quality of care.

  19. The RAC program: what can radiology providers expect as RACs begin auditing?

    PubMed

    Pendleton, Abby; Gustafson, Jessica L

    2009-01-01

    The Centers for Medicare and Medicaid Services (CMS) Recovery Audit Contractor (RAC) program has been made permanent and is expanding nationwide. Radiology providers should be ready for increased Medicare auditing activity as the RAC expands. Should a provider or supplier be subject to a RAC audit, effective strategies are available that can be successfully employed in the appeals process to challenge denials.

  20. Site Safety and Health Plan (Phase 3) for the treatability study for in situ vitrification at Seepage Pit 1 in Waste Area Grouping 7, Oak Ridge National Laboratory, Oak Ridge, TN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spalding, B.P.; Naney, M.T.

    1995-06-01

    This plan is to be implemented for Phase III ISV operations and post operations sampling. Two previous project phases involving site characterization have been completed and required their own site specific health and safety plans. Project activities will take place at Seepage Pit 1 in Waste Area Grouping 7 at ORNL, Oak Ridge, Tennessee. Purpose of this document is to establish standard health and safety procedures for ORNL project personnel and contractor employees in performance of this work. Site activities shall be performed in accordance with Energy Systems safety and health policies and procedures, DOE orders, Occupational Safety and Healthmore » Administration Standards 29 CFR Part 1910 and 1926; applicable United States Environmental Protection Agency requirements; and consensus standards. Where the word ``shall`` is used, the provisions of this plan are mandatory. Specific requirements of regulations and orders have been incorporated into this plan in accordance with applicability. Included from 29 CFR are 1910.120 Hazardous Waste Operations and Emergency Response; 1910.146, Permit Required - Confined Space; 1910.1200, Hazard Communication; DOE Orders requirements of 5480.4, Environmental Protection, Safety and Health Protection Standards; 5480.11, Radiation Protection; and N5480.6, Radiological Control Manual. In addition, guidance and policy will be followed as described in the Environmental Restoration Program Health and Safety Plan. The levels of personal protection and the procedures specified in this plan are based on the best information available from reference documents and site characterization data. Therefore, these recommendations represent the minimum health and safety requirements to be observed by all personnel engaged in this project.« less

  1. 21 CFR 1000.55 - Recommendation for quality assurance programs in diagnostic radiology facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... procedure that involves irradiation of any part of the human body for the purpose of diagnosis or..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) RADIOLOGICAL HEALTH GENERAL Radiation Protection...

  2. Practice Hospital Bed Safety

    MedlinePlus

    ... Administration’s (FDA) Center for Devices and Radiological Health (CDRH). "They are used not only in hospitals, but ... long-term care facilities, and in private homes." CDRH reports that about 2.5 million hospital beds ...

  3. Radiology resident recruitment: A study of the impact of web-based information and interview day activities.

    PubMed

    Deloney, Linda A; Perrot, L J; Lensing, Shelly Y; Jambhekar, Kedar

    2014-07-01

    Residency recruitment is a critical and expensive process. A program's Web site may improve recruitment, but little is known about how applicants use program sites or what constitutes optimal content. The importance of an interview day and interactions with a program's residents has been described, but candidate preferences for various activities and schedules have not been widely reported. We investigated contemporary use and perceived utility of information provided on radiology program Web sites, as well as preferences for the interview day experience. Using an anonymous cross-sectional survey, we studied 111 candidates who were interviewed between November 1, 2012 and January 19, 2013 for a diagnostic radiology residency position at our institution. Participation in this institutional review board-approved study was entirely voluntary, and no identifying information was collected. Responses were sealed and not analyzed until after the match. A total of 70 candidates returned a completed survey (63% response rate). Optimal content considered necessary for a "complete" Web site was identified. The most important factor in deciding where to apply was geographical connection to a program. "AuntMinnie" was the most popular source of program information on social media. Candidates overwhelmingly preferred one-on-one faculty interviews but had no preference between a Saturday and weekday schedule. The ideal interview experience should include a "meet and greet" with residents off campus and a personal interview with the program director. The overall "feel" or "personality" of the program was critical to a candidate's rank order decision. Our findings offer insight into what factors make programs appealing to radiology applicants. This information will be useful to medical educators engaged in career counseling and recruitment. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  4. 10 CFR 960.5-2-2 - Site ownership and control.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NUCLEAR WASTE REPOSITORY Preclosure Guidelines Preclosure Radiological Safety § 960.5-2-2 Site ownership... control of access that are required in order that surface and subsurface activities during repository...

  5. The American Board of Radiology Maintenance of Certification (MOC) Program in Radiologic Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Stephen R.; Hendee, William R.; Paliwal, Bhudatt R.

    2005-01-01

    Maintenance of Certification (MOC) recognizes that in addition to medical knowledge, several essential elements involved in delivering quality care must be developed and maintained throughout one's career. The MOC process is designed to facilitate and document the professional development of each diplomate of The American Board of Radiology (ABR) through its focus on the essential elements of quality care in Diagnostic Radiology and its subspecialties, and in the specialties of Radiation Oncology and Radiologic Physics. The initial elements of the ABR-MOC have been developed in accord with guidelines of The American Board of Medical Specialties. All diplomates with a ten-year,more » time-limited primary certificate in Diagnostic Radiologic Physics, Therapeutic Radiologic Physics, or Medical Nuclear Physics who wish to maintain certification must successfully complete the requirements of the appropriate ABR-MOC program for their specialty. Holders of multiple certificates must meet ABR-MOC requirements specific to the certificates held. Diplomates with lifelong certificates are not required to participate in the MOC, but are strongly encouraged to do so. MOC is based on documentation of individual participation in the four components of MOC: (1) professional standing, (2) lifelong learning and self-assessment, (3) cognitive expertise, and (4) performance in practice. Within these components, MOC addresses six competencies: medical knowledge, patient care, interpersonal and communication skills, professionalism, practice-based learning and improvement, and systems-based practice.« less

  6. Environmental Tools and Radiological Assessment

    EPA Science Inventory

    This presentation details two tools (SADA and FRAMES) available for use in environmental assessments of chemicals that can also be used for radiological assessments of the environment. Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporate...

  7. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 415: Project 57 No. 1 Plutonium Dispersion (NTTR), Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Patrick; Burmeister, Mark

    2014-04-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 415, Project 57 No. 1 Plutonium Dispersion (NTTR). CAU 415 is located on Range 4808A of the Nevada Test and Training Range (NTTR) and consists of one corrective action site: NAFR-23-02, Pu Contaminated Soil. The CAU 415 site consists of the atmospheric release of radiological contaminants to surface soil from the Project 57 safety experiment conducted in 1957. The safety experiment released plutonium (Pu), uranium (U), and americium (Am) to the surface soil over an area of approximately 1.9 squaremore » miles. This area is currently fenced and posted as a radiological contamination area. Vehicles and debris contaminated by the experiment were subsequently buried in a disposal trench within the surface-contaminated, fenced area and are assumed to have released radiological contamination to subsurface soils. Potential source materials in the form of pole-mounted electrical transformers were also identified at the site and will be removed as part of closure activities.« less

  8. Men (and Women) in Academic Radiology: How Can We Reduce the Gender Discrepancy?

    PubMed

    Grimm, Lars J; Ngo, Jennifer; Pisano, Etta D; Yoon, Sora

    2016-04-01

    There is a chronic gender imbalance in academic radiology departments, which could limit our field's ability to foster creative, productive, and innovative environments. We recently reviewed 51 major academic radiology faculty rosters and discovered that 34% of academic radiologists are women, but only 25% of vice chairs and section chiefs and 9% of department chairs are women. Active intervention is needed to correct this imbalance, which should start with awareness of the issue, exposing medical students to radiology early in their training, and implementing better mentorship programs for female radiologists.

  9. Federal Radiological Monitoring and Assessment Center Monitoring Manual Volume 1, Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Aerial Measurement Systems

    2012-07-31

    The Monitoring division is primarily responsible for the coordination and direction of: Aerial measurements to delineate the footprint of radioactive contaminants that have been released into the environment. Monitoring of radiation levels in the environment; Sampling to determine the extent of contaminant deposition in soil, water, air and on vegetation; Preliminary field analyses to quantify soil concentrations or depositions; and Environmental and personal dosimetry for FRMAC field personnel, during a Consequence Management Response Team (CMRT) and Federal Radiological Monitoring and Assessment Center (FRMAC) response. Monitoring and sampling techniques used during CM/FRMAC operations are specifically selected for use during radiological emergenciesmore » where large numbers of measurements and samples must be acquired, analyzed, and interpreted in the shortest amount of time possible. In addition, techniques and procedures are flexible so that they can be used during a variety of different scenarios; e.g., accidents involving releases from nuclear reactors, contamination by nuclear waste, nuclear weapon accidents, space vehicle reentries, or contamination from a radiological dispersal device. The Monitoring division also provides technicians to support specific Health and Safety Division activities including: The operation of the Hotline; FRMAC facility surveys; Assistance with Health and Safety at Check Points; and Assistance at population assembly areas which require support from the FRMAC. This volume covers deployment activities, initial FRMAC activities, development and implementation of the monitoring and assessment plan, the briefing of field teams, and the transfer of FRMAC to the EPA.« less

  10. Interagency Nuclear Safety Review Panel: Biomedical and Environmental Effects Subpanel report for Galileo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anspaugh, L.R.; Blanton, J.O.; Bollinger, L.J.

    1989-10-01

    This report of the Biomedical and Environmental Effects Subpanel (BEES) of the Interagency Nuclear Safety Review Panel (INSRP), for the Galileo space mission addresses the possible radiological consequences of postulated accidents that release radioactivity into the environment. This report presents estimates of the consequences and uncertainties given that the source term is released into the environment. 10 refs., 6 tabs.

  11. THE SM-1 ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM, NOVEMBER 1954- DECEMBER 1960

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pressman, M; Pruett, P B

    1961-08-31

    BS>An environmental radiological monitoring program was conducted. All data obtained during a period extending from l 1/2 years prior to SM-1 reactor start-up through more than 3 years of reactor operation are summarized. The period extended from November 1954 through December 1960. Samples assayed for radioactivity include river water and bottom silt, SM-1 condenser cooling water, subsurface ground water, rain and snow, atmospheric particles obtained by air filtration and fallout, and biota. The report concludes that after more than 3 years of SM-1 reactor operation, no significant increase has been noted in the radiological background level in the Fort Belvoirmore » area.« less

  12. Awareness of radiation protection and dose levels of imaging procedures among medical students, radiography students, and radiology residents at an academic hospital: Results of a comprehensive survey.

    PubMed

    Faggioni, Lorenzo; Paolicchi, Fabio; Bastiani, Luca; Guido, Davide; Caramella, Davide

    2017-01-01

    To evaluate the awareness of radiation protection issues and the knowledge of dose levels of imaging procedures among medical students, radiology residents, and radiography students at an academic hospital. A total of 159 young doctors and students (including 60 radiology residents, 56 medical students, and 43 radiography students) were issued a questionnaire consisting of 16 multiple choice questions divided into three separated sections (i.e., demographic data, awareness about radiation protection issues, and knowledge about radiation dose levels of common radiological examinations). Medical students claimed to have at least a good knowledge of radiation protection issues more frequently than radiology residents and radiography students (94.4% vs 55% and 35.7%, respectively; P<0.05), with no cases of perceived excellent knowledge among radiography students. However, the actual knowledge of essential radiation protection topics such as regulations, patient and tissue susceptibility to radiation damage, professional radiation risk and dose optimisation, as well as of radiation doses delivered by common radiological procedures was significantly worse among medical students than radiology residents and radiography students (P<0.05). Those latter significantly outperformed radiology residents as to knowledge of radiation protection issues (P<0.01). Overall, less than 50% of survey respondents correctly answered all questions of the survey. Radiology residents, radiography students and medical students have a limited awareness about radiation protection, with a specific gap of knowledge concerning real radiation doses of daily radiological examinations. Both undergraduate and postgraduate teaching needs to be effectively implemented with radiation safety courses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Results of the radiological survey of the Carpenter Steel Facility, Reading, Pennsylvania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottrell, W.D.; Carrier, R.F.

    1990-07-01

    In 1944, experimental uranium-forming work was conducted by Carpenter Technology Corporation at the Carpenter Steel Facility in Reading, Pennsylvania, under contract to the Manhattan Engineer District (MED). The fabrication method, aimed at producing sounder uranium metal and improving the yields of rods from billets, was reportedly soon discarded as unsatisfactory. As part of the Department of Energy's (DOE) efforts to verify the closeout status of facilities under contract to agencies preceding DOE during early nuclear energy development, the site was included in the Formerly Utilized Sites Remedial Action Program (FUSRAP). At the request of DOE, the Measurement Applications and Developmentmore » Group of the Health and Safety Research Division of Oak Ridge National Laboratory performed a radiological assessment survey in July and August 1988. The purpose of the survey was to determine if past operations had deposited radioactive residues in the facility, and whether those residuals were in significant quantities when compared to DOE guidelines. The survey included gamma scanning; direct measurements of alpha activity levels and beta-gamma dose rates; sampling for transferable alpha and beta-gamma residuals on selected surfaces; and sampling of soil, debris and currently used processing materials for radionuclide analysis. All survey results were within DOE FUSRAP guidelines derived to determine the eligibility of a site for remedial action. These guidelines are derived to ensure that unrestricted use of the property will not result in any measurable radiological hazard to the site occupants or the general public. 4 refs., 5 figs., 5 tabs.« less

  14. Quantitative computed tomography (QCT) as a radiology reporting tool by using optical character recognition (OCR) and macro program.

    PubMed

    Lee, Young Han; Song, Ho-Taek; Suh, Jin-Suck

    2012-12-01

    The objectives are (1) to introduce a new concept of making a quantitative computed tomography (QCT) reporting system by using optical character recognition (OCR) and macro program and (2) to illustrate the practical usages of the QCT reporting system in radiology reading environment. This reporting system was created as a development tool by using an open-source OCR software and an open-source macro program. The main module was designed for OCR to report QCT images in radiology reading process. The principal processes are as follows: (1) to save a QCT report as a graphic file, (2) to recognize the characters from an image as a text, (3) to extract the T scores from the text, (4) to perform error correction, (5) to reformat the values into QCT radiology reporting template, and (6) to paste the reports into the electronic medical record (EMR) or picture archiving and communicating system (PACS). The accuracy test of OCR was performed on randomly selected QCTs. QCT as a radiology reporting tool successfully acted as OCR of QCT. The diagnosis of normal, osteopenia, or osteoporosis is also determined. Error correction of OCR is done with AutoHotkey-coded module. The results of T scores of femoral neck and lumbar vertebrae had an accuracy of 100 and 95.4 %, respectively. A convenient QCT reporting system could be established by utilizing open-source OCR software and open-source macro program. This method can be easily adapted for other QCT applications and PACS/EMR.

  15. Thirteenth Annual Warren K. Sinclair Keynote Address: Where Are the Radiation Professionals (WARP)?

    PubMed

    Toohey, Richard E

    2017-02-01

    In July 2013, the National Council on Radiation Protection and Measurements convened a workshop for representatives from government, professional organizations, academia, and the private sector to discuss a potential shortage of radiation protection professionals in the not-too-distant future. This shortage manifests itself in declining membership of professional societies, decreasing enrollment in university programs in the radiological sciences, and perhaps most importantly, the imminent retirement of the largest birth cohort in American history, the so-called "baby boomer" generation. Consensus emerged that shortages already are, or soon will be, felt in government agencies (including state radiation control programs); membership in professional societies is declining precipitously; and student enrollments and university support for radiological disciplines are decreasing with no reversals expected. The supply of medical physicists appears to be adequate at least in the near term, although a shortage of available slots in accredited clinical training programs looms large. In general, the private sector appears stable, due in part to retirees joining the consultant ranks. However, it is clear that a severe problem exists with the lack of an adequate surge capacity to respond to a large-scale reactor accident or radiological terrorism attack in the United States. The workshop produced a number of recommendations, including increased funding of both fellowships and research in the radiological sciences, as well as creation of internships, practicums, and post-doctoral positions. A federal joint program support office that would more efficiently manage the careers of radiological professionals in the civil service would enhance recruiting and development, and increase the flexibility of the various agencies to manage their staffing needs.

  16. Critique of the transitional year internship and its relationship to radiology residency.

    PubMed

    Baker, Stephen R; Tilak, Gauri S; Thakur, Uma

    2008-05-01

    The purpose of the study is to determine if transitional year program (TYP) requirements foster realization of standards of excellence and clinical relevance for future radiologists and to explore demographic and economic factors pertinent to TYPs. A list of accredited TYPs were obtained from the American Medical Association's Graduate Medical Education (ACGME) Directory 2006-2007. Specialty distribution of TYP graduates was examined from statistics provided by the ACGME, and data from the 2007 Main Residency Match was analyzed. Data derived from a concurrent survey of the perception of the value of internship sent to all current radiology residents and fellows was assessed. The institutional costs of employing TYP interns versus physician assistants were also calculated. Forty-one of the 125 TYPs lack residencies in internal medicine (IM), general surgery (GS), or both, and approximately two-third of these lack full medical school affiliation. The interns who will graduate from these 41 programs account for 103 of the 1,128 radiology residents in their post-graduate year 2. Despite the longest elective time offered in TYPs compared to conventional preliminary programs, current radiology trainees who had participated in preliminary IM or GS internships were more satisfied compared to trainees completing TYPs. The requirements of the transitional internship and compliance with them need to be carefully assessed to determine their efficacy. Despite the strong economic impetus for hiring TYP interns, the availability of open slots in existing preliminary programs in IM and GS, coupled with radiology residents' greater level of satisfaction with traditional over transitional internships, makes the existence of TYPs less compelling.

  17. Web Implementation of Quality Assurance (QA) for X-ray Units in Balkanic Medical Institutions.

    PubMed

    Urošević, Vlade; Ristić, Olga; Milošević, Danijela; Košutić, Duško

    2015-08-01

    Diagnostic radiology is the major contributor to the total dose of the population from all artificial sources. In order to reduce radiation exposure and optimize diagnostic x-ray image quality, it is necessary to increase the quality and efficiency of quality assurance (QA) and audit programs. This work presents a web application providing completely new QA solutions for x-ray modalities and facilities. The software gives complete online information (using European standards) with which the corresponding institutions and individuals can evaluate and control a facility's Radiation Safety and QA program. The software enables storage of all data in one place and sharing the same information (data), regardless of whether the measured data is used by an individual user or by an authorized institution. The software overcomes the distance and time separation of institutions and individuals who take part in QA. Upgrading the software will enable assessment of the medical exposure level to ionizing radiation.

  18. Renewal of radiological equipment.

    PubMed

    2014-10-01

    In this century, medical imaging is at the heart of medical practice. Besides providing fast and accurate diagnosis, advances in radiology equipment offer new and previously non-existing options for treatment guidance with quite low morbidity, resulting in the improvement of health outcomes and quality of life for the patients. Although rapid technological development created new medical imaging modalities and methods, the same progress speed resulted in accelerated technical and functional obsolescence of the same medical imaging equipment, consequently creating a need for renewal. Older equipment has a high risk of failures and breakdowns, which might cause delays in diagnosis and treatment of the patient, and safety problems both for the patient and the medical staff. The European Society of Radiology is promoting the use of up-to-date equipment, especially in the context of the EuroSafe Imaging Campaign, as the use of up-to-date equipment will improve quality and safety in medical imaging. Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or renewal. This plan should look forward a minimum of 5 years, with annual updates. Teaching points • Radiological equipment has a definite life cycle span, resulting in unavoidable breakdown and decrease or loss of image quality which renders equipment useless after a certain time period.• Equipment older than 10 years is no longer state-of-the art equipment and replacement is essential. Operating costs of older equipment will be high when compared with new equipment, and sometimes maintenance will be impossible if no spare parts are available.• Older equipment has a high risk of failure and breakdown, causing delays in diagnosis and treatment of the patient and safety problems both for the patient and the medical staff.• Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or replacement. This plan should look forward a minimum of 5 years, with annual updating.

  19. Teaching technology to technologists.

    PubMed

    Lehrer, Rich

    2008-01-01

    The field of radiologic technology is in a transition period between the traditional film-based model and the digital-based model. To determine the extent to which educational programs accredited by the Joint Review Committee on Education in Radiologic Technology (JRCERT) are providing digital imaging-specific education. A survey regarding digital imaging instruction was administered electronically to program directors of 289 JRCERT-accredited educational programs in the United States. One hundred forty-four responses were received, for a response rate of 50%. The survey revealed that the majority of educational programs (73.6%) have added, modified or are already covering digital imaging topics, while other programs (21.5%) were in the planning stages of preparing coursework.

  20. Emotional Wellness of Current Musculoskeletal Radiology Fellows.

    PubMed

    Porrino, Jack; Mulcahy, Michael J; Mulcahy, Hyojeong; Relyea-Chew, Annemarie; Chew, Felix S

    2017-06-01

    Burnout is a psychological syndrome composed of emotional exhaustion, depersonalization, and sense of lack of personal accomplishment, as a result of prolonged occupational stress. The purpose of our study was to determine the prevalence of burnout among current musculoskeletal radiology fellows and to explore causes of emotional stress. A 24-item survey was constructed on SurveyMonkey using the Maslach Burnout Inventory. We identified 82 musculoskeletal radiology fellowship programs. We recruited subjects indirectly through the program director or equivalent. Fifty-eight respondents (48 male, 10 female) identified themselves as current musculoskeletal radiology fellows and completed the survey. Comparison of the weighted subscale means in our data to the Maslach normative subscale thresholds for medical occupations indicates that musculoskeletal radiology fellows report relatively high levels of burnout with regard to lack of personal accomplishment and depersonalization, whereas emotional exhaustion levels in our sample are within the average range reported by Maslach. Although male musculoskeletal radiology fellows experience relatively high levels in two of the three dimensions of burnout (depersonalization and personal accomplishment), female musculoskeletal radiology fellows experience relatively high burnout across all three dimensions. Job market-related stress and the effort required providing care for dependents significantly affect personal accomplishment. Conversely, imbalances in the work-life relationship and feelings of powerlessness are significantly associated with depersonalization and emotional exhaustion. Musculoskeletal radiology fellows report relatively high levels of burnout. Because the consequences of burnout can be severe, early identification and appropriate intervention should be a priority. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  1. Use of a simulation laboratory to train radiology residents in the management of acute radiologic emergencies.

    PubMed

    Sarwani, Nabeel; Tappouni, Rafel; Flemming, Donald

    2012-08-01

    Simulation laboratories use realistic clinical scenarios to train physicians in a controlled environment, especially in potentially life-threatening complications that require prompt management. The objective of our study was to develop a comprehensive program using the simulation laboratory to train radiology residents in the management of acute radiologic emergencies. All radiology residents attended a dedicated simulation laboratory course lasting 3 hours, divided over two sessions. Training included basic patient management skills, management of a tension pneumothorax, massive hemorrhage, and contrast agent reactions. Participants were presented with 20 multiple-choice questions before and after the course. Pre- and posttest results were analyzed, and the McNemar test was used to compare correct responses by individual question. Twenty-six radiology residents attended the class. The average pre- and posttest scores and the average difference between the scores for all residents were 13.8, 17.1, and 3.3, respectively (p < 0.0001). Incorrect answers on the pretest examination that were subsequently answered correctly concerned administration of epinephrine for severe reactions, management of a tension pneumothorax, oxygen therapy, ECG placement, cardiopulmonary resuscitation technique, and where to stand during a code situation. Persistent incorrect answers concerned vasovagal reactions and emergency telephone numbers at an off-site imaging center. Simulation laboratories can be used to teach crisis management and crisis resource management for radiology residents and should be part of the education toolbox. Defined objectives lead to a comprehensive course dealing with the management of acute radiologic emergencies. Such programs can improve the role of radiologists as members of the health care team.

  2. Automatic Estimation of the Radiological Inventory for the Dismantling of Nuclear Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Bermejo, R.; Felipe, A.; Gutierrez, S.

    The estimation of the radiological inventory of Nuclear Facilities to be dismantled is a process that included information related with the physical inventory of all the plant and radiological survey. Estimation of the radiological inventory for all the components and civil structure of the plant could be obtained with mathematical models with statistical approach. A computer application has been developed in order to obtain the radiological inventory in an automatic way. Results: A computer application that is able to estimate the radiological inventory from the radiological measurements or the characterization program has been developed. In this computer applications has beenmore » included the statistical functions needed for the estimation of the central tendency and variability, e.g. mean, median, variance, confidence intervals, variance coefficients, etc. This computer application is a necessary tool in order to be able to estimate the radiological inventory of a nuclear facility and it is a powerful tool for decision taken in future sampling surveys.« less

  3. 1996 Site environmental report Sandia National Laboratories Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fink, C.H.; Duncan, D.; Sanchez, R.

    1997-08-01

    Sandia National Laboratories/New Mexico (SNL/NM) is operated in support of the U.S. Department of Energy (DOE) mission to provide weapon component technology and hardware for national security needs, and to conduct fundamental research and development (R&D) to advance technology in energy research, computer science, waste management, electronics, materials science, and transportation safety for hazardous and nuclear components. In support of this mission, the Environmental Safety and Health (ES&H) Center at SNL/NM conducts extensive environmental monitoring, surveillance, and compliance activities to assist SNL`s line organizations in meeting all applicable environmental regulations applicable to the site including those regulating radiological and nonradiologicalmore » effluents and emissions. Also herein are included, the status of environmental programs that direct and manage activities such as terrestrial surveillance; ambient air and meteorological monitoring; hazardous, radioactive, and solid waste management; pollution prevention and waste minimization; environmental restoration (ER); oil and chemical spill prevention; and National Environmental Policy Act (NEPA) documentation. This report has been prepared in compliance with DOE order 5400.1, General Environmental Protection.« less

  4. Physics Instruction for Radiologic Technologists

    ERIC Educational Resources Information Center

    Chaney, Edward L.; And Others

    1974-01-01

    Discusses the Denver collaborative training program in radiologic technology with emphasis upon identification of core topics, preparation of quality instructional materials, and use of innovative teaching techniques, such as computer-assisted instruction and video tape presentations. Included is a 10-week course outline. (CC)

  5. Hospital management of mass radiological casualties: reassessing exposures from contaminated victims of an exploded radiological dispersal device.

    PubMed

    Smith, James M; Ansari, Armin; Harper, Frederick T

    2005-11-01

    One of the key issues in the aftermath of an exploded radiological dispersal device from a terrorist event is that of the contaminated victim and the concern among healthcare providers for the harmful exposures they may receive in treating patients, especially if the patient has not been thoroughly decontaminated. This is critically important in the event of mass casualties from a nuclear or radiological incident because of the essential rapidity of acute medical decisions and that those who have life- or limb-threatening injuries may have treatment unduly delayed by a decontamination process that may be unnecessary for protecting the health and safety of the patient or the healthcare provider. To estimate potential contamination of those exposed in a radiological dispersal device event, results were used from explosive aerosolization tests of surrogate radionuclides detonated with high explosives at the Sandia National Laboratories. Computer modeling was also used to assess radiation dose rates to surgical personnel treating patients with blast injuries who are contaminated with any of a variety of common radionuclides. It is demonstrated that exceptional but plausible cases may require special precautions by the healthcare provider, even while managing life-threatening injuries of a contaminated victim from a radiological dispersal device event.

  6. The sequence of disease-modifying therapies in relapsing multiple sclerosis: safety and immunologic considerations.

    PubMed

    Pardo, Gabriel; Jones, David E

    2017-12-01

    The treatment landscape for relapsing forms of multiple sclerosis (RMS) has expanded considerably over the last 10 years with the approval of multiple new disease-modifying therapies (DMTs), and others in late-stage clinical development. All DMTs for RMS are believed to reduce central nervous system immune-mediated inflammatory processes, which translate into demonstrable improvement in clinical and radiologic outcomes. However, some DMTs are associated with long-lasting effects on the immune system and/or serious adverse events, both of which may complicate the use of subsequent therapies. When customizing a treatment program, a benefit-risk assessment must consider multiple factors, including the efficacy of the DMT to reduce disease activity, the short- and long-term safety and immunologic profiles of each DMT, the criteria used to define switching treatment, and the risk tolerance of each patient. A comprehensive benefit-risk assessment can only be achieved by evaluating the immunologic, safety, and efficacy data for DMTs in the controlled clinical trial environment and the postmarketing clinical practice setting. This review is intended to help neurologists make informed decisions when treating RMS by summarizing the known data for each DMT and raising awareness of the multiple considerations involved in treating people with RMS throughout the entire course of their disease.

  7. Annual Site Environmental Report: 2008 (ASER)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabba, D.

    2009-11-09

    This report provides information about environmental programs during the calendar year of 2008 at the SLAC National Accelerator Laboratory (SLAC), Menlo Park, California. Activities that span the calendar year, i.e., stormwater monitoring covering the winter season of 2008/2009 (October 2008 through May 2009), are also included. Production of an annual site environmental report (ASER) is a requirement established by the United States Department of Energy (DOE) for all management and operating (M&O) contractors throughout the DOE complex. SLAC is a federally-funded research and development center with Stanford University as the M&O contractor. Under Executive Order (EO) 13423, Strengthening Federal Environmental,more » Energy, and Transportation Management, and DOE Order 450.1A, Environmental Protection Program, SLAC effectively implements and integrates the key elements of an Environmental Management System (EMS) to achieve the site's integrated safety and environmental management system goals. For normal daily activities, SLAC managers and supervisors are responsible for ensuring that policies and procedures are understood and followed so that: (1) Worker safety and health are protected; (2) The environment is protected; and (3) Compliance is ensured. Throughout 2008, SLAC continued to improve its management systems. These systems provided a structured framework for SLAC to implement 'greening of the government' initiatives such as EO 13423 and DOE Orders 450.1A and 430.2B. Overall, management systems at SLAC are effective, supporting compliance with all relevant statutory and regulatory requirements. SLAC continues to demonstrate significant progress in implementing and integrating EMS into day-to-day operations and construction activities at SLAC. The annual management review and ranking of environmental aspects were completed this year by SLAC's EMS Steering Committee, the Environmental Safety Committee (ESC), and twelve objectives and targets were established for 2008. For each objective and target, a work plan, or Environmental Management Program (EMP) was completed and progress reports were routinely provided to SLAC senior management and the DOE SLAC Site Office (SSO). During 2008, there were no reportable releases to the environment from SLAC operations. In addition, many improvements in waste minimization, recycling, stormwater management, groundwater restoration, and SLAC's chemical management system (CMS) were continued during the year. The following are amongst SLAC's environmental accomplishments for 2008: a composting program at SLAC's onsite cafeteria was initiated, greater than 800 cubic feet of legacy radioactive waste were packaged and shipped from SLAC, a chemical redistribution program was developed, SLAC reduced the number of General Services Administration leased vehicles from 221 to 164, recycling of municipal waste was increased by approximately 140 tons during 2008, and site-wide releases of sulfur hexafluoride were reduced by 50 percent. In 2008, no radiological incidents occurred that increased radiation levels or released radioactivity to the environment. In addition to managing its radioactive wastes safely and responsibly, SLAC worked to reduce the amount of waste generated. SLAC has implemented programs and systems to ensure compliance with all radiological requirements related to the environment. Specifically, the Radiation Protection Radiological Waste Management Group developed a training course to certify Radioactive Waste Generators, conducted a training pilot, and developed a list of potential radioactive waste generators to train. Twenty eight generators were trained in 2008. As a best management practice, SLAC also reduced its tritium inventory by at least 95 percent by draining one of its accelerator cooling water systems; with the cooperation of the South Bayside System Authority, the West Bay Sanitary District and the DOE, SLAC discharged the cooling water to the sanitary sewer according to federal regulations and replenished the system with clean water. In 2008, the SLAC Environmental Restoration Program personnel continued work on site characterization and evaluation of remedial alternatives at four sites with volatile organic compounds in groundwater and several areas with polychlorinated biphenyls and low concentrations of lead in soil. SLAC is regulated under a site cleanup requirements order (board order) issued by the California Regional Water Quality Control Board (RWQCB), San Francisco Bay Region in May 2005 for the investigation and remediation of impacted soil and groundwater at SLAC. The board order lists specific tasks and deadlines for completion of groundwater and soil characterization and other remediation activities. All 2008 submittals to the RWQCB were completed and submitted on time.« less

  8. Student Evaluations, Outcomes, and National Licensure Examinations in Radiology Education: A Narrative Review of the Literature.

    PubMed

    Linaker, Kathleen L

    2015-12-01

    The purpose of this study was to examine literature on radiological student evaluation and outcome assessments including national board examinations. A review of the literature was performed using relevant key words. Articles were retrieved through December 2012 using PubMed, ScienceDirect, ERIC, Proquest, and ICL databases along with a manual review of references. Of the 4716 unique abstracts reviewed by the author, 54 were found to be relevant to the purpose of this study. Student grade point average correlates with board scores in the nursing, chiropractic, and medical professions. Scores on the chiropractic college admission test and undergraduate grade point average correlate with success in professional college. There is a correlation between board scores and college attended. Board preparation programs do not appear to affect board examination scores. Although evaluations can be effective teaching tools, they are not used by many radiology programs. Some programs have inadequate evaluations and do not allow students to review their evaluations. There are no definitive links between mastery of radiology and specific evaluations, outcomes, or pre-professional/clinical grades. Studies suggest that board examination scores reflect long-term mastery of knowledge rather than short-term memorization of facts.

  9. Comprehensive Health Care Economics Curriculum and Training in Radiology Residency.

    PubMed

    Keiper, Mark; Donovan, Timothy; DeVries, Matthew

    2018-06-01

    To investigate the ability to successfully develop and institute a comprehensive health care economics skills curriculum in radiology residency training utilizing didactic lectures, case scenario exercises, and residency miniretreats. A comprehensive health care economics skills curriculum was developed to significantly expand upon the basic ACGME radiology residency milestone System-Based Practice, SBP2: Health Care Economics requirements and include additional education in business and contract negotiation, radiology sales and marketing, and governmental and private payers' influence in the practice of radiology. A health care economics curriculum for radiology residents incorporating three phases of education was developed and implemented. Phase 1 of the curriculum constituted basic education through didactic lectures covering System-Based Practice, SBP2: Health Care Economics requirements. Phase 2 constituted further, more advanced didactic lectures on radiology sales and marketing techniques as well as government and private insurers' role in the business of radiology. Phase 3 applied knowledge attained from the initial two phases to real-life case scenario exercises and radiology department business miniretreats with the remainder of the radiology department. A health care economics skills curriculum in radiology residency is attainable and essential in the education of future radiology residents in the ever-changing climate of health care economics. Institution of more comprehensive programs will likely maximize the long-term success of radiology as a specialty by identifying and educating future leaders in the field of radiology. Copyright © 2018 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  10. Reuse of nuclear byproducts, NaF and HF in metal glass industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.W.; Lee, H.W.; Yoo, S.H.

    1997-02-01

    A study has been performed to evaluate the radiological safety and feasibility associated with reuse of NaF(Sodium Fluoride) and HF(Hydrofluoric Acid) which are generated as byproducts from the nuclear fuel fabrication process. The investigation of oversea`s experience reveals that the byproduct materials are most often used in the metal and glass industries. For the radiological safety evaluation, the uranium radioactivities in the byproduct materials were examined and shown to be less than radioactivities in natural materials. The radiation doses to plant personnel and the general public were assessed to be very small and could be ignored. The Korea nuclear regulatorymore » body permits the reuse of NaF in the metal industry on the basis of associated radioactivity being {open_quote}below regulatory concern{close_quote}. HF is now under review for reuse acceptability in the steel and glass industries.« less

  11. Radiation safety.

    PubMed

    Skinner, Sarah

    2013-06-01

    Diagnostic radiology procedures, such as computed tomography (CT) and X-ray, are an increasing source of ionising radiation exposure to our community. Exposure to ionising radiation is associated with increased risk of malignancy, proportional to the level of exposure. Every diagnostic test using ionising radiation needs to be justified by clinical need. General practitioners need a working knowledge of radiation safety so they can adequately inform their patients of the risks and benefits of diagnostic imaging procedures.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virginia Finley; Sheneman, Robert S.; Levine, Jerry D.

    Contained in the following report are data for radioactivity in the environment collected and analyzed by Princeton Plasma Physics Laboratory’s Princeton Environmental, Analytical, and Radiological Laboratory (PEARL). The PEARL is located on-site and is certified for analyzing radiological and non-radiological parameters through the New Jersey Department of Environmental Protection’s Laboratory Certification Program, Certification Number 12471. Non-radiological surface and ground water samples are analyzed by NJDEP certified subcontractor laboratories – QC, Inc. and Accutest Laboratory. To the best of our knowledge, these data, as contained in the “Annual Site Environmental Report for 2011,” are documented and certified to be correct.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowla, Farid U.

    Subsurface sensors that employ radioisotopes, such 241Am-Be and 137Cs, for reservoir characterization must be tracked for safety and security reasons. Other radiological sources are also widely used in medicine. The radiological source containers, in both applications, are small, mobile and used widely worldwide. The nuclear sources pose radiological dispersal device (RDD) security risks. Security concerns with the industrial use of radionuclide sources is in fact quite high as it is estimated that each year hundreds of sealed sources go missing, either lost or stolen. Risk mitigation efforts include enhanced regulations, source-use guidelines, research and development on electronic tracking of sources.more » This report summarizes the major elements of the requirements and operational concepts of nuclear sources with the goal of developing automated electronic tagging and locating systems.« less

  14. Using technology assessment as the picture archiving and communication system spreads outside radiology to the enterprise.

    PubMed

    Maliff, R P; Launders, J

    2000-05-01

    Picture archiving and communication systems (PACS) are being implemented within radiology departments, and many facilities are entering the next stage of PACS use by deploying PACS to departments outside of radiology and to other facilities located at a distance. Many PACS vendors and department administrators have based cost-justification analyses on the anticipated savings from expanding PACS to these areas. However, many of these cost-savings analyses can be highly suspect in their assumptions and findings. Technology assessment (TA) at the hospital/health system level is an organized, systematic approach to examining the efficacy of a technology in relation to the health system's mission and clinical needs. It can be an organized and unifying approach to aid in the distribution of limited capital resources. As extra-radiology PACS deployment is a costly endeavor, TA may be used to plan for PACS implementation throughout the enterprise. In many organizations, PACS is thought of as a radiology domain as its first uses were centered on this image-producing service. Now, as PACS technology spreads to other service areas, such as cardiology, dermatology, pathology, orthopedics, obstetrics, etc, the need to incorporate other viewpoints in a system-based PACS is necessary to avoid having independent PACS that may duplicate archives and may not communicate with each other. How to meet the diverse PACS needs of clinical services can be a challenging task; a TA program has been demonstrated to effectively handle the clinical needs, demands, and timeframes of PACS planning and support throughout hospitals and health systems. A hospital-based TA program can assist health care organizations to present PACS as a system-wide need and program rather than a radiology-based program gobbling up the capital budget. Submitting PACS to the TA review process can identify essential elements in planning and help avoid many of the pitfalls of PACS implementation and operations. Thorough cost and/or return on investment analyses, phasing decisions, workflow re-engineering, and outcomes assessment programs are a few of the issues that a TA program can address to help in the transition to a complete electronic image environment. The TA process includes clinician selection, evaluation criteria and their selection for technologies under review, a policy for review/authorization/denial, and measurement of expected outcomes.

  15. Integrating Preclinical and Clinical Oral Diagnosis and Radiology.

    ERIC Educational Resources Information Center

    Rhodus, Nelson L.; Brand, John W.

    1988-01-01

    A program providing second-year dental students with early experience in direct patient contact in an oral diagnosis/oral radiology clinic was well received by both students and faculty and was found to develop desirable skills and qualities in the students participating. (MSE)

  16. The Importance of Curriculum-Based Training and Assessment in Interventional Radiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belli, Anna-Maria, E-mail: anna.belli@stgeorges.nhs.uk; Reekers, Jim A., E-mail: j.a.reekers@amc.uva.nl; Lee, Michael, E-mail: mlee@rcsi.ie

    Physician performance and outcomes are being scrutinised by health care providers to improve patient safety and cost efficiency. Patients are best served by physicians who have undergone appropriate specialist training and assessment and perform large numbers of cases to maintain their skills. The Cardiovascular and Interventional Radiological Society of Europe has put into place a curriculum for training in interventional radiology (IR) and a syllabus with an examination, the European Board of Interventional Radiology, providing evidence of attainment of an appropriate and satisfactory skill set for the safe practice of IR. This curriculum is appropriate for IR where there ismore » a high volume of image-guided procedures in vascular and nonvascular organ systems with cross-use of minimally invasive techniques in patients with a variety of disease processes. Other specialties may require different, longer, and more focused training if their experience is “diluted” by the need to master a different skill set.« less

  17. Volumetric CT-images improve testing of radiological image interpretation skills.

    PubMed

    Ravesloot, Cécile J; van der Schaaf, Marieke F; van Schaik, Jan P J; ten Cate, Olle Th J; van der Gijp, Anouk; Mol, Christian P; Vincken, Koen L

    2015-05-01

    Current radiology practice increasingly involves interpretation of volumetric data sets. In contrast, most radiology tests still contain only 2D images. We introduced a new testing tool that allows for stack viewing of volumetric images in our undergraduate radiology program. We hypothesized that tests with volumetric CT-images enhance test quality, in comparison with traditional completely 2D image-based tests, because they might better reflect required skills for clinical practice. Two groups of medical students (n=139; n=143), trained with 2D and volumetric CT-images, took a digital radiology test in two versions (A and B), each containing both 2D and volumetric CT-image questions. In a questionnaire, they were asked to comment on the representativeness for clinical practice, difficulty and user-friendliness of the test questions and testing program. Students' test scores and reliabilities, measured with Cronbach's alpha, of 2D and volumetric CT-image tests were compared. Estimated reliabilities (Cronbach's alphas) were higher for volumetric CT-image scores (version A: .51 and version B: .54), than for 2D CT-image scores (version A: .24 and version B: .37). Participants found volumetric CT-image tests more representative of clinical practice, and considered them to be less difficult than volumetric CT-image questions. However, in one version (A), volumetric CT-image scores (M 80.9, SD 14.8) were significantly lower than 2D CT-image scores (M 88.4, SD 10.4) (p<.001). The volumetric CT-image testing program was considered user-friendly. This study shows that volumetric image questions can be successfully integrated in students' radiology testing. Results suggests that the inclusion of volumetric CT-images might improve the quality of radiology tests by positively impacting perceived representativeness for clinical practice and increasing reliability of the test. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. WE-AB-213-02: Status of Medical Physics Collaborations, and Projects in Latin America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzman, S.

    AAPM projects and collaborations in Africa Adam Shulman (AA-SC Chair) The African Affairs Subcommittee (AA-SC) of the AAPM will present a multi-institutional approach to medical physics support in Africa. Current work to increase the quality of care and level of safety for the medical physics practice in Senegal, Ghana, and Zimbabwe will be presented, along with preliminary projects in Nigeria and Botswana. Because the task of addressing the needs of medical physics in countries across Africa is larger than one entity can accomplish on its own, the AA-SC has taken the approach of joining forces with multiple organizations such asmore » Radiating Hope and TreatSafely (NGO’s), the IAEA, companies like BrainLab, Varian and Elekta, medical volunteers and academic institutions such as NYU and Washington University. Elements of current projects include: 1) Distance training and evaluation of the quality of contouring and treatment planning, teaching treatment planning and other subjects, and troubleshooting using modern telecommunications technology in Senegal, Ghana, and Zimbabwe; 2) Assistance in the transition from 2D to 3D in Senegal and Zimbabwe; 3) Assistance in the transition from 3D to IMRT using in-house compensators in Senegal; 4) Modernizing the cancer center in Senegal and increasing safety and; 5) Training on on 3D techniques in Ghana; 6) Assisting a teaching and training radiation oncology center to be built in Zimbabwe; 7) Working with the ISEP Program in Sub-Saharan Africa; 8) Creating instructional videos on linac commissioning; 9) Working on a possible collaboration to train physicists in Nigeria. Building on past achievements, the subcommittee seeks to make a larger impact on the continent, as the number and size of projects increases and more human resources become available. The State of Medical Physics Collaborations and Projects in Latin America Sandra Guzman (Peru) The lack of Medical Physicists (MP) in many Latin American (LA) countries leads to recruitment of professionals with incomplete education. In most LA countries only one MP responsible for each Center is currently mandated. Currently there is a large disparity among MP training programs and there is significant debate about the standards of MP graduate education in many LA countries. There are no commonly recognized academic programs, not enough clinical training sites and clinical training is not typically considered as part of the MP work. Economic pressures and high workloads also impede the creation of more training centers. The increasing need of qualified MPs require establishing a coordinated system of national Education & Training Centers (ETC), to meet the international standards of education and training in Medical Physics. This shortfall calls for support of organizations such as the IOMP, AAPM, ALFIM, IAEA, etc. Examples from various LA countries, as well as some proposed solutions, will be presented. In particular, we will discuss the resources that the AAPM and its members can offer to support regional programs. The ‘Medical Imaging’ physicist in the emerging world: Challenges and opportunities - Caridad Borrás (WGNIMP Chair) While the role of radiation therapy physicists in the emerging world is reasonably well established, the role of medical imaging physicists is not. The only perceived needs in radiology departments are equipment quality control and radiation protection, tasks that can be done by a technologist or a service engineer. To change the situation, the International Basic Safety Standard, which is adopted/adapted world-wide as national radiation protection regulations, states: “For diagnostic radiological procedures and image guided interventional procedures, the requirements of these Standards for medical imaging, calibration, dosimetry and quality assurance, including the acceptance and commissioning of medical radiological equipment, are fulfilled by or under the oversight of, or with the documented advice of a medical physicist, whose degree of involvement is determined by the complexity of the radiological procedures and the associated radiation risks”. Details on how these requirements can be carried out in resource-limited settings will be described. IAEA support to medical physics in Africa and Latin America: achievements and challenges Ahmed Meghzifene (IAEA) Shortage of clinically qualified medical physicists in radiotherapy and imaging, insufficient and inadequate education and training programs, as well as a lack of professional recognition were identified as the main issues to be addressed by the IAEA. The IAEA developed a series of integrated projects aiming specifically at promoting the essential role of medical physicists in health care, developing harmonized guidelines on dosimetry and quality assurance, and supporting education and clinical training programs. The unique feature of the IAEA approach is support it provides for implementation of guidelines and education programs in Member States through its technical cooperation project. The presentation will summarize IAEA support to Latin America and Africa in the field of medical physics and will highlight how the new International Basic Safety Standards are expected to impact the medical physics practice in low and middle income countries. Learning Objectives: Learn about the shortage of qualified Medical Physicists in Africa and Latin America. Understand the reasons of this shortage. Learn about the ways to improve the situation and AAPM role in this process.« less

  19. WE-AB-213-04: IAEA Support to Medical Physics in Africa and Latin America: Achievements and Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meghzifene, A.

    AAPM projects and collaborations in Africa Adam Shulman (AA-SC Chair) The African Affairs Subcommittee (AA-SC) of the AAPM will present a multi-institutional approach to medical physics support in Africa. Current work to increase the quality of care and level of safety for the medical physics practice in Senegal, Ghana, and Zimbabwe will be presented, along with preliminary projects in Nigeria and Botswana. Because the task of addressing the needs of medical physics in countries across Africa is larger than one entity can accomplish on its own, the AA-SC has taken the approach of joining forces with multiple organizations such asmore » Radiating Hope and TreatSafely (NGO’s), the IAEA, companies like BrainLab, Varian and Elekta, medical volunteers and academic institutions such as NYU and Washington University. Elements of current projects include: 1) Distance training and evaluation of the quality of contouring and treatment planning, teaching treatment planning and other subjects, and troubleshooting using modern telecommunications technology in Senegal, Ghana, and Zimbabwe; 2) Assistance in the transition from 2D to 3D in Senegal and Zimbabwe; 3) Assistance in the transition from 3D to IMRT using in-house compensators in Senegal; 4) Modernizing the cancer center in Senegal and increasing safety and; 5) Training on on 3D techniques in Ghana; 6) Assisting a teaching and training radiation oncology center to be built in Zimbabwe; 7) Working with the ISEP Program in Sub-Saharan Africa; 8) Creating instructional videos on linac commissioning; 9) Working on a possible collaboration to train physicists in Nigeria. Building on past achievements, the subcommittee seeks to make a larger impact on the continent, as the number and size of projects increases and more human resources become available. The State of Medical Physics Collaborations and Projects in Latin America Sandra Guzman (Peru) The lack of Medical Physicists (MP) in many Latin American (LA) countries leads to recruitment of professionals with incomplete education. In most LA countries only one MP responsible for each Center is currently mandated. Currently there is a large disparity among MP training programs and there is significant debate about the standards of MP graduate education in many LA countries. There are no commonly recognized academic programs, not enough clinical training sites and clinical training is not typically considered as part of the MP work. Economic pressures and high workloads also impede the creation of more training centers. The increasing need of qualified MPs require establishing a coordinated system of national Education & Training Centers (ETC), to meet the international standards of education and training in Medical Physics. This shortfall calls for support of organizations such as the IOMP, AAPM, ALFIM, IAEA, etc. Examples from various LA countries, as well as some proposed solutions, will be presented. In particular, we will discuss the resources that the AAPM and its members can offer to support regional programs. The ‘Medical Imaging’ physicist in the emerging world: Challenges and opportunities - Caridad Borrás (WGNIMP Chair) While the role of radiation therapy physicists in the emerging world is reasonably well established, the role of medical imaging physicists is not. The only perceived needs in radiology departments are equipment quality control and radiation protection, tasks that can be done by a technologist or a service engineer. To change the situation, the International Basic Safety Standard, which is adopted/adapted world-wide as national radiation protection regulations, states: “For diagnostic radiological procedures and image guided interventional procedures, the requirements of these Standards for medical imaging, calibration, dosimetry and quality assurance, including the acceptance and commissioning of medical radiological equipment, are fulfilled by or under the oversight of, or with the documented advice of a medical physicist, whose degree of involvement is determined by the complexity of the radiological procedures and the associated radiation risks”. Details on how these requirements can be carried out in resource-limited settings will be described. IAEA support to medical physics in Africa and Latin America: achievements and challenges Ahmed Meghzifene (IAEA) Shortage of clinically qualified medical physicists in radiotherapy and imaging, insufficient and inadequate education and training programs, as well as a lack of professional recognition were identified as the main issues to be addressed by the IAEA. The IAEA developed a series of integrated projects aiming specifically at promoting the essential role of medical physicists in health care, developing harmonized guidelines on dosimetry and quality assurance, and supporting education and clinical training programs. The unique feature of the IAEA approach is support it provides for implementation of guidelines and education programs in Member States through its technical cooperation project. The presentation will summarize IAEA support to Latin America and Africa in the field of medical physics and will highlight how the new International Basic Safety Standards are expected to impact the medical physics practice in low and middle income countries. Learning Objectives: Learn about the shortage of qualified Medical Physicists in Africa and Latin America. Understand the reasons of this shortage. Learn about the ways to improve the situation and AAPM role in this process.« less

  20. Delivering radiology supplies just-in-time.

    PubMed

    Clinton, M

    1999-01-01

    The radiology department at Dartmouth Hitchcock Medical Center (DHMC) adopted a just-in-time (JIT) inventory management system in 1992, reducing the volume of its in-house inventory of radiology supplies from a value of $400,000 to $16,000, just enough for four to five days of activity. An asset manager, the only person authorized to order supplies, was given responsibility for maintaining the department's supply of fixed and consumable assets. The first step in implementing the new system was to identify the supplies needed, standardize them and determine how often deliveries would be made. The JIT implementation team developed a request for proposal (RFP) that incorporated the standardized list of supplies. Three radiology supply vendors were invited to respond to the RFP. The team later determined that only one vendor was capable of implementing the JIT program. A three-year contract was awarded to that vendor. As that three-year contract reached completion, DHMC offered the JIT program to its eight affiliate hospitals and four outpatient clinics. The team decided to re-bid the contract for the entire network, which collectively performed 700,000 radiology exams annually. The new RFP encompassed 90 percent of the network's consumable supplies and offered customized delivery for each facility. The team identified eight criteria necessary for the evaluation of each vendor response to the RFP, rather than use price as the only consideration. The company that won the three-year contract furnished 90 percent of the radiology supplies for the DHMC network, allowing even further savings by the network, particularly for the smaller facilities and clinics. The program is continually monitored, adjusted and enhanced in order to incorporate changing departmental needs.

  1. ALARA and planning of interventions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocaboy, A.

    1995-03-01

    The implementation of ALARA programs implies integration of radiation protection criterion at all stages of outage management. Within the framework of its ALARA policy, Electricide de France (EDF) has given an incentive to all of its nuclear power plants to develop {open_quotes}good practices{close_quotes} in this domain, and to exchange their experience by the way of a national feed back file. Among the developments in the field of outage organization, some plants have focused on the planning stage of activities because of its influence on the radiological conditions of interventions and on the good succession of tasks within the radiological controlledmore » areas. This paper presents the experience of Chinon nuclear power plant. At Chinon, we are pursuing this goal through careful outage planning. We want the ALARA program during outages to be part of the overall maintenance task planning. This planning includes the provision of the availability of every safety-related component, and of the variations of water levels in hthereactor and steam generators to take advantage of the shield created by the water. We have developed a computerized data base with the exact position of all the components in the reactor building in order to avoid unnecessary interactions between different tasks performed in the same room. A common language between Operation and Maintenance had been established over the past years, using {open_quotes}Milestones and Corridors{close_quotes}. A real time dose rate counting system enables the Radiation Protection (RP) Department to do an accurate and efficient follow up during the outage for all the {open_quotes}ALARA{close_quotes} maintenance tasks.« less

  2. Radiologic-pathologic Correlation-An Advanced Fourth-year Elective: How We Do It.

    PubMed

    Hartman, Matthew; Silverman, Jan; Spruill, Laura; Hill, Jeanne

    2016-07-01

    Traditionally, the radiology elective has been designed to teach medical students the fundamentals of radiologic interpretation. When questioned, many students state that they want to take a radiology elective so they can "interpret images." For the students on radiology, rotation/elective education was often passive, consisting of didactic conferences and observational shadowing of radiologists as they interpreted images. Students had only a superficial appreciation of how radiologists interacted with clinical services, multidisciplinary teams, and pathology. There was very little emphasis on imaging appropriateness or the most efficient and effective imaging for various clinical problems. With the expansion of numerous imaging modalities and the emphasis on patient-centered care, including imaging safety and dose reduction, it is important to change the focus of radiology education from interpretation to the optimal integration of imaging into clinical medicine. Radiology-pathology (rad path) electives were created at Allegheny General Hospital and the Medical University of South Carolina as a new option to provide a high-quality advanced elective for fourth-year medical students. These electives enable students to correlate radiologic images with gross and microscopic pathology specimens, thus increasing their knowledge and understanding of both. The rad path elective combines aspects of surgery, radiology, and pathology and requires students to be active learners. The implementation of this elective is an exciting work in progress that has been evolving over the past 2 and 4 years at Medical University of South Carolina and Allegheny General Hospital, respectively. We will discuss the historical basis for the elective, the advantages and challenges of having such an integrated course, and some different strategies for creating a rad path elective. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  3. Hanford radiological protection support services annual report for 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyon, M.; Bihl, D.E.; Fix, J.J.

    1995-06-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for the calendar year 1994. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program- related publications, presentations, and other staff professional activities are also described.

  4. Hanford radiological protection support services. Annual report for 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyon, M.; Bihl, D.E.; Carbaugh, E.H.

    1996-05-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the U.S. Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1995. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

  5. Restriction of ACGME fellowships to candidates completing US and Canadian accredited residencies: level of support and expected consequences.

    PubMed

    Orru', Emanuele; Arenson, Ronald A; Schaefer, Pamela W; Mukherji, Suresh K; Yousem, David M

    2014-08-01

    The aim of this study was to determine the level of support for the proposal to restrict ACGME-accredited fellowships to candidates who completed residencies accredited by the ACGME or the Royal College of Physicians and Surgeons of Canada. Perceptions of foreign-trained international medical graduates during and after fellowships were also assessed. An e-mail survey was sent to the members of the organizations that represent academic chairpersons (the Society of Chairs of Academic Radiology Departments) and radiology residency and fellowship program directors (the Association of Program Directors in Radiology) and to the program directors of the largest American radiology subspecialty society (the American Society of Neuroradiology). Results were analyzed separately for each of the 3 societies interviewed and then as a composite report for all 3 societies. Approximately 60% of the respondents said that they have offered at least one fellowship or faculty position to foreign-trained applicants in the past 5 years. More than 70% of the respondents said that these doctors performed equally to or better than American-trained ones both clinically and academically. The majority of members of all 3 societies responding opposed enactment of the rule, with the American Society of Neuroradiology being the most disapproving. The main concerns of those supporting the new rule were the inhomogeneous and sometimes unknown levels of training of the foreign-trained doctors and the need to favor American graduates. Those opposed were mostly worried about diminishing the quality of fellowship candidates, programs being unable to fill their positions, and a decrease in academic-oriented people. Most respondents opposed the proposed rule. The majority were supportive of foreign-trained physicians continuing their training in the United States. Copyright © 2014 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  6. How Does the Current Generation of Medical Students View the Radiology Match?: An Analysis of the AuntMinnie and Student Doctor Network Online Forums.

    PubMed

    Yi, Paul H; Novin, Sherwin; Vander Plas, Taylor L; Huh, Eric; Magid, Donna

    2018-06-01

    The AuntMinnie (AM) and the Student Doctor Network (SDN) online forums are popular resources for medical students applying for residency. The purpose of this study was to describe medical student radiology-related posts on AM and SDN to better understand the medical student perspective on the application and Match process. We reviewed all posts made on the AM and SDN online forums over 5 consecutive academic years from July 2012 to July 2017. Each thread was organized into one of six major categories. We quantified forum utilization over the past 5 years by the total number of and the most frequently posted and viewed thread topics. We reviewed 2683 total threads with 5,723,909 views. Total number of threads posted and viewed fell by 46% and 63%, respectively, from 2013-2014 to 2014-2015, after which they returned near baseline by 2016-2017, along with an increase in interventional radiology-related posts between 2012-2013 (13%) and 2016-2017 (32%) (P < .001). The most common application-related topics were preapplication and program ranking advice (20% of all threads and views). Many posts were related to postinterview communication with residency programs (2% of all threads and views). After a drop in 2013-2014, utilization of AM and SDN increased in 2016-2017, along with increased interest in interventional radiology. Addressing the student concerns identified in our study, especially in preparing residency applications, ranking programs, and navigating difficult situations, such as postinterview program communication, may improve the radiology application process for future medical students and their advisors. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  7. CT Lung Cancer Screening Program Development: Part 2.

    PubMed

    Yates, Teri

    2015-01-01

    Radiology administrators must use innovative strategies around clinical collaboration and marketing to ensure that patients access the service in sufficient numbers. Radiology Associates of South Florida in collaboration with Baptist Health South Florida have developed a successful lung cancer screening program. The biggest factors in their success have been the affordability of their service and the quality of the program. Like mammography, lung cancer screening programs serve as an entry point to other services that generate revenue for the hospital. Patients may require further evaluation in the form of more imaging or surgical services for biopsy. Part 1 provided background and laid out fundamentals for starting a program. Part 2 focuses on building patient volume, marketing, and issues related to patient management after the screen is performed.

  8. Teaching, leadership, scholarly productivity, and level of activity in the chiropractic profession: a study of graduates of the Los Angeles College of Chiropractic radiology residency program

    PubMed Central

    Young, Kenneth J.; Siordia, Lawrence

    2012-01-01

    Objective The purpose of this study was to track the graduates of the Los Angeles College of Chiropractic (LACC) radiology residency program, review their scholarly productivity, and report those involved in teaching and leadership positions. Methods Former LACC residents’ career information was identified through publicly available electronic documents including Web sites and social media. PubMed and the Index to Chiropractic Literature databases were searched for chiropractic graduate job surveys, and proportional comparisons were made between the career paths of LACC radiology residency graduates and those of non–residency-trained chiropractors. Results Of 47 former LACC residents, 28 (60%) have or previously had careers in tertiary (chiropractic) education; and 12 (26%) have attained a department chair position or higher at tertiary teaching institutions. Twenty-two (47%) have or previously had private radiology practices, whereas 11 (23%) have or previously had clinical chiropractic practices. Often, residency graduates hold or have held 2 of these positions at once; and one, all 3. Chapters or books were authored by 13 (28%). Conclusion Radiology residency LACC graduates are professionally active, particularly in education, and demonstrate scholarly productivity. PMID:23966885

  9. Tools for placing the radiological health hazard in perspective following a severe emergency at a light water reactor (LWR) or its spent fuel pool.

    PubMed

    McKenna, Thomas; Welter, Phillip Vilar; Callen, Jessica; Martincic, Rafael; Dodd, Brian; Kutkov, Vladimir

    2015-01-01

    Experience from past nuclear and radiological emergencies shows that placing the radiological health hazard in perspective and having a definition of "safe" are required in order to prevent members of the public, those responsible for protecting the public (i.e., decision makers), and others from taking inappropriate and damaging actions that are not justified based on the radiological health hazard. The principle concerns of the public during a severe nuclear power plant or spent fuel pool emergency are "Am I safe?" and "What should I do to be safe?" However, these questions have not been answered to the satisfaction of the public, despite various protective actions being implemented to ensure their safety. Instead, calculated doses or various measured quantities (e.g., ambient dose rate or radionuclide concentrations) are used to describe the situation to the public without placing them into perspective in terms of the possible radiological health hazard, or if they have, it has been done incorrectly. This has contributed to members of the public taking actions that do more harm than good in the belief that they are protecting themselves. Based on established international guidance, this paper provides a definition of "safe" for the radiological health hazard for use in nuclear or radiological emergencies and a system for putting the radiological health hazard in perspective for quantities most commonly measured after a release resulting from a severe emergency at a light water reactor or its spent fuel pool.

  10. 78 FR 11202 - Medicare Program; Public Meetings in Calendar Year 2013 for All New Public Requests for Revisions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    .../Biologicals/Radiopharmaceuticals/Radiologic Imaging Agents). 2. Thursday, May 9, 2013, 9 a.m. to 5 p.m., e.d.t. (Drugs/ Biologicals/Radiopharmaceuticals/Radiologic Imaging Agents). 3. Wednesday, May 29, 2013, 9 a.m...

  11. 10 CFR 960.5-2-3 - Meteorology.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REPOSITORY Preclosure Guidelines Preclosure Radiological Safety § 960.5-2-3 Meteorology. (a) Qualifying condition. The site shall be located such that expected meteorological conditions during repository.... Prevailing meteorological conditions such that any radioactive releases to the atmosphere during repository...

  12. Environmental surveillance at Los Alamos during 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuehne, David; Gallagher, Pat; Hjeresen, Denny

    2009-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) Environmental Programs Directorate, as required by US Department of Energy Order 450.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at andmore » near the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2007. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, air; Chapters 5 and 6, water and sediments; Chapter 7, soils; and Chapter 8, foodstuffs and biota) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory’s technical areas and their associated programs, and Appendix D provides web links to more information.« less

  13. Variability in the Use of Simulation for Procedural Training in Radiology Residency: Opportunities for Improvement.

    PubMed

    Matalon, Shanna A; Chikarmane, Sona A; Yeh, Eren D; Smith, Stacy E; Mayo-Smith, William W; Giess, Catherine S

    2018-03-19

    Increased attention to quality and safety has led to a re-evaluation of the classic apprenticeship model for procedural training. Many have proposed simulation as a supplementary teaching tool. The purpose of this study was to assess radiology resident exposure to procedural training and procedural simulation. An IRB-exempt online survey was distributed to current radiology residents in the United States by e-mail. Survey results were summarized using frequency and percentages. Chi-square tests were used for statistical analysis where appropriate. A total of 353 current residents completed the survey. 37% (n = 129/353) of respondents had never used procedure simulation. Of the residents who had used simulation, most did not do so until after having already performed procedures on patients (59%, n = 132/223). The presence of a dedicated simulation center was reported by over half of residents (56%, n = 196/353) and was associated with prior simulation experience (P = 0.007). Residents who had not had procedural simulation were somewhat likely or highly likely (3 and 4 on a 4-point Likert-scale) to participate if it were available (81%, n = 104/129). Simulation training was associated with higher comfort levels in performing procedures (P < 0.001). Although procedural simulation training is associated with higher comfort levels when performing procedures, there is variable use in radiology resident training and its use is not currently optimized. Given the increased emphasis on patient safety, these results suggest the need to increase procedural simulation use during residency, including an earlier introduction to simulation before patient exposure. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Assessment of the occupational eye lens dose for clinical staff in interventional radiology, cardiology and neuroradiology.

    PubMed

    Omar, Artur; Kadesjö, Nils; Palmgren, Charlotta; Marteinsdottir, Maria; Segerdahl, Tony; Fransson, Annette

    2017-03-20

    In accordance with recommendations by the International Commission on Radiological Protection, the current European Basic Safety Standards has adopted a reduced occupational eye lens dose limit of 20 mSv yr -1 . The radiation safety implications of this dose limit is of concern for clinical staff that work with relatively high dose x-ray angiography and interventional radiology. Presented in this work is a thorough assessment of the occupational eye lens dose based on clinical measurements with active personal dosimeters worn by staff during various types of procedures in interventional radiology, cardiology and neuroradiology. Results are presented in terms of the estimated equivalent eye lens dose for various medical professions. In order to compare the risk of exceeding the regulatory annual eye lens dose limit for the widely different clinical situations investigated in this work, the different medical professions were separated into categories based on their distinct work pattern: staff that work (a) regularly beside the patient, (b) in proximity to the patient and (c) typically at a distance from the patient. The results demonstrate that the risk of exceeding the annual eye lens dose limit is of concern for staff category (a), i.e. mainly the primary radiologist/cardiologist. However, the results also demonstrate that the risk can be greatly mitigated if radiation protection shields are used in the clinical routine. The results presented in this work cover a wide range of clinical situations, and can be used as a first indication of the risk of exceeding the annual eye lens dose limit for staff at other medical centres.

  15. JOURNAL CLUB: Redefining the Radiology Curriculum in Medical School: Vertical Integration and Global Accessibility.

    PubMed

    Retrouvey, Michele; Trace, Anthony Paul; Goodmurphy, Craig W; Shaves, Sarah

    2018-01-01

    Radiology interconnects medical disciplines given that a working understanding of imaging is essential to clinicians of every specialty. Using online education, we created a globally accessible, web-based undergraduate medical radiology curriculum modeled after the National Medical Student Curriculum in Radiology program of the Alliance of Medical Student Educators in Radiology. Seventy-four radiology faculty-mentored video modules were produced, 50 of which were integrated into the 1st-year anatomy course. We administered tests to medical students before and after students saw the videos to assess the effectiveness of the modules. We surveyed students on their interests in pursuing radiology as a career before and after participating in this curriculum. On the preexamination questions, the mean score was 58.0%, which increased to 83.6% on the pair-matched imaging-related questions on the actual examination. Before participating in the new curriculum, 88% of students did not express an interest in radiology, and 9% were undecided about radiology as a future career. There was an increase in students who reported that they would definitely or most likely pursue a career in radiology (7%) after they had viewed the lectures. Radiology education is now available to a greater number of multidisciplinary learners worldwide. This project produced a comprehensive, globally accessible radiology curriculum in a self-paced, flexible learning format for new generations of physicians.

  16. Interventional radiology procedures in adult patients who underwent liver transplantation

    PubMed Central

    Miraglia, Roberto; Maruzzelli, Luigi; Caruso, Settimo; Milazzo, Mariapina; Marrone, Gianluca; Mamone, Giuseppe; Carollo, Vincenzo; Gruttadauria, Salvatore; Luca, Angelo; Gridelli, Bruno

    2009-01-01

    Interventional radiology has acquired a key role in every liver transplantation (LT) program by treating the majority of vascular and non-vascular post-transplant complications, improving graft and patient survival and avoiding, in the majority of cases, surgical revision and/or re-transplantation. The aim of this paper is to review indications, technical consideration, results achievable and potential complications of interventional radiology procedures after deceased donor LT and living related adult LT. PMID:19222091

  17. Integrated Fellowship in Vascular Surgery and Intervention Radiology

    PubMed Central

    Messina, Louis M.; Schneider, Darren B.; Chuter, Timothy A. M.; Reilly, Linda M.; Kerlan, Robert K.; LaBerge, Jeane M.; Wilson, Mark W.; Ring, Ernest J.; Gordon, Roy L.

    2002-01-01

    Objective To evaluate an integrated fellowship in vascular surgery and interventional radiology initiated to train vascular surgeons in endovascular techniques and to train radiology fellows in clinical aspects of vascular diseases. Summary Background Data The rapid evolution of endovascular techniques for the treatment of vascular diseases requires that vascular surgeons develop proficiency in these techniques and that interventional radiologists develop proficiency in the clinical evaluation and management of patients who are best treated with endovascular techniques. In response to this need the authors initiated an integrated fellowship in vascular surgery and interventional radiology and now report their interim results. Methods Since 1999 vascular fellows and radiology fellows performed an identical year-long fellowship in interventional radiology. During the fellowship, vascular surgery and radiology fellows perform both vascular and nonvascular interventional procedures. Both vascular surgery and radiology-based fellows spend one quarter of the year on the vascular service performing endovascular aortic aneurysm repairs and acquiring clinical experience in the vascular surgery inpatient and outpatient services. Vascular surgery fellows then complete an additional year-long fellowship in vascular surgery. To evaluate the type and number of interventional radiology procedures, the authors analyzed records of cases performed by all interventional radiology and vascular surgery fellows from a prospectively maintained database. The attitudes of vascular surgery and interventional radiology faculty and fellows toward the integrated fellowship were surveyed using a formal questionnaire. Results During the fellowship each fellow performed an average of 1,201 procedures, including 808 vascular procedures (236 diagnostic angiograms, 70 arterial interventions, 59 diagnostic venograms, 475 venous interventions, and 43 hemodialysis graft interventions) and 393 nonvascular procedures. On average fellows performed 20 endovascular aortic aneurysm repairs per year. There was no significant difference between the vascular surgery and radiology fellows in either the spectrum or number of cases performed. Eighty-eight percent (23/26) of the questionnaires were completed and returned. Both interventional radiologists and vascular surgeons strongly supported the integrated fellowship model and favored continuation of the integrated program. Vascular surgery and interventional radiology faculty members wanted additional training in clinical vascular surgery for the radiology-based fellows. With the exception of the radiology fellows there was uniform agreement that vascular surgery fellows benefit from training in nonvascular aspects of interventional radiology. Conclusions Integration of vascular surgery and interventional radiology fellowships is feasible and is mutually beneficial to both disciplines. Furthermore, the integrated fellowship provides exceptional training for vascular surgery and interventional radiology fellows in all catheter-based techniques that far exceeds the minimum requirements for credentialing suggested by various professional societies. There is a clear need for cooperation and active involvement on the parts of the American Board of Radiology and the American Board of Surgery and its Vascular Board to create hybrid training programs that meet mutually agreed-on criteria that document sufficient acquisition of both the cognitive and technical skills required to manage patients undergoing endovascular procedures safely and effectively. PMID:12368668

  18. Audit of radiology communication systems for critical, urgent, and unexpected significant findings.

    PubMed

    Duncan, K A; Drinkwater, K J; Dugar, N; Howlett, D C

    2016-03-01

    To determine the compliance of UK radiology departments and trusts/healthcare organisations with National Patient Safety Agency and Royal College of Radiologist's published guidance on the communication of critical, urgent, and unexpected significant radiological findings. A questionnaire was sent to all UK radiology department audit leads asking for details of their current departmental policy regarding the issuing of alerts; use of automated electronic alert systems; methods of notification of clinicians of critical, urgent, and unexpected significant radiological findings; monitoring of results receipt; and examples of the more common types of serious pathologies for which alerts were issued. One hundred and fifty-four of 229 departments (67%) responded. Eighty-eight percent indicated that they had a policy in place for the communication of critical, urgent, and unexpected significant radiological findings. Only 34% had an automated electronic alert system in place and only 17% had a facility for service-wide electronic tracking of radiology reports. In only 11 departments with an electronic acknowledgement system was someone regularly monitoring the read rate. There is wide variation in practice across the UK with regard to the communication and monitoring of reports with many departments/trusts not fully compliant with published UK guidance. Despite the widespread use of electronic systems, only a minority of departments/trusts have and use electronic tracking to ensure reports have been read and acted upon. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  19. Resolving the technologist shortage: a summary of ACR and ASRT efforts to meet the increasing demand for RTs.

    PubMed

    Williams, Charles D; Maloney, Eileen M; McElveny, Ceela

    2004-11-01

    Demand for radiologic technologists in the United States greatly outstripped supply throughout the late 1990s and peaked in 2000, when vacancy rates for radiologic technologists reached an average of 18% nationwide. To combat the shortage, the ACR and the American Society of Radiologic Technologists (ASRT) launched a series of aggressive recruitment and retention initiatives designed to boost the number of technologists. The campaigns have resulted in rising enrollments in educational programs, greater numbers of graduates and new technologists, and the expansion of the career ladder. As a result, the national vacancy rate for radiologic technologists had dropped to 12% by the end of 2003. This article reviews the radiologic technologists personnel shortage at the turn of the century, describes efforts taken by the ACR and the ASRT to ameliorate the shortage, and examines the future of the radiologic technology workforce.

  20. 35 Years of Experience From the American Association for Women Radiologists: Increasing the Visibility of Women in Radiology.

    PubMed

    Spalluto, Lucy B; Arleo, Elizabeth K; Macura, Katarzyna J; Rumack, Carol M

    2017-03-01

    Women radiologists remain in minority, unchanged for the past several decades. In 1981, the American Association for Women Radiologists (AAWR) was founded to address the problems that women radiologists were experiencing in being subordinate to male radiologists in the workplace and at the national level in organizations with respect to political power and financial compensation, as well as additional issues unique to women in radiology. The AAWR defined goals to meet the needs of women in radiology: improve the visibility of women radiologists, advance the professional and academic standing of women in radiology, and identify and address issues faced by women in radiology. AAWR efforts have included providing opportunities for career development and award recognition, hosting educational programs at national meetings, and publishing numerous manuscripts on issues faced by women in radiology. The AAWR recognizes that although there has been significant progress in the standing of women in radiology over the past 35 years, there is much room for improvement. The AAWR will continue to advocate for the needs of women in radiology. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  1. Environmental surveillance at Los Alamos during 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2006-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (LANL or the Laboratory) environmental organization, as required by US Department of Energy Order 5400.1, General Environmental Protection Program, and US Department of Energy Order 231.IA, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory's efforts to ensure public safety and to monitor environmental quality atmore » and near the Laboratory. Chapter 1 provides an overview of the Laboratory's major environmental programs. Chapter 2 reports the Laboratory's compliance status for 2005. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, Air; Chapters 5 and 6, Water and Sediments; Chapter 7, Soils; and Chapter 8, Foodstuffs and Biota) in a format to meet the needs of a general and scientific audience. Chapter 9, new for this year, provides a summary of the status of environmental restoration work around LANL. A glossary and a list ofacronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory's technical areas and their associated programs, and Appendix D provides web links to more information.« less

  2. Hanford Atomic Products Operation monthly report for March 1956

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1956-04-20

    This is the monthly report for the Hanford Laboratories Operation, March, 1956. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology; financial activities, visits, biology operation, physics and instrumentation research, employee relations, pile technology, safety and radiological sciences are discussed.

  3. Idaho National Laboratory Integrated Safety Management System FY 2013 Effectiveness Review and Declaration Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, Farren

    2013-12-01

    Idaho National Laboratory (INL) performed an Annual Effectiveness Review of the Integrated Safety Management System (ISMS), per 48 Code of Federal Regulations (CFR) 970.5223 1, “Integration of Environment, Safety and Health into Work Planning and Execution.” The annual review assessed Integrated Safety Management (ISM) effectiveness, provided feedback to maintain system integrity, and identified target areas for focused improvements and assessments for Fiscal Year (FY) 2014. Results of the FY 2013 annual effectiveness review demonstrate that the INL’s ISMS program is “Effective” and continually improving and shows signs of being significantly strengthened. Although there have been unacceptable serious events in themore » past, there has also been significant attention, dedication, and resources focused on improvement, lessons learned and future prevention. BEA’s strategy of focusing on these improvements includes extensive action and improvement plans that include PLN 4030, “INL Sustained Operational Improvement Plan, PLN 4058, “MFC Strategic Excellence Plan,” PLN 4141, “ATR Sustained Excellence Plan,” and PLN 4145, “Radiological Control Road to Excellence,” and the development of LWP 20000, “Conduct of Research.” As a result of these action plans, coupled with other assurance activities and metrics, significant improvement in operational performance, organizational competence, management oversight and a reduction in the number of operational events is being realized. In short, the realization of the fifth core function of ISMS (feedback and continuous improvement) and the associated benefits are apparent.« less

  4. TH-E-201-00: Teaching Radiology Residents: What, How, and Expectation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The ABR Core Examination stresses integrating physics into real-world clinical practice and, accordingly, has shifted its focus from passive recall of facts to active application of physics principles. Physics education of radiology residents poses a challenge. The traditional method of didactic lectures alone is insufficient, yet it is difficult to incorporate physics teaching consistently into clinical rotations due to time constraints. Faced with this challenge, diagnostic medical physicists who teach radiology residents, have been thinking about how to adapt their teaching to the new paradigm, what to teach and meet expectation of the radiology resident and the radiology residency program.more » The proposed lecture attempts to discuss above questions. Newly developed diagnostic radiology residents physics curriculum by the AAPM Imaging Physics Curricula Subcommittee will be reviewed. Initial experience on hands-on physics teaching will be discussed. Radiology resident who will have taken the BAR Core Examination will share the expectation of physics teaching from a resident perspective. The lecture will help develop robust educational approaches to prepare radiology residents for safer and more effective lifelong practice. Learning Objectives: Learn updated physics requirements for radiology residents Pursue effective approaches to teach physics to radiology residents Learn expectation of physics teaching from resident perspective J. Zhang, This topic is partially supported by RSNA Education Scholar Grant.« less

  5. TH-E-201-01: Diagnostic Radiology Residents Physics Curriculum and Updates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sensakovic, W.

    The ABR Core Examination stresses integrating physics into real-world clinical practice and, accordingly, has shifted its focus from passive recall of facts to active application of physics principles. Physics education of radiology residents poses a challenge. The traditional method of didactic lectures alone is insufficient, yet it is difficult to incorporate physics teaching consistently into clinical rotations due to time constraints. Faced with this challenge, diagnostic medical physicists who teach radiology residents, have been thinking about how to adapt their teaching to the new paradigm, what to teach and meet expectation of the radiology resident and the radiology residency program.more » The proposed lecture attempts to discuss above questions. Newly developed diagnostic radiology residents physics curriculum by the AAPM Imaging Physics Curricula Subcommittee will be reviewed. Initial experience on hands-on physics teaching will be discussed. Radiology resident who will have taken the BAR Core Examination will share the expectation of physics teaching from a resident perspective. The lecture will help develop robust educational approaches to prepare radiology residents for safer and more effective lifelong practice. Learning Objectives: Learn updated physics requirements for radiology residents Pursue effective approaches to teach physics to radiology residents Learn expectation of physics teaching from resident perspective J. Zhang, This topic is partially supported by RSNA Education Scholar Grant.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virginia Finley

    The results of the 1999 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1999. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program ismore » to create innovations to make fusion power a practical reality--an alternative energy source. 1999 marked the first year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. The 1999 performance of the Princeton Plasma Physics Laboratory was rated ''outstanding'' by the U.S. Department of Energy in the Laboratory Appraisal report issued early in 2000. The report cited the Laboratory's consistently excellent scientific and technological achievements, its successful management practices, and included high marks in a host of other areas including environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of non-radiological contaminants, mainly volatile organic compounds (components of degreasing solvents). Monitoring revealed the presence of low levels of volatile organic compounds in an area adjacent to PPPL. Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the TFTR stack; the data are presented in this report.« less

  7. ACR-SNM Task Force on Nuclear Medicine Training: report of the task force.

    PubMed

    Guiberteau, Milton J; Graham, Michael M

    2011-06-01

    The expansion of knowledge and technological advances in nuclear medicine and radiology require physicians to have more expertise in functional and anatomic imaging. The convergence of these two specialties into the new discipline of molecular imaging has also begun to place demands on residency training programs for additional instruction in physiology and molecular biology. These changes have unmasked weaknesses in current nuclear medicine and radiology training programs. Adding to the impetus for change are the attendant realities of the job market and uncertain employment prospects for physicians trained in nuclear medicine but not also trained in diagnostic radiology. With this background, the ACR and the Society of Nuclear Medicine convened the Task Force on Nuclear Medicine Training to define the issues and develop recommendations for resident training.

  8. RCT: Module 2.03, Counting Errors and Statistics, Course 8768

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillmer, Kurt T.

    2017-04-01

    Radiological sample analysis involves the observation of a random process that may or may not occur and an estimation of the amount of radioactive material present based on that observation. Across the country, radiological control personnel are using the activity measurements to make decisions that may affect the health and safety of workers at those facilities and their surrounding environments. This course will present an overview of measurement processes, a statistical evaluation of both measurements and equipment performance, and some actions to take to minimize the sources of error in count room operations. This course will prepare the student withmore » the skills necessary for radiological control technician (RCT) qualification by passing quizzes, tests, and the RCT Comprehensive Phase 1, Unit 2 Examination (TEST 27566) and by providing in the field skills.« less

  9. Formation of an environmental restoration user group for radiological controls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, R.L.

    1993-12-31

    An Environmental Restoration User Group for Radiological Controls will be proposed. Article 116 of the Radiological Control Manual encourages contractors to establish informal working associations that promote dialogue among similar facilities. Chem-Nuclear Geotech, Inc., is willing to initially organize and lead a users group to work on common problems, define standard methods, publish a Radiological Work Practices Handbook, and recommend regulatory changes to make environmental restoration programs more cost effective without compromising radiological control. A charter for the users group will be proposed. A questionnaire will be distributed to interested persons to assist in development of focus groups and agendamore » items for the first meeting. The first meeting is planned for May 25-26, 1993, in Grand Junction Colorado. All interested persons are welcome to attend.« less

  10. Utilization management in radiology, part 2: perspectives and future directions.

    PubMed

    Duszak, Richard; Berlin, Jonathan W

    2012-10-01

    Increased utilization of medical imaging in the early part of the last decade has resulted in numerous efforts to reduce associated spending. Recent initiatives have focused on managing utilization with radiology benefits managers and real-time order entry decision support systems. Although these approaches might seem mutually exclusive and their application to radiology appears unique, the historical convergence and broad acceptance of both programs within the pharmacy sector may offer parallels for their potential future in medical imaging. In this second installment of a two-part series, anticipated trends in radiology utilization management are reviewed. Perspectives on current and future potential roles of radiologists in such initiatives are discussed, particularly in light of emerging physician payment models. Copyright © 2012 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  11. System-Level Process Change Improves Communication and Follow-Up for Emergency Department Patients With Incidental Radiology Findings.

    PubMed

    Baccei, Steven J; Chinai, Sneha A; Reznek, Martin; Henderson, Scott; Reynolds, Kevin; Brush, D Eric

    2018-04-01

    The appropriate communication and management of incidental findings on emergency department (ED) radiology studies is an important component of patient safety. Guidelines have been issued by the ACR and other medical associations that best define incidental findings across various modalities and imaging studies. However, there are few examples of health care facilities designing ways to manage incidental findings. Our institution aimed to improve communication and follow-up of incidental radiology findings in ED patients through the collaborative development and implementation of system-level process changes including a standardized loop-closure method. We assembled a multidisciplinary team to address the nature of these incidental findings and designed new workflows and operational pathways for both radiology and ED staff to properly communicate incidental findings. Our results are based on all incidental findings received and acknowledged between November 1, 2016, and May 30, 2017. The total number of incidental findings discovered was 1,409. Our systematic compliance fluctuated between 45% and 95% initially after implementation. However, after overcoming various challenges through optimization, our system reached a compliance rate of 93% to 95%. Through the implementation of our new, standardized communication system, a high degree of compliance with loop closure for ED incidental radiology findings was achieved at our institution. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  12. Radiological protection in computed tomography and cone beam computed tomography.

    PubMed

    Rehani, M M

    2015-06-01

    The International Commission on Radiological Protection (ICRP) has sustained interest in radiological protection in computed tomography (CT), and ICRP Publications 87 and 102 focused on the management of patient doses in CT and multi-detector CT (MDCT) respectively. ICRP forecasted and 'sounded the alarm' on increasing patient doses in CT, and recommended actions for manufacturers and users. One of the approaches was that safety is best achieved when it is built into the machine, rather than left as a matter of choice for users. In view of upcoming challenges posed by newer systems that use cone beam geometry for CT (CBCT), and their widened usage, often by untrained users, a new ICRP task group has been working on radiological protection issues in CBCT. Some of the issues identified by the task group are: lack of standardisation of dosimetry in CBCT; the false belief within the medical and dental community that CBCT is a 'light', low-dose CT whereas mobile CBCT units and newer applications, particularly C-arm CT in interventional procedures, involve higher doses; lack of training in radiological protection among clinical users; and lack of dose information and tracking in many applications. This paper provides a summary of approaches used in CT and MDCT, and preliminary information regarding work just published for radiological protection in CBCT. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  13. Student Evaluations, Outcomes, and National Licensure Examinations in Radiology Education: A Narrative Review of the Literature

    PubMed Central

    Linaker, Kathleen L.

    2015-01-01

    Objective The purpose of this study was to examine literature on radiological student evaluation and outcome assessments including national board examinations. Methods A review of the literature was performed using relevant key words. Articles were retrieved through December 2012 using PubMed, ScienceDirect, ERIC, Proquest, and ICL databases along with a manual review of references. Results Of the 4716 unique abstracts reviewed by the author, 54 were found to be relevant to the purpose of this study. Student grade point average correlates with board scores in the nursing, chiropractic, and medical professions. Scores on the chiropractic college admission test and undergraduate grade point average correlate with success in professional college. There is a correlation between board scores and college attended. Board preparation programs do not appear to affect board examination scores. Conclusion Although evaluations can be effective teaching tools, they are not used by many radiology programs. Some programs have inadequate evaluations and do not allow students to review their evaluations. There are no definitive links between mastery of radiology and specific evaluations, outcomes, or pre-professional/clinical grades. Studies suggest that board examination scores reflect long-term mastery of knowledge rather than short-term memorization of facts. PMID:26770174

  14. National low-level waste management program radionuclide report series, Volume 15: Uranium-238

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, J.P.

    1995-09-01

    This report, Volume 15 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of uranium-238 ({sup 238}U). The purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to state representatives and developers of low-level radioactive waste disposal facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the waste disposal facility environment. This report also includes discussions about waste types and forms in which {sup 238}U can be found, and {sup 238}U behavior in the environment and in the human body.

  15. Interprofessional training: Start with the youngest! A program for undergraduate healthcare students in Geneva, Switzerland.

    PubMed

    van Gessel, Elisabeth; Picchiottino, Patricia; Doureradjam, Robert; Nendaz, Mathieu; Mèche, Petra

    2018-03-08

    Demography of patients and complexity in the management of multimorbid conditions has made collaborative practice a necessity for the future, also in Switzerland. Since 2012, the University of Applied Sciences (UAS) and its Healthcare School as well as the University of Geneva (UG) with its Medical Faculty have joined forces to implement a training program in collaborative practice, using simulation as one of the main learning/teaching process. The actual program consists of three sequential modules and totalizes 300 h of teaching and learning for approximately 1400-1500 students from six tracks (nutritionists, physiotherapists, midwives, nurses, technologists in medical radiology, physicians); in 2019 another hundred pharmacists will also be included. The main issues addressed by the modules are Module 1: the Swiss healthcare system and collaborative tools. Module 2: roles and responsibilities of the different health professionals, basic tools acquisition in team working (situation monitoring, mutual support, communication). Module 3: the axis of quality and safety of care through different contexts and cases. A very first evaluation of the teaching and learning and particularly on the aspects of acquisition of collaborative tools shows positive attitudes of students towards the implementation of this new training program. Furthermore, a pre-post questionnaire on teamwork aspects reveals significant modifications.

  16. 10 CFR 76.76 - Backfitting.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Corporation in order to complete the backfit; (3) Potential change in the risk to the public from the accidental release of radioactive material; (4) Potential impact on radiological exposure of facility... downtime; (6) The potential safety impact of changes in plant or operational complexity, including the...

  17. 10 CFR 76.76 - Backfitting.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Corporation in order to complete the backfit; (3) Potential change in the risk to the public from the accidental release of radioactive material; (4) Potential impact on radiological exposure of facility... downtime; (6) The potential safety impact of changes in plant or operational complexity, including the...

  18. 10 CFR 76.76 - Backfitting.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Corporation in order to complete the backfit; (3) Potential change in the risk to the public from the accidental release of radioactive material; (4) Potential impact on radiological exposure of facility... downtime; (6) The potential safety impact of changes in plant or operational complexity, including the...

  19. 10 CFR 76.76 - Backfitting.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Corporation in order to complete the backfit; (3) Potential change in the risk to the public from the accidental release of radioactive material; (4) Potential impact on radiological exposure of facility... downtime; (6) The potential safety impact of changes in plant or operational complexity, including the...

  20. 10 CFR 76.76 - Backfitting.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Corporation in order to complete the backfit; (3) Potential change in the risk to the public from the accidental release of radioactive material; (4) Potential impact on radiological exposure of facility... downtime; (6) The potential safety impact of changes in plant or operational complexity, including the...

  1. 10 CFR 835.901 - Radiation safety training.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....901(c) commensurate with the hazards in the area and the required controls: (1) Before being permitted... controls, by successful completion of an examination and performance demonstrations: (1) Before being... radiological hazards: (1) Risks of exposure to radiation and radioactive materials, including prenatal...

  2. 42 CFR 121.9 - Designated transplant program requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... RESOURCES DEVELOPMENT ORGAN PROCUREMENT AND TRANSPLANTATION NETWORK § 121.9 Designated transplant program...) Has immediate access to microbiology, clinical chemistry, histocompatibility testing, radiology, and...

  3. 42 CFR 121.9 - Designated transplant program requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... RESOURCES DEVELOPMENT ORGAN PROCUREMENT AND TRANSPLANTATION NETWORK § 121.9 Designated transplant program...) Has immediate access to microbiology, clinical chemistry, histocompatibility testing, radiology, and...

  4. 42 CFR 121.9 - Designated transplant program requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... RESOURCES DEVELOPMENT ORGAN PROCUREMENT AND TRANSPLANTATION NETWORK § 121.9 Designated transplant program...) Has immediate access to microbiology, clinical chemistry, histocompatibility testing, radiology, and...

  5. Following the (Clinical Decision) Rules: Opportunities for Improving Safety and Resource Utilization With the Bacterial Meningitis Score.

    PubMed

    Hagedorn, Philip A; Shah, Samir S; Kirkendall, Eric S

    2016-05-01

    The Bacterial Meningitis Score accurately classifies children with cerebrospinal fluid (CSF) pleocytosis at very low risk (VLR) versus not very low risk (non-VLR) for bacterial meningitis. Most children with CSF pleocytosis detected during emergency department evaluation are hospitalized despite the high accuracy of this prediction rule and the decreasing incidence of bacterial meningitis. The lack of widespread use of this rule may contribute to unnecessary risk exposure and costs. This cross-sectional study included 1049 patients who, between January 2010 and May 2013, had suspicion for meningitis and underwent both a complete blood cell count and CSF studies during their emergency department evaluation. We then examined their hospitalizations to characterize exposure to drugs, radiologic studies, and the costs associated with their care to determine the safety and value repercussions of these VLR admissions. Primary outcomes include duration of antibiotics, exposure to drugs and radiology studies, safety events, and costs incurred during these VLR admissions. Twenty patients classified as VLR were admitted to the hospital. On average they received 35 hours of antibiotic therapy. There was 1 adverse drug event and 1 safety event. The VLR patients admitted to the hospital were exposed to risk and costs despite their low risk stratification. Systematic application of the Bacterial Meningitis Score could prevent these exposures and costs. Copyright © 2016 by the American Academy of Pediatrics

  6. A novel tool for user-friendly estimation of natural, diagnostic and professional radiation risk: Radio-Risk software.

    PubMed

    Carpeggiani, Clara; Paterni, Marco; Caramella, Davide; Vano, Eliseo; Semelka, Richard C; Picano, Eugenio

    2012-11-01

    Awareness of radiological risk is low among doctors and patients. An educational/decision tool that considers each patient' s cumulative lifetime radiation exposure would facilitate provider-patient communication. The purpose of this work was to develop user-friendly software for simple estimation and communication of radiological risk to patients and doctors as a part of the SUIT-Heart (Stop Useless Imaging Testing in Heart disease) Project of the Tuscany Region. We developed a novel software program (PC-platform, Windows OS fully downloadable at http://suit-heart.ifc.cnr.it) considering reference dose estimates from American Heart Association Radiological Imaging 2009 guidelines and UK Royal College of Radiology 2007 guidelines. Cancer age and gender-weighted risk were derived from Biological Effects of Ionising Radiation VII Committee, 2006. With simple input functions (demographics, age, gender) the user selects from a predetermined menu variables relating to natural (e.g., airplane flights and geo-tracked background exposure), professional (e.g., cath lab workers) and medical (e.g., CT, cardiac scintigraphy, coronary stenting) sources. The program provides a simple numeric (cumulative effective dose in milliSievert, mSv, and equivalent number of chest X-rays) and graphic (cumulative temporal trends of exposure, cancer cases out of 100 exposed persons) display. A simple software program allows straightforward estimation of cumulative dose (in multiples of chest X-rays) and risk (in extra % lifetime cancer risk), with simple numbers quantifying lifetime extra cancer risk. Pictorial display of radiation risk may be valuable for increasing radiological awareness in cardiologists. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Validation of a physically based catchment model for application in post-closure radiological safety assessments of deep geological repositories for solid radioactive wastes.

    PubMed

    Thorne, M C; Degnan, P; Ewen, J; Parkin, G

    2000-12-01

    The physically based river catchment modelling system SHETRAN incorporates components representing water flow, sediment transport and radionuclide transport both in solution and bound to sediments. The system has been applied to simulate hypothetical future catchments in the context of post-closure radiological safety assessments of a potential site for a deep geological disposal facility for intermediate and certain low-level radioactive wastes at Sellafield, west Cumbria. In order to have confidence in the application of SHETRAN for this purpose, various blind validation studies have been undertaken. In earlier studies, the validation was undertaken against uncertainty bounds in model output predictions set by the modelling team on the basis of how well they expected the model to perform. However, validation can also be carried out with bounds set on the basis of how well the model is required to perform in order to constitute a useful assessment tool. Herein, such an assessment-based validation exercise is reported. This exercise related to a field plot experiment conducted at Calder Hollow, west Cumbria, in which the migration of strontium and lanthanum in subsurface Quaternary deposits was studied on a length scale of a few metres. Blind predictions of tracer migration were compared with experimental results using bounds set by a small group of assessment experts independent of the modelling team. Overall, the SHETRAN system performed well, failing only two out of seven of the imposed tests. Furthermore, of the five tests that were not failed, three were positively passed even when a pessimistic view was taken as to how measurement errors should be taken into account. It is concluded that the SHETRAN system, which is still being developed further, is a powerful tool for application in post-closure radiological safety assessments.

  8. Status of SRNL radiological field lysimeter experiment-Year 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, D.; Roberts, K.; Bagwell, L.

    The Savannah River National Laboratory (SRNL) Radiological Field Lysimeter Experiment is a one-of-a-kind field facility designed to study radionuclide geochemical processes at a larger spatial scale (from grams to tens of kilograms sediment) and temporal scale (from months to 10 years) than is readily afforded through laboratory studies. The lysimeter facility is intended to capture the natural heterogeneity of moisture and temperature regimes in the vadose zone, the unsaturated subsurface region between the surface soil and the underlying aquifer. The 48 lysimeter columns, which contain various radionuclides (and stable iodine), were opened to rainfall infiltration on July 5, 2012. Themore » objective of this report is to provide a status of the lysimeter facility operations and to compile data collected during FY13, including leachate volume, rainfall, and soil moisture and temperature in situ probe data. Radiological leachate data are not presented in this document but will be the subject of a separate document.1 Leachate samples were collected quarterly and shipped to Clemson University for radiological analyses. Rainfall, leachate volume, moisture and temperature probe data were collected continuously. During operations of the facility this year, there were four safety or technical concerns that required additional maintenance: 1) radioactivity was detected in one of the overflow bottles (captured water collected from the secondary containment that does not come in contact with the radiological source material); 2) rainwater accumulated within the sample-bottle storage sheds; 3) overflow containers collected more liquid than anticipated; and 4) significant spider infestation occurred in the sample-bottle storage sheds. To address the first three concerns, each of the lysimeter columns was re-plumbed to improve and to minimize the number of joint unions. To address the fourth concern regarding spiders, new sample-bottle water sheds were purchased and a pest control program was established. During this retrofit, the lysimeters were temporarily capped (covered to preclude additional water from entering lysimeter columns) for about two months (except the four Tc-cementitious containing lysimeters, which remain capped). At a later date, data summarized in this report will be combined with the leachate radionuclide concentration data that are presently being analyzed. Together, these data can be numerically modeled to provide bench-marking information, to test hypotheses regarding hydrogeochemical conceptual models, and to estimate effective transport parameters under field conditions.« less

  9. Teaching point of care ultrasound skills in medical school: keeping radiology in the driver's seat.

    PubMed

    Webb, Emily M; Cotton, James B; Kane, Kevin; Straus, Christopher M; Topp, Kimberly S; Naeger, David M

    2014-07-01

    Ultrasound is used increasingly in medical practice as a tool for focused bedside diagnosis and technical assistance during procedures. Widespread availability of small portable units has put this technology into the hands of many physicians and medical students who lack dedicated training, leaving the education and introduction of this key modality increasingly to physicians from other specialties. We developed a radiology-led program to teach ultrasound skills to preclinical medical students. To develop this new ultrasound program we 1) established a program leader, 2) developed teaching materials, 3) created a hands-on interactive program, and 4) recruited the necessary instructors. The program was piloted with the first-year medical student class of 154 students. The introductory session was assessed by pre- and post-activity Likert scale-based surveys. Of 154 (68.8%) students, 106 completed a voluntary online survey before starting the program and 145 students (94.2%) completed a voluntary survey after the session. Students found the program educationally valuable (4.64 of 5) and reported that it improved their understanding of ultrasound imaging (4.7 of 5). Students' reported confidence in identifying abdominal organs, intra-abdominal fluid, and Morison pouch that was significantly higher on the postactivity survey compared to the presurvey (P < .001 for all). We piloted a radiology-led program to teach ultrasound skills to preclinical medical students. Students found the experience enjoyable and educationally valuable. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  10. Interventional radiology delivers high-value health care and is an Imaging 3.0 vanguard.

    PubMed

    Charalel, Resmi A; McGinty, Geraldine; Brant-Zawadzki, Michael; Goodwin, Scott C; Khilnani, Neil M; Matsumoto, Alan H; Min, Robert J; Soares, Gregory M; Cook, Philip S

    2015-05-01

    Given the changing climate of health care and the imperative to add value, radiologists must join forces with the rest of medicine to deliver better patient care in a more cost-effective, evidence-based manner. For several decades, interventional radiology has added value to the health care system through innovation and the provision of alternative and effective minimally invasive treatments, which have decreased morbidity, mortality, and overall cost. The clinical practice of interventional radiology embodies many of the features of Imaging 3.0, the program recently launched by the ACR. We provide a review of some of the major contributions made by interventional radiology and offer general principles from that experience, which are applicable to all radiologists. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  11. Professional profile of radiologic technology educators.

    PubMed

    Legg, Jeffrey S; Pollard, Debra K; Fauber, Terri L

    2005-01-01

    Full-time radiologic technology educators (n = 565) were surveyed to determine their demographic characteristics and professional profile. Overall, the majority of radiologic technology educators surveyed were women between the ages of 40 and 59, had a bachelor's or master's degree, were certified in radiography and reported annual incomes from 40,001 dollars to 60,000 dollars. Most educators spent between 1 hour and 8 hours per week on classroom instruction/laboratory and in the clinical setting. Additionally, hospital or community college programs employed the majority of educators. Demographic characteristics of radiologic technology educators varied according to the type of institution in which they were employed and by education level. Study findings show a potential loss of qualified educators in the near future and the need for increased efforts to prepare and recruit radiologic technologists into the education career path.

  12. Effect and safety of early weight-bearing on the outcome after open-wedge high tibial osteotomy: a systematic review and meta-analysis.

    PubMed

    Lee, O-Sung; Ahn, Soyeon; Lee, Yong Seuk

    2017-07-01

    The purpose of this systematic review and meta-analysis was to evaluate the effectiveness and safety of early weight-bearing by comparing clinical and radiological outcomes between early and traditional delayed weight-bearing after OWHTO. A rigorous and systematic approach was used. The methodological quality was also assessed. Results that are possible to be compared in two or more than two articles were presented as forest plots. A 95% confidence interval was calculated for each effect size, and we calculated the I 2 statistic, which presents the percentage of total variation attributable to the heterogeneity among studies. The random-effects model was used to calculate the effect size. Six articles were included in the final analysis. All case groups were composed of early full weight-bearing within 2 weeks. All control groups were composed of late full weight-bearing between 6 weeks and 2 months. Pooled analysis was possible for the improvement in Lysholm score, but there was no statistically significant difference shown between groups. Other clinical results were also similar between groups. Four studies reported mechanical femorotibial angle (mFTA) and this result showed no statistically significant difference between groups in the pooled analysis. Furthermore, early weight-bearing showed more favorable results in some radiologic results (osseointegration and patellar height) and complications (thrombophlebitis and recurrence). Our analysis supports that early full weight-bearing after OWHTO using a locking plate leads to improvement in outcomes and was comparable to the delayed weight-bearing in terms of clinical and radiological outcomes. On the contrary, early weight-bearing was more favorable with respect to some radiologic parameters and complications compared with delayed weight-bearing.

  13. Surveying Academic Radiology Department Chairs Regarding New and Effective Strategies for Medical Student Recruitment.

    PubMed

    Francavilla, Michael L; Arleo, Elizabeth Kagan; Bluth, Edward I; Straus, Christopher M; Reddy, Sravanthi; Recht, Michael P

    2016-12-01

    The number of 4th-year medical student applications to the field of diagnostic radiology has decreased from 2009 to 2015. The purpose of this study was to learn how radiology departments are recruiting medical students. An anonymous online survey hyperlink was distributed to the members of the Society of Chairs of Academic Radiology Departments regarding both innovative and proven recruitment strategies. The results were synthesized with a recently published survey of medical students about factors influencing them to go into radiology. Forty of 126 radiology departments completed the survey. Most felt that radiology exposure and curricula require alteration given recent downward trends in medical student applications. A majority (79%) had changed their outreach to medical students in response to these trends. The responding department chairs felt that interactive learning while on rotation was the most important strategy for recruitment. The presence of a diversity program, dedicated medical school educator, or rotating daily assignment for students did not affect the likelihood of filling residency spots in the main match. Many radiology departments are changing their outreach to medical students to improve recruitment. Effective strategies to focus on include early active outreach by involving students in the radiology department, thereby framing radiologists as clinicians.

  14. 42 CFR 486.104 - Condition for coverage: Qualifications, orientation and health of technical personnel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...), or (4) of this section: (1) Successful completion of a program of formal training in X-ray technology in a school approved by the Joint Review Committee on Education in Radiologic Technology (JRCERT), or have earned a bachelor's or associate degree in radiologic technology from an accredited college or...

  15. Capacity for Cancer Care Delivery Research in National Cancer Institute Community Oncology Research Program Community Practices: Availability of Radiology and Primary Care Research Partners.

    PubMed

    Carlos, Ruth C; Sicks, JoRean D; Chang, George J; Lyss, Alan P; Stewart, Teresa L; Sung, Lillian; Weaver, Kathryn E

    2017-12-01

    Cancer care spans the spectrum from screening and diagnosis through therapy and into survivorship. Delivering appropriate care requires patient transitions across multiple specialties, such as primary care, radiology, and oncology. From the program's inception, the National Cancer Institute Community Oncology Research Program (NCORP) sites were tasked with conducting cancer care delivery research (CCDR) that evaluates structural, organizational, and social factors, including care transitions that determine patient outcomes. The aim of this study is to describe the capacity of the NCORP to conduct multidisciplinary CCDR that includes radiology and primary care practices. The NCORP includes 34 community and 12 minority and underserved community sites. The Landscape Capacity Assessment was conducted in 2015 across these 46 sites, composed of the 401 components and subcomponents designated to conduct CCDR. Each respondent had the opportunity to designate an operational practice group, defined as a group of components and subcomponents with common care practices and resources. The primary outcomes were the proportion of adult oncology practice groups with affiliated radiology and primary care practices. The secondary outcomes were the proportion of those affiliated radiology and primary care groups that participate in research. Eighty-seven percent of components and subcomponents responded to at least some portion of the assessment, representing 230 practice groups. Analyzing the 201 adult oncology practice groups, 85% had affiliated radiologists, 69% of whom participate in research. Seventy-nine percent had affiliated primary care practitioners, 31% of whom participate in research. Institutional size, multidisciplinary group practice, and ownership by large regional or multistate health systems was associated with research participation by affiliated radiology and primary care groups. Research participation by these affiliated specialists was not significantly different between the community and the minority and underserved community sites. Research relationships exist between the majority of community oncology sites and affiliated radiology practices. Research relationships with affiliated primary care practices lagged. NCORP as a whole has the opportunity to encourage continued and expanded engagement where relationships exist. Where no relationship exists, the NCORP can encourage recruitment, particularly of primary care practices as partners. Copyright © 2017. Published by Elsevier Inc.

  16. Development of a rapidly deployed Department of Energy emergency response element.

    PubMed

    Tighe, R J; Riland, C A; Hopkins, R C

    2000-02-01

    The Federal Radiological Emergency Response Plan (FRERP) directs the Department of Energy (DOE) to maintain a viable, timely, and fully documented response option capable of supporting the responsible Lead Federal Agency in the event of a radiological emergency impacting any state or United States territory (e.g., CONUS). In addition, the DOE maintains a response option to support radiological emergencies outside the continental United States (OCONUS). While the OCONUS mission is not governed by the FRERP, this response is operationally similar to that assigned to the DOE by the FRERP The DOE is prepared to alert, activate, and deploy radiological response teams to augment the Radiological Assistance Program and/or local responders. The Radiological Monitoring and Assessment Center (RMAC) is a phased response that integrates with the Federal Radiological Monitoring and Assessment Center (FRMAC) in CONUS environments and represents a stand-alone DOE response for OCONUS environments. The FRMAC/RMAC Phase I was formally "stood up" as an operational element in April 1999. The FRMAC/RMAC Phase II proposed "stand-up" date is midyear 2000.

  17. A practical approach for inexpensive searches of radiology report databases.

    PubMed

    Desjardins, Benoit; Hamilton, R Curtis

    2007-06-01

    We present a method to perform full text searches of radiology reports for the large number of departments that do not have this ability as part of their radiology or hospital information system. A tool written in Microsoft Access (front-end) has been designed to search a server (back-end) containing the indexed backup weekly copy of the full relational database extracted from a radiology information system (RIS). This front end-/back-end approach has been implemented in a large academic radiology department, and is used for teaching, research and administrative purposes. The weekly second backup of the 80 GB, 4 million record RIS database takes 2 hours. Further indexing of the exported radiology reports takes 6 hours. Individual searches of the indexed database typically take less than 1 minute on the indexed database and 30-60 minutes on the nonindexed database. Guidelines to properly address privacy and institutional review board issues are closely followed by all users. This method has potential to improve teaching, research, and administrative programs within radiology departments that cannot afford more expensive technology.

  18. Film labels: a new look.

    PubMed

    Hunter, T B

    1994-02-01

    Every diagnostic image should be properly labeled. To improve the labeling of radiographs in the Department of Radiology at the University Medical Center, Tucson, Arizona, a special computer program was written to control the printing of the department's film flashcards. This program captures patient data from the hospital's radiology information system and uses it to create a film flashcard that contains the patient's name, hospital number, date of birth, age, the time the patient checked into the radiology department, and the date of the examination. The resulting film labels are legible and aesthetically pleasing. Having the patient's age and date of birth on the labels is a useful quality assurance measure to make certain the proper study has been performed on the correct patient. All diagnostic imaging departments should institute measures to assure their film labeling is as legible and informative as possible.

  19. TH-E-201-02: Hands-On Physics Teaching of Residents in Diagnostic Radiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J.

    The ABR Core Examination stresses integrating physics into real-world clinical practice and, accordingly, has shifted its focus from passive recall of facts to active application of physics principles. Physics education of radiology residents poses a challenge. The traditional method of didactic lectures alone is insufficient, yet it is difficult to incorporate physics teaching consistently into clinical rotations due to time constraints. Faced with this challenge, diagnostic medical physicists who teach radiology residents, have been thinking about how to adapt their teaching to the new paradigm, what to teach and meet expectation of the radiology resident and the radiology residency program.more » The proposed lecture attempts to discuss above questions. Newly developed diagnostic radiology residents physics curriculum by the AAPM Imaging Physics Curricula Subcommittee will be reviewed. Initial experience on hands-on physics teaching will be discussed. Radiology resident who will have taken the BAR Core Examination will share the expectation of physics teaching from a resident perspective. The lecture will help develop robust educational approaches to prepare radiology residents for safer and more effective lifelong practice. Learning Objectives: Learn updated physics requirements for radiology residents Pursue effective approaches to teach physics to radiology residents Learn expectation of physics teaching from resident perspective J. Zhang, This topic is partially supported by RSNA Education Scholar Grant.« less

  20. TH-E-201-03: A Radiology Resident’s Perspectives of Physics Teaching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Key, A.

    The ABR Core Examination stresses integrating physics into real-world clinical practice and, accordingly, has shifted its focus from passive recall of facts to active application of physics principles. Physics education of radiology residents poses a challenge. The traditional method of didactic lectures alone is insufficient, yet it is difficult to incorporate physics teaching consistently into clinical rotations due to time constraints. Faced with this challenge, diagnostic medical physicists who teach radiology residents, have been thinking about how to adapt their teaching to the new paradigm, what to teach and meet expectation of the radiology resident and the radiology residency program.more » The proposed lecture attempts to discuss above questions. Newly developed diagnostic radiology residents physics curriculum by the AAPM Imaging Physics Curricula Subcommittee will be reviewed. Initial experience on hands-on physics teaching will be discussed. Radiology resident who will have taken the BAR Core Examination will share the expectation of physics teaching from a resident perspective. The lecture will help develop robust educational approaches to prepare radiology residents for safer and more effective lifelong practice. Learning Objectives: Learn updated physics requirements for radiology residents Pursue effective approaches to teach physics to radiology residents Learn expectation of physics teaching from resident perspective J. Zhang, This topic is partially supported by RSNA Education Scholar Grant.« less

  1. 21 CFR 814.100 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... public health and safety and with ethical standards, to encourage the discovery and use of devices...), Center for Devices and Radiological Health (CDRH), the Center for Biologics Evaluation and Research (CBER...

  2. 18 CFR 12.21 - Exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... from the requirements of § 12.22(c) for a radiological response plan. (c) Conditions of exemptions. (1... Section 12.21 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT WORKS...

  3. 18 CFR 12.21 - Exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... from the requirements of § 12.22(c) for a radiological response plan. (c) Conditions of exemptions. (1... Section 12.21 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT WORKS...

  4. 18 CFR 12.21 - Exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... from the requirements of § 12.22(c) for a radiological response plan. (c) Conditions of exemptions. (1... Section 12.21 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT WORKS...

  5. 18 CFR 12.21 - Exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... from the requirements of § 12.22(c) for a radiological response plan. (c) Conditions of exemptions. (1... Section 12.21 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT WORKS...

  6. Image Processing System

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Mallinckrodt Institute of Radiology (MIR) is using a digital image processing system which employs NASA-developed technology. MIR's computer system is the largest radiology system in the world. It is used in diagnostic imaging. Blood vessels are injected with x-ray dye, and the images which are produced indicate whether arteries are hardened or blocked. A computer program developed by Jet Propulsion Laboratory known as Mini-VICAR/IBIS was supplied to MIR by COSMIC. The program provides the basis for developing the computer imaging routines for data processing, contrast enhancement and picture display.

  7. Advanced medical imaging protocol workflow-a flexible electronic solution to optimize process efficiency, care quality and patient safety in the National VA Enterprise.

    PubMed

    Medverd, Jonathan R; Cross, Nathan M; Font, Frank; Casertano, Andrew

    2013-08-01

    Radiologists routinely make decisions with only limited information when assigning protocol instructions for the performance of advanced medical imaging examinations. Opportunity exists to simultaneously improve the safety, quality and efficiency of this workflow through the application of an electronic solution leveraging health system resources to provide concise, tailored information and decision support in real-time. Such a system has been developed using an open source, open standards design for use within the Veterans Health Administration. The Radiology Protocol Tool Recorder (RAPTOR) project identified key process attributes as well as inherent weaknesses of paper processes and electronic emulators of paper processes to guide the development of its optimized electronic solution. The design provides a kernel that can be expanded to create an integrated radiology environment. RAPTOR has implications relevant to the greater health care community, and serves as a case model for modernization of legacy government health information systems.

  8. Radioactivity and radiological risk associated with effluent sediment containing technologically enhanced naturally occurring radioactive materials in amang (tin tailings) processing industry.

    PubMed

    Bahari, Ismail; Mohsen, Nasirian; Abdullah, Pauzi

    2007-01-01

    The processing of amang, or tin tailings, for valuable minerals has been shown to technologically enhance NORM and this has stirred significant radiological safety and health concerns among Malaysia's regulatory authority. A growing radiological concern is now focused on the amang effluent containing NORM in recycling ponds, since these ponds may be reclaimed for future residential developments. A study was carried out to assess the radiological risk associated with amang processing and the accumulated effluent in the recycling ponds. Twenty-six sediment samples from the recycling ponds of two amang plants in the states of Selangor and Perak, Malaysia, were collected and analyzed. The maximum activity concentrations of (238)U, (226)Ra, (232)Th and (40)K recorded in sediments from these ponds were higher than Malaysia's and the world's natural highest. Correspondingly, the mean radium equivalent activity concentration indices, Ra(eq), and gamma radiation representative level index, I(gammar), were higher than the world's average. The enhancement of NORM in effluent sediments as a consequence of amang processing, and the use of a closed water management recycling system created Effective Dose Rates, E (nSv h(-1)), that signal potential environmental radiological risks in these ponds, should they be reclaimed for future land use.

  9. Interprofessional Education Perceptions of Dental Assisting and Radiologic Technology Students Following a Live Patient Experience.

    PubMed

    Reddington, Amanda R; Egli, Amy J; Schmuck, Heather M

    2018-05-01

    Health professions students are often unaware of other health care providers' roles or professional expertise due to most education taking place within their single profession. This pattern may be even more prevalent for baccalaureate and associate degree programs since most interprofessional education (IPE) occurs in predoctoral programs and, when IPE is incorporated into allied health professions education, it often utilizes simulation instead of live patient experiences. The aim of this study was to determine if radiologic technology and dental assisting students' perceptions changed regarding interprofessional practice and teamwork after an IPE activity with actual patients. The participants were students in the University of Southern Indiana (USI) radiologic technology and dental assisting programs. This mixed-methods pilot study conducted in 2017 collected quantitative and qualitative data from pre and post surveys, the researchers' observations of student interactions during live patient assessment and acquisition of panoramic images, and large-group discussion. Twenty-five of the 26 students who participated in the IPE program completed both pre and post surveys, for a 96% response rate. The results showed significant differences in the participants' perceptions from the pre to post surveys on a wide variety of survey items. Most notable were the positive changes in perceptions related to trust in judgment of others within their profession (p=0.001), relationships with other professions (p=0.002), and thinking highly of other professions (p=0.002). Overall, this study found that incorporating the IPE activity with a live patient into these radiologic technology and dental assisting programs improved the students' perceptions of other allied health professionals. Future research should include more participants to increase sample size and add quantitative data collection.

  10. Impact of Patient Protection and Affordable Care Act on academic radiology departments' clinical, research, and education missions.

    PubMed

    Mansoori, Bahar; Vidal, Lorenna L; Applegate, Kimberly; Rawson, James V; Novak, Ronald D; Ros, Pablo R

    2013-10-01

    The Patient Protection and Affordable Care Act (ACA) generated significant media attention since its inception. When the law was approved in 2010, the U.S. health care system began facing multiple changes to adapt and to incorporate measures to meet the new requirements. These mandatory changes will be challenging for academic radiology departments (ARDs) since they will need to promote a shift from a volume-focused to a value-focused practice. This will affect all components of the mission of ARDs, including clinical practice, education, and research. A unique key element to success in this transition is to focus on both quality and safety, thus improving the value of radiology in the post-ACA era. Given the changes ARDs will face during the implementation of ACA, suggestions are provided on how to adapt ARDs to this new environment. Copyright © 2013. Published by Elsevier Inc.

  11. An aerial radiological survey of the Durango, Colorado uranium mill tailings site and surrounding area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilton, L.K.

    1981-06-01

    An aerial radiological survey of Durango, Colorado, including the inactive uranium mill tailings piles located southwest of the town, was conducted during August 25--29, 1980, for the Department of Energy's Environmental and Safety Engineering Division. Areas of radiation exposure rates higher than the local background, which was about 15 microrentgens per hour ({mu}R/h), were observed directly over and to the south of the mill tailings piles, over a cemetery, and at two spots near the fairgrounds. The rapidly changing radiation exposure rates at the boundaries of the piles preclude accurate extrapolation of aerial radiological data to ground level exposure ratesmore » in their immediate vicinity. Estimated radiation exposure rates close to the piles, however, approached 30 times background, or about 450 {mu}R/h. Radiation exposure rates in a long area extending south from the tailings piles were about 25 {mu}R/h.« less

  12. Analysis of the criteria used by the International Commission on Radiological Protection to justify the setting of numerical protection level values.

    PubMed

    2006-01-01

    This report compiles the various numerical protection level values published by the International Commission on Radiological Protection (ICRP) since its 1990 Recommendations (Publication 60). Several terms are used to denominate the protection levels: individual dose limit, 'maximum' individual dose, dose constraint, exemption level, exclusion level, action level, or intervention level. The reasons provided by the Commission for selecting the associated numerical values is quoted as far as available. In some cases the rationale is not totally explicit in the original ICRP report concerned; in such cases the Task Group that prepared the present report have proposed their own interpretation. Originally, this report was prepared by a Task Group at CEPN, a French research and development center, in behalf of IRSN, a French public expert body engaged in radiological protection and nuclear safety. It is published here with kind permission by CEPN and IRSN.

  13. THE ROLE OF THE CONSEQUENCE MANAGEMENT HOME TEAM IN THE FUKUSHIMA DAIICHI RESPONSE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pemberton, Wendy; Mena, RaJah; Beal, William

    The Consequence Management Home Team is a U.S. Department of Energy/National Nuclear Security Administration asset. It assists a variety of response organizations with modeling; radiological operations planning; field monitoring techniques; and the analysis, interpretation, and distribution of radiological data. These reach-back capabilities are activated quickly to support public safety and minimize the social and economic impact of a nuclear or radiological incident. In the Fukushima Daiichi response, the Consequence Management Home Team grew to include a more broad range of support than was historically planned. From the early days of the response to the continuing involvement in supporting late phasemore » efforts, each stage of the Consequence Management Home Team support had distinct characteristics in terms of management of incoming data streams as well as creation of products. Regardless of stage, the Consequence Management Home Team played a critical role in the Fukushima Daiichi response effort.« less

  14. Radiology corner. Answer to last month's radiology case and image: gun shot wound to the chest of a military working dog.

    PubMed

    Galer, Meghan; Magid, Donna; Folio, Les

    2009-06-01

    This Military Working Dog (MWD) was shot in the chest during combat operations in Iraq. Military Working Dogs are critical to the safety and well-being of deployed troops in combat operations and, as such, they are triaged and treated in our combat hospitals just like any other soldier; their speciation is not a factor in their triage status. This case familiarizes military physicians with the basic canine anatomy, positioning, and radiological technique they should be aware of before deploying. We also strive to raise awareness of the vital roles that these MWDs play for our forces, counterany concerns that may arise over the issue of treating these dogs in human facilities, and leave the reader feeling better prepared to handle the situation should they ever find themselves poised to save one of our four-legged warriors.

  15. Nuclear and Radiological Forensics and Attribution Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D K; Niemeyer, S

    2005-11-04

    The goal of the U.S. Department of Homeland Security (DHS) Nuclear and Radiological Forensics and Attribution Program is to develop the technical capability for the nation to rapidly, accurately, and credibly attribute the origins and pathways of interdicted or collected materials, intact nuclear devices, and radiological dispersal devices. A robust attribution capability contributes to threat assessment, prevention, and deterrence of nuclear terrorism; it also supports the Federal Bureau of Investigation (FBI) in its investigative mission to prevent and respond to nuclear terrorism. Development of the capability involves two major elements: (1) the ability to collect evidence and make forensic measurements,more » and (2) the ability to interpret the forensic data. The Program leverages the existing capability throughout the U.S. Department of Energy (DOE) national laboratory complex in a way that meets the requirements of the FBI and other government users. At the same time the capability is being developed, the Program also conducts investigations for a variety of sponsors using the current capability. The combination of operations and R&D in one program helps to ensure a strong linkage between the needs of the user community and the scientific development.« less

  16. Learning on human resources management in the radiology residency program*

    PubMed Central

    de Oliveira, Aparecido Ferreira; Lederman, Henrique Manoel; Batista, Nildo Alves

    2014-01-01

    Objective To investigate the process of learning on human resource management in the radiology residency program at Escola Paulista de Medicina - Universidade Federal de São Paulo, aiming at improving radiologists' education. Materials and Methods Exploratory study with a quantitative and qualitative approach developed with the faculty staff, preceptors and residents of the program, utilizing a Likert questionnaire (46), taped interviews (18), and categorization based on thematic analysis. Results According to 71% of the participants, residents have clarity about their role in the development of their activities, and 48% said that residents have no opportunity to learn how to manage their work in a multidisciplinary team. Conclusion Isolation at medical records room, little interactivity between sectors with diversified and fixed activities, absence of a previous culture and lack of a training program on human resources management may interfere in the development of skills for the residents' practice. There is a need to review objectives of the medical residency in the field of radiology, incorporating, whenever possible, the commitment to the training of skills related to human resources management thus widening the scope of abilities of the future radiologists. PMID:25741056

  17. Radiological considerations in the operation of the low-energy undulator test line (LEUTL).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, H.J.

    1998-11-11

    The Low-Energy Undulator Test Line (LEUTL) is a facility that uses the existing APS linac to accelerate electrons up to an energy of 700 MeV. These electrons are transported through the Pm into a portion of the booster synchrotrons and on into the LEUTL main enclosure (MIL 97). Figure 1 shows the layout of the LEUTL building, which consists of an earth-benned concrete enclosure and an end-station building. The concrete enclosure houses the electron beamline, test undulator, and beam dump. This facility is about 51 m long and 3.66 m wide. Technical components and diagnostics for characterizing the undulator lightmore » are found in the end station. This building has about 111 m{sup 2} of floor space. This note deals with the radiological considerations of operations using electrons up to 700 MeV and at power levels up to the safety envelope of 1 kW. Previous radiological considerations for electron and positron operations in the linac, PAR, and synchrotrons have been addressed else-where (MOE 93a, 93b, and 93c). Much of the methodology discussed in the previous writeups, as well as in MOE 94, has been used in the computations in this note. The radiological aspects that are addressed include the following: prompt secondary radiation (bremsstrahlung, giant resonance neutrons, medium- and high-energy neutrons) produced by electrons interacting in a beam stop or in component structures; skyshine radiation, which produces a radiation field in nearby areas and at the nearest off-site location; radioactive gases produced by neutron irradiation of air in the vicinity of a particle loss site; noxious gases (ozone and others) produced in air by the escaping bremsstrahlung radiation that results from absorbing particles in the components; activation of the LEUTL components that results in a residual radiation field in the vicinity of these materials following shutdown; potential activation of water used for cooling the magnets and other purposes in the tunnel; and evaluation of the radiation fields due to escaping gas bremsstrahlung. Estimated dose rates have been computed or scaled (in the case of 400 MeV electrons) outside of the bermed tunnel, in Building 412, and in the Klystron Gallery for several modes of operation, including potential safety envelope beam power, normal beam power and MCI (maximum credible incident) conditions. Radiological aspects of shielding changes to the synchrotrons and their effect upon operations are addressed in MOE 97. No change in the safety envelope for synchrotrons operation was warranted.« less

  18. Designing the Army’s Future Active Duty Weapons of Mass Destruction Response: Is the Defense Chemical, Biological, Radiological, Nuclear and High-Yield Explosives Response Force (DCRF) the Right Force at the Right Time?

    DTIC Science & Technology

    2013-06-14

    ever-evolving contemporary nature of external and internal threats to the safety and security of the American homeland, it becomes increasingly...Major Justin P. Hurt, 146 pages. With the ever-evolving contemporary nature of external and internal threats to the safety and security of the American...HAZMAT Hazardous Materials HRF Homeland Response Force HSPD Homeland Security Presidential Directive JFHQ Joint Force

  19. A discussion on the methodology for calculating radiological and toxicological consequences for the spent nuclear fuel project at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RITTMANN, P.D.

    1999-07-14

    This report contains technical information used to determine accident consequences for the Spent Nuclear Fuel Project safety documents. It does not determine accident consequences or describe specific accident scenarios, but instead provides generic information.

  20. 21 CFR 1002.30 - Records to be maintained by manufacturers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) RADIOLOGICAL HEALTH RECORDS AND REPORTS Manufacturers' Records § 1002.30 Records to be maintained... procedures with respect to electronic product radiation safety. (2) Records of the results of tests for... increase electronic product radiation emission, records of the results of tests for durability and...

  1. 10 CFR 960.5-2-4 - Offsite installations and operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Preclosure Radiological Safety § 960.5-2-4... operations, including atomic energy defense activities, (1) will not significantly affect repository siting...), when considered together with emissions from repository operation and closure, will not be likely to...

  2. Plutonium mining for cleanup.

    PubMed

    Bramlitt, E T

    1988-08-01

    Cleanup is the act of making a contaminated site relatively free of Pu so it may be used without radiological safety restrictions. Contaminated ground is the focus of major cleanups. Cleanup traditionally involves determining Pu content of soil, digging up soil in which radioactivity exceeds guidelines, and relocating excised soil to a waste-disposal site. Alternative technologies have been tested at Johnston Atoll (JA), where there is as much as 100,000 m3 of Pu-contaminated soil. A mining pilot plant operated for the first 6 mo of 1986 and made 98% of soil tested "clean", from more than 40 kBq kg-1 (1000 pCi g-1) to less than about 500 Bq kg-1 (15 pCi g-1) by concentrating Pu in 2% of the soil. The pilot plant is now installed at the U.S. Department of Energy Nevada Test Site for evaluating cleanup of other contaminated soils and refining cleanup effectiveness. A full-scale cleanup plant has been programmed for JA in 1988. In this paper, previous cleanups are reviewed, and the mining endeavor at JA is detailed. "True soil cleanup" is contrasted with the classical "soil relocation cleanup." The mining technology used for Pu cleanup has been in use for more than a century. Mining for cleanup, however, is unique. It is envisioned as being prominent for radiological and other cleanups in the future.

  3. Commentary: Ethical Issues of Current Health-Protection Policies on Low-Dose Ionizing Radiation

    PubMed Central

    Socol, Yehoshua; Dobrzyński, Ludwik; Doss, Mohan; Feinendegen, Ludwig E.; Janiak, Marek K.; Miller, Mark L.; Sanders, Charles L.; Scott, Bobby R.; Ulsh, Brant; Vaiserman, Alexander

    2014-01-01

    The linear no-threshold (LNT) model of ionizing-radiation-induced cancer is based on the assumption that every radiation dose increment constitutes increased cancer risk for humans. The risk is hypothesized to increase linearly as the total dose increases. While this model is the basis for radiation safety regulations, its scientific validity has been questioned and debated for many decades. The recent memorandum of the International Commission on Radiological Protection admits that the LNT-model predictions at low doses are “speculative, unproven, undetectable and ‘phantom’.” Moreover, numerous experimental, ecological, and epidemiological studies show that low doses of sparsely-ionizing or sparsely-ionizing plus highly-ionizing radiation may be beneficial to human health (hormesis/adaptive response). The present LNT-model-based regulations impose excessive costs on the society. For example, the median-cost medical program is 5000 times more cost-efficient in saving lives than controlling radiation emissions. There are also lives lost: e.g., following Fukushima accident, more than 1000 disaster-related yet non-radiogenic premature deaths were officially registered among the population evacuated due to radiation concerns. Additional negative impacts of LNT-model-inspired radiophobia include: refusal of some patients to undergo potentially life-saving medical imaging; discouragement of the study of low-dose radiation therapies; motivation for radiological terrorism and promotion of nuclear proliferation. PMID:24910586

  4. Post-procedural Care in Interventional Radiology: What Every Interventional Radiologist Should Know—Part I: Standard Post-procedural Instructions and Follow-Up Care

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taslakian, Bedros, E-mail: Bedros.Taslakian@nyumc.org; Sridhar, Divya

    Interventional radiology (IR) has evolved into a full-fledged clinical specialty with attendant patient care responsibilities. Success in IR now requires development of a full clinical practice, including consultations, inpatient admitting privileges, and an outpatient clinic. In addition to technical excellence and innovation, maintaining a comprehensive practice is imperative for interventional radiologists to compete successfully for patients and referral bases. A structured approach to periprocedural care, including routine follow-up and early identification and management of complications, facilitates efficient and thorough management with an emphasis on quality and patient safety.

  5. Post-procedural Care in Interventional Radiology: What Every Interventional Radiologist Should Know-Part I: Standard Post-procedural Instructions and Follow-Up Care.

    PubMed

    Taslakian, Bedros; Sridhar, Divya

    2017-04-01

    Interventional radiology (IR) has evolved into a full-fledged clinical specialty with attendant patient care responsibilities. Success in IR now requires development of a full clinical practice, including consultations, inpatient admitting privileges, and an outpatient clinic. In addition to technical excellence and innovation, maintaining a comprehensive practice is imperative for interventional radiologists to compete successfully for patients and referral bases. A structured approach to periprocedural care, including routine follow-up and early identification and management of complications, facilitates efficient and thorough management with an emphasis on quality and patient safety.

  6. U.S. Army Medical Department Journal, October-December 2007

    DTIC Science & Technology

    2007-12-01

    Warrior Task Training requirements (such as weapons assembly/disassembly and functions check; individual chemical, biological , radiological, nuclear...training program focused on hands-on training in the 40 Army Warrior Tasks and 11 Battle Drills, to include advanced land navigation training; weapons ...familiarization and qualification; convoy operations; chemical, biological , radiological, nuclear and high- explosive defense; and squad and platoon

  7. Introduction to Radiological Monitoring; A Programmed Home Study Course. Four Self-Study Units.

    ERIC Educational Resources Information Center

    Defense Civil Preparedness Agency (DOD), Battle Creek, MI.

    This progrmed course of study is designed to prepare local government officials and individual citizens to act in nuclear emergencies or disasters. Each of the four units has two lessons beginning with a brief overview and proceeding with self study frames. Line drawings are used to illustrate effects. Topics covered are the radiological monitor…

  8. Technical writing in the radiologic technology curriculum.

    PubMed

    Bell, R

    1979-01-01

    Although courses in technical writing are no longer suggested in the Curriculum Guide for Programs in Radiologic Technology, the writer believes that writing is essential to the growth of the profession and development of the professional. Emphasis is placed on some of the benefits that accrue to students who are exposed to technical writing as part of their technology curriculum.

  9. 2008 Mississippi Curriculum Framework: Postsecondary Radiologic Technology. (Program CIP: 51.0911 - Radiologic Technology/Science - Radiographer)

    ERIC Educational Resources Information Center

    Armstrong, David; Cochran, Timothy; Compton, Steve; Davis, Jennifer; Edgerton, Seena Shazowee; Kisner, Christie; Lewis, Judy; Sartin, Billie Faye; Shell, Deborah

    2008-01-01

    As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…

  10. Task Lists for Health Occupations. Radiologic Aide. Activity Aide. Optometric Assistant. Physical Therapy Aide. Education for Employment Task Lists.

    ERIC Educational Resources Information Center

    Lathrop, Janice

    These task lists contain employability skills and tasks for the following health occupations: radiologic aide, activity aide, physical therapy aide, and optometric assistant. The duties and tasks found in these lists form the basis of instructional content for secondary, postsecondary, and adult occupational training programs. Employability skills…

  11. Image gently, step lightly: increasing radiation dose awareness in pediatric interventions through an international social marketing campaign.

    PubMed

    Sidhu, Manrita K; Goske, Marilyn J; Coley, Brian J; Connolly, Bairbre; Racadio, John; Yoshizumi, Terry T; Utley, Tara; Strauss, Keith J

    2009-09-01

    In the past several decades, advances in imaging and interventional techniques have been accompanied by an increase in medical radiation dose to the public. Radiation exposure is even more important in children, who are more sensitive to radiation and have a longer lifespan during which effects may manifest. To address radiation safety in pediatric computed tomography, in 2008 the Alliance for Radiation Safety in Pediatric Imaging launched an international social marketing campaign entitled Image Gently. This article describes the next phase of the Image Gently campaign, entitled Step Lightly, which focuses on radiation safety in pediatric interventional radiology.

  12. Utilization of Local Law Enforcement Aerial Resources in Consequence Management (CM) Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasiolek, Piotr T.; Malchow, Russell L.

    2013-03-12

    During the past decade the U.S. Department of Homeland Security (DHS) was instrumental in enhancing the nation’s ability to detect and prevent a radiological or nuclear attack in the highest risk cities. Under the DHS Securing the Cities initiative, nearly 13,000 personnel in the New York City region have been trained in preventive radiological and nuclear detection operations, and nearly 8,500 pieces of radiological detection equipment have been funded. As part of the preventive radiological/nuclear detection (PRND) mission, several cities have received funding to purchase commercial aerial radiation detection systems. In 2008, the U.S. Department of Energy, National Nuclear Securitymore » Administration Aerial Measuring System (AMS) program started providing Mobile Aerial Radiological Surveillance (MARS) training to such assets, resulting in over 150 HAZMAT teams’ officers and pilots from 10 law enforcement organizations and fire departments being trained in the aerial radiation detection. From the beginning, the MARS training course covered both the PRND and consequence management (CM) missions. Even if the law enforcement main focus is PRND, their aerial assets can be utilized in the collection of initial radiation data for post-event radiological CM response. Based on over 50 years of AMS operational experience and information collected during MARS training, this presentation will focus on the concepts of CM response using aerial assets as well as utilizing law enforcement/fire department aerial assets in CM. Also discussed will be the need for establishing closer relationships between local jurisdictions’ aerial radiation detection capabilities and state and local radiation control program directors, radiological health department managers, etc. During radiological events these individuals may become primary experts/advisers to Incident Commanders for radiological emergency response, especially in the early stages of a response. The knowledge of the existence, specific capabilities, and use of local aerial radiation detection systems would be critical in planning the response, even before federal assets arrive on the scene. The relationship between local and federal aerial assets and the potential role for the further use of the MARS training and expanded AMS Reachback capabilities in facilitating such interactions will be discussed.« less

  13. [Intranet applications in radiology].

    PubMed

    Knopp, M V; von Hippel, G M; Koch, T; Knopp, M A

    2000-01-01

    The aim of the paper is to present the conceptual basis and capabilities of intranet applications in radiology. The intranet, which is the local brother of the internet can be readily realized using existing computer components and a network. All current computer operating systems support intranet applications which allow hard and software independent communication of text, images, video and sound with the use of browser software without dedicated programs on the individual personal computers. Radiological applications for text communication e.g. department specific bulletin boards and access to examination protocols; use of image communication for viewing and limited processing and documentation of radiological images can be achieved on decentralized PCs as well as speech communication for dictation, distribution of dictation and speech recognition. The intranet helps to optimize the organizational efficiency and cost effectiveness in the daily work of radiological departments in outpatients and hospital settings. The general interest in internet and intranet technology will guarantee its continuous development.

  14. Telemedicine and pediatric radiology: a new environment for training, learning, and interactive discussions.

    PubMed

    Monteiro, Alexandra M V; Corrêa, Diogo Goulart; Santos, Alair Augusto Sarmet M D; Cavalcanti, Silvio A; Sakuno, Telma; Filgueiras, Tereza; Just, Eduardo; Santos, Munique; Messina, Luiz Ary; Haddad, Ana Estela; Marchiori, Edson

    2011-12-01

    To report the experience of the Brazilian Program of Pediatric Teleradiology in combining teleconferencing and a virtual learning environment for services integration, collaborative research, and continuing education in pediatric radiology. We performed virtual meetings from March 2005 to October 2010 on pediatric radiology-related themes, using a combination of videoconferences and Web conferences, which were recorded and made available in an open-source software (Moodle) for reuse. We performed 58 virtual sessions: 29 anatomical-clinical-radiological sessions, 28 on upgrading themes, and 1 virtual symposium. The average of connected points was 12 by videoconference and 39 by Web conference, and of 450 participants per event. At the time of this writing, 318 physicians and students are registered in the virtual learning environment, with a total of 14,678 accesses. Telemedicine is being included in pediatric radiology practice, as a means for distance education, training, and continuing integration between groups.

  15. Organic chemical aging mechanisms: An annotated bibliography. Waste Tank Safety Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samuels, W.D.; Camaioni, D.M.; Nelson, D.A.

    1993-09-01

    An annotated bibliography has been compiled of the potential chemical and radiological aging mechanisms of the organic constituents (non-ferrocyanide) that would likely be found in the UST at Hanford. The majority of the work that has been conducted on the aging of organic chemicals used for extraction and processing of nuclear materials has been in conjunction with the acid or PUREX type processes. At Hanford the waste being stored in the UST has been stabilized with caustic. The aging factors that were used in this work were radiolysis, hydrolysis and nitrite/nitrate oxidation. The purpose of this work was two-fold: tomore » determine whether or not research had been or is currently being conducted on the species associated with the Hanford UST waste, either as a mixture or as individual chemicals or chemical functionalities, and to determine what areas of chemical aging need to be addressed by further research.« less

  16. Quality measures and pediatric radiology: suggestions for the transition to value-based payment.

    PubMed

    Heller, Richard E; Coley, Brian D; Simoneaux, Stephen F; Podberesky, Daniel J; Hernanz-Schulman, Marta; Robertson, Richard L; Donnelly, Lane F

    2017-06-01

    Recent political and economic factors have contributed to a meaningful change in the way that quality in health care, and by extension value, are viewed. While quality is often evaluated on the basis of subjective criteria, pay-for-performance programs that link reimbursement to various measures of quality require use of objective and quantifiable measures. This evolution to value-based payment was accelerated by the 2015 passage of the Medicare Access and CHIP (Children's Health Insurance Program) Reauthorization Act (MACRA). While many of the drivers of these changes are rooted in federal policy and programs such as Medicare and aimed at adult patients, the practice of pediatrics and pediatric radiology will be increasingly impacted. This article addresses issues related to the use of quantitative measures to evaluate the quality of services provided by the pediatric radiology department or sub-specialty section, particularly as seen from the viewpoint of a payer that may be considering ways to link payment to performance. The paper concludes by suggesting a metric categorization strategy to frame future work on the subject.

  17. Ethics in radiology: wait lists queue jumping.

    PubMed

    Cunningham, Natalie; Reid, Lynette; MacSwain, Sarah; Clarke, James R

    2013-08-01

    Education in ethics is a requirement for all Royal College residency training programs as laid out in the General Standards of Accreditation for residency programs in Canada. The ethical challenges that face radiologists in clinical practice are often different from those that face other physicians, because the nature of the physician-patient interaction is unlike that of many other specialties. Ethics education for radiologists and radiology residents will benefit from the development of teaching materials and resources that focus on the issues that are specific to the specialty. This article is intended to serve as an educational resource for radiology training programs to facilitate teaching ethics to residents and also as a continuing medical education resource for practicing radiologists. In an environment of limited health care resources, radiologists are frequently asked to expedite imaging studies for patients and, in some respects, act as gatekeepers for specialty care. The issues of wait lists, queue jumping, and balancing the needs of individuals and society are explored from the perspective of a radiologist. Copyright © 2013 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  18. Nationwide evaluation of X-Ray trends (NEXT): eight years of data (1974-1981)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Production of radiologic images of acceptable diagnostic quality obtained with minimum radiation exposure to patients is a basic goal of the Center for Devices and Radiological Health (CDRH). The Office of Training and Assistance (OTA) of the CDRH conducts a number of educational programs to meet this goal. These programs have provided guidance to practices which promote the safe and effective use of radiation in the ordering, conduct, and interpretation of diagnostic radiology examinations. NEXT has provided much useful information in the past and is now undergoing revision to increase the specificity of the individual facility data as well asmore » to improve the statistical validity of the cumulative results in order to provide more accurate national indices of patient exposure and dose. In view of the coming changes in NEXT, it seemed particularly appropriate that a summary of past activities and findings should be provided to the state agencies whose activities have been essential to the success of the program and to other interested parties. This publication is intended to serve that purpose.« less

  19. Nuclear security and radiological preparedness for the olympic games, athens 2004: lessons learned for organizing major public events.

    PubMed

    Kamenopoulou, Vassiliki; Dimitriou, Panayiotis; Hourdakis, Constantine J; Maltezos, Antonios; Matikas, Theodore; Potiriadis, Constantinos; Camarinopoulos, Leonidas

    2006-10-01

    In light of the exceptional circumstances that arose from hosting the Olympic Games in Athens in 2004 and from recent terrorist events internationally, Greece attributes the highest priority to security issues. According to its statutory role, the Greek Atomic Energy Commission is responsible for emergency preparedness and response in case of nuclear and radiological events, and advises the Government on the measures and interventions necessary to protect the public. In this context, the Commission participated in the Nuclear, Radiological, Biological, and Chemical Threat National Emergency Plan, specially developed for the Olympic Games, and coordinated by the Olympic Games Security Division. The objective of this paper is to share the experience gained during the organization of the Olympic Games and to present the nuclear security program implemented prior to, during, and beyond the Games, in order to prevent, detect, assess, and respond to the threat of nuclear terrorism. This program adopted a multi-area coverage of nuclear security, including physical protection of nuclear and radiological facilities, prevention of smuggling of radioactive materials through borders, prevention of dispersion of these materials into the Olympic venues, enhancement of emergency preparedness and response to radiological events, upgrading of the technical infrastructure, establishment of new procedures for assessing the threat and responding to radiological incidents, and training personnel belonging to several organizations involved in the National Emergency Response Plan. Finally, the close cooperation of Greek Authorities with the International Atomic Energy Agency and the U.S. Department of Energy, under the coordination of the Greek Atomic Energy Commission, is also discussed.

  20. The Role of Mifepristone in Meningiomas Management: A Systematic Review of the Literature.

    PubMed

    Cossu, Giulia; Levivier, Marc; Daniel, Roy Thomas; Messerer, Mahmoud

    2015-01-01

    We performed a systematic literature review to analyze the clinical application and the safety of mifepristone, a prominent antiprogesterone agent, in meningioma patients. A systematic search was performed through Medline, Cochrane, and clinicaltrials.gov databases from 1960 to 2014. Study Selection. Studies were selected through a PICO approach. Population was meningioma patients, meningioma cells cultures, and animal models. Intervention was mifepristone administration. Control was placebo administration or any other drug tested. Outcomes were clinical and radiological responsiveness, safety profile, and cell growth inhibition. A total of 7 preclinical and 6 clinical studies and one abstract were included. Encouraging results were found in preclinical studies. Concerning clinical studies, the response rate to mifepristone in terms of radiological regression and symptomatic improvement/stability in patients with inoperable meningioma was low. In meningiomatosis, favorable preliminary results were recorded. The safety profile was good. Limitations were as follows. The tumoral expression of progesterone receptors was not analyzed systematically in every study considered. No clear evidence exists to recommend mifepristone in inoperable meningiomas. Preliminary encouraging results were found in diffuse meningiomatosis. Mifepristone is a well-tolerated treatment. Patients' selection and hormonal profile analysis in meningiomas are fundamental for a better understanding of its benefit. Multicenter placebo-controlled trials are required.

  1. Blending online techniques with traditional face to face teaching methods to deliver final year undergraduate radiology learning content.

    PubMed

    Howlett, David; Vincent, Tim; Watson, Gillian; Owens, Emma; Webb, Richard; Gainsborough, Nicola; Fairclough, Jil; Taylor, Nick; Miles, Ken; Cohen, Jon; Vincent, Richard

    2011-06-01

    To review the initial experience of blending a variety of online educational techniques with traditional face to face or contact-based teaching methods to deliver final year undergraduate radiology content at a UK Medical School. The Brighton and Sussex Medical School opened in 2003 and offers a 5-year undergraduate programme, with the final 5 spent in several regional centres. Year 5 involves several core clinical specialities with onsite radiology teaching provided at regional centres in the form of small-group tutorials, imaging seminars and also a one-day course. An online educational module was introduced in 2007 to facilitate equitable delivery of the year 5 curriculum between the regional centres and to support students on placement. This module had a strong radiological emphasis, with a combination of imaging integrated into clinical cases to reflect everyday practice and also dedicated radiology cases. For the second cohort of year 5 students in 2008 two additional online media-rich initiatives were introduced, to complement the online module, comprising imaging tutorials and an online case discussion room. In the first year for the 2007/2008 cohort, 490 cases were written, edited and delivered via the Medical School managed learning environment as part of the online module. 253 cases contained a form of image media, of which 195 cases had a radiological component with a total of 325 radiology images. Important aspects of radiology practice (e.g. consent, patient safety, contrast toxicity, ionising radiation) were also covered. There were 274,000 student hits on cases the first year, with students completing a mean of 169 cases each. High levels of student satisfaction were recorded in relation to the online module and also additional online radiology teaching initiatives. Online educational techniques can be effectively blended with other forms of teaching to allow successful undergraduate delivery of radiology. Efficient IT links and good image quality are essential ingredients for successful student/clinician engagement. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  2. Individual Radiation Protection Monitoring in the Marshall Islands: Rongelap Atoll (2002-2004)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, T F; Kehl, S; Hickman, D

    2006-01-17

    The United States Department of Energy (U.S. DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. nuclear test sites in the Marshall Islands. The plan is to engage local atoll communities in developing shared responsibilities for implementing radiation protection monitoring programs for resettled and resettling populations in the northern Marshall Islands. Using the pooled resources of the U.S. DOE and local atoll governments, individual radiological surveillance programs have been developed in whole body counting and plutonium urinalysis in order to accurately assess radiation doses resulting from the ingestion and uptake ofmore » fallout radionuclides contained in locally grown foods. Permanent whole body counting facilities have been established at three separate locations in the Marshall Islands including Rongelap Atoll (Figure 1). These facilities are operated and maintained by Marshallese technicians with scientists from the Lawrence Livermore National Laboratory (LLNL) providing on-going technical support services. Bioassay samples are collected under controlled conditions and analyzed for plutonium isotopes at the Center for Accelerator Mass Spectrometry at LLNL using state-of-the art measurement technologies. We also conduct an on-going environmental monitoring and characterization program at selected sites in the northern Marshall Islands. The aim of the environmental program is to determine the level and distribution of important fallout radionuclides in soil, water and local foods with a view towards providing more accurate and updated dose assessments, incorporating knowledge of the unique behaviors and exposure pathways of fallout radionuclides in coral atoll ecosystems. These scientific studies have also been essential in helping guide the development of remedial options used in support of island resettlement. Together, the individual and environmental radiological surveillance programs are helping meet the informational needs of the U.S. DOE and the Republic of the Marshall Islands. Our updated environmental assessments provide a strong scientific basis for predicting future change in exposure conditions especially in relation to changes in lifestyle, diet and/or land-use patterns. This information has important implications in addressing questions about existing (and future) radiological conditions on the islands, in determining as well as the implementation, cost and effectiveness of potential intervention options, and in general policy support considerations. Perhaps most importantly, the recently established individual radiological surveillance programs provide affected atoll communities with an unprecedented level of radiation protection monitoring where, for the first time, local resources are being made available to monitor resettled and resettling populations on a continuous basis. As a hard copy supplement to Marshall Islands Program website (http://eed.llnl.gov/mi/), this document provides an overview of the individual radiation protection monitoring program established for resettlement workers living on Rongelap Island along with a full disclosure of all verified measurement data (2002-2004). Readers are advised that an additional feature of the associated web site is a provision where users are able calculate and track doses delivered to volunteers (de-identified information only) participating the Marshall Islands Radiological Surveillance Program.« less

  3. Individual Radiation Protection Monitoring in the Marshall Islands: Enewetak Atoll (2002-2004)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, T F; Kehl, S; Hickman, D

    2006-01-17

    The United States Department of Energy (U.S. DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. nuclear test sites in the Marshall Islands. The plan is to engage local atoll communities in developing shared responsibilities for implementing radiation protection monitoring programs for resettled and resettling populations in the northern Marshall Islands. Using the pooled resources of the U.S. DOE and local atoll governments, individual radiological surveillance programs have been developed in whole body counting and plutonium urinalysis in order to accurately assess radiation doses resulting from the ingestion and uptake ofmore » fallout radionuclides contained in locally grown foods. Permanent whole body counting facilities have been established at three separate locations in the Marshall Islands including Enewetak Island (Figure 1) (Bell et al., 2002). These facilities are operated and maintained by Marshallese technicians with scientists from the Lawrence Livermore National Laboratory (LLNL) providing on-going technical support services. Bioassay samples are collected under controlled conditions and analyzed for plutonium isotopes at the Center for Accelerator Mass Spectrometry at LLNL using state-of-the art measurement technologies. We also conduct an on-going environmental monitoring and characterization program at selected sites in the northern Marshall Islands. The aim of the environmental program is to determine the level and distribution of important fallout radionuclides in soil, water and local foods with a view towards providing more accurate and updated dose assessments, incorporating knowledge of the unique behaviors and exposure pathways of fallout radionuclides in coral atoll ecosystems. These scientific studies have also been essential in helping guide the development of remedial options used in support of island resettlement. Together, the individual and environmental radiological surveillance programs are helping meet the informational needs of the U.S. DOE and the Republic of the Marshall Islands. Our updated environmental assessments provide a strong scientific basis for predicting future change in exposure conditions especially in relation to changes in lifestyle, diet and/or land-use patterns. This information has important implications in addressing questions about existing (and future) radiological conditions on the islands, in determining the cost and estimating the effectiveness of potential remedial measures, and in general policy support considerations. Perhaps most importantly, the recently established individual radiological surveillance programs provide affected atoll communities with an unprecedented level of radiation protection monitoring where, for the first time, local resources are being made available to monitor resettled and resettling populations on a continuous basis. As a hard copy supplement to Marshall Islands Program website (http://eed.llnl.gov/mi/), this document provides an overview of the individual radiation protection monitoring program established for the Enewetak Atoll population group along with a full disclosure of all verified measurement data (2002-2004). Readers are advised that an additional feature of the associated web site is a provision where users are able calculate and track doses delivered to volunteers (de-identified information only) participating in the Marshall Islands Radiological Surveillance Program.« less

  4. Changes in radiological protection and quality control in Spanish dental installations: 1996-2003.

    PubMed

    Alcaraz-Baños, Miguel; Parra-Pérez, María del Carmen; Armero-Barranco, David; Velasco-Hidalgo, Francisco; Velasco-Hidalgo, Esteban

    2009-10-01

    The European Union has established specific directives concerning radiological protection which are obligatory for member States. In addition, all Spanish dental clinics with radiological equipment are required to have an annual quality control check. To analyze the effect of new European legislation on dental radiological practice in Spain and to determine whether it has resulted in lower doses being administered to patients. A total of 10,171 official radiological quality control reports on Spanish dental clinics, covering 16 autonomous regions, were studied following the passing of Royal Decree 2071/1995 on quality criteria in radiodiagnostic installations. The reports, compiled by U.T.P.R Asigma S.A., a company authorised by the Nuclear Safety Council, cover the years 1996 to 2003, which has enabled us to monitor the evolution of radiological procedures in dental clinics over a seven year period. According to the reports for 2003, 77.3 % of clinics complied with EU requirements, using equipment of 70 kVp, 8 mA, 1.5 mm Al filters, with a collimator length of 20 cm. However, non-compliance was detected in approximately a third (30.8%) of the equipment inspected: alterations in the kilovoltage used, exposure time, performance of the tubing, dosage, linearity/intensity of current and acoustic-luminous signal 6.86%. The mean skin dose reached 3.11 mGy for patients who received an x-ray of an upper molar, representing a decrease of 18% over the seven years studied. there has obviously been a general improvement in the parameters studied, but only 77.3% of the installations complied fully with official EU regulations concerning dental radiological protection.

  5. Quality assurance program plan for radionuclide airborne emissions monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boom, R.J.

    1995-12-01

    This Quality Assurance Program Plan identifies quality assurance program requirements and addresses the various Westinghouse Hanford Company organizations and their particular responsibilities in regards to sample and data handling of radiological airborne emissions. This Quality Assurance Program Plan is prepared in accordance with and to written requirements.

  6. White Paper Report of the RAD-AID Conference on International Radiology for Developing Countries: identifying challenges, opportunities, and strategies for imaging services in the developing world.

    PubMed

    Mollura, Daniel J; Azene, Ezana M; Starikovsky, Anna; Thelwell, Aduke; Iosifescu, Sarah; Kimble, Cary; Polin, Ann; Garra, Brian S; DeStigter, Kristen K; Short, Brad; Johnson, Benjamin; Welch, Christian; Walker, Ivy; White, David M; Javadi, Mehrbod S; Lungren, Matthew P; Zaheer, Atif; Goldberg, Barry B; Lewin, Jonathan S

    2010-07-01

    The RAD-AID Conference on International Radiology for Developing Countries was an assembly of individuals and organizations interested in improving access to medical imaging services in developing countries where the availability of radiology has been inadequate for both patient care and public health programs. The purpose of the meeting was to discuss data, experiences, and models pertaining to radiology in the developing world and to evaluate potential opportunities for future collaboration. Conference participants included radiologists, technologists, faculty members of academic medical institutions, and leadership of nongovernmental organizations involved in international health care and social entrepreneurship. Four main themes from the conference are presented in this white paper as important factors for the implementation and optimization of radiology in the developing world: (1) ensuring the economic sustainability of radiologic services through financial and administrative training support of health care personnel; (2) designing, testing, and deploying clinical strategies adapted for regions with limited resources; (3) structuring and improving the role of American radiology residents interested in global health service projects; and (4) implementing information technology models to support digital imaging in the developing world. Published by Elsevier Inc.

  7. Individual Radiation Protection Monitoring in the Marshall Islands. Utrok Atoll (2010-2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, T. F.; Kehl, S. R.; Martinelli, R. E.

    2014-12-15

    As a hard copy supplement to the Marshall Islands Program website (https://marshallislands.llnl.gov), this document provides an overview of the individual radiological surveillance monitoring program established in support of residents of Utrōk Atoll and nonresident citizens of the Utrōk Atoll population group, along with full disclosure of verified measurement data (2010-2012). The Utrōk Atoll Whole Body Counting Facility has been temporarily stationed on Majuro Atoll and, in cooperation with the Utrōk Atoll Local Government, serves as a national radiological facility open to the general public.

  8. ORNL Trusted Corridors Project: Watts Bar Dam Inland Waterway Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Randy M; Gross, Ian G; Smith, Cyrus M

    2011-11-01

    Radiation has existed everywhere in the environment since the Earth's formation - in rocks, soil, water, and plants. The mining and processing of naturally occurring radioactive materials for use in medicine, power generation, consumer products, and industry inevitably generate emissions and waste. Radiological measuring devices have been used by industry for years to measure for radiation in undesired locations or simply identify radioactive materials. Since the terrorist attacks on the United States on 9-11-01 these radiation measuring devices have proliferated in many places in our nation's commerce system. DOE, TVA, the Army Corps and ORNL collaborated to test the usefulnessmore » of these devices in our nation's waterway system on this project. The purpose of the Watts Bar Dam ORNL Trusted Corridors project was to investigate the security, safety and enforcement needs of local, state and federal government entities for state-of-the-art sensor monitoring in regards to illegal cargo including utilization of the existing infrastructure. TVA's inland waterways lock system is a recognized and accepted infrastructure by the commercial carrier industry. Safety Monitoring activities included tow boat operators, commercial barges and vessels, recreational watercraft and their cargo, identification of unsafe vessels and carriers, and, monitoring of domestic and foreign commercial vessels and cargo identification. Safety Enforcement activities included cargo safety, tracking, identification of hazardous materials, waterway safety regulations, and hazardous materials regulations. Homeland Security and Law Enforcement Applications included Radiological Dispersive Devices (RDD) identification, identification of unsafe or illicit transport of hazardous materials including chemicals and radiological materials, and screening for shipments of illicit drugs. In the Fall of 2005 the SensorNet funding for the project expired. After several unsuccessful attempts to find a Federal sponsor to continue with the project, the Watts Bar Dam Project was canceled and the Exploranium radiation monitors were removed from the doors of Watts Bar Dam in early 2006. The DHS Domestic Nuclear Detection Office decided to proceed with a Pilot building on the ORNL work performed at the TN and SC weigh stations in the highway sector of the Trusted Corridors project and eventually expanded it to other southern states under the name of Southeastern Corridor Pilot Project (SETCP). Many of the Phase I goals were achieved however real-world test data of private watercraft and barges was never obtained.« less

  9. Online course delivery modes and design methods in the radiologic sciences.

    PubMed

    Kowalczyk, Nina; Copley, Stacey

    2013-01-01

    To determine the current status of online education in the radiologic sciences and to explore learning management systems, course design methods, and online educational tools used in the radiologic sciences. A random sample of 373 educators from Joint Review Committee-accredited radiography, radiation therapy, and nuclear medicine technology educational programs was invited to participate in this study with an online survey. The majority of the programs responding to the survey do not offer online core courses. However, the institutions that do provide online core radiologic courses reported limited use of online tools for course delivery. BlackBoard was reported as the most commonly used learning management system. No significant relationships were identified in reference to self-reported instructor information technology self-efficacy and the instructors' age, years of teaching in higher education, years of teaching online, or use of asynchronous and synchronous technologies. Survey results did demonstrate a significant relationship between the type of institution and the use of synchronous technologies, suggesting that university-based programs were more likely to use this technology. Although the results suggest that online distance education is still not prevalent in radiologic science education, the past 3 years have seen a substantial increase in online course activity. This increase emphasizes the importance of adequate educator instruction and continuing education in the use of interactive technologies for online content delivery. Most educators report receiving 1 to 4 hours of training prior to online course implementation, but additional postimplementation training is necessary to improve the success of online delivery and further integrate interactive learning activities into an online format. The traditional classroom setting is still the primary course offering for radiologic science programs. PowerPoint remains the primary content delivery tool, suggesting a need for educators to incorporate tools that promote student interactions and interactive learning. Although the results did not reveal a significant relationship between assessed factors, the small correlations identified suggest that the younger instructors have a higher information technology self-efficacy. In addition, survey results suggest that instructors responding to this survey received limited training in reference to online course methods and design both before and after implementing an online course. Although educators may not have a choice regarding the system adopted by their university or college, they should seek additional training regarding the best tools available for online course delivery methods.

  10. Stress Management and Resiliency Training (SMART) program among Department of Radiology faculty: a pilot randomized clinical trial.

    PubMed

    Sood, Amit; Sharma, Varun; Schroeder, Darrell R; Gorman, Brian

    2014-01-01

    To test the efficacy of a Stress Management and Resiliency Training (SMART) program for decreasing stress and anxiety and improving resilience and quality of life among Department of Radiology physicians. The study was approved by the institutional review board. A total of 26 Department of Radiology physicians were randomized in a single-blind trial to either the SMART program or a wait-list control arm for 12 weeks. The program involved a single 90-min group session in the SMART training with two follow-up phone calls. Primary outcomes measured at baseline and week 12 included the Perceived Stress Scale, Linear Analog Self-Assessment Scale, Mindful Attention Awareness Scale, and Connor-Davidson Resilience Scale. A total of 22 physicians completed the study. A statistically significant improvement in perceived stress, anxiety, quality of life, and mindfulness at 12 weeks was observed in the study arm compared to the wait-list control arm; resilience also improved in the active arm, but the changes were not statistically significant when compared to the control arm. A single session to decrease stress among radiologists using the SMART program is feasible. Furthermore, the intervention afforded statistically significant and clinically meaningful improvement in anxiety, stress, quality of life, and mindful attention. Further studies including larger sample size and longer follow-up are warranted. Copyright © 2014. Published by Elsevier Inc.

  11. TU-A-18C-01: ACR Accreditation Updates in CT, Ultrasound, Mammography and MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, R; Berns, E; Hangiandreou, N

    2014-06-15

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, the ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-datemore » as the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, mammography, ultrasound, and computed tomography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program. To understand the new requirements of the ACR ultrasound accreditation program, and roles the physicist can play in annual equipment surveys and setting up and supervising the routine QC program. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process.« less

  12. MO-AB-207-02: ACR Update in MR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, R.

    2015-06-15

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date asmore » the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.« less

  13. MO-AB-207-04: ACR Update in Mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berns, E.

    2015-06-15

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date asmore » the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.« less

  14. MO-AB-207-01: ACR Update in CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNitt-Gray, M.

    2015-06-15

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date asmore » the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.« less

  15. MO-AB-207-00: ACR Update in MR, CT, Nuclear Medicine, and Mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date asmore » the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.« less

  16. MO-AB-207-03: ACR Update in Nuclear Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harkness, B.

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date asmore » the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.« less

  17. 2011 Chemical, Biological, Radiological, and Nuclear Survivability Conference

    DTIC Science & Technology

    2011-05-18

    Protection (barrier, sorptive and reactive material technologies) o Top surface antimicrobial treatments (kills spores, bacteria, fungi, viruses ) o...Warning System (TWS) CDD - Countermeasure Anti-Torpedo ( CAT ) CDD UNCLASSIFIED Joint Program Executive Office for Chemical and Biological Defense May...Creating viruses de novo Biological Threats UNCLASSIFIED JPEO-CBD Radiological/Nuclear (RN) Status and Path Forward • Issue: No identified DoD

  18. Evaluating and Measuring the Return on Investment of an Emergency Center Health Care Professional Picture Archiving and Communication Systems Training Program

    ERIC Educational Resources Information Center

    Roelandt, James P.

    2012-01-01

    Picture archiving and communication system (PACS) workflow directly affects the quality of emergency patient care through radiology exam turn-around times and the speed of delivery of diagnostic radiology results. This study was a mixed methods training and performance improvement study that evaluated the effectiveness and value of a hospital…

  19. Recollections on Sixty Years of NBS Ionizing Radiation Programs for Energetic X Rays and Electrons1

    PubMed Central

    Koch, H. William

    2006-01-01

    These recollections are on ionizing radiation programs at the National Bureau of Standards (NBS) that started in 1928 and ended in 1988 when NBS became the National Institute of Standards and Technology (NIST). The independent Council on Ionizing Radiation Measurements and Standards (CIRMS) was formed in 1992. This article focuses on how measurements and standards for x rays, gamma rays, and electrons with energies above 1 MeV began at NBS and how they progressed. It also suggests how the radiation processors of materials and foods, the medical radiographic and radiological industries, and the radiological protection interests of the government (including homeland security) represented in CIRMS can benefit from NIST programs. PMID:27274947

  20. DXRaySMCS: a user-friendly interface developed for prediction of diagnostic radiology X-ray spectra produced by Monte Carlo (MCNP-4C) simulation.

    PubMed

    Bahreyni Toossi, M T; Moradi, H; Zare, H

    2008-01-01

    In this work, the general purpose Monte Carlo N-particle radiation transport computer code (MCNP-4C) was used for the simulation of X-ray spectra in diagnostic radiology. The electron's path in the target was followed until its energy was reduced to 10 keV. A user-friendly interface named 'diagnostic X-ray spectra by Monte Carlo simulation (DXRaySMCS)' was developed to facilitate the application of MCNP-4C code for diagnostic radiology spectrum prediction. The program provides a user-friendly interface for: (i) modifying the MCNP input file, (ii) launching the MCNP program to simulate electron and photon transport and (iii) processing the MCNP output file to yield a summary of the results (relative photon number per energy bin). In this article, the development and characteristics of DXRaySMCS are outlined. As part of the validation process, output spectra for 46 diagnostic radiology system settings produced by DXRaySMCS were compared with the corresponding IPEM78. Generally, there is a good agreement between the two sets of spectra. No statistically significant differences have been observed between IPEM78 reported spectra and the simulated spectra generated in this study.

  1. Misrepresentation of publications by radiology residency applicants.

    PubMed

    Baker, D R; Jackson, V P

    2000-09-01

    The authors' purpose was to determine the extent of misrepresentation of research publications by radiology resident applicants. The authors reviewed 379 consecutive applications, including curricula vitae, for a radiology residency program in 1996. All reported publications and "in-press" articles were checked by means of a MEDLINE search. Of the 379 applicants, 108 were from medical schools in the United States, and 271 were from international medical schools. Seventy-three applicants listed articles published or in press on their applications (24 U.S., 49 international applicants). Of 286 separate citations in the applications, 105 were found with the MEDLINE search, and 181 were not found. Of the latter, 168 cited journals were not indexed in MEDLINE or the applicants did not include sufficient information to verify their existence. Thirteen citations (from eight applicants; three U.S., five international) were not found even though they cited journals indexed by MEDLINE. Of all applicants reporting publications, 11% likely misrepresented them on their applications. A large percentage of citations, however, could not be verified because of insufficient information in the citation or claimed publication in a journal not available on MEDLINE. Radiology residency program directors should be aware of this uncommon, but important, problem.

  2. Case-oriented computer-based-training in radiology: concept, implementation and evaluation

    PubMed Central

    Dugas, Martin; Trumm, Christoph; Stäbler, Axel; Pander, Ernst; Hundt, Walter; Scheidler, Jurgen; Brüning, Roland; Helmberger, Thomas; Waggershauser, Tobias; Matzko, Matthias; Reiser, Maximillian

    2001-01-01

    Background Providing high-quality clinical cases is important for teaching radiology. We developed, implemented and evaluated a program for a university hospital to support this task. Methods The system was built with Intranet technology and connected to the Picture Archiving and Communications System (PACS). It contains cases for every user group from students to attendants and is structured according to the ACR-code (American College of Radiology) [2]. Each department member was given an individual account, could gather his teaching cases and put the completed cases into the common database. Results During 18 months 583 cases containing 4136 images involving all radiological techniques were compiled and 350 cases put into the common case repository. Workflow integration as well as individual interest influenced the personal efforts to participate but an increasing number of cases and minor modifications of the program improved user acceptance continuously. 101 students went through an evaluation which showed a high level of acceptance and a special interest in elaborate documentation. Conclusion Electronic access to reference cases for all department members anytime anywhere is feasible. Critical success factors are workflow integration, reliability, efficient retrieval strategies and incentives for case authoring. PMID:11686856

  3. Interventional radiology in living donor liver transplant

    PubMed Central

    Cheng, Yu-Fan; Ou, Hsin-You; Yu, Chun-Yen; Tsang, Leo Leung-Chit; Huang, Tung-Liang; Chen, Tai-Yi; Hsu, Hsien-Wen; Concerjero, Allan M; Wang, Chih-Chi; Wang, Shih-Ho; Lin, Tsan-Shiun; Liu, Yueh-Wei; Yong, Chee-Chien; Lin, Yu-Hung; Lin, Chih-Che; Chiu, King-Wah; Jawan, Bruno; Eng, Hock-Liew; Chen, Chao-Long

    2014-01-01

    The shortage of deceased donor liver grafts led to the use of living donor liver transplant (LDLT). Patients who undergo LDLT have a higher risk of complications than those who undergo deceased donor liver transplantation (LT). Interventional radiology has acquired a key role in every LT program by treating the majority of vascular and non-vascular post-transplant complications, improving graft and patient survival and avoiding, in the majority of cases, surgical revision and/or re-transplant. The aim of this paper is to review indications, diagnostic modalities, technical considerations, achievements and potential complications of interventional radiology procedures after LDLT. PMID:24876742

  4. Supporting Imagers' VOICE: A National Training Program in Comparative Effectiveness Research and Big Data Analytics.

    PubMed

    Kang, Stella K; Rawson, James V; Recht, Michael P

    2017-12-05

    Provided methodologic training, more imagers can contribute to the evidence basis on improved health outcomes and value in diagnostic imaging. The Value of Imaging Through Comparative Effectiveness Research Program was developed to provide hands-on, practical training in five core areas for comparative effectiveness and big biomedical data research: decision analysis, cost-effectiveness analysis, evidence synthesis, big data principles, and applications of big data analytics. The program's mixed format consists of web-based modules for asynchronous learning as well as in-person sessions for practical skills and group discussion. Seven diagnostic radiology subspecialties and cardiology are represented in the first group of program participants, showing the collective potential for greater depth of comparative effectiveness research in the imaging community. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  5. Early resident-to-resident physics education in diagnostic radiology.

    PubMed

    Kansagra, Akash P

    2014-01-01

    The revised ABR board certification process has updated the method by which diagnostic radiology residents are evaluated for competency in clinical radiologic physics. In this work, the author reports the successful design and implementation of a resident-taught physics course consisting of 5 weekly, hour-long lectures intended for incoming first-year radiology residents in their first month of training. To the author's knowledge, this is the first description of a course designed to provide a very early framework for ongoing physics education throughout residency without increasing the didactic burden on faculty members. Twenty-six first-year residents spanning 2 academic years took the course and reported subjective improvement in their knowledge (90%) and interest (75%) in imaging physics and a high level of satisfaction with the use of senior residents as physics educators. Based on the success of this course and the minimal resources required for implementation, this work may serve as a blueprint for other radiology residency programs seeking to develop revised physics curricula. Copyright © 2014 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  6. Development of a statewide hospital plan for radiologic emergencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dainiak, Nicholas; Delli Carpini, Domenico; Bohan, Michael

    Although general guidelines have been developed for triage of victims in the field and for hospitals to plan for a radiologic event, specific information for clinicians and administrators is not available for guidance in efficient management of radiation victims during their early encounter in the hospital. A consensus document was developed by staff members of four Connecticut hospitals, two institutions of higher learning, and the State of Connecticut Department of Environmental Protection and Office of Emergency Preparedness, with assistance of the American Society for Therapeutic Radiology and Oncology. The objective was to write a practical manual for clinicians (including radiationmore » oncologists, emergency room physicians, and nursing staff), hospital administrators, radiation safety officers, and other individuals knowledgeable in radiation monitoring that would be useful for evaluation and management of radiation injury. The rationale for and process by which the radiation response plan was developed and implemented in the State of Connecticut are reviewed. Hospital admission pathways are described, based on classification of victims as exposed, contaminated, and/or physically injured. This manual will be of value to those involved in planning the health care response to a radiologic event.« less

  7. Variable thickness transient ground-water flow model. Volume 3. Program listings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisenauer, A.E.

    1979-12-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologicmore » systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. Hydrologic and transport models are available at several levels of complexity or sophistication. Model selection and use are determined by the quantity and quality of input data. Model development under AEGIS and related programs provides three levels of hydrologic models, two levels of transport models, and one level of dose models (with several separate models). This is the third of 3 volumes of the description of the VTT (Variable Thickness Transient) Groundwater Hydrologic Model - second level (intermediate complexity) two-dimensional saturated groundwater flow.« less

  8. Toward Augmented Radiologists: Changes in Radiology Education in the Era of Machine Learning and Artificial Intelligence.

    PubMed

    Tajmir, Shahein H; Alkasab, Tarik K

    2018-06-01

    Radiology practice will be altered by the coming of artificial intelligence, and the process of learning in radiology will be similarly affected. In the short term, radiologists will need to understand the first wave of artificially intelligent tools, how they can help them improve their practice, and be able to effectively supervise their use. Radiology training programs will need to develop curricula to help trainees acquire the knowledge to carry out this new supervisory duty of radiologists. In the longer term, artificially intelligent software assistants could have a transformative effect on the training of residents and fellows, and offer new opportunities to bring learning into the ongoing practice of attending radiologists. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  9. Datagram: Results of the NRMP for 1986.

    ERIC Educational Resources Information Center

    Graettinger, John S.

    1986-01-01

    The number of U.S. seniors who enrolled in the National Resident Matching Program in 1986 decreased. The most competitive programs were in emergency medicine, obstetrics/gynecology, orthopedic surgery, and diagnostic radiology. A new match, called the Medical Specialties Matching Program, is underway for fellowships. (MLW)

  10. Contracting Officer Technical Representative Briefing

    NASA Technical Reports Server (NTRS)

    Gettleman, Alan

    2001-01-01

    This viewgraph presentation gives an overview of the Agency Occupational Health Program, including details on organizational and personnel changes, medical program standardization, programmatic status, policies, standards, and guides and resources, industrial hygiene and radiological health, assessment schedule and methodology, upcoming events, and the future of the program.

  11. Post-deployment usability evaluation of a radiology workstation.

    PubMed

    Jorritsma, Wiard; Cnossen, Fokie; Dierckx, Rudi A; Oudkerk, Matthijs; Van Ooijen, Peter M A

    2016-01-01

    To determine the number, nature and severity of usability issues radiologists encounter while using a commercially available radiology workstation in clinical practice, and to assess how well the results of a pre-deployment usability evaluation of this workstation generalize to clinical practice. The usability evaluation consisted of semi-structured interviews and observations of twelve users using the workstation during their daily work. Usability issues and positive usability findings were documented. Each issue was given a severity rating and its root cause was determined. Results were compared to the results of a pre-deployment usability evaluation of the same workstation. Ninety-two usability issues were identified, ranging from issues that cause minor frustration or delay, to issues that cause significant delays, prevent users from completing tasks, or even pose a potential threat to patient safety. The results of the pre-deployment usability evaluation had limited generalizability to clinical practice. This study showed that radiologists encountered a large number and a wide variety of usability issues when using a commercially available radiology workstation in clinical practice. This underlines the need for effective usability engineering in radiology. Given the limitations of pre-deployment usability evaluation in radiology, which were confirmed by our finding that the results of a pre-deployment usability evaluation of this workstation had limited generalizability to clinical practice, it is vital that radiology workstation vendors devote significant resources to usability engineering efforts before deployment of their workstation, and to continue these efforts after the workstation is deployed in a hospital. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Function of minerals in the natural radioactivity level of Vaigai River sediments, Tamilnadu, India--spectroscopical approach.

    PubMed

    Ramasamy, V; Paramasivam, K; Suresh, G; Jose, M T

    2014-01-03

    Using Gamma ray and Fourier Transform Infrared (FTIR) spectroscopic techniques, level of natural radioactivity ((238)U, (232)Th and (40)K) and mineralogical characterization of Vaigai River sediments have been analyzed with the view of evaluating the radiation risk and its relation to available minerals. Different radiological parameters are calculated to know the entire radiological characterization. The average of activity concentrations and all radiological parameters are lower than the recommended safety limit. However, some sites are having higher radioactivity values than the safety limit. From the FTIR spectroscopic technique, the minerals such as quartz, microcline feldspar, orthoclase feldspar, kaolinite, gibbsite, calcite, montmorillonite and organic carbon are identified and they are characterized. The extinction co-efficient values are calculated to know the relative distribution of major minerals such as quartz, microcline feldspar, orthoclase feldspar and kaolinite. The calculated values indicate that the amount of quartz is higher than orthoclase feldspar, microcline feldspar and much higher than kaolinite. Crystallinity index is calculated to know the crystalline nature of quartz and the result indicates that the presence of ordered crystalline quartz in the present sediment. The role of minerals in the level of radioactivity is assessed by multivariate statistical analysis (Pearson's correlation and Cluster analysis). The statistical analysis confirms that the clay mineral kaolinite is the major factor than other major minerals to induce the important radioactivity variables such as absorbed dose rate and concentrations of (232)Th and (238)U. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Reconciling quality and cost: A case study in interventional radiology.

    PubMed

    Zhang, Li; Domröse, Sascha; Mahnken, Andreas

    2015-10-01

    To provide a method to calculate delay cost and examine the relationship between quality and total cost. The total cost including capacity, supply and delay cost for running an interventional radiology suite was calculated. The capacity cost, consisting of labour, lease and overhead costs, was derived based on expenses per unit time. The supply cost was calculated according to actual procedural material use. The delay cost and marginal delay cost derived from queueing models was calculated based on waiting times of inpatients for their procedures. Quality improvement increased patient safety and maintained the outcome. The average daily delay costs were reduced from 1275 € to 294 €, and marginal delay costs from approximately 2000 € to 500 €, respectively. The one-time annual cost saved from the transfer of surgical to radiological procedures was approximately 130,500 €. The yearly delay cost saved was approximately 150,000 €. With increased revenue of 10,000 € in project phase 2, the yearly total cost saved was approximately 290,000 €. Optimal daily capacity of 4.2 procedures was determined. An approach for calculating delay cost toward optimal capacity allocation was presented. An overall quality improvement was achieved at reduced costs. • Improving quality in terms of safety, outcome, efficiency and timeliness reduces cost. • Mismatch of demand and capacity is detrimental to quality and cost. • Full system utilization with random demand results in long waiting periods and increased cost.

  14. Waste Sampling & Characterization Facility (WSCF) Complex Safety Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MELOY, R.T.

    2002-04-01

    This document was prepared to analyze the Waste Sampling and Characterization Facility for safety consequences by: Determining radionuclide and highly hazardous chemical inventories; Comparing these inventories to the appropriate regulatory limits; Documenting the compliance status with respect to these limits; and Identifying the administrative controls necessary to maintain this status. The primary purpose of the Waste Sampling and Characterization Facility (WSCF) is to perform low-level radiological and chemical analyses on various types of samples taken from the Hanford Site. These analyses will support the fulfillment of federal, Washington State, and Department of Energy requirements.

  15. The 1977 Rankings of Programs for an In-Depth Evaluation. Research Note.

    ERIC Educational Resources Information Center

    Baratta, Mary Kathryne

    Placement, unit cost, retention and attraction data for all programs at Moraine Valley Community College for which information was available were used to determine which programs needed in-depth evaluation. Four of the 24 associate degree programs (secretarial science, radiologic technology, power machine technology, and industrial supervision)…

  16. Lean Management Systems in Radiology: Elements for Success.

    PubMed

    Schultz, Stacy R; Ruter, Royce L; Tibor, Laura C

    2016-01-01

    This article is a review of the literature on Lean and Lean Management Systems and how they have been implemented in healthcare organizations and particularly in radiology departments. The review focuses on the elements required for a successful implementation of Lean by applying the principles of a Lean Management System instead of a Lean tools-only approach. This review shares the successes and failures from healthcare organizations' efforts to improve the quality and safety of the services they provide. There are a limited number of healthcare organizations in the literature who have shared their experiences and additional research is necessary to determine whether a Lean Management System is a viable alternative to the current management structure in healthcare.

  17. Aerial Radiological Measuring System (ARMS): systems, procedures and sensitivity (1976)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyns, P K

    1976-07-01

    This report describes the Aerial Radiological Measuring System (ARMS) designed and operated by EG and G, Inc., for the Energy Research and Development Administration's (ERDA) Division of Operational Safety with the cooperation of the Nuclear Regulatory Commission. Designed to rapidly survey large areas for low-level man-made radiation, the ARMS has also proven extremely useful in locating lost radioactive sources of relatively low activity. The system consists of sodium iodide scintillation detectors, data formatting and recording equipment, positioning equipment, meteorological instruments, direct readout hardware, and data analysis equipment. The instrumentation, operational procedures, data reduction techniques and system sensitivities are described, togethermore » with their applications and sample results.« less

  18. Advantages and Disadvantages in Image Processing with Free Software in Radiology.

    PubMed

    Mujika, Katrin Muradas; Méndez, Juan Antonio Juanes; de Miguel, Andrés Framiñan

    2018-01-15

    Currently, there are sophisticated applications that make it possible to visualize medical images and even to manipulate them. These software applications are of great interest, both from a teaching and a radiological perspective. In addition, some of these applications are known as Free Open Source Software because they are free and the source code is freely available, and therefore it can be easily obtained even on personal computers. Two examples of free open source software are Osirix Lite® and 3D Slicer®. However, this last group of free applications have limitations in its use. For the radiological field, manipulating and post-processing images is increasingly important. Consequently, sophisticated computing tools that combine software and hardware to process medical images are needed. In radiology, graphic workstations allow their users to process, review, analyse, communicate and exchange multidimensional digital images acquired with different image-capturing radiological devices. These radiological devices are basically CT (Computerised Tomography), MRI (Magnetic Resonance Imaging), PET (Positron Emission Tomography), etc. Nevertheless, the programs included in these workstations have a high cost which always depends on the software provider and is always subject to its norms and requirements. With this study, we aim to present the advantages and disadvantages of these radiological image visualization systems in the advanced management of radiological studies. We will compare the features of the VITREA2® and AW VolumeShare 5® radiology workstation with free open source software applications like OsiriX® and 3D Slicer®, with examples from specific studies.

  19. ASTRO's 2007 core physics curriculum for radiation oncology residents.

    PubMed

    Klein, Eric E; Gerbi, Bruce J; Price, Robert A; Balter, James M; Paliwal, Bhudatt; Hughes, Lesley; Huang, Eugene

    2007-08-01

    In 2004, the American Society for Therapeutic Radiology and Oncology (ASTRO) published a curriculum for physics education. The document described a 54-hour course. In 2006, the committee reconvened to update the curriculum. The committee is composed of physicists and physicians from various residency program teaching institutions. Simultaneously, members have associations with the American Association of Physicists in Medicine, ASTRO, Association of Residents in Radiation Oncology, American Board of Radiology, and American College of Radiology. Representatives from the latter two organizations are key to provide feedback between the examining organizations and ASTRO. Subjects are based on Accreditation Council for Graduate Medical Education requirements (particles and hyperthermia), whereas the majority of subjects and appropriated hours/subject were developed by consensus. The new curriculum is 55 hours, containing new subjects, redistribution of subjects with updates, and reorganization of core topics. For each subject, learning objectives are provided, and for each lecture hour, a detailed outline of material to be covered is provided. Some changes include a decrease in basic radiologic physics, addition of informatics as a subject, increase in intensity-modulated radiotherapy, and migration of some brachytherapy hours to radiopharmaceuticals. The new curriculum was approved by the ASTRO board in late 2006. It is hoped that physicists will adopt the curriculum for structuring their didactic teaching program, and simultaneously, the American Board of Radiology, for its written examination. The American College of Radiology uses the ASTRO curriculum for their training examination topics. In addition to the curriculum, the committee added suggested references, a glossary, and a condensed version of lectures for a Postgraduate Year 2 resident physics orientation. To ensure continued commitment to a current and relevant curriculum, subject matter will be updated again in 2 years.

  20. ASTRO's 2007 Core Physics Curriculum for Radiation Oncology Residents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Eric E.; Gerbi, Bruce J.; Price, Robert A.

    2007-08-01

    In 2004, American Society for Therapeutic Radiology and Oncology (ASTRO) published a curriculum for physics education. The document described a 54-hour course. In 2006, the committee reconvened to update the curriculum. The committee is composed of physicists and physicians from various residency program teaching institutions. Simultaneously, members have associations with American Association of Physicists in Medicine, ASTRO, Association of Residents in Radiation Oncology, American Board of Radiology, and American College of Radiology. Representatives from the latter two organizations are key to provide feedback between the examining organizations and ASTRO. Subjects are based on Accreditation Council for Graduate Medical Education requirementsmore » (particles and hyperthermia), whereas the majority of subjects and appropriated hours/subject were developed by consensus. The new curriculum is 55 hours, containing new subjects, redistribution of subjects with updates, and reorganization of core topics. For each subject, learning objectives are provided, and for each lecture hour, a detailed outline of material to be covered is provided. Some changes include a decrease in basic radiologic physics, addition of informatics as a subject, increase in intensity-modulated radiotherapy, and migration of some brachytherapy hours to radiopharmaceuticals. The new curriculum was approved by the ASTRO board in late 2006. It is hoped that physicists will adopt the curriculum for structuring their didactic teaching program, and simultaneously, American Board of Radiology, for its written examination. American College of Radiology uses the ASTRO curriculum for their training examination topics. In addition to the curriculum, the committee added suggested references, a glossary, and a condensed version of lectures for a Postgraduate Year 2 resident physics orientation. To ensure continued commitment to a current and relevant curriculum, subject matter will be updated again in 2 years.« less

  1. The Role of Artificial Intelligence in Diagnostic Radiology: A Survey at a Single Radiology Residency Training Program.

    PubMed

    Collado-Mesa, Fernando; Alvarez, Edilberto; Arheart, Kris

    2018-02-21

    Advances in artificial intelligence applied to diagnostic radiology are predicted to have a major impact on this medical specialty. With the goal of establishing a baseline upon which to build educational activities on this topic, a survey was conducted among trainees and attending radiologists at a single residency program. An anonymous questionnaire was distributed. Comparisons of categorical data between groups (trainees and attending radiologists) were made using Pearson χ 2 analysis or an exact analysis when required. Comparisons were made using the Wilcoxon rank sum test when the data were not normally distributed. An α level of 0.05 was used. The overall response rate was 66% (69 of 104). Thirty-six percent of participants (n = 25) reported not having read a scientific medical article on the topic of artificial intelligence during the past 12 months. Twenty-nine percent of respondents (n = 12) reported using artificial intelligence tools during their daily work. Trainees were more likely to express doubts on whether they would have pursued diagnostic radiology as a career had they known of the potential impact artificial intelligence is predicted to have on the specialty (P = .0254) and were also more likely to plan to learn about the topic (P = .0401). Radiologists lack exposure to current scientific medical articles on artificial intelligence. Trainees are concerned by the implications artificial intelligence may have on their jobs and desire to learn about the topic. There is a need to develop educational resources to help radiologists assume an active role in guiding and facilitating the development and implementation of artificial intelligence tools in diagnostic radiology. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  2. 78 FR 50422 - Medical Devices; Availability of Safety and Effectiveness Summaries for Premarket Approval...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket Nos. FDA-2013-M-0462... Wolanski, Center for Devices and Radiological Health, Food and Drug Administration, 10903 New Hampshire Ave..... ABI 7500 Fast DX Real-Time PCR Instrument. P060028, FDA-2013-M-0738..... Mentor Worldwide LLC...

  3. 76 FR 28336 - Domestic Licensing of Source Material-Amendments/Integrated Safety Analysis

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... considered. The HF gas (and uranyl fluoride) is quickly produced from the chemical reaction that occurs when... worker's death was the inhalation of HF gas, which was produced from the chemical reaction of UF6 and..., would address both the radiological and chemical hazards from licensed material and hazardous chemicals...

  4. WORK SAFETY CONDITIONS WITH CLOSED RADIATION SOURCES (in Polish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brosziewicz, R.

    1963-01-01

    A discussion is presented of principles of radiological protection observed in the Radiation Chemistry Dept. of the Nuclear Research Inst., during operation of large sources of ionizing radiation. It has been revealed that a properly designed servicing system of these sources ensures full protection of personnel even with not fully protected sources. (auth)

  5. 10 CFR 150.31 - Requirements for Agreement State regulation of byproduct material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... include: (A) An assessment of the radiological and nonradiological impacts to the public health of the activities to be conducted pursuant to such licenses; (B) An assessment of any impact on any waterway and... Agreement State for the protection of the public health, safety, and the environment from hazards associated...

  6. 10 CFR 150.31 - Requirements for Agreement State regulation of byproduct material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... include: (A) An assessment of the radiological and nonradiological impacts to the public health of the activities to be conducted pursuant to such licenses; (B) An assessment of any impact on any waterway and... Agreement State for the protection of the public health, safety, and the environment from hazards associated...

  7. 10 CFR 150.31 - Requirements for Agreement State regulation of byproduct material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... include: (A) An assessment of the radiological and nonradiological impacts to the public health of the activities to be conducted pursuant to such licenses; (B) An assessment of any impact on any waterway and... Agreement State for the protection of the public health, safety, and the environment from hazards associated...

  8. 10 CFR 150.31 - Requirements for Agreement State regulation of byproduct material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... include: (A) An assessment of the radiological and nonradiological impacts to the public health of the activities to be conducted pursuant to such licenses; (B) An assessment of any impact on any waterway and... Agreement State for the protection of the public health, safety, and the environment from hazards associated...

  9. 75 FR 54154 - Medical Devices; Availability of Safety and Effectiveness Summaries for Premarket Approval...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... effectiveness summaries of approved PMAs through the Internet and the agency's Division of Dockets Management... and Radiological Health, Food and Drug Administration, 10903 New Hampshire Ave., Bldg. 66, rm. 1650... Federal Register. Instead, the agency now posts this information on the Internet on FDA's home page at...

  10. 75 FR 72829 - Medical Devices; Availability of Safety and Effectiveness Summaries for Premarket Approval...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ... and effectiveness summaries of approved PMAs through the Internet and the Agency's Division of Dockets..., Center for Devices and Radiological Health, Food and Drug Administration, 10903 New Hampshire Ave., Bldg... Federal Register. Instead, the Agency now posts this information on the Internet on FDA's home page at...

  11. 10 CFR 960.5-2-1 - Population density and distribution.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Preclosure Radiological Safety § 960.5-2-1... repository operation and closure, (1) the expected average radiation dose to members of the public within any...) Disqualifying conditions. A site shall be disqualified if— (1) Any surface facility of a repository would be...

  12. 76 FR 78930 - Guidance for Industry and Food and Drug Administration Staff; Enforcement Policy for Premarket...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-20

    ... enforcement of premarket notification (510(k)) requirements for certain in vitro diagnostic and radiology... profiles and for which it believes 510(k) review is not necessary to assure safety and effectiveness. While FDA intends to exempt these devices from the 510(k) requirement through rulemaking that would...

  13. 78 FR 29519 - Physical Protection of Irradiated Reactor Fuel in Transit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ... to the appropriate response forces of any sabotage events, and (3) impede attempts at radiological... personnel so that they could properly respond to a safety or safeguards event. The State of Nevada concluded... destination, and must immediately notify the appropriate agencies in the event of a safeguards event under the...

  14. PLUMBBOB Series, 1957

    DTIC Science & Technology

    1981-09-15

    Organization included radiological safety, security, transportation, cominuni- cations, engineering , and logistics. The Air Force Special Weapons Center (AFSWC...Test Organization by Reynolds Electrical and Engineering Company. Inc. * PLUMBBOB AFSWP Operation Summary Report * Weapons Test Reports for the Armed...Project 50.5 (Evaluation of’ Shielding for Engineer ileavy Equipment) .... ......... . 4.2.4 Project 50.6 (Protection Afforded by "Field

  15. 21 CFR 860.7 - Determination of safety and effectiveness.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... diagnosis with a control in such a fashion as to permit quantitative evaluation. The precise nature of the... Devices and Radiological Health, the Center for Biologics Evaluation and Research, or the Center for Drug Evaluation and Research, as applicable, need not be resubmitted, but may be incorporated by reference. [43 FR...

  16. 21 CFR 860.7 - Determination of safety and effectiveness.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... diagnosis with a control in such a fashion as to permit quantitative evaluation. The precise nature of the... Devices and Radiological Health, the Center for Biologics Evaluation and Research, or the Center for Drug Evaluation and Research, as applicable, need not be resubmitted, but may be incorporated by reference. [43 FR...

  17. 21 CFR 860.7 - Determination of safety and effectiveness.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... diagnosis with a control in such a fashion as to permit quantitative evaluation. The precise nature of the... Devices and Radiological Health, the Center for Biologics Evaluation and Research, or the Center for Drug Evaluation and Research, as applicable, need not be resubmitted, but may be incorporated by reference. [43 FR...

  18. 21 CFR 860.7 - Determination of safety and effectiveness.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... diagnosis with a control in such a fashion as to permit quantitative evaluation. The precise nature of the... Devices and Radiological Health, the Center for Biologics Evaluation and Research, or the Center for Drug Evaluation and Research, as applicable, need not be resubmitted, but may be incorporated by reference. [43 FR...

  19. 21 CFR 860.7 - Determination of safety and effectiveness.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... diagnosis with a control in such a fashion as to permit quantitative evaluation. The precise nature of the... Devices and Radiological Health, the Center for Biologics Evaluation and Research, or the Center for Drug Evaluation and Research, as applicable, need not be resubmitted, but may be incorporated by reference. [43 FR...

  20. 78 FR 46378 - La Crosse Boiling Water Reactor, Environmental Assessment and Finding of No Significant Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ... impacts. The proposed action will involve no construction or major renovation of any buildings or... to potential non-radiological impacts, there will be no construction or renovation of buildings or... adequate protection of public health and safety and common defense and security.'' The licensee claims that...

  1. The job competency of radiological technologists in Korea based on specialists opinion and questionnaire survey.

    PubMed

    Lim, Chang-Seon; Lee, Yang-Sub; Lee, Yong-Dae; Kim, Hyun-Soo; Jin, Gye-Hwan; Choi, Seong-Youl; Hur, Yera

    2017-01-01

    Although there are over 40,000 licensed radiological technologists (RTs) in Korea, job competency standards have yet to be defined. This study aims to clarify the job competency of Korean RTs. A task force team of 11 professional RTs were recruited in order to analyze the job competency of domestic and international RTs. A draft for the job competency of Korean RTs was prepared. A survey was then conducted sampling RTs and the attitudes of their competencies were recorded from May 21 to July 30, 2016. We identified five modules of professionalism, patient management, health and safety, operation of equipment, and procedure management and 131 detailed job competencies for RTs in Korea. "Health and safety" had the highest average score and "professionalism" had the lowest average score for both job performance and importance. The content validity ratios for the 131 subcompetencies were mostly valid. Establishment of standard guidelines for RT job competency for multidisciplinary healthcare at medical institutions may be possible based on our results, which will help educators of RT training institutions to clarify their training and education.

  2. Medical Physicists and AAPM

    NASA Astrophysics Data System (ADS)

    Amols, Howard

    2006-03-01

    The American Association of Physicists in Medicine (AAPM), a member society of the AIP is the largest professional society of medical physicists in the world with nearly 5700 members. Members operate in medical centers, university and community hospitals, research laboratories, industry, and private practice. Medical physics specialties include radiation therapy physics, medical diagnostic and imaging physics, nuclear medicine physics, and medical radiation safety. The majority of AAPM members are based in hospital departments of radiation oncology or radiology and provide technical support for patient diagnosis and treatment in a clinical environment. Job functions include support of clinical care, calibration and quality assurance of medical devices such as linear accelerators for cancer therapy, CT, PET, MRI, and other diagnostic imaging devices, research, and teaching. Pathways into a career in medical physics require an advanced degree in medical physics, physics, engineering, or closely related field, plus clinical training in one or more medical physics specialties (radiation therapy physics, imaging physics, or radiation safety). Most clinically based medical physicists also obtain certification from the American Board of Radiology, and some states require licensure as well.

  3. Careers in Medical Physics and the American Association of Physicists in Medicine

    NASA Astrophysics Data System (ADS)

    Amols, Howard

    2006-03-01

    The American Association of Physicists in Medicine (AAPM), a member society of the AIP is the largest professional society of medical physicists in the world with nearly 5700 members. Members operate in medical centers, university and community hospitals, research laboratories, industry, and private practice. Medical physics specialties include radiation therapy physics, medical diagnostic and imaging physics, nuclear medicine physics, and medical radiation safety. The majority of AAPM members is based in hospital departments of radiation oncology or radiology and provide technical support for patient diagnosis and treatment in a clinical environment. Job functions include support of clinical care, calibration and quality assurance of medical devices such as linear accelerators for cancer therapy, CT, PET, MRI, and other diagnostic imaging devices, research, and teaching. Pathways into a career in medical physics require an advanced degree in medical physics, physics, engineering, or closely related field, plus clinical training in one or more medical physics specialties (radiation therapy physics, imaging physics, or radiation safety). Most clinically based medical physicists also obtain certification from the American Board of Radiology, and some states require licensure as well.

  4. Department of Defense Chemical and Biological Defense Program. Volume 1: Annual Report to Congress

    DTIC Science & Technology

    2003-04-01

    Albuquerque Operations Office at Kirtland AFB, New Mexico , conducts a Radiological Emergency Team Operations Course; Radiological Emer- gency Medical...Nevada, and Kirtland Air Force Base, New Mexico . • MARFORPAC sponsored a force protection initiative funded by DTRA. DTRA will conduct an independent...strains and isolates from camelpox, cowpox, ectromelia, gerbilpox, Herpes, monkeypox, myxoma, rabbitpox, raccoonpox, skunkpox, vaccinia and varicella

  5. MO-DE-BRA-02: From Teaching to Learning: Systems-Based-Practice and Practice-Based-Learning Innovations in Medical Physics Education Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapur, A

    Purpose: The increasing complexity in the field of radiation medicine and concomitant rise in patient safety concerns call for enhanced systems-level training for future medical physicists and thus commensurate innovations in existing educational program curricula. In this work we report on the introduction of three learning opportunities to augment medical physics educational programs towards building systems-based practice and practice-based learning competencies. Methods: All initiatives were introduced for senior -level graduate students and physics residents in an institution with a newly established medical-physics graduate program and therapeutic-physics residency program. The first, centered on incident learning, was based on a spreadsheet toolmore » that incorporated the reporting structure of the Radiation Oncology-incident Learning System (ROILS), included 120 narratives of published incidents and enabled inter-rater variability calculations. The second, centered on best-practices, was a zero-credit seminar course, where students summarized select presentations from the AAPM virtual library on a weekly basis and moderated class discussions using a point/counterpoint approach. Presentation styles were critiqued. The third; centered on learning-by-teaching, required physics residents to regularly explain fundamental concepts in radiological physics from standard textbooks to board certified physics faculty members. Results: Use of the incident-learning system spreadsheet provided a platform to recast known accidents into the framework of ROILS, thereby increasing awareness of factors contributing to unsafe practice and appreciation for inter-rater variability. The seminar course enhanced awareness of best practices, the effectiveness of presentation styles and encouraged critical thinking. The learn-by-teaching rotation allowed residents to stay abreast of and deepen their knowledge of relevant subjects. Conclusion: The incorporation of systems-driven initiatives broadens comprehension of the wider systems context of medical physics, enhances awareness of resources for innovation, communication and sustained learning while maintaining a metric-driven focus on patient safety within the formative phase of student careers. The initiatives were well-received, feasible, and utilized available or shared-resources translatable across educational programs.« less

  6. Diversity, Inclusion, and Representation: It Is Time to Act.

    PubMed

    Lightfoote, Johnson B; Deville, Curtiland; Ma, Loralie D; Winkfield, Karen M; Macura, Katarzyna J

    2016-12-01

    Although the available pool of qualified underrepresented minority and women medical school graduates has expanded in recent decades, their representation in the radiological professions has improved only marginally. Recognizing this deficit in diversity, many professional medical societies, including the ACR, have incorporated these values as core elements of their missions and instituted programs that address previously identified barriers to a more diverse workforce. These barriers include insufficient exposure of underrepresented minorities and women to radiology and radiation oncology; misperception of these specialties as non-patient care and not community service; unconscious bias; and delayed preparation of candidates to compete successfully for residency positions. Critical success factors in expanding diversity and inclusion are well identified both outside and within the radiological professions; these are reviewed in the current communication. Radiology leaders are positioned to lead the profession in expanding the diversity and improving the inclusiveness of our professional workforce in service to an increasingly diverse society and patient population. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  7. Radiological Protection in Medicine; OCHRONA RADIOLOGICZNA W MEDYCYNIE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pensko, J.

    1961-01-01

    S>A review of radiological protection theory and systems, directed toward medical considerations is given. Examples of the types of radioactive materials and types of radiation to which humans might be exposed, the phenomena of energy loss by these types of radiation, and the effects of these transfers of energy in humans, in animals, and in matter in general, are discussed. The present limits (1961) for dose rates and exposures, under various conditions, to the several types of radiation are categorized. The shielding effects of some materials are tabulated; the data for x radiation are prevalent. Arrangement of equipment and recommendedmore » procedures for operation of x-ray devices in medical practice and diagnostic studies are described. The uses of radiation, x rays in particular, in medical therapy for various illnesses and diseases are discussed in detail. Methods of handling and disposing of radioactive wastes are presented, taking into consideration radiological protection and safety of the workers. (R.P.R.)« less

  8. 2016 Annual Inspection and Radiological Survey Results for the Piqua, Ohio, Decommissioned Reactor Site, July 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, Brian; Miller, Michele

    This report presents the findings of the annual inspection and radiological survey of the Piqua, Ohio, Decommissioned Reactor Site (site). The decommissioned nuclear power demonstration facility was inspected and surveyed on April 15, 2016. The site, located on the east bank of the Great Miami River in Piqua, Ohio, was in fair physical condition. There is no requirement for a follow-up inspection, partly because City of Piqua (City) personnel participated in a March 2016 meeting to address reoccurring safety concerns. Radiological survey results from 104 locations revealed no removable contamination. One direct beta activity reading in a floor drain onmore » the 56-foot level (1674 disintegrations per minute [dpm]/100 square centimeters [cm2]) exceeded the minimum detectable activity (MDA). Beta activity has been detected in the past at this floor drain. The reading was well below the action level of 5000 dpm/100 cm2.« less

  9. Automatic Identification of Critical Follow-Up Recommendation Sentences in Radiology Reports

    PubMed Central

    Yetisgen-Yildiz, Meliha; Gunn, Martin L.; Xia, Fei; Payne, Thomas H.

    2011-01-01

    Communication of follow-up recommendations when abnormalities are identified on imaging studies is prone to error. When recommendations are not systematically identified and promptly communicated to referrers, poor patient outcomes can result. Using information technology can improve communication and improve patient safety. In this paper, we describe a text processing approach that uses natural language processing (NLP) and supervised text classification methods to automatically identify critical recommendation sentences in radiology reports. To increase the classification performance we enhanced the simple unigram token representation approach with lexical, semantic, knowledge-base, and structural features. We tested different combinations of those features with the Maximum Entropy (MaxEnt) classification algorithm. Classifiers were trained and tested with a gold standard corpus annotated by a domain expert. We applied 5-fold cross validation and our best performing classifier achieved 95.60% precision, 79.82% recall, 87.0% F-score, and 99.59% classification accuracy in identifying the critical recommendation sentences in radiology reports. PMID:22195225

  10. Automatic identification of critical follow-up recommendation sentences in radiology reports.

    PubMed

    Yetisgen-Yildiz, Meliha; Gunn, Martin L; Xia, Fei; Payne, Thomas H

    2011-01-01

    Communication of follow-up recommendations when abnormalities are identified on imaging studies is prone to error. When recommendations are not systematically identified and promptly communicated to referrers, poor patient outcomes can result. Using information technology can improve communication and improve patient safety. In this paper, we describe a text processing approach that uses natural language processing (NLP) and supervised text classification methods to automatically identify critical recommendation sentences in radiology reports. To increase the classification performance we enhanced the simple unigram token representation approach with lexical, semantic, knowledge-base, and structural features. We tested different combinations of those features with the Maximum Entropy (MaxEnt) classification algorithm. Classifiers were trained and tested with a gold standard corpus annotated by a domain expert. We applied 5-fold cross validation and our best performing classifier achieved 95.60% precision, 79.82% recall, 87.0% F-score, and 99.59% classification accuracy in identifying the critical recommendation sentences in radiology reports.

  11. Evaluation of nitazoxanide for the treatment of disseminated cystic echinococcosis: report of five cases and literature review.

    PubMed

    Pérez-Molina, José A; Díaz-Menéndez, Marta; Gallego, José I; Norman, Francesca; Monge-Maillo, Begoña; Ayala, Ana Pérez; López-Vélez, Rogelio

    2011-02-01

    We aimed to evaluate the effectiveness of nitazoxanide in disseminated cystic echinococcosis (DCE) that failed to respond to surgical and antiparasitic therapy. We report on seven patients (five of them with bony involvement): two cases from the literature and five patients who were included in a compassionate trial of nitazoxanide therapy in our hospital. Median follow-up time until nitazoxanide therapy was 12 years and all patients had received prior medical treatment and extensive surgery. Nitazoxanide (500 mg/12 h) in combination with albendazole, with/without praziquantel, was administered for 3-24 months. Three patients improved: one with muscle involvement (clinico-radiological response), one with lung involvement (radiological response), and another with soft tissue and bony involvement (clinico-radiological response of soft tissue cysts). There was one discontinuation after 15 days of starting therapy. Nitazoxanide combination therapy could have a role in the treatment of DCE when there is no bony involvement. Long-term safety profile seems to be favorable.

  12. An aerial radiological survey of the Durango, Colorado uranium mill tailings site and surrounding area. Date of survey: August 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilton, L.K.

    1981-06-01

    An aerial radiological survey of Durango, Colorado, including the inactive uranium mill tailings piles located southwest of the town, was conducted during August 25--29, 1980, for the Department of Energy`s Environmental and Safety Engineering Division. Areas of radiation exposure rates higher than the local background, which was about 15 microrentgens per hour ({mu}R/h), were observed directly over and to the south of the mill tailings piles, over a cemetery, and at two spots near the fairgrounds. The rapidly changing radiation exposure rates at the boundaries of the piles preclude accurate extrapolation of aerial radiological data to ground level exposure ratesmore » in their immediate vicinity. Estimated radiation exposure rates close to the piles, however, approached 30 times background, or about 450 {mu}R/h. Radiation exposure rates in a long area extending south from the tailings piles were about 25 {mu}R/h.« less

  13. N Reactor Deactivation Program Plan. Revision 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, J.L.

    1993-12-01

    This N Reactor Deactivation Program Plan is structured to provide the basic methodology required to place N Reactor and supporting facilities {center_dot} in a radiologically and environmentally safe condition such that they can be decommissioned at a later date. Deactivation will be in accordance with facility transfer criteria specified in Department of Energy (DOE) and Westinghouse Hanford Company (WHC) guidance. Transition activities primarily involve shutdown and isolation of operational systems and buildings, radiological/hazardous waste cleanup, N Fuel Basin stabilization and environmental stabilization of the facilities. The N Reactor Deactivation Program covers the period FY 1992 through FY 1997. The directivemore » to cease N Reactor preservation and prepare for decommissioning was issued by DOE to WHC on September 20, 1991. The work year and budget data supporting the Work Breakdown Structure in this document are found in the Activity Data Sheets (ADS) and the Environmental Restoration Program Baseline, that are prepared annually.« less

  14. 2016 RAD-AID Conference on International Radiology for Developing Countries: Gaps, Growth, and United Nations Sustainable Development Goals.

    PubMed

    Mollura, Daniel J; Soroosh, Garshasb; Culp, Melissa P

    2017-06-01

    The 2016 RAD-AID Conference analyzed the accelerated global activity in the radiology community that is transforming medical imaging into an effective spearhead of health care capacity building in low- and middle-income countries. Global health efforts historically emphasized disaster response, crisis zones, and infectious disease outbreaks. However, the projected doubling of cancer and cardiovascular deaths in developing countries in the next 15 years and the need for higher technology screening and diagnostic technologies in low-resource regions, as articulated by the United Nations' new Sustainable Development Goals of 2016, is heightening the role of radiology in global health. Academic US-based radiology programs with RAD-AID chapters achieved a threefold increase in global health project offerings for trainees in the past 5 years. RAD-AID's nonprofit radiology volunteer corps continue to grow by more than 40% yearly, with a volunteer base of 5,750 radiology professionals, serving in 23 countries, donating close to 20,000 pro bono hours globally in 2016. As a high-technology specialty interfacing with nearly all medical and surgical disciplines, radiology underpins vital health technology infrastructure, such as digital imaging archives, electronic medical records, and advanced diagnosis and treatment, essential for long-term future health care capacity in underserved areas of the world. Published by Elsevier Inc.

  15. Individual Radiation Protection Monitoring in the Marshall Islands: Utrok Atoll (2003-2004)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, T F; Kehl, S; Hickman, D

    2006-01-17

    The United States Department of Energy (U.S. DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. nuclear test sites in the Marshall Islands. The plan is to engage local atoll communities in developing shared responsibilities for implementing radiation protection monitoring programs for resettled and resettling populations in the northern Marshall Islands. Using the pooled resources of the U.S. DOE and local atoll governments, individual radiological surveillance programs have been developed in whole body counting and plutonium urinalysis in order to accurately assess radiation doses resulting from the ingestion and uptake ofmore » fallout radionuclides contained in locally grown foods. Permanent whole body counting facilities have been established at three separate locations in the Marshall Islands (Figure 1). These facilities are operated and maintained by Marshallese technicians with scientists from the Lawrence Livermore National Laboratory (LLNL) providing on-going technical support services. Bioassay samples are collected under controlled conditions and analyzed for plutonium isotopes at the Center for Accelerator Mass Spectrometry at LLNL using state-of-the art measurement technologies. We also conduct an on-going environmental monitoring and characterization program at selected sites in the northern Marshall Islands. The aim of the environmental program is to determine the level and distribution of important fallout radionuclides in soil, water and local foods with a view towards providing more accurate and updated dose assessments, incorporating knowledge of the unique behaviors and exposure pathways of fallout radionuclides in coral atoll ecosystems. These scientific studies have also been essential in helping guide the development of remedial options used in support of island resettlement. Together, the individual and environmental radiological surveillance programs are helping meet the informational needs of the U.S. DOE and the Republic of the Marshall Islands. Our updated environmental assessments provide a strong scientific basis for predicting future change in exposure conditions especially in relation to changes in life-style, diet and/or land-use patterns. This information has important implications in addressing questions about existing (and future) radiological conditions on the islands, in determining the cost and the effectiveness of potential remedial measures, and in general policy support considerations. Perhaps most importantly, the recently established individual radiological surveillance programs provide affected atoll communities with an unprecedented level of radiation protection monitoring where, for the first time, local resources are being made available to monitor resettled and resettling populations on a continuous basis. As a hard copy supplement to Marshall Islands Program website (http://eed.llnl.gov/mi/), this document provides an overview of the individual radiation surveillance monitoring program established for the Utrok Atoll population group along with a full disclosure of all verified measurement data (2003-2004). The Utrok whole body counting facility has been temporarily stationed on Majuro Atoll and, in cooperation with the Utrok Atoll Local Government, serves as a national facility open to the general public. Readers are advised that an additional feature of the associated website is a provision whereby users are able to calculate and track radiation doses delivered to volunteers (de-identified information only) participating in the Marshall Islands Radiological Surveillance Program.« less

  16. Federal Funding for Health Security in FY2016.

    PubMed

    Boddie, Crystal; Sell, Tara Kirk; Watson, Matthew

    2015-01-01

    This article assesses US government funding in 5 domains critical to strengthening health security: biodefense programs, radiological and nuclear programs, chemical programs, pandemic influenza and emerging infectious disease programs, and multiple-hazard and preparedness programs. This year's article also highlights the emergency funding appropriated in FY2015 to enable the international and domestic response to the Ebola outbreak in West Africa.

  17. Federal Funding for Health Security in FY2016

    PubMed Central

    Sell, Tara Kirk; Watson, Matthew

    2015-01-01

    This article assesses US government funding in 5 domains critical to strengthening health security: biodefense programs, radiological and nuclear programs, chemical programs, pandemic influenza and emerging infectious disease programs, and multiple-hazard and preparedness programs. This year's article also highlights the emergency funding appropriated in FY2015 to enable the international and domestic response to the Ebola outbreak in West Africa. PMID:26042863

  18. Coronary arteriography in a district general hospital: feasibility, safety, and diagnostic accuracy.

    PubMed Central

    Ranjadayalan, K; Mills, P G; Sprigings, D C; Mourad, K; Magee, P; Timmis, A D

    1990-01-01

    OBJECTIVE--To determine the feasibility, safety, and diagnostic accuracy of coronary arteriography in the radiology department of a district general hospital using conventional fluoroscopy and videotape recording. DESIGN--Observational study of the feasibility and safety of coronary arteriography in a district general hospital and analysis of its diagnostic accuracy by prospective within patient comparison of the video recordings with cinearteriograms obtained in a catheter laboratory. SETTING--Radiology department of a district general hospital and the catheter laboratory of a cardiological referral centre. SUBJECTS--50 Patients with acute myocardial infarction treated with streptokinase who underwent coronary arteriography in a district general hospital three (two to five) days after admission. 45 Of these patients had repeat coronary arteriography after four (three to seven) days in the catheter laboratory of a cardiological referral centre. MAIN OUTCOME MEASURES--Incidence of complications associated with catheterisation and the sensitivity and specificity of video recordings in the district general hospital (judged by two experienced observers) for identifying the location and severity of coronary stenoses. RESULTS--Coronary arteriograms recorded on videotape in the district general hospital were obtained in 47 cases and apart from one episode of ventricular fibrilation (treated successfully by cardioversion) there were no complications of the procedure. 45 Patients were transferred for investigation in the catheter laboratory, providing 45 paired coronary arteriograms recorded on videotape and cine film. The specificity of the video recordings for identifying the location and severity of coronary stenoses was over 90%. Sensitivity, however, was lower and for one observer fell below 40% for lesions in the circumflex artery. A cardiothoracic surgeon judged that only nine of the 47 video recordings were adequate for assessing revascularisation requirements. CONCLUSIONS--Coronary arteriography in the radiology department of a district general hospital is safe and feasible. Nevertheless, the quality of image with conventional fluoroscopy and video film is inadequate and will need to be improved before coronary arteriography in this setting can be recommended. PMID:2182164

  19. Succession Planning and Management: The Backbone of the Radiology Group's Future.

    PubMed

    Donner, E Michael; Gridley, Daniel; Ulreich, Sidney; Bluth, Edward I

    2017-01-01

    The transition of leadership within radiology practices is often not a planned replacement process with formal development of potential future leaders. To ensure their ongoing success, however, practices need to develop comprehensive succession plans that include a robust developmental program for potential leaders consisting of mentoring, coaching, structured socialization, 360-degree feedback, developmental stretch assignments, job rotation, and formal education. Succession planning and leadership development will be necessary in the future for a practice to be successful in its business relationships and to be financially viable. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  20. SOIL AND FILL LABORATORY SUPPORT - 1992 RADIOLOGICAL ANALYSES - FLORIDA RADON RESEARCH PROGRAM

    EPA Science Inventory

    The report gives results of soil analysis laboratory work by the University of Florida in support of the Florida Radon Research Program (FRRP). Analyses were performed on soil and fill samples collected during 1992 by the FRRP Research House Program and the New House Evaluation P...

Top