Science.gov

Sample records for radiological sciences department

  1. U.S. Department of Energy Radiological and Environmental Sciences Laboratory

    DTIC Science & Technology

    2012-03-29

    Radiological and Environmental Sciences Laboratory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...Thyroid Phantoms & • Urine / Fecal Samples – Actinide , fission, & activation products – Unique isotopic activities for each sample matrix – Chemical

  2. LSU Health Sciences Center New Orleans Department of Radiology: effects of Hurricane Katrina.

    PubMed

    Duggal, Anshu; Letourneau, Janis G; Bok, Leonard R

    2009-05-01

    This case study chronicles the impact of Hurricane Katrina on the Department of Radiology at the Louisiana State University School of Medicine in New Orleans and the department's subsequent efforts to recover and re-dedicate itself to providing quality patient care and resident education. Hurricane Katrina damaged the department's facilities, severely decreased departmental cash flow, disrupted resident education, and resulted in faculty exodus. Because of the "catastrophic loss of resources" suffered by the department, the Accreditation Council for Graduate Medical Education (ACGME) proposed expedited withdrawal of accreditation for the Diagnostic Radiology Residency Program, to which the department agreed. Since Katrina, the program has taken steps toward regaining its pre-Katrina status as a successful residency program that produced satisfied, successful residents. These steps include the appointment of a new department head of radiology, the recruitment of academic directors for each of the nine subspecialties, the reopening of the University Hospital, and the growth of annual procedure volume. All institutions face the possibility of a natural disaster. It is imperative to have a plan in place to ensure continued resident education, patient safety, and ACGME accreditation.

  3. Photoelectronic Radiology Department

    NASA Astrophysics Data System (ADS)

    Capp, M. P.; Nudelman, Sol; Fisher, Donald; Ovitt, Theron W.; Pond, Gerald D.; Frost, Meryl M.; Roehrig, Hans; Seeger, Joachim; Oimette, Donald

    1981-11-01

    The University of Arizona Department of Radiology first considered establishing a photoelectronic radiology department in 1973. It seemed clear that the technology had progressed far enough for us to investigate the possibility of total film replacement.' Data from the space program in particular indicated at that time that sophisticated television images over 1000 x 1000 lines were approaching the detail seen on the traditional x-ray film. This technology has been known over many years of research and development as "photoelectronic imaging devices (PEID) ."14 However, at that time film replacement was out of the question. What was not out of the question was the consideration of using a subtraction technique, "digital video subtraction angiography." To this end, we, and independently the University of Wisconsin,314 proceeded to develop this technology.5'6 Our intravenous video subtraction images in patients started in our research laboratory in 1977 and in March of 1980 we opened a biplane special procedures room dedicated only to photoelectronic imaging (no film).7'8 Digital video subtraction angiography has been successful and is described in much greater detail in these Proceedings by other authors. Current efforts are under way toward total replacement of film. This is an immense problem, one that will require a much greater sophistication of computers, storage devices, system analysis, and cooperation from both the radiologist and the clinician.9'10 In a theoretical study we converted our 65,000 procedures-per-year department to complete photoelectronic imaging (no film) and estimated that we would save approximately five million dollars over ten years.15 Extrapolating this to the entire United States would result in a conservative estimate of saving one billion dollars per year. Not included in these mathematics are cost-effective savings of the physicians' time and effort.

  4. Risk management in radiology departments

    PubMed Central

    Craciun, Horea; Mankad, Kshitij; Lynch, Jeremy

    2015-01-01

    Medical imaging and interventional radiology sustained prompt changes in the last few years, mainly as a result of technology breakthroughs, rise in workload, deficit in workforce and globalization. Risk is considered to be the chance or possibility of incurring loss or of a negative event happening that may cause injury to patients or medical practitioners. There are various causes of risks leading to harm and injury in radiology departments, and it is one of the objectives of this paper to scrutinize some of the causes. This will drive to consideration of some of the approaches that are used in managing risks in radiology. This paper aims at investigating risk management in radiology, and this will be achieved through a thorough assessment of the risk control measures that are used in the radiology department. It has been observed that the major focus of risk management in such medical setting is to reduce and eliminate harm and injury to patients through integration of various medical precautions. The field of Radiology is rapidly evolving due to technology advances and the globalization of healthcare. This ongoing development will have a great impact on the level of quality of care and service delivery. Thus, risk management in radiology is essential in protecting the patients, radiologists, and the medical organization in terms of capital and widening of the reputation of the medical organization with the patients. PMID:26120383

  5. Risk management in radiology departments.

    PubMed

    Craciun, Horea; Mankad, Kshitij; Lynch, Jeremy

    2015-06-28

    Medical imaging and interventional radiology sustained prompt changes in the last few years, mainly as a result of technology breakthroughs, rise in workload, deficit in workforce and globalization. Risk is considered to be the chance or possibility of incurring loss or of a negative event happening that may cause injury to patients or medical practitioners. There are various causes of risks leading to harm and injury in radiology departments, and it is one of the objectives of this paper to scrutinize some of the causes. This will drive to consideration of some of the approaches that are used in managing risks in radiology. This paper aims at investigating risk management in radiology, and this will be achieved through a thorough assessment of the risk control measures that are used in the radiology department. It has been observed that the major focus of risk management in such medical setting is to reduce and eliminate harm and injury to patients through integration of various medical precautions. The field of Radiology is rapidly evolving due to technology advances and the globalization of healthcare. This ongoing development will have a great impact on the level of quality of care and service delivery. Thus, risk management in radiology is essential in protecting the patients, radiologists, and the medical organization in terms of capital and widening of the reputation of the medical organization with the patients.

  6. Internal Controlling of a Radiology Department.

    PubMed

    Frewer, W; Busch, H P

    2015-11-01

    Caused by legal reform initiatives there is a continuous need to increase effectiveness and efficiency in hospitals and surgeries, and thus to improve processes.Consequently the successful management of radiological departments and surgeries requires suitable structures and optimization processes to make optimization in the fields of medical quality, service quality and efficiency possible.In future in the DRG System it is necessary that the organisation of processes must focus on the whole clinical treatment of the patients (Clinical Pathways). Therefore the functions of controlling must be more established and adjusted. On the basis of select Controlling instruments like budgeting, performance indicators, process optimization, staff controlling and benchmarking the target-based and efficient control of radiological surgeries and departments is shown. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Digital Workload In A Large Radiology Department

    NASA Astrophysics Data System (ADS)

    Goodsitt, Mitchell M.; Bauman, Roger A.; Lodwick, Gwilym S.

    1986-06-01

    As Radiology becomes more invested in direct digital imaging techniques, the potential for moving these images throughout the department, interpreting them directly in digital mode and archiving them in computer form is a topic of high current interest. A fundamental consideration is the amount of digital data to be handled. Even the low and medium resolution images now handled in digital mode require immense amounts of digital storage space. The first quantification of the amount of digital data was by Dwyer, et al, in a report concerning the workload in a 614-bed hospital. Their assumptions and calculations are reviewed and applied to the workload data from a 1082-bed hospital. Storage requirements for PET and MRI workload are calculated, and an estimate of digital radiography data is presented. The digitization of plain film radiographs will virtually increase the storage requirements by a factor of 10.

  8. Strengthening Science Departments

    ERIC Educational Resources Information Center

    Campbell, Todd; Melville, Wayne; Bartley, Anthony

    2012-01-01

    Teachers do not work in a vacuum. They are, in most cases, part of a science department in which teachers and the chairperson have important roles in science education reform. Current reform is shaped by national standards documents that emphasize the pedagogical and conceptual importance of best practices framed by constructivism and focused on…

  9. Strengthening Science Departments

    ERIC Educational Resources Information Center

    Campbell, Todd; Melville, Wayne; Bartley, Anthony

    2012-01-01

    Teachers do not work in a vacuum. They are, in most cases, part of a science department in which teachers and the chairperson have important roles in science education reform. Current reform is shaped by national standards documents that emphasize the pedagogical and conceptual importance of best practices framed by constructivism and focused on…

  10. Research Challenges and Opportunities for Clinically Oriented Academic Radiology Departments.

    PubMed

    Decker, Summer J; Grajo, Joseph R; Hazelton, Todd R; Hoang, Kimberly N; McDonald, Jennifer S; Otero, Hansel J; Patel, Midhir J; Prober, Allen S; Retrouvey, Michele; Rosenkrantz, Andrew B; Roth, Christopher G; Ward, Robert J

    2016-01-01

    Between 2004 and 2012, US funding for the biomedical sciences decreased to historic lows. Health-related research was crippled by receiving only 1/20th of overall federal scientific funding. Despite the current funding climate, there is increased pressure on academic radiology programs to establish productive research programs. Whereas larger programs have resources that can be utilized at their institutions, small to medium-sized programs often struggle with lack of infrastructure and support. To address these concerns, the Association of University Radiologists' Radiology Research Alliance developed a task force to explore any untapped research productivity potential in these smaller radiology departments. We conducted an online survey of faculty at smaller clinically funded programs and found that while they were interested in doing research and felt it was important to the success of the field, barriers such as lack of resources and time were proving difficult to overcome. One potential solution proposed by this task force is a collaborative structured research model in which multiple participants from multiple institutions come together in well-defined roles that allow for an equitable distribution of research tasks and pooling of resources and expertise. Under this model, smaller programs will have an opportunity to share their unique perspective on how to address research topics and make a measureable impact on the field of radiology as a whole. Through a health services focus, projects are more likely to succeed in the context of limited funding and infrastructure while simultaneously providing value to the field.

  11. Radiology and social media: are private practice radiology groups more social than academic radiology departments?

    PubMed

    Glover, McKinley; Choy, Garry; Boland, Giles W; Saini, Sanjay; Prabhakar, Anand M

    2015-05-01

    This study assesses the prevalence of use of the most commonly used social media sites among private radiology groups (PRGs) and academic radiology departments (ARDs). The 50 largest PRGs and the 50 ARDs with the highest level of funding from the National Institutes of Health were assessed for presence of a radiology-specific social media account on Facebook, Twitter, Instagram, Pinterest, YouTube, and LinkedIn. Measures of organizational activity and end-user activity were collected, including the number of posts and followers, as appropriate; between-group comparisons were performed. PRGs adopted Facebook 12 months earlier (P = .02) and Twitter 18 months earlier (P = .02) than did ARDs. A total of 76% of PRGs maintained ≥1 account on the social media sites included in the study, compared with 28% of ARDs (P < .0001). The prevalence of having an account on the social media sites for PRGs was: Facebook, 66%; LinkedIn, 56%; Twitter, 42%; YouTube, 20%; Pinterest, 4%; and Instagram, 2%. The prevalence of radiology-specific social media accounts for ARDs was: Facebook, 18%; LinkedIn, 0%; Twitter, 24%; YouTube, 6%; Pinterest, 0%; and Instagram, 0%. There was no significant difference between ARDs and PRGs in measures of end-user or organizational activity on Facebook or Twitter. Use of social media in health care is emerging as mainstream, with PRGs being early adopters of Facebook and Twitter in comparison with ARDs. Competitive environments and institutional policies may be strong factors that influence how social media is used by radiologists at the group and department levels. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  12. Student Perceptions of Online Radiologic Science Courses.

    PubMed

    Papillion, Erika; Aaron, Laura

    2017-03-01

    To evaluate student perceptions of the effectiveness of online radiologic science courses by examining various learning activities and course characteristics experienced in the online learning environment. A researcher-designed electronic survey was used to obtain results from students enrolled in the clinical portion of a radiologic science program that offers online courses. The survey consisted of elements associated with demographics, experience, and perceptions related to online radiologic science courses. Surveys were sent to 35 program directors of Joint Review Committee on Education in Radiologic Technology-accredited associate and bachelor's degree programs with requests to share the survey with students. The 38 students who participated in the survey identified 4 course characteristics most important for effective online radiologic science courses: a well-organized course, timely instructor feedback, a variety of learning activities, and informative documents, such as course syllabus, calendar, and rubrics. Learner satisfaction is a successful indicator of engagement in online courses. Descriptive statistical analysis indicated that elements related to the instructor's role is one of the most important components of effectiveness in online radiologic science courses. This role includes providing an organized course with informative documents, a variety of learning activities, and timely feedback and communication. Although online courses should provide many meaningful learning activities that appeal to a wide range of learning styles, the nature of the course affects the types of learning activities used and therefore could decrease the ability to vary learning activities. ©2017 American Society of Radiologic Technologists.

  13. Distribution of scholarly publications among academic radiology departments.

    PubMed

    Morelli, John N; Bokhari, Danial

    2013-03-01

    The aim of this study was to determine whether the distribution of publications among academic radiology departments in the United States is Gaussian (ie, the bell curve) or Paretian. The search affiliation feature of the PubMed database was used to search for publications in 3 general radiology journals with high Impact Factors, originating at radiology departments in the United States affiliated with residency training programs. The distribution of the number of publications among departments was examined using χ(2) test statistics to determine whether it followed a Pareto or a Gaussian distribution more closely. A total of 14,219 publications contributed since 1987 by faculty members in 163 departments with residency programs were available for assessment. The data acquired were more consistent with a Pareto (χ(2) = 80.4) than a Gaussian (χ(2) = 659.5) distribution. The mean number of publications for departments was 79.9 ± 146 (range, 0-943). The median number of publications was 16.5. The majority (>50%) of major radiology publications from academic departments with residency programs originated in <10% (n = 15 of 178) of such departments. Fifteen programs likewise produced no publications in the surveyed journals. The number of publications in journals with high Impact Factors published by academic radiology departments more closely fits a Pareto rather than a normal distribution. Copyright © 2013 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  14. The impact of a nuclear crisis on a radiology department.

    PubMed

    Weidner, W A; Miller, K L; Latshaw, R F; Rohrer, G V

    1980-06-01

    The experiences of the radiology department at the Milton S. Hershey Medical Center of the Pennsylvania State University College of Medicine during the Three Mile Island Nuclear Power Plant accident are presented. Emergency plans are reviewed.

  15. Trends in spinal pain management injections in academic radiology departments.

    PubMed

    Freeman, J J; Kilani, R K; Lascola, C D; Gray, L; Enterline, D S

    2013-01-01

    There is a paucity of information present in the current literature with regard to the role of SPMI performance in academic radiology centers. Our aim was to evaluate the current practice patterns for the performance of SPMIs in academic radiology departments. A survey of 186 academic radiology departments in the United States was conducted between March 2009 and May 2009. The survey included questions on departmental demographics, recent trends in departmental SPMI performance, type of physicians who refer to radiology for SPMI performance, types of SPMIs offered, the fraction of total institutional SPMI volume performed by radiologists, and the current state of resident and fellow SPMI training proficiency. Forty-five of the 186 (21.4%) surveys were completed and returned. Twenty-eight of the 45 responding departments stated that they performed SPMIs; the other 17 stated that they did not. Among the 28 responding departments that perform SPMIs, 6 (21.4%), 5 (17.9%), and 8 (28.6%) stated that the number of departmental SPMIs had, respectively, increased, decreased, or remained stable during the past 5 years. SPMI referrals to radiology were made by orthopedic surgeons, neurologic surgeons, neurologists, psychiatrists, anesthesiologists, and internal medicine physicians. CESIs, SNRBs, facet injections, and synovial cyst aspirations are the most frequently performed injections. Fellows and residents become proficient in 88.5% and 51.9%, respectively, of SPMI-performing departments. Most departments perform <50% of the SPMI volume of their respective institutions. Most responding academic radiology departments perform SPMIs. Most fellows and just more than half of residents at SPMI-performing departments achieve SPMI proficiency. For the most part, the number of SPMIs performed in responding departments has been stable during the past 5 years.

  16. Collaborative learning in radiologic science education.

    PubMed

    Yates, Jennifer L

    2006-01-01

    Radiologic science is a complex health profession, requiring the competent use of technology as well as the ability to function as part of a team, think critically, exercise independent judgment, solve problems creatively and communicate effectively. This article presents a review of literature in support of the relevance of collaborative learning to radiologic science education. In addition, strategies for effective design, facilitation and authentic assessment of activities are provided for educators wishing to incorporate collaborative techniques into their program curriculum. The connection between the benefits of collaborative learning and necessary workplace skills, particularly in the areas of critical thinking, creative problem solving and communication skills, suggests that collaborative learning techniques may be particularly useful in the education of future radiologic technologists. This article summarizes research identifying the benefits of collaborative learning for adult education and identifying the link between these benefits and the necessary characteristics of medical imaging technologists.

  17. Integrating technology into radiologic science education.

    PubMed

    Wertz, Christopher Ira; Hobbs, Dan L; Mickelsen, Wendy

    2014-01-01

    To review the existing literature pertaining to the current learning technologies available in radiologic science education and how to implement those technologies. Only articles from peer-reviewed journals and scholarly reports were used in the research for this review. The material was further restricted to those articles that emphasized using new learning technologies in education, with a focus on radiologic science education. Teaching in higher education is shifting from a traditional classroom-based lecture format to one that incorporates new technologies that allow for more varied and diverse educational models. Radiologic technology educators must adapt traditional education delivery methods to incorporate current technologies. Doing so will help engage the modern student in education in ways in which they are already familiar. As students' learning methods change, so must the methods of educational delivery. The use of new technologies has profound implications for education. If implemented properly, these technologies can be effective tools to help educators.

  18. Radiological Dispersion Devices and Basic Radiation Science

    ERIC Educational Resources Information Center

    Bevelacqua, Joseph John

    2010-01-01

    Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous…

  19. Radiological Dispersion Devices and Basic Radiation Science

    ERIC Educational Resources Information Center

    Bevelacqua, Joseph John

    2010-01-01

    Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous…

  20. Radiological Dispersion Devices and Basic Radiation Science

    NASA Astrophysics Data System (ADS)

    Bevelacqua, Joseph John

    2010-05-01

    Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous manner. One reason for limited student interest is the failure to link the discussion to topics of current interest. The author has found that presenting this material with a link to radiological dispersion devices (RDDs), or dirty bombs, and their associated health effects provides added motivation for students. The events of Sept. 11, 2001, and periodic media focus on RDDs heighten student interest from both a scientific curiosity as well as a personal protection perspective. This article presents a framework for a more interesting discussion of the basics of radiation science and their associated health effects. The presentation can be integrated with existing radioactivity lectures or added as a supplementary or enrichment activity.

  1. Medical student radiology education: summary and recommendations from a national survey of medical school and radiology department leadership.

    PubMed

    Straus, Christopher M; Webb, Emily M; Kondo, Kimi L; Phillips, Andrew W; Naeger, David M; Carrico, Caroline W; Herring, William; Neutze, Janet A; Haines, G Rebecca; Dodd, Gerald D

    2014-06-01

    The ACR Task Force on Medical Student Education in Radiology, in partnership with the Alliance of Medical Student Educators in Radiology, investigated the current status of how and to what extent medical imaging was being taught in medical schools. The task force executed a 3-part survey of medical school deans, radiology department chairs, and intern physicians. The results provided an updated understanding of the status of radiology education in medical schools in the United States. This summary includes recommendations about how individual radiology departments and ACR members can assist in advancing the specialty of diagnostic radiology through medical student education.

  2. Emergency department digital radiology: moving from photos to pixels.

    PubMed

    White, Faber A; Zwemer, Frank L; Beach, Christopher; Westesson, Per-Lennart; Fairbanks, Rollin J; Scialdone, Gary

    2004-11-01

    Emergency department (ED) patient care relies heavily on radiologic imaging. As advances in technologic innovation continue to present opportunities to streamline and simplify the delivery of care, emergency medicine (EM) practitioners face the challenge of transitioning from a system of primarily film-based radiography to one that utilizes digitized images. The move to digital radiology can result in enhanced quality of patient care, reduction of errors, and increased ED efficiency; however, making this transition will necessarily involve changes in EM practice. As the technology evolves, digital radiology will gradually become ingrained into everyday practice because of these and other notable benefits; however, EM practitioners will need to overcome several challenges to make the transition smoothly and consider the potential impacts that this change will have on ED workflow. The authors discuss the benefits, challenges, and other operational considerations involved with the ED implementation of digital radiology and close by presenting guiding principles for current and future users. Despite the unresolved issues, digital radiology will mature as a technology and improve EM practice, making it one of the great information technology advances in EM.

  3. A Model Curriculum for Multiskilled Education in the Radiologic Sciences.

    ERIC Educational Resources Information Center

    Jensen, Steven C.; Grey, Michael L.

    1995-01-01

    Explains how multiskilled cross-trained health professionals provide cost-effective health care. Outlines a baccalaureate program in radiologic science with specialization in radiology therapy, medical sonography, or advanced imaging. (SK)

  4. A Model Curriculum for Multiskilled Education in the Radiologic Sciences.

    ERIC Educational Resources Information Center

    Jensen, Steven C.; Grey, Michael L.

    1995-01-01

    Explains how multiskilled cross-trained health professionals provide cost-effective health care. Outlines a baccalaureate program in radiologic science with specialization in radiology therapy, medical sonography, or advanced imaging. (SK)

  5. Integrated interdisciplinary training in the radiological sciences.

    PubMed

    Brenner, D J; Vazquez, M; Buonanno, M; Amundson, S A; Bigelow, A W; Garty, G; Harken, A D; Hei, T K; Marino, S A; Ponnaiya, B; Randers-Pehrson, G; Xu, Y

    2014-02-01

    The radiation sciences are increasingly interdisciplinary, both from the research and the clinical perspectives. Beyond clinical and research issues, there are very real issues of communication between scientists from different disciplines. It follows that there is an increasing need for interdisciplinary training courses in the radiological sciences. Training courses are common in biomedical academic and clinical environments, but are typically targeted to scientists in specific technical fields. In the era of multidisciplinary biomedical science, there is a need for highly integrated multidisciplinary training courses that are designed for, and are useful to, scientists who are from a mix of very different academic fields and backgrounds. We briefly describe our experiences running such an integrated training course for researchers in the field of biomedical radiation microbeams, and draw some conclusions about how such interdisciplinary training courses can best function. These conclusions should be applicable to many other areas of the radiological sciences. In summary, we found that it is highly beneficial to keep the scientists from the different disciplines together. In practice, this means not segregating the training course into sections specifically for biologists and sections specifically for physicists and engineers, but rather keeping the students together to attend the same lectures and hands-on studies throughout the course. This structure added value to the learning experience not only in terms of the cross fertilization of information and ideas between scientists from the different disciplines, but also in terms of reinforcing some basic concepts for scientists in their own discipline.

  6. Modelling a radiology department service using a VDL integrated approach.

    PubMed

    Guglielmino, Maria Gabriella; Celano, Giovanni; Costa, Antonio; Fichera, Sergio

    2009-01-01

    The healthcare industry is facing several challenges such as the reduction of costs and quality improvement of the provided services. Engineering studies could be very useful in supporting organizational and management processes. Healthcare service efficiency depends on a strong collaboration between clinical and engineering experts, especially when it comes to analyzing the system and its constraints in detail and subsequently, when it comes to deciding on the reengineering of some key activities. The purpose of this paper is to propose a case study showing how a mix of representation tools allow a manager of a radiology department to solve some human and technological resource re-organizational issues, which have to be faced due to the introduction of a new technology and a new portfolio of services. In order to simulate the activities within the radiology department and examine the relationship between human and technological resources, different visual diagrammatic language (VDL) techniques have been implemented to get knowledge about the heterogeneous factors related to the healthcare service delivery. In particular, flow charts, IDEFO diagrams and Petri nets have been integrated each other with success as a modelisation tools. The simulation study performed through the application of the aforementioned VDL techniques suggests the opportunity of re-organizing the nurse activities within the radiology department. The re-organization of a healthcare service and in particular of a radiology department by means of joint flow charts, IDEF0 diagrams and Petri nets is a poorly investigated topic in literature. This paper demonstrates how flow charts and IDEF0 can help people working within the department to understand the weak points of their organization and constitute an efficient base of knowledge for the implementation of a Petri net aimed at improving the departmental performance.

  7. A Multimedia Medical Communication Link Between A Radiology Department And An Emergency Department

    NASA Astrophysics Data System (ADS)

    Goldberg, Morris; Robertson, John G.; Belanger, Garry; Georganas, Nicolas D.; Mastronardi, Jim; Cohn-Sfetcu, Sorin; Dillon, Richard F.; Tombaugh, Jo W.

    1989-05-01

    The most critical aspect of a radiologist's work is the communication of his findings to the attending physician responsible for the patient's care. This is also the part of the process that is least well organized and the most subject to failure. At the University of Ottawa Medical Communications Research Centre we are investigating technical means to improve communications between radiologists and attending physicians. We first introduce the radiology communication service problem and show why it is essentially a multimedia communication problem. We then briefly describe a multimedia communication system designed and implemented by our research team. The multimedia system consists of several workstations linked by the Hospital's LAN. Each physician workstation comprises a Compaq 386/20 Mhertz microcomputer with 16 Mbytes of RAM, a 500 Mbyte image disk, an image memory which drives a 1000 line monochrome monitor. The images are digitized using a Konica laser-based film digitizer (2430 by 2000 10-bit pixels for a standard chest radiograph). The multimedia file server manager station is built around a PC-AT compatible with a Northern Telecom MERIDIAN SL-1ST digital PBX and a Meridian Mail digital voice messaging system. This last device is used to store voice data and is linked via the PBX to the workstations' digital telephones. A SYTEK 6000 local area network (LAN) links all workstations to the file server. All data, image and graphic information is transmitted via this network, while the twisted pair connections linking the digital PBX to the telephone sets are used for transmitting voice data. Finally, we provide details of an in-hospital trial linking the Department of Radiological Sciences and the Emergency Department at the Ottawa Civic Hospital, a 950 bed tertiary care teaching hospital.

  8. The contribution by medical radiology departments to dental radiology in general dental practice in Scotland.

    PubMed

    MacDonald-Jankowski, D S; Barrie, W J; Wohlgemuth, B

    2000-05-01

    To determine the availability of the services of medical radiology departments to general dental practitioners in Scotland. Fifty-seven hospitals were identified as likely to have services available to general dental practitioners; 41 were within central urbanised areas (the 'Central Belt') and 16 in the more remote rural areas, (the 'Borders, Highlands and Islands'). The available services were identified by questionnaire. All 57 questionnaires were returned. Although there were significantly fewer larger hospitals in the 'Borders, Highlands and Islands', there was no significant difference in availability of services to general dental practitioners between the two parts of Scotland. The services of medical radiology departments are generally available to general dental practitioners in both the 'Central Belt' and the 'Borders, Highlands and Islands'.

  9. US Department of Energy radiological control manual. Revision 1

    SciTech Connect

    Not Available

    1994-04-01

    This manual establishes practices for the conduct of Department of Energy radiological control activities. The Manual states DOE`s positions and views on the best courses of action currently available in the area of radiological controls. Accordingly, the provisions in the Manual should be viewed by contractors as an acceptable technique, method or solution for fulfilling their duties and responsibilities. This Manual shall be used by DOE in evaluating the performance of its contractors. This Manual is not a substitute for Regulations; it is intended to be consistent with all relevant statutory and regulatory requirements and shall be revised whenever necessary to ensure such consistency. Some of the Manual provisions, however, challenge the user to go well beyond minimum requirements. Following the course of action delineated in the Manual will result in achieving and surpassing related statutory or regulatory requirements.

  10. Applying Systems Engineering Reduces Radiology Transport Cycle Times in the Emergency Department.

    PubMed

    White, Benjamin A; Yun, Brian J; Lev, Michael H; Raja, Ali S

    2017-04-01

    Emergency department (ED) crowding is widespread, and can result in care delays, medical errors, increased costs, and decreased patient satisfaction. Simultaneously, while capacity constraints on EDs are worsening, contributing factors such as patient volume and inpatient bed capacity are often outside the influence of ED administrators. Therefore, systems engineering approaches that improve throughput and reduce waste may hold the most readily available gains. Decreasing radiology turnaround times improves ED patient throughput and decreases patient waiting time. We sought to investigate the impact of systems engineering science targeting ED radiology transport delays and determine the most effective techniques. This prospective, before-and-after analysis of radiology process flow improvements in an academic hospital ED was exempt from institutional review board review as a quality improvement initiative. We hypothesized that reorganization of radiology transport would improve radiology cycle time and reduce waste. The intervention included systems engineering science-based reorganization of ED radiology transport processes, largely using Lean methodologies, and adding no resources. The primary outcome was average transport time between study order and complete time. All patients presenting between 8/2013-3/2016 and requiring plain film imaging were included. We analyzed electronic medical record data using Microsoft Excel and SAS version 9.4, and we used a two-sample t-test to compare data from the pre- and post-intervention periods. Following the intervention, average transport time decreased significantly and sustainably. Average radiology transport time was 28.7 ± 4.2 minutes during the three months pre-intervention. It was reduced by 15% in the first three months (4.4 minutes [95% confidence interval [CI] 1.5-7.3]; to 24.3 ± 3.3 min, P=0.021), 19% in the following six months (5.4 minutes, 95% CI [2.7-8.2]; to 23.3 ± 3.5 min, P=0.003), and 26% one year

  11. Impact of PACS On The Organization Of Radiology Departments

    NASA Astrophysics Data System (ADS)

    Zielonka, Jason S.

    1983-05-01

    The radiologist serves as a consultant to other physicians in the practice of clinical medicine; the image obtained and the reported interpretation of that image represent the service rendered and are therefore of major importance (medically, legally and economically) to the radiologist. Because many radiology departments are organized along subspecialty lines or (in the case of a single department serving several institutions) along combined institutional and subspecialty lines, many patients may undergo diagnostic evaluation sequences in which several studies are performed and multiple simultaneous consultations may result. In the past, the lack of availability of multiple copies of the study (for multiple interested parties) has prevented the effective tailoring of subsequent examinations until the prior exam results were available; the advent of digital networks for PACS may result in a significant change in this procedure and, accordingly, in the pattern of interpretation, internal referral and organization of radiology departments. In addition, since clinicians may have access to studies directly and, possibly, prior to official interpretation, the nature of the relationship between the clinician and the radiologist may be altered by PACS.

  12. Motivation in a multigenerational radiologic science workplace.

    PubMed

    Kalar, Traci

    2008-01-01

    For the first time in history, radiologic science (RS) workplaces consist of 4 generational cohorts. As each cohort possess their own attitudes, values, work habits, and expectations, motivating a generational diverse workplace is challenging. Through the understanding of generational differences, managers are better able to accommodate individual as well as generational needs and help create a more productive and higher performing workplace. The purpose of this paper is to assist managers in the understanding and utilization of generational differences to effectively motivate staff in an RS workplace. Generational cohorts will be defined and discussed along with an in-depth discussion on each of the generations performing in today's RS workplace. Motivators and how they impact the different generational cohorts will be addressed along with how to best motivate a multigenerational RS workplace.

  13. Implementation of a digital archive center for a radiology department

    NASA Astrophysics Data System (ADS)

    Wong, Albert W. K.; Taira, Ricky K.; Huang, H. K.

    1992-07-01

    A distributed digital archive system configured with dual archive devices (two archive servers, two database servers and two 680-Gbyte optical libraries) that provides fault-tolerant image archival has been implemented for the Radiology Department at UCLA. Digital images from various radiologic imaging devices are transmitted via Ethernet and FDDI networks to archive servers, where images are archived to optical disks and distributed to remote display stations or the print station via 1-Gbit/sec high-speed UltraNet network. The dual configuration of the system provides non-interrupt archive operations in the event of failure of any of the archive components. Once a failed device is detected, the system automatically re-configures itself so that all images are routed to the second equivalent device and archived. The global Ethernet network serves as a backup for the FDDI and UltraNet networks. In the even of FDDI or UltraNet failure, all images can be transmitted across the Ethernet. The system archives 1.5 to 2.0 Gbytes of data per day and provides inter-sectional image referencing throughout the department.

  14. Utility of an informational intranet in a radiology department.

    PubMed

    Schwartz, Lawrence H; Cooper, Cathleen; Brown, Baika; Yoo, Hyok-Hee; Onyebuchi, Chinyere; Panicek, David M

    2003-04-01

    The authors performed this study to assess the usefulness of the various features of their radiology department intranet and to quantify its effect in facilitating intradepartmental information flow. The number, length, and nature of visits to each directory on the intranet were recorded by a commercially available intranet analysis software package. During the last 6 months of 2001, 89,411 page views (mean, 485 per day) occurred during 26,344 visits to the radiology department intranet. The most commonly accessed features were billing code lists (29% of total views); the intranet home page (27%); faculty telephone and pager numbers (2.6%); digital dictation access codes (1.6%); and magnetic resonance imaging protocols (1.5%). A total of 32,408 files, including daily clinical assignments, monthly fellow and resident schedules, and protocol forms, were downloaded as portable document files by intranet users. The intranet has proved an invaluable addition to the authors' departmental infrastructure, as evidenced by its extensive use by the staff. It has facilitated the rapid dissemination of information without hard copy.

  15. "EcoRadiology"--pulling the plug on wasted energy in the radiology department.

    PubMed

    McCarthy, Colin J; Gerstenmaier, Jan F; O' Neill, Ailbhe C; McEvoy, Sinead H; Hegarty, Chris; Heffernan, Eric J

    2014-12-01

    We sought to evaluate the power consumption of various devices around the radiology department, audit our use of recycling, and review efforts by vendors to reduce the environmental impact of their products. Using a readily available power monitor, we calculated the power consumption of different devices around our department. In particular, we calculated the financial and environmental cost of leaving equipment on overnight and/or at weekends. When it was not possible to measure energy usage directly, we obtained and reviewed relevant technical manuals. We contacted vendors directly to document how the environmental impact of new technology and decommissioning aging technology is being tackled. We found that 29 of 43 desktop computers and 25 of 27 picture archiving and communications system (PACS) reporting stations were left on needlessly overnight and/or at weekends, resulting in estimated electrical running costs while not in use of approximately $7253 per year, and CO2 emissions equivalent to the annual emissions of over 10 passenger cars. We discovered that none of our PACS reporting stations supported energy-saving modes such as "sleep" or "hibernate." Despite encouraging staff to turn off computers when not in use, a reaudit found no improvement in results. Simple steps such as turning off computers and air-conditioning units can produce very significant financial and environmental savings. Radiology can lead the way in making hospitals more energy efficient. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  16. [The balanced scorecard--applications in a radiology department].

    PubMed

    Maurer, M H; Teichgräber, U; Kröncke, T J; Hamm, B; Lemke, A J

    2012-12-01

    The balanced scorecard (BSC) represents a comprehensive management tool for organizations with the aim to focus all activities on a chosen strategy. Targets for various perspectives of the environment such as the customer, financial, process, and potential perspective are linked with concrete measures, and cause-effect relationships between the objectives are analyzed. This article shows that the BSC can also be used for the comprehensive control of a radiology department and thus provides a meaningful contribution in organizing the various diagnostic and treatment services, the management of complex clinical environment and can be of help with the tasks in research and teaching. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Perceived barriers to online education by radiologic science educators.

    PubMed

    Kowalczyk, Nina K

    2014-01-01

    Radiologic science programs continue to adopt the use of blended online education in their curricula, with an increase in the use of online courses since 2009. However, perceived barriers to the use of online education formats persist in the radiologic science education community. An electronic survey was conducted to explore the current status of online education in the radiologic sciences and to identify barriers to providing online courses. A random sample of 373 educators from radiography, radiation therapy, and nuclear medicine technology educational programs accredited by the Joint Review Committee on Education in Radiologic Technology and Joint Review Committee on Educational Programs in Nuclear Medicine Technology was chosen to participate in this study. A qualitative analysis of self-identified barriers to online teaching was conducted. Three common themes emerged: information technology (IT) training and support barriers, student-related barriers, and institutional barriers. Online education is not prevalent in the radiologic sciences, in part because of the need for the clinical application of radiologic science course content, but online course activity has increased substantially in radiologic science education, and blended or hybrid course designs can effectively provide opportunities for student-centered learning. Further development is needed to increase faculty IT self-efficacy and to educate faculty regarding pedagogical methods appropriate for online course delivery. To create an excellent online learning environment, educators must move beyond technology issues and focus on providing quality educational experiences for students.

  18. Junior faculty satisfaction in a large academic radiology department.

    PubMed

    Kelly, Aine M; Cronin, Paul; Dunnick, N Reed

    2007-04-01

    Retention of academic faculty is a pressing issue for many radiology departments. The departure of junior faculty members to private practice may be driven in part by economics; however, the choice may be influenced by many other elements of faculty satisfaction. The purpose of this study was to evaluate how satisfied junior (assistant professors and instructors) and senior (associate professors and professors) faculty in an academic radiology department are with respect to their work and to determine which factors most affected the decision to stay in academics. We conducted a survey of junior and senior faculty in the department of radiology. Questions included attitudes regarding work, home, and family issues. Among the 27 junior faculty (73%) who responded to the survey, 14 were instructors and 13 were assistant professors. Among the 11 senior faculty (21%) who responded to the survey, 3 were associate professors and 8 were professors. Academic radiology faculty are very happy with work and derive enjoyment and fulfillment from their work. The working week excluding call (average 52 hours) and including call (average 61 hours) was not regarded as too long. The average academic faculty works 72% clinical time (range 15% to 100%) and gets 0.96 day a week of professional development. Fifty-nine percent are funded at an average of 0.91 day a week. Forty-one percent are on tenure track, and of the remainder, 40% expressed a desire for tenure track. Fifty-five percent of faculty have mentors and 57% receive adequate mentoring. When it comes to teaching, 50% have enough time to teach juniors. Of the remainder, all but one cited high clinical workload as an impediment to teaching juniors. Forty-one percent of faculty reported not getting enough academic time. Fifty-nine percent felt pressure to publish and 34% felt pressure to obtain external funding. Seventy-six percent surveyed felt it has become more difficult to publish. The main reasons cited were increasing

  19. Radiological Contingency Planning for the Mars Science Laboratory Launch

    SciTech Connect

    Paul Guss

    2008-03-01

    The U.S. Department of Energy (DOE) provides technical support to the requesting federal agency such as the Federal Bureau of Investigation, Department of Defense, the National Space and Aeronautics and Space Administration (NASA), or a state agency to address the radiological consequences of an event. These activities include measures to alleviate damage, loss, hardship, or suffering caused by the incident; protect public health and safety; restore essential government services; and provide emergency assistance to those affected. Scheduled to launch in the fall of 2009, Mars Science Laboratory is part of NASA's Mars Exploration Program, a long-term effort of robotic exploration of the red planet. Mars Science Laboratory is a rover that will assess whether Mars ever was, or is still today, an environment able to support microbial life. In other words, its mission is to determine the planet's "habitability." The Mars Science Laboratory rover will carry a radioisotope power system that generates electricity from the heat of plutonium's radioactive decay. This power source gives the mission an operating lifespan on Mars' surface of a full Martian year (687 Earth days) or more, while also providing significantly greater mobility and operational flexibility, enhanced science payload capability, and exploration of a much larger range of latitudes and altitudes than was possible on previous missions to Mars. National Security Technologies, LLC (NSTec), based in Las Vegas, Nevada, will support the DOE in its role for managing the overall radiological contingency planning support effort. This paper will focus on new technologies that NSTec is developing to enhance the overall response capability that would be required for a highly unlikely anomaly. This paper presents recent advances in collecting and collating data transmitted from deployed teams and sensors. NSTec is responsible to prepare the contingency planning for a range of areas from monitoring and assessment

  20. Radiological Contingency Planning for the Mars Science Laboratory Launch

    SciTech Connect

    Paul P. Guss

    2008-04-01

    This paper describes the contingency planning for the launch of the Mars Science Laboratory scheduled for the 21-day window beginning on September 15, 2009. National Security Technologies, LLC (NSTec), based in Las Vegas, Nevada, will support the U.S. Department of Energy (DOE) in its role for managing the overall radiological contingency planning support effort. This paper will focus on new technologies that NSTec’s Remote Sensing Laboratory (RSL) is developing to enhance the overall response capability that would be required for a highly unlikely anomaly. This paper presents recent advances in collecting and collating data transmitted from deployed teams and sensors. RSL is responsible to prepare the contingency planning for a range of areas from monitoring and assessment, sample collection and control, contaminated material release criteria, data management, reporting, recording, and even communications. The tools RSL has available to support these efforts will be reported. The data platform RSL will provide shall also be compatible with integration of assets and field data acquired with other DOE, National Space and Aeronautics and Space Administration (NASA), state, and local resources, personnel, and equipment. This paper also outlines the organizational structure for response elements in radiological contingency planning.

  1. Radiological Contingency Planning for the Mars Science Laboratory Launch

    SciTech Connect

    Paul Guss, Robert Augdahl, Bill Nickels, Cassandra Zellers

    2008-04-16

    This paper describes the contingency planning for the launch of the Mars Science Laboratory scheduled for the 21-day window beginning on September 15, 2009. National Security Technologies, LLC (NSTec), based in Las Vegas, Nevada, will support the U.S. Department of Energy (DOE) in its role for managing the overall radiological contingency planning support effort. This paper will focus on new technologies that NSTec’s Remote Sensing Laboratory (RSL) is developing to enhance the overall response capability that would be required for a highly unlikely anomaly. This paper presents recent advances in collecting and collating data transmitted from deployed teams and sensors. RSL is responsible to prepare the contingency planning for a range of areas from monitoring and assessment, sample collection and control, contaminated material release criteria, data management, reporting, recording, and even communications. The tools RSL has available to support these efforts will be reported. The data platform RSL will provide shall also be compatible with integration of assets and field data acquired with other DOE, National Aeronautics and Space Administration, state, and local resources, personnel, and equipment. This paper also outlines the organizational structure for response elements in radiological contingency planning.

  2. Speech recognition in the radiology department: a systematic review.

    PubMed

    Hammana, Imane; Lepanto, Luigi; Poder, Thomas; Bellemare, Christian; Ly, My-Sandra

    2015-01-01

    To conduct a systematic review of the literature describing the impact of speech recognition systems on report error rates and productivity in radiology departments. The search was conducted for relevant papers published from January 1992 to October 2013. Comparative studies reporting any of the following outcomes were selected: error rates, departmental productivity, and radiologist productivity. The retrieved studies were assessed for quality and risk of bias. The literature search identified 85 potentially relevant publications, but, based on the inclusion and exclusion criteria, only 20 were included. Most studies were before and after assessments with no control group. There was a large amount of heterogeneity due to differences in the imaging modalities assessed and the outcomes measured. The percentage of reports containing at least one error varied from 4.8% to 89% for speech recognition, and from 2.1% to 22% for transcription. Departmental productivity was improved with decreases in report turnaround times varying from 35% to 99%. Most studies found a lengthening of radiologist dictation time. Overall gains in departmental productivity were high, but radiologist productivity, as measured by the time to produce a report, was diminished.

  3. The cost of doing business in academic radiology departments.

    PubMed

    Novak, Ronald D; Mansoori, Bahar; Sivit, Carlos J; Ros, Pablo R

    2013-01-01

    This study identifies the major sources of overhead fees/costs and subsidies in academic radiology departments (ARDs) in the US and determines the differences between them based on geographic location or the size of their affiliated hospital. ARDs in the Northeast had the highest level of financial support from their affiliated hospitals when compared to those in the South/Southwest; however, a greater number of Midwest ARDs receive high levels of funding for teaching from their medical schools when compared to the northeast. Significantly fewer ARDs affiliated with hospitals of less than 200 beds receive subsidies for their activities when compared to those affiliated with larger hospitals. Differences in levels of overhead costs/ subsidies available to ARDs are associated with either geographic location or the size of the affiliated hospital. The reasons for these differences may be related to a variety of legal, contractual, or fiscal factors. Investigation of existing geographic and affiliate size fiscal differences and their causes by ARDs may be of benefit.

  4. Dental diagnostic radiology in the forensic sciences: two case presentations.

    PubMed

    Nicopoulou-Karayianni, K; Mitsea, A G; Horner, K

    2007-06-01

    Dentomaxillofacial radiology is a useful tool in forensic science to reveal characteristics of the structures of the dentomaxillofacial region. Postmortem radiographs are valuable to the forensic odontologist for comparison with antemortem radiographs, which are the most consistent part of the antemortem records that can be transmitted during forensic examination procedures. By using dentomaxillofacial radiology we can, therefore, give answers to problems dealing with identification cases, mass disasters and dental age estimation. We present the contribution of dentomaxillofacial radiology to the forensic sciences through two cases of deceased persons, where identification was based on information provided by radiographs. The right performance, interpretation and reportage of dentomaxillofacial radiological examination and procedures can be extremely valuable in solving forensic problems.

  5. Quality metrics currently used in academic radiology departments: results of the QUALMET survey.

    PubMed

    Walker, Eric A; Petscavage-Thomas, Jonelle M; Fotos, Joseph S; Bruno, Michael A

    2017-03-01

    We present the results of the 2015 quality metrics (QUALMET) survey, which was designed to assess the commonalities and variability of selected quality and productivity metrics currently employed by a large sample of academic radiology departments representing all regions in the USA. The survey of key radiology metrics was distributed in March-April of 2015 via personal e-mail to 112 academic radiology departments. There was a 34.8% institutional response rate. We found that most academic departments of radiology commonly utilize metrics of hand hygiene, report turn around time (RTAT), relative value unit (RVU) productivity, patient satisfaction and participation in peer review. RTAT targets were found to vary widely. The implementation of radiology peer review and the variety of ways in which peer review results are used within academic radiology departments, the use of clinical decision support tools and requirements for radiologist participation in Maintenance of Certification also varied. Policies for hand hygiene and critical results communication were very similar across all institutions reporting, and most departments utilized some form of missed case/difficult case conference as part of their quality and safety programme, as well as some form of periodic radiologist performance reviews. Results of the QUALMET survey suggest many similarities in tracking and utilization of the selected quality and productivity metrics included in our survey. Use of quality indicators is not a fully standardized process among academic radiology departments. Advances in knowledge: This article examines the current quality and productivity metrics in academic radiology.

  6. Surveying Academic Radiology Department Chairs Regarding New and Effective Strategies for Medical Student Recruitment.

    PubMed

    Francavilla, Michael L; Arleo, Elizabeth Kagan; Bluth, Edward I; Straus, Christopher M; Reddy, Sravanthi; Recht, Michael P

    2016-12-01

    The number of 4th-year medical student applications to the field of diagnostic radiology has decreased from 2009 to 2015. The purpose of this study was to learn how radiology departments are recruiting medical students. An anonymous online survey hyperlink was distributed to the members of the Society of Chairs of Academic Radiology Departments regarding both innovative and proven recruitment strategies. The results were synthesized with a recently published survey of medical students about factors influencing them to go into radiology. Forty of 126 radiology departments completed the survey. Most felt that radiology exposure and curricula require alteration given recent downward trends in medical student applications. A majority (79%) had changed their outreach to medical students in response to these trends. The responding department chairs felt that interactive learning while on rotation was the most important strategy for recruitment. The presence of a diversity program, dedicated medical school educator, or rotating daily assignment for students did not affect the likelihood of filling residency spots in the main match. Many radiology departments are changing their outreach to medical students to improve recruitment. Effective strategies to focus on include early active outreach by involving students in the radiology department, thereby framing radiologists as clinicians.

  7. Enhancing research in academic radiology departments: recommendations of the 2003 Consensus Conference.

    PubMed

    Alderson, Philip O; Bresolin, Linda B; Becker, Gary J; Thrall, James H; Dunnick, N Reed; Hillman, Bruce J; Lee, Joseph K T; Nagy, Edward C

    2004-08-01

    Opportunities for funded radiologic research are greater than ever, and the amount of federal funding coming to academic radiology departments is increasing. Even so, many medical school-based radiology departments have little or no research funding. Accordingly, a consensus panel was convened to discuss ways to enhance research productivity and broaden the base of research strength in as many academic radiology departments as possible. The consensus panel included radiologists who have leadership roles in some of the best-funded research departments, radiologists who direct other funded research programs, and radiologists with related expertise. The goals of the consensus panel were to identify the attributes associated with successful research programs and to develop an action plan for radiology research based on these characteristics.

  8. How Secure Is Your Radiology Department? Mapping Digital Radiology Adoption and Security Worldwide.

    PubMed

    Stites, Mark; Pianykh, Oleg S

    2016-04-01

    Despite the long history of digital radiology, one of its most critical aspects--information security--still remains extremely underdeveloped and poorly standardized. To study the current state of radiology security, we explored the worldwide security of medical image archives. Using the DICOM data-transmitting standard, we implemented a highly parallel application to scan the entire World Wide Web of networked computers and devices, locating open and unprotected radiology servers. We used only legal and radiology-compliant tools. Our security-probing application initiated a standard DICOM handshake to remote computer or device addresses, and then assessed their security posture on the basis of handshake replies. The scan discovered a total of 2774 unprotected radiology or DICOM servers worldwide. Of those, 719 were fully open to patient data communications. Geolocation was used to analyze and rank our findings according to country utilization. As a result, we built maps and world ranking of clinical security, suggesting that even the most radiology-advanced countries have hospitals with serious security gaps. Despite more than two decades of active development and implementation, our radiology data still remains insecure. The results provided should be applied to raise awareness and begin an earnest dialogue toward elimination of the problem. The application we designed and the novel scanning approach we developed can be used to identify security breaches and to eliminate them before they are compromised.

  9. A Visit to the Computer Science Department,

    DTIC Science & Technology

    1983-01-11

    THE COMPUTER SCIENCE DEPARTMENT by Zbong Qing FES 23 I Approved for public "release; Udistribution unlimited. -- 83 02 023 AI FTD-zD(sj)T-&7-42 EDITED...TRANSLATION FTD-ID(RS)T-1722-82 11 January 1983 MICROFICHE NR: PTD-83-C-000022 A VISIT TO THE COMPUTER SCIENCE DEPARTMENT ly: Zhong Qing English...Zhong Qing AernauicsInstitute,anBejgAro nautics Institute all have computer science departments. Why are computer science departments needed at

  10. Handheld Technology Acceptance in Radiologic Science Education and Training Programs

    ERIC Educational Resources Information Center

    Powers, Kevin Jay

    2012-01-01

    The purpose of this study was to explore the behavioral intention of directors of educational programs in the radiologic sciences to adopt handheld devices to aid in managing student clinical data. Handheld devices were described to participants as a technology representing a class of mobile electronic devices including, but not limited to,…

  11. Handheld Technology Acceptance in Radiologic Science Education and Training Programs

    ERIC Educational Resources Information Center

    Powers, Kevin Jay

    2012-01-01

    The purpose of this study was to explore the behavioral intention of directors of educational programs in the radiologic sciences to adopt handheld devices to aid in managing student clinical data. Handheld devices were described to participants as a technology representing a class of mobile electronic devices including, but not limited to,…

  12. Handheld technology acceptance in radiologic science education and training programs

    NASA Astrophysics Data System (ADS)

    Powers, Kevin Jay

    The purpose of this study was to explore the behavioral intention of directors of educational programs in the radiologic sciences to adopt handheld devices to aid in managing student clinical data. Handheld devices were described to participants as a technology representing a class of mobile electronic devices including, but not limited to, personal digital assistants such as a Palm TX, Apple iPod Touch, Apple iPad or Hewlett Packard iPaq, and cellular or smartphones with third generation mobile capabilities such as an Apple iPhone, Blackberry or Android device. The study employed a non-experimental, cross-sectional survey design to determine the potential of adopting handheld technologies based on the constructs of Davis's (1989) Technology Acceptance Model. An online self-report questionnaire survey instrument was used to gather study data from 551 entry level radiologic science programs specializing in radiography, radiation therapy, nuclear medicine and medical sonography. The study design resulted in a single point in time assessment of the relationship between the primary constructs of the Technology Acceptance Model: perceived usefulness and perceived ease of use, and the behavioral intention of radiography program directors to adopt the information technology represented by hand held devices. Study results provide justification for investing resources to promote the adoption of mobile handheld devices in radiologic science programs and study findings serve as a foundation for further research involving technology adoption in the radiologic sciences.

  13. Radiology in World War II (Medical Department, United States Army)

    DTIC Science & Technology

    1966-01-01

    of opinion as the war progressed. They included: 102 RADIOLOGY FJiuG-z 33.-Moderately advanced pulmon - ary tuberculosis detected in routine roent...therapy of cancer , like its surgical management, had become so complex that, unless the disease was treated with skill far above the average, therapeutic...efforts directed toward it could be wasted. To control cancer with X-rays produced by the equipment available to Army hospitals, except the equipment

  14. Veterinary Science Departments: Their Role in Academia

    ERIC Educational Resources Information Center

    Curtin, Terrence M.

    1977-01-01

    The roles played by veterinary science departments are creditable and important, says this head of a department of veterinary science. Those roles will reflect an absolute increase in participation with veterinary schools on a regional and national basis, and a relative increase in direct involvement in veterinary education. (LBH)

  15. Clinical routine operation of a filmless radiology department: three years experience

    NASA Astrophysics Data System (ADS)

    Mosser, Hans M.; Paertan, Gerald; Hruby, Walter

    1995-05-01

    This paper communicates the operational implementation of filmless digital radiology in clinical routine, its feasibility and its effect on the radiology profession, based on the three years clinical experience from the filmless digital radiology department of the Danube Hospital, a major teaching hospital in Vienna, Austria, with currently 850 acute-care beds. Since April 1992 all radiological modalities are reported from the monitors of 16 reporting consoles in the radiology department. Images and reports are distributed by the hospital-wide network (Sienet, Siemens Medical Systems, Erlangen), and can be viewed on 60 display consoles throughout the hospital. Filmless radiology primarily is an efficient hospital-wide infrastructure to deliver radiological services along with other medical information, providing safe and fast access to this information anytime and anywhere, necessary for the conduct of the diagnostic and therapeutic task of patient care. In a comparative study of the Danube Hospital with the film based Rudolfstiftung Hospital in Vienna, we found a significant decrease of the mean patient length of hospital stay (1.99 to 3.72 days) that partially might be attributed to the implementation of filmless radiology.

  16. Animal science departments of the future.

    PubMed

    Britt, J H; Aberle, E D; Esbenshade, K L; Males, J R

    2008-11-01

    Departments of animal science were established in agricultural colleges of public universities just over 100 yr ago, shortly before the founding of today's American Society of Animal Science. These departments and colleges have been remarkably resilient, changing little structurally. Yet, the future portends significant changes in these departments and colleges in response to shifts in how public higher education is financed and how society views the roles of animals in providing food and companionship. Funding for public higher education will continue to decline as a percentage of government appropriations. Public universities will garner more funding from gifts, endowments, grants, contracts, and tuition but will be held more accountable than today by public officials. Departments of animal science will retain strong constituencies and will be major units of most agricultural colleges; however, their students and faculty will be more diverse. Departments of animal science will focus on more species of animals and on a greater role of animals in society. Disciplines of faculty members in departments of animal science will become broader, and research projects will be more complex and have longer horizons, ultimately focused more on sustainability. Departments will share more resources across state and national boundaries, and there will be less duplication of effort regionally. Departments of animal science will continue to be important academic units of universities into the 22nd century.

  17. National survey to identify subspecialties at risk for physician shortages in Canadian academic radiology departments.

    PubMed

    Ng, Kai-Ling; Yazer, Jo; Abdolell, Mohammed; Brown, Peter

    2010-12-01

    To identify subspecialty fields in Canadian academic radiology departments that are at risk for future manpower shortages. To determine reasons for the potential shortages and suggest potential solutions. An anonymous online survey was sent by e-mail to radiology residents and academic radiology department heads in Canada. The survey was open from April 1 to August 1, 2006. Statistical analysis by using the SAS Frequency Procedure was performed on the results. Interventional radiology, neuroradiology, mammography, cardiac imaging, and pediatric radiology were identified as areas in which there will be increasing workforce demands. Mammography, pediatric radiology, and cardiac imaging were identified as areas in which there will be a potential decrease in supply. Of the residents, 65.83% intended on pursuing subspecialty training. Priorities were interesting work, job availability, and work schedule. Nuclear medicine, mammography, pediatric radiology, and interventional radiology were identified as the top 4 areas in which residents specifically did not want to pursue further subspecialty training. Only 15% of resident respondents received career counseling during residency, and only 50% of those residents thought it was adequate. Our survey results indicate that mammography, cardiac imaging, and pediatric radiology are at risk for manpower shortages, and interventional radiology may be at risk. Increased efforts to recruit trainees may be necessary to ensure that these subspecialties maintain their presence in the future. Only 15% of the surveyed residents received career counseling during residency. This is a relatively untapped forum that academic staff could use to help recruit new trainees into these underserved subspecialties. Crown Copyright © 2010. Published by Elsevier Inc. All rights reserved.

  18. Limitations on diversity in basic science departments.

    PubMed

    Leboy, Phoebe S; Madden, Janice F

    2012-08-01

    It has been over 30 years since the beginning of efforts to improve diversity in academia. We can identify four major stages: (1) early and continuing efforts to diversify the pipeline by increasing numbers of women and minorities getting advanced degrees, particularly in science, technology, engineering, and math (STEM); (2) requiring academic institutions to develop their own "affirmative action plans" for hiring and promotion; (3) introducing mentoring programs and coping strategies to help women and minorities deal with faculty practices from an earlier era; (4) asking academic institutions to rethink their practices and policies with an eye toward enabling more faculty diversity, a process known as institutional transformation. The thesis of this article is that research-intensive basic science departments of highly ranked U.S. medical schools are stuck at stage 3, resulting in a less diverse tenured and tenure-track faculty than seen in well-funded science departments of major universities. A review of Web-based records of research-intensive departments in universities with both medical school and nonmedical school departments indicates that the proportion of women and Black faculty in science departments of medical schools is lower than the proportion in similarly research-intensive university science departments. Expectations for faculty productivity in research-intensive medical school departments versus university-based departments may lead to these differences in faculty diversity.

  19. Effectiveness of Current Practices for Disinfecting Medical Equipment in a Radiology Department.

    PubMed

    Hubble, William L; Turner, James Austin; Heuertz, Rita

    2016-01-01

    To evaluate the effectiveness of routine, daily disinfection practices on the control of microorganisms on nuclear medicine equipment in a radiology department. During phase 1, surface samples were collected from various sites in the nuclear medicine division of a radiology department at a single institution. These samples were transferred onto growth plates for evaluation and speciation by a clinical microbiologist. Collection sites that yielded potentially pathogenic bacteria or high numbers (> 100) of colonies of likely nonpathogenic bacteria were identified for resampling. During phase 2, secondary samples were taken at the resampling sites after disinfection. These secondary samples also were evaluated to determine the efficacy of the departmental disinfection practices on surface cleanliness. Phase 1 sampling identified 10 sites that harbored either potentially pathogenic bacteria or high numbers of likely nonpathogenic bacteria. Evaluation of postdisinfection samples indicated elimination of potentially pathogenic bacteria and reduction of likely nonpathogenic colonies. The variety of surfaces and equipment found in radiology departments can present unique challenges for effective disinfection. Porous materials and intricate imaging and peripheral devices require special consideration when designing and maintaining department cleaning policies. The disinfection practices in place at the institution were effective in reducing or eliminating bacteria; however, recolonization after cleaning was recognized as a possibility. Educating staff about the value of disinfecting contact surfaces between patients is necessary to achieve optimum sanitization in the radiology department. © 2016 American Society of Radiologic Technologists.

  20. HIPAA security: compliance in radiology--an academic radiology department's plan contrasted with a small private practice.

    PubMed

    Haramati, N

    2000-01-01

    In complying with the HIPAA security regulations, the large, multi-site academic radiology department is quite different from the small, private radiology practice. This article compares and contrasts the methods each of these two model organizations use to achieve compliance. In common between the two organizations is that complete documentation of the procedures and processes involved in data management must be prepared and reviewed. Although not required in the regulations, having the documentation conform to the regulation allows for easy monitoring, auditing, and certification of compliance by future independent bodies. The level to which each organization must secure their data, perform threat assessments, and implement security procedures and intrusion detection systems are very different. The regulations do not specify what level of due diligence is required. This must be determined by each organization using their own common-sense dictum. Although the solutions used by these two types of organizations may not be the same as those adopted by other radiology departments and practices, the approaches may still serve as useful templates to guide compliance efforts by others.

  1. Education Department's Senese Outlines Science, Math Programs.

    ERIC Educational Resources Information Center

    Lepkowski, Wil

    1983-01-01

    Presented is an interview with Donald J. Senese (Department of Education Assistant Secretary) in which the department's functions, responsibilities, and philosophies in precollege science/mathematics education are outlined and discussed. Specific questions answered relate to curriculum development, creationism, copyright ownership of software,…

  2. Attitudes of Radiologic Science Students, Technologists, and Clinical Instructors Regarding Their Experiential Learning and Career Capacity

    ERIC Educational Resources Information Center

    Burns, Caroline

    2012-01-01

    Radiologic science is an essential part of the healthcare continuum and preparing radiologic science students with experiential learning is essential. It is from this experience working with the patient that students begin to prepare for entry-level practice. The purpose of the study was to examine the attitudes of current radiologic science…

  3. Mixed reaction to science department proposal

    NASA Astrophysics Data System (ADS)

    The recommendation last month by a presidential commission that a federal Department of Science and Technology be created to encompass “major civilian research and development (R&D) agencies” has elicited a mixed reaction from members of the geophysical sciences community.The Commission on Industrial Competitiveness, created by President Ronald Reagan in June 1983 to study ways to strengthen the ability of the United States to compete in a global marketplace, recommended establishment of a Cabinet-level science department “to promote national interest in and policies for research and technological innovation.” The commission, chaired by John A. Young, president of the Hewlett-Packard Company, was composed primarily of presidents and chief executive officers of major technology corporations but also included members of academia and government. Creation of a federal science and technology 'department is one of many suggestions contained in the commission's final report, Global Competition: The New Reality.

  4. Strategies for establishing a comprehensive quality and performance improvement program in a radiology department.

    PubMed

    Kruskal, Jonathan B; Anderson, Stephan; Yam, Chun S; Sosna, Jacob

    2009-01-01

    To improve the safety and quality of the care that radiologists provide, and to allow radiologists and radiology personnel to remain competitive in an increasingly complex environment, it is essential that all imaging departments establish and maintain managed, comprehensive, and effective performance improvement programs. Although the structure and focus of these programs can vary, a number of common components exist, many of which are now widely mandated by organizations that regulate the field of radiology. Basic components include patient safety, process improvement, customer service, professional staff assessment, and education, each of which requires strategies for implementing continuous programs to monitor performance, analyzing and depicting data, implementing change, and meeting regulatory requirements. All of these components are part of a comprehensive quality management system in a large academic radiology department. For smaller departments or practices, the gradual introduction of one or more of these components is useful in ensuring the safety and quality of their services.

  5. Health Literacy Affects Likelihood of Radiology Testing in the Pediatric Emergency Department

    PubMed Central

    Morrison, Andrea K.; Brousseau, David C.; Brazauskas, Ruta; Levas, Michael N.

    2014-01-01

    Objective To test the hypothesis that the effect of race/ethnicity on decreased radiologic testing in the pediatric emergency department (ED) varies by caregiver health literacy. Study design This was a secondary analysis of a cross-sectional study of caregivers accompanying children ≤12 years to a pediatric ED. Caregiver health literacy was measured using the Newest Vital Sign. A blinded chart review determined whether radiologic testing was utilized. Bivariate and multivariate analyses, adjusting for ED triage level, child insurance, and chronic illness were used to determine the relationship between race/ethnicity, health literacy, and radiologic testing. Stratified analyses by caregiver health literacy were conducted. Results 504 caregivers participated; the median age was 31 years, 47% were white, 37% black, 10% Hispanic, and 49% had low health literacy. Black race and low health literacy were associated with less radiologic testing (p <0.01). In stratified analysis, minority race was associated with less radiologic testing only if a caregiver had low health literacy (aOR 0.5; 95% CI 0.3–0.9) and no difference existed in those with adequate health literacy (aOR 0.7; 95% CI 0.4–1.3). Conclusion Caregiver low health literacy modifies whether minority race/ethnicity is associated with decreased radiologic testing, with only children of minority caregivers with low health literacy receiving fewer radiologic studies. Future interventions to eliminate disparities in healthcare resource utilization should consider health literacy as a mutable factor. PMID:25596100

  6. Development of radiological profiles for U.S. Department of Energy low-level mixed wastes

    SciTech Connect

    Wilkins, B.D.; Meshkov, N.K.; Dolak, D.A.; Wang, Y.Y.

    1995-03-01

    Radiological profiles have been developed by Argonne National Laboratory for low-level mixed wastes (LLMWs) that are under the management of the US Department of Energy (DOE). These profiles have been used in the Office of Environmental Management Programmatic Environmental Impact Statement (EM PEIS) to support the analysis of environmental and health risks associated with the various waste management strategies. The radiological characterization of DOE LLMWs is generally inadequate and has made it difficult to develop a site- and waste-stream-dependent radiological profile for LLMWs. On the basis of the operational history of the DOE sites, a simple model was developed to generate site-dependent and waste-stream-independent radiological profiles for LLMWs. This paper briefly discusses the assumptions used in this model and the uncertainties in the results.

  7. Environmental protection: researches in National Institute of Radiological Sciences.

    PubMed

    Fuma, Shoichi; Ban-nai, Tadaaki; Doi, Masahiro; Fujimori, Akira; Ishii, Nobuyoshi; Ishikawa, Yuji; Kawaguchi, Isao; Kubota, Yoshihisa; Maruyama, Kouichi; Miyamoto, Kiriko; Nakamori, Taizo; Takeda, Hiroshi; Watanabe, Yoshito; Yanagisawa, Kei; Yasuda, Takako; Yoshida, Satoshi

    2011-07-01

    Some studies for radiological protection of the environment have been made at the National Institute of Radiological Sciences (NIRS). Transfer of radionuclides and related elements has been investigated for dose estimation of non-human biota. A parameter database and radionuclide transfer models have been also developed for the Japanese environments. Dose (rate)-effect relationships for survival, growth and reproduction have been investigated in conifers, Arabidopsis, fungi, earthworms, springtails, algae, duckweeds, daphnia and medaka. Also genome-wide gene expression analysis has been carried out by high coverage expression profiling (HiCEP). Effects on aquatic microbial communities have been studied in experimental ecosystem models, i.e., microcosms. Some effects were detected at a dose rate of 1 Gy day(-1) and were likely to arise from interspecies interactions. The results obtained at NIRS have been used in development of frameworks for environmental protection by some international bodies, and will contribute to environmental protection in Japan and other Asian countries.

  8. [Comparison of time-oriented cost accounting catalogs to control a department of radiology].

    PubMed

    Hackländer, T; Mertens, H; Cramer, B M

    2005-03-01

    Within a hospital, the radiology department has taken over the role of a cost center. Cost accounting can be applied to analyze the costs for the performance of services. By assigning the expenditures of resources to the service, the cash value can directly be distributed to the costs of equipment, material and rooms. Time-oriented catalogs of services are predefined to calculate the number of the employees for a radiology department. Using our own survey of time data, we examined whether such catalogs correctly represent the time consumed in a radiology department. Only services relevant for the turnover were compared. For 96 primary radiological services defined by the score-oriented German fee catalog for physicians (Gebuhrenordnung fur Arzte), a ranking list was made for the annual procedures in descending frequency order. According to the Pareto principle, the 11 services with the highest frequency were chosen and the time consumed for the technical and medical services was collected over a period of 2 months. This survey was compared with the time-oriented catalogs TARMED and EBM 2000plus. The included 11 relevant radiological services represented 80.3 % of the annual procedures of our radiology department. When comparing the technical services between the time-oriented catalogs and our own survey, TARMED gives a better description of the time consumed in 7 of the 11 services and EMB 2000plus in 3 services. When comparing the medical services, TARMED gives a better description of the time consumed in 6 of the 11 services and EBM 2000plus in 4 services. When averaging all the radiological services, TARMED overestimates the current number of physicians necessary for primary reading by a factor of 10.0 % and EBM 2000plus by a factor of 2.6 %. As to the time spent on performing the relevant radiological services, TARMED is slightly superior to describe the radiology department of a hospital than EBM 2000plus. For calculating the number of physicians necessary for

  9. A Survey of Academic Radiology Department Chairs on Hiring Recent Graduates as New Attending Physicians.

    PubMed

    Smith, Shrita Marie; Demissie, Seleshi; Raden, Mark; Yarmish, Gail

    2015-12-01

    To determine hiring preferences among academic radiology department chairs with emphasis on recent residency and fellowship graduates. With the assistance of the Society of Chairs of Academic Radiology Departments (SCARD), an anonymous survey was distributed to academic radiology department chairs during the time period December 2014-March 2015, with additional reminder emails during the study period. Varied multiple choice questions were designed to gather information regarding program details; qualities most valued in new attending hires; level of difficulty recruiting subspecialty fellowship-trained radiologists; and the effect of the new ABR certification process on hiring practices. Descriptive statistics and analyses are reported. Surveys were completed by 79 of 184 eligible academic radiology chairs, a response rate of 43%. The most important hiring criteria cited were expertise in subspecialty, fellowship training, and perceived ability to work well with referring physicians. The most popular recruitment tools cited were hiring candidates from a chair's own program, journal ads, and academic networks. A minority of chairs (16%), primarily those of smaller departments, will not hire new graduates before completing board certification under the new certification structure (P = .0143). Expertise in a candidate's subspecialty was consistently cited as the most important hiring criterion. Changes to the ABR certification process, however, will affect hiring decisions, particularly within smaller academic departments. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  10. Leading Learning: Science Departments and the Chair

    ERIC Educational Resources Information Center

    Melville, Wayne; Campbell, Todd; Jones, Doug

    2016-01-01

    In this article, we have considered the role of the chair in leading the learning necessary for a department to become effective in the teaching and learning of science from a reformed perspective. We conceptualize the phrase "leading learning" to mean the chair's constitution of influence, power, and authority to intentionally impact…

  11. Earth Sciences Department Annual Report, 1984

    SciTech Connect

    Henry, A.L.; Donohue, M.L.

    1985-09-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory comprises nine different disciplinary and programmatic groups that provide research in the geosciences, including nuclear waste management, containment of nuclear weapons tests, seismic treaty verification, stimulation of natural gas production by unconventional means, and oil shale retorting. Each group's accomplishments in 1984 are discussed, followed by a listing of the group's publications for the year.

  12. Leading Learning: Science Departments and the Chair

    ERIC Educational Resources Information Center

    Melville, Wayne; Campbell, Todd; Jones, Doug

    2016-01-01

    In this article, we have considered the role of the chair in leading the learning necessary for a department to become effective in the teaching and learning of science from a reformed perspective. We conceptualize the phrase "leading learning" to mean the chair's constitution of influence, power, and authority to intentionally impact…

  13. [Workflow improvement and efficiency gain with near total digitalization of a radiology department].

    PubMed

    Langen, H-L; Bielmeier, J; Wittenberg, G; Selbach, R; Feustel, H

    2003-10-01

    To determine the temporal changes of the workflow caused by digitalization of the radiology department after installation of digital luminescence-radiography (DLR), a radiology information system (RIS) and picture archiving and communication system (PACS) at the Missionsärztliche Klinik in April 2000. In a comparative study, a workflow analysis by manual registration of different work steps was performed before (1999) and after (2001) digitalization of a radiology department. The digitalization shortened the examination time for patients from a mean of 8 min to 5 min. The time the patient is absent from the emergency room did not change. Reporting radiographic examinations including comparison with previous studies begins earlier from a mean of 2 h 37 min to 17 min. Using PACS, 85.9 % of all cases could be interpreted on the day of the examination (without PACS 41.2 %) and 87.2 % of the reports were completed the day after the examination (without PACS 64.5 %). No time differences were found between reading conventional studies on the monitor or as soft-copy. Compared to conventional film-screen systems, complete digitalization of a radiology department is time saving at nearly all steps of the workflow, with expected positive effects on the workflow quality of the entire hospital.

  14. Status of ion sources at National Institute of Radiological Sciences

    SciTech Connect

    Kitagawa, A.; Fujita, T.; Goto, A.; Hattori, T.; Hamano, T.; Hojo, S.; Honma, T.; Imaseki, H.; Katagiri, K.; Muramatsu, M.; Sakamoto, Y.; Sekiguchi, M.; Suda, M.; Sugiura, A.; Suya, N.

    2012-02-15

    The National Institute of Radiological Sciences (NIRS) maintains various ion accelerators in order to study the effects of radiation of the human body and medical uses of radiation. Two electrostatic tandem accelerators and three cyclotrons delivered by commercial companies have offered various life science tools; these include proton-induced x-ray emission analysis (PIXE), micro beam irradiation, neutron exposure, and radioisotope tracers and probes. A duoplasmatron, a multicusp ion source, a penning ion source (PIG), and an electron cyclotron resonance ion source (ECRIS) are in operation for these purposes. The Heavy-Ion Medical Accelerator in Chiba (HIMAC) is an accelerator complex for heavy-ion radiotherapy, fully developed by NIRS. HIMAC is utilized not only for daily treatment with the carbon beam but also for fundamental experiments. Several ECRISs and a PIG at HIMAC satisfy various research and clinical requirements.

  15. Definition of Local Diagnostic Reference Levels in a Radiology Department Using a Dose Tracking Software.

    PubMed

    Ghetti, C; Ortenzia, O; Palleri, F; Sireus, M

    2016-09-10

    Dose optimization in radiological examinations is a mandatory issue: in this study local Diagnostic Reference Levels (lDRLs) for Clinical Mammography (MG), Computed Tomography (CT) and Interventional Cardiac Procedures (ICP) performed in our Radiology Department were established. Using a dose tracking software, we have collected Average Glandular Dose (AGD) for two clinical mammographic units; CTDIvol, Size-Specific Dose Estimate (SSDE), Dose Length Product (DLP) and total DLP (DLPtot) for five CT scanners; Fluoro Time, Fluoro Dose Area Product (DAP) and total DAP (DAPtot) for two angiographic systems. Data have been compared with Italian Regulation and with the recent literature. The 75th percentiles of the different dosimetric indices have been calculated. Automated methods of radiation dose data collection allow a fast and detailed analysis of a great amount of data and an easy determination of lDRLs for different radiological procedures.

  16. Integration of basic sciences and clinical sciences in oral radiology education for dental students.

    PubMed

    Baghdady, Mariam T; Carnahan, Heather; Lam, Ernest W N; Woods, Nicole N

    2013-06-01

    Educational research suggests that cognitive processing in diagnostic radiology requires a solid foundation in the basic sciences and knowledge of the radiological changes associated with disease. Although it is generally assumed that dental students must acquire both sets of knowledge, little is known about the most effective way to teach them. Currently, the basic and clinical sciences are taught separately. This study was conducted to compare the diagnostic accuracy of students when taught basic sciences segregated or integrated with clinical features. Predoctoral dental students (n=51) were taught four confusable intrabony abnormalities using basic science descriptions integrated with the radiographic features or taught segregated from the radiographic features. The students were tested with diagnostic images, and memory tests were performed immediately after learning and one week later. On immediate and delayed testing, participants in the integrated basic science group outperformed those from the segregated group. A main effect of learning condition was found to be significant (p<0.05). The results of this study support the critical role of integrating biomedical knowledge in diagnostic radiology and shows that teaching basic sciences integrated with clinical features produces higher diagnostic accuracy in novices than teaching basic sciences segregated from clinical features.

  17. Application of failure mode and effect analysis in a radiology department.

    PubMed

    Thornton, Eavan; Brook, Olga R; Mendiratta-Lala, Mishal; Hallett, Donna T; Kruskal, Jonathan B

    2011-01-01

    With increasing deployment, complexity, and sophistication of equipment and related processes within the clinical imaging environment, system failures are more likely to occur. These failures may have varying effects on the patient, ranging from no harm to devastating harm. Failure mode and effect analysis (FMEA) is a tool that permits the proactive identification of possible failures in complex processes and provides a basis for continuous improvement. This overview of the basic principles and methodology of FMEA provides an explanation of how FMEA can be applied to clinical operations in a radiology department to reduce, predict, or prevent errors. The six sequential steps in the FMEA process are explained, and clinical magnetic resonance imaging services are used as an example for which FMEA is particularly applicable. A modified version of traditional FMEA called Healthcare Failure Mode and Effect Analysis, which was introduced by the U.S. Department of Veterans Affairs National Center for Patient Safety, is briefly reviewed. In conclusion, FMEA is an effective and reliable method to proactively examine complex processes in the radiology department. FMEA can be used to highlight the high-risk subprocesses and allows these to be targeted to minimize the future occurrence of failures, thus improving patient safety and streamlining the efficiency of the radiology department. RSNA, 2010

  18. Department of the Interior Climate Science Centers

    USGS Publications Warehouse

    Jones, Sonya A.

    2011-01-01

    What is a Climate Science Center? On September 14, 2009, the Secretary of the Interior signed a Secretarial Order (No. 3289) entitled, "Addressing the Impacts of Climate Change on America's Water, Land, and Other Natural and Cultural Resources." The Order effectively established the U.S. Department of the Interior (DOI) Climate Science Centers (CSCs), which will integrate DOI science and management expertise with similar contributions from our partners to provide information to support adaptation and mitigation efforts on both public and private lands, across the United States and internationally.The Southeast CSC, hosted by NC State University (NCSU), will collaborate with a number of other universities, State and Federal agencies, and nongovernmental organizations (NGOs) with interest and expertise in climate science. The primary partner for the Southeast CSC will be the Landscape Conservation Cooperatives (LCCs) in the Southeast, including the Appalachian, Gulf Coastal Plains and Ozarks, Gulf Coast Prairie, Peninsular Florida, and the South Atlantic. CSC collaborations are focused on common science priorities, addressing priority partner needs, minimizing redundancies in science, sharing scientific findings, and expanding understanding of climate change impacts in the Southeast.

  19. Secondary school science department chairs leading change

    NASA Astrophysics Data System (ADS)

    Gaubatz, Julie A.

    Secondary school department chairs are content area specialists in their schools and are responsible for providing students with the most appropriate curricula. However, most secondary school department chairs have limited authority to institute change unilaterally (Gmelch, 1993; Hannay & Erb, 1999). To explore how these educational leaders navigate the change process within their departments, this study examined the change stories of six secondary school science department chairs who had led change attempts. In total, these department chairs shared six stories of successful change attempts and four unsuccessful change attempts. The topics of leadership and change were accessed through department chair interviews, document analysis, and a leadership inventory. Department chair leadership was analyzed with Blake and McCanse's (1991) Leadership Grid, and further explored using Yukl, Gordon, and Taber's (2002) detailed characterization of this grid. The change processes described in these department chair stories were analyzed using the frameworks provided by Ely's (1990) conditions of change, and Havelock and Zlotolow (1995) CREATER change stages model. In general, the findings of this study support Havelock and Zlotolow's CREATER model, as well as Ely's conditions of change, with dissatisfaction with the status quo emerging as the essential condition for successful change. This study connects these change process frameworks to specific leadership strategies and behaviors, and uses these connections to illuminate differences between successful and unsuccessful instances of change. These findings, along with other unanticipated findings emerging from department chair stories of change, such as the adverse influence of contentious resistors and the importance of team construction, add both to the literature on change and leadership and to the crucial point where these concepts intersect.

  20. Surface analysis for students in Nuclear Engineering and Radiological Sciences

    SciTech Connect

    Rotberg, V.H.; Busby, J.; Toader, O.; Was, G.S.

    2003-08-26

    Students in Nuclear Engineering and Radiological Sciences at the University of Michigan are required to learn about the various applications of radiation. Because of the broad applicability of accelerators to surface analysis, one of these courses includes a laboratory session on surface analysis techniques such as Rutherford Backscattering Analysis (RBS) and Nuclear Reaction Analysis (NRA). In this laboratory session, the students determine the concentration of nitrogen atoms in various targets using RBS and NRA by way of the 14N(d,{alpha})12C reaction. The laboratory is conducted in a hands-on format in which the students conduct the experiment and take the data. This paper describes the approach to teaching the theory and experimental methods behind the techniques, the conduct of the experiment and the analysis of the data.

  1. Determination of actinides at the radiological and environmental sciences laboratory

    NASA Astrophysics Data System (ADS)

    Williams, R. L.; Grothaus, G. E.

    1984-06-01

    This article briefly describes some of the techniques and procedures that have been developed at the Radiological and Environmental Sciences Laboratory (RESL) to determine the actinides in environmental and biological samples. Dried or ashed samples are totally decomposed in high temperature fusions or with an acid dissolution method. Actinides of interest are coprecipitated from the sample matrix with barium sulfate, cerium fluoride, or a combination of ferrous phosphate and calcium fluoride precipitations. The precipitates are dissolved in perchloric acid and extracted with bis(2-ethylhexyl)phosphoric acid (HDEHP) or dissolved in acidic aluminum nitrate and extracted with Aliquat-336. Actinides in the stripped fractions are coprecipitated with 50 μg of cerium as cerium fluoride, filtered onto membrane filters and counted by alpha spectrometry. The described procedures enable an experienced analyst to prepare sixteen 1 g soil or twelve 5 g faecal ash samples for alpha spectrometry in 14 to 16 working-hours.

  2. Annual report of the National Institute of Radiological Sciences

    NASA Astrophysics Data System (ADS)

    1992-01-01

    The annual report for the activities of the National Institute of Radiological Sciences in Japan in the fiscal year 1990 is presented. The activities are divided into research, technical aids, training, medical services, management affairs at the Nakaminato Laboratory Branch Office, library or editing, international cooperation, and general affairs. Research activities are described under the following sections: (1) special researches covering biological risk evaluation in public exposure and exposure assessment in the environment and the public involved in food chain, medical use of accelerated heavy ions, and survey for the demonstration of dose-response relationships in low dose irradiation; (2) five assigned researches; (3) ordinary researches concerning physics, pharmacochemistry, biology, genetics, pathology and physiology, cell biology, internal exposure, environmental science, clinical research, clinical research for radiation injuries, medical use of heavy particles, environmental radiation ecology, and aquatic radiation ecology; (4) risk estimation of radiation; (5) survey for radiation response phenomena in fish and in immunity associated with low dose irradiation; (6) actual surveys for Bikini victims, population doses of medical and occupational exposure, and thorotrast exposure; (7) project research; (8) integrated atomic energy-based technological research; (9) radioactivity survey; (10) research supported by Science and Technology Agency aids; (11) International research cooperation; and (12) government-private joint cooperative study. Appendices include the personnel list and the bibliography of articles reported by the staff.

  3. Science Ideals and Science Careers in a University Biology Department

    ERIC Educational Resources Information Center

    Long, David E.

    2014-01-01

    In an ethnographic study set within a biology department of a public university in the United States, incongruity between the ideals and practice of science education are investigated. Against the background of religious conservative students' complaints about evolution in the curriculum, biology faculty describe their political intents for…

  4. Science Ideals and Science Careers in a University Biology Department

    ERIC Educational Resources Information Center

    Long, David E.

    2014-01-01

    In an ethnographic study set within a biology department of a public university in the United States, incongruity between the ideals and practice of science education are investigated. Against the background of religious conservative students' complaints about evolution in the curriculum, biology faculty describe their political intents for…

  5. Assessing the impact of a radiology information management system in the emergency department

    NASA Astrophysics Data System (ADS)

    Redfern, Regina O.; Langlotz, Curtis P.; Lowe, Robert A.; Horii, Steven C.; Abbuhl, Stephanie B.; Kundel, Harold L.

    1998-07-01

    To evaluate a conventional radiology image management system, by investigating information accuracy, and information delivery. To discuss the customization of a picture archival and communication system (PACS), integrated radiology information system (RIS) and hospital information system (HIS) to a high volume emergency department (ED). Materials and Methods: Two data collection periods were completed. After the first data collection period, a change in work rules was implemented to improve the quality of data in the image headers. Data from the RIS, the ED information system, and the HIS as well as observed time motion data were collected for patients admitted to the ED. Data accuracy, patient waiting times, and radiology exam information delivery were compared. Results: The percentage of examinations scheduled in the RIS by the technologists increased from 0% (0 of 213) during the first period to 14% (44 of 317) during the second (p less than 0.001). The percentage of images missing identification numbers decreased from 36% (98 of 272) during the first data collection period to 10% (56 of 562) during the second period (p less than 0.001). Conclusions: Radiologic services in a high-volume ED, requiring rapid service, present important challenges to a PACS system. Strategies can be implemented to improve accuracy and completeness of the data in PACS image headers in such an environment.

  6. Process mapping of PTA and stent placement in a university hospital interventional radiology department.

    PubMed

    de Bucourt, Maximilian; Busse, Reinhard; Güttler, Felix; Reinhold, Thomas; Vollnberg, Bernd; Kentenich, Max; Hamm, Bernd; Teichgräber, Ulf K

    2012-08-01

    To apply the process mapping technique in an interdisciplinary approach in order to visualize, better understand, and efficiently organize percutaneous transluminal angioplasty (PTA) and stent placement procedures in a university hospital's interventional radiology department. After providing an overview of seven established mapping techniques for medical professionals, the process mapping technique was chosen and applied in an interdisciplinary approach including referrers (physicians, nurses, and other staff in referring departments, e.g., vascular surgery), providers (interventional radiologists, nurses, technicians, and staff of the angiography suite), and specialists of the hospital's controlling department. A generally binding and standardized process map was created, describing the entire procedure for a patient in whom the radiological intervention of PTA or stent treatment is contemplated from admission to the department of vascular surgery until discharge after successful treatment. This visualization tool assists in better understanding (especially given natural staff fluctuation over time) and efficiently organizing PTA and stent procedures. Process mapping can be applied for streamlining workflow in healthcare, especially in interdisciplinary settings. By defining exactly what a business entity does, who is responsible, to what standard a process should be completed, and how the success can be assessed, this technique can be used to eliminate waste and inefficiencies from the workplace while providing high-quality goods and services easily, quickly, and inexpensively. Process mapping can be used in a university hospital's interventional radiology department. • Process mapping can describe the patient's entire process from admission to PTA/stent placement until discharge. • Process mapping can be used in interdisciplinary teams (e.g., referrers, providers, and controlling specialists). • Process mapping can be used in order to more efficiently

  7. Results from data mining in a radiology department: the relevance of data quality.

    PubMed

    Lang, Martin; Kirpekar, Nanda; Bürkle, Thomas; Laumann, Susanne; Prokosch, Hans-Ulrich

    2007-01-01

    This work is part of an ongoing effort to examine and improve clinical workflows in radiology. Classical workflow analysis is time consuming and expensive. Here we present a purely data-driven approach using data mining techniques to detect causes for poor data quality and areas with poor workflow performance. Data has been taken from a operational RIS system. We defined a set of four key indicators for both data quality and workflow performance. Using several mining techniques such as cluster analysis and correlation tests we were able to detect interesting effects regarding data quality and an abnormality in the workflow for some organizational units of the examined radiology departments. We conclude that data-driven data mining approaches may act as a valuable tool to support workflow analysis and can narrow down the problem space for a manual on-site workflow analysis. This can save time and effort and leads to less strain for clinicians and workflow analysts during interviews.

  8. UNITED STATES DEPARTMENT OF HEALTH AND HUMAN SERVICES BIODOSIMETRY AND RADIOLOGICAL/NUCLEAR MEDICAL COUNTERMEASURE PROGRAMS.

    PubMed

    Homer, Mary J; Raulli, Robert; DiCarlo-Cohen, Andrea L; Esker, John; Hrdina, Chad; Maidment, Bert W; Moyer, Brian; Rios, Carmen; Macchiarini, Francesca; Prasanna, Pataje G; Wathen, Lynne

    2016-09-01

    The United States Department of Health and Human Services (HHS) is fully committed to the development of medical countermeasures to address national security threats from chemical, biological, radiological, and nuclear agents. Through the Public Health Emergency Medical Countermeasures Enterprise, HHS has launched and managed a multi-agency, comprehensive effort to develop and operationalize medical countermeasures. Within HHS, development of medical countermeasures includes the National Institutes of Health (NIH), (led by the National Institute of Allergy and Infectious Diseases), the Office of the Assistant Secretary of Preparedness and Response/Biomedical Advanced Research and Development Authority (BARDA); with the Division of Medical Countermeasure Strategy and Requirements, the Centers for Disease Control and Prevention, and the Food and Drug Administration as primary partners in this endeavor. This paper describes various programs and coordinating efforts of BARDA and NIH for the development of medical countermeasures for radiological and nuclear threats.

  9. Chemical-biological-radiological (CBR) response: a template for hospital emergency departments.

    PubMed

    Tan, Gim A; Fitzgerald, Mark C B

    2002-08-19

    Chemical, biological and radiological (CBR) incidents have the potential to shut down emergency departments that do not have an adequate CBR response. Secondary contamination also poses a threat to the safety and wellbeing of staff and other patients. On activation of a CBR response, "clean" and "contaminated" areas should be clearly marked, and all patients decontaminated before being allowed into the emergency department or outpatients department. Personal protective equipment (PPE) is needed for all staff. Staff using PPE must be monitored for signs of heat illness. Stocks of coveralls, bags for contaminated clothes, plastic sheeting for radiological incidents, barriers for crowd control, and selected drugs should be obtained. Staff required include medical, nursing, security, clerical, orderlies, patient care assistants and other staff, depending on the type of threat. An on-call roster that allows regular rotation of staff is needed. All hospital personnel should understand the response plan, and recognise that the emergency department and hospital is a community asset that requires protection.

  10. Focused process improvement events: sustainability of impact on process and performance in an academic radiology department.

    PubMed

    Rosenkrantz, Andrew B; Lawson, Kirk; Ally, Rosina; Chen, David; Donno, Frank; Rittberg, Steven; Rodriguez, Joan; Recht, Michael P

    2015-01-01

    To evaluate sustainability of impact of rapid, focused process improvement (PI) events on process and performance within an academic radiology department. Our department conducted PI during 2011 and 2012 in CT, MRI, ultrasound, breast imaging, and research billing. PI entailed participation by all stakeholders, facilitation by the department chair, collection of baseline data, meetings during several weeks, definition of performance metrics, creation of an improvement plan, and prompt implementation. We explore common themes among PI events regarding initial impact and durability of changes. We also assess performance in each area pre-PI, immediately post-PI, and at the time of the current study. All PI events achieved an immediate improvement in performance metrics, often entailing both examination volumes and on-time performance. IT-based solutions, process standardization, and redefinition of staff responsibilities were often central in these changes, and participants consistently expressed improved internal leadership and problem-solving ability. Major environmental changes commonly occurred after PI, including a natural disaster with equipment loss, a change in location or services offered, and new enterprise-wide electronic medical record system incorporating new billing and radiology informatics systems, requiring flexibility in the PI implementation plan. Only one PI team conducted regular post-PI follow-up meetings. Sustained improvement was frequently, but not universally, observed: in the long-term following initial PI, measures of examination volume showed continued progressive improvements, whereas measures of operational efficiency remained stable or occasionally declined. Focused PI is generally effective in achieving performance improvement, although a changing environment influences the sustainability of impact. Thus, continued process evaluation and ongoing workflow modifications are warranted. Copyright © 2015 American College of Radiology

  11. Quality initiatives: lean approach to improving performance and efficiency in a radiology department.

    PubMed

    Kruskal, Jonathan B; Reedy, Allen; Pascal, Laurie; Rosen, Max P; Boiselle, Phillip M

    2012-01-01

    Many hospital radiology departments are adopting "lean" methods developed in automobile manufacturing to improve operational efficiency, eliminate waste, and optimize the value of their services. The lean approach, which emphasizes process analysis, has particular relevance to radiology departments, which depend on a smooth flow of patients and uninterrupted equipment function for efficient operation. However, the application of lean methods to isolated problems is not likely to improve overall efficiency or to produce a sustained improvement. Instead, the authors recommend a gradual but continuous and comprehensive "lean transformation" of work philosophy and workplace culture. Fundamental principles that must consistently be put into action to achieve such a transformation include equal involvement of and equal respect for all staff members, elimination of waste, standardization of work processes, improvement of flow in all processes, use of visual cues to communicate and inform, and use of specific tools to perform targeted data collection and analysis and to implement and guide change. Many categories of lean tools are available to facilitate these tasks: value stream mapping for visualizing the current state of a process and identifying activities that add no value; root cause analysis for determining the fundamental cause of a problem; team charters for planning, guiding, and communicating about change in a specific process; management dashboards for monitoring real-time developments; and a balanced scorecard for strategic oversight and planning in the areas of finance, customer service, internal operations, and staff development.

  12. Use of productivity and financial indicators for monitoring performance in academic radiology departments: U.S. nationwide survey.

    PubMed

    Ondategui-Parra, Silvia; Bhagwat, Jui G; Zou, Kelly H; Nathanson, Eric; Gill, Ileana E; Ros, Pablo R

    2005-07-01

    To determine how productivity- and finance-related indicators are used by radiology departments to evaluate departmental performance. The study met the criteria to be exempt from institutional review board approval. All subjects were informed of the purpose of the study and that their questionnaire responses would be kept confidential. For the study, a survey was sent to 132 members of the Society of Chairmen of Academic Radiology Departments (SCARD) nationwide. The survey was designed to (a) assess organizational information about hospital and radiology departments, (b) determine the types and mean numbers of productivity and financial indicators used by radiology departments, (c) determine how these indicators are used to influence departmental productivity, and (d) assess the reference-standard goals with which each indicator value was compared. A total of 77 variables were studied. Summary statistics, Spearman rank correlation coefficient, and chi2 analyses were performed. The response rate was 42% (55 of 132 surveyed SCARD members). The mean number of productivity indicators used by radiology departments was 4.55 +/- 2.56 (standard deviation), while the mean number of financial indicators used was 2.89 +/- 1.99. Twenty-two (40%) of the 55 responding departments used productivity indicators to monitor and provide feedback to radiologists, hospital leaders, and technical staff members for improved productivity, but only 11 (20%) departments used these indicators to compare personnel performances against specific productivity standards. The most frequent goal (of seven [13%] responding departments) of using the indicators was to increase the examination volume from the previous year by 5%-10%. Academic radiology departments across the United States do not use a standardized set of productivity and financial indicators to measure departmental performance. Examination volume is the most frequently used productivity indicator, whereas general expenses are commonly

  13. Clinical impact of diagnostic imaging discrepancy by radiology trainees in an urban teaching hospital emergency department

    PubMed Central

    2013-01-01

    Background To characterize clinically significant diagnostic imaging (DI) discrepancies by radiology trainees and the impact on emergency department (ED) patients. Methods Consecutive case series methodology over a 6-month period in an urban, tertiary care teaching hospital. Emergency physicians (EPs) were recruited to flag discrepant DI interpretations by radiology trainees that the EP deemed clinically significant. Cases were characterized using chart review and EP interview. Results Twenty-eight discrepant reports were identified (representing 0.1% of 18,185 images interpreted). The mean time between provisional discrepant diagnosis (PDDx) and revised diagnosis (RDx) by attending radiology staff was 8.6 h (median 4.8 h, range 1.1-48.4), and 67.9% (n = 19) of the patients had left the ED by time of notification. The most frequently reported PDDx was CT abd/pelvis (32.1%, n = 9) and CT head (28.6%, n = 8). The impact of RDx was deemed major in 57.1% (n = 16) for reasons including altered admitting status (32.1%, n = 9), immediate subspecialty referral (n = 16, 57.1%), impact on management (25%, n = 7), and surgical management (21.4%, n = 6). EPs reported likely perceived impact of PDDx as resulting in increased pain (17. 9%, n = 5), morbidity (10.7%, n = 3), and prolonged hospitalization (25%, n = 7), but not altered long-term outcome or mortality. Conclusions Relatively few clinically important discrepant reads were reported. Revised diagnosis (RDx) was associated with major clinical impact in 57.1% of reports, but few patients experienced increased morbidity, and none increased mortality. The importance of expedient communication of discrepant reports by staff radiologists is stressed, as is EP verification of patient contact information prior to discharge. PMID:23866048

  14. University of California San Francisco automated radiology department system-without picture archival and communication system (PACS)

    NASA Astrophysics Data System (ADS)

    Quintin, June A.; Simborg, Donald W.

    1982-01-01

    A fully automated and comprehensive Radiology Department system was implemented in the Fall of 1980, which highly integrates the multiple functions of a large Radiology Department in a major medical center. The major components include patient registration, film tracking, management statistics, patient flow control, radiologist reporting, pathology coding and billing. The highly integrated design allows sharing of critical files to reduce redundancy and errors in communication and allows rapid dissemination of information throughout the department. As one node of an integrated distributed hospital system, information from central hospital functions such as patient identification are incorporated into the system and reports and other information are available to other hospital systems. The system is implemented on a Data General Eclipse S/250 using the MIIS operating system. The management of a radiology department has become sufficiently complex that the application of computer techniques to the smooth operation of the department has become almost a necessity. This system provides statistics on room utilization, technologist productivity, and radiologist activity. Room utilization graphs are a valuable aid for staffing and scheduling of technologists, as well as analyzing appropriateness of radiologic equipment in a department. Daily reports summarize by radiology section exams not dictated. File room reports indicate which film borrowers are delinquent in returning films for 24 hours, 48 hours and one week. Letters to the offenders are automatically generated on the high speed line printer. Although all radiology departments have similar needs, customization is likely to be required to meet specific priorities and needs at any individual department. It is important in choosing a system vendor that such flexibility be available. If appropriately designed, a system will provide considerable improvements in efficiency and effectiveness.

  15. Individual and Collective Leadership in School Science Departments

    ERIC Educational Resources Information Center

    Ritchie, Stephen M.; Mackay, Gail; Rigano, Donna L.

    2006-01-01

    Given that the subject department is recognised by subject specialist teachers as the central and immediate unit of organization in secondary schools it is surprising that so little attention has been paid by researchers to the leadership dynamics within science departments. The leadership dynamics within the science departments of two…

  16. Building a Culture of Continuous Quality Improvement in an Academic Radiology Department.

    PubMed

    Katzman, Gregory L; Paushter, David M

    2016-04-01

    As we enter a new era of health care in the United States, radiologists must be adequately prepared to prove, and continually improve, our value to our customers. This goal can be achieved in large part by providing high-quality services. Although quality efforts on the national and international levels provide a framework for improving radiologic quality, some of the greatest opportunities for quality improvement can be found at the departmental level, through the implementation of total quality management programs. Establishing such a program requires not only strong leadership and employee engagement, but also a firm understanding of the multiple total quality management tools and continuous quality improvement strategies available. In this article, we discuss key tools and strategies required to build a culture of continuous quality improvement in an academic department, based on our experience.

  17. [A survey of information literacy for undergraduate students in the department of radiological technology].

    PubMed

    Ohba, Hisateru; Matsutani, Hideya; Kashiwakura, Ikuo

    2009-01-20

    The purpose of this study was to clarify the information literacy of undergraduate students and problems in information education. An annual questionnaire survey was carried out by an anonymous method from 2003 to 2006. The survey was intended for third-year students in the Department of Radiological Technology. The questionnaire items were as follows: (1) ownership of a personal computer (PC), (2) usage purpose and frequency of PC operation, (3) operation frequency and mechanism of the Internet, and (4) IT terminology. The response rate was 100% in each year. The ratio of PC possession exceeded 80%. The ratio of students who replied "nearly every day" for the use of a PC and the Internet increased twofold and threefold in four years, respectively. More than 70% of students did not understand the mechanism of the Internet, and more than 60% of students did not know about TCP/IP. In the future, we need to consider information literacy education in undergraduate education.

  18. Embedding Enterprise in Science and Engineering Departments

    ERIC Educational Resources Information Center

    Handscombe, Robert D.; Rodriguez-Falcon, Elena; Patterson, Eann A.

    2008-01-01

    Purpose: This paper aims to focus on the attempts to implement the challenges of teaching enterprise to science and engineering students by the embedding approach chosen by the White Rose Centre for Enterprise (WRCE), one of the centres formed under the Science Engineering Challenge in the UK. Design/methodology/approach: WRCE's objective was to…

  19. Embedding Enterprise in Science and Engineering Departments

    ERIC Educational Resources Information Center

    Handscombe, Robert D.; Rodriguez-Falcon, Elena; Patterson, Eann A.

    2008-01-01

    Purpose: This paper aims to focus on the attempts to implement the challenges of teaching enterprise to science and engineering students by the embedding approach chosen by the White Rose Centre for Enterprise (WRCE), one of the centres formed under the Science Engineering Challenge in the UK. Design/methodology/approach: WRCE's objective was to…

  20. Secondary School Science Department Chairs Leading Change

    ERIC Educational Resources Information Center

    Gaubatz, Julie A.

    2012-01-01

    Secondary school department chairs are content area specialists in their schools and are responsible for providing students with the most appropriate curricula. However, most secondary school department chairs have limited authority to institute change unilaterally (Gmelch, 1993; Hannay & Erb, 1999). To explore how these educational leaders…

  1. Secondary School Science Department Chairs Leading Change

    ERIC Educational Resources Information Center

    Gaubatz, Julie A.

    2012-01-01

    Secondary school department chairs are content area specialists in their schools and are responsible for providing students with the most appropriate curricula. However, most secondary school department chairs have limited authority to institute change unilaterally (Gmelch, 1993; Hannay & Erb, 1999). To explore how these educational leaders…

  2. [Practical implementation of a quality management system in a radiological department].

    PubMed

    Huber, S; Zech, C J

    2011-10-01

    This article describes the architecture of a project aiming to implement a DIN EN ISO 9001 quality management system in a radiological department. It is intended to be a practical guide to demonstrate each step of the project leading to certification of the system. In a planning phase resources for the implementation of the project have to be identified and a quality management (QM) group as core team has to be formed. In the first project phase all available documents have to be checked and compiled in the QM manual. Moreover all relevant processes of the department have to be described in so-called process descriptions. In a second step responsibilities for the project are identified. Customer and employee surveys have to be carried out and a nonconformity management system has to be implemented. In this phase internal audits are also needed to check the new QM system, which is finally tested in the external certification audit with reference to its conformity with the standards.

  3. Radiology of Fractures in Intoxicated Emergency Department Patients: Locations, Mechanisms, Presentation, and Initial Interpretation Accuracy

    PubMed Central

    Morita, Yuka; Nozaki, Taiki; Starkey, Jay; Okajima, Yuka; Ohde, Sachiko; Matsusako, Masaki; Yoshioka, Hiroshi; Saida, Yukihisa; Kurihara, Yasuyuki

    2015-01-01

    Abstract The purpose of this study was to investigate the relationship of alcohol intoxication to time-to-presentation following injury, fracture type, mechanism of injury leading to fracture, and initial diagnostic radiology interpretation performance of emergency physicians versus diagnostic radiologists in patients who present to the emergency department (ED) and are subsequently diagnosed with fracture. Medical records of 1286 patients who presented to the ED and were diagnosed with fracture who also underwent plain film or computed tomography (CT) imaging were retrospectively reviewed. The subjects were divided into intoxicated and sober groups. Patient characteristics, injury-to-presentation time, fracture location, and discrepancies between initial clinical and radiological evaluations were compared. Of 1286 subjects, 181 patients were included in the intoxicated group. Only intoxicated patients presented with head/neck fractures more than 24 hours after injury. The intoxicated group showed a higher rate of head/neck fractures (skull 23.2% vs 5.8%, face and orbit 30.4% vs 9.5%; P < 0.001) and a lower rate of extremity injuries. The rate of nondiagnosis of fractures by emergency physicians later identified by radiologists was the same in both groups (7.7% vs 7.7%, P = 0.984). While the same proportion of intoxicated patients presented more than 24 hours following injury, only intoxicated patients presented with craniofacial and cervical spinal fractures during this period. Alcohol-related injuries are more often associated with head/neck fractures but less extremity injuries. The rate of fractures missed by emergency physicians but later diagnosed by radiologists was the same in intoxicated and sober patients. PMID:26091471

  4. Science Instructional Leadership: The Role of the Department Chair

    ERIC Educational Resources Information Center

    Peacock, Jeremy S.

    2014-01-01

    With science teachers facing comprehensive curriculum reform that will shape science education for decades to come, high school department chairs represent a critical resource for instructional leadership and teacher support. While the historical literature on the department chair indicates that chairs are in prime positions to provide…

  5. Science Instructional Leadership: The Role of the Department Chair

    ERIC Educational Resources Information Center

    Peacock, Jeremy S.

    2014-01-01

    With science teachers facing comprehensive curriculum reform that will shape science education for decades to come, high school department chairs represent a critical resource for instructional leadership and teacher support. While the historical literature on the department chair indicates that chairs are in prime positions to provide…

  6. Bourdieu, Department Chairs and the Reform of Science Education

    ERIC Educational Resources Information Center

    Melville, Wayne; Hardy, Ian; Bartley, Anthony

    2011-01-01

    Using the insights of the French sociologist, Pierre Bourdieu, this article considers the role of the science department chair in the reform of school science education. Using Bourdieu's "thinking tools" of "field", "habitus" and "capital", we case study the work of two teachers who both actively pursue the teaching and learning of science as…

  7. Bourdieu, Department Chairs and the Reform of Science Education

    ERIC Educational Resources Information Center

    Melville, Wayne; Hardy, Ian; Bartley, Anthony

    2011-01-01

    Using the insights of the French sociologist, Pierre Bourdieu, this article considers the role of the science department chair in the reform of school science education. Using Bourdieu's "thinking tools" of "field", "habitus" and "capital", we case study the work of two teachers who both actively pursue the teaching and learning of science as…

  8. Instructional leaders for all? High school science department heads and instructional leadership across all science disciplines

    NASA Astrophysics Data System (ADS)

    Sanborn, Stephen

    Many high school science departments are responding to changes in state standards with respect to both curricular content and instructional practices. In the typical American high school organization, the academic department head is ideally positioned to influence change in the instructional practices of teachers within the department. Even though science department heads are well situated to provide leadership during this period of transition, the literature has not addressed the question of how well science department heads believe they can provide instructional leadership for all of the teachers in their department, whether they are teaching within and outside of the head's own sub-discipline. Nor is it known how science department heads view the role of pedagogical content knowledge in teaching different science disciplines. Using an online survey comprised of 26 objective questions and one open response question, a 54-respondent sample of science department heads provided no strong consensus regarding their beliefs about the role of pedagogical content knowledge in science instruction. However, science department heads expressed a significant difference in their views about their capacity to provide instructional leadership for teachers sharing their science content area compared to teachers instructing other science content areas. Given wide-spread science education reform efforts introduced in response to the Next Generation Science Standards, these findings may serve to provide some direction for determining how to best support the work of science department heads as they strive to provide instructional leadership for the teachers in their departments.

  9. Webometric Analysis of Departments of Librarianship and Information Science.

    ERIC Educational Resources Information Center

    Thomas, Owen; Willett, Peter

    2000-01-01

    Describes a webometric analysis of linkages to library and information science (LIS) department Web sites in United Kingdom universities. Concludes that situation data are not well suited to evaluation of LIS departments and that departments can boost Web site visibility by hosting a wide range of materials. (Author/LRW)

  10. Application of Analytical Hierarchy Process Approach for Service Quality Evaluation in Radiology Departments: A Cross-Sectional Study.

    PubMed

    Alimohammadzadeh, Khalil; Bahadori, Mohammadkarim; Hassani, Fariba

    2016-01-01

    Radiology department as a service provider organization requires realization of quality concept concerning service provisioning knowledge, satisfaction and all issues relating to the customer as well as quality assurance and improvement issues. At present, radiology departments in hospitals are regarded as income generating units and they should continuously seek performance improvement so that they can survive in the changing and competitive environment of the health care sector. The aim of this study was to propose a method for ranking of radiology departments in selected hospitals of Tehran city using analytical hierarchical process (AHP) and quality evaluation of their service in 2015. This study was an applied and cross-sectional study, carried out in radiology departments of 6 Tehran educational hospitals in 2015. The hospitals were selected using non-probability and purposeful method. Data gathering was performed using customized joint commission international (JCI) standards. Expert Choice 10.0 software was used for data analysis. AHP method was used for prioritization. "Management and empowerment of human resources'' (weight = 0.465) and "requirements and facilities" (weight = 0.139) were of highest and lowest significance respectively in the overall ranking of the hospitals. MS (weight = 0.316), MD (weight = 0.259), AT (weight = 0.14), TS (weight = 0.108), MO (weight = 0.095), and LH (0.082) achieved the first to sixth rankings respectively. The use of AHP method can be promising for fostering the evaluation method and subsequently promotion of the efficiency and effectiveness of the radiology departments. The present model can fill in the gap in the accreditation system of the country's hospitals in respect with ranking and comparing them considering the significance and value of each individual criteria and standard. Accordingly, it can predict an integration of qualitative and quantitative criteria involved and thereby take a decisive step towards

  11. On Hiring Science Faculty with Education Specialties for Your Science (Not Education) Department

    ERIC Educational Resources Information Center

    Bush, S. D.; Pelaez, N. J.; Rudd, J. A.; Stevens, M. T.; Williams, K. S.; Allen, D. E.; Tanner, K. D.

    2006-01-01

    In this article, the authors highlight an issue in science education facing many university and college science departments: hiring faculty who can bring to the department specialized expertise in science education. To begin to address this issue, a collaborative team of tenure-track faculty--all of whom are primarily trained in science and have…

  12. [Establishing a quality management system according to DIN EN ISO 9001:2000 in an academic radiological department].

    PubMed

    Adam, G; Lorenzen, J; Krupski, G; Schackmann, R; Steiner, P; Reuter, H; Paschen, U

    2003-02-01

    Establishing a quality management (QM) system according the guidelines of DIN EN ISO 9001:2000 in an academic radiological department. To fulfill the requirements of an academic radiological department a quality management system according the guidelines of DIN EN ISO 9001 : 2000 has been established within one year. All important educational, research and patient care issues have been discussed in plenary sessions of all employees of the department twice a week. All core processes of the department have been documented as process instructions and standard operation procedures. Supported by the staff unit "quality assurance" of the university hospital, the QM system has been established during one year. Assisted by all parties of the department, obliging regulations have been established which are well accepted in the daily routine clinical work but also in research and education. The implementation of the QM system caused an additional work load. However, spreading the work load by a consequent responsibility assignment, it could be reduced effectively. The implementation of a QM system within the daily routine work of an academic radiological department is feasible. It allows the installation of generally accepted rules which regulate the principal tasks of research and education, and patient care.

  13. Realization of process improvement at a diagnostic radiology department with aid of simulation modeling.

    PubMed

    Oh, Hong-Choon; Toh, Hong-Guan; Giap Cheong, Eddy Seng

    2011-11-01

    Using the classical process improvement framework of Plan-Do-Study-Act (PDSA), the diagnostic radiology department of a tertiary hospital identified several patient cycle time reduction strategies. Experimentation of these strategies (which included procurement of new machines, hiring of new staff, redesign of queue system, etc.) through pilot scale implementation was impractical because it might incur substantial expenditure or be operationally disruptive. With this in mind, simulation modeling was used to test these strategies via performance of "what if" analyses. Using the output generated by the simulation model, the team was able to identify a cost-free cycle time reduction strategy, which subsequently led to a reduction of patient cycle time and achievement of a management-defined performance target. As healthcare professionals work continually to improve healthcare operational efficiency in response to rising healthcare costs and patient expectation, simulation modeling offers an effective scientific framework that can complement established process improvement framework like PDSA to realize healthcare process enhancement. © 2011 National Association for Healthcare Quality.

  14. Best Available Technology (BAT) guidance for radiological liquid effluents at US Department of Energy Facilities

    SciTech Connect

    Wallo, A. III; Peterson, H.T. Jr.; Ikenberry, T.A.; Baker, R.E.

    1993-01-01

    The US Department of Energy (DOE), in DOE Order 5400.5 (1990), directs operators of DOE facilities to apply the Best Available Technology (BAT) to control radiological liquid effluents from these facilities when specific conditions are present. DOE has published interim guidance to assist facility operators in knowing when a BAT analysis is needed and how such an analysis should be performed and documented. The purpose of the guidance is to provide a uniform basis in determining BAT throughout DOE and to assist in evaluating BAT determinations during programmatic audits. The BAT analysis process involves characterizing the effluent source; identifying and selecting candidate control technologies; evaluating the potential environmental, operational, resource, and economic impacts of the control technologies; developing an evaluation matrix for comparing the technologies; selecting the BAT; and documenting the evaluation process. The BAT analysis process provides a basis for consistent evaluation of liquid effluent releases, yet allows an individual site or facility the flexibility to address site-specific issues or concerns in the most appropriate manner.

  15. Individual and Collective Leadership in School Science Departments

    NASA Astrophysics Data System (ADS)

    Ritchie, Stephen M.; Mackay, Gail; Rigano, Donna L.

    2006-09-01

    Given that the subject department is recognised by subject specialist teachers as the central and immediate unit of organization in secondary schools it is surprising that so little attention has been paid by researchers to the leadership dynamics within science departments. The leadership dynamics within the science departments of two contrasting school contexts were explored dialectically in this study. The structure ∣ agency and individual∣collective dialectics guided our interpretation of data from lesson observations, interviews and questionnaire responses, especially as they related to teachers' preparation of units of work (i.e., planned curriculum). As well as recognising thin coherence in teachers' responses we identify contradictions in teachers' perceived and enacted leadership roles, and perceptions of influences on curriculum planning and teaming within the two science departments. Throughout the article we disrupt traditional individualistic leadership discourses and suggest possibilities for more widespread application of an individual | collective leadership dialectic in school science departments.

  16. U.S. Department of Energy Region 6 Radiological Assistance Program response plan. Revision 2

    SciTech Connect

    Jakubowski, F.M.

    1998-02-01

    Upon request, the DOE, through the Radiological Assistance Program (RAP), makes available and will provide radiological advice, monitoring, and assessment activities during radiological incidents where the release of radioactive materials is suspected or has occurred. Assistance will end when the need for such assistance is over, or if there are other resources available to adequately address the incident. The implementation of the RAP is usually accomplished through the recommendation of the DOE Regional Coordinating Office`s (RCO) on duty Regional Response Coordinator (RRC) with the approval of the Regional Coordinating Office Director (RCOD). The DOE Idaho Operations Office (DOE-ID) is the designated RCO for DOE Region 6 RAP. The purpose of this document is: to describe the mechanism for responding to any organization or private citizen requesting assistance to radiological incidents; to coordinate radiological assistance among participating federal agencies, states, and tribes in DOE Region 6; and to describe the RAP Scaled Response concept of operations.

  17. Bourdieu, Department Chairs and the Reform of Science Education

    NASA Astrophysics Data System (ADS)

    Melville, Wayne; Hardy, Ian; Bartley, Anthony

    2011-11-01

    Using the insights of the French sociologist, Pierre Bourdieu, this article considers the role of the science department chair in the reform of school science education. Using Bourdieu's 'thinking tools' of 'field', 'habitus' and 'capital', we case study the work of two teachers who both actively pursue the teaching and learning of science as inquiry. One teacher, Dan, has been a department chair since 2000, and has actively encouraged his department to embrace science as inquiry. The other teacher, Leslie, worked for one year in Dan's department before being transferred to another school where science teaching continues to be more traditional. Our work suggests that there are three crucial considerations for chairs seeking to lead the reform of science teaching within their department. The first of these is the development of a reform-minded habitus, as this appears to be foundational to the capital that can be expended in the leadership of reform. The second is an understanding of how to wield power and position in the promotion of reform. The third is the capacity to operate simultaneously and strategically within, and across, two fields; the departmental field and the larger science education field. This involves downplaying administrative logics, and foregrounding more inquiry-focused logics as a vehicle to challenge traditional science-teaching dispositions-the latter being typically dominated by concerns about curriculum 'coverage'.

  18. Radiological Sciences Discipline Advisory Group Final Report. Kentucky Allied Health Project.

    ERIC Educational Resources Information Center

    Kentucky Council on Public Higher Education, Frankfort.

    Radiological sciences education in Kentucky and articulation within this field are examined, based on the Kentucky Allied Health Project (KAHP), which designed an articulated statewide system to promote entry and exit of personnel at a variety of educational levels. The KAHP model promotes articulation in learning, planning, and resource…

  19. Radiological Sciences Discipline Advisory Group Final Report. Kentucky Allied Health Project.

    ERIC Educational Resources Information Center

    Kentucky Council on Public Higher Education, Frankfort.

    Radiological sciences education in Kentucky and articulation within this field are examined, based on the Kentucky Allied Health Project (KAHP), which designed an articulated statewide system to promote entry and exit of personnel at a variety of educational levels. The KAHP model promotes articulation in learning, planning, and resource…

  20. Colon imaging in radiology departments in 2008: goodbye to the routine double contrast barium enema.

    PubMed

    Stevenson, Giles

    2008-10-01

    We radiologists are free to choose DCBE or CTC when patients are referred to us for colonic examination. The studies reported during 2007 have confirmed that CTC is more accurate, preferred by patients, with a shorter room time, fewer complications, lower radiation exposure, and reveals therapeutically significant extracolonic lesions in 5% to 10% of cases, so that it is beginning to seem rather irresponsible to continue to offer routine DCBE examinations. In older patients the yield of extracolonic abnormalities is even greater, with 505 abnormalities found in 268 of 400 consecutive patients aged 70 years and older, including 23 extracolonic malignancies. More than 90 Canadian radiology departments have bought the necessary carbon dioxide insufflators, so there is clearly great interest. Many training workshops are available in Europe and the United States to help radiologists become familiar and skilled with CTC, and it will be helpful to have more local ones within Canada over the next few years. Some studies have shown that CTC can be done with poorer results than those I have quoted, and this is often in the early experience of departments. As large numbers of radiologists train, there is the potential for hundreds of errors while experience is being gained. We have the advantage over endoscopists, in that we can train on known data sets. Several institutions have put together sets of 50 complete CTC cases, mixed abnormal and normal, and these are an ideal training tool so that one can make one's mistakes in training rather than on live patients. One such data set is even available with one of the recent textbooks. Would it be useful for the CAR, or provincial radiology associations, to purchase several of these sets, and make them available for an appropriate fee to radiologists who are learning? CTC technologists will necessarily have a role on the workstations, including doing the primary read. Additional budgets will be needed for CTC with a diminution in

  1. Emergency radiology today between philosophy of science and the reality of "emergency care".

    PubMed

    Romano, L; Scaglione, M; Rotondo, A

    2006-03-01

    In the past 20 years, emergency care concept has substantially changed on a cultural point of view, going well beyond the boundaries of medical science. It is now a general understanding that the real enemy of the critical patient is time; thus, functional organisation and collocation of human and technological resources in the emergency department (ED) can help avoid the loss of human lives. This "cultural revolution" led to the creation and development of structural and organisational models (layouts) of EDs. Now, emergency radiology has a central role in ED organisation, and the radiologist, providing 24-h coverage in the emergency room, is crucial for the correct diagnostic approach and rapid management of trauma. If this is the cultural background to the "emergency care" concept, an overview of such care in our country shows great differences from a structural, technological and organisational point of view. The presence of the radiologist providing 24-h coverage in the emergency room is still uncommon in many EDs The qualification of emergency care must be sought by studying the needs of the population and by seeking qualified personnel with high professional skill levels. All this must be understood and pursued by politicians and health care managers whose aim should be to coordinate and check the measures and human resources applied to the system. This process necessarily involves rewarding those health care professionals who prove to be up to the job.

  2. Examining Prospective Science Teachers' Satisfaction with Their Department

    ERIC Educational Resources Information Center

    Erdogan, Mehmet; Usak, Muhammet

    2007-01-01

    The purpose of this study was to explore how satisfied prospective science teachers are with their department (academic staff and administration) at different Faculties of Education in Turkey. For this purpose, Prospective Science Teachers Satisfaction Questionnaire (PSTSQ) was developed by considering related literature. PSTSQ consists of two…

  3. Curriculum Reform and a Science Department: A Bourdieuian Analysis

    ERIC Educational Resources Information Center

    Melville, Wayne

    2010-01-01

    This article will describe the dispositions of science teachers in the context of a curriculum reform. Using Bourdieu's notions of "habitus" and "the field," the analysis of the data highlights the necessity for curriculum reformers to view the field of the science department as a contested space. From this understanding flow…

  4. How a Department Effects Change: Closeup on Political Science.

    ERIC Educational Resources Information Center

    Peterson, Nancy A.

    1975-01-01

    The way a department is governed, and the relationships enjoyed by its members, provide at least part of the ground for the other activities that take place there. Discussions with members of the Political Science department reveal several recurring themes, including democratic governance, the absence of power groups, respect for differing…

  5. Application of Analytical Hierarchy Process Approach for Service Quality Evaluation in Radiology Departments: A Cross-Sectional Study

    PubMed Central

    Alimohammadzadeh, Khalil; Bahadori, Mohammadkarim; Hassani, Fariba

    2016-01-01

    Background: Radiology department as a service provider organization requires realization of quality concept concerning service provisioning knowledge, satisfaction and all issues relating to the customer as well as quality assurance and improvement issues. At present, radiology departments in hospitals are regarded as income generating units and they should continuously seek performance improvement so that they can survive in the changing and competitive environment of the health care sector. Objectives: The aim of this study was to propose a method for ranking of radiology departments in selected hospitals of Tehran city using analytical hierarchical process (AHP) and quality evaluation of their service in 2015. Materials and Methods: This study was an applied and cross-sectional study, carried out in radiology departments of 6 Tehran educational hospitals in 2015. The hospitals were selected using non-probability and purposeful method. Data gathering was performed using customized joint commission international (JCI) standards. Expert Choice 10.0 software was used for data analysis. AHP method was used for prioritization. Results: “Management and empowerment of human resources’’ (weight = 0.465) and “requirements and facilities” (weight = 0.139) were of highest and lowest significance respectively in the overall ranking of the hospitals. MS (weight = 0.316), MD (weight = 0.259), AT (weight = 0.14), TS (weight = 0.108), MO (weight = 0.095), and LH (0.082) achieved the first to sixth rankings respectively. Conclusion: The use of AHP method can be promising for fostering the evaluation method and subsequently promotion of the efficiency and effectiveness of the radiology departments. The present model can fill in the gap in the accreditation system of the country’s hospitals in respect with ranking and comparing them considering the significance and value of each individual criteria and standard. Accordingly, it can predict an integration of qualitative

  6. [Effect of Kiken-Yochi training (KYT) induction on patient safety at the department of radiological technology].

    PubMed

    Yasuda, Mitsuyoshi; Kato, Kyoichi; Uchiyama, Yushi; Sakiyama, Koshi; Shibata, Masako; Sanbe, Takeyuki; Sasaki, Haruaki; Yoshikawa, Kohki; Nakazawa, Yasuo

    2013-07-01

    In this report, we evaluated whether radiological technologists' (RTs') awareness of patient safety would improve and what kind of effects would be seen at the department of radiological technology by introducing KYT [K: kiken (hazard), Y: yochi (prediction), T: (training)]. KYT was carried out by ten RTs based on a KYT sheet for the department of radiological technology. To evaluate the effects of KYT, we asked nine questions each to ten participants before and after KYT enforcement with regard to their attitude to patient safety and to operating procedures for working safely. Significant improvements after KYT enforcement were obtained in two items concerning medical safety: It is important for any risk to be considered by more than one person; The interest in preventive measures against medical accident degree conducted now) and one concerning operating procedures (It is necessary to have a nurse assist during testing with the mobile X-ray apparatus) (p<0.05). Performing KYT resulted in improved awareness of the importance of patient safety. KYT also enabled medical staffers to evaluate objectively whether the medical safety measures currently performed would be effective for patients.

  7. On teaching computer ethics within a computer science department.

    PubMed

    Quinn, Michael J

    2006-04-01

    The author has surveyed a quarter of the accredited undergraduate computer science programs in the United States. More than half of these programs offer a 'social and ethical implications of computing' course taught by a computer science faculty member, and there appears to be a trend toward teaching ethics classes within computer science departments. Although the decision to create an 'in house' computer ethics course may sometimes be a pragmatic response to pressure from the accreditation agency, this paper argues that teaching ethics within a computer science department can provide students and faculty members with numerous benefits. The paper lists topics that can be covered in a computer ethics course and offers some practical suggestions for making the course successful.

  8. Impact of Patient Protection and Affordable Care Act on academic radiology departments' clinical, research, and education missions.

    PubMed

    Mansoori, Bahar; Vidal, Lorenna L; Applegate, Kimberly; Rawson, James V; Novak, Ronald D; Ros, Pablo R

    2013-10-01

    The Patient Protection and Affordable Care Act (ACA) generated significant media attention since its inception. When the law was approved in 2010, the U.S. health care system began facing multiple changes to adapt and to incorporate measures to meet the new requirements. These mandatory changes will be challenging for academic radiology departments (ARDs) since they will need to promote a shift from a volume-focused to a value-focused practice. This will affect all components of the mission of ARDs, including clinical practice, education, and research. A unique key element to success in this transition is to focus on both quality and safety, thus improving the value of radiology in the post-ACA era. Given the changes ARDs will face during the implementation of ACA, suggestions are provided on how to adapt ARDs to this new environment.

  9. Creation and implementation of department-wide structured reports: an analysis of the impact on error rate in radiology reports.

    PubMed

    Hawkins, C Matthew; Hall, Seth; Zhang, Bin; Towbin, Alexander J

    2014-10-01

    The purpose of this study was to evaluate and compare textual error rates and subtypes in radiology reports before and after implementation of department-wide structured reports. Randomly selected radiology reports that were generated following the implementation of department-wide structured reports were evaluated for textual errors by two radiologists. For each report, the text was compared to the corresponding audio file. Errors in each report were tabulated and classified. Error rates were compared to results from a prior study performed prior to implementation of structured reports. Calculated error rates included the average number of errors per report, average number of nongrammatical errors per report, the percentage of reports with an error, and the percentage of reports with a nongrammatical error. Identical versions of voice-recognition software were used for both studies. A total of 644 radiology reports were randomly evaluated as part of this study. There was a statistically significant reduction in the percentage of reports with nongrammatical errors (33 to 26%; p = 0.024). The likelihood of at least one missense omission error (omission errors that changed the meaning of a phrase or sentence) occurring in a report was significantly reduced from 3.5 to 1.2% (p = 0.0175). A statistically significant reduction in the likelihood of at least one comission error (retained statements from a standardized report that contradict the dictated findings or impression) occurring in a report was also observed (3.9 to 0.8%; p = 0.0007). Carefully constructed structured reports can help to reduce certain error types in radiology reports.

  10. SU-E-P-07: Retrospective Analysis of Incident Reports at a Radiology Department: Feedback From Incident Reporting System

    SciTech Connect

    Kakinohana, Y; Toita, T; Heianna, J; Murayama, S

    2015-06-15

    Purpose: To provide an overview of reported incidents that occurred in a radiology department and to describe the most common causal source of incidents. Methods: Incident reports from the radiology department at the University of the Ryukyus Hospital between 2008 and 2013 were collected and analyzed retrospectively. The incident report form contains the following items, causal factors of the incident and desirable corrective actions to prevent recurrence of similar incidents. These items allow the institution to investigate/analyze root causes of the incidents and suggest measures to be taken to prevent further, similar incidents. The ‘causal factors of the incident’ item comprises multiple selections from among 24 selections and includes some synonymous selections. In this study, this item was re-categorized into four causal source types: (i) carelessness, (ii) lack of skill or knowledge, (iii) deficiencies in communication, and (iv) external factors. Results: There were a total of 7490 incident reports over the study period and 276 (3.7%) were identified as originating from the radiology department. The most frequent causal source type was carelessness (62%). The other three types showed similar frequencies (10–14%). The staff members involved in incidents indicate three predominant desirable corrective actions to prevent or decrease the recurrence of similar incidents. These are ‘improvement in communication’ (24%), ‘staff training/education’ (19%), and ‘daily medical procedures’ (22%), and the most frequent was ‘improvement in communication’. Even though the most frequent causal factor was related to carelessness, the most desirable corrective action indicated by the staff members was related to communication. Conclusion: Our finding suggests that the most immediate causes are strongly related to carelessness. However, the most likely underlying causes of incidents would be related to deficiencies in effective communication. At our

  11. Quality initiatives: Key performance indicators for measuring and improving radiology department performance.

    PubMed

    Abujudeh, Hani H; Kaewlai, Rathachai; Asfaw, Benjamin A; Thrall, James H

    2010-05-01

    Key performance indicators (KPIs) are financial and nonfinancial measures that are used to define and evaluate the success of an organization. KPIs differ, depending on the nature of the organization and the organizational strategy; they are devised to help evaluate the progress of an organization toward achieving its long-term goals and fulfilling its vision. In healthcare organizations, performance assessment is especially critical for the development of best practices that can lead to improved outcomes in patient care, and KPIs have been incorporated into many healthcare management systems. In the future, radiology-specific KPIs such as those in use at the authors' institution may help provide a framework for measuring performance in radiology practice.

  12. A developing crisis. Staffing overshadows all other challenges facing radiology departments.

    PubMed

    Greene, J

    2001-10-01

    The shortage of radiologists and technologists poses a huge problem for hospitals as the demand for imaging services grows. It behooves hospital executives, therefore, to find creative ways to partner with their radiology groups--before somebody else does. This is the first installment in H&HN's quarterly Clinical Management series, which examines how hospitals are responding to dramatic shifts in specific clinical areas.

  13. [Marketing mix in a radiology department: challenges for future radiologists in management].

    PubMed

    Claikens, B

    1998-08-01

    Radiology has gained an enviable position among medial specialities. Developments in new technology expand its horizons and the volume of radiologic imaging techniques and procedures increase far more than the overall growth in health care services. In this position radiology has become a prime target for restrictions, cutbacks, controlled financing in an area of managed care and new national health care policy based on partially fixed budgets. Future health care takers have to choose the best available diagnostic and therapeutic techniques. Evidence based medicine, cost-utility analysis, diagnostic performance analysis, patient outcome analysis, technology assessment and guidelines for practice are means to guide us through our obligatory choice. Our major objective is to use the most performant available imaging technique or intervention to achieve the best possible outcome for our patient at lower possible costs. A strategic response from radiologists is required to meet the imperatives of this new management situation. They must do far more than interpret imaging procedures. They must work as efficient managers of imaging resources, organise their practices and define their marketing-strategies using the different, so-called, marketing-mix elements. The challenges will be great but the rewards are worth our best efforts. In this article we highlight the marketing responsibilities of future radiologists and their clinical practice in this new socio-economic environment and we present different useful marketing tools.

  14. District Leadership for Science Education: Using K-12 Departments to Support Elementary Science Education under NCLB

    ERIC Educational Resources Information Center

    Miller, Christopher L.

    2010-01-01

    By contrasting two case studies of school districts, this paper illustrates the effectiveness of K-12 science departments in supporting elementary science education, especially in response to NCLB's push towards the articulation of curriculum across all grades and as a response to the erosion of instructional time on science in elementary schools…

  15. Career Preparation and the Political Science Major: Evidence from Departments

    ERIC Educational Resources Information Center

    Collins, Todd A.; Knotts, H. Gibbs; Schiff, Jen

    2012-01-01

    We know little about the amount of career preparation offered to students in political science departments. This lack of information is particularly troubling given the state of the current job market and the growth of applied degree programs on university campuses. To address this issue, this article presents the results of a December 2010 survey…

  16. Affirmative Action in Science Departments: A Challenge for Higher Education.

    ERIC Educational Resources Information Center

    Marcus, Laurence R.

    As part of a study of the implementation of affirmative action in academic affairs at the University of Massachusetts at Amherst, interviews were conducted with the heads of ten of the eleven departments and programs of the Faculty of Natural Sciences and Mathematics (FNSM). The data received were combined with written data available in…

  17. Career Preparation and the Political Science Major: Evidence from Departments

    ERIC Educational Resources Information Center

    Collins, Todd A.; Knotts, H. Gibbs; Schiff, Jen

    2012-01-01

    We know little about the amount of career preparation offered to students in political science departments. This lack of information is particularly troubling given the state of the current job market and the growth of applied degree programs on university campuses. To address this issue, this article presents the results of a December 2010 survey…

  18. Tenure Standards in Political Science Departments: Results from a Survey of Department Chairs

    ERIC Educational Resources Information Center

    Rothgeb, John M., Jr.; Burger, Betsy

    2009-01-01

    This article presents the results from a survey of political science department chairs regarding the tenure procedures and standards at their colleges or universities. The findings reveal that only a small fraction of the colleges and universities in the United States refuse to offer tenure or are attempting to limit tenure. We also find general…

  19. Tenure Standards in Political Science Departments: Results from a Survey of Department Chairs

    ERIC Educational Resources Information Center

    Rothgeb, John M., Jr.; Burger, Betsy

    2009-01-01

    This article presents the results from a survey of political science department chairs regarding the tenure procedures and standards at their colleges or universities. The findings reveal that only a small fraction of the colleges and universities in the United States refuse to offer tenure or are attempting to limit tenure. We also find general…

  20. A radiological review of cervical spine injuries from an accident and emergency department: has the ATLS made a difference?

    PubMed Central

    Palmer, S H; Maheson, M

    1995-01-01

    The importance of visualizing the entire cervical spine on radiological examination in patients with cervical trauma is well known. A review of the cervical films of 98 patients attending an accident and emergency (A&E) department was undertaken in order to assess the adequacy of imaging. It was found that 33.7% of the films were not sufficient to exclude fracture or dislocation of the cervical spine. The number of patients with inadequate views was significantly reduced when an advanced trauma life support trained senior doctor was involved. PMID:8581244

  1. [Quality assurance, audit and quality control of radiotherapy at radiology departments in Hungary].

    PubMed

    Esik, O; Németh, G; Erfán, J; Krommer, K; Kuhn, E; Mako, E; Mayer, A; Padányi, J; Péter, M; Pintér, T

    1995-11-05

    The first quality assurance, audit and control system in the Hungarian "'health" care industry" is described for the medical specialty of radiotherapy. The prerequisites of the elaboration of the programme were an exact knowledge of the current Hungarian infrastructural and staffing conditions, and the radiotherapeutic activities. The recommendations cover the 5 medical universities including the national institute (the Debrecen, Pécs, Semmelweis, Szent-Györgyk Albert Medical Universities, and Haynal Imre University of Health Sciences) and the 5 regional oncological centres in hospitals (Jósa András, Markusovszky, Petz Aladár, Szentpéteri kapu and Uzsoki Hospitals). The departmental functions (patient care, teaching-education, research work and scientific organizing activity) and the structure (organization, infrastructure, staffing conditions, etc.) are described first, followed by the therapeutic principles and clinical process (patient referral and selection, decision-making, priorities in therapy initiation, treatment preparation and execution, etc.). The informal daily/weekly quality assurance programme long applied in the routine patient care has been formalized and supplemented with a weekly audit conference. In the course of the medical audit, all relevant clinical data are reviewed and scored by an internal or an external expert (not participating directly in the treatment process), e.g. for the adequacy of the medical decision preparative process, conformation to the institutional treatment protocol, equipment selection, treatment planning, simulation and portal film, etc. If a major deviation is detected, an immediate correction is initiated; minor deviations need analysis and then preventive and correcting action. As concern the audit of the other activities of the departments, the important indicators and their minimally desirable level are defined. The final goal of the implementation of this programme is high-precision radiotherapy with the

  2. Anticipated Supply and Demand for Independent Interventional Radiology Residency Positions: A Survey of Department Chairs.

    PubMed

    Herwald, Sanna E; Spies, James B; Yucel, E Kent

    2017-02-01

    The first participants in the independent interventional radiology (IR) residency match will begin prerequisite diagnostic radiology (DR) residencies before the anticipated launch of the independent IR programs in 2020. The aim of this study was to estimate the competitiveness level of the first independent IR residency matches before these applicants have already committed to DR residencies and possibly early specialization in IR (ESIR) programs. The Society of Chairs of Academic Radiology Departments (SCARD) Task Force on the IR Residency distributed a survey to all active SCARD members using SurveyMonkey. The survey requested the number of planned IR residency and ESIR positions. The average, minimum, and maximum of the range of planned independent IR residency positions were compared with the average, maximum, and minimum, respectively, of the range of planned ESIR positions, to model matches of average, high, and low competitiveness. Seventy-four active SCARD members (56%) answered at least one survey question. The respondents' programs planned to fill, in total, 98 to 102 positions in integrated IR residency programs, 61 to 76 positions in independent IR residency programs, and 50 to 77 positions in ESIR DR residency programs each year. The ranges indicate the uncertainty of some programs regarding the number of positions. The survey suggests that participating programs will fill sufficient independent IR residency positions to accommodate all ESIR applicants in a match year of average or low competitiveness, but not in a match year of high competitiveness. This suggestion does not account for certain difficult-to-predict factors that may affect the independent IR residency match. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  3. Guide for radiological characterization and measurements for decommissioning of US Department of Energy surplus facilities

    SciTech Connect

    Denahm, D. H.; Barnes, M. G.; Jaquish, R. E.; Corley, J. P.; Gilbert, R. O.; Hoenes, G. R.; Jamison, J. D.; McMurray, B. J.; Watson, E. C.

    1983-08-01

    This Guide describes the elements of radiological characterization at DOE excess facilities in preparation for, during, and subsequent to decommissioning operations. It is the intent of this Guide and accompanying appendices to provide the reader (user) with sufficient information to carry out that task with a minimum of confusion and to provide a uniform basis for evaluating site conditions and verifying that decommissioning operations are conducted according to a specific plan. Some areas of particular interest in this Guide are: the need to involve appropriate staff from the affected states in the early planning stages of decommissioning; the need for and suggested methods of radiological site characterization to complete a decommissioning project, including: historical surveys, environmental pathway analyses, statistical sampling design, and choosing appropriate instrumentation and measurements; the need for and emphasis on quality assurance, documentation and records retention; the establishment of a Design Objective approach to applying site-specific contamination limits based on the ALARA philosophy; the establishment of a ''de minimis'' or minimum dose level of concern for decommissioning operations based on existing standards, experience and ALARA considerations.

  4. Analysis of production factors, costs, and process efficacy in the radiology department of a local health agency in Italy.

    PubMed

    Mecozzi, Bernardino; Pancione, Luigi; De Intinis, Giuseppe; Gullstrand, Ragnar; Gualtieri, Alfonso; Giraudo, Paolo

    2003-03-01

    To calculate the itemised and overall costs (including staff, technical equipment, and materials) of the services of a radiology department in order to ensure clearer communications between the service providers and clients concerning the service and its costs. The analysis was carried out in the radiology department of a city general hospital. An Activity Based Cost Analysis was used to study the production process for each type of service delivered, considering all the direct and indirect costs. These calculations resulted in an itemised list of costs per service that included all of the cost components of a radiological examination, overcoming the limits of cost accounting based on specific factors only (e.g. physician time used). The contents of the itemised cost analysis - human resources, equipment and consumables, gathered from the staff were compared with the actual consumption data for a 4-month period of normal activity. The evaluation was completed by an analysis of the quality perceived by clients relative to the levels and costs of the service. Itemised cost analyses were obtained and verified for 72 categories of services defined by similar types and costs. Thanks to this process-oriented approach, costs could also be differentiated by patient referral group (in-patient, out-patient, emergency department) to compare the impact on the organisation of the three patient categories. Emergency department and in-patient services were found to have a greater impact than out-patient services, and the latter proved more cost-effective than the other two. Emergency department services were found to be considerably less cost-effective due to the fact that the service is guaranteed 24 hours a day / 7 days a week, but seldom fully exploited. While confirming that the Regional charges are inadequate, our analysis supplied all the data needed to precisely evaluate the cost drivers and to update the charges to reflect the actual costs. As regards quality, the

  5. Café seminars in a bottom-up organizational development project at a Danish Radiology Department.

    PubMed

    Niss, Karsten Ulrik

    2010-01-01

    The radiology department at a Danish regional university hospital implemented integrated RIS/PACS. In the process, it became clear that some aspects of the changes had been ignored and that the impact on the organization would be substantial. With that in mind this study was planned, and an interdisciplinary working group was appointed and tasked with implementing activities to improve the organizational environment and atmosphere in the department. One activity aimed at formulating a vision/activity plan by using café seminars to involve all employees. The plan for implementation included 35 activities to support the realization of the vision. Bottom-up organizational development does work - provided that responsibility for the process is delegated.

  6. Chemistry and Materials Science Department annual report, 1988--1989

    SciTech Connect

    Borg, R.J.; Sugihara, T.T.; Cherniak, J.C.; Corey, C.W.

    1989-12-31

    This is the first annual report of the Chemistry & Materials Science (C&MS) Department. The principal purpose of this report is to provide a concise summary of our scientific and technical accomplishments for fiscal years 1988 and 1989. The report is also tended to become part of the archival record of the Department`s activities. We plan to publish future editions annually. The activities of the Department can be divided into three broad categories. First, C&MS staff are assigned by the matrix system to work directly in a program. These programmatic assignments typically involve short deadlines and critical time schedules. A second category is longer-term research and development in technologies important to Laboratory programs. The focus and direction of this technology-base work are generally determined by programmatic needs. Finally, the Department manages its own research program, mostly long-range in outlook and basic in orientation. These three categories are not mutually exclusive but form a continuum of technical activities. Representative examples of all three are included in this report. The principal subject matter of this report has been divided into six sections: Innovations in Analysis and Characterization, Advanced Materials, Metallurgical Science and Technology, Surfaces and Interfaces, Energetic Materials and Chemical Synthesis, and Energy-Related Research and Development.

  7. Improving Communication, Collaboration, and Faculty Comfort in Communicating Difficult News in the Pediatric Radiology Department.

    PubMed

    Koch, Bernadette L; Hater, Dianne; Nees, Katherine; Leopard, A Catherine

    2016-11-01

    When an unexpected or significant diagnosis is made while imaging a child, the pediatric radiologist and support staff are placed in the middle of a life-changing event for the patient and family. The process by which this situation is handled can be quite variable in part because of the lack of a preexisting relationship between the pediatric radiologist and the patient and family. Therefore, we developed a program to improve effective communication of unexpected or significant diagnoses to families called the Difficult News Program. By defining and coordinating roles, the Difficult News Program improves communication between radiology staff and other health professionals and families and optimizes the patient and family experience during an emotional and difficult time. The defined roles and teamwork approach allow timely, compassionate, and accurate information to be shared with families.

  8. HL7 and DICOM based integration of radiology departments with healthcare enterprise information systems.

    PubMed

    Blazona, Bojan; Koncar, Miroslav

    2007-12-01

    Integration based on open standards, in order to achieve communication and information interoperability, is one of the key aspects of modern health care information systems. However, this requirement represents one of the major challenges for the Information and Communication Technology (ICT) solutions, as systems today use diverse technologies, proprietary protocols and communication standards which are often not interoperable. One of the main producers of clinical information in healthcare settings represent Radiology Information Systems (RIS) that communicate using widely adopted DICOM (Digital Imaging and COmmunications in Medicine) standard, but in very few cases can efficiently integrate information of interest with other systems. In this context we identified HL7 standard as the world's leading medical ICT standard that is envisioned to provide the umbrella for medical data semantic interoperability, which amongst other things represents the cornerstone for the Croatia's National Integrated Healthcare Information System (IHCIS). The aim was to explore the ability to integrate and exchange RIS originated data with Hospital Information Systems based on HL7's CDA (Clinical Document Architecture) standard. We explored the ability of HL7 CDA specifications and methodology to address the need of RIS integration HL7 based healthcare information systems. We introduced the use of WADO service interconnection to IHCIS and finally CDA rendering in widely used Internet explorers. The outcome of our pilot work proves our original assumption of HL7 standard being able to adopt radiology data into the integrated healthcare systems. Uniform DICOM to CDA translation scripts and business processes within IHCIS is desired and cost effective regarding to use of supporting IHCIS services aligned to SOA.

  9. Developing participatory research in radiology: the use of a graffiti wall, cameras and a video box in a Scottish radiology department.

    PubMed

    Mathers, Sandra A; Anderson, Helen; McDonald, Sheila; Chesson, Rosemary A

    2010-03-01

    Participatory research is increasingly advocated for use in health and health services research and has been defined as a 'process of producing new knowledge by systematic enquiry, with the collaboration of those being studied'. The underlying philosophy of participatory research is that those recruited to studies are acknowledged as experts who are 'empowered to truly participate and have their voices heard'. Research methods should enable children to express themselves. This has led to the development of creative approaches of working with children that offer alternatives to, for instance, the structured questioning of children by researchers either through questionnaires or interviews. To examine the feasibility and potential of developing participatory methods in imaging research. We employed three innovative methods of data collection sequentially, namely the provision of: 1) a graffiti wall; 2) cameras, and 3) a video box for children's use. While the graffiti wall was open to all who attended the department, for the other two methods children were allocated to each 'arm' consecutively until our target of 20 children for each was met. The study demonstrated that it was feasible to use all three methods of data collection within the context of a busy radiology department. We encountered no complaints from staff, patients or parents. Children were willing to participate but we did not collect data to establish if they enjoyed the activities, were pleased to have the opportunity to make comments or whether anxieties about their treatment inhibited their participation. The data yield was disappointing. In particular, children's contributions to the graffiti wall were limited, but did reflect the nature of graffiti, and there may have been some 'copycat' comments. Although data analysis was relatively straightforward, given the nature of the data (short comments and simple drawings), the process proved to be extremely time-consuming. This was despite the modest

  10. Decision-making and radiological protection at Three Mile Island: response of the Department of Health, Education and Welfare

    SciTech Connect

    Fabrikant, J.I.

    1982-02-01

    Decision-making by decision-makers during the nuclear accident at Three Mile Island all had to do in some way, and impacted on the public health and safety, the health and safety of the workers, and emergency preparedness and health care. This paper reviews the activities of only one federal agency during the accident, the Department of Health, Education, and Welfare (HEW), and its effectiveness in its role as the leading institution responsible for protecting the public health during the first accident in a nuclear power plant designed for the commerical generation of electricity in the United States. My comments are limited to only three acts dealing with radiological health and protection: the struggle for power and assertion of leadership in response to possible health consequences of the accident; the decisions to evacuate the area during the radiological emergency; and the use of potassium iodide as a means of protecting the public and the workers from the hazards of exposure to radioactive iodine released to the environment.

  11. The effectiveness of service delivery initiatives at improving patients' waiting times in clinical radiology departments: a systematic review.

    PubMed

    Olisemeke, B; Chen, Y F; Hemming, K; Girling, A

    2014-12-01

    We reviewed the literature for the impact of service delivery initiatives (SDIs) on patients' waiting times within radiology departments. We searched MEDLINE, EMBASE, CINAHL, INSPEC and The Cochrane Library for relevant articles published between 1995 and February, 2013. The Cochrane EPOC risk of bias tool was used to assess the risk of bias on studies that met specified design criteria. Fifty-seven studies met the inclusion criteria. The types of SDI implemented included extended scope practice (ESP, three studies), quality management (12 studies), productivity-enhancing technologies (PETs, 29 studies), multiple interventions (11 studies), outsourcing and pay-for-performance (one study each). The uncontrolled pre- and post-intervention and the post-intervention designs were used in 54 (95%) of the studies. The reporting quality was poor: many of the studies did not test and/or report the statistical significance of their results. The studies were highly heterogeneous, therefore meta-analysis was inappropriate. The following type of SDIs showed promising results: extended scope practice; quality management methodologies including Six Sigma, Lean methodology, and continuous quality improvement; productivity-enhancing technologies including speech recognition reporting, teleradiology and computerised physician order entry systems. We have suggested improved study design and the mapping of the definitions of patient waiting times in radiology to generic timelines as a starting point for moving towards a situation where it becomes less restrictive to compare and/or pool the results of future studies in a meta-analysis.

  12. An assessment of Chemical, Biological, Radiologic, Nuclear, and Explosive preparedness among emergency department healthcare providers in an inner city emergency department.

    PubMed

    Kotora, Joseph G

    2015-01-01

    Emergency healthcare providers are required to care for victims of Chemical, Biological, Radiologic, Nuclear, and Explosive (CBRNE) agents. However, US emergency departments are often ill prepared to manage CBRNE casualties. Most providers lack adequate knowledge or experience in the areas of patient decontamination, hospital-specific disaster protocols, interagency familiarization, and available supply of necessary medical equipment and medications. This study evaluated the CBRNE preparedness of physicians, nurses, and midlevel providers in an urban tertiary care emergency department. This retrospective observational survey study used a previously constructed questionnaire instrument. A total of 205 e-mail invitations were sent to 191 eligible providers through an online survey distribution tool (Survey Monkey®). Respondents were enrolled from February 1, 2014 to March 15, 2014. Simple frequencies of correct answers were used to determine the level of preparedness of each group. Cronbach's coefficient α was used to validate the precision of the study instrument. Finally, validity coefficients and analysis of variance ANOVA were used to determine the strength of correlation between demographic variables, as well as the variation between individual responses. Fifty-nine providers responded to the questionnaire (31.14 percent response rate). The overall frequency of correct answers was 66.26 percent, indicating a relatively poor level of CBRNE preparedness. The study instrument lacked precision and reliability (coefficient α 0.4050). Significant correlations were found between the frequency of correct answers and the respondents' gender, practice experience, and previous experience with a CBRNE incident. Significant variance exists between how providers believe casualties should be decontaminated, which drugs should be administered, and the interpretation of facility-specific protocols. Emergency care providers are inadequately prepared to manage CBRNE incidents

  13. Optimizing MRI Logistics: Focused Process Improvements Can Increase Throughput in an Academic Radiology Department.

    PubMed

    O'Brien, Jeremy J; Stormann, Jeremy; Roche, Kelli; Cabral-Goncalves, Ines; Monks, Annamarie; Hallett, Donna; Mortele, Koenraad J

    2017-02-01

    The purpose of this study was to describe and evaluate the effect of focused process improvements on protocol selection and scheduling in the MRI division of a busy academic medical center, as measured by examination and room times, magnet fill rate, and potential revenue increases and cost savings to the department. Focused process improvements, led by a multidisciplinary team at a large academic medical center, were directed at streamlining MRI protocols and optimizing matching protocol ordering to scheduling while maintaining or improving image quality. Data were collected before (June 2013) and after (March 2015) implementation of focused process improvements and divided by subspecialty on type of examination, allotted examination time, actual examination time, and MRI parameters. Direct and indirect costs were compiled and analyzed in consultation with the business department. Data were compared with evaluated effects on selected outcome and efficiency measures, as well as revenue and cost considerations. Statistical analysis was performed using a t test. During the month of June 2013, 2145 MRI examinations were performed at our center; 2702 were performed in March 2015. Neuroradiology examinations were the most common (59% in June 2013, 56% in March 2015), followed by body examinations (25% and 27%). All protocols and parameters were analyzed and streamlined for each examination, with slice thickness, TR, and echo train length among the most adjusted parameters. Mean time per examination decreased from 43.4 minutes to 36.7 minutes, and mean room time per patient decreased from 46.3 to 43.6 minutes (p = 0.009). Potential revenue from increased throughput may yield up to $3 million yearly (at $800 net revenue per scan) or produce cost savings if the facility can reduce staffed scanner hours or the number of scanners in its fleet. Actual revenue and expense impacts depend on the facility's fixed and variable cost structure, payer contracts, MRI fleet composition

  14. Acceptance of technology-enhanced learning for a theoretical radiological science course: a randomized controlled trial.

    PubMed

    Nkenke, Emeka; Vairaktaris, Elefterios; Bauersachs, Anne; Eitner, Stephan; Budach, Alexander; Knipfer, Christoph; Stelzle, Florian

    2012-03-30

    Technology-enhanced learning (TEL) gives a view to improved education. However, there is a need to clarify how TEL can be used effectively. The study compared students' attitudes and opinions towards a traditional face-to-face course on theoretical radiological science and a TEL course where students could combine face-to-face lectures and e-learning modules at their best convenience. 42 third-year dental students were randomly assigned to the traditional face-to-face group and the TEL group. Both groups completed questionnaires before the beginning and after completion of the course on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning. After completion of the course both groups also filled in the validated German-language TRIL (Trierer Inventar zur Lehrevaluation) questionnaire for the evaluation of courses given at universities. Both groups had a positive attitude towards e-learning that did not change over time. The TEL group attended significantly less face-to-face lectures than the traditional group. However, both groups stated that face-to-face lectures were the basis for education in a theoretical radiological science course. The members of the TEL group rated e-mail reminders significantly more important when they filled in the questionnaire on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning for the second time after completion of the course. The members of the technology-enhanced learning group were significantly less confident in passing the exam compared to the members of the traditional group. However, examination results did not differ significantly for traditional and the TEL group. It seems that technology-enhanced learning in a theoretical radiological science course has the potential to reduce the need for face-to-face lectures. At the same time examination results are not impaired. However, technology-enhanced learning cannot completely replace

  15. Acceptance of technology-enhanced learning for a theoretical radiological science course: a randomized controlled trial

    PubMed Central

    2012-01-01

    Background Technology-enhanced learning (TEL) gives a view to improved education. However, there is a need to clarify how TEL can be used effectively. The study compared students' attitudes and opinions towards a traditional face-to-face course on theoretical radiological science and a TEL course where students could combine face-to-face lectures and e-learning modules at their best convenience. Methods 42 third-year dental students were randomly assigned to the traditional face-to-face group and the TEL group. Both groups completed questionnaires before the beginning and after completion of the course on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning. After completion of the course both groups also filled in the validated German-language TRIL (Trierer Inventar zur Lehrevaluation) questionnaire for the evaluation of courses given at universities. Results Both groups had a positive attitude towards e-learning that did not change over time. The TEL group attended significantly less face-to-face lectures than the traditional group. However, both groups stated that face-to-face lectures were the basis for education in a theoretical radiological science course. The members of the TEL group rated e-mail reminders significantly more important when they filled in the questionnaire on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning for the second time after completion of the course. The members of the technology-enhanced learning group were significantly less confident in passing the exam compared to the members of the traditional group. However, examination results did not differ significantly for traditional and the TEL group. Conclusions It seems that technology-enhanced learning in a theoretical radiological science course has the potential to reduce the need for face-to-face lectures. At the same time examination results are not impaired. However, technology

  16. Observations on gender equality in a UK Earth Sciences department

    NASA Astrophysics Data System (ADS)

    Imber, Jonathan; Allen, Mark; Chamberlain, Katy; Foulger, Gillian; Gregory, Emma; Hoult, Jill; Macpherson, Colin; Winship, Sarah

    2016-04-01

    The progress of women to senior positions within UK higher education institutes has been slow. Women are worst represented in science, engineering and technology disciplines, where, in 2011, only 15% of professors were female. The national position is reflected in the Department of Earth Sciences at Durham University. The Department's gender profile shows steadily increasing proportions of females from undergraduate (ca. 38%) to postgraduate (ca. 42%) to postdoctoral (ca. 45%) levels, before dropping sharply with increasing seniority to 33% (n=1), 14% (n=1), 14% (n=1) and 13% (n=2), respectively, of lecturers, senior lecturers, readers and professors. The data suggest there is no shortage of talented female postgraduates and postdoctoral researchers; however, females are not applying, not being shortlisted, or not being appointed to academic roles in the expected proportions. Analysis of applications to academic positions in the Department during the period 2010-2015 suggests that "head hunting" senior academics, in some cases driven by external factors such as the UK Research Excellence Framework, resulted in a small proportion (between 0% and 11%) of female applicants. These results can be explained by the small number of senior female Earth Scientists nationally and, probably, internationally. Junior lectureship positions attracted between 24% and 33% female applicants, with the greatest proportion of females applying where the specialism within Earth Sciences was deliberately left open. In addition to these externally advertised posts, the Department has had some success converting independent research Fellowships, held by female colleagues, into permanent academic positions (n=2 between 2010 and 2015). Data for academic promotions show there is a significant negative correlation between year of appointment to first academic position within the Department (r=0.81, n=19, p<0.01), and the time taken to achieve first promotion at Durham. Data for our promoted

  17. Image Gently(SM): a national education and communication campaign in radiology using the science of social marketing.

    PubMed

    Goske, Marilyn J; Applegate, Kimberly E; Boylan, Jennifer; Butler, Priscilla F; Callahan, Michael J; Coley, Brian D; Farley, Shawn; Frush, Donald P; Hernanz-Schulman, Marta; Jaramillo, Diego; Johnson, Neil D; Kaste, Sue C; Morrison, Gregory; Strauss, Keith J

    2008-12-01

    Communication campaigns are an accepted method for altering societal attitudes, increasing knowledge, and achieving social and behavioral change particularly within public health and the social sciences. The Image Gently(SM) campaign is a national education and awareness campaign in radiology designed to promote the need for and opportunities to decrease radiation to children when CT scans are indicated. In this article, the relatively new science of social marketing is reviewed and the theoretical basis for an effective communication campaign in radiology is discussed. Communication strategies are considered and the type of outcomes that should be measured are reviewed. This methodology has demonstrated that simple, straightforward safety messages on radiation protection targeted to medical professionals throughout the radiology community, utilizing multiple media, can affect awareness potentially leading to change in practice.

  18. Emergency imaging after a mass casualty incident: role of the radiology department during training for and activation of a disaster management plan

    PubMed Central

    Körner, Markus; Bernstein, Mark P; Sodickson, Aaron D; Beenen, Ludo F; McLaughlin, Patrick D; Kool, Digna R; Bilow, Ronald M

    2016-01-01

    In the setting of mass casualty incidents (MCIs), hospitals need to divert from normal routine to delivering the best possible care to the largest number of victims. This should be accomplished by activating an established hospital disaster management plan (DMP) known to all staff through prior training drills. Over the recent decades, imaging has increasingly been used to evaluate critically ill patients. It can also be used to increase the accuracy of triaging MCI victims, since overtriage (falsely higher triage category) and undertriage (falsely lower triage category) can severely impact resource availability and mortality rates, respectively. This article emphasizes the importance of including the radiology department in hospital preparations for a MCI and highlights factors expected to influence performance during hospital DMP activation including issues pertinent to effective simulation, such as establishing proper learning objectives. After-action reviews including performance evaluation and debriefing on issues are invaluable following simulation drills and DMP activation, in order to improve subsequent preparedness. Historically, most hospital DMPs have not adequately included radiology department operations, and they have not or to a little extent been integrated in the DMP activation simulation. This article aims to increase awareness of the need for radiology department engagement in order to increase radiology department preparedness for DMP activation after a MCI occurs. PMID:26781837

  19. Emergency imaging after a mass casualty incident: role of the radiology department during training for and activation of a disaster management plan.

    PubMed

    Berger, Ferco H; Körner, Markus; Bernstein, Mark P; Sodickson, Aaron D; Beenen, Ludo F; McLaughlin, Patrick D; Kool, Digna R; Bilow, Ronald M

    2016-01-01

    In the setting of mass casualty incidents (MCIs), hospitals need to divert from normal routine to delivering the best possible care to the largest number of victims. This should be accomplished by activating an established hospital disaster management plan (DMP) known to all staff through prior training drills. Over the recent decades, imaging has increasingly been used to evaluate critically ill patients. It can also be used to increase the accuracy of triaging MCI victims, since overtriage (falsely higher triage category) and undertriage (falsely lower triage category) can severely impact resource availability and mortality rates, respectively. This article emphasizes the importance of including the radiology department in hospital preparations for a MCI and highlights factors expected to influence performance during hospital DMP activation including issues pertinent to effective simulation, such as establishing proper learning objectives. After-action reviews including performance evaluation and debriefing on issues are invaluable following simulation drills and DMP activation, in order to improve subsequent preparedness. Historically, most hospital DMPs have not adequately included radiology department operations, and they have not or to a little extent been integrated in the DMP activation simulation. This article aims to increase awareness of the need for radiology department engagement in order to increase radiology department preparedness for DMP activation after a MCI occurs.

  20. An assessment of the performance and quality control procedures of PACS workstation monitors used in Irish radiology departments

    NASA Astrophysics Data System (ADS)

    Wade, Cherrie; Brennan, Patrick C.; Mc Entee, Mark F.

    2005-04-01

    Diagnostic efficacy in soft-copy reporting relies heavily on the quality of workstation monitors and an investigation performed in 2002 demonstrated that CRT monitors in Dublin imaging departments were not operating at optimal levels. The current work examines the performance of CRTs being used in Dublin and other parts of Ireland to establish if problems reported in the earlier work have been rectified. All hospitals performing soft-copy reporting for general radiology using CRTs were included in the work. Examination of ambient lighting, calibration of monitors and analysis of CRT performance using the SMPTE test pattern and a selection of the AAPM test images was performed. Maximum luminance, spatial uniformity of luminance, temporal luminance stability, gamma, geometry, sharpness, veiling glare and spatial resolution of each monitor was evaluated. Ambient lighting in all reporting areas was within recommended levels. All the monitors were calibrated appropriately and were performing at acceptable levels for maximum luminance and temporal stability and only one of the thirty-three investigated failed to reach the standard for spatial uniformity. In contrast a number of the CRTs investigated showed poor adherence to acceptable levels for geometrical distortions, veiling glare and spatial resolution all of which are important influencers of image quality. Gamma values also appeared to be low for a number of monitors but this interpretation is provisional and subject to the establishment of ratified guideline values. The results demonstrate that although some improvement on the previous situation is evident, greater adherence to acceptable levels is required for certain parameters.

  1. Routine Ultrasound Quality Assurance in a Multi-Unit Radiology Department: A Retrospective Evaluation of Transducer Failures.

    PubMed

    Vitikainen, Anne-Mari; Peltonen, Juha I; Vartiainen, Eija

    2017-09-01

    The importance of quality assurance (QA) in medical ultrasound (US) has been widely recognized and recommendations concerning technical QA have been published over the years. However, the demonstrated impact of a properly working QA protocol on clinical routine has been scarce. We investigated the transducer write-off causes for a 5-y period in a multi-unit radiology department with an annual average of 230 transducers in demanding diagnostic use. The transducer faults and the initial observers of the faults leading to transducer write-offs were traced and categorized. The most common cause of transducer write-off was an image uniformity problem or element failure. Mechanical faults or excessive leakage current and defects in the lens constituted smaller yet substantial shares. Our results suggest that a properly working routine QA program can detect majority of the faults before they are reported by users. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. An Audit to Evaluate the Image Quality of Magnetic Resonance of Knee at Radiology Department of a Tertiary Care Hospital.

    PubMed

    Mansoor, Ali; Ramzan, Amaila; Chaudhary, Aamer Nadeem

    2017-04-01

    light of recommendations of ACR. Aclinical audit. Department of Radiology, Jinnah Hospital, Lahore, from August 2015 to February 2016. Scans of 20 patients who underwent MRI of knee in August 2015 were studied retrospectively to assess the quality of images obtained in the first audit. Based on the findings of this audit, recommendations were made and re audit was done 6 months later in February 2016 to look for improvement in local practice. In the first audit, images were acquired in all the three necessary planes and the sagittal and coronal images had appropriate slice thickness, interslice gap as well as adequate anatomical coverage in all the patients. However, FOV (field of view) was appropriately set in 66% of cases in axial plane, 5% in sagittal plane, and 0% in coronal plane. Also, the anatomical coverage was not upto the mark in axial plane with 13 studies (66%) having adequate superior coverage, and 16 cases (80%) having recommended inferior anatomical coverage. The re audit performed 6 months later showed improvement with 100% compliance to standards. The first audit showed many shortcomings in acquiring of MRI data in patients undergoing knee MRI with FOV requiring a decrease in all planes and anatomical coverage increase in axial plane. These recommendations were made in departmental meetings and re-audit was done after 6 months. This second audit showed 100 % compliance.

  3. Technology as an Occasion for Structuring: Evidence from Observations of CT Scanners and the Social Order of Radiology Departments.

    ERIC Educational Resources Information Center

    Barley, Stephen R.

    1986-01-01

    New technologies such as the CT scanner are challenging traditional role relations among radiology workers and may be altering the organizational and occupational structure of radiological work. This paper expands recent sociological thought by showing how identical CT scanners occasion similar structuring processes and created divergent forms of…

  4. Technology as an Occasion for Structuring: Evidence from Observations of CT Scanners and the Social Order of Radiology Departments.

    ERIC Educational Resources Information Center

    Barley, Stephen R.

    1986-01-01

    New technologies such as the CT scanner are challenging traditional role relations among radiology workers and may be altering the organizational and occupational structure of radiological work. This paper expands recent sociological thought by showing how identical CT scanners occasion similar structuring processes and created divergent forms of…

  5. Science Goals of the U.S. Department of the Interior Southeast Climate Science Center

    USGS Publications Warehouse

    Dalton, Melinda S.

    2011-01-01

    In 2011, the U.S. Department of the Interior Southeast Climate Science Center (CSC) finalized the first draft of its goals for research needed to address the needs of natural and cultural partners for climate science in the Southeastern United States. The science themes described in this draft plan were established to address the information needs of ecoregion conservation partnerships, such as the Landscape Conservation Cooperatives (LCCs) and other regional conservation-science and resource-management partners. These themes were developed using priorities defined by partners and stakeholders in the Southeast and on a large-scale, multidisciplinary project-the Southeast Regional Assessment Project (SERAP)-developed in concert with those partners. Science products developed under these themes will provide models of potential future conditions, assessments of likely impacts, and tools that can be used to inform the conservation management decisions of LCCs and other partners. This information will be critical as managers try to anticipate and adapt to climate change. Resource managers in the Southeast are requesting this type of information, in many cases as a result of observed climate change effects. The Southeast CSC draft science plan identifies six science themes and frames the activities (tasks, with examples of recommended near-term work for each task included herein) related to each theme that are needed to achieve the objectives of the Southeast CSC.

  6. Little science, big science: strategies for research portfolio selection in academic surgery departments.

    PubMed

    Shah, Anand; Pietrobon, Ricardo; Cook, Chad; Sheth, Neil P; Nguyen, Lam; Guo, Lucie; Jacobs, Danny O; Kuo, Paul C

    2007-12-01

    To evaluate National Institutes of Health (NIH) funding for academic surgery departments and to determine whether optimal portfolio strategies exist to maximize this funding. The NIH budget is expected to be relatively stable in the foreseeable future, with a modest 0.7% increase from 2005 to 2006. Funding for basic and clinical science research in surgery is also not expected to increase. NIH funding award data for US surgery departments from 2002 to 2004 was collected using publicly available data abstracted from the NIH Information for Management, Planning, Analysis, and Coordination (IMPAC) II database. Additional information was collected from the Computer Retrieval of Information on Scientific Projects (CRISP) database regarding research area (basic vs. clinical, animal vs. human, classification of clinical and basic sciences). The primary outcome measures were total NIH award amount, number of awards, and type of grant. Statistical analysis was based on binomial proportional tests and multiple linear regression models. The smallest total NIH funding award in 2004 to an individual surgery department was a single $26,970 grant, whereas the largest was more than $35 million comprising 68 grants. From 2002 to 2004, one department experienced a 336% increase (greatest increase) in funding, whereas another experienced a 73% decrease (greatest decrease). No statistically significant differences were found between departments with decreasing or increasing funding and the subspecialty of basic science or clinical research funded. Departments (n = 5) experiencing the most drastic decrease (total dollars) in funding had a significantly higher proportion of type K (P = 0.03) grants compared with departments (n = 5) with the largest increases in total funding; the latter group had a significantly increased proportion of type U grants (P = 0.01). A linear association between amount of decrease/increase was found with the average amount of funding per grant and per

  7. Developing an emergency department crowding dashboard: A design science approach.

    PubMed

    Martin, Niels; Bergs, Jochen; Eerdekens, Dorien; Depaire, Benoît; Verelst, Sandra

    2017-08-30

    As an emergency department (ED) is a complex adaptive system, the analysis of continuously gathered data is valuable to gain insight in the real-time patient flow. To support the analysis and management of ED operations, relevant data should be provided in an intuitive way. Within this context, this paper outlines the development of a dashboard which provides real-time information regarding ED crowding. The research project underlying this paper follows the principles of design science research, which involves the development and study of artifacts which aim to solve a generic problem. To determine the crowding indicators that are desired in the dashboard, a modified Delphi study is used. The dashboard is implemented using the open source Shinydashboard package in R. A dashboard is developed containing the desired crowding indicators, together with general patient flow characteristics. It is demonstrated using a dataset of a Flemish ED and fulfills the requirements which are defined a priori. The developed dashboard provides real-time information on ED crowding. This information enables ED staff to judge whether corrective actions are required in an effort to avoid the adverse effects of ED crowding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Spaced education activates students in a theoretical radiological science course: a pilot study.

    PubMed

    Nkenke, Emeka; Vairaktaris, Elefterios; Bauersachs, Anne; Eitner, Stephan; Budach, Alexander; Knipfer, Christian; Stelzle, Florian

    2012-05-23

    The present study aimed at determining if the addition of spaced education to traditional face-to-face lectures increased the time students kept busy with the learning content of a theoretical radiological science course. The study comprised two groups of 21 third-year dental students. The students were randomly assigned to a "traditional group" and a "spaced education group". Both groups followed a traditional face-to-face course. The intervention in the spaced education group was performed in way that these students received e-mails with a delay of 14 days to each face-to-face lecture. These e-mails contained multiple choice questions on the learning content of the lectures. The students returned their answers to the questions also by e-mail. On return they received an additional e-mail that included the correct answers and additional explanatory material.All students of both groups documented the time they worked on the learning content of the different lectures before a multiple choice exam was held after the completion of the course. All students of both groups completed the TRIL questionnaire (Trierer Inventar zur Lehrevaluation) for the evaluation of courses at university after the completion of the course. The results for the time invested in the learning content and the results of the questionnaire for the two groups were compared using the Mann-Whitney-U test. The spaced education group spent significantly more time (216.2 ± 123.9 min) on keeping busy with the learning content compared to the traditional group (58.4 ± 94.8 min, p < .0005). The spaced education group rated the didactics of the course significantly better than the traditional group (p = .034). The students of the spaced education group also felt that their needs were fulfilled significantly better compared to the traditional group as far as communication with the teacher was concerned (p = .022). Adding spaced education to a face-to-face theoretical radiological

  9. Spaced education activates students in a theoretical radiological science course: a pilot study

    PubMed Central

    2012-01-01

    Background The present study aimed at determining if the addition of spaced education to traditional face-to-face lectures increased the time students kept busy with the learning content of a theoretical radiological science course. Methods The study comprised two groups of 21 third-year dental students. The students were randomly assigned to a “traditional group” and a “spaced education group”. Both groups followed a traditional face-to-face course. The intervention in the spaced education group was performed in way that these students received e-mails with a delay of 14 days to each face-to-face lecture. These e-mails contained multiple choice questions on the learning content of the lectures. The students returned their answers to the questions also by e-mail. On return they received an additional e-mail that included the correct answers and additional explanatory material. All students of both groups documented the time they worked on the learning content of the different lectures before a multiple choice exam was held after the completion of the course. All students of both groups completed the TRIL questionnaire (Trierer Inventar zur Lehrevaluation) for the evaluation of courses at university after the completion of the course. The results for the time invested in the learning content and the results of the questionnaire for the two groups were compared using the Mann–Whitney-U test. Results The spaced education group spent significantly more time (216.2 ± 123.9 min) on keeping busy with the learning content compared to the traditional group (58.4 ± 94.8 min, p < .0005). The spaced education group rated the didactics of the course significantly better than the traditional group (p = .034). The students of the spaced education group also felt that their needs were fulfilled significantly better compared to the traditional group as far as communication with the teacher was concerned (p = .022). Conclusions Adding spaced

  10. The Reorganization of Basic Science Departments in U.S. Medical Schools, 1980-1999.

    ERIC Educational Resources Information Center

    Mallon, William T.; Biebuyck, Julien F.; Jones, Robert F.

    2003-01-01

    Constructed a longitudinal database to examine how basic science departments have been reorganized at U.S. medical schools. Found that there were fewer basic science departments in the traditional disciplines of anatomy, biochemistry, microbiology, pharmacology, and physiology in 1999 than in 1980. But as biomedical science has developed in an…

  11. The Reorganization of Basic Science Departments in U.S. Medical Schools, 1980-1999.

    ERIC Educational Resources Information Center

    Mallon, William T.; Biebuyck, Julien F.; Jones, Robert F.

    2003-01-01

    Constructed a longitudinal database to examine how basic science departments have been reorganized at U.S. medical schools. Found that there were fewer basic science departments in the traditional disciplines of anatomy, biochemistry, microbiology, pharmacology, and physiology in 1999 than in 1980. But as biomedical science has developed in an…

  12. Forecasting Science and Technology for the Department of Defense

    DTIC Science & Technology

    2009-12-01

    areas as astronomy, atmospheric sciences, and chemical engineering. Because the trend in research is toward multidisciplinary and transdisciplinary ...biosensing in a nonlinear manner. These technological convergences represented a transdisciplinary approach to science, one in which basic concepts

  13. Using Mathematics in Science: Working with Your Mathematics Department

    ERIC Educational Resources Information Center

    Lyon, Steve

    2014-01-01

    Changes to the mathematics and science curriculums are designed to increase rigour in mathematics, and place greater emphasis on mathematical content in science subjects at key stages 3, 4 and 5 (ages 11-18). One way to meet the growing challenge of providing increased emphasis on mathematics in the science curriculum is greater collaboration…

  14. Using Mathematics in Science: Working with Your Mathematics Department

    ERIC Educational Resources Information Center

    Lyon, Steve

    2014-01-01

    Changes to the mathematics and science curriculums are designed to increase rigour in mathematics, and place greater emphasis on mathematical content in science subjects at key stages 3, 4 and 5 (ages 11-18). One way to meet the growing challenge of providing increased emphasis on mathematics in the science curriculum is greater collaboration…

  15. Basic research supported by the Office of Basic Energy Sciences, U.S. Department of Energy

    SciTech Connect

    Kelley, R.D.

    1995-08-01

    This presentation will outline the basic research activities of the Office of Basic Energy Sciences (BES) of the U.S. Department of Energy. The BES mission is to develop understanding and to stimulate innovative thinking needed to fortify the Department`s mission. Of particular focus in the presentation are the research programs, amounting to about $10 million, supported by the Materials Sciences Division and the Chemical Sciences Division which are fairly directly related to electrochemical technologies.

  16. The Effect of a State Department of Education Teacher Mentor Initiative on Science Achievement

    ERIC Educational Resources Information Center

    Pruitt, Stephen L.; Wallace, Carolyn S.

    2012-01-01

    This study investigated the effectiveness of a southern state's department of education program to improve science achievement through embedded professional development of science teachers in the lowest performing schools. The Science Mentor Program provided content and inquiry-based coaching by teacher leaders to science teachers in their own…

  17. [Comparison of accreditation procedures, ISO 9000 certification procedures and total quality management. Personal experiences and application of quality assurance in a department of radiology and medical imaging].

    PubMed

    Duvauferrier, R; Rolland, Y; Philippe, C; Milon, J; de Korvin, B; Rambeau, M; Morcet, N; Ramée, A

    1999-04-01

    Management of quality assurance protocols in a radiology department can be done by using several tools or models. Some are specific like accreditation manuals issued by some organizations, others like the ISO 9000 certification and the Total Quality management are more general and already well known by manufacturers. In order to implement a process of quality improvement, we have reviewed three models of quality assurance: evaluation in total quality based on the European model "EFQM", accreditation based on booklets from French cancer centers and Canadian radiology centers and, finally, accreditation based on the ISO 9002 certification model. Based on results of our comparative study, these three tools of quality management are not contradictory and may be complementary. However, they can be compared in terms of constraints they impose, of their historical background, of the criteria evaluated as well as the role of different teams. In conclusion, we suggest that directors of radiology department interested in implementing a quality assurance program first evaluate their department using the Canadian accreditation model issued in 1993 which is useful to become familiar with this new concept of quality. In a second step, a self assessment using the EFQM has to be done in collaboration with all members of the administration board in order to integrate all parameters and to share this protocol with all decision makers. The last step is to consolidate the organization of the quality assurance protocols by means of the ISO 9002 certification.

  18. Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the Marine Sciences Laboratory, Sequim Site

    SciTech Connect

    Barnett, J. Matthew; Meier, Kirsten M.; Snyder, Sandra F.; Antonio, Ernest J.; Fritz, Brad G.; Poston, Theodore M.

    2012-12-27

    This document of Data Quality Objectives (DQOs) was prepared based on the U.S. Environmental Protection Agency (EPA) Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA, QA/G4, 2/2006 (EPA 2006), as well as several other published DQOs. The intent of this report is to determine the necessary steps required to ensure that radioactive emissions to the air from the Marine Sciences Laboratory (MSL) headquartered at the Pacific Northwest National Laboratory’s Sequim Marine Research Operations (Sequim Site) on Washington State’s Olympic Peninsula are managed in accordance with regulatory requirements and best practices. The Sequim Site was transitioned in October 2012 from private operation under Battelle Memorial Institute to an exclusive use contract with the U.S. Department of Energy, Office of Science, Pacific Northwest Site Office.

  19. How Is Science Being Taught? Measuring Evidence-Based Teaching Practices across Undergraduate Science Departments

    PubMed Central

    Drinkwater, Michael J.; Matthews, Kelly E.; Seiler, Jacob

    2017-01-01

    While there is a wealth of research evidencing the benefits of active-learning approaches, the extent to which these teaching practices are adopted in the sciences is not well known. The aim of this study is to establish an evidential baseline of teaching practices across a bachelor of science degree program at a large research-intensive Australian university. Our purpose is to contribute to knowledge on the adoption levels of evidence-based teaching practices by faculty within a science degree program and inform our science curriculum review in practical terms. We used the Teaching Practices Inventory (TPI) to measure the use of evidence-based teaching approaches in 129 courses (units of study) across 13 departments. We compared the results with those from a Canadian institution to identify areas in need of improvement at our institution. We applied a regression analysis to the data and found that the adoption of evidence-based teaching practices differs by discipline and is higher in first-year classes at our institution. The study demonstrates that the TPI can be used in different institutional contexts and provides data that can inform practice and policy. PMID:28232589

  20. How Is Science Being Taught? Measuring Evidence-Based Teaching Practices across Undergraduate Science Departments.

    PubMed

    Drinkwater, Michael J; Matthews, Kelly E; Seiler, Jacob

    2017-01-01

    While there is a wealth of research evidencing the benefits of active-learning approaches, the extent to which these teaching practices are adopted in the sciences is not well known. The aim of this study is to establish an evidential baseline of teaching practices across a bachelor of science degree program at a large research-intensive Australian university. Our purpose is to contribute to knowledge on the adoption levels of evidence-based teaching practices by faculty within a science degree program and inform our science curriculum review in practical terms. We used the Teaching Practices Inventory (TPI) to measure the use of evidence-based teaching approaches in 129 courses (units of study) across 13 departments. We compared the results with those from a Canadian institution to identify areas in need of improvement at our institution. We applied a regression analysis to the data and found that the adoption of evidence-based teaching practices differs by discipline and is higher in first-year classes at our institution. The study demonstrates that the TPI can be used in different institutional contexts and provides data that can inform practice and policy.

  1. User acceptance of a picture archiving and communication system (PACS) in a Saudi Arabian hospital radiology department

    PubMed Central

    2012-01-01

    Background Compared with the increasingly widespread use of picture archiving and communication systems (PACSs), knowledge concerning users’ acceptance of such systems is limited. Knowledge of acceptance is needed given the large (and growing) financial investment associated with the implementation of PACSs, and because the level of user acceptance influences the degree to which the benefits of the systems for healthcare can be realized. Methods A Technology Acceptance Model (TAM) was used to assess the level of acceptance of the host PACS by staff in the radiology department at King Abdulaziz Medical City (KAMC), Riyadh, Saudi Arabia. A questionnaire survey of 89 PACS users was employed to obtain data regarding user characteristics, perceived usefulness (PU) (6 items), perceived ease of use (PEU) (4 items), a change construct (4 items), and a behavior (acceptance) construct (9 items). Respondents graded each item in each construct using five-point likert scales. Results Surveyed users reported high levels of PU (4.33/5), PEU (4.15/5), change (4.26/5), and acceptance (3.86/5). The three constructs of PU, PEU, and change explained 41 % of the variation in PACS user acceptance. PU was the most important predictor, explaining 38 % of the variation on its own. The most important single item in the explanatory constructs was that users found PACS to have improved the quality of their work in providing better patient care. Technologists had lower acceptance ratings than did clinicians/radiologists, but no influence on acceptance level was found due to gender, age, or length of experience using the PACS. Although not directly measured, there appeared to be no cultural influence on either the level of acceptance or its determinants. Conclusions User acceptance must be considered when an organization implements a PACS, in order to enhance its successful adoption. Health organizations should adopt a PACS that offers all required functions and which is likely to

  2. Implementing and Sustaining Science Curriculum Reform: A Study of Leadership Practices among Teachers within a High School Science Department

    ERIC Educational Resources Information Center

    Larkin, Douglas B.; Seyforth, Scott C.; Lasky, Holly J.

    2009-01-01

    This study presents a description and analysis of a ninth-grade integrated science curriculum developed and implemented by teachers within a high school science department and subsequently sustained for over 25 years. The Integrated Science Program (ISP) at Lakeside Southwest High School depicted here offers a unique example of longitudinal…

  3. DRAFT - Design of Radiological Survey and Sampling to Support Title Transfer or Lease of Property on the Department of Energy Oak Ridge Reservation

    SciTech Connect

    Cusick L.T.

    2002-09-25

    The U.S. Department of Energy (DOE) owns, operates, and manages the buildings and land areas on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. As land and buildings are declared excess or underutilized, it is the intent of DOE to either transfer the title of or lease suitable property to the Community Reuse Organization of East Tennessee (CROET) or other entities for public use. It is DOE's responsibility, in coordination with the U.S. Environmental Protection Agency (EPA), Region 4, and the Tennessee Department of Environment and Conservation (TDEC), to ensure that the land, facilities, and personal property that are to have the title transferred or are to be leased are suitable for public use. Release of personal property must also meet site requirements and be approved by the DOE contractor responsible for site radiological control. The terms title transfer and lease in this document have unique meanings. Title transfer will result in release of ownership without any restriction or further control by DOE. Under lease conditions, the government retains ownership of the property along with the responsibility to oversee property utilization. This includes involvement in the lessee's health, safety, and radiological control plans and conduct of site inspections. It may also entail lease restrictions, such as limiting access to certain areas or prohibiting digging, drilling, or disturbing material under surface coatings. Survey and sampling requirements are generally more rigorous for title transfer than for lease. Because of the accelerated clean up process, there is an increasing emphasis on title transfers of facilities and land. The purpose of this document is to describe the radiological survey and sampling protocols that are being used for assessing the radiological conditions and characteristics of building and land areas on the Oak Ridge Reservation that contain space potentially available for title transfer or lease. After necessary surveys and

  4. Department of Defense Laboratory Civilian Science and Engineering Workforce - 2013

    DTIC Science & Technology

    2013-10-01

    130 Foreign Affairs 633 Physical Therapist 1222 Patent Attorney 131 International Relations 644 Medical Technologist 1301 General Physical Science...132 Intelligence 662 Optometrist 1306 Health Physics 150 Geography 665 Speech Pathology and Audiology 1310 Physics 170 History 680 Dental Officer

  5. [Quality assurance measures within DIN 6856: the adaptation of film viewing boxes and their specifications in the radiology department of a university hospital. Deutsche Industrie-Norm].

    PubMed

    Kirchner, J; Kollath, J

    1996-02-01

    The aim of our study was to examine the quality and consistency of film viewing equipment and surroundings for radiological film viewing as stipulated by the recently released DIN 6856 standard specifications sheet. 107 film viewers in 43 locations in the Department of General Radiology (Hospital of the Goethe University in Frankfurt, Germany) were examined with regard to viewer brightness (intrinsic luminous intensity) uniformity of viewbox brightness, colour of fluorescence tubes, dimensions, adjustable filters, positioning of the viewers and ambient light level. Requirements regarding brightness were met in 70%, whereas conditions regarding uniformity of brightness were fulfilled in only 27% and the required filters in only 20% of all cases. 89% of the examined film viewboxes did not comply with the strict specifications laid down in DIN 6856. The requirements regarding the ambient light level (recommended range 50-100 lx) were met by only 75% of the examined desks.

  6. Basic Research Policy of the Department of Defense: Report of the Defense Science Board Task Force

    DTIC Science & Technology

    1968-02-20

    Classification) Basic Research Policy of the Department of Defense, Report of the Defense Science Board Task Force, UNCLASSIFIED 12 PERSONAL AUTHOR(S) N/A...obsolete. SECURITY CLASSIFICATION OF THIS PAGE — In wcnssrnw BASIC RESEARCH POLICY OF THE DEPARTMENT OF DEFENSE Report of the Defense Science Board Task...BOARD SUBJECT: Report of Task Force on Basic Research Policy The Task Force of the Defense Science Board, appointed at the request of the

  7. Individuals and Leadership in an Australian Secondary Science Department: A Qualitative Study

    ERIC Educational Resources Information Center

    Melville, Wayne; Wallace, John; Bartley, Anthony

    2007-01-01

    In this article, we consider the complex and dynamic inter-relationships between individual science teachers, the social space of their work and their dispositions towards teacher leadership. Research into the representation of school science departments through individual science teachers is scarce. We explore the representations of four…

  8. Individuals and Leadership in an Australian Secondary Science Department: A Qualitative Study

    ERIC Educational Resources Information Center

    Melville, Wayne; Wallace, John; Bartley, Anthony

    2007-01-01

    In this article, we consider the complex and dynamic inter-relationships between individual science teachers, the social space of their work and their dispositions towards teacher leadership. Research into the representation of school science departments through individual science teachers is scarce. We explore the representations of four…

  9. Patterns of Recent National Institutes of Health (NIH) Funding to Diagnostic Radiology Departments: Analysis Using the NIH RePORTER System.

    PubMed

    Franceschi, Ana M; Rosenkrantz, Andrew B

    2017-09-01

    This study aimed to characterize recent National Institutes of Health (NIH) funding for diagnostic radiology departments at US medical schools. This retrospective study did not use private identifiable information and thus did not constitute human subjects research. The public NIH Research Portfolio Online Reporting Tools Expenditure and Results system was used to extract information regarding 887 NIH awards in 2015 to departments of "Radiation-Diagnostic/Oncology." Internet searches were conducted to identify each primary investigator (PI)'s university web page, which was used to identify the PI's departmental affiliation, gender, degree, and academic rank. A total of 649 awards to diagnostic radiology departments, based on these web searches, were included; awards to radiation oncology departments were excluded. Characteristics were summarized descriptively. A total of 61 unique institutions received awards. The top five funded institutions represented 33.6% of all funding. The most common institutes administering these awards were the National Cancer Institute (29.0%) and the National Institute of Biomedical Imaging and Bioengineering (21.6%). Women received 15.9% of awards and 13.3% of funding, with average funding per award of $353,512 compared to $434,572 for men. PhDs received 77.7% of all awards, with average funding per award of $457,413 compared to $505,516 for MDs. Full professors received 51.2% of awards (average funding per award of $532,668), compared to assistant professors who received 18.4% of awards ($260,177). Average funding was $499,859 for multiple-PI awards vs. $397,932 for single-PI awards. Common spending categories included "neurosciences," "cancer," "prevention," and "aging." NIH funding for diagnostic radiology departments has largely been awarded to senior-ranking male PhD investigators, commonly at large major academic medical centers. Initiatives are warranted to address such disparities and promote greater diversity in NIH funding

  10. M. D. Faculty Salaries in Psychiatry and All Clinical Science Departments, 1980-2006

    ERIC Educational Resources Information Center

    Haviland, Mark G.; Dial, Thomas H.; Pincus, Harold Alan

    2009-01-01

    Objective: The authors compare trends in the salaries of physician faculty in academic departments of psychiatry with those of physician faculty in all academic clinical science departments from 1980-2006. Methods: The authors compared trend lines for psychiatry and all faculty by academic rank, including those for department chairs, by graphing…

  11. M. D. Faculty Salaries in Psychiatry and All Clinical Science Departments, 1980-2006

    ERIC Educational Resources Information Center

    Haviland, Mark G.; Dial, Thomas H.; Pincus, Harold Alan

    2009-01-01

    Objective: The authors compare trends in the salaries of physician faculty in academic departments of psychiatry with those of physician faculty in all academic clinical science departments from 1980-2006. Methods: The authors compared trend lines for psychiatry and all faculty by academic rank, including those for department chairs, by graphing…

  12. [The trial of business data analysis at the Department of Radiology by constructing the auto-regressive integrated moving-average (ARIMA) model].

    PubMed

    Tani, Yuji; Ogasawara, Katsuhiko

    2012-01-01

    This study aimed to contribute to the management of a healthcare organization by providing management information using time-series analysis of business data accumulated in the hospital information system, which has not been utilized thus far. In this study, we examined the performance of the prediction method using the auto-regressive integrated moving-average (ARIMA) model, using the business data obtained at the Radiology Department. We made the model using the data used for analysis, which was the number of radiological examinations in the past 9 years, and we predicted the number of radiological examinations in the last 1 year. Then, we compared the actual value with the forecast value. We were able to establish that the performance prediction method was simple and cost-effective by using free software. In addition, we were able to build the simple model by pre-processing the removal of trend components using the data. The difference between predicted values and actual values was 10%; however, it was more important to understand the chronological change rather than the individual time-series values. Furthermore, our method was highly versatile and adaptable compared to the general time-series data. Therefore, different healthcare organizations can use our method for the analysis and forecasting of their business data.

  13. U.S. Department of the Interior Southeast Climate Science Center Science and Operational Plan

    USGS Publications Warehouse

    Jones, Sonya A.; Dalton, Melinda S.

    2012-01-01

    Climate change challenges many of the basic assumptions routinely used by conservation planners and managers, including the identification and prioritization of areas for conservation based on current environmental conditions and the assumption those conditions could be controlled by management actions. Climate change will likely alter important ecosystem drivers (temperature, precipitation, and sea-level rise) and make it difficult, if not impossible, to maintain current environmental conditions into the future. Additionally, the potential for future conservation of non-conservation lands may be affected by climate change, which further complicates resource planning. Potential changes to ecosystem drivers, as a result of climate change, highlight the need to develop and adapt effective conservation strategies to cope with the effects of climate and landscape change. The U.S. Congress, recognized the potential effects of climate change and authorized the creation of the U.S. Geological Survey National Climate Change and Wildlife Science Center (NCCWSC) in 2008. The directive of the NCCWSC is to produce science that supports resource-management agencies as they anticipate and adapt to the effects of climate change on fish, wildlife, and their habitats. On September 14, 2009, U.S. Department of the Interior (DOI) Secretary Ken Salazar signed Secretarial Order 3289 (amended February 22, 2010), which expanded the mandate of the NCCWSC to address climate-change-related impacts on all DOI resources. Secretarial Order 3289 "Addressing the Impacts of Climate Change on America's Water, Land, and Other Natural and Cultural Resources," established the foundation of two partner-based conservation science entities: Climate Science Centers (CSC) and their primary partners, Landscape Conservation Cooperatives (LCC). CSCs and LCCs are the Department-wide approach for applying scientific tools to increase the understanding of climate change, and to coordinate an effective response

  14. Radiological dose assessment of Department of Energy Pinellas Plant waste proposed for disposal at Laidlaw Environmental Services of South Carolina, Inc.

    SciTech Connect

    Socolof, M.L.; Lee, D.W.

    1996-05-01

    The U.S. Department of Energy (DOE) Pinellas Plant in Largo, FL is proposing to ship and dispose of hazardous sludge, listed as F006 waste, to the Laidlaw Environmental Services of South Carolina, Inc. (Laidlaw) treatment, storage, and disposal facility in Pinewood, South Carolina. This sludge contains radioactive tritium in concentrations of about 28 pCi/g. The objective of this study is to assess the possible radiological impact to workers at the Laidlaw facility and members of the public due to the handling, processing, and burial of the DOE waste containing tritium.

  15. Department of Defense Laboratory Civilian Science and Engineering Workforce - 2011

    DTIC Science & Technology

    2011-05-01

    Attorney 130 Foreign Affairs 633 Physical Therapist 1222 Patent Attorney 131 International Relations 644 Medical Technologist 1301 General Physical...Science 132 Intelligence 662 Optometrist 1306 Health Physics 150 Geography 665 Speech Pathology and Audiology 1310 Physics 170 History 680 Dental... teachers are in S&E fields. Within these limitations, the Census Bureau’s 2007 American Community Survey permits an analysis of trends in the

  16. Radiation exposure and chromosome abnormalities. Human cytogenetic studies at the National Institute of Radiological Sciences, Japan, 1963-1988

    SciTech Connect

    Ishihara, T.; Kohno, S.; Minamihisamatsu, M. )

    1990-03-01

    The results of human cytogenetic studies performed at the National Institute of Radiological Sciences (NIRS), Chiba, Japan for about 25 years are described. The studies were pursued primarily under two major projects: one involving people exposed to radiation under various conditions and the other involving patients with malignant diseases, especially leukemias. Whereas chromosome abnormalities in radiation-exposed people are excellent indicators of radiation exposure, their behavior in bone marrow provide useful information for a better understanding of chromosome abnormalities in leukemias and related disorders. The role of chromosome abnormalities in the genesis and development of leukemia and related disorders is considered, suggesting a view for future studies in this field.

  17. The National Climate Change and Wildlife Science Center and Department of the Interior Climate Science Centers annual report for 2014

    USGS Publications Warehouse

    Varela Minder, Elda; Padgett, Holly A.

    2015-10-27

    The National Climate Change and Wildlife Science Center (NCCWSC) and the Department of the Interior (DOI) Climate Science Centers (CSCs) had another exciting year in 2014. The NCCWSC moved toward focusing their science funding on several high priority areas and, along with the CSCs, gained new agency partners; contributed to various workshops, meetings, publications, student activities, and Tribal/indigenous activities; increased outreach; and more. 

  18. Bridging the Gap between Basic and Clinical Sciences: A Description of a Radiological Anatomy Course

    ERIC Educational Resources Information Center

    Torres, Anna; Staskiewicz, Grzegorz J.; Lisiecka, Justyna; Pietrzyk, Lukasz; Czekajlo, Michael; Arancibia, Carlos U.; Maciejewski, Ryszard; Torres, Kamil

    2016-01-01

    A wide variety of medical imaging techniques pervade modern medicine, and the changing portability and performance of tools like ultrasound imaging have brought these medical imaging techniques into the everyday practice of many specialties outside of radiology. However, proper interpretation of ultrasonographic and computed tomographic images…

  19. Bridging the Gap between Basic and Clinical Sciences: A Description of a Radiological Anatomy Course

    ERIC Educational Resources Information Center

    Torres, Anna; Staskiewicz, Grzegorz J.; Lisiecka, Justyna; Pietrzyk, Lukasz; Czekajlo, Michael; Arancibia, Carlos U.; Maciejewski, Ryszard; Torres, Kamil

    2016-01-01

    A wide variety of medical imaging techniques pervade modern medicine, and the changing portability and performance of tools like ultrasound imaging have brought these medical imaging techniques into the everyday practice of many specialties outside of radiology. However, proper interpretation of ultrasonographic and computed tomographic images…

  20. Feminist Science in the Case of a Reform-Minded Biology Department

    NASA Astrophysics Data System (ADS)

    Buxton, Cory A.

    This study explores how science and scientists were produced and reproduced within the setting of a university biology department. Building on recent work in the anthropology of education and feminist science studies, the author explored the reflexive questions of whether increased women's representation in science changed science practice and whether changing science practice increased women's representation insolence. The author examined both the contextual and constitutive values of science as they were negotiated and played out in the training of scientists in this setting. The author found some ways in which these values were shifting as more women assumed places of leadership in the department. At the same time, the author identified other ways in which the presence of women did not seem to cause the types of changes that feminist science studies have hypothesized. These findings can be interpreted through the anthropological perspective of practice theory, in which individuals are seen as exerting agency both within and against institutional structures.

  1. Individuals and Leadership in an Australian Secondary Science Department: A Qualitative Study

    NASA Astrophysics Data System (ADS)

    Melville, Wayne; Wallace, John; Bartley, Anthony

    2007-12-01

    In this article, we consider the complex and dynamic inter-relationships between individual science teachers, the social space of their work and their dispositions towards teacher leadership. Research into the representation of school science departments through individual science teachers is scarce. We explore the representations of four individual teachers to the assertions of teacher leadership proposed by Silva et al. (Teach Coll Rec, 102(4):779-804, 2000). These representations, expressed during regular science department meetings, occur in the social space of Bourdieu's "field" and are a reflection of the "game" of science education being played within the department. This departmentally centred space suggests an important implication when considering the relationship between subject departments and their schools. The development of an individual's representation of teacher leadership and the wider "field" of science education appears to shape the individual towards promoting their own sense of identity as a teacher of science, rather than as a teacher within a school. Our work suggests that for these individuals, the important "game" is science education, not school improvement. Consequently, the subject department may be a missing link between efforts to improve schools and current organizational practices.

  2. The Gender and Race-Ethnicity of Faculty in Top Science and Engineering Research Departments

    NASA Astrophysics Data System (ADS)

    Beutel, Ann M.; Nelson, Donna J.

    This study examines the gender and racial-ethnic composition of faculty in top research departments for science and engineering "S-E - disciplines. There are critical masses of at least 15% women in top research departments in biological sciences, psychology, and social sciences but not in physical sciences and engineering. Blacks and Hispanics together make up only 4.1% of the faculty in our study. Black and Hispanic females are the most poorly represented groups; together, they make up only 1% of the faculty in top S-E research departments. For most S-E disciplines, less than 15% of full professors in top research departments are women or non-Whites.

  3. Radiological Control Center (RADCC) Renaming Ceremony

    NASA Image and Video Library

    2017-03-31

    A Mars Science Laboratory cap is displayed in the Randall E. Scott Radiological Control Center at NASA's Kennedy Space Center. The facility was recently named in honor of Randy Scott, a professional health physicist of more than 40 years. He served as the Florida spaceport's Radiation Protection Officer for 14 years until his death June 17, 2016. Launched Nov. 26, 2011, the Mars Science Laboratory with the Curiosity lander was powered by a radioisotope thermalelectric generator. Located in the Neil Armstrong Operations and Checkout building, the Randall E. Scott Radiological Control Center is staffed by technical and radiological experts from NASA, the U.S. Department of Energy, the U.S. Air Force 45th Space Wing and the state of Florida. The group performs data collection and assessment functions supporting launch site and field data collection activities during launces involving plutonium-powered spacecraft such as the Mars Science Laboratory.

  4. Bridging the gap between basic and clinical sciences: A description of a radiological anatomy course.

    PubMed

    Torres, Anna; Staśkiewicz, Grzegorz J; Lisiecka, Justyna; Pietrzyk, Łukasz; Czekajlo, Michael; Arancibia, Carlos U; Maciejewski, Ryszard; Torres, Kamil

    2016-05-06

    A wide variety of medical imaging techniques pervade modern medicine, and the changing portability and performance of tools like ultrasound imaging have brought these medical imaging techniques into the everyday practice of many specialties outside of radiology. However, proper interpretation of ultrasonographic and computed tomographic images requires the practitioner to not only hone certain technical skills, but to command an excellent knowledge of sectional anatomy and an understanding of the pathophysiology of the examined areas as well. Yet throughout many medical curricula there is often a large gap between traditional anatomy coursework and clinical training in imaging techniques. The authors present a radiological anatomy course developed to teach sectional anatomy with particular emphasis on ultrasonography and computed tomography, while incorporating elements of medical simulation. To assess students' overall opinions about the course and to examine its impact on their self-perceived improvement in their knowledge of radiological anatomy, anonymous evaluation questionnaires were provided to the students. The questionnaires were prepared using standard survey methods. A five-point Likert scale was applied to evaluate agreement with statements regarding the learning experience. The majority of students considered the course very useful and beneficial in terms of improving three-dimensional and cross-sectional knowledge of anatomy, as well as for developing practical skills in ultrasonography and computed tomography. The authors found that a small-group, hands-on teaching model in radiological anatomy was perceived as useful both by the students and the clinical teachers involved in their clinical education. In addition, the model was introduced using relatively few resources and only two faculty members. Anat Sci Educ 9: 295-303. © 2015 American Association of Anatomists.

  5. The impact of introducing a no oral contrast abdominopelvic CT examination (NOCAPE) pathway on radiology turn around times, emergency department length of stay, and patient safety.

    PubMed

    Razavi, Seyed Amirhossein; Johnson, Jamlik-Omari; Kassin, Michael T; Applegate, Kimberly E

    2014-12-01

    This investigation evaluates the impact of the no oral contrast abdominopelvic CT examination (NOCAPE) on radiology turn around time (TAT), emergency department (ED) length of stay (LOS), and patient safety metrics. During a 12-month period at two urban teaching hospitals, 6,409 ED abdominopelvic (AP) CTs were performed to evaluate acute abdominal pain. NOCAPE represented 70.9 % of all ED AP CT examinations with intravenous contrast. Data collection included patient demographics, use of intravenous (IV) and/or oral contrast, order to complete and order to final interpretation TAT, ED LOS, admission, recall and bounce back rates, and comparison and characterization of impressions. The NOCAPE pathway reduced median order to complete TAT by 32 min (22.9 %) compared to IV and oral contrast AP CT examinations (traditional pathway) (P < 0.001). Median order to final TAT was 2.9 h in NOCAPE patients and 3.5 h in the traditional pathway, a 36-min (17.1 %) reduction (P < 0.001). Overall, the NOCAPE pathway reduced ED LOS by a median of 43 min (8.8 %) compared to the traditional pathway (8.2 vs 7.5 h) (P = 0.003). Recall and bounce back rates were 3.2 %, and only one patient had change in impression after oral contrast CT was repeated. The NOCAPE pathway is associated with decreased radiology TAT and ED LOS metrics. The authors suggest that NOCAPE implementation in the ED setting is safe and positively impacts both radiology and emergency medicine workflow.

  6. Status of science education in state departments of education: An initial report

    NASA Astrophysics Data System (ADS)

    Dowling, Kenneth W.; Yager, Robert E.

    The past five years have been characterized as times of assessment in science education. One aspect of the profession where little information has been reported is the service and leadership provided by the various Departments of Education that exist as a part of the 50 state governments. Information was collected from the 50 states concerning the professional preparation of state science consultants, the nature of the positions, number of workers employed in such units, changes in support staff, facilities, and budget for each five year interval between 1960-1980. Science consultants are 46 years of age, have completed more than 10 years of classroom teaching, have been supervisors at the last level, have been in state positions for one-eight years, and have a Master's degree (half have the Ph.D.). Science consultants in the state department of education work in local schools, write proposals, assist with other administrative duties, work as members of evaluation teams. They spend two-thirds of their time in science education per se. The duties have become more general with less time spent exclusively on science education duties. The positions have become more involved with regulations, evaluations; the consultants enjoying less flexibility in their jobs. There has been a decline in terms of numbers of consultants, budget for science education; and general support for science education projects in state departments of education during the 20-year period surveyed.

  7. Department of Energy – Office of Science Pacific Northwest Site Office Environmental Monitoring Plan for the DOE-SC PNNL Site

    SciTech Connect

    Snyder, Sandra F.; Meier, Kirsten M.; Barnett, J. Matthew; Bisping, Lynn E.; Poston, Ted M.; Rhoads, Kathleen

    2011-12-21

    The Pacific Northwest Site Office (PNSO) manages the contract for operations at the U.S. Depart¬ment of Energy Office of Science (DOE-SC) Pacific Northwest National Laboratory (PNNL) Site in Richland, Washington. Radiological operations at the DOE-SC PNNL Site expanded in 2010 with the completion of facilities at the Physical Sciences Facility. As a result of the expanded radiological work at the site, the Washington State Department of Health (WDOH) has required that offsite environmental surveillance be conducted as part of the PNNL Site Radioactive Air Emissions License. The environ¬mental monitoring and surveillance requirements of various orders, regulations, and guidance documents consider emission levels and subsequent risk of negative human and environmental impacts. This Environmental Monitoring Plan (EMP) describes air surveillance activities at the DOE-SC PNNL Site. The determination of offsite environmental surveillance needs evolved out of a Data Quality Objectives process (Barnett et al. 2010) and Implementation Plan (Snyder et al. 2010). The entire EMP is a compilation of several documents, which include the Main Document (this text), Attachment 1: Sampling and Analysis Plan, Attachment 2: Data Management Plan, and Attachment 3: Dose Assessment Guidance.

  8. Status of a compact electron cyclotron resonance ion source for National Institute of Radiological Sciences-930 cyclotron.

    PubMed

    Hojo, S; Katagiri, K; Nakao, M; Sugiura, A; Muramatsu, M; Noda, A; Okada, T; Takahashi, Y; Komiyama, A; Honma, T; Noda, K

    2014-02-01

    The Kei-source is a compact electron cyclotron resonance ion source using only permanent magnets and a frequency of 10 GHz. It was developed at the National Institute of Radiological Sciences (NIRS) for producing C(4+) ions oriented for high-energy carbon therapy. It has also been used as an ion source for the NIRS-930 cyclotron. Its microwave band region for the traveling-wave-tube amplifier and maximum output power are 8-10 GHz and 350 W, respectively. Since 2006, it has provided various ion beams such as proton, deuteron, carbon, oxygen, and neon with sufficient intensity (200 μA for proton and deuteron, 50 μA for C(4+), for example) and good stability for radioisotope production, tests of radiation damage, and basic research experiments. Its horizontal and vertical emittances were measured using a screen monitor and waist-scan. The present paper reports the current status of the Kei-source.

  9. Basic science research in pediatric radiology - how to empower the leading edge of our field.

    PubMed

    Daldrup-Link, Heike E

    2014-08-01

    Basic science research aims to explore, understand and predict phenomena in the natural world. It spurs the discovery of fundamentally new principles and leads to new knowledge and new concepts. By comparison, applied research employs basic science knowledge toward practical applications. In the clinical realm, basic science research and applied research should be closely connected. Basic science discoveries can build the foundation for a broad range of practical applications and thereby bring major benefits to human health, education, environment and economy. This article explains how basic science research impacts our field, it describes examples of new research directions in pediatric imaging and it outlines current challenges that we need to overcome in order to enable the next groundbreaking discovery.

  10. How Is Science Being Taught? Measuring Evidence-Based Teaching Practices across Undergraduate Science Departments

    ERIC Educational Resources Information Center

    Drinkwater, Michael J.; Matthews, Kelly E.; Seiler, Jacob

    2017-01-01

    While there is a wealth of research evidencing the benefits of active-learning approaches, the extent to which these teaching practices are adopted in the sciences is not well known. The aim of this study is to establish an evidential baseline of teaching practices across a bachelor of science degree program at a large research-intensive…

  11. Implementing Change within a School Science Department: Progressive and Dissonant Voices

    NASA Astrophysics Data System (ADS)

    Rigano, Donna L.; Ritchie, Stephen M.

    2003-06-01

    The purpose of this study was to describe the teaching and leadership experiences of a science teacher who, as head of department, was preparing to introduce changes in the science department of an independent school in response to the requirements of the new junior science syllabus in Queensland, Australia. This teacher consented to classroom observations and interviews with the researchers where his beliefs about teaching practice and change were explored. Other science teachers at the school also were interviewed about their reactions to the planned changes. Interpretive analysis of the data provides an account of the complex interactions, negotiations, compromises, concessions, and trade-offs faced by the teacher during a period of education reform. Perceived barriers existing within the school that impeded proposed change are identified.

  12. Development of Report Turnaround Times in a University Department of Radiology during Implementation of a Reformed Curriculum for Undergraduate Medical Education.

    PubMed

    Albrecht, Liane; Maurer, Martin H; Seithe, Tim; Braun, Joachim; Gummert, Richard; Auer, Jonas; Sponheuer, Keno; Meyl, Tobias Philipp; Hamm, Bernd; de Bucourt, Maximilian

    2017-09-21

    term breaks, increased teaching duties alone cannot serve as a sole causal explanation. Key Points: · Digital high-quantitative parameters can be used to evaluate workflow in radiology.. · Reporting time can be a criterion for efficient staffing.. · The acquisition and evaluation of parameters such as reporting times could lead to a more efficient resource allocation by providing hints of changed framework conditions and changing working intensities and/or capicity reserves - which may not be immediately apparent.. · During the period under investigation with the implementation of a teaching-intensive reformed curriculum for undergraduate medical education there was an increase in reporting time, which was not significant in intense care units.. · Since during the period under investigation the increase in reporting times can be stated both during term time and in the lecture free period, the implementation of the reformed curriculum for undergraduate medical education alone cannot serve as a sole causal explanation.. Citation Format · Albrecht L, Maurer MH, Seithe T et al. Development of the Report Turnaround Times in a University Department of Radiology during Implementation of a Reformed Curriculum for Undergraduate Medical Education. Fortschr Röntgenstr 2017; DOI: 10.1055/s-0043-118482. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Differences between orthopaedic evaluation and radiological reports of conventional radiographs in patients with minor trauma admitted to the emergency department.

    PubMed

    Catapano, Michele; Albano, Domenico; Pozzi, Grazia; Accetta, Riccardo; Memoria, Sergio; Pregliasco, Fabrizio; Messina, Carmelo; Sconfienza, Luca Maria

    2017-09-01

    During night and on weekends, in our emergency department there is no radiologist on duty or on call: thus, X-ray examinations (XR) are evaluated by the orthopaedic surgeon on duty and reported the following morning/monday by radiologists. The aim of our study was to examine the discrepancy rate between orthopaedists and radiologists in the interpretation of imaging examinations performed on patients in our tertiary level orthopaedic institution and the consequences of delayed diagnosis in terms of patient management and therapeutic strategy. We retrospectively reviewed all cases of discrepancy between orthopaedists and radiologists, which were categorized according to anatomical location of injury, initial diagnosis and treatment, change in diagnosis and treatment. We used the Chi square test to compare the frequencies of discrepancies between patients ≤14 and >14years of age. From January to December 2016, 19,512 patients admitted to our emergency department performed at least an imaging examination; among these patients, 13,561 underwent XR in absence of an attending radiologist. A discrepant diagnosis was found in 337/13,561 (2.5%; 184 males; mean age: 36.7±23.7, range 2-95); 151/337 (45%) discrepancies were encountered in the lower limbs, with ankle being the most common site of misdiagnosis (64/151), and 103/337 (30%) in the upper limbs, with the elbow being the most frequent site in this district (35/103). We found 293/337 false negatives (87%) and 44/337 false positives (13%), with 134 and 13 patients needing treatment change, respectively. We found 85/337 discrepancies (25%) in patients ≤14 years of age, and 252/337 (75%) in those >14years. The distribution of discrepancies per anatomic district was significantly different (P<0.001) in these two groups of patients. A low rate of discrepancy between orthopaedists and radiologists in evaluating images of patients admitted to our emergency department was found, although treatment change occurred in about

  14. Department of Energy Nanoscale Science Research Centers: Approach to Nanomaterial ES&H

    SciTech Connect

    None, None

    2008-05-12

    The following non-mandatory guidance is intended for the Nanoscale Science Research Centers (NSRCs) funded by the Basic Energy Sciences program office under the U.S. Department of Energy's Office of Science. It describes practices thought appropriate to the management of environmental, safety and health (ES&H) concerns associated with laboratory-scale operations involving the design, synthesis, or characterization of engineered nanomaterials, In general, it is intended to apply to precursors, intermediates, and wastes used during, or resulting from synthesizing such nanomaterials. In general, it is not intended to apply to materials for which an occupational exposure limit has been established.

  15. Perspective on Department of Energy Geospatial Science: Past, Present, and Future

    SciTech Connect

    Bhaduri, Budhendra L

    2007-01-01

    For many decades, the Department of Energy (DOE) has been a leader in basic scientific and engineering research that utilizes geospatial science to advance the state of knowledge in disciplines impacting national security, energy sustainability, and environmental stewardship. DOE recently established a comprehensive Geospatial Science Program that will provide an enterprise geographic information system infrastructure connecting all elements of DOE to critical geospatial data and associated geographic information services (GIServices). The Geospatial Science Program will provide a common platform for enhanced scientific and technical collaboration across DOE's national laboratories and facilities.

  16. DOC/WSNSO (Department of Commerce/Weather Service Nuclear Support Office) operational support to Federal Radiological Monitoring and Assessment Center

    SciTech Connect

    Mueller, P.

    1989-01-01

    The National Weather Service (NWS) is an agency of the Department of Commerce. The NWS has hundreds of weather offices throughout the United States. The Weather Service Nuclear Support Office (WSNSO) is a highly specialized unit of NWS that provides direct support to the U.S. Department of Energy's (DOE's) underground nuclear testing program. The WSNSO has been associated with the DOE for >33 yr. As a result of the unique relationship with the DOE, all WSNSO emergency response meteorologists and meteorological technicians are allowed access to classified material. Meteorological phenomena play a significant role during a Federal Radiological Monitoring and Assessment Center (FRMAC) event, and WSNSO meteorologists provide direct support to ARAC. The marriage of state-of-the-art computer systems together with proven technology provides the on-scene WSNSO meteorologist with essentially a portable fully equipped, fully functional, advanced NWS weather station. The WSNSO's emergency response personnel and hardware are at the ready and can be mobilized within 2 h. WSNSO can provide on-scene weather forecasts and critical weather data collection whenever and wherever necessary.

  17. Medical response to a radiologic/nuclear event: integrated plan from the Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services.

    PubMed

    Coleman, C Norman; Hrdina, Chad; Bader, Judith L; Norwood, Ann; Hayhurst, Robert; Forsha, Joseph; Yeskey, Kevin; Knebel, Ann

    2009-02-01

    The end of the Cold War led to a reduced concern for a major nuclear event. However, the current threats from terrorism make a radiologic (dispersal or use of radioactive material) or nuclear (improvised nuclear device) event a possibility. The specter and enormousness of the catastrophe resulting from a state-sponsored nuclear attack and a sense of nihilism about the effectiveness of a response were such that there had been limited civilian medical response planning. Although the consequences of a radiologic dispersal device are substantial, and the detonation of a modest-sized (10 kiloton) improvised nuclear device is catastrophic, it is both possible and imperative that a medical response be planned. To meet this need, the Office of the Assistant Secretary for Preparedness and Response in the Department of Health and Human Services, in collaboration within government and with nongovernment partners, has developed a scientifically based comprehensive planning framework and Web-based "just-in-time" medical response information called Radiation Event Medical Management (available at http://www.remm.nlm.gov). The response plan includes (1) underpinnings from basic radiation biology, (2) tailored medical responses, (3) delivery of medical countermeasures for postevent mitigation and treatment, (4) referral to expert centers for acute treatment, and (5) long-term follow-up. Although continuing to evolve and increase in scope and capacity, current response planning is sufficiently mature that planners and responders should be aware of the basic premises, tools, and resources available. An effective response will require coordination, communication, and cooperation at an unprecedented level. The logic behind and components of this response are presented to allow for active collaboration among emergency planners and responders and federal, state, local, and tribal governments.

  18. A brief history of geospatial science in the Department of Energy

    SciTech Connect

    Bhaduri, Budhendra L

    2007-01-01

    The U.S. Department of Energy (DOE) has a rich history of significant contributions to geospatial science spanning the past four decades. In the early years, work focused on basic research, such as development of algorithms for processing geographic data and early use of LANDSAT imagery. The emphasis shifted in the mid-1970s to development of geographic information system (GIS) applications to support programs such as the National Uranium Resource Evaluation (NURE), and later to issue-oriented GIS applications supporting programs such as environmental restoration and management (mid-1980s through present). Throughout this period, the DOE national laboratories represented a strong chorus of voices advocating the importance of geospatial science and technology in the decades to come. The establishment of a Geospatial Science Program by the DOE Office of the Chief Information Officer in 2005 reflects the continued potential of geospatial science to enhance DOE's science, projects, and operations, as is well demonstrated by historical analysis.

  19. Actionable Science Lessons Emerging from the Department of Interior Climate Science Center Network

    NASA Astrophysics Data System (ADS)

    McMahon, G.; Meadow, A. M.; Mikels-Carrasco, J.

    2015-12-01

    The DOI Advisory Committee on Climate Change and Natural Resource Science (ACCCNRS) has recommended that co-production of actionable science be the core programmatic focus of the Climate Science Center enterprise. Efforts by the Southeast Climate Science Center suggest that the complexity of many climate adaptation decision problems (many stakeholders that can influence implementation of a decision; the problems that can be viewed at many scales in space and time; dynamic objectives with competing values; complex, non-linear systems) complicates development of research-based information that scientists and non-scientists view as comprehensible, trustworthy, legitimate, and accurate. Going forward, organizers of actionable science efforts should consider inclusion of a broad set of stakeholders, beyond formal decisionmakers, and ensure that sufficient resources are available to explore the interests and values of this broader group. Co-produced research endeavors should foster agency and collaboration across a wide range of stakeholders. We recognize that stakeholder agency may be constrained by scientific or political power structures that limit the ability to initiate discussion, make claims, and call things into question. Co-production efforts may need to be preceded by more descriptive assessments that summarize existing climate science in ways that stakeholders can understand and link with their concerns. Such efforts can build rapport and trust among scientists and non-scientists, and may help stakeholders and scientists alike to frame adaptation decision problems amenable to a co-production effort. Finally, university and government researchers operate within an evaluation structure that rewards researcher-driven science that, at the extreme, "throws information over the fence" in the hope that information users will make better decisions. Research evaluation processes must reward more consultative, collaborative, and collegial research approaches if

  20. Turf wars in radiology: what must academic radiology do?

    PubMed

    Rao, Vijay M; Levin, David C

    2007-09-01

    In a previous article in this series, the authors called on private practice radiology groups to better support radiology research financially but also pointed out that academic radiology must make some changes as well. In this article, the authors discuss those changes in detail. They include revising the structure of the radiology residency, changing the timing of the American Board of Radiology oral examinations, requiring that all residents receive research training, and emphasizing the value of clinical and translational research. The Society of Chairmen of Academic Radiology Departments needs to assume a leadership role in implementing these changes.

  1. Women Accuse Rutgers Political-Science Department of Bias and Hostility

    ERIC Educational Resources Information Center

    Moser, Kate

    2008-01-01

    Female faculty members and graduate students at Rutgers University in New Brunswick's political-science department feel unfairly compensated and shut out of leadership positions by their male counterparts, says an internal university report obtained by "The Chronicle." In at least one case, a woman has been afraid to complain about…

  2. Exploring Resource Sharing between Secondary School Teachers of Agriculture and Science Departments Nationally.

    ERIC Educational Resources Information Center

    Dormody, Thomas J.

    1992-01-01

    A survey of 372 secondary agriculture teachers received 274 responses showing a majority of agriculture and science departments share resources, although at low levels. Many more predicted future sharing. Equipment and supplies were most often shared, instructional services least often. (SK)

  3. Growing Collegial Cultures in Subject Departments in Secondary Schools: Working with Science Staff.

    ERIC Educational Resources Information Center

    Busher, Hugh; Blease, Derek

    2000-01-01

    Considers how particular approaches to leading and managing laboratory technicians in some (British) secondary-school science departments enhanced collegiality. In some schools, lab paraprofessionals are involved in decision-making. Trust, delegation based on ability, cooperative values, inclusive leadership styles, and a sense of belonging were…

  4. Exploring Resource Sharing between Secondary School Teachers of Agriculture and Science Departments Nationally.

    ERIC Educational Resources Information Center

    Dormody, Thomas J.

    1992-01-01

    A survey of 372 secondary agriculture teachers received 274 responses showing a majority of agriculture and science departments share resources, although at low levels. Many more predicted future sharing. Equipment and supplies were most often shared, instructional services least often. (SK)

  5. Research programs for Division of Chemical Sciences, Office of Basic Energy Sciences, Department of Energy

    SciTech Connect

    Not Available

    1988-01-01

    A chemical sciences review meeting was held in which research programs in chemistry were discussed. Major topics included: chemistry of actinides and fission products, interactions of solvents, solutes and surfaces in supercritical extraction, chemical and physical principles in multiphase separations, and chemical kinetics of enzyme catalyzed reactions. Individual projects are processed separately for the data bases. (CBS)

  6. Evaluating Usability of Radiology Information Systems in Hospitals of Tabriz University of Medical Sciences.

    PubMed

    Rezaei-Hachesu, Peyman; Pesianian, Esmaeil; Mohammadian, Mohsen

    2016-02-01

    Radiology information system (RIS) in order to reduce workload and improve the quality of services must be well-designed. Heuristic evaluation is one of the methods that understand usability problems with the least time, cost and resources. The aim of present study is to evaluate the usability of RISs in hospitals. This is a cross-sectional descriptive study (2015) that uses heuristic evaluation method to evaluate the usability of RIS used in 3 hospitals of Tabriz city. The data are collected using a standard checklist based on 13 principles of Nielsen Heuristic evaluation method. Usability of RISs was investigated based on the number of components observed from Nielsen principles and problems of usability based on the number of non-observed components as well as non-existent or unrecognizable components. by evaluation of RISs in each of the hospitals 1, 2 and 3, total numbers of observed components were obtained as 173, 202 and 196, respectively. It was concluded that the usability of RISs in the studied population, on average and with observing 190 components of the 291 components related to the 13 principles of Nielsen is 65.41 %. Furthermore, problems of usability were obtained as 26.35%. The established and visible nature of some components such as response time of application, visual feedbacks, colors, view and design and arrangement of software objects cause more attention to these components as principal components in designing UI software. Also, incorrect analysis before system design leads to a lack of attention to secondary needs like Help software and security issues.

  7. Evaluating Usability of Radiology Information Systems in Hospitals of Tabriz University of Medical Sciences

    PubMed Central

    Rezaei-Hachesu, Peyman; Pesianian, Esmaeil; Mohammadian, Mohsen

    2016-01-01

    Introduction and purpose: Radiology information system (RIS) in order to reduce workload and improve the quality of services must be well-designed. Heuristic evaluation is one of the methods that understand usability problems with the least time, cost and resources. The aim of present study is to evaluate the usability of RISs in hospitals. Research Method: This is a cross-sectional descriptive study (2015) that uses heuristic evaluation method to evaluate the usability of RIS used in 3 hospitals of Tabriz city. The data are collected using a standard checklist based on 13 principles of Nielsen Heuristic evaluation method. Usability of RISs was investigated based on the number of components observed from Nielsen principles and problems of usability based on the number of non-observed components as well as non-existent or unrecognizable components. Results: by evaluation of RISs in each of the hospitals 1, 2 and 3, total numbers of observed components were obtained as 173, 202 and 196, respectively. It was concluded that the usability of RISs in the studied population, on average and with observing 190 components of the 291 components related to the 13 principles of Nielsen is 65.41 %. Furthermore, problems of usability were obtained as 26.35%. Discussion and Conclusion: The established and visible nature of some components such as response time of application, visual feedbacks, colors, view and design and arrangement of software objects cause more attention to these components as principal components in designing UI software. Also, incorrect analysis before system design leads to a lack of attention to secondary needs like Help software and security issues. PMID:27041810

  8. Analysis of scientific papers in the field of radiology and medical imaging included in Science Citation Index expanded and published by Turkish authors.

    PubMed

    Akpinar, Erhan; Karçaaltincaba, Muşturay

    2010-09-01

    We aimed to analyze scientific papers published by Turkish authors in "radiology, nuclear medicine and medical imaging" journals included in the Science Citation Index Expanded and compared the number of published scientific papers from Turkey and other countries. We retrospectively searched all papers published by Turkish authors between 1945 and 2008 by using Web of Science software. We performed the analysis by typing "Turkey" in the address section and all radiology and medical imaging journals in the source title section using the general search function of the software. We further analyzed these results by using "analyze" function of the software according to the number of publications per year, journals, institution and type of papers. We also calculated total number of citations to published scientific papers using citation report function. We analyzed the rank of Turkey among other countries in terms of the number of published papers. Overall, 4,532 papers were published between 1945 and 2008. The first paper was published in 1976. Number of publications increased dramatically from 1976 (n = 1) to 2008 (n = 383). The top 5 journals publishing papers from Turkish authors were European Journal of Nuclear Medicine and Molecular Imaging (n = 328), Clinical Nuclear Medicine (n = 296), European Journal of Radiology (n = 289), European Radiology (n = 207) and Journal of Clinical Ultrasound (n = 186). All published papers received 18,419 citations and citation to paper ratio was 4.06. The rank of Turkey among other countries in terms of published papers improved during the last 25 years. Number of papers from Turkey published in radiology and medical imaging journals has increased at the start of the new millennium. Currently, Turkey is among the top 12 countries when the number of scientific papers published in radiology journals is taken into consideration.

  9. Clinical guidelines for responding to chemical, biological, radiological, nuclear and trauma/burn mass casualty incidents: Quick reference guides for emergency department staff.

    PubMed

    Albanese, Joseph; Burich, David; Smith, Deborah; Hayes, Lynn; Paturas, James; Tomassoni, Anthony

    The word 'DISASTER' may be used as a mnemonic for listing the critical elements of emergency response. The National Disaster Life Support Education Foundation's (NDLSEC) DISASTER paradigm emphasises out-of-hospital emergency response and includes the following elements: (1) detect; (2) incident command system; (3) security and safety; (4) assessment; (5) support; (6) triage and treatment; (7) evacuate; and (8) recovery. This paper describes how the DISASTER paradigm was used to create a series of clinical guidelines to assist the preparedness effort of hospitals for mitigating chemical, biological, radiological, nuclear incidents or explosive devices resulting in trauma/burn mass casualty incidents (MCIs) and their initial response to these events. Descriptive information was obtained from observations and records associated with this project. The information contributed by a group of subject matter experts in disaster medicine, at the Yale New Haven Health System Center for Emergency Preparedness and Disaster Response was used to author the clinical guidelines. Akin to the paradigm developed by the NDLSEC for conducting on-scene activities, the clinical guidelines use the letters in the word 'disaster' as a mnemonic for recalling the main elements required for mitigating MCIs in the hospital emergency department.

  10. [Hierarchical structure of authors collaboration. An analysis of papers on imaging diagnosis published by hospital radiology departments in Comunidad Valenciana (1994-2001)].

    PubMed

    Miguel-Dasit, A; Martí-Bonmatí, L; Sanfeliu, P; Aleixandre, R; Valderrama, J C

    2005-06-01

    Analyze the different contribution of hierarchical categories in the papers published by radiologists of hospitals belonging to Comunidad Valenciana along the period 1994-2001, as well as their distribution in the different journals. For the recovery of the papers sample we have designed specific search profiles for EMI and Medline databases. Hierarchical category of the authors was identified through personal interviews. We have analyzed 417 works, with 1,321 authors distributed in the following form: chief of service, 8.8%; chief of section, 12.4%; assistant physician, 50.7%, and resident, 28%. Hierarchical groupings with participation of residents were more consistent for publishing papers along all the study period (1994-2001). Higher percentage of papers (21%) corresponded to grouping. Radiología was the most productive journal (42% papers). All results were statistically significant (p < 0.0001). Radiodiagnosis residents of Comunidad Valenciana hospitals showed an active participation in research papers published along the period 1994-2001, in collaboration with the rest of the hierarchical categories, basically with the assistant physician. Assistant physicians contributed most of papers. Chief of section and chief of department contributed fifth of papers.

  11. The effect of a state Department of Education mentoring program for teachers on science student achievement

    NASA Astrophysics Data System (ADS)

    Lyon, Gilda Darlene

    The purpose of this study was to assess the effect of the Georgia Department of Education Science Specialist teacher-mentoring program on student achievement on science standardized tests. This study analyzed the impact this program has had on student achievement in participating high schools when compared with high schools across the state where the program had not intervened. The Georgia High School Graduation Test, physical science end-of-course, and biology end-of-course test data, from a three year period, were collected from the Georgia Department of Education website and analyzed using an independent-t test and the Mann-Whitney test. While test score improvements cannot be entirely attributed to the Science Specialist mentoring program, the study revealed state-wide increases in physical science end-of-course tests and the Georgia High School Graduation Test scores over the three-year period in those schools participating in the teacher-mentoring program. Significant increases in students with disabilities populations and economically disadvantaged populations were also noted.

  12. U.S. State Department urged to beef up science component

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The U.S. State Department often comes under pressure to respond to a variety of international emergencies one after another, from the U.S. embassy bombings in Kenya and Tanzania to Hurricane Mitch in Central America to the crisis in Kosovo.Many of the department's priorities include significant science, technology, and health (STH) components: nuclear nonproliferation, global climate change, protecting scientific databases, and international food and water supply safety, including arsenic in drinking water wells in Bangladesh, among other varied issues.

  13. [90th anniversary of the Chair and Department of Forensic Medicine Poznan University of Medical Sciences].

    PubMed

    Zaba, Czesław

    2011-01-01

    The paper outlines the history of the Chair and Department of Forensic Medicine Poznan University of Medical Sciences since it was established until today. Changes in the appearance and organization of the seat of the institution were discussed briefly. The profiles of all former heads of the Department, their contribution to the development and improvement of the institution and formation of the new scientific forensic medicine staff were presented. The specification and analysis of the scientific staff achievements was performed, especially taking into account their scientific publications and scope of the research that contributed to the efficient service activities for the prosecution and police, as well as society.

  14. The Jefferson Science Fellows (JSF) program at the US Department of State

    NASA Astrophysics Data System (ADS)

    Peterson, Roy

    2014-09-01

    In 2004 the US Department of State and the National Academies established the Jefferson Science Fellows program, to bring tenured faculty in sciences, engineering, and medicine to the Department of State or USAID for a year in residence, with continuing connections. Over twenty physical scientists have been Fellows, working in a wide variety of offices on a broad range of topics. The main advantage to Fellows is the opportunity to make an impact on important national and international issues, applying skills and judgments gained through their research, teaching, and service. The JSF experience can also create broader horizons for physicists, especially beyond the laboratory. The selection process and examples, including my own, will be described. Information can be found at //sites.nationalacademies.org/PGA/Jefferson/.

  15. DEPARTMENT OF ENERGY SOIL AND GROUNDWATER SCIENCE AND TECHNOLOGY NEEDS, PLANS AND INITIATIVES

    SciTech Connect

    Aylward, B; V. ADAMS, V; G. M. CHAMBERLAIN, G; T. L. STEWART, T

    2007-12-12

    This paper presents the process used by the Department of Energy (DOE) Environmental Management (EM) Program to collect and prioritize DOE soil and groundwater site science and technology needs, develop and document strategic plans within the EM Engineering and Technology Roadmap, and establish specific program and project initiatives for inclusion in the EM Multi-Year Program Plan. The paper also presents brief summaries of the goals and objectives for the established soil and groundwater initiatives.

  16. The Effect of a State Department of Education Teacher Mentor Initiative on Science Achievement

    NASA Astrophysics Data System (ADS)

    Pruitt, Stephen L.; Wallace, Carolyn S.

    2012-06-01

    This study investigated the effectiveness of a southern state's department of education program to improve science achievement through embedded professional development of science teachers in the lowest performing schools. The Science Mentor Program provided content and inquiry-based coaching by teacher leaders to science teachers in their own classrooms. The study analyzed the mean scale scores for the science portion of the state's high school graduation test for the years 2004 through 2007 to determine whether schools receiving the intervention scored significantly higher than comparison schools receiving no intervention. The results showed that all schools achieved significant improvement of scale scores between 2004 and 2007, but there were no significant performance differences between intervention and comparison schools, nor were there any significant differences between various subgroups in intervention and comparison schools. However, one subgroup, economically disadvantaged (ED) students, from high-level intervention schools closed the achievement gap with ED students from no-intervention schools across the period of the study. The study provides important information to guide future research on and design of large-scale professional development programs to foster inquiry-based science.

  17. U.S. Department of the Interior South Central Climate Science Center

    USGS Publications Warehouse

    Shipp, Allison A.

    2012-01-01

    On September 14, 2009, the Secretary of the Interior signed a Secretarial Order (No. 3289) entitled, "Addressing the Impacts of Climate Change on America's Water, Land, and Other Natural and Cultural Resources." The Order effectively established the U.S. Department of the Interior (DOI) Climate Science Centers (CSCs) for the purpose of integrating DOI science and management expertise with similar contributions from our partners to provide information to support strategic adaptation and mitigation efforts on public and private lands across the United States and internationally. The South Central Climate Science Center (SC CSC) is supported by a consortium of partners that include The University of Oklahoma, Texas Tech University, Louisiana State University, The Chickasaw Nation, The Choctaw Nation of Oklahoma, Oklahoma State University, and the National Oceanic and Atmospheric Administration's Geophysical Fluid Dynamics Laboratory. Additionally, the SC CSC will collaborate with a number of other universities, State and federal agencies, and nongovernmental organizations (NGOs) with interests and expertise in climate science. The primary partners of the SC CSC are the Landscape Conservation Cooperatives (LCCs), which include the Desert, Eastern Tallgrass Prairie and Big Rivers, Great Plains, Gulf Coast Prairie, Gulf Coastal Plains and Ozarks, and Southern Rockies. CSC collaborations are focused on common science priorities that address priority partner needs, eliminate redundancies in science, share scientific information and findings, and expand understanding of climate change impacts in the south-central United States and Mexico.

  18. Young Doctorate Faculty in Selected Science and Engineering Departments, 1975-1980. Higher Education Panel Reports, No. 30.

    ERIC Educational Resources Information Center

    Atelsek, Frank J.; Gomberg, Irene L.

    Focus in this survey, conducted at the request of the National Science Foundation, is on young doctorate faculty (i.e., those receiving their Ph.D. in the last five years) employed full-time in science and engineering departments at Ph.D.-granting institutions. Questionnaire responses were obtained from 1,148 departments at 137 institutions. They…

  19. Scientific Method in Teaching Physics in Languages and Social Sciences Department of High—Schools

    NASA Astrophysics Data System (ADS)

    Nagl, Mirko G.; Obadović, Dušanka Ž.; Stojanović, Maja M.

    2010-01-01

    The expansion of scientific materials in the last few decades, demands that the contemporary educational system should select and develop methods of effective learning in the process of acquiring skills and knowledge usable and feasible for a longer period of time. Grammar schools as general educational institutions possess all that is necessary for the development of new teaching methods and fitting into contemporary social tendencies. In the languages and social sciences department in of grammar schools physics is the only natural sciences subject present during all four years. The classical approach to teaching is tiring as such and creates aversion towards learning physic when it deals with pupils oriented towards social sciences. The introduction of scientific methods raises the motivation to a substantial level and when applied both the teacher and pupils forget when the class starts or ends. The assignment has shown the analysis of initial knowledge of physics of the pupils attending the first grade of languages and social sciences department of of grammar schools as a preparation for the introduction of the scientific method, the analysis of the initial test with the topic of gravitation, as well as the analysis of the final test after applying the scientific method through the topic of gravitation. The introduction of the scientific method has duly justified the expectations and resulted in increasing the level of achievement among the pupils in the experimental class.

  20. The Perceptions of Globalization at a Public Research University Computer Science Graduate Department

    NASA Astrophysics Data System (ADS)

    Nielsen, Selin Yildiz

    Based on a qualitative methodological approach, this study focuses on the understanding of a phenomenon called globalization in a research university computer science department. The study looks into the participants' perspectives about the department, its dynamics, culture and academic environment as related to globalization. The economic, political, academic and social/cultural aspects of the department are taken into consideration in investigating the influences of globalization. Three questions guide this inquiry: 1) How is the notion of globalization interpreted in this department? 2) How does the perception of globalization influence the department in terms of finances, academics, policies and social life And 3) How are these perceptions influence the selection of students? Globalization and neo-institutional view of legitimacy is used as theoretical lenses to conceptualize responses to these questions. The data include interviews, field notes, official and non-official documents. Interpretations of these data are compared to findings from prior research on the impact of globalization in order to clarify and validate findings. Findings show that there is disagreement in how the notion of globalization is interpreted between the doctoral students and the faculty in the department. This disagreement revealed the attitudes and interpretations of globalization in the light of the policies and procedures related to the department. How the faculty experience globalization is not consistent with the literature in this project. The literature states that globalization is a big part of higher education and it is a phenomenon that causes the changes in the goals and missions of higher education institutions (Knight, 2003, De Witt, 2005). The data revealed that globalization is not the cause for change but more of a consequence of actions that take place in achieving the goals and missions of the department.

  1. SU-E-P-57: Radiation Doses Assessment to Paediatric Patients for Some Digital Diagnostic Radiology Examination in Emergency Department in Qatar

    SciTech Connect

    Abdallah, I; Aly, A; Al Naemi, H

    2015-06-15

    Purpose: The aim of this study was to evaluate radiation doses to pediatric patients undergoing standard radiographic examinations using Direct Digital Radiography (DDR) in Paediatric emergency center of Hamad General Hospital (HGH) in state of Qatar and compared with regional and international Dose Reference Levels (DRLs). Methods: Entrance Skin Dose (ESD) was measured for 2739 patients for two common X-ray examinations namely: Chest AP/PA, Abdomen. Exposure factors such as kV, mAs and Focal to Skin Distance (FSD) were recorded for each patient. Tube Output was measured for a range of selected kV values. ESD for each individual patient was calculated using the tube output and the technical exposure factors for each examination. The ESD values were compared with the some international Dose Reference Levels (DRL) for all types of examinations. Results: The most performed procedure during the time of this study was chest PA/PA (85%). The mean ESD values obtained from AP chest, PA chest and AP abdomen ranged 91–120, 80–84 and 209 – 659 µGy per radiograph for different age’s groups respectively. Two protocols have been used for chest AP and PA using different radiological parameters, and the different of ESD values for chest PA and were 41% for 1 years old child, 57% for 5 years old for chest AP. Conclusion: The mean ESD were compared with those found in literature and were found to be comparable. The radiation dose can be reduced more for Chest AP and PA examination by optimization of each investigation and hence more studies are required for this task. The results presented will serve as a baseline data needed for deriving local reference doses for pediatric X-ray examinations in this local department and hence it can be applied in the whole Qatar.

  2. Soil Sampling to Demonstrate Compliance with Department of Energy Radiological Clearance Requirements for the ALE Unit of the Hanford Reach National Monument

    SciTech Connect

    Fritz, Brad G.; Dirkes, Roger L.; Napier, Bruce A.

    2007-04-01

    The Hanford Reach National Monument consists of several units, one of which is the Fitzner/Eberhardt Arid Lands Ecology Reserve (ALE) Unit. This unit is approximately 311 km2 of shrub-steppe habitat located to the south and west of Highway 240. To fulfill internal U. S. Department of Energy (DOE) requirements prior to any radiological clearance of land, DOE must evaluate the potential for residual radioactive contamination on this land and determine compliance with the requirements of DOE Order 5400.5. Historical soil monitoring conducted on ALE indicated soil concentrations of radionuclides were well below the Authorized Limits. However, the historical sampling was done at a limited number of sampling locations. Therefore, additional soil sampling was conducted to determine if the concentrations of radionuclides in soil on the ALE Unit were below the Authorized Limits. This report contains the results of 50 additional soil samples. The 50 soil samples collected from the ALE Unit all had concentrations of radionuclides far below the Authorized Limits. The average concentrations for all detectable radionuclides were less than the estimated Hanford Site background. Furthermore, the maximum observed soil concentrations for the radionuclides included in the Authorized Limits would result in a potential annual dose of 0.14 mrem assuming the most probable use scenario, a recreational visitor. This potential dose is well below the DOE 100-mrem per year dose limit for a member of the public. Spatial analysis of the results indicated no observable statistically significant differences between radionuclide concentrations across the ALE Unit. Furthermore, the results of the biota dose assessment screen, which used the ResRad Biota code, indicated that the concentrations of radionuclides in ALE Unit soil pose no significant health risk to biota.

  3. The Effect of a State Department of Education Teacher Mentor Initiative on Science Achievement

    NASA Astrophysics Data System (ADS)

    Pruitt, Stephen L.

    This study analyzed a state department of education's ability to have actual influence over the improvement of science achievement and proficiency by having direct relationships with science teachers in Georgia's lowest performing schools. The study employed a mixed ANOVA analysis of the mean scale scores and proficiency rates of the science portion of the Georgia High School Graduation Test (GHSGT) for the years 2004 through 2007 to determine if the intervention by the Science Mentor Program (SMP) had significant effect on the science achievement and proficiency within the cohort of schools, as compared to a set of schools receiving no intervention, on various subgroups within the schools, and on various levels of intervention within the SMP. All data used in this study are available to the public through the Georgia Department of Education (GaDOE). SMP schools were selected based on their level of intervention for three consecutive years. Non-SMP schools were selected based on demographic similarities in economically disadvantaged, white, African-American, and students with disabilities to ensure a match of pairings for analyses. The results of this study showed significant improvement of scale scores and proficiency rates between 2004 and 2007. The study showed significant increases in all schools regardless of treatment. The study also showed significant differences in performance within the subgroups. Males, white, non-Economically Disadvantaged, and regular education students were all found to have significantly better performance in both achievement and proficiency rate. Economically Disadvantaged students were found to have a significant difference with regard to treatment groups. There was a significant difference between the mean scale score and proficiency rates of Economically Disadvantaged students in schools receiving high-intervention and schools receiving no-intervention. Further analysis showed that the only significant difference was in 2004, the

  4. A Radiological Image Processing Facility and some of its Three-Dimensional Data Manipulation Capabilities

    PubMed Central

    Huang, H.K.; Mankovich, Nicholas J.; Chuang, K.S.; Papin, Patrick; Lo, S. B.; Wong, C. K.; Hernandez-Armas, Jose

    1983-01-01

    In anticipation of the arrival of a digital radiology department, a dedicated image processing laboratory has been established within the Department of Radiological Sciences, UCLA. This laboratory consists of a multiple user computer, an image processor, a communication system, and an image mass storage device. Three major areas of activities in the laboratory are the development of a radiological image archiving and communication system, installation of a multiple digital viewing station, and research on picture processing techniques to enhance the image diagnostic value. This paper describes the system configuration of the laboratory and some of its capabilities in manipulating three-dimensional medical images. ImagesFigure 2Figure 3Figure 4

  5. The Role of Geoscience Departments in Developing the Earth Science Teacher Workforce: A Workshop Report

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; MacDonald, R. H.; Karsten, J.

    2003-12-01

    Undergraduate geoscience departments play a critical role in the preparation of future teachers. This workshop sponsored by AGU and NAGT with funding from NSF brought together geoscience faculty known for their work in teacher preparation, Earth Science teachers and representatives from schools of education. Discussion focused on critical contributions of geoscience departments in recruiting, mentoring and advising future teachers; designing research and teaching experiences for future teachers; developing links between education and geoscience departments; supporting alumni in the teaching profession; and the role of introductory courses in teacher preparation. Each participant contributed a short essay describing the strengths of their program for teachers. The essay collection provides a snapshot of the breadth and innovative nature of current practice in geoscience departments around the country (serc.carleton.edu/NAGTWorkshops/teacherprep03). A summary of the program, powerpoint presentations, and discussion highlights are also available on the website. Of special interest are 1) approaches to introductory courses including revision of teaching methods in the general introductory course to demonstrate a range of pedagogy; separate introductory course sections or laboratory sections for pre-service teachers; and an integrated science approach for pre-service elementary teachers; 2) results of brainstorming sessions on mechanisms for recruiting and supporting Earth Science teachers suggesting a range of activities taking place before, during, and after participation in the geoscience program; 3) a summary of why teaching and research experiences are important for pre-service teachers and recommendations for program elements that lead to successful experiences and 4) plenary presentations on lessons learned from the NSF programs (Prival) and effective program design (Ridkey).

  6. [Controlling instruments in radiology].

    PubMed

    Maurer, M

    2013-10-01

    Due to the rising costs and competitive pressures radiological clinics and practices are now facing, controlling instruments are gaining importance in the optimization of structures and processes of the various diagnostic examinations and interventional procedures. It will be shown how the use of selected controlling instruments can secure and improve the performance of radiological facilities. A definition of the concept of controlling will be provided. It will be shown which controlling instruments can be applied in radiological departments and practices. As an example, two of the controlling instruments, material cost analysis and benchmarking, will be illustrated.

  7. U.S. Department of the Interior South Central Climate Science Center strategic science plan, 2013--18

    USGS Publications Warehouse

    Winton, Kim T.; Dalton, Melinda S.; Shipp, Allison A.

    2013-01-01

    The Department of the Interior (DOI) recognizes and embraces the unprecedented challenges of maintaining our Nation’s rich natural and cultural resources in the 21st century. The magnitude of these challenges demands that the conservation community work together to develop integrated adaptation and mitigation strategies that collectively address the impacts of climate change and other landscape-scale stressors. On September 14, 2009, DOI Secretary Ken Salazar signed Secretarial Order 3289 (amended February 22, 2010) entitled, “Addressing the Impacts of Climate Change on America’s Water, Land, and Other Natural and Cultural Resources.” The Order establishes the foundation for two partner-based conservation science entities to address these unprecedented challenges: Climate Science Centers (CSCs and Landscape Conservation Cooperatives (LCCs). CSCs and LCCs are the Department-wide approach for applying scientific tools to increase understanding of climate change and to coordinate an effective response to its impacts on tribes and the land, water, ocean, fish and wildlife, and cultural-heritage resources that DOI manages. Eight CSCs have been established and are managed through the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC); each CSC works in close collaboration with their neighboring CSCs, as well as those across the Nation, to ensure the best and most efficient science is produced. The South Central CSC was established in 2012 through a cooperative agreement with the University of Oklahoma, Texas Tech University, Louisiana State University, the Chickasaw Nation, the Choctaw Nation of Oklahoma, Oklahoma State University, and NOAA’s Geophysical Fluid Dynamics Lab; hereafter termed the ”Consortium” of the South Central CSC. The Consortium has a broad expertise in the physical, biological, natural, and social sciences to address impacts of climate change on land, water, fish and wildlife, ocean, coastal, and

  8. The challenge of achieving professionalism and respect of diversity in a UK Earth Sciences department

    NASA Astrophysics Data System (ADS)

    Imber, Jonathan; Taylor, Michelle; Callaghan, Mark; Castiello, Gabriella; Cooper, George; Foulger, Gillian; Gregory, Emma; Herron, Louise; Hoult, Jill; Lo, Marissa; Love, Tara; Macpherson, Colin; Oakes, Janice; Phethean, Jordan; Riches, Amy

    2017-04-01

    The Department of Earth Sciences, Durham University, has a balanced gender profile at undergraduate, postgraduate and postdoctoral levels (38%, 42% and 45% females, respectively), but one of the lowest percentages, relative to the natural applicant pool, of female academic staff amongst UK geoscience departments. There are currently 9% female academic staff at Durham, compared with a median value (in November 2015) of 20% for all Russell Group geoscience departments in the UK. Despite the fact that the female staff group is relatively senior, the Department's current academic management is essentially entirely male. The Department has an informal working culture, in which academics operate an "open door" policy, and staff and students are on first name terms. This culture, open plan office space, and our fieldwork programme, allow staff and students to socialise. A positive outcome of this culture is that > 95% of final year undergraduate students deemed the staff approachable (National Student Survey 2016). Nevertheless, a survey of staff and research student attitudes revealed significant differences in the way males and females perceive our working environment. Females are less likely than males to agree with the statements that "the Department considers inappropriate language to be unacceptable" and "inappropriate images are not considered acceptable in the Department". That anyone could find "inappropriate" language and images "acceptable" is a measure of the challenge faced by the Department. Males disagree more strongly than females that they "have felt uncomfortable because of [their] gender". The Department is proactively working to improve equality and diversity. It held a series of focus group meetings, divided according to gender and job role, to understand the differences in male and female responses. Female respondents identified examples of inappropriate language (e.g. sexual stereotyping) that were directed at female, but not male, colleagues. Males

  9. The Hudson's Bay Company as a context for science in the Columbia Department.

    PubMed

    Schefke, Brian

    2008-01-01

    This article aims to elucidate and analyze the links between science, specifically natural history, and the imperialist project in what is now the northwestern United States and western Canada. Imperialism in this region found its expression through institutions such as the Hudson's Bay Company (HBC). I examine the activities of naturalists such as David Douglas and William Tolmie Fraser in the context of the fur trade in the Columbia Department. Here I show how natural history aided Britain in achieving its economic and political goals in the region. The key to this interpretation is to extend the role of the HBC as an imperial factor to encompass its role as a patron for natural history. This gives a better understanding of the ways in which imperialism--construed as mercantile, rather than military--delineated research priorities and activities of the naturalists who worked in the Columbia Department.

  10. Meeting at the crossroads: collaboration between information technology departments and health sciences libraries.

    PubMed

    King, Samuel; Cataldi-Roberts, Erica; Wentz, Erin

    2017-01-01

    The purposes of this survey were to determine the nature and extent of collaboration between health sciences libraries and their information technology (IT) departments, to identify strengths and issues connected to this relationship, and to provide examples demonstrating exceptional collaborative success. A fourteen-question survey was sent to a broad selection of health care and academic libraries through a variety of email discussion lists and was limited to one response per institution. Convenience sampling was used to collect the responses. An overwhelming majority of libraries described the relationship with their IT departments as good or excellent, and there were a variety of creative joint initiatives underway. Opportunities exist for continued and expanded library/IT collaboration. Good quality relationships between libraries and their IT departments are essential due to the interconnected nature of their services, and fortunately, this appears to be the norm at a variety of institutions. Mutual respect, open communication, realization of each department's mission, and responsiveness to each other's needs are part of what makes these relationships successful, which in turn leads to successful collaborative ventures that bode well for the future of both services.

  11. Five-year external reviews of the eight Department of Interior Climate Science Centers: Southeast Climate Science Center

    USGS Publications Warehouse

    Rice, Kenneth G.; Beier, Paul; Breault, Tim; Middleton, Beth A.; Peck, Myron A.; Tirpak, John M.; Ratnaswamy, Mary; Austen, Douglas; Harrison, Sarah

    2017-01-01

    In 2008, the U.S. Congress authorized the establishment of the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Department of Interior (DOI). Housed administratively within the U.S. Geological Survey (USGS), NCCWSC is part of the DOI’s ongoing mission to meet the challenges of climate change and its effects on wildlife and aquatic resources. From 2010 through 2012, NCCWSC established eight regional DOI Climate Science Centers (CSCs). Each of these regional CSCs operated with the mission to “synthesize and integrate climate change impact data and develop tools that the Department’s managers and partners can use when managing the Department’s land, water, fish and wildlife, and cultural heritage resources” (Salazar 2009). The model developed by NCCWSC for the regional CSCs employed a dual approach of a federal USGS-staffed component and a parallel host-university component established competitively through a 5-year cooperative agreement with NCCWSC. At the conclusion of this 5-year agreement, a review of each CSC was undertaken, with the Southeast Climate Science Center (SE CSC) review in February 2016. The SE CSC is hosted by North Carolina State University (NCSU) in Raleigh, North Carolina, and is physically housed within the NCSU Department of Applied Ecology along with the Center for Applied Aquatic Ecology, the North Carolina Cooperative Fish and Wildlife Research Unit (CFWRU), and the North Carolina Agromedicine Institute. The U.S. Department of Agriculture Southeast Regional Climate Hub is based at NCSU as is the National Oceanic and Atmospheric Administration (NOAA) Southeast Regional Climate Center, the North Carolina Institute for Climate Studies, the North Carolina Wildlife Resources Commission, the NOAA National Weather Service, the State Climate Office of North Carolina, and the U.S. Forest Service Eastern Forest Environmental Threat Assessment Center. This creates a strong core of organizations operating in

  12. Modeling Activities in the Department of Energy’s Atmospheric Sciences Program

    SciTech Connect

    Fast, Jerome D.; Ghan, Steven J.; Schwartz, Stephen E.

    2009-03-01

    The Department of Energy's Atmospheric Science Program (ASP) conducts research pertinent to radiative forcing of climate change by atmospheric aerosols. The program consists of approximately 40 highly interactive peer-reviewed research projects that examine aerosol properties and processes and the evolution of aerosols in the atmosphere. Principal components of the program are instrument development, laboratory experiments, field studies, theoretical investigations, and modeling. The objectives of the Program are to 1) improve the understanding of aerosol processes associated with light scattering and absorption properties and interactions with clouds that affect Earth's radiative balance and to 2) develop model-based representations of these processes that enable the effects of aerosols on Earth's climate system to be properly represented in global-scale numerical climate models. Although only a few of the research projects within ASP are explicitly identified as primarily modeling activities, modeling actually comprises a substantial component of a large fraction of ASP research projects. This document describes the modeling activities within the Program as a whole, the objectives and intended outcomes of these activities, and the linkages among the several modeling components and with global-scale modeling activities conducted under the support of the Department of Energy's Climate Sciences Program and other aerosol and climate research programs.

  13. Department of Energy's Biological and Environmental Research Strategic Data Roadmap for Earth System Science

    SciTech Connect

    Williams, Dean N.; Palanisamy, Giri; Shipman, Galen; Boden, Thomas A.; Voyles, Jimmy W.

    2014-04-25

    Rapid advances in experimental, sensor, and computational technologies and techniques are driving exponential growth in the volume, acquisition rate, variety, and complexity of scientific data. This wealth of scientifically meaningful data has tremendous potential to lead to scientific discovery. However, to achieve scientific breakthroughs, these data must be exploitable—they must be analyzed effectively and efficiently and the results shared and communicated easily within the wider Department of Energy’s (DOE’s) Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) community. The explosion in data complexity and scale makes these tasks exceedingly difficult to achieve, particularly given that an increasing number of disciplines are working across techniques, integrating simulation and experimental or observational results (see Table 5 in Appendix 2). Consequently, we need new approaches to data management, analysis, and visualization that provide research teams with easy-to-use and scalable end-to-end solutions. These solutions must facilitate (and where feasible, automate and capture) every stage in the data lifecycle (shown in Figure 1), from collection to management, annotation, sharing, discovery, analysis, and visualization. In addition, the core functionalities are the same across climate science communities, but they require customization to adapt to specific needs and fit into research and analysis workflows. To this end, the mission of CESD’s Data and Informatics Program is to integrate all existing and future distributed CESD data holdings into a seamless and unified environment for the acceleration of Earth system science.

  14. [Forensic radiology].

    PubMed

    Stein, K M; Grünberg, K

    2009-01-01

    Forensic radiology includes both clinical and postmortem forensic radiology. Clinical forensic radiology deals with imaging of healthy people from a legal point of view, such as for determining age or to prove and document injuries in victims of crime. Postmortem forensic radiology deals with the application of modern radiological methods in order to optimise post-mortem diagnosis. X-ray examination has for decades been routinely used in postmortem diagnosis. Newer developments include the application of postmortem computer tomography and magnetic resonance imaging; these are the methods with the greatest information potential but also with the greatest deviations from diagnostics in living persons. Application of radiological methods for securing evidence in criminal procedures is still in its infancy. Radiologists' technical understanding and forensic doctors' knowledge of postmortem changes in a corpse must be synergised.

  15. Meeting at the crossroads: collaboration between information technology departments and health sciences libraries

    PubMed Central

    King, Samuel; Cataldi-Roberts, Erica; Wentz, Erin

    2017-01-01

    Objective The purposes of this survey were to determine the nature and extent of collaboration between health sciences libraries and their information technology (IT) departments, to identify strengths and issues connected to this relationship, and to provide examples demonstrating exceptional collaborative success. Methods A fourteen-question survey was sent to a broad selection of health care and academic libraries through a variety of email discussion lists and was limited to one response per institution. Convenience sampling was used to collect the responses. Results An overwhelming majority of libraries described the relationship with their IT departments as good or excellent, and there were a variety of creative joint initiatives underway. Opportunities exist for continued and expanded library/IT collaboration. Conclusions Good quality relationships between libraries and their IT departments are essential due to the interconnected nature of their services, and fortunately, this appears to be the norm at a variety of institutions. Mutual respect, open communication, realization of each department’s mission, and responsiveness to each other’s needs are part of what makes these relationships successful, which in turn leads to successful collaborative ventures that bode well for the future of both services. PMID:28096743

  16. Graduate Students from Developing Countries in U.S. Science Departments. A Handbook for Department Chairs and Faculty Members.

    ERIC Educational Resources Information Center

    American Association for the Advancement of Science, Washington, DC.

    This guide is intended to assist college faculty members working with graduate students from developing nations who may need help bridging the gap between their educational backgrounds and the requirements of graduate science programs which are primarily planned for U.S. students. Differences are noted in the pre-graduate school training of such…

  17. A Look at the Definition, Pedagogy, and Evaluation of Scientific Literacy within the Natural Science Departments at a Southwestern University

    ERIC Educational Resources Information Center

    Flynn, Deborah Kay

    2011-01-01

    This study focuses on the promotion of scientific literacy within the natural science departments and how faculty within these departments define, incorporate, and evaluate scientific literacy in their courses. The researcher examined data from participant interviews, observations, and archival material from courses taught by the participants. The…

  18. Assessment that Matters: Integrating the "Chore" of Department-Based Assessment with Real Improvements in Political Science Education

    ERIC Educational Resources Information Center

    Deardorff, Michelle D.; Folger, Paul J.

    2005-01-01

    Assessment requirements often raise great concerns among departments and faculty: fear of loss of autonomy, distraction from primary departmental goals, and the creation of alien and artificial external standards. This article demonstrates how one political science department directly responded to their own unique circumstances in assessing their…

  19. Assessment that Matters: Integrating the "Chore" of Department-Based Assessment with Real Improvements in Political Science Education

    ERIC Educational Resources Information Center

    Deardorff, Michelle D.; Folger, Paul J.

    2005-01-01

    Assessment requirements often raise great concerns among departments and faculty: fear of loss of autonomy, distraction from primary departmental goals, and the creation of alien and artificial external standards. This article demonstrates how one political science department directly responded to their own unique circumstances in assessing their…

  20. Annual Report and Abstracts of Research of the Department of Computer and Information Science, July 1976-June 1977.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Computer and Information Science Research Center.

    The annual report of the Department of Computer and Information Science includes abstracts of research carried out during the 1976-77 academic year with support from grants by governmental agencies and industry, as well as The Ohio State University. The report covers the department's organizational structure, objectives, highlights of department…

  1. [Paternity exclusion tests in the Department of Forensic Medicine, University of Medical Sciences in Poznan].

    PubMed

    Koralewska-Kordel, Małgorzata; Kordel, Krzysztof; Przybylski, Zygmunt; Wiśniewski, Sławomir A

    2006-01-01

    The study comprises the analysis of expert's hemogenetic reports carried out in the Department of Forensic Medicine, University of Medical Sciences in Poznan, in the years 1980-2004 and associated with paternity determination or exclusion. In the analyzed period, the authors established 1064 cases of paternity exclusion in serological tests, 97 paternity exclusions in the HLA examinations, and 129 cases of paternity exclusions processed in DNA testing. On the base of gene frequencies, the theoretical chance of paternity exclusion was determined for every test. The significant usefulness of DNA testing in legal processes did not cause an increase in the percentage of paternity exclusions. Moreover, the authors observed a significant decrease in the number of paternity exclusions in comparison with results of serological tests (from 24.25% to 19.43%). With the drop in the number of births, the number of expert's reports significantly decreased.

  2. Department of Energy Mathematical, Information, and Computational Sciences Division: High Performance Computing and Communications Program

    SciTech Connect

    1996-11-01

    This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, The DOE Program in HPCC), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW).

  3. Department of Energy: MICS (Mathematical Information, and Computational Sciences Division). High performance computing and communications program

    SciTech Connect

    1996-06-01

    This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, {open_quotes}The DOE Program in HPCC{close_quotes}), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW). The information pointed to by the URL is updated frequently, and the interested reader is urged to access the WWW for the latest information.

  4. Greening radiology.

    PubMed

    Prasanna, Prasanth M; Siegel, Eliot; Kunce, Amy

    2011-11-01

    Reducing energy consumption has increased in importance with rising energy prices and funding cutbacks. With the introduction of electronic medical records on the rise in all fields of medicine, there will be a large jump in the number of computers in health care. Radiologist have the unique opportunity, as technological leaders, to direct energy efficiency measures as a means of cost savings and the reduction of airborne by-products from energy production to improve patients' lives. The aim of this study was to assess the many workstations and monitors throughout the authors' department to determine their electrical consumption and cost. Equipment was monitored using an electricity meter during both active and standby states. Cost per kilowatt-hour was calculated at $0.11, not including taxes and fees. Any given monitor left on 24/7 would annually consume between 49.5 and 1,399.84 kWh, costing from $5.45 to $153.98. A single workstation left on 24/7 would use 455.65 to 2,358.72 kWh, costing from $59.91 to $259.46. In aggregate, all workstations and monitors would use approximately 137,759.54 kWh, costing $15,153.55. If all equipment were shut down after an 8-hour workday, the department would consume about 32,633.64 kWh, costing $3,589.70 thereby saving 83,866.6 kWh and $9,225.33. Although computers in the remainder of the hospital may use less energy than workstations, this serves as a predictive model for potential energy consumption and cost. With the increasing necessity of cost savings and energy reduction, this small and simple step, implemented hospital-wide, will lead to much larger cost savings across institutions. Copyright © 2011 American College of Radiology. All rights reserved.

  5. Chest radiology

    SciTech Connect

    Austin, J.H.M.

    1982-01-01

    This review of chest radiology reexamines normal findings on plain chest radiographs, and presents a new plain film view for detecting metastases in the lungs, and describes new findings on acute and chronic inflammatory diseases. Various chest radiologic procedures are examined. (KRM)

  6. Orthopaedic radiology

    SciTech Connect

    Park, W.M.; Hughes, S.P.F.

    1987-01-01

    This book is an account of the principles of modern diagnostic imaging techniques and their applications in orthopedics. The aim is to show radiology as a dynamic subject. Orthopaedic Radiology is divided into two sections with the first part focusing on the principles of diagnostic imaging and interpretation and the second applying this information to practical clinical problems.

  7. Department of Energy's Virtual Lab Infrastructure for Integrated Earth System Science Data

    NASA Astrophysics Data System (ADS)

    Williams, D. N.; Palanisamy, G.; Shipman, G.; Boden, T.; Voyles, J.

    2014-12-01

    The U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) produces a diversity of data, information, software, and model codes across its research and informatics programs and facilities. This information includes raw and reduced observational and instrumentation data, model codes, model-generated results, and integrated data products. Currently, most of this data and information are prepared and shared for program specific activities, corresponding to CESD organization research. A major challenge facing BER CESD is how best to inventory, integrate, and deliver these vast and diverse resources for the purpose of accelerating Earth system science research. This talk provides a concept for a CESD Integrated Data Ecosystem and an initial roadmap for its implementation to address this integration challenge in the "Big Data" domain. Towards this end, a new BER Virtual Laboratory Infrastructure will be presented, which will include services and software connecting the heterogeneous CESD data holdings, and constructed with open source software based on industry standards, protocols, and state-of-the-art technology.

  8. Integrating IT into the radiology environment.

    PubMed

    McDonald, Andrea

    2002-01-01

    Rather than perpetuating the struggle, "who controls the PACS, Radiology or Information Technology (IT)," Community Hospital of the Monterey Peninsula (CHOMP) took the approach of incorporating IT support within the Radiology Department. CHOMP faced the challenge of staffing Radiology computer systems and networks by using a two-pronged approach; promoting and training clinical staff in IT functions and transferring an experienced IT person into the Radiology Department. Roles and responsibilities are divided. CHOMP's IT Department supports the Radiology Department's desktop devices, PCs, printers, and standard peripherals; while the department's DICOM print and archive network, specialized hardware (e.g., Merge DICOM interface computers), and applications are supported by the Radiology Department. The IT Department provides operating system support for multi-user VMS, Unix, and NT-based systems, e.g. Sun Solaris for the DICOM archive, and Windows NT for Mitra PACS Broker, the HL7/DICOM interface engine. IT also supports network communications, i.e., network electronics (routers, switches, etc.), TCP/IP communications, and network traffic analysis; and OS operations support for major Radiology systems, e.g. back-ups and off-site tape storage. Radiology staff provides applications support and troubleshooting, including analyst functions for RIS; and are the first point of contact with the Radiology systems vendors, e.g., GE Medical, or Siemens. The Radiology Department's senior IT person, the Clinical Technology Coordinator, transferred from CHOMP's IT Department after 7 years in that department. She performs analysis and design associated with Radiology's computer systems, coordinates development of the department's strategic plan, evaluates vendor proposals, and assists the department with product and application selection. Her IT experience and growing knowledge of Radiology's clinical tasks enhances communications between the Radiology and IT departments. Formal

  9. Gender Ratios in High School Science Departments: The Effect of Percent Female Faculty on Multiple Dimensions of Students' Science Identities

    ERIC Educational Resources Information Center

    Gilmartin, Shannon; Denson, Nida; Li, Erika; Bryant, Alyssa; Aschbacher, Pamela

    2007-01-01

    To examine how school characteristics are tied to science and engineering views and aspirations of students who are underrepresented in science and engineering fields, this mixed-methods study explores relationships between aspects of students' science identities, and the representation of women among high school science teachers. Quantitative…

  10. U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect

    2010-07-01

    Alternative fuels from renewable cellulosic biomass - plant stalks, trunks, stems, and leaves - are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced.' Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain - the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 30 years. The DOE Genomic Science program is advancing a new generation of research focused on achieving whole-systems understanding of biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. For more information on the Genomic Science program, see p. 26. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel

  11. Characteristics of physicians engaged in basic science: a questionnaire survey of physicians in basic science departments of a medical school in Japan.

    PubMed

    Yamazaki, Yuka; Uka, Takanori; Shimizu, Haruhiko; Miyahira, Akira; Sakai, Tatsuo; Marui, Eiji

    2012-01-01

    The number of physicians engaged in basic science and teaching is sharply decreasing in Japan. To alleviate this shortage, central government has increased the quota of medical students entering the field. This study aimed to determine the characteristics of physicians who are engaged in basic science in efforts to recruit talent. A questionnaire was distributed to all 30 physicians in the basic science departments of Juntendo University School of Medicine. Question items inquired about sex, years since graduation, years between graduation and time entering basic science, clinical experience, recommending the career to medical students, expected obstacles to students entering basic science, efforts to inspire students in research, increased number of lectures and practical training sessions on research, and career choice satisfaction. Correlations between the variables were examined using χ(2) tests. Overall, 26 physicians, including 7 female physicians, returned the questionnaire (response rate 86.7%). Most physicians were satisfied with their career choice. Medical students were deemed not to choose basic science as their future career, because they aimed to become clinicians and because they were concerned about salary. Women physicians in basic science departments were younger than men. Women physicians also considered themselves to make more efforts in inspiring medical students to be interested in research. Moreover, physicians who became basic scientists earlier in their career wanted more research-related lectures in medical education. Improving physicians' salaries in basic science is important to securing talent. In addition, basic science may be a good career path for women physicians to follow.

  12. 10 CFR 835.501 - Radiological areas.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Radiological areas. 835.501 Section 835.501 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.501 Radiological areas. (a... commensurate with existing and potential radiological hazards within the area. (c) One or more of the following...

  13. 10 CFR 835.501 - Radiological areas.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Radiological areas. 835.501 Section 835.501 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.501 Radiological areas. (a... commensurate with existing and potential radiological hazards within the area. (c) One or more of the following...

  14. 10 CFR 835.501 - Radiological areas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Radiological areas. 835.501 Section 835.501 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.501 Radiological areas. (a... commensurate with existing and potential radiological hazards within the area. (c) One or more of the following...

  15. 10 CFR 835.501 - Radiological areas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Radiological areas. 835.501 Section 835.501 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.501 Radiological areas. (a... commensurate with existing and potential radiological hazards within the area. (c) One or more of the following...

  16. 21 CFR 892.1980 - Radiologic table.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiologic table. 892.1980 Section 892.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1980 Radiologic table. (a) Identification. A...

  17. 21 CFR 892.1980 - Radiologic table.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiologic table. 892.1980 Section 892.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1980 Radiologic table. (a) Identification. A...

  18. 21 CFR 892.1980 - Radiologic table.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiologic table. 892.1980 Section 892.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1980 Radiologic table. (a) Identification. A...

  19. 21 CFR 892.1980 - Radiologic table.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiologic table. 892.1980 Section 892.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1980 Radiologic table. (a) Identification. A...

  20. 21 CFR 892.1980 - Radiologic table.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiologic table. 892.1980 Section 892.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1980 Radiologic table. (a) Identification. A...

  1. Radiology research and medical students.

    PubMed

    Whitworth, Pat W; Agarwal, Ankit; Colucci, Andrew; Sherry, Steven J; Subramaniam, Rathan M

    2013-12-01

    Fostering radiology research among medical students can enhance a student's interest and understanding of radiology and research. It increases the academic productivity of the mentor and the department. Radiology faculty and departments should actively seek to recruit and engage students in research. Once involved, students benefit greatly from being given clear responsibility, close supervision, timely feedback, and a degree of autonomy. At the heart of the student research process is the crucial mentor-mentee relationship, and mentors should be cognizant of their vital role and methods of encouraging and enhancing this relationship. Ultimately, the advancement of the field of radiology depends on constant innovation and improvement. Radiology research by medical students fuels both innovation and the development of future academic radiologists and physician-scientists, helping to secure future growth for our field.

  2. U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect

    2009-07-01

    Alternative fuels from renewable cellulosic biomass--plant stalks, trunks, stems, and leaves--are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced'. In the United States, the Energy Independence and Security Act (EISA) of 2007 is an important driver for the sustainable development of renewable biofuels. As part of EISA, the Renewable Fuel Standard mandates that 36 billion gallons of biofuels are to be produced annually by 2022, of which 16 billion gallons are expected to come from cellulosic feedstocks. Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain--the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 25 years. The DOE Genomic Science Program is advancing a new generation of research focused on achieving whole-systems understanding for biology. This program

  3. Radiological worker training

    SciTech Connect

    1998-10-01

    This Handbook describes an implementation process for core training as recommended in Implementation Guide G441.12, Radiation Safety Training, and as outlined in the DOE Radiological Control Standard (RCS). The Handbook is meant to assist those individuals within the Department of Energy, Managing and Operating contractors, and Managing and Integrating contractors identified as having responsibility for implementing core training recommended by the RCS. This training is intended for radiological workers to assist in meeting their job-specific training requirements of 10 CFR 835. While this Handbook addresses many requirements of 10 CFR 835 Subpart J, it must be supplemented with facility-specific information to achieve full compliance.

  4. [Certified quality management according to DIN ISO 9001 in a radiology department at a university hospital: measurable changes in academic quality indicators?].

    PubMed

    Lorenzen, J; Habermann, C; Utler, C; Grzyska, U; Weber, C; Adam, G; Koops, A

    2009-10-01

    To evaluate the changes in academic quality indicators after implementation of a quality management system according to DIN ISO 9001:2000. After implementation and certification of a quality management system, the actual state based on quality indicators from the fields of student teaching, research, continuing education and the satisfaction of referring physician was determined. After implementation of an action plan for the individual areas, the temporal changes in the ratios were documented in the follow-up. The evaluation of teaching performance obtained by questionnaire among the students of the radiology course showed a steady increase in satisfaction (mean value 2003: 2.7; 2007: 3.9). In the field of research an increase in scientific output was achieved based on the number of an internal publication score (2002: 99 points; 2006: 509). Repeated opinion surveys among our referring physicians found improvements in indicators for the appointment of investigations, consulting service and waiting times for the investigation, while the waiting times for internal transport service did not improve. Exemplary measurements of the success of the advanced training of the staff demonstrated the need for continuing education for quality improvement. The evaluation of quality indicators showed over time a measurable positive impact on processes of a radiological University Hospital after implementation of a QM system according to DIN ISO 9001:2000. Georg Thieme Verlag KG Stuttgart-New York.

  5. Organizational decentralization in radiology.

    PubMed

    Aas, I H Monrad

    2006-01-01

    At present, most hospitals have a department of radiology where images are captured and interpreted. Decentralization is the opposite of centralization and means 'away from the centre'. With a Picture Archiving and Communication System (PACS) and broadband communications, transmitting radiology images between sites will be far easier than before. Qualitative interviews of 26 resource persons were performed in Norway. There was a response rate of 90%. Decentralization of radiology interpretations seems less relevant than centralization, but several forms of decentralization have a role to play. The respondents mentioned several advantages, including exploitation of capacity and competence. They also mentioned several disadvantages, including splitting professional communities and reduced contact between radiologists and clinicians. With the new technology decentralization and centralization of image interpretation are important possibilities in organizational change. This will be important for the future of teleradiology.

  6. ASAS Centennial Paper: The future of teaching and research in companion animal biology in departments of animal sciences.

    PubMed

    McNamara, J P

    2009-01-01

    Departments of animal sciences must be relevant to a society in which a small number of people can raise almost all the food animal products needed. The declining number of people involved in animal agriculture has decreased enrollment of students interested in food animals in many departments of animal science. However, several departments welcomed students from a diverse background and began research on animals other than food animals. In many states, the undergraduate enrollment is made up primarily of students interested only in companion animals. A benefit of this is that we have recruited new students into animal agriculture and they have gone on to excellent careers. We have a new challenge now: how to maintain and expand the efforts in teaching, research, and outreach of companion animal science. Departments wishing to expand in teaching have examples of successful courses and curricula from other departments. Some departments have expanded their teaching efforts across their own university to teach about pets to a wider audience than their own majors; other departments can follow. In research, a small number of faculty have been able to establish extramurally funded projects on pets, including horses. But it will be difficult for more than a handful of departments to have a serious research effort in dogs, cats, birds, fish, or exotic animals. Departments will have to make a concerted effort to invest in such endeavors; joint ventures with other universities and colleges of veterinary medicine (or medicine) will probably be required. Funding sources for "traditional" efforts in nutrition, reproduction, and physiology are small and inconsistent; however, with the progress of the equine, canine, and feline genome projects, there should be opportunities from federal funding sources aimed at using animal models for human health. In addition, efforts in animal behavior and welfare can be expanded, perhaps with some funding from private foundations or animal

  7. Radiological dose assessment of Department of Energy Pinellas Plant waste proposed for disposal at United States Pollution Controll, Inc. in Tooele County, Utah

    SciTech Connect

    Socolof, M.L.; Lee, D.W.; Kocher, D.C.

    1996-04-01

    Pinellas Plant (Largo FL) is proposing to ship hazardous sludge (F006 waste) to US Pollution Control Inc. (USPCI) hazardous waste landfill in Utah for disposal. This sludge contains tritium in concentrations of about 28 pCi/g. Objective of this study is to assess possible radiological impact to workers at USPCI and the public due to handling, processing, and burial of the tritium waste. Estimated doses to workers from waste handling and to the public from disposed waste range from 4.7x10{sup -6} to 9.8x10{sup -4} mrem/y. Results reveal extremely low annual doses that are far below natural background radiation exposure and regulatory limits.

  8. The Department of Energy`s interagency agreement with the National Institute of Environmental Health Sciences: Audit report

    SciTech Connect

    1998-07-01

    The Department of Energy (Department) and the National Institute of Environmental Health Sciences (NIEHS) entered into an interagency agreement in September 1992 to develop model safety and health training programs for workers involved in waste cleanup activities at Departmental facilities. Under the terms of the agreement, recipients of NIEHS training grants were to provide Hazardous Waste Operations and Emergency Response (HAZWOPER) training to Departmental sites. By June 1997, the Department had obligated over $40 million to the agreement. The objective of this audit was to determine whether the interagency agreement with NIEHS was the most cost-effective method of acquiring the training.

  9. The Department of the Interior Strategic Sciences Group and its Response to Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Ludwig, K. A.; Machlis, G. E.; Applegate, D.

    2013-12-01

    This presentation will describe the history, mission, and current activities of the newly formed Department of the Interior (DOI) Strategic Sciences Group (SSG), with a focus on its response to Hurricane Sandy and lessons learned from using scenario building to support decision making. There have been several environmental crises of national significance in recent years, including Hurricane Katrina (2005), large-scale California wildfires (2007-2008), the Deepwater Horizon oil spill (2010), and Hurricane Sandy (2012). Such events are complex because of their impacts on the ecology, economy, and people of the affected locations. In these and other environmental disasters, the DOI has had significant responsibilities to protect people and resources and to engage in emergency response, recovery, and restoration efforts. In recognition of the increasingly critical role of strategic science in responding to such complex events, the DOI established the SSG by Secretarial Order in 2012. Its purpose is to provide the DOI with science-based assessments and interdisciplinary scenarios of environmental crises affecting Departmental resources; rapidly assemble interdisciplinary teams of scientists from government, academia, and non-governmental organizations to conduct such work; and provide results to DOI leadership as usable knowledge to support decision making. March 2013 was the SSG's first deployment since its formation. The SSG's charge was to support DOI's participation on the Hurricane Sandy Rebuilding Task Force by developing scenarios of Hurricane Sandy's environmental, economic, and social consequences in the New York/New Jersey area and potential interventions that could improve regional resilience to future major storms. Over the course of one week, the SSG Sandy team (Operational Group Sandy) identified 13 first-tier consequences and 17 interventions. The SSG briefed DOI leadership, Task Force representatives, and other policy makers in both Washington, DC and

  10. Impact Assessment of a Department-Wide Science Education Initiative Using Students' Perceptions of Teaching and Learning Experiences

    ERIC Educational Resources Information Center

    Jones, Francis

    2017-01-01

    Evaluating major post-secondary education improvement projects involves multiple perspectives, including students' perceptions of their experiences. In the final year of a seven-year department-wide science education initiative, we asked students in 48 courses to rate the extent to which each of 39 teaching or learning strategies helped them learn…

  11. White Paper: Radiological Curriculum for Undergraduate Medical Education in Germany.

    PubMed

    Ertl-Wagner, B; Barkhausen, J; Mahnken, A H; Mentzel, H J; Uder, M; Weidemann, J; Stumpp, P

    2016-11-01

    Purpose: Radiology represents a highly relevant part of undergraduate medical education from preclinical studies to subinternship training. It is therefore important to establish a content base for teaching radiology in German Medical Faculties. Materials and Methods: The German Society of Radiology (DRG) developed a model curriculum for radiological teaching at German medical universities, which is presented in this article. There is also a European model curriculum for undergraduate teaching (U-level curriculum of the European Society of Radiology). In a modular concept, the students shall learn important radiological core principles in the realms of knowledge, skills and competences as well as core scientific competences in the imaging sciences. Results: The curriculum is divided into two modules. Module 1 includes principles of radiation biology, radiation protection and imaging technology, imaging anatomy as well as the risks and side effects of radiological methods, procedures and contrast media. This module is modality-oriented. Module 2 comprises radiological diagnostic decision-making and imaging-based interventional techniques for various disease entities. This module is organ system-oriented. Conclusion: The curriculum is meant as a living document to be amended and revised at regular intervals. The curriculum can be used as a basis for individual curricular development at German Medical Faculties. It can be integrated into traditional or reformed medical teaching curricula. Key Points: • Radiology is an integral and important part of medical education.• The German Society of Radiology (DRG) developed a model curriculum for teaching radiology at German Medical Faculties to help students develop the ability to make medical decisions based on scientific knowledge and act accordingly.• This curriculum can be used for individual curricular development at medical departments. It is divided into two modules with several chapters. Citation Format

  12. 75 FR 4411 - Agency Information Collection Activities: Department of the Interior Regional Climate Science...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... Regional Climate Science Centers AGENCY: United States Geological Survey (USGS), Interior. ACTION: Notice... to serve as a Host organization. Host organizations must be able to contribute climate science... of the Interior Regional Climate Science Centers. Type of Request: New. Respondent Obligation...

  13. The Gemini Science User Support Department: A community-centered approach to user support

    NASA Astrophysics Data System (ADS)

    Chené, André-Nicolas; Thomas-Osip, Joanna

    2016-01-01

    The Gemini Science User Support Department (SUSD) was formed a little more than a year ago to create a collaborative community of users and staff and to consolidate existing post-observing support throughout the observatory for more efficient use of resources as well as better visibility amongst our user community. This poster is an opportunity to exchange ideas about how Gemini can improve your experience while working with the Observatory and present details about new avenues of post-observing support coming soon. We encourage your feedback at any time.Shortly after its creation, the SUSD conducted a complete revision of the communication cycle between Gemini and its community of researchers. The cycle was then revisited from the perspective of an astronomer interested in using Gemini for their research. This exercise led to a series of proposed changes that are currently under development, and the implementation of a sub-selection is expected in 2016, including the following. (1) Email notifications: Gemini users will receive new forms of email communications that are more instructive and tailored to their program. The objective is to direct the users more efficiently toward the useful links and documentation all along the lifecycle of the program, from phaseII to after the data are completely reduced. (2) HelpDesk system: The HelpDesk will become more user-friendly and transparent. (3) Webpages: The organization of the Gemini webpages will be redesigned to optimize navigation; especially for anything regarding more critical periods likes phaseIs and phaseIIs. (4) Data Reduction User Forum: Following recommendations from Gemini users, new capabilities were added to the forum, like email notifications, and a voting system, in order to make it more practical. This forum's objective is to bring the Gemini community together to exchange their ideas, thoughts, questions and solutions about data reduction, a sort of Reddit, StackOverflow or Slashdot for Gemini data.

  14. Research productivity of Canadian ophthalmology departments in top 10 ophthalmology and vision science journals from 2001 to 2010.

    PubMed

    Schlenker, Matthew B; Manalo, Elbert; Wong, Agnes M F

    2013-02-01

    To evaluate the research productivity of Canadian ophthalmology departments in terms of research volume, impact, funding, and cost-efficiency, and compare these measures with the top 6 U.S. departments. Systemic review. Using the Web of Science, we obtained the number of peer-reviewed research articles and citations in which an author listed an ophthalmology department (or affiliated university or hospital) from 2001 to 2010 in the top 10 ophthalmology and vision sciences journals, as well as the Canadian Journal of Ophthalmology. Federal research funding received from the Canadian Institutes of Health Research and National Institutes of Health was also obtained. The 3 universities that produced the highest number of articles were the University of Toronto (UofT), McGill University, and the University of British Columbia (UBC). UofT also produced the largest number of citations, followed by UBC and Dalhousie University. For the number of citations per article, the top 3 were the University of Ottawa, Dalhousie University, and the University of Calgary. McGill University, the University of Montreal, and UofT received the most federal funding. The 3 Canadian universities with the lowest funding (cost) per article were UofT, UBC, and McMaster University. The top contributors to the Canadian Journal of Ophthalmology from 2001 to 2010 were UofT, the University of Ottawa, and McGill University. Larger Canadian departments tended to generate higher research volume and obtained more federal funding, but smaller departments also contributed significantly, and sometimes surpassed larger departments, in terms of research impact and cost-efficiency. The top 6 U.S. departments generated higher research volume and received more federal research funding than their Canadian counterparts. However, when research impact and cost-efficiency were examined, Canadian departments performed similar to the top U.S. departments. Copyright © 2013 Canadian Ophthalmological Society. Published

  15. The scope of forensic radiology.

    PubMed

    Brogdon, B G

    1998-06-01

    The use of x-ray in the solution of forensic problems commenced within days of Röntgen's discovery; indeed, most of the applications of radiology to the forensic sciences were accomplished or anticipated within the next two years. The scope of forensic radiology ranges widely and includes determination of identity, evaluation of injury and death, applications in both criminal and civil litigation and in administrative proceedings, detection of abuse, investigation of gunshot wounds, medical education and research. Newer modalities and techniques afford opportunity for the expansion of forensic radiology if problems of accessibility and cost can be resolved along with improvement in interdisciplinary cooperation and understanding.

  16. Orthopaedic radiology

    SciTech Connect

    Park, W.M.; Hughes, S.P.F.

    1985-01-01

    This book provides an account of the principles of modern diagnostic imaging techniques and their applications in orthopedics. The aim of the book is to show radiology as a dynamic subject which can help clinicians, while at the same time assisting radiologists to understand the needs of the orthopedic surgeon.

  17. Multimedia in the radiology environment

    NASA Astrophysics Data System (ADS)

    Bazzill, Todd M.; Huang, H. K.; Ramaswamy, Mohan R.; Arenson, Ronald L.

    1994-05-01

    Accessibility of multimedia information related to radiology in a timely manner is a key to success in practicing radiology in the future. In this paper we describe the concept of multimedia in the radiology environment and its implementation in our department at UCSF. This paper emphasizes the various types of databases related to radiology including HIS, RIS, PACS image database, digital voice dictation system, electronic mail and library information system. A method to interconnect these databases is through a comprehensive network architecture that also is described. As an application, we introduce the concept of a departmental image file server, for any of the 150 Macintosh users in the department to access this multimedia information.

  18. The condition of interdisciplinary communication among various Educational and Research Departments of Isfahan University of Medical Sciences.

    PubMed

    Mazaheri, Elaheh; Geraei, Ehsan; Zare-Farashbandi, Firoozeh; Papi, Ahmad

    2017-01-01

    The study aimed to assess interdisciplinary communication among various Educational and Research Departments of Isfahan University of Medical Sciences (IUMS) in clinical medical sciences using social network analysis. The study was carried out using scientometrics method and interdisciplinary communication network analysis. Interdisciplinary network of 1298 articles in medical sciences published in Journal of Isfahan Medical School was evaluated using macro- and micro-level criteria of network analysis. Ravar Matrix, UCINET, and VOSviewer software were used to analyze the interdisciplinary network of medical sciences articles. Findings showed that "Students Research Committee" and "School of Medicine," the affiliations of the medical students in general practice with scores of 272 and 197, "Epidemiology and Biostatistics," "Community Medicine," and "Internal Medicine" with 170, 101, and 99, respectively, possessed the first ranking of productivity index in scientific communication. Furthermore, in betweenness centrality index, "Epidemiology and Biostatistics" (3427.807), "Students Research Committee" (2967.180), and "Community Medicine" (1770.300) have an appropriate position in the network. Based on the centrality index, "Epidemiology and Biostatistics" (22.412), "Students Research Committee" (22.185) as well as "Community Medicine" and "School of Medicine" (both 21.554) acquired the least amount of distance with other nodes in network. Given the increased specialization in medical fields in recent years, communication between researchers with various specializations and creation of interdisciplinary or multidisciplinary departments had turned into an undeniable necessity. Therefore, communication between educational or research departments can facilitate the flow of information between researchers; and consequently, the top ranking departments in this study had more participation in scientific production of IUMS and getting more scores in annual evaluation by

  19. Assessing the initial adaptability and impact of a mobile dictation and reporting system in the radiology department of an academic hospital

    NASA Astrophysics Data System (ADS)

    Gali, Raja L.; Dave, Jaydev K.

    2017-03-01

    Mobile Radiologist 360, rolled out as part of the voice dictation system upgrade from Nuance Powerscribe 5.0 to PS360 allows an attending radiologist to edit and sign-off a report assigned by a trainee or that has been started by the radiologist on a workstation. The purpose of this study was to evaluate the adoptability and impact of this application. Report turnaround time data was extracted from the RIS (GE-Centricity RIS-IC) for 60 days before- (period-1) and 60 days after- (period-2) the application implementation and then, for 60 days after end of period-2 (period-3). Adoptability of the application was evaluated using two metrics; first, the number of attending radiologists who signed-off reports using the application in periods 2 and 3, and second, the proportion of reports signed-off by the top five users of the mobile application using the application. Impact of the application was evaluated by comparing the time from initial dictation to final sign-off (time_PF) for the top five users of the mobile application to the time_PF by other five radiologists who did not use the application. 41% radiologists used the mobile application at least once during the study period; the proportion of cases signed-off using the mobile application ranged from 1% to 20%. ANOVA revealed no statistically significant effect of the mobile application system on time_PF (p=0.842). In conclusion, there was low initial adoptability and no impact of the mobile dictation and reporting system in reducing the time from initial dictation to final sign-off on a radiology report.

  20. Success With Offering a Diversity of Majors in the Earth Science Department at the University of Northern Colorado

    NASA Astrophysics Data System (ADS)

    Nesse, W. D.; Taber, M. R.; Hoyt, W. H.

    2003-12-01

    Today, the number of geology majors at the University of Northern Colorado (UNC) has declined to just 10 percent of the mid-1980s peak. At issue is the sustainability of a viable geology program, with a minimum of three tenure-track faculty and few graduating geology students. One solution to the sustainability issue is diversity of Earth Science Majors within a given department. At UNC we have five emphasis areas: Environmental Earth Science, General Earth Science, Geology, Meteorology, and Secondary and Middle Level Teaching. We have had the good fortune to add many Meteorology and Environmental Earth Science majors, while the Geology, Middle Level Teaching, and General Earth Science majors have declined in number. As students' academic goals fluctuate in the geosciences (often directly tied to the marketability), the diversity of major offerings allows for the department to maintain a balance in the number of majors. Today, we are close to the number of Earth Science majors we've averaged over the last 20 years (~135 majors). Strong advising is essential for our evolving systems to work for the students and the Department. Another stabilizing factor for the Department is the masters program, which provides graduate student teaching assistants at a low cost to the university-most of our teaching assistants teach General Geology labs, and that course continues to be an effective recruiting mechanism for all of the emphasis areas to some degree. State budget constraints have forced creativity in course offerings. For example, we still require a Geology Field Camp for graduation, but send our students to other university field camps - a cost saving for us. In addition, many of our courses serve multiple emphasis areas, mirroring the nature of earth system science. Moreover, we have managed to combine some upper division courses (mineralogy and earth materials, for example), offered others on an alternate-year basis, reduce the number of upper division electives, and

  1. Uncomfortable Departments: British Historians of Science and the Importance of Disciplinary Communities

    ERIC Educational Resources Information Center

    Fyfe, Aileen

    2015-01-01

    This paper explores issues around disciplinary belonging and academic identity. Historians of science learn to think and practise like historians in terms of research practice, but this paper shows that British historians of science do not think of themselves as belonging to the disciplinary community of historians. They may be confident that they…

  2. Capturing citation activity in three health sciences departments: a comparison study of Scopus and Web of Science.

    PubMed

    Sarkozy, Alexandra; Slyman, Alison; Wu, Wendy

    2015-01-01

    Scopus and Web of Science are the two major citation databases that collect and disseminate bibliometric statistics about research articles, journals, institutions, and individual authors. Liaison librarians are now regularly called upon to utilize these databases to assist faculty in finding citation activity on their published works for tenure and promotion, grant applications, and more. But questions about the accuracy, scope, and coverage of these tools deserve closer scrutiny. Discrepancies in citation capture led to a systematic study on how Scopus and Web of Science compared in a real-life situation encountered by liaisons: comparing three different disciplines at a medical school and nursing program. How many articles would each database retrieve for each faculty member using the author-searching tools provided? How many cited references for each faculty member would each tool generate? Results demonstrated troubling differences in publication and citation activity capture between Scopus and Web of Science. Implications for librarians are discussed.

  3. Dosimetry in diagnostic radiology.

    PubMed

    Meghzifene, Ahmed; Dance, David R; McLean, Donald; Kramer, Hans-Michael

    2010-10-01

    Dosimetry is an area of increasing importance in diagnostic radiology. There is a realisation amongst health professionals that the radiation dose received by patients from modern X-ray examinations and procedures can be at a level of significance for the induction of cancer across a population, and in some unfortunate instances, in the acute damage to particular body organs such as skin and eyes. The formulation and measurement procedures for diagnostic radiology dosimetry have recently been standardised through an international code of practice which describes the methodologies necessary to address the diverging imaging modalities used in diagnostic radiology. Common to all dosimetry methodologies is the measurement of the air kerma from the X-ray device under defined conditions. To ensure the accuracy of the dosimetric determination, such measurements need to be made with appropriate instrumentation that has a calibration that is traceable to a standards laboratory. Dosimetric methods are used in radiology departments for a variety of purposes including the determination of patient dose levels to allow examinations to be optimized and to assist in decisions on the justification of examination choices. Patient dosimetry is important for special cases such as for X-ray examinations of children and pregnant patients. It is also a key component of the quality control of X-ray equipment and procedures. Copyright © 2010. Published by Elsevier Ireland Ltd.

  4. The Place of International Law in Departments of Political Science/Government.

    ERIC Educational Resources Information Center

    Ku, Charlotte

    This paper focuses on the teaching of international law in the University of Virginia's (Charlottesville) Department of Government and Foreign Affairs. It highlights the international law curriculum as part of the Foreign Affairs Department's course offerings and describes the purposes and objectives of courses in this curriculum. Problems that…

  5. Scientific Infrastructure to Support Atmospheric Science and Aerosol Science for the Department of Energy's Atmospheric Radiation Measurement Programs at Barrow, Alaska.

    NASA Astrophysics Data System (ADS)

    Lucero, D. A.; Ivey, M.; Helsel, F.; Hardesty, J.; Dexheimer, D.

    2015-12-01

    Scientific infrastructure to support atmospheric science and aerosol science for the Department of Energy's Atmospheric Radiation Measurement programs at Barrow, Alaska.The Atmospheric Radiation Measurement (ARM) Program's located at Barrow, Alaska is a U.S. Department of Energy (DOE) site. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Barrow has been in place since 1998, with many improvements since then. Barrow instruments include: scanning precipitation Radar-cloud radar, Doppler Lidar, Eddy correlation flux systems, Ceilometer, Manual and state-of-art automatic Balloon sounding systems, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar, High Spectral Resolution Lidar (HSRL) along with all the standard metrological measurements. Data from these instruments is placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at Barrow and the challenges of maintaining these instruments in an Arctic site.

  6. A Magnetic Tape Library System for the Computer Science Department NPGS (Naval Postgraduate School); Requirements Analysis, Design, and Implementation.

    DTIC Science & Technology

    1985-12-01

    Willis R . Greer, Jr., Chairman, Department of Administrative Sciences Kneale T. Marshall, E .Yif Information and Policy Scie!es - iwV...FRA\\’ES---------------------------------------- ’,~~ r L - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - J. DATABASE...be ,eveicoed ’bv r theSiS Student I0 9 ’ The current tape library is a combination of a casual computer listing of approximately 600 tapes, and opened

  7. Dental radiology.

    PubMed

    Woodward, Tony M

    2009-02-01

    Dental radiology is the core diagnostic modality of veterinary dentistry. Dental radiographs assist in detecting hidden painful pathology, estimating the severity of dental conditions, assessing treatment options, providing intraoperative guidance, and also serve to monitor success of prior treatments. Unfortunately, most professional veterinary training programs provide little or no training in veterinary dentistry in general or dental radiology in particular. Although a technical learning curve does exist, the techniques required for producing diagnostic films are not difficult to master. Regular use of dental x-rays will increase the amount of pathology detected, leading to healthier patients and happier clients who notice a difference in how their pet feels. This article covers equipment and materials needed to produce diagnostic intraoral dental films. A simplified guide for positioning will be presented, including a positioning "cheat sheet" to be placed next to the dental x-ray machine in the operatory. Additionally, digital dental radiograph systems will be described and trends for their future discussed.

  8. The Department of Defense Statement on Science in the Science and Technology Program before the Subcommittee on Research and Development of the Committee on Armed Services of the United States House of Representatives, 99th Congress, Second Session.

    DTIC Science & Technology

    1986-03-12

    none. 4 TABLE I SCIENCE AND TECHNOLOGY PROGRAM (Dollars in Millions) FY 1986 FY 1987 Research Military Departments ............................. 858 876...is potentially applicable to a wide range of military aircraft from fighters to strategic bombers. )j 20 .~ .. . . . . Also, flight tests of the...Environmental Sciences Research and Global Environmental Support Meteorology, oceanography, terrestrial science and space science are major military

  9. Professional development in person: identity and the construction of teaching within a high school science department

    NASA Astrophysics Data System (ADS)

    Deneroff, Victoria

    2016-06-01

    This is a narrative inquiry into the role of professional development in the construction of teaching practice by an exemplary urban high school science teacher. I collected data during 3 years of ethnographic participant observation in Marie Gonzalez's classroom. Marie told stories about her experiences in ten years of professional development focused on inquiry science teaching. I use a social practice theory lens to analyze my own stories as well as Marie's. I make the case that science teaching is best understood as mediated by socially-constructed identities rather than as the end-product of knowledge and beliefs. The cognitive paradigm for understanding teachers' professional learning fails to consistently produce transformations of teaching practice. In order to design professional development with science teachers that is generative of new knowledge, and is self-sustaining, we must understand how to build knowledge of how to problematize identities and consciously use social practice theory.

  10. Radiological anatomy - evaluation of integrative education in radiology.

    PubMed

    Dettmer, S; Schmiedl, A; Meyer, S; Giesemann, A; Pabst, R; Weidemann, J; Wacker, F K; Kirchhoff, T

    2013-09-01

    Evaluation and analysis of the integrative course "Radiological Anatomy" established since 2007 at the Medical School Hannover (MHH) in comparison with conventional education. Anatomy and radiology are usually taught separately with a considerable time lag. Interdisciplinary teaching of these associated subjects seems logical for several reasons. Therefore, the integrative course "Radiological Anatomy" was established in the second year of medical education, combining these two closely related subjects. This interdisciplinary course was retrospectively evaluated by consideration of a student questionnaire and staff observations. The advantages and disadvantages of integrative teaching in medical education are discussed. The course ratings were excellent (median 1; mean 1.3 on a scale of 1 to 6). This is significantly (p < 0.001) better than the average of all evaluated courses in the respective term (grade 2.8). The course improved the anatomical comprehension (90 %) and the students stated that the topics were relevant for their future medical education (90 %). Furthermore, interest in the subject's anatomy and radiology increased during the course (88 %). According to the students' suggestions the course was enhanced by a visitation in the Department of Radiology and the additional topic central nervous system. Integrative teaching of anatomy and radiology was well received by the students. Both, anatomical and radiological comprehension and the motivation to learn were improved. However, it should be considered, that the amount of work and time required by the teaching staff is considerably increased compared to traditional teaching. © Georg Thieme Verlag KG Stuttgart · New York.

  11. U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2015

    USGS Publications Warehouse

    Varela Minder, Elda; Padgett, Holly A.

    2016-04-07

    2015 was another great year for the Department of the Interior (DOI) Climate Science Centers (CSCs) and U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC) network. The DOI CSCs and USGS NCCWSC continued their mission of providing the science, data, and tools that are needed for on-the-ground decision making by natural and cultural resource managers to address the effects of climate change on fish, wildlife, ecosystems, and communities. Our many accomplishments in 2015 included initiating a national effort to understand the influence of drought on wildlife and ecosystems; providing numerous opportunities for students and early career researchers to expand their networks and learn more about climate change effects; and working with tribes and indigenous communities to expand their knowledge of and preparation for the impacts of climate change on important resources and traditional ways of living. Here we illustrate some of these 2015 activities from across the CSCs and NCCWSC.

  12. Trends in radiologic NDT

    SciTech Connect

    Berger, H. )

    1994-11-01

    In this article, the author tries to look ahead to see what is coming in the field of nondestructive testing (NDT) using radiation methods. Radiological NDT has changed since gamma ray and x-ray inspection came into widespread use more than 50 years ago. Even the name has changed. Instead of referring to most radiation inspection approaches as radiography as one once did, the ''umbrella'' term is now radiology, as defined by ASTM, ''the science and application of x-rays, gamma rays, neutrons and other penetrating radiations.'' Radiography refers to film or film-like methods. Radioscopy refers to electronic methods ''that follow very closely the changes with time of the object being imaged.'' In addition, radiology includes tomography, backscatter, gaging, and a host of other radiation inspection methods. All of these techniques are likely to change as we move into the 21st century. The author's favorites as radiologic methods and applications that will see much greater use in this decade and the early part of the twenty-first century can be summarized as follows: (1) x-radioscopic digital systems for manufacturing cations and in-service inspections and process control applications; (2) computerized radiological systems, radiographic, radioscopic, tomographic, and laminographic with capability for data exchange, use with NDT workstations and fully automated systems; (3) small inspection volume, low-cost CT systems; (4) x-ray image detection systems based on microfocus/image magnification; (5) small format, high sensitivity x-ray cameras; (6) large area photoconductive x-ray cameras; and (7) high output and transportable radiation sources.

  13. ["Activity based costing" in radiology].

    PubMed

    Klose, K J; Böttcher, J

    2002-05-01

    The introduction of diagnosis related groups for reimbursement of hospital services in Germany (g-drg) demands for a reconsideration of utilization of radiological products and costs related to them. Traditional cost accounting as approach to internal, department related budgets are compared with the accounting method of activity based costing (ABC). The steps, which are necessary to implement ABC in radiology are developed. The introduction of a process-oriented cost analysis is feasible for radiology departments. ABC plays a central role in the set-up of decentralized controlling functions within this institutions. The implementation seems to be a strategic challenge for department managers to get more appropriate data for adequate enterprise decisions. The necessary steps of process analysis can be used for other purposes (Certification, digital migration) as well.

  14. Five-year external reviews of the eight Department of Interior Climate Science Centers: Alaska Climate Science Center

    USGS Publications Warehouse

    Shasby, Mark; Dolloff, C. Andrew; Hicke, Jeffrey A.; Marcot, Bruce G; McCarl, Bruce; McMahon, Gerard; Morton, John M.

    2017-01-01

    This report primarily addresses the first two purposes of the review while providing comments on the third as identified by the science review team (SRT). A separate report of recommendations for the recompetition, based upon compiled observation from all three reviews conducted in 2016, was submitted to NCCWSC on April 15, 2016 to assist with the development of recompetition documents. To further address host-university administrative competencies and efficiencies, separate interviews of host-university faculty and administrators were conducted by NCCWSC staff in conjunction with the on-site component of the reviews.

  15. Using Systems Science to Inform Population Health Strategies in Local Health Departments: A Case Study in San Antonio, Texas.

    PubMed

    Li, Yan; Padrón, Norma A; Mangla, Anil T; Russo, Pamela G; Schlenker, Thomas; Pagán, José A

    Because of state and federal health care reform, local health departments play an increasingly prominent role leading and coordinating disease prevention programs in the United States. This case study shows how a local health department working in chronic disease prevention and management can use systems science and evidence-based decision making to inform program selection, implementation, and assessment; enhance engagement with local health systems and organizations; and possibly optimize health care delivery and population health. The authors built a systems-science agent-based simulation model of diabetes progression for the San Antonio Metropolitan Health District, a local health department, to simulate health and cost outcomes for the population of San Antonio for a 20-year period (2015-2034) using 2 scenarios: 1 in which hemoglobin A1c (HbA1c) values for a population were similar to the current distribution of values in San Antonio, and the other with a hypothetical 1-percentage-point reduction in HbA1c values. They projected that a 1-percentage-point reduction in HbA1c would lead to a decrease in the 20-year prevalence of end-stage renal disease from 1.7% to 0.9%, lower extremity amputation from 4.6% to 2.9%, blindness from 15.1% to 10.7%, myocardial infarction from 23.8% to 17.9%, and stroke from 9.8% to 7.2%. They estimated annual direct medical cost savings (in 2015 US dollars) from reducing HbA1c by 1 percentage point ranging from $6842 (myocardial infarction) to $39 800 (end-stage renal disease) for each averted case of diabetes complications. Local health departments could benefit from the use of systems science and evidence-based decision making to estimate public health program effectiveness and costs, calculate return on investment, and develop a business case for adopting programs.

  16. Two-frequency heating technique at the 18 GHz electron cyclotron resonance ion source of the National Institute of Radiological Sciences

    SciTech Connect

    Biri, S.; Rácz, R.; Sasaki, N.; Takasugi, W.

    2014-02-15

    The two-frequency heating technique was studied to increase the beam intensities of highly charged ions provided by the high-voltage extraction configuration (HEC) ion source at the National Institute of Radiological Sciences (NIRS). The observed dependences on microwave power and frequency suggested that this technique improved plasma stability but it required precise frequency tuning and more microwave power than was available before 2013. Recently, a new, high-power (1200 W) wide band-width (17.1–18.5 GHz) travelling-wave-tube amplifier (TWTA) was installed. After some single tests with klystron and TWT amplifiers the simultaneous injection of the two microwaves has been successfully realized. The dependence of highly charged ions (HCI) currents on the superposed microwave power was studied by changing only the output power of one of the two amplifiers, alternatively. While operating the klystron on its fixed 18.0 GHz, the frequency of the TWTA was swept within its full limits (17.1–18.5 GHz), and the effect of this frequency on the HCI-production rate was examined under several operation conditions. As an overall result, new beam records of highly charged argon, krypton, and xenon beams were obtained at the NIRS-HEC ion source by this high-power two-frequency operation mode.

  17. Two-frequency heating technique at the 18 GHz electron cyclotron resonance ion source of the National Institute of Radiological Sciences

    NASA Astrophysics Data System (ADS)

    Biri, S.; Kitagawa, A.; Muramatsu, M.; Drentje, A. G.; Rácz, R.; Yano, K.; Kato, Y.; Sasaki, N.; Takasugi, W.

    2014-02-01

    The two-frequency heating technique was studied to increase the beam intensities of highly charged ions provided by the high-voltage extraction configuration (HEC) ion source at the National Institute of Radiological Sciences (NIRS). The observed dependences on microwave power and frequency suggested that this technique improved plasma stability but it required precise frequency tuning and more microwave power than was available before 2013. Recently, a new, high-power (1200 W) wide band-width (17.1-18.5 GHz) travelling-wave-tube amplifier (TWTA) was installed. After some single tests with klystron and TWT amplifiers the simultaneous injection of the two microwaves has been successfully realized. The dependence of highly charged ions (HCI) currents on the superposed microwave power was studied by changing only the output power of one of the two amplifiers, alternatively. While operating the klystron on its fixed 18.0 GHz, the frequency of the TWTA was swept within its full limits (17.1-18.5 GHz), and the effect of this frequency on the HCI-production rate was examined under several operation conditions. As an overall result, new beam records of highly charged argon, krypton, and xenon beams were obtained at the NIRS-HEC ion source by this high-power two-frequency operation mode.

  18. Instituting a radiology residency scholarly activity program.

    PubMed

    Amrhein, Timothy J; Tabesh, Ali; Collins, Heather R; Gordon, Leonie L; Helpern, Joseph A; Jensen, Jens H

    2015-01-01

    The purpose of this manuscript is to present a newly instituted program for resident scholarly activity that includes a curriculum designed to enhance resident training with regard to research while meeting requirements established by the Accreditation Council for Graduate Medical Education (ACGME), the governing body responsible for regulation of post-graduate medical education and training in the United States. A scholarly activity program was designed with the following goals: (i) enhance the academic training environment for our residents; (ii) foster interests in research and academic career paths; (iii) provide basic education on research methodology and presentation skills. To guide program design, an electronic survey was created and distributed to the residents and faculty in the Department of Radiology and Radiological Sciences at the Medical University of South Carolina (MUSC), a 750-bed public teaching hospital in the state of South Carolina in the United States. Survey respondents were in strong support of a required resident scholarly activity project (70% in favor), felt non-traditional projects were valuable (84.1% of respondents), and were proponents of required scholarly activity summary presentations (58%). This program requires that residents engage in a scholarly activity project under the guidance of a mentor. Resident success is maximized through in-house education initiatives focusing on presentation and research skills, protected time to work on the project, and oversight by a radiology research committee. All residents present a summary of their work near the end of their residency training. Changes to the radiology resident certification process create an opportunity for incorporating new policies aimed at enhancing resident education. The scholarly activity program outlined in this manuscript is one such initiative designed to meet ACGME requirements, provide an introduction to research, and establish a scholarly activity project

  19. The Radiological Research Accelerator Facility

    SciTech Connect

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993.

  20. The Radiological Research Accelerator Facility

    SciTech Connect

    Hall, E.J.

    1992-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Experiments performed from May 1991--April 1992 are described.

  1. Department-Level Representations: A New Approach to the Study of Science Teacher Cognition

    ERIC Educational Resources Information Center

    Hutner, Todd L.; Markman, Arthur B.

    2016-01-01

    Research on science teacher cognition is important as findings from this research can be used to improve teacher training, leading to improved classroom practice. Previous research has often relied on two underlying assumptions: Cognition is an individual process, and these processes are detailed and introspective. In this paper, we put forth a…

  2. Capital Middle Schools Science Department, Preliminary List of Behavioral/Performance Objectives.

    ERIC Educational Resources Information Center

    Del Mod System, Dover, DE.

    This monograph provides basic behavioral objectives designed for a middle school science curriculum. Emphasis is placed on the study of the living environment for students in grade five. This includes the study of plants, animals, the human body, and the use of the microscope, classification and the scientific method. Objectives for grade six are…

  3. Department of Defense Science, Technology, Engineering, and Mathematics (STEM) Education Workshop on Computing Education

    DTIC Science & Technology

    2010-10-18

    School Cybercampus ChicTech Tech Ambassadors Competition Arduino Project Lead the Way Pico Crickets™ Workshops MIT Media Lab , STEM Rays, UMASS...Computer Science Equity Alliance Way Arduino “Kids Ahead” SMU Caruth August 2010 14 , STEM Rays, UMASS US FIRST Robotics Competition Autonomous

  4. Department-Level Representations: A New Approach to the Study of Science Teacher Cognition

    ERIC Educational Resources Information Center

    Hutner, Todd L.; Markman, Arthur B.

    2016-01-01

    Research on science teacher cognition is important as findings from this research can be used to improve teacher training, leading to improved classroom practice. Previous research has often relied on two underlying assumptions: Cognition is an individual process, and these processes are detailed and introspective. In this paper, we put forth a…

  5. Mandated Curriculum Change and a Science Department: A Superficial Language Convergence?

    ERIC Educational Resources Information Center

    Melville, Wayne

    2008-01-01

    This article investigates the introduction of a systemic curriculum change, the Essential Learnings curriculum framework, in the Australian state of Tasmania. Using Gee's [(2003). Language in the science classroom: Academic social languages as the heart of school-based literacy. In: R. Yerrick, & W.-M. Roth (Eds.), "Establishing…

  6. Capital Middle Schools Science Department, Preliminary List of Behavioral/Performance Objectives.

    ERIC Educational Resources Information Center

    Del Mod System, Dover, DE.

    This monograph provides basic behavioral objectives designed for a middle school science curriculum. Emphasis is placed on the study of the living environment for students in grade five. This includes the study of plants, animals, the human body, and the use of the microscope, classification and the scientific method. Objectives for grade six are…

  7. Professional Development in Person: Identity and the Construction of Teaching within a High School Science Department

    ERIC Educational Resources Information Center

    Deneroff, Victoria

    2016-01-01

    This is a narrative inquiry into the role of professional development in the construction of teaching practice by an exemplary urban high school science teacher. I collected data during 3 years of ethnographic participant observation in Marie Gonzalez's classroom. Marie told stories about her experiences in ten years of professional development…

  8. Professional Development in Person: Identity and the Construction of Teaching within a High School Science Department

    ERIC Educational Resources Information Center

    Deneroff, Victoria

    2016-01-01

    This is a narrative inquiry into the role of professional development in the construction of teaching practice by an exemplary urban high school science teacher. I collected data during 3 years of ethnographic participant observation in Marie Gonzalez's classroom. Marie told stories about her experiences in ten years of professional development…

  9. Putting Physics First: Three Case Studies of High School Science Department and Course Sequence Reorganization

    ERIC Educational Resources Information Center

    Larkin, Douglas B.

    2016-01-01

    This article examines the process of shifting to a "Physics First" sequence in science course offerings in three school districts in the United States. This curricular sequence reverses the more common U.S. high school sequence of biology/chemistry/physics, and has gained substantial support in the physics education community over the…

  10. Putting Physics First: Three Case Studies of High School Science Department and Course Sequence Reorganization

    ERIC Educational Resources Information Center

    Larkin, Douglas B.

    2016-01-01

    This article examines the process of shifting to a "Physics First" sequence in science course offerings in three school districts in the United States. This curricular sequence reverses the more common U.S. high school sequence of biology/chemistry/physics, and has gained substantial support in the physics education community over the…

  11. The condition of interdisciplinary communication among various Educational and Research Departments of Isfahan University of Medical Sciences

    PubMed Central

    Mazaheri, Elaheh; Geraei, Ehsan; Zare-Farashbandi, Firoozeh; Papi, Ahmad

    2017-01-01

    BACKGROUND: The study aimed to assess interdisciplinary communication among various Educational and Research Departments of Isfahan University of Medical Sciences (IUMS) in clinical medical sciences using social network analysis. MATERIALS AND METHODS: The study was carried out using scientometrics method and interdisciplinary communication network analysis. Interdisciplinary network of 1298 articles in medical sciences published in Journal of Isfahan Medical School was evaluated using macro- and micro-level criteria of network analysis. Ravar Matrix, UCINET, and VOSviewer software were used to analyze the interdisciplinary network of medical sciences articles. RESULTS: Findings showed that “Students Research Committee” and “School of Medicine,” the affiliations of the medical students in general practice with scores of 272 and 197, “Epidemiology and Biostatistics,” “Community Medicine,” and “Internal Medicine” with 170, 101, and 99, respectively, possessed the first ranking of productivity index in scientific communication. Furthermore, in betweenness centrality index, “Epidemiology and Biostatistics” (3427.807), “Students Research Committee” (2967.180), and “Community Medicine” (1770.300) have an appropriate position in the network. Based on the centrality index, “Epidemiology and Biostatistics” (22.412), “Students Research Committee” (22.185) as well as “Community Medicine” and “School of Medicine” (both 21.554) acquired the least amount of distance with other nodes in network. CONCLUSION: Given the increased specialization in medical fields in recent years, communication between researchers with various specializations and creation of interdisciplinary or multidisciplinary departments had turned into an undeniable necessity. Therefore, communication between educational or research departments can facilitate the flow of information between researchers; and consequently, the top ranking departments in this study had

  12. The Power of Partnerships: Exploring the Relationship between Campus Career Centers and Political Science Departments

    ERIC Educational Resources Information Center

    Despeaux, J. Michael; Knotts, H. Gibbs; Schiff, Jennifer S.

    2014-01-01

    Given the growing emphasis on career preparation in higher education, career centers play important roles on today's college campuses. The literature has focused on the reasons students use career services, but it has not addressed the vital linkage between career centers and academic departments. Using a survey of 279 political science…

  13. The Power of Partnerships: Exploring the Relationship between Campus Career Centers and Political Science Departments

    ERIC Educational Resources Information Center

    Despeaux, J. Michael; Knotts, H. Gibbs; Schiff, Jennifer S.

    2014-01-01

    Given the growing emphasis on career preparation in higher education, career centers play important roles on today's college campuses. The literature has focused on the reasons students use career services, but it has not addressed the vital linkage between career centers and academic departments. Using a survey of 279 political science…

  14. Notes on the 1974 Conference for New Science Department Chairmen at Private Institutions.

    ERIC Educational Resources Information Center

    1974

    To provide firsthand knowledge of investigators and institutions for the evaluation of grants proposals, the Grants staff or Research Corporation visits hundreds of colleges and universities each year. Their finding reveal that department chairmen have a unique influence on the conduct of research and the motivation of students, as well as the…

  15. Science and Technology in Development Environments - Industry and Department of Defense Case Studies

    DTIC Science & Technology

    2003-11-01

    Administration (ERDA), and Department of Energy (DOE) sponsorship in the liquid-metal fast-breeder reactor ( LMFBR ) program until it was terminated by President... LMFBR program is of some interest in the current context because the NR R&D management approach was applied with more formality, and hence more...water flows. Each fuel plate is a sandwich of a uranium alloy fuel element, covered on both sides by cladding . In the fuel element, the fission

  16. INL@Work Radiological Search & Response Training

    SciTech Connect

    Turnage, Jennifer

    2010-01-01

    Dealing with radiological hazards is just part of the job for many INL scientists and engineers. Dodging bullets isn't. But some Department of Defense personnel may have to do both. INL employee Jennifer Turnage helps train soldiers in the art of detecting radiological and nuclear material. For more information about INL's research projects, visit http://www.facebook.com/idahonationallaboratory.

  17. 10 CFR 835.4 - Radiological units.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... other conventional units, such as, dpm, dpm/100 cm2 or mass units. The SI units, becquerel (Bq), gray... 10 Energy 4 2014-01-01 2014-01-01 false Radiological units. 835.4 Section 835.4 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.4 Radiological units. Unless...

  18. 10 CFR 835.4 - Radiological units.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... other conventional units, such as, dpm, dpm/100 cm2 or mass units. The SI units, becquerel (Bq), gray... 10 Energy 4 2011-01-01 2011-01-01 false Radiological units. 835.4 Section 835.4 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.4 Radiological units. Unless...

  19. 10 CFR 835.4 - Radiological units.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... other conventional units, such as, dpm, dpm/100 cm2 or mass units. The SI units, becquerel (Bq), gray... 10 Energy 4 2010-01-01 2010-01-01 false Radiological units. 835.4 Section 835.4 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.4 Radiological units. Unless...

  20. INL@Work Radiological Search & Response Training

    ScienceCinema

    Turnage, Jennifer

    2016-07-12

    Dealing with radiological hazards is just part of the job for many INL scientists and engineers. Dodging bullets isn't. But some Department of Defense personnel may have to do both. INL employee Jennifer Turnage helps train soldiers in the art of detecting radiological and nuclear material. For more information about INL's research projects, visit http://www.facebook.com/idahonationallaboratory.

  1. Radiology Aide. Instructor Key [and] Student Manual.

    ERIC Educational Resources Information Center

    Hartwein, Jon; Dunham, John

    This manual can be used independently by students in secondary health occupations programs or by persons receiving on-the-job training in a radiology department. The manual includes an instructor's key that provides answers to the activity sheets and unit evaluations. The manual consists of the following five units: (1) orientation to radiology;…

  2. Radiology Aide. Instructor Key [and] Student Manual.

    ERIC Educational Resources Information Center

    Hartwein, Jon; Dunham, John

    This manual can be used independently by students in secondary health occupations programs or by persons receiving on-the-job training in a radiology department. The manual includes an instructor's key that provides answers to the activity sheets and unit evaluations. The manual consists of the following five units: (1) orientation to radiology;…

  3. 10 CFR 835.4 - Radiological units.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Radiological units. 835.4 Section 835.4 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.4 Radiological units. Unless otherwise specified, the quantities used in the records required by this part shall be clearly indicated in...

  4. 10 CFR 835.4 - Radiological units.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Radiological units. 835.4 Section 835.4 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.4 Radiological units. Unless otherwise specified, the quantities used in the records required by this part shall be clearly indicated in...

  5. U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2016

    USGS Publications Warehouse

    Weiskopf, Sarah R.; Varela Minder, Elda; Padgett, Holly A.

    2017-05-19

    Introduction2016 was an exciting year for the Department of the Interior (DOI) Climate Science Centers (CSCs) and the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC). In recognition of our ongoing efforts to raise awareness and provide the scientific data and tools needed to address the impacts of climate change on fish, wildlife, ecosystems, and people, NCCWSC and the CSCs received an honorable mention in the first ever Climate Adaptation Leadership Award for Natural Resources sponsored by the National Fish, Wildlife, and Plant Climate Adaptation Strategy’s Joint Implementation Working Group. The recognition is a reflection of our contribution to numerous scientific workshops and publications, provision of training for students and early career professionals, and work with Tribes and indigenous communities to improve climate change resilience across the Nation. In this report, we highlight some of the activities that took place throughout the NCCWSC and CSC network in 2016.

  6. Occupational Radiation Protection in Interventional Radiology: A Joint Guideline of the Cardiovascular and Interventional Radiology Society of Europe and the Society of Interventional Radiology

    DTIC Science & Technology

    2010-01-01

    CIRSE GUIDELINES Occupational Radiation Protection in Interventional Radiology : A Joint Guideline of the Cardiovascular and Interventional Radiology ...Society of Europe and the Society of Interventional Radiology Donald L. Miller • Eliseo Vañó • Gabriel Bartal • Stephen Balter • Robert Dixon...December 2009 Springer Science+Business Media, LLC and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2009 Preamble The

  7. The Department of the Interior Southeast Climate Science Center synthesis report 2011–15—Projects, products, and science priorities

    USGS Publications Warehouse

    Varela Minder, Elda; Lascurain, Aranzazu R.; McMahon, Gerard

    2016-09-28

    IntroductionIn 2009, the U.S. Department of the Interior (DOI) Secretary Ken Salazar established a network of eight regional Climate Science Centers (CSCs) that, along with the Landscape Conservation Cooperatives (LCCs), would help define and implement the Department's climate adaptation response. The Southeast Climate Science Center (SE CSC) was established at North Carolina State University (NCSU) in Raleigh, North Carolina, in 2010, under a 5-year cooperative agreement with the U.S. Geological Survey (USGS), to identify and address the regional challenges presented by climate change and variability in the Southeastern United States. All eight regional CSC hosts, including NCSU, were selected through a competitive process.Since its opening, the focus of the SE CSC has been on working with partners in the identification and development of research-based information that can assist managers, including cultural and natural resource managers, in adapting to global change processes, such as climate and land use change, that operate at local to global scales and affect resources important to the DOI mission. The SE CSC was organized to accomplish three goals:Provide co-produced, researched based, actionable science that supports transparent global change adaptation decisions.Convene conversations among decision makers, scientists, and managers to identify key ecosystem adaptation decisions driven by climate and land use change, the values and objectives that will be used to make decisions, and the research-based information needed to assess adaptation options.Build the capacity of natural resource professionals, university faculty, and students to understand and frame natural resource adaptation decisions and develop and use research-based information to make adaptation decisions.This report provides an overview of the SE CSC and the projects developed by the SE CSC since its inception. An important goal of this report is to provide a framework for understanding the

  8. Geological and geophysical activities at Spallanzani Science Department (Liceo Scientifico Statale "Lazzaro Spallanzani" - Tivoli, Italy)

    NASA Astrophysics Data System (ADS)

    Favale, T.; De Angelis, F.; De Filippis, L.

    2012-04-01

    The high school Liceo Scientifico "Lazzaro Spallanzani" at Tivoli (Rome) has been fully involved in the study of geological and geophysical features of the town of Tivoli and the surrounding area in the last twelve years. Objective of this activity is to promote the knowledge of the local territory from the geological point of view. Main activities: • School year 2001-2002: Setting up inside the school building of a Geological Museum focusing on "Geological Evolution of Latium, Central Italy" (in collaboration with colleagues M. Mancini, and A. Pierangeli). • March, 15, 2001: Conference of Environmental Geology. Lecturer: Prof. Raniero Massoli Novelli, L'Aquila University and Società Italiana di Geologia Ambientale. • School years 2001-2002 and 2002-2003: Earth Sciences course for students "Brittle deformation and tectonic stress in Tivoli area". • November, 2003: Conference of Geology, GIS and Remote Sensing. Lecturers: Prof. Maurizio Parotto and Dr Alessandro Cecili (Roma Tre University, Rome), and Dr Stefano Pignotti (Istituto Nazionale per la Ricerca sulla Montagna, Rome). • November, 2003, 2004 and 2005: GIS DAY, organized in collaboration with ESRI Italia. • School year 2006-2007: Earth Sciences course for students "Acque Albule basin and the Travertine of Tivoli, Latium, Central Italy" (focus on travertine formation). • School year 2010-2011: Earth Sciences course for students "Acque Albule basin and the Travertine of Tivoli. Geology, Hydrogeology and Microbiology of the basin, Latium, Central Italy" (focus on thermal springs and spa). In the period 2009-2010 a seismic station with three channels, currently working, was designed and built in our school by the science teachers Felice De Angelis and Tomaso Favale. Our seismic station (code name LTTV) is part of Italian Experimental Seismic Network (IESN) with identification code IZ (international database IRIS-ISC). The three drums are online in real time on websites http

  9. Program report for FY 1984 and 1985 Atmospheric and Geophysical Sciences Division of the Physics Department

    SciTech Connect

    Knox, J.B.; MacCracken, M.C.; Dickerson, M.H.; Gresho, P.M.; Luther, F.M.

    1986-08-01

    This annual report for the Atmospheric and Geophysical Sciences Division (G-Division) summarizes the activities and highlights of the past three years, with emphasis on significant research findings in two major program areas: the Atmospheric Release Advisory Capability (ARAC), with its recent involvement in assessing the effects of the Chernobyl reactor accident, and new findings on the environmental consequences of nuclear war. The technical highlights of the many other research projects are also briefly reported, along with the Division's organization, budget, and publications.

  10. [The application of radiological image in forensic medicine].

    PubMed

    Zhang, Ji-Zong; Che, Hong-Min; Xu, Li-Xiang

    2006-04-01

    Personal identification is an important work in forensic investigation included sex discrimination, age and stature estimation. Human identification depended on radiological image technique analysis is a practice and proper method in forensic science field. This paper intended to understand the advantage and defect by reviewed the employing of forensic radiology in forensic science field broadly and provide a reference to perfect the application of forensic radiology in forensic science field.

  11. Battlefield radiology

    PubMed Central

    Graham, R N J

    2012-01-01

    With the increasing tempo of military conflicts in the last decade, much has been learnt about imaging battlefield casualties in the acute setting. Ultrasound in the form of focused abdominal sonography in trauma (FAST) has proven invaluable in emergency triage of patients for immediate surgery. Multidetector CT allows accurate determination of battlefield trauma injuries. It permits the surgeons and anaesthetists to plan their interventions more thoroughly and to be made aware of clinically occult injuries. There are common injury patterns associated with blast injury, gunshot wounds and blunt trauma. While this body of knowledge is most applicable to the battlefield, there are parallels with peacetime radiology, particularly in terrorist attacks and industrial accidents. This pictorial review is based on the experiences of a UK radiologist deployed in Afghanistan in 2010. PMID:22806621

  12. Decommoditizing radiology.

    PubMed

    Reiner, Bruce I; Siegel, Eliot L

    2009-03-01

    The current focus on the economic bottom line in health care creates the potential for radiology to become a commodity, devoid of qualitative differentiation. This trend toward commoditization has been accelerated by the globalization of imaging services (teleradiology), increased information exchange (eg, Digital Imaging and Communications in Medicine, Integrating the Healthcare Enterprise), and new technology development (eg, picture archiving and communication systems, computer-aided diagnosis). The optimum strategy for avoiding commoditization is the creation of objective quality metrics and standards throughout the medical imaging practice, which will provide a reproducible and objective means with which to differentiate imaging service deliverables on the basis of quality and clinical outcomes. These quality measures can in turn be directly tied to economic incentives (pay for performance), providing further incentive for proactive quality assurance, qualitative differentiation, and technology development centered on quality.

  13. [Leisure-time physical activity of first-year students in 3 health science departments].

    PubMed

    Mora i Ripoll, R; Fuentes i Almendras, M; Sentis i Vilalta, J

    1997-12-01

    Physical inactivity is a well-known risk factor for many chronic diseases which have high prevalence in developed countries. The aims of this study are to describe leisure-time physical activity levels and to identify preferences for its practice among first grade students in three Health Sciences Faculties at the University of Barcelona. During the year 1994-95, a total of 887 first grade students of three Faculties, Pharmacy (n = 573), Medicine (n = 222) and Dentistry (n = 92), were interviewed using a recall of their leisure time physical activity over last 8 months. Physical activity level was classified into four categories: non-active, low, medium and high, based on the number of hours per week. Statistical methods consisted in the estimation of rates, comparisons using the chi-square test, and computing the odds ratio. Women were 75% of students. Fifty per cent of men and 71.5% of women referred to be non-active or having low physical activity level (chi 2 = 36.8; DF = 3; p < 0.0001), being no evidence of association with current smoking or overweight (Body Mass Index > or = 25). Among the rest of students, men's most frequently reported activities were football, swimming and tennis, and those of women's were swimming, aerobic and tennis. Physical activity level among first grade health sciences university students is poorly exemplary. More physical activity promotion is needed, particularly to female students, as an important primary preventive measure among this group.

  14. Interactive Online Modules and Videos for Learning Geological Concepts at the University of Toronto Department of Earth Sciences

    NASA Astrophysics Data System (ADS)

    Veglio, E.; Graves, L. W.; Bank, C. G.

    2014-12-01

    We designed various computer-based applications and videos as educational resources for undergraduate courses at the University of Toronto in the Earth Science Department. These resources were developed in effort to enhance students' self-learning of key concepts as identified by educators at the department. The interactive learning modules and videos were created using the programs MATLAB and Adobe Creative Suite 5 (Photoshop and Premiere) and range from optical mineralogy (extinction and Becke line), petrology (equilibrium melting in 2-phase systems), crystallography (crystal systems), geophysics (gravity anomaly), and geologic history (evolution of Canada). These resources will be made available for students on internal course websites as well as through the University of Toronto Earth Science's website (www.es.utoronto.ca) where appropriate; the video platform YouTube.com may be used to reach a wide audience and promote the material. Usage of the material will be monitored and feedback will be collected over the next academic year in order to gage the use of these interactive learning tools and to assess if these computer-based applications and videos foster student engagement and active learning, and thus offer an enriched learning experience.

  15. Final Report to the Department of the Energy for Project Entitled Rare Isotope Science Assessment Committee

    SciTech Connect

    Donald Shapero; Timothy I. Meyer

    2007-08-14

    The Rare Isotope Science Assessment Committee (RISAC) was convened by the National Research Council in response to an informal request from the DOE’s Office of Nuclear Physics and the White House Office of Management and Budget. The charge to the committee is to examine and assess the broader scientific and international contexts of a U.S.-based rare-isotope facility. The committee met for the first time on December 16-17, 2005, in Washington, DC, and held three subsequent meetings. The committee’s final report was publicly released in unedited, prepublication form on Friday, December 8, 2006. The report was published in full-color by the National Academies Press in April 2007. Copies of the report were distributed to key decision makers and stakeholders around the world.

  16. 2000 U.S. Department of Energy Strategic Plan: Strength through Science Powering the 21st Century

    SciTech Connect

    None,

    2000-09-01

    The Department of Energy conducts programs relating to energy resources, national nuclear security, environmental quality, and science. In each of these areas, the US is facing significant challenges. Our economic well-being depends on the continuing availability of reliable and affordable supplies of clean energy. Our Nation's security is threatened by the proliferation of weapons of mass destruction. Our environment is under threat from the demands a more populated planet and the legacies of 20th-century activities. Science and the technology derived from it offer the promise to improve the Nation's health and well-being and broadly expand human knowledge. In conducting its programs, the Department of Energy (DOE) employs unique scientific and technical assets, including 30,000 scientists, engineers, and other technical staff, in a complex of outstanding national laboratories that have a capital value of over $45 billion. Through its multidisciplinary research and development activities and its formidable assemblage of scientific and engineering talent, DOE focuses its efforts on four programmatic business lines: (1) Energy Resources--promoting the development and deployment of systems and practices that provide energy that is clean, efficient, reasonably priced, and reliable. (2) National Nuclear Security--enhancing national security through military application of nuclear technology and by reducing global danger from the potential spread of weapons of mass destruction. (3) Environmental Quality--cleaning up the legacy of nuclear weapons and nuclear research activities, safely managing nuclear materials, and disposing of radioactive wastes. (4) Science--advancing science and scientific tools to provide the foundation for DOE's applied missions and to provide remarkable insights into our physical and biological world. In support of the above four business lines, DOE provides management services to ensure that the technical programs can run efficiently. Our

  17. The future role of the health sciences library in the Department of Veterans Affairs.

    PubMed Central

    Wiesenthal, D

    1993-01-01

    The Department of Veterans Affairs (VA) conducted a survey to ascertain the perceptions of 322 library service chiefs and health care administrators within the VA health care system. Participants were asked to rate the desirability and probability of twenty-five predetermined statements and to identify the forces that would have an impact, either positive or negative, on whatever statements became reality. The response rate was 93%. Analysis of the data indicated that there was no significant difference between the library managers and health care administrators in their perceptions. Results indicate that both groups believe libraries serve an integral role in VA medical centers and that library services cannot be provided as successfully off site. The data also appear to reveal a clear consensus on the part of both groups for increased library involvement in educational activities and information delivery. PMID:8471999

  18. What is the pharmaceutical industry doing, and what does the pharmaceutical industry want from animal science departments?

    PubMed

    Lauderdale, J W

    1999-02-01

    Perceived contemporary issues are 1) food safety and food healthfulness, 2) environment, 3) sustainability, 4) biotechnology, 5) animal well-being, 6) animals as food, and 7) research funding. Food safety is the paramount contemporary issue, and environment and sustainability issues can be considered as a single issue. Biotechnology, animal well-being, and animals as food are addressed in this paper as separate issues, but they can be considered as components of food safety and healthfulness. The pharmaceutical industry addresses these issues by providing safe and effective products to the livestock industry. These products are used to treat and prevent disease and to increase livestock production efficiency. These products contribute to a safe food supply, enhance protection of the environment, and increase the sustainability of animal agriculture through increased efficiency of livestock production. The pharmaceutical industry wants the following from animal science departments: 1) students skilled in deductive and inductive thinking and communicating to peers and the public; 2) regional research on food safety, such as irradiation, steaming of carcasses, E. coli contamination, antibiotic resistance, production facilities, and carcass contamination; 3) improved research to identify the food values of animal products and effective communication of that research to the public; 4) research on topics having the greatest potential to increase efficiency of animal production consistent with a positive impact on the environment and sustainability of animal production; 5) leadership in developing and using technologies such as biotechnology, not only as descriptors of biological processes, but as technologies to test hypotheses leading to new understandings of biology; 6) research on animal well-being and production facilities that foster animal well-being; 7) research and education on ethical and moral aspects of animals as food through encouragement of one or more

  19. ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM RESEARCH PROJECTS TO IMPROVE DECONTAMINATION AND DECOMMISIONING OF U.S. DEPARTMENT OF ENERGY FACILITIES

    SciTech Connect

    Phillips, Ann Marie

    2003-02-27

    This paper describes fourteen basic science projects aimed at solving decontamination and decommissioning (D&D) problems within the U.S. Department of Energy (DOE). Funded by the Environmental Science Management Program (EMSP), these research projects address D&D problems where basic science is needed to expand knowledge and develop solutions to help DOE meet its cleanup milestones. EMSP uses directed solicitations targeted at identified Environmental Management (EM) needs to ensure that research results are directly applicable to DOE's EM problems. The program then helps transition the projects from basic to applied research by identifying end-users and coordinating proof-of-principle field tests. EMSP recently funded fourteen D&D research projects through the directed solicitation process. These research projects will be discussed, including description, current status, and potential impact. Through targeted research and proof-of-principle tests, it is hoped that EMSP's fourteen D&D basic research projects will directly impact and provide solutions to DOE's D&D problems.

  20. 21 CFR 892.1830 - Radiologic patient cradle.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiologic patient cradle. 892.1830 Section 892.1830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1830 Radiologic patient cradle....

  1. 21 CFR 892.1940 - Radiologic quality assurance instrument.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiologic quality assurance instrument. 892.1940 Section 892.1940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1940 Radiologic quality...

  2. 21 CFR 892.1830 - Radiologic patient cradle.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiologic patient cradle. 892.1830 Section 892.1830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1830 Radiologic patient cradle....

  3. 21 CFR 892.1830 - Radiologic patient cradle.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiologic patient cradle. 892.1830 Section 892.1830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1830 Radiologic patient cradle....

  4. 21 CFR 892.1830 - Radiologic patient cradle.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiologic patient cradle. 892.1830 Section 892.1830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1830 Radiologic patient cradle....

  5. 21 CFR 892.1940 - Radiologic quality assurance instrument.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiologic quality assurance instrument. 892.1940 Section 892.1940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1940 Radiologic quality...

  6. 21 CFR 892.1940 - Radiologic quality assurance instrument.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiologic quality assurance instrument. 892.1940 Section 892.1940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1940 Radiologic quality...

  7. 21 CFR 892.1940 - Radiologic quality assurance instrument.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiologic quality assurance instrument. 892.1940 Section 892.1940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1940 Radiologic quality...

  8. 21 CFR 892.1830 - Radiologic patient cradle.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiologic patient cradle. 892.1830 Section 892.1830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1830 Radiologic patient cradle....

  9. 21 CFR 892.1940 - Radiologic quality assurance instrument.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiologic quality assurance instrument. 892.1940 Section 892.1940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1940 Radiologic quality...

  10. Teaching physics to radiology residents.

    PubMed

    Hendee, William R

    2009-04-01

    The complexity of diagnostic imaging has expanded dramatically over the past two decades. Over the same period, the time and effort devoted to teaching physics (the science and technology of the discipline) have diminished. This paradox compromises the ability of future radiologists to master imaging technologies so that they are used in an efficient, safe, and cost-effective manner. This article addresses these issues. Efforts involving many professional organizations are under way to resolve the paradox of the expanding complexity of medical imaging contrasted with the declining emphasis on physics in radiology residency programs. These efforts should help to reestablish physics education as a core value in radiology residency programs.

  11. The importance of motivating radiology department employees.

    PubMed

    Kowalczyk, N

    1984-01-01

    Motivational theories are viewed as management tools concerned with human resources. The premise of most theories is that human needs give rise to certain behavior. The performance of radiographers and their relationships with others depend upon this internal force. A technologist whose job does not meet his need for acceptance and ego satisfaction is not likely to be productive. Therefore, management must develop an environment that is supportive, caring, and encourages each radiographer to grow.

  12. Cost Sensitivity Analysis for Radiology Department Planning

    PubMed Central

    Sullivan, William G.; Thuesen, Gerald J.

    1971-01-01

    Two complementary computer programs have been developed for forecasting the demands and evaluating the costs of proposed radiographic facilities. The models are employed here in analyses of the sensitivity of investment and operating costs to selected design variables. The versatility of the evaluation methodology is further illustrated by a comparison of costs for alternative facility arrangements representing various degrees of decentralization. Cost differences arising from the use of conventional or high-speed x-ray equipment and from one-shift or two-shift operation are also explored for the various alternative arrangements. PMID:5133836

  13. Women in Radiology: Exploring the Gender Disparity.

    PubMed

    Zener, Rebecca; Lee, Stefanie Y; Visscher, Kari L; Ricketts, Michelle; Speer, Stacey; Wiseman, Daniele

    2016-03-01

    In 2015, only 1.5% of female Canadian medical students pursued radiology as a specialty, versus 5.6% of men. The aim of this study was to determine what factors attract and deter Canadian medical students from pursuing a career in radiology, and why fewer women than men pursue radiology as a specialty. An anonymous online survey was e-mailed to English-speaking Canadian medical schools, and 12 of 14 schools participated. Subgroup analyses for gender and radiology interest were performed using the Fisher exact test (P < .05). In total, 917 students (514 women; 403 men) responded. Direct patient contact was valued by significantly more women who were not considering specialization in radiology (87%), compared with women who were (70%; P < .0001). Physics deterred more women (47%) than it did men (21%), despite similar educational backgrounds for the two gender groups in physical sciences (P < .0001). More women who were considering radiology as a specialty rated intellectual stimulation as being important to their career choice (93%), compared with women who were not (80%; P = .002). Fewer women who were not interested in radiology had done preclinical observerships in radiology (20%), compared with men who were not interested in radiology (28%; P = .04). A perceived lack of direct patient contact dissuades medical students from pursuing radiology as a career. Women have less preclinical radiology exposure than do men. Programs that increase preclinical exposure to radiology subspecialties that have greater patient contact should be initiated, and an effort to actively recruit women to such programs should be made. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  14. Staff Report to the Senior Department Official on Recognition Compliance Issues. Recommendation Page: National Accrediting Commission Of Cosmetology Arts and Sciences

    ERIC Educational Resources Information Center

    US Department of Education, 2010

    2010-01-01

    The National Accrediting Commission of Cosmetology Arts and Sciences (NACCAS) is a national accreditor whose scope of recognition is for the accreditation throughout the United States of postsecondary schools and departments of cosmetology arts and sciences and massage therapy. The agency accredits approximately 1,300 institutions offering…

  15. [Hygiene during leisure time among third year students from the Department of Nursing and Health Sciences].

    PubMed

    Czabak-Garbacz, Róza; Skibniewska, Agnieszka; Mazurkiewicz, Piotr; Wisowska, Anna

    2002-01-01

    The aim of the study was the assessment of hygiene of leisure time among third year students from Faculty of Nursing and Health Science of Lublin Medical Academy. It analysed passive and active ways of spending free time. The study involved 106 students (55 stationary and 51 extramural) and it was conducted by means of questionnaire. The study revealed that students prefer passive types of spending their leisure time. The most popular activity was listening to the radio, to which they devoted average 2.9 hours a day (listening to music mainly). Extramural students listened to the radio shorter than stationary ones (the difference was statistically significant). Students spent also a lot of their time watching television (average 1.5 hours a day), reading books and newspapers (average 1.85 hours a day) and doing housework, which is an active way of rest (average 2.7 hours a day), mainly preparing meals and shopping. Students devoted the least of their free time to sleep during the day in spite of the fact it is an excellent way of rest. The study found also that physical activity was not a favourite type of spending free time. Every third student did not do any sport. Stationary students did sport 4 times longer than extramural (the difference was statistically significant). Only 31% practiced taking a daily walk and only 44% of students made tourist trips. 81.9% of them went away during summer holidays, but only 31% of them during the winter break. Undoubtedly, the way of spending free time by the students under examination was not hygienic as it did not give them a sense of relaxation and rest; also the students themselves were not satisfied with it.

  16. The Role of a Computer Science Department in the Use of the Computer in Undergraduate Curricula at a Small Liberal Arts College.

    ERIC Educational Resources Information Center

    Keller, Mary K.

    There are several ways in which the computer science department at the small liberal arts college can contribute to the richness of the institution's undergraduate curriculum. In addition to providing training for students interested in computer-related careers, the department, by offering courses for non-majors in the field, can broaden the…

  17. Reinventing radiology reimbursement.

    PubMed

    Marshall, John; Adema, Denise

    2005-01-01

    Lee Memorial Health System (LMHS), located in southwest Florida, consists of 5 hospitals, a home health agency, a skilled nursing facility, multiple outpatient centers, walk-in medical centers, and primary care physician offices. LMHS annually performs more than 300,000 imaging procedures with gross imaging revenues exceeding dollar 350 million. In fall 2002, LMHS received the results of an independent audit of its IR coding. The overall IR coding error rate was determined to be 84.5%. The projected net financial impact of these errors was an annual reimbursement loss of dollar 182,000. To address the issues of coding errors and reimbursement loss, LMHS implemented its clinical reimbursementspecialist (CRS) system in October 2003, as an extension of financial services' reimbursement division. LMHS began with CRSs in 3 service lines: emergency department, cardiac catheterization, and radiology. These 3 CRSs coordinate all facets of their respective areas' chargemaster, patient charges, coding, and reimbursement functions while serving as a resident coding expert within their clinical areas. The radiology reimbursement specialist (RRS) combines an experienced radiologic technologist, interventional technologist, medical records coder, financial auditor, reimbursement specialist, and biller into a single position. The RRS's radiology experience and technologist knowledge are key assets to resolving coding conflicts and handling complex interventional coding. In addition, performing a daily charge audit and an active code review are essential if an organization is to eliminate coding errors. One of the inherent effects of eliminating coding errors is the capturing of additional RVUs and units of service. During its first year, based on account level detail, the RRS system increased radiology productivity through the additional capture of just more than 3,000 RVUs and 1,000 additional units of service. In addition, the physicians appreciate having someone who "keeps up

  18. Organizing Evidence Based Medicine (EBM) Journal Clubs in Department of Neurosurgery, Tabriz University of Medical Sciences.

    PubMed

    Shokouhi, Ghaffar; Ghojazadeh, Morteza; Sattarnezhad, Neda

    2012-01-01

    A journal club is a group of individuals who meet regularly to evaluate critically the clinical application of latest medical literature. Evidence-based medicine (EBM) is 'the use of current best evidence, in making decisions about the care of individual patients'. For this purpose, we organized journal clubs using standard EBM method, to substitute for traditional ones, evaluating efficacy of evidence based meetings in improvement of medical education in department of Neurosurgery. After six traditional journal clubs two validated questionnaires (evaluating organizing method and degree of satisfaction), were filled out by the residents. After an instructing workshop and six evidence based journal sessions, the same questionnaires were completed by the attendees. The collected data were analyzed using SPSS 17. The mean score of the first questionnaires (Evaluating the method of organizing sessions) 16.72±7.86 (median=14) for traditional journal clubs and 40.18±6.38 (median=40) for evidence based forms (P=0.003).The mean grade of the second questionnaires (degree of satisfaction) was 13.18±4.6 (median=14) and 21.90±4.27 (median=22), for traditional and evidence based ones, respectively. (P=0.006). The aim of evidence based journal club is to help individuals to evaluate the current literature critically. The best way to decide if any adjustments are necessary is to ask the participants whether they are satisfied with the conference. As improvement of critical judgment is the goal of the journal clubs, the response of the resident according to the knowledge of methodology and biostatistics, is a principle. In present study, significant improvement in critical appraisal skills was seen after holding evidence based journal clubs.

  19. The Archives of the Department of Terrestrial Magnetism: Documenting 100 Years of Carnegie Science

    NASA Astrophysics Data System (ADS)

    Hardy, S. J.

    2005-12-01

    The archives of the Department of Terrestrial Magnetism (DTM) of the Carnegie Institution of Washington document more than a century of geophysical and astronomical investigations. Primary source materials available for historical research include field and laboratory notebooks, equipment designs, plans for observatories and research vessels, scientists' correspondence, and thousands of expedition and instrument photographs. Yet despite its history, DTM long lacked a systematic approach to managing its documentary heritage. A preliminary records survey conducted in 2001 identified more than 1,000 linear feet of historically-valuable records languishing in dusty, poorly-accessible storerooms. Intellectual control at that time was minimal. With support from the National Historical Publications and Records Commission, the "Carnegie Legacy Project" was initiated in 2003 to preserve, organize, and facilitate access to DTM's archival records, as well as those of the Carnegie Institution's administrative headquarters and Geophysical Laboratory. Professional archivists were hired to process the 100-year backlog of records. Policies and procedures were established to ensure that all work conformed to national archival standards. Records were appraised, organized, and rehoused in acid-free containers, and finding aids were created for the project web site. Standardized descriptions of each collection were contributed to the WorldCat bibliographic database and the AIP International Catalog of Sources for History of Physics. Historic photographs and documents were digitized for online exhibitions to raise awareness of the archives among researchers and the general public. The success of the Legacy Project depended on collaboration between archivists, librarians, historians, data specialists, and scientists. This presentation will discuss key aspects (funding, staffing, preservation, access, outreach) of the Legacy Project and is aimed at personnel in observatories, research

  20. Current radiology. Volume 5

    SciTech Connect

    Wilson, G.H.; Hanafee, W.N.

    1984-01-01

    This book contains 10 selections. They are: Nuclear Magnetic Resonance Imaging, Interventional Vascular Radiology, Genitourinary Radiology, Skeletal Radiology, Digital Subtraction Angiography, Neuroradiology, Computed Tomographic Evaluation of Degenerative Diseases of the Lumbar Spine, The Lung, Otolaringology and Opthalmology, and Pediatric Radiology: Cranial, Facial, Cervical, Vertebral, and Appendicular.

  1. Radiological Control Manual

    SciTech Connect

    Not Available

    1993-04-01

    This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

  2. A new era in science at Washington University, St. Louis: Viktor Hamburger's zoology department in the 1940's.

    PubMed

    Carson, H L

    2001-04-01

    In the early 1940s, the administration of the College of Arts and Sciences at Washington University, St. Louis was firmly in the hands of classical scholars who were not inclined to promote the development of modern research on scientific subjects. Funds supporting research in biology favored the School of Medicine and the Missouri Botanical Garden. Viktor Hamburger arrived at Washington University in 1935. At about the time he became the Acting Chairman of Zoology in 1942, research work in the biological departments began a dramatic surge that has continued to this day. For 65 years under his counsel and leadership, basic biology has thrived at this fine institution. As an early faculty recruit, I recount here a few personal recollections from those formative years.

  3. Science fiction and the history of the astro-department of Carl Zeiss Jena (German Title: Science Fiction und die Geschichte der Astroabteilung von Carl Zeiss Jena)

    NASA Astrophysics Data System (ADS)

    Beck, Hans G.

    This contribution uses the literary form of science fiction in retrospect, in order to display the initial conditions given in the run-up of the founding of the astro-department of the Zeiss factory. Written minutes (supposedly found during restoration works in the people's house in Jena) introduce the participants of a sort of founding party of the main actors Ernst Abbe, Otto Schott, Siegfried Czapski, Hans Harting, Albert König, Franz Meyer and Walter Villiger. Their contributions to the discussion yield a market analysis, based on the past development of the technology of astronomical instruments, the international competitors' state of the art, and the assessment of the future development in astronomy and especially of astrophysics. The contribution presents a piece of modern history of the year 1987; it was presented as a talk on May 13 of the same year, when Rolf Riekher celebrated his 65th birthday.

  4. Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences, Japan

    NASA Astrophysics Data System (ADS)

    Inaniwa, Taku; Kanematsu, Nobuyuki; Matsufuji, Naruhiro; Kanai, Tatsuaki; Shirai, Toshiyuki; Noda, Koji; Tsuji, Hiroshi; Kamada, Tadashi; Tsujii, Hirohiko

    2015-04-01

    At the National Institute of Radiological Sciences (NIRS), more than 8,000 patients have been treated for various tumors with carbon-ion (C-ion) radiotherapy in the past 20 years based on a radiobiologically defined clinical-dose system. Through clinical experience, including extensive dose escalation studies, optimum dose-fractionation protocols have been established for respective tumors, which may be considered as the standards in C-ion radiotherapy. Although the therapeutic appropriateness of the clinical-dose system has been widely demonstrated by clinical results, the system incorporates several oversimplifications such as dose-independent relative biological effectiveness (RBE), empirical nuclear fragmentation model, and use of dose-averaged linear energy transfer to represent the spectrum of particles. We took the opportunity to update the clinical-dose system at the time we started clinical treatment with pencil beam scanning, a new beam delivery method, in 2011. The requirements for the updated system were to correct the oversimplifications made in the original system, while harmonizing with the original system to maintain the established dose-fractionation protocols. In the updated system, the radiation quality of the therapeutic C-ion beam was derived with Monte Carlo simulations, and its biological effectiveness was predicted with a theoretical model. We selected the most used C-ion beam with αr = 0.764 Gy-1 and β = 0.0615 Gy-2 as reference radiation for RBE. The C-equivalent biological dose distribution is designed to allow the prescribed survival of tumor cells of the human salivary gland (HSG) in entire spread-out Bragg peak (SOBP) region, with consideration to the dose dependence of the RBE. This C-equivalent biological dose distribution is scaled to a clinical dose distribution to harmonize with our clinical experiences with C-ion radiotherapy. Treatment plans were made with the original and the updated clinical-dose systems, and both

  5. Integrative teaching in radiology - a survey.

    PubMed

    Dettmer, S; Weidemann, J; Fischer, V; Wacker, F K

    2015-04-01

    To survey integrative teaching in radiology at German universities. A questionnaire about radiological education was sent electronically to all 37 chairpersons of university radiology departments in Germany. The questions included the course type, teaching methods, concept, perception, and advantages and disadvantages of integrative teaching. Statistical analysis was performed with nonparametric statistics and chi-square test. The survey was considered representative with a return rate of 68 %. Integrative teaching is established at 4/5 of all departments. Integrative teaching is well accepted with an acceptance rate that is significantly higher in so-called "Modellstudiengängen" [model courses of study] (100 %) compared to conventional courses of study (72 %). The advantages of integrative teaching include linking of content (92 %) and preparation for interdisciplinary work (76 %). The disadvantages include high effort (75 %) and time (67 %) for organization. Furthermore, there is a risk that basic radiological facts and knowledge cannot be conveyed and that the visibility of radiology as an independent discipline is lost. Conventional radiological teaching has a similarly high acceptance (84 %) compared to integrative courses (76 %). Integrative teaching has a high acceptance among chairpersons in radiology in Germany despite the greater effort. A good interdisciplinary collaboration is essential for integrative teaching and at the same time this can be conveyed to the students. However, the visibility of radiology as a discipline and the possibility to cover basic radiological content must be ensured. Therefore, both conventional courses and integrative teaching seems reasonable, especially in cross-disciplinary subjects such as radiology. Both integrative teaching and conventional radiological teaching are highly accepted. The advantages include the linking of multidisciplinary content and the preparation for interdisciplinary cooperation

  6. Advancing the Use of Evidence-Based Decision-Making in Local Health Departments With Systems Science Methodologies

    PubMed Central

    Li, Yan; Kong, Nan; Lawley, Mark; Weiss, Linda

    2015-01-01

    Objectives. We assessed how systems science methodologies might be used to bridge resource gaps at local health departments (LHDs) so that they might better implement evidence-based decision-making (EBDM) to address population health challenges. Methods. We used the New York Academy of Medicine Cardiovascular Health Simulation Model to evaluate the results of a hypothetical program that would reduce the proportion of people smoking, eating fewer than 5 fruits and vegetables per day, being physically active less than 150 minutes per week, and who had a body mass index (BMI) of 25 kg/m2 or greater. We used survey data from the Behavioral Risk Factor Surveillance System to evaluate health outcomes and validate simulation results. Results. Smoking rates and the proportion of the population with a BMI of 25 kg/m2 or greater would have decreased significantly with implementation of the hypothetical program (P < .001). Two areas would have experienced a statistically significant reduction in the local population with diabetes between 2007 and 2027 (P < .05). Conclusions. The use of systems science methodologies might be a novel and efficient way to systematically address a number of EBDM adoption barriers at LHDs. PMID:25689181

  7. The top 100 articles in the radiology of trauma: a bibliometric analysis.

    PubMed

    Dolan, Ryan Scott; Hanna, Tarek N; Warraich, Gohar Javed; Johnson, Jamlik-Omari; Khosa, Faisal

    2015-12-01

    The purpose of this study was to identify the 100 top-cited articles in the radiology of trauma, analyze the resulting database to understand factors resulting in highly cited works, and establish trends in trauma imaging. An initial database was created via a Web of Science (WOS) search of all scientific journals using the search terms "trauma" and either "radiology" or a diagnostic modality. Articles were ranked by citation count and screened by two attending radiologists plus a tiebreaker for appropriateness. The following information was collected from each article: WOS all database citations, year, journal, authors, department affiliation, study type and design, sample size, imaging modality, subspecialty, organ, and topic. Citations for the top 100 articles ranged from 82-252, and citations per year ranged from 2.6-37.2. A plurality of articles were published in the 1990s (n = 45) and 1980s (n = 31). Articles were published across 24 journals, most commonly Radiology (n = 31) and Journal of Trauma-Injury, Infection, and Critical Care (n = 28). Articles had an average of five authors and 35 % of first authors were affiliated with a department other than radiology. Forty-six articles had sample sizes of 100 or fewer. Computed tomography (CT) was the most common modality (n = 67), followed by magnetic resonance (MR; n = 22), and X-ray (XR; n = 11). Neuroradiology (n = 48) and abdominal radiology (n = 36) were the most common subspecialties. The 100 top-cited articles in the radiology of trauma are diverse. Subspecialty bibliometric analyses identify the most influential articles of a particular field, providing more implications to clinical radiologists, trainees, researchers, editors, and reviewers than radiology-wide lists.

  8. Radiological sinonasal anatomy

    PubMed Central

    Alrumaih, Redha A.; Ashoor, Mona M.; Obidan, Ahmed A.; Al-Khater, Khulood M.; Al-Jubran, Saeed A.

    2016-01-01

    Objectives: To assess the prevalence of common radiological variants of sinonasal anatomy among Saudi population and compare it with the reported prevalence of these variants in other ethnic and population groups. Methods: This is a retrospective cross-sectional study of 121 computerized tomography scans of the nose and paranasal sinuses of patients presented with sinonasal symptoms to the Department of Otorhinolarngology, King Fahad Hospital of the University, Khobar, Saudi Arabia, between January 2014 and May 2014. Results: Scans of 121 patients fulfilled inclusion criteria were reviewed. Concha bullosa was found in 55.4%, Haller cell in 39.7%, and Onodi cell in 28.9%. Dehiscence of the internal carotid artery was found in 1.65%. Type-1 and type-2 optic nerve were the prevalent types. Type-II Keros classification of the depth of olfactory fossa was the most common among the sample (52.9%). Frontal cells were found in 79.3%; type I was the most common. Conclusions: There is a difference in the prevalence of some radiological variants of the sinonasal anatomy between Saudi population and other study groups. Surgeon must pay special attention in the preoperative assessment of patients with sinonasal pathology to avoid undesirable complications. PMID:27146614

  9. Educational treasures in Radiology: The Radiology Olympics - striving for gold in Radiology education.

    PubMed

    Talanow, Roland

    2010-01-01

    This article focuses on Radiology Olympics (www.RadiologyOlympics.com) - a collaboration with the international Radiology community for Radiology education, Radiolopolis (www.Radiolopolis.com). The Radiology Olympics honour the movers and shakers in Radiology education and offer an easy to use platform for educating medical professionals based on Radiology cases.

  10. Radiological Illustration of Spontaneous Ovarian Hyperstimulation Syndrome

    PubMed Central

    Mittal, Kartik; Koticha, Raj; Dey, Amit K.; Anandpara, Karan; Agrawal, Rajat; Sarvothaman, Madhva P.; Thakkar, Hemangini

    2015-01-01

    Summary Background The role of radiology is of utmost importance not only in diagnosing s-OHSS but also in ruling out other cystic ovarian diseases and to determine the underlying etiology and course of the disease. We presented a radiological algorithm for diagnosing the various causes of s-OHSS. Case Report A 26-year-old female, gravida one was referred to radiology department with history of lower abdominal pain, nausea and vomiting since 2 days which was gradual in onset and progression. The patient had no significant medical and surgical history. Conclusions This article illustrates and emphasizes that diagnosis of s-OHSS and its etiology can be completely evaluated radiologically. Biochemical markers will confirm the radiological diagnosis. PMID:25960820

  11. [Behaviour concerning smoking among people from the closest environment of students who begin their studies at the Health Science Department].

    PubMed

    Kowalska, Alina; Kaleta, Dorota; Rzeźnicki, Adam; Pikala, Małgorzata; Krakowiak, Jan

    2010-01-01

    It can be seen from many researches that popularity of smoking among the students is still high. Due to that fact, there is a necessity to search for factor that would influence the behavior and attitude to smoking among female and male students as early as their first year at university, and also include this in preventive programmes. The aim of the work is to present the behavior concerning smoking among people from the closest environment of students who begin their studies at the Health Science Department and determine their influence on behavior and attitudes of the tested towards smoking. The subject matter of the analysis are selected fragments of research carried out between the years 2007/2008 and 2008/ 2009 among students who began their studies at The Health Science Department at the Medical University of Łódź. For collecting the empirical material, auditorial questionnaires were used. In every academic year that was studied, over 470 people took part in the test, which is over 93% of students who are on dean's lists. Among the people smoking in the closest environment, respondents pointed to their friends most frequently: in 2007/2008 it was 49.1% of the surveyed (235 people) and in 2008/2009 57.1% (270 people). The second place belonged to "one smoking parent". In 2007/2008, 31.7% of the tested students (152 people) lived with one parent inhaling tobacco smoke before beginning their studies at university and the year after that, 30.2% (143 people). In 2007/2008, 16.1% of the tested (77 people) claimed that no-one smoked in their closest environment and a year later, the same answer was given by 15.2% of the tested (72 people). Among the surveyed on the first years of studies, the ratio of smoking students in whose closest environment there was no-one smoking, was different significantly to the ratio of smoking students who had people inhaling tobacco smoke in their environment.

  12. Lessons learned from curriculum changes and setting curriculum objectives at the University of Pennsylvania's Earth and Environmental Science Department

    NASA Astrophysics Data System (ADS)

    Dmochowski, J. E.

    2009-12-01

    Recent restructuring of the University of Pennsylvania’s curriculum, including a revised multi-disciplinary Environmental Studies major and a proposed Environmental Science major has led to several changes, including a mandatory junior research seminar. Feedback from students indicates that a more structured curriculum has helped guide them through the multi-disciplinary Environmental Studies major. The addition of mandatory courses in Statistics, Geographical and Environmental Modeling, as well as Economics and Policy has ensured that students have important skills needed to succeed after graduation. We have compiled a curriculum objective matrix to clarify both the broad and focused objectives of our curriculum and how each course helps to fulfill these objectives. An important aspect of both majors is the Senior Thesis. The junior research seminar was recently revised to help students prepare for their thesis research. Topic selection, library research, data presentation, basic research methods, advisor identification, and funding options are discussed. Throughout the course, faculty from within the department lecture about their research and highlight opportunities for undergraduates. In one assignment, students are given a few types of datasets and asked to present the data and error analysis in various formats using different software (SPSS and Excel). The final paper was a research proposal outlining the student’s Senior Thesis. Based on both the university and instructor written course evaluations, students felt they benefited most from writing their senior thesis proposal; doing assignments on data analysis, library research and critical analysis; and the faculty research lectures. The lessons learned in restructuring this flexible major and providing a research seminar in the junior year may benefit other departments considering such changes.

  13. Historical Radiological Event Monitoring

    EPA Pesticide Factsheets

    During and after radiological events EPA's RadNet monitors the environment for radiation. EPA monitored environmental radiation levels during and after Chernobyl, Fukushima and other international and domestic radiological incidents.

  14. Report of the Defense Science Board Subcommittee on Department of Defense Research Policy. Part 1. Policy on Support of Basic Research

    DTIC Science & Technology

    1963-12-31

    f. .. AD-A955 482 Report of the Defen e Science Board Subcomtnittee on Depart•eat of Defense RESEARCH POLICY OTIC SELECTED NOV 2 91J88 0(/H...ACCESSION NO NA 11 TITLE (inc/ud* Stcunty Oassificat/on) Report of the Defense Science Board Subcomittee on Department of Defense Research Policy , Part...Defense Research Policy Office of the Director of Defense Research and Engineering Washington, D. C. 31 December 1963 OFFICE OF THE DIRECTOR OF DEFENSE

  15. Mobile computing for radiology.

    PubMed

    Auffermann, William F; Chetlen, Alison L; Sharma, Arjun; Colucci, Andrew T; DeQuesada, Ivan M; Grajo, Joseph R; Kung, Justin W; Loehfelm, Thomas W; Sherry, Steven J

    2013-12-01

    The rapid advances in mobile computing technology have the potential to change the way radiology and medicine as a whole are practiced. Several mobile computing advances have not yet found application to the practice of radiology, while others have already been applied to radiology but are not in widespread clinical use. This review addresses several areas where radiology and medicine in general may benefit from adoption of the latest mobile computing technologies and speculates on potential future applications.

  16. Research Briefings 1986. For the Office of Science and Technology Policy, the National Science Foundation, and Selected Federal Departments and Agencies.

    ERIC Educational Resources Information Center

    National Academy of Sciences, Washington, DC.

    This is part of a series on selected areas of science and technology prepared by the Committee on Science, Engineering, and Public Policy, at the request of the Science Advisor to the President of the United States. This volume includes four individual reports. The first is the report of the "Research Briefing Panel on Science of Interfaces…

  17. Managing patient stress in pediatric radiology.

    PubMed

    Alexander, Melody

    2012-01-01

    Research has shown that short-and long-term effects can result from stressful or invasive medical procedures performed on children in the radiology department. Short-term effects for the pediatric patient include pain, anxiety, crying, and lack of cooperation. The patient's parents also may experience short-term effects, including elevated anxiety and increased heart rate and blood pressure. Potential long-term effects include post-traumatic stress syndrome; fear; changes in pain perception and coping effectiveness; avoidance of medical care; and trypanophobia. To identify common sources of stress in pediatric radiology, investigate short-and long-term effects of stressful and invasive medical procedures in pediatric patients, and compare different strategies used in radiology departments to minimize stress in pediatric patients. Searches were conducted using specific databases to locate literature related to stress in pediatric radiology. Articles were included that addressed at least 1 of the following topics: common sources of stress in the pediatric radiology department, the short-or long-term effects of a stressful and invasive medical procedure, or a stress-minimizing strategy used in a pediatric medical environment. Consistency of care can be improved among the different radiology modalities by providing similar and effective strategies to minimize stress, including interventions such as parental involvement, preprocedural preparation, distraction, sedation, use of a child-life specialist, hypnosis, protecting the child's privacy, and positive reinforcement. Future research is needed to identify additional ways to improve the consistency for care of pediatric patients in the radiology department and to investigate stress management in areas such as pediatric vascular interventional radiology, cardiac catheterization, emergency/trauma imaging, and gastrointestinal procedures.

  18. Current Trends in Gamma Radiation Detection for Radiological Emergency Response

    SciTech Connect

    Mukhopadhyay, S., Guss, P., Maurer, R.

    2011-09-01

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of interdisciplinary research and development has taken place–techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation–the so-called second line of defense.

  19. Current trends in gamma radiation detection for radiological emergency response

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Guss, Paul; Maurer, Richard

    2011-09-01

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of inter-disciplinary research and development has taken place-techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation-the so-called second line of defense.

  20. Radiology and fine art.

    PubMed

    Marinković, Slobodan; Stošić-Opinćal, Tatjana; Tomić, Oliver

    2012-07-01

    The radiologic aesthetics of some body parts and internal organs have inspired certain artists to create specific works of art. Our aim was to describe the link between radiology and fine art. We explored 13,625 artworks in the literature produced by 2049 artists and found several thousand photographs in an online image search. The examination revealed 271 radiologic artworks (1.99%) created by 59 artists (2.88%) who mainly applied radiography, sonography, CT, and MRI. Some authors produced radiologic artistic photographs, and others used radiologic images to create artful compositions, specific sculptures, or digital works. Many radiologic artworks have symbolic, metaphoric, or conceptual connotations. Radiology is clearly becoming an original and important field of modern art.

  1. Self Assessment in Higher Education: An Empirical Evidence from the Department of Business Administration of Shahjalal University of Science and Technology, Bangladesh

    ERIC Educational Resources Information Center

    Islam, Nazrul; Chowdhury, Mohmmad Ashraful Ferdous

    2015-01-01

    The paper aimed to explore the self assessment practices in higher education in Bangladesh with special reference to Department of Business Administration of Shahjalal University of Science and Technology. For self assessment purpose the researchers have collected opinion from students, alumni, employer and faculty members on eight areas. In…

  2. "The Academic Style Construction Committee Is by No Means an Ornament": Interview with Vice Director Yuan Zhenguo of the Ministry of Education, Social Sciences Department

    ERIC Educational Resources Information Center

    Aihe, Huang; Xu, Han

    2007-01-01

    The academic style (conduct) of academic circles has become a hot topic in the media. This article presents an interview conducted by "China Newsweek" with Vice Director Yuan Zhenguo of the Ministry of Education, Social Sciences Department. In this interview, Zhenguo talks about the Ministry of Education's plan to set up such…

  3. Improving Academic Achievement through Continuous Assessment Methods: In the Case of Year Two Students of Animal and Range Sciences Department in Wolaita Sodo University, Ethiopia

    ERIC Educational Resources Information Center

    Sarka, Samuel; Lijalem, Tsegay; Shibiru, Tilaye

    2017-01-01

    The aim of this study was to assessing and implementing of continuous assessment to enhance academic performance of 2nd year Animal and Range Sciences department students in Wolaita sodo university; and to take action (train) to raise the academic performance to a desirable state. For the purpose of surveying the students' level of performance…

  4. A brief history of Sandia National Laboratories and the Department of Energy%3CU%2B2019%3Es Office of Science : interplay between science, technology, and mission.

    SciTech Connect

    Tsao, Jeffrey Yeenien; Myers, Samuel Maxwell, Jr.; Simmons, Jerry Alvon; McIlroy, Andrew; Vook, Frederick L.; Collis, Samuel Scott; Picraux, Samuel Thomas

    2011-08-01

    In 1957, Sandia National Laboratories (Sandia) initiated its first programs in fundamental science, in support of its primary nuclear weapons mission. In 1974, Sandia initiated programs in fundamental science supported by the Department of Energy's Office of Science (DOE-SC). These latter programs have grown to the point where, today in 2011, support of Sandia's programs in fundamental science is dominated by that Office. In comparison with Sandia's programs in technology and mission applications, however, Sandia's programs in fundamental science are small. Hence, Sandia's fundamental science has been strongly influenced by close interactions with technology and mission applications. In many instances, these interactions have been of great mutual benefit, with synergies akin to a positive 'Casimir's spiral' of progress. In this report, we review the history of Sandia's fundamental science programs supported by the Office of Science. We present: (a) a technical and budgetary snapshot of Sandia's current programs supported by the various suboffices within DOE-SC; (b) statistics of highly-cited articles supported by DOE-SC; (c) four case studies (ion-solid interactions, combustion science, compound semiconductors, advanced computing) with an emphasis on mutually beneficial interactions between science, technology, and mission; and (d) appendices with key memos and reminiscences related to fundamental science at Sandia.

  5. "HTLV-I Infection" Twenty-Year Research in Neurology Department of Mashhad University of Medical Sciences.

    PubMed

    Shoeibi, Ali; Etemadi, Mohammdmahdi; Moghaddam Ahmadi, Amir; Amini, Mona; Boostani, Reza

    2013-03-01

    Human T-cell lymphotropic virus (HTLV) types 1 and 2 belong to the Oncorna group of retroviridae, a large family of viruses, grouped initially by pathogenic features, but later revised on the basis of genome structure and nucleotide sequence. HTLV-I was the first discovered human retrovirus to be associated with a malignancy in 1980. The malignancy, first described by Uchiyama and co-workers in southwestern Japan, was named Adult T-cell Leukemia/Lymphoma (ATL) and characterized with cutaneous and respiratory involvement, hepatosplenomegaly, lymphadenopathy and various metabolic abnormalities such as hypercalcemia. The HTLV-I has been known to be endemic to certain parts of Iran like the province of Khorasan in the northeast since 1990, with a 2.3% prevalence rate of infection. The main manifestations of HTLV-I infection are neurologic and hematologic (such as ATL) disorders, but it has also other manifestations such as uveitis, arthritis, dermatitis, vitiligo and lymphocytic alveolitis. Its main neurologic manifestation is a chronic progressive myelopathy that is referred to HTLV-I Associated Myelopathy (HAM) in Japan and Tropical Spastic Paraparesis (TSP) in Caribbean. But other disorders such as peripheral neuropathy, polyradiculoneuropathy, myopathy, peripheral facial paresis, and so on have been reported too. In this review we wish to give some brief information on the different aspects (including epidemiology, pathogenesis and pathology, clinical findings, and treatment) of HTLV-I infection according to our twenty-year researches. The department of neurology of Mashhad University of Medical Sciences has been a pioneer in researches on HTLV-I in the last twenty years.

  6. “HTLV-I Infection” Twenty-Year Research in Neurology Department of Mashhad University of Medical Sciences

    PubMed Central

    Shoeibi, Ali; Etemadi, Mohammdmahdi; Moghaddam Ahmadi, Amir; Amini, Mona; Boostani, Reza

    2013-01-01

    Human T-cell lymphotropic virus (HTLV) types 1 and 2 belong to the Oncorna group of retroviridae, a large family of viruses, grouped initially by pathogenic features, but later revised on the basis of genome structure and nucleotide sequence. HTLV-I was the first discovered human retrovirus to be associated with a malignancy in 1980. The malignancy, first described by Uchiyama and co-workers in southwestern Japan, was named Adult T-cell Leukemia/Lymphoma (ATL) and characterized with cutaneous and respiratory involvement, hepatosplenomegaly, lymphadenopathy and various metabolic abnormalities such as hypercalcemia. The HTLV-I has been known to be endemic to certain parts of Iran like the province of Khorasan in the northeast since 1990, with a 2.3% prevalence rate of infection. The main manifestations of HTLV-I infection are neurologic and hematologic (such as ATL) disorders, but it has also other manifestations such as uveitis, arthritis, dermatitis, vitiligo and lymphocytic alveolitis. Its main neurologic manifestation is a chronic progressive myelopathy that is referred to HTLV-I Associated Myelopathy (HAM) in Japan and Tropical Spastic Paraparesis (TSP) in Caribbean. But other disorders such as peripheral neuropathy, polyradiculoneuropathy, myopathy, peripheral facial paresis, and so on have been reported too. In this review we wish to give some brief information on the different aspects (including epidemiology, pathogenesis and pathology, clinical findings, and treatment) of HTLV-I infection according to our twenty-year researches. The department of neurology of Mashhad University of Medical Sciences has been a pioneer in researches on HTLV-I in the last twenty years. PMID:24470862

  7. Scientific Futures. Selected Areas of Opportunity for the Office of Science and Technology Policy, the National Science Foundation, and Selected Federal Departments and Agencies.

    ERIC Educational Resources Information Center

    National Academy of Sciences, Washington, DC.

    In response to the President's Office of Science and Technology Policy request to identify promising areas for U.S. research investment in science and technology, this report contains briefings by outstanding researchers in several fields of science. This volume is the fifth in a series of briefings which are used to anticipate important new…

  8. Soil Sampling to Demonstrate Compliance with Department of Energy Radiological Clearance Requirements for the McGee Ranch-Riverlands and North Slope Units of the Hanford Reach National Monument

    SciTech Connect

    Fritz, Brad G.; Dirkes, Roger L.; Napier, Bruce A.

    2007-09-21

    The Hanford Reach National Monument (HRNM) was created by presidential proclamation in 2000. It is located along the Columbia River in south central Washington and consists of five distinct units. The McGee Ranch-Riverlands and the North Slope units are addressed in this report. North Slope refers to two of the HRNM units: the Saddle Mountain Unit and the Wahluke Slope Unit. The Saddle Mountain and Wahluke Slope Units are located north of the Columbia River, while the McGee Ranch-Riverlands Unit is located south of the Columbia River and north and west of Washington State Highway 24. To fulfill internal U.S. Department of Energy (DOE) requirements prior to any radiological clearance of land, the DOE must evaluate the potential for residual radioactive contamination on this land and determine compliance with the requirements of DOE Order 5400.5. Authorized limits for residual radioactive contamination were developed based on the DOE annual exposure limit to the public (100 mrem) using future potential land-use scenarios. The DOE Office of Environmental Management approved these authorized limits on March 1, 2004. Historical soil monitoring conducted on and around the HRNM indicated soil concentrations of radionuclides were well below the authorized limits (Fritz et al. 2003). However, the historical sampling was done at a limited number of sampling locations. Therefore, additional soil sampling was conducted to determine if the concentrations of radionuclides in soil on the McGee Ranch-Riverlands and North Slope units were below the authorized limits. Sixty-seven soil samples were collected from the McGee Ranch-Riverlands and North Slope units. A software package (Visual Sample Plan) was used to plan the collection to assure an adequate number of samples were collected. The number of samples necessary to decide with a high level of confidence (99%) that the soil concentrations of radionuclides on the North Slope and McGee Ranch-Riverlands units did not exceed the

  9. [Bibliometric study of the activity, structure, and evolution of radiology in Spain].

    PubMed

    Miguel-Dasit, A

    2006-01-01

    From a bibliometric perspective, we reviewed: 1) the scientific activity in the field of diagnostic imaging in Spain, based on the percentage of presentations at the SERAM congresses (1994-1998) later published as articles in scientific journals. The value obtained (15%) is low in comparison with other international congresses, although similar to values for other national congresses in radiology. Both in national and international congresses, collaboration among radiologists from different institutions or countries and between radiologists and clinicians increases the percentage of publications, thus confirming the positive correlation between collaboration and scientific productivity. 2) We also examined the relationship between scientific productivity and the hierarchical structure of Spanish radiology departments (resident, associate, section chief, and department chief). Hierarchical groupings with the participation of residents were found to be more stable from year to year in scientific production, and the group residents + associates had the highest percentage of authorship (21%). 3) Finally, we reviewed the literature to assess the visibility and dissemination of the journal Radiología, estimating the impact factor that the journal would obtain if it were included in the Journal Citation Reports (JRC) database. We emphasize the importance of the inclusion of Radiología both in Medline, the best known and most widely used source of information in the health sciences, and in the JCR.

  10. A Design Protocol to Develop Radiology Dashboards

    PubMed Central

    Karami, Mahtab

    2014-01-01

    ABSTRACT Aim: The main objective of this descriptive and development research was to introduce a design protocol to develop radiology dashboards. Material and methods: The first step was to determine key performance indicators for radiology department. The second step was to determine required infrastructure for implementation of radiology dashboards. Infrastructure was extracted from both data and technology perspectives. The third step was to determine main features of the radiology dashboards. The fourth step was to determine the key criteria for evaluating the dashboards. In all these steps, non-probability sampling methods including convenience and purposive were employed and sample size determined based on a persuasion model. Results: Results showed that there are 92 KPIs, 10 main features for designing dashboards and 53 key criteria for dashboards evaluation. As well as, a Prototype of radiology management dashboards in four aspects including services, clients, personnel and cost-income were implemented and evaluated. Applying such dashboards could help managers to enhance performance, productivity and quality of services in radiology department. PMID:25568585

  11. Math and Science School (MASS): A Department of Energy enhancement program to benefit students from Native American Tribes affected by the Hanford Reservation

    SciTech Connect

    Jaeger, M.

    1993-03-20

    Math and Science School is a program designed to enrich and encourage elementary students and teachers of the Confederated Tribes of the Umatilla Indian Reservation in the areas of mathematics and science activities. By providing access to special hands-on workshop sessions held in the mobile science laboratory at the school sites during the school year for students and teachers and with a separate summer inservice program for students, elementary children and teachers are encouraged to explore the fascination of science and the utility of mathematics through use of integrated curricula. The Department of Energy grant underwrites the instructional costs of this system while the grantee provides the mobile laboratory and the majority of the materials.

  12. Math and Science School (MASS): A Department of Energy enhancement program to benefit students from Native American Tribes affected by the Hanford Reservation. Progress report

    SciTech Connect

    Jaeger, M.

    1993-03-20

    Math and Science School is a program designed to enrich and encourage elementary students and teachers of the Confederated Tribes of the Umatilla Indian Reservation in the areas of mathematics and science activities. By providing access to special hands-on workshop sessions held in the mobile science laboratory at the school sites during the school year for students and teachers and with a separate summer inservice program for students, elementary children and teachers are encouraged to explore the fascination of science and the utility of mathematics through use of integrated curricula. The Department of Energy grant underwrites the instructional costs of this system while the grantee provides the mobile laboratory and the majority of the materials.

  13. A Lean Six Sigma journey in radiology.

    PubMed

    Bucci, Ronald V; Musitano, Anne

    2011-01-01

    The department of radiology at Akron Children's Hospital embarked on a Lean Six Sigma mission as part of a hospital wide initiative to show increased customer satisfaction, reduce employee dissatisfaction and frustration, and decrease costs. Three processes that were addressed were reducing the MRI scheduling back-log, reconciling discrepancies in billing radiology procedures, and implementing a daily management system. Keys to success is that managers provide opportunities to openly communicate between department sections to break down barriers. Executive leaders must be engaged in Lean Six Sigma for the company to be successful.

  14. What is Diagnostic Radiology's Place in Medicine?

    PubMed Central

    Bull, J. W. D.

    1974-01-01

    The question that the title of this lecture poses must depend considerably on the attitude of physicians and surgeons. I have indicated the very low position diagnostic radiology holds in this country relative to our peers in medicine elsewhere. If its improvement is considered to be warranted, we must: (1) Interest medical students at the beginning of their career. (2) Bear in mind that radiologists are likely to be able to teach some anatomy but the reciprocal seldom applies. (3) Obtain chairs in radiology, which are desperately needed. (4) Obtain the acceptance by the medical establishment of the proper place of radiology in clinical medicine. (5) See to the reduction in numbers of unnecessary x-ray examinations. (6) Press for the improvement and enlargement of radiological departments with proper provision for expansion. ImagesFIG. 1FIG. 5 PMID:4855415

  15. Machine Learning and Radiology

    PubMed Central

    Wang, Shijun; Summers, Ronald M.

    2012-01-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. PMID:22465077

  16. Radiological evaluation of dysphagia

    SciTech Connect

    Ott, D.J.; Gelfand, D.W.; Wu, W.C.; Chen, Y.M.

    1986-11-21

    Dysphagia is a common complaint in patients presenting for radiological or endoscopic examination of the esophagus and is usually due to functional or structural abnormalities of the esophageal body or esophagogastric region. The authors review the radiological evaluation of the esophagus and esophagogastric region in patients with esophageal dysphagia and discuss the roentgenographic techniques used, radiological efficacy for common structural disorders, and evaluation of esophageal motor function. Comparison is made with endoscopy in assessing dysphagia, with the conclusion that the radiological examination be used initially in patients with this complaint.

  17. Building Bridges and Crossing Borders: Using Service Learning To Overcome Cultural Barriers to Collaboration between Science and Education Departments.

    ERIC Educational Resources Information Center

    Carr, Kevin

    2002-01-01

    Describes both successful and unsuccessful episodes of coordination and collaboration between science and education faculty and students documented during the creation of an interdepartmental service learning project, Science Outreach. Interprets the illustrations in terms of a cultural difference model. Makes recommendations for successful…

  18. Radiological Scoping Survey of the Scotia Depot Scotia, New York

    SciTech Connect

    E. N. Bailey

    2005-02-05

    At the request of the Defense Logistics Agency, the Oak Ridge Institute for Science and Education conducted radiological scoping surveys of the Scotia Depot during the period of September 24 through 27, 2007. The scoping survey included visual inspections and limited radiological surveys performed in accordance with area classification that included surface scans, total and removable activity measurements, and soil sampling.

  19. Health Care Delivery Meets Hospitality: A Pilot Study in Radiology.

    PubMed

    Steele, Joseph Rodgers; Jones, A Kyle; Clarke, Ryan K; Shoemaker, Stowe

    2015-06-01

    The patient experience has moved to the forefront of health care-delivery research. The University of Texas MD Anderson Cancer Center Department of Diagnostic Radiology began collaborating in 2011 with the University of Houston Conrad N. Hilton College of Hotel and Restaurant Management, and in 2013 with the University of Nevada, Las Vegas, William F. Harrah College of Hotel Administration, to explore the application of service science to improving the patient experience. A collaborative pilot study was undertaken by these 3 institutions to identify and rank the specific needs and expectations of patients undergoing imaging procedures in the MD Anderson Department of Diagnostic Radiology. We first conducted interviews with patients, providers, and staff to identify factors perceived to affect the patient experience. Next, to confirm these factors and determine their relative importance, we surveyed more than 6,000 patients by e-mail. All factors considered important in the interviews were confirmed as important in the surveys. The surveys showed that the most important factors were acknowledgment of the patient's concerns, being treated with respect, and being treated like a person, not a "number"; these factors were more important than privacy, short waiting times, being able to meet with a radiologist, and being approached by a staff member versus having one's name called out in the waiting room. Our work shows that it is possible to identify and rank factors affecting patient satisfaction using techniques employed by the hospitality industry. Such factors can be used to measure and improve the patient experience.

  20. Academic tenure in radiologic technology--revisited.

    PubMed

    Legg, Jeffrey S

    2007-01-01

    Academic tenure is important to most educators, including those in the radiologic sciences; however, many factors can influence an educator's ability to attain tenure. This article empirically examines the concept of tenure among radiologic science educators using data from a national survey of registered radiologic technology educators. Greater proportions of tenured and tenure-eligible faculty held higher academic rank, had higher levels of education and were employed by 2- and 4-year colleges or universities compared with nontenure-track faculty. Also, tenured R.T. educators tended to be older than tenure-eligible and nontenure-track faculty. R.T. educators are a diverse group, and attention should focus on the individual needs of educators in a variety of professional settings.

  1. Science and Mathematics Faculty Responses to a Policy-Based Initiative: Change Processes, Self-Efficacy Beliefs, and Department Culture

    ERIC Educational Resources Information Center

    Ellett, Chad D.; Demir, Kadir; Monsaas, Judith

    2015-01-01

    The purpose of this study was to examine change processes, self-efficacy beliefs, and department culture and the roles these elements play in faculty engagement in working in K-12 schools. The development of three new web-based measures of faculty perceptions of change processes, self-efficacy beliefs, and department culture are described. The…

  2. Radiological design guide

    SciTech Connect

    Evans, R.A.

    1994-08-16

    The purpose of this design guide is to provide radiological safety requirements, standards, and information necessary for designing facilities that will operate without unacceptable risk to personnel, the public, or the environment as required by the US Department of Energy (DOE). This design guide, together with WHC-CM-4-29, Nuclear Criticality Safety, WHC-CM-4-46, Nonreactor Facility Safety Analysis, and WHC-CM-7-5, Environmental Compliance, covers the radiation safety design requirements at Westinghouse Hanford Company (WHC). This design guide applies to the design of all new facilities. The WHC organization with line responsibility for design shall determine to what extent this design guide shall apply to the modifications to existing facilities. In making this determination, consideration shall include a cost versus benefit study. Specifically, facilities that store, handle, or process radioactive materials will be covered. This design guide replaces WHC-CM-4-9 and is designated a living document. This design guide is intended for design purposes only. Design criteria are different from operational criteria and often more stringent. Criteria that might be acceptable for operations might not be adequate for design.

  3. Proceedings of an AAAS Symposium on January 8, 1980: How Much does the Defense Department Advance Science?

    DTIC Science & Technology

    1980-09-24

    at the San Francisco Hilton Hotel. The speakers discussed the need for DOD support of basic science , the history of U.S. military support of...per year for RAD, which is nearly half of all government-sponsored R&D. In support of basic science and engineering the DOD budget is over $’/i...support of basic science , after a long his- tory of being in first place. As an early example, the Ar- my supported the Lewis and Clark expedition in

  4. Report of the Defense Science Board Subcommittee on Department of Defense Research Policy. Part 2. Further Analysis of Basic Research Policy

    DTIC Science & Technology

    1965-01-14

    POLICY „_-, < ^ZLECTE OCT 1 7 1988 Ha Part n. Further Analysis of Basic Research Policy 14 January 1965 Office of the Director of Defense Research... Research Policy Part II. Further Analysis of Basic Rssearch Policy, UNCLASSIFIED 12. PERSONAL AUTHOR(S) N/A 13a. TYPE OF REPORT Final 13b TIME COVERED...UNCLASSIFIED UNCLASSIFIED Report of the Defense Science Board Subcommittee on DEPARTMENT OF DEFENSE RESEARCH POLICY ThÄtocument contains information

  5. Radiological Defense. Textbook.

    ERIC Educational Resources Information Center

    Defense Civil Preparedness Agency (DOD), Washington, DC.

    This textbook has been prepared under the direction of the Defense Civil Preparedness Agency (DCPA) Staff College for use as a student reference manual in radiological defense (RADEF) courses. It provides much of the basic technical information necessary for a proper understanding of radiological defense and summarizes RADEF planning and expected…

  6. Ebola virus disease: radiology preparedness.

    PubMed

    Bluemke, David A; Meltzer, Carolyn C

    2015-02-01

    At present, there is a major emphasis on Ebola virus disease (EVD) preparedness training at medical facilities throughout the United States. Failure to have proper EVD procedures in place was cited as a major reason for infection of medical personnel in the United States. Medical imaging does not provide diagnosis of EVD, but patient assessment in the emergency department and treatment isolation care unit is likely to require imaging services. The purpose of this article is to present an overview of relevant aspects of EVD disease and preparedness relevant to the radiologic community.

  7. Downgrading Nuclear Facilities to Radiological Facilities

    SciTech Connect

    Jarry, Jeffrey F.; Farr, Jesse Oscar; Duran, Leroy

    2015-08-01

    Based on inventory reductions and the use of alternate storage facilities, the Sandia National Laboratories (SNL) downgraded 4 SNL Hazard Category 3 (HC-3) nuclear facilities to less-than-HC-3 radiological facilities. SNL’s Waste Management and Pollution Prevention Department (WMPPD) managed the HC-3 nuclear facilities and implemented the downgrade. This paper will examine the downgrade process,

  8. Exploratory study of radiology coding in health information management practice.

    PubMed

    Brodnik, Melanie

    2009-09-16

    An exploratory study was undertaken to determine the role and practice issues of radiology coding in health information management (HIM) practice. The study sought to identify the challenges of radiology coding and the solutions implemented to address these challenges. A self-report survey was sent to 828 American Health Information Management Association (AHIMA) members identified as directors, managers, or supervisors of HIM departments and/or coding. Two hundred seventy-eight surveys were used for data analysis purposes. Sites reported that on average they have 3.4 coders devoted to radiology coding who code an average of 4,245 reports per month. Productivity standards varied by exam type ranging from 7 (interventional radiology) to 31 (diagnostic) exams coded per hour. Diagnosis codes were assigned most frequently for diagnostic, ultrasound/nuclear, MRI/CT, and mammography exams, while diagnosis and procedural codes were assigned more frequently for interventional radiology exams. The need for education specifically focused on interventional radiology coding was identified along with other issues affecting the quality of radiology coding. Suggested solutions to challenges of radiology coding such as establishing a good working relationship with physicians, radiology, and charge description master (CDM) departments were suggested.

  9. Region 1: Radiological Assistance Program (RAP). Revision 2, Part 1

    SciTech Connect

    Hull, A.P.; Kuehner, A.V.

    1993-10-01

    The Department of Energy`s Radiological Assistance Program (RAP) is established under DOE Order 5530.3 to: (a) Establish and maintain response plans and resources to provide radiological assistance to other Federal agencies, State, local, and tribal governments, and private groups requesting such assistance. (b) Assist State, local, and tribal jurisdictions in preparing for radiological emergencies. (c) In the event of a real, or potential radiological accident, provide resources and monitoring and assessment assistance to other federal agencies, State, local, and tribal Governments. This plan is an integral part of a nationwide program of regionally based radiological assistance which has been established by DOE. The Brookhaven Area Office is the Regional Coordinating Office (RCO) for the Radiological Assistance Program in DOE Region 1, which consists of the New England States, New York, New Jersey, Pennsylvania, Delaware, Maryland and the District of Columbia.

  10. Beams-becoming enthusiastic about math and science - A Department of Energy research laboratory/school district partnership program

    SciTech Connect

    Strozak, K.; Gagnon, S.

    1994-12-31

    BEAMS immerses fifth and sixth grade classes in CEBAF`s environment for a week of school. By exposing students and teachers to science`s excitement, challenges, and opportunities, BEAMS motivates students, enhances teachers, and involves parents, with the goal of improving scientific literacy and work force readiness. CEBAF and its school partners are extending BEAMS into a multi-year program, integrating educational partnerships active in the region. The planned focus emphasizes grades four through ten. A long-term evaluation model, incorporating measures of students attitudes, achievement, and academic course choices is being implemented. Three years of data on student attitudinal changes, referenced against controls, have been analyzed.

  11. Interventional Radiology in Paediatrics.

    PubMed

    Chippington, Samantha J; Goodwin, Susie J

    2015-01-01

    As in adult practice, there is a growing role for paediatric interventional radiology expertise in the management of paediatric pathologies. This review is targeted for clinicians who may refer their patients to paediatric interventional radiology services, or who are responsible for patients who are undergoing paediatric interventional radiology procedures. The article includes a brief overview of the indications for intervention, techniques involved and the commonest complications. Although some of the procedures described are most commonly performed in a tertiary paediatric centre, many are performed in most Children's hospitals.

  12. The PULSE Vision & Change Rubrics, Version 1.0: A Valid and Equitable Tool to Measure Transformation of Life Sciences Departments at All Institution Types.

    PubMed

    Brancaccio-Taras, Loretta; Pape-Lindstrom, Pamela; Peteroy-Kelly, Marcy; Aguirre, Karen; Awong-Taylor, Judy; Balser, Teri; Cahill, Michael J; Frey, Regina F; Jack, Thomas; Kelrick, Michael; Marley, Kate; Miller, Kathryn G; Osgood, Marcy; Romano, Sandra; Uzman, J Akif; Zhao, Jiuqing

    2016-01-01

    The PULSE Vision & Change Rubrics, version 1.0, assess life sciences departments' progress toward implementation of the principles of the Vision and Change report. This paper reports on the development of the rubrics, their validation, and their reliability in measuring departmental change aligned with the Vision and Change recommendations. The rubrics assess 66 different criteria across five areas: Curriculum Alignment, Assessment, Faculty Practice/Faculty Support, Infrastructure, and Climate for Change. The results from this work demonstrate the rubrics can be used to evaluate departmental transformation equitably across institution types and represent baseline data about the adoption of the Vision and Change recommendations by life sciences programs across the United States. While all institution types have made progress, liberal arts institutions are farther along in implementing these recommendations. Generally, institutions earned the highest scores on the Curriculum Alignment rubric and the lowest scores on the Assessment rubric. The results of this study clearly indicate that the Vision & Change Rubrics, version 1.0, are valid and equitable and can track long-term progress of the transformation of life sciences departments. In addition, four of the five rubrics have broad applicability and can be used to evaluate departmental transformation by other science, technology, engineering, and mathematics disciplines. © 2016 L. Brancaccio-Taras et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Building Partnerships Between Research Institutions, University Academic Departments, Local School Districts, and Private Enterprise to Advance K-12 Science Education in Texas

    NASA Astrophysics Data System (ADS)

    Ellins, K. K.; Ganey-Curry, P.; Fennell, T.

    2003-12-01

    The University of Texas at Austin Institute for Geophysics (UTIG) is engaged in six K-12 education and outreach programs, including two NSF-sponsored projects--GK-12: Linking Graduate Fellows with K-12 Students and Teachers and Cataclysms and Catastrophes--Texas Teachers in the Field, Adopt-a-School, Geoscience in the Classroom, and UT's Science and Engineering Apprenticeship Program. The GK-12 Program is central to UTIG's effort and links the six education projects together. While the specific objectives of each project differ, the broad goals of UTIG's education and outreach are to provide high-quality professional development for teachers, develop curriculum resources aligned with state and national education standards, and promote interaction between teachers, scientists, graduate students, and science educators. To achieve these goals, UTIG has forged funded partnerships with scientific colleagues at UT's Bureau of Economic Geology, Marine Science Institute and Department of Geological Sciences; science educators at UT's Charles A. Dana Center and in the Department of Curriculum and Instruction in the College of Education; teachers in six Texas independent school districts; and 4empowerment.com, a private education company that established the "Cyberways and Waterways" Web site to integrate technology and education through an environmentally-based curriculum. These partnerships have allowed UTIG to achieve far more than would have been possible through individual projects alone. Examples include the development of more than 30 inquiry-based activities, hosting workshops and a summer institute, and participation in local science fairs. UTIG has expanded the impact of its education and outreach and achieved broader dissemination of learning activities through 4empowerment's web-based programs, which reach ethnically diverse students in schools across Texas. These partnerships have also helped UTIG and 4empowerment to secure additional funding for other education

  14. Activity-based costing in radiology. Application in a pediatric radiological unit.

    PubMed

    Laurila, J; Suramo, I; Brommels, M; Tolppanen, E M; Koivukangas, P; Lanning, P; Standertskjöld-Nordenstam, G

    2000-03-01

    To get an informative and detailed picture of the resource utilization in a radiology department in order to support its pricing and management. A system based mainly on the theoretical foundations of activity-based costing (ABC) was designed, tested and compared with conventional costing. The study was performed at the Pediatric Unit of the Department of Radiology, Oulu University Hospital. The material consisted of all the 7,452 radiological procedures done in the unit during the first half of 1994, when both methods of costing where in use. Detailed cost data were obtained from the hospital financial and personnel systems and then related to activity data captured in the radiology information system. The allocation of overhead costs was greatly reduced by the introduction of ABC compared to conventional costing. The overhead cost as a percentage of total costs dropped to one-fourth of total costs, from 57% to 16%. The change of unit costs of radiological procedures varied from -42% to +82%. Costing is much more detailed and precise, and the percentage of unspecified allocated overhead costs diminishes drastically when ABC is used. The new information enhances effective departmental management, as the whole process of radiological procedures is identifiable by single activities, amenable to corrective actions and process improvement.

  15. 2003 U.S. Department of Energy Strategic Plan: Protecting National, Energy, and Economic Security with Advanced Science and Technology and Ensuring Environmental Cleanup

    SciTech Connect

    None,

    2003-09-30

    The Department of Energy contributes to the future of the Nation by ensuring energy security, maintaining the safety, security and reliability of the nuclear weapons stockpile, cleaning up the environment from the legacy of the Cold War, and developing innovations in science and technology. After 25 years in existence, the Department now operates 24 preeminent research laboratories and facilities and four power marketing administrations, and manages the environmental cleanup from 50 years of nuclear defense activities that impacted two million acres in communities across the country. The Department has an annual budget of about $23 billion and employs about 14,500 Federal and 100,000 contractor employees. The Department of Energy is principally a national security agency and all of its missions flow from this core mission to support national security. That is true not just today, but throughout the history of the agency. The origins of the Department can be traced to the Manhattan Project and the race to develop the atomic bomb during World War II. Following the war, Congress engaged in a vigorous and contentious debate over civilian versus military control of the atom. The Atomic Energy Act of 1946 settled the debate by creating the Atomic Energy Commission, which took over the Manhattan Project’s sprawling scientific and industrial complex.

  16. Power at the Interfaces: The Contested Orderings of Academic Presents and Futures in a Social Science Department

    ERIC Educational Resources Information Center

    Stöckelová, Tereza

    2014-01-01

    The changes in and transformations of academic institutions and practices we are currently witnessing are complex. I argue that there are no clear-cut historical transitions between different regimes of science, such as from the "public knowledge regime" to "academic capitalism". Drawing upon John Law's analysis of "modes…

  17. Science, Education, and Development in Sub-Saharan Africa. Africa Technical Department Series. World Bank Technical Paper No. 124.

    ERIC Educational Resources Information Center

    Zymelman, Manuel

    This paper deals with one aspect of technical change in Sub-Saharan Africa (SSA): the production of scientific and technical knowledge. Part I presents a quantitative view of the scientific output in SSA based on data from the Science Citation Index that provides information on scientific publications and citations by field and by country. Science…

  18. Power at the Interfaces: The Contested Orderings of Academic Presents and Futures in a Social Science Department

    ERIC Educational Resources Information Center

    Stöckelová, Tereza

    2014-01-01

    The changes in and transformations of academic institutions and practices we are currently witnessing are complex. I argue that there are no clear-cut historical transitions between different regimes of science, such as from the "public knowledge regime" to "academic capitalism". Drawing upon John Law's analysis of "modes…

  19. The Integrated Rangeland Fire Management Strategy Actionable Science Plan: U.S. Department of the Interior, Washington D.C.

    Treesearch

    Integrated Rangeland Fire Management Strategy Actionable Science Plan Team

    2016-01-01

    The Integrated Rangeland Fire Management Strategy (hereafter Strategy, DOI 2015) outlined the need for coordinated, science-based adaptive management to achieve long-term protection, conservation, and restoration of the sagebrush (Artemisia spp.) ecosystem. A key component of this management approach is the identification of knowledge gaps that limit...

  20. Assuring the U.S. Department of Defense a Strong Science, Technology, Engineering, and Mathematics (STEM) Workforce

    ERIC Educational Resources Information Center

    National Academies Press, 2012

    2012-01-01

    The ability of the nation's military to prevail during future conflicts, and to fulfill its humanitarian and other missions, depends on continued advances in the nation's technology base. A workforce with robust Science, Technology, Engineering and Mathematics (STEM) capabilities is critical to sustaining U.S. preeminence. Today, however, the STEM…

  1. Relative Evaluation System as an Obstacle to Cooperative Learning: The Views of Lecturers in a Science Education Department

    ERIC Educational Resources Information Center

    Tatar, Erdal; Oktay, Munir

    2008-01-01

    This study attempts to define the contradiction between cooperative learning, which has an important place in science education, and the relative evaluation system. The fixation of the situation which was done with the data obtained from the literature also has been supported with a semi-structured interview study conducted with eighteen science…

  2. Assuring the U.S. Department of Defense a Strong Science, Technology, Engineering, and Mathematics (STEM) Workforce

    ERIC Educational Resources Information Center

    National Academies Press, 2012

    2012-01-01

    The ability of the nation's military to prevail during future conflicts, and to fulfill its humanitarian and other missions, depends on continued advances in the nation's technology base. A workforce with robust Science, Technology, Engineering and Mathematics (STEM) capabilities is critical to sustaining U.S. preeminence. Today, however, the STEM…

  3. Science Education: Expanding the Role of Science Departments: Perspectives on Science Education Partnerships, Educational Technology, and Science Program Assessment. Undergraduate Program Directors Meeting (Chevy Chase, Maryland, October 3-5, 1994).

    ERIC Educational Resources Information Center

    Howard Hughes Medical Inst., Chevy Chase, MD. Office of Grants and Special Programs.

    This report contains the proceedings of the 1994 meeting in which program directors examined issues related to the departmental and faculty involvement in precollege and outreach activities, teacher development, educational technology, assessment, and curricular reform. The keynote address, "The Two Cultures Revisited: Science and Mathematics as…

  4. Does outsourcing paramedical departments of teaching hospitals affect educational status of the students?

    PubMed

    Moslehi, Shandiz; Atefimanesh, Pezhman; Sarabi Asiabar, Ali; Ahmadzadeh, Nahal; Kafaeimehr, Mohamadhosein; Emamgholizadeh, Saeid

    2016-01-01

    There is an increasing trend of outsourcing public departments. Teaching hospitals also outsourced some of their departments to private sectors. The aim of this study was to investigate and compare the educational status of students in public and outsourced departments of teaching hospitals affiliated to Iran University of Medical Sciences. This study was conducted in six teaching hospitals of Iran University of Medical Sciences, which had public and outsourced teaching departments in 2015. One hundred fifty students from the departments of radiology, physiotherapy and laboratory participated in this study and their perceptions about their educational status were assessed. A valid and reliable questionnaire was used; participation in the study was voluntary. Descriptive statistics such as mean (SD), t-test and Kolmogorov-Smirnov were used. No difference was detected between the educational status of students in public and outsourced departments of radiology, physiotherapy and laboratory (p>0.05). Based on the students' perception, the private sectors could maintain the educational level of the teaching departments similar to the public departments. It is recommended to involve all the stakeholders such as hospital administrators, academic staff and students in the decision- making process when changes in teaching environments are being considered.

  5. Does outsourcing paramedical departments of teaching hospitals affect educational status of the students?

    PubMed Central

    Moslehi, Shandiz; Atefimanesh, Pezhman; Sarabi Asiabar, Ali; Ahmadzadeh, Nahal; Kafaeimehr, Mohamadhosein; Emamgholizadeh, Saeid

    2016-01-01

    Background: There is an increasing trend of outsourcing public departments. Teaching hospitals also outsourced some of their departments to private sectors. The aim of this study was to investigate and compare the educational status of students in public and outsourced departments of teaching hospitals affiliated to Iran University of Medical Sciences. Methods: This study was conducted in six teaching hospitals of Iran University of Medical Sciences, which had public and outsourced teaching departments in 2015. One hundred fifty students from the departments of radiology, physiotherapy and laboratory participated in this study and their perceptions about their educational status were assessed. A valid and reliable questionnaire was used; participation in the study was voluntary. Descriptive statistics such as mean (SD), t-test and Kolmogorov-Smirnov were used. Results: No difference was detected between the educational status of students in public and outsourced departments of radiology, physiotherapy and laboratory (p>0.05). Conclusion: Based on the students’ perception, the private sectors could maintain the educational level of the teaching departments similar to the public departments. It is recommended to involve all the stakeholders such as hospital administrators, academic staff and students in the decision- making process when changes in teaching environments are being considered. PMID:27683645

  6. Revamping the LIS Curriculum in the Department of Library Science and Information Systems at the TEI of Athens

    ERIC Educational Resources Information Center

    Moniarou-Papaconstantinou, Valentini; Chatzimari, Stella; Tsafou, Stamatina

    2008-01-01

    In the context of the changes in the information environment, the LIS department of the TEI of Athens developed a curriculum intending to incorporate the changes taking place in the information field's knowledge base, based on a literature review, the comparison of similar curricula in LIS schools worldwide and the demands of the students and the…

  7. DOE standard: Radiological control

    SciTech Connect

    Not Available

    1999-07-01

    The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal Regulations, Part 835 (10 CFR 835), ``Occupational Radiation Protection``. Failure to comply with these requirements may lead to appropriate enforcement actions as authorized under the Price Anderson Act Amendments (PAAA). While this Standard does not establish requirements, it does restate, paraphrase, or cite many (but not all) of the requirements of 10 CFR 835 and related documents (e.g., occupational safety and health, hazardous materials transportation, and environmental protection standards). Because of the wide range of activities undertaken by DOE and the varying requirements affecting these activities, DOE does not believe that it would be practical or useful to identify and reproduce the entire range of health and safety requirements in this Standard and therefore has not done so. In all cases, DOE cautions the user to review any underlying regulatory and contractual requirements and the primary guidance documents in their original context to ensure that the site program is adequate to ensure continuing compliance with the applicable requirements. To assist its operating entities in achieving and maintaining compliance with the requirements of 10 CFR 835, DOE has established its primary regulatory guidance in the DOE G 441.1 series of Guides. This Standard supplements the DOE G 441.1 series of Guides and serves as a secondary source of guidance for achieving compliance with 10 CFR 835.

  8. American College of Radiology

    MedlinePlus

    ... Meeting & Course Calendar Where ACR Exhibits Advancing Artificial Intelligence in Medical Imaging Visit ACR DSI website to ... more ACR Radiology Coding Source™ ACR issues an analysis of the proposed MACRA/MIPS Rule May-June ...

  9. Imaging and radiology

    MedlinePlus

    ... is a branch of medicine that uses imaging technology to diagnose and treat disease. Radiology may be ... for smaller incisions (cuts). Doctors can use this technology to diagnose or treat conditions in almost any ...

  10. Radiologic Technology Program Standards.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    This publication contains statewide standards for the radiologic technology program in Georgia. The standards are divided into 12 categories; Foundations (philosophy, purpose, goals, program objectives, availability, evaluation); Admissions (admission requirements, provisional admission requirements, recruitment, evaluation and planning); Program…

  11. Interventional Radiology in China

    SciTech Connect

    Teng Gaojun Xu Ke; Ni Caifang; Li Linsun

    2008-03-15

    With more than 3000 members, the Chinese Society of Interventional Radiology (CSIR) is one of the world's largest societies for interventional radiology (IR). Nevertheless, compared to other societies such as CIRSE and SIR, the CSIR is a relatively young society. In this article, the status of IR in China is described, which includes IR history, structure and patient management, personnel, fellowship, training, modalities, procedures, research, turf battle, and insightful visions for IR from Chinese interventional radiologists.

  12. Rethinking radiology informatics.

    PubMed

    Kohli, Marc; Dreyer, Keith J; Geis, J Raymond

    2015-04-01

    Informatics innovations of the past 30 years have improved radiology quality and efficiency immensely. Radiologists are groundbreaking leaders in clinical information technology (IT), and often radiologists and imaging informaticists created, specified, and implemented these technologies, while also carrying the ongoing burdens of training, maintenance, support, and operation of these IT solutions. Being pioneers of clinical IT had advantages of local radiology control and radiology-centric products and services. As health care businesses become more clinically IT savvy, however, they are standardizing IT products and procedures across the enterprise, resulting in the loss of radiologists' local control and flexibility. Although this inevitable consequence may provide new opportunities in the long run, several questions arise. What will happen to the informatics expertise within the radiology domain? Will radiology's current and future concerns be heard and their needs addressed? What should radiologists do to understand, obtain, and use informatics products to maximize efficiency and provide the most value and quality for patients and the greater health care community? This article will propose some insights and considerations as we rethink radiology informatics.

  13. [Instruction in dental radiology].

    PubMed

    van der Sanden, W J M; Kreulen, C M; Berkhout, W E R

    2016-04-01

    The diagnostic use of oral radiology is an essential part of daily dental practice. Due to the potentially harmful nature of ionising radiation, the clinical use of oral radiology in the Netherlands is framed by clinical practice guidelines and regulatory requirements. Undergraduate students receive intensive theoretical and practical training in practical and theoretical radiology, with the aim of obtaining the 'Eindtermen Stralingshygiëne voor Tandartsen en Orthodontisten'-certificate, which is required for legal permission to use oral radiology in dental practice. It is recommended that the curriculum be expanded to include the areas of knowledge required to qualify for the 'Eindtermen Stralingshygiëne voor het gebruik van CBCT-toestellen door tandartsen' (the certificate for the use of conebeam radiology by dentists). The general dental practitioner is faced with changing laws and regulations in all areas of practice. One of the most significant legal changes in the field of dental radiology was the introduction of the new radiation protection and safety rules in 2014. Moreover, a large group of dentists is also being confronted with the transition from conventional to digital images, with all its challenges and changes in everyday practice.

  14. Behavioral Sciences in a Changing Army: Proceedings of Army Medical Department (AMEDD) Behavioral Sciences Seminar, 19-23 March 1979 held at Fitzsimons Army Medical Center, Aurora, Colorado,

    DTIC Science & Technology

    1979-01-01

    related to other sexual deviates. How should we handle excellent soldiers found to be homosexual? My wife suggested that we should actively recruit them...aictivities hear directly upon tivity necessiry for cont rol. Sexual activity with a patient hi0rcie hswudovosyb h ae Hoever is unethical. -in other...34Behavioral Sciences - 30 year perspectives" R.H. Gemmill - "Single-Parent Family: Active Duty and Dependent." \\ Eight Task GroupSreported on the following

  15. Instructional practices among science departments with high, moderate, and low gains on the Connecticut Academic Performance Test

    NASA Astrophysics Data System (ADS)

    Kachergis, Theodora R.

    The purpose of this study was to ascertain whether the instructional practices of performance-based, inquiry-based, and authentic-based learning strategies, and rubric use are related to improvement on the science portion of the Connecticut Academic Performance Test [CAPT], as indicated by CAPT gains from 1995--2001. Data were collected for this study by a survey/interview of 63 Connecticut high schools and their 118 certified biology teachers, who had participated in the science CAPT administration within that same school district during 1995--2001. Results from the analysis of the data indicate a significant relationship between strategy and rubric use and CAPT science score outputs. Those schools having the highest levels of strategy and rubric use also demonstrated high CAPT gains and increasing CAPT scores, over time. It was also determined that a strong relationship exists between the percentage of the ERG's goal for CAPT index and those ERGs, using strategies and/or rubrics proficiently. The major findings of the study reveal that teachers demonstrate a confusion of strategy/rubric meaning, as indicated by the low proficiency levels of their submitted strategy and rubric samples, despite high indicators of use for the three learning strategies and rubrics. In addition, rubrics are rated highly by the sample, but are not employed at the high levels of reported favorability. Further analysis determines that objective forms of assessment are used more frequently than strategy and rubric use, and may be implicated for the decreased use of rubrics. Although survey data indicate that 90% of the sample reported "Satisfactory" to "Excellent" levels of annual score updates within their respective districts, teachers requested a need for increased pre- and in-service professional development in the use of all three strategies and rubrics: particularly non-tenured teachers expressed a need for basic CAPT information and samples of strategy and rubric use, while

  16. The PULSE Vision & Change Rubrics, Version 1.0: A Valid and Equitable Tool to Measure Transformation of Life Sciences Departments at All Institution Types

    PubMed Central

    Brancaccio-Taras, Loretta; Pape-Lindstrom, Pamela; Peteroy-Kelly, Marcy; Aguirre, Karen; Awong-Taylor, Judy; Balser, Teri; Cahill, Michael J.; Frey, Regina F.; Jack, Thomas; Kelrick, Michael; Marley, Kate; Miller, Kathryn G.; Osgood, Marcy; Romano, Sandra; Uzman, J. Akif; Zhao, Jiuqing

    2016-01-01

    The PULSE Vision & Change Rubrics, version 1.0, assess life sciences departments’ progress toward implementation of the principles of the Vision and Change report. This paper reports on the development of the rubrics, their validation, and their reliability in measuring departmental change aligned with the Vision and Change recommendations. The rubrics assess 66 different criteria across five areas: Curriculum Alignment, Assessment, Faculty Practice/Faculty Support, Infrastructure, and Climate for Change. The results from this work demonstrate the rubrics can be used to evaluate departmental transformation equitably across institution types and represent baseline data about the adoption of the Vision and Change recommendations by life sciences programs across the United States. While all institution types have made progress, liberal arts institutions are farther along in implementing these recommendations. Generally, institutions earned the highest scores on the Curriculum Alignment rubric and the lowest scores on the Assessment rubric. The results of this study clearly indicate that the Vision & Change Rubrics, version 1.0, are valid and equitable and can track long-term progress of the transformation of life sciences departments. In addition, four of the five rubrics have broad applicability and can be used to evaluate departmental transformation by other science, technology, engineering, and mathematics disciplines. PMID:27856548

  17. The Center for Evidence Based Practices at the Jack, Joseph and Morton Mandel School of Applied Social Sciences and the Department of Psychiatry, Case Western Reserve University.

    PubMed

    Kola, Lenore A; Hrouda, Debra R; Boyle, Patrick E; Kubek, Paul

    2017-01-01

    The Center for Evidence-Based Practices (CEBP), a multidisciplinary center located at the Mandel School of Applied Social Sciences (MSASS), has been in operation for the past 17 years. It is a joint project of MSASS and the Department of Psychiatry, School of Medicine, Case Western Reserve University, and funded primarily through the Ohio Department of Mental Health and Addiction Services, as well as a variety of contractual agreements with agencies throughout the state and the country. The CEBP provides technical assistance for service innovations that improve quality of life and other outcomes for people with mental illness or co-occurring mental illness and substance use disorders. Clinical and programmatic consultation, as well as training, are provided to both public and private agencies to help them build capacity to implement and sustain research-supported interventions practices. CEBP staff also provide instruction to students in the classroom and field experiences.

  18. Overview of the NASA/RECON educational, research, and development activities of the Computer Science Departments of the University of Southwestern Louisiana and Southern University

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor)

    1984-01-01

    This document presents a brief overview of the scope of activities undertaken by the Computer Science Departments of the University of Southern Louisiana (USL) and Southern University (SU) pursuant to a contract with NASA. Presented are only basic identification data concerning the contract activities since subsequent entries within the Working Paper Series will be oriented specifically toward a detailed development and presentation of plans, methodologies, and results of each contract activity. Also included is a table of contents of the entire USL/DBMS NASA/RECON Working Paper Series.

  19. The role of the Department of Homeland Security, Science and Technology Directorate in the development of vaccines and diagnostics for Transboundary Animal Diseases.

    PubMed

    Colby, M; Coats, M; Brake, D; Fine, J

    2013-01-01

    The development of countermeasures to support an effective response to Transboundary Animal Diseases (TAD) poses a challenge on a global scale and necessitates the coordinated involvement of scientists from government, industry and academia, as well as regulatory entities. The Agricultural Defense Branch under the Chemical and Biological Defense Division (CBD) of the Department of Homeland Security (DHS), Science and Technology Directorate (S&T) supports this important mission within the United States. This article provides an overview of the Agricultural Defense Branch's vaccine and diagnostic TAD project.

  20. The Department of Defense Statement on Science in the Mission Agencies and Federal Laboratories before the Task Force on Science Policy of the Committee on Science and Technology of the United States House of Representatives, 99th Congress, First Session.

    DTIC Science & Technology

    1985-10-02

    1986 I BEFORE THE TASK FORCE ON SCIENCE POLICY OF THE COMMITTEE ON SCIENCE AND TECHNOLOGY CF THE UNITED STATES HOUSE OF REPRESENTATIVES 99th CONGRESS...RESEARCH AND ADVANCED TECHNOLOGY BEFORE THE TASR FORCE ON SCIENCE POLICY OF THE COMMITTEE ON SCIENCE AND TECHNOLOGY OF THE UNITED STATES HOUSE OF... governmental organizations. TABLE I SCIENCE AND TECHNOLOGY PROGRAM (Dollars in Millions) FY 1985 FY 198b Research 861 971 Exploratory Development 2,201 2,555

  1. Routine Radiological Environmental Monitoring Plan. Volume 1

    SciTech Connect

    Bechtel Nevada

    1999-12-31

    The U.S. Department of Energy manages the Nevada Test Site in a manner that meets evolving DOE Missions and responds to the concerns of affected and interested individuals and agencies. This Routine Radiological Monitoring Plan addressess complicance with DOE Orders 5400.1 and 5400.5 and other drivers requiring routine effluent monitoring and environmental surveillance on the Nevada Test Site. This monitoring plan, prepared in 1998, addresses the activities conducted onsite NTS under the Final Environmental Impact Statement and Record of Decision. This radiological monitoring plan, prepared on behalf of the Nevada Test Site Landlord, brings together sitewide environmental surveillance; site-specific effluent monitoring; and operational monitoring conducted by various missions, programs, and projects on the NTS. The plan provides an approach to identifying and conducting routine radiological monitoring at the NTS, based on integrated technical, scientific, and regulatory complicance data needs.

  2. Radiological Control Center (RADCC) Renaming Ceremony

    NASA Image and Video Library

    2017-03-31

    A portion of the Radiological Control Center at NASA's Kennedy Space Center is seen during ceremonies to name the facility in honor of Randy Scott. A professional health physicist of more than 40 years, Scott served as the Florida spaceport's Radiation Protection Officer for 14 years until his death June 17, 2016. Located in the Neil Armstrong Operations and Checkout building, the Randall E. Scott Radiological Control Center is staffed by technical and radiological experts from NASA, the U.S. Department of Energy, the U.S. Air Force 45th Space Wing and the state of Florida. The group performs data collection and assessment functions supporting launch site and field data collection activities.

  3. Radiological Control Center (RADCC) Renaming Ceremony

    NASA Image and Video Library

    2017-03-31

    Consoles in the Radiological Control Center at NASA's Kennedy Space Center are seen during ceremonies to name the facility in honor of Randy Scott. A professional health physicist of more than 40 years, Scott served as the Florida spaceport's Radiation Protection Officer for 14 years until his death June 17, 2016. Located in the Neil Armstrong Operations and Checkout building, the Randall E. Scott Radiological Control Center is staffed by technical and radiological experts from NASA, the U.S. Department of Energy, the U.S. Air Force 45th Space Wing and the state of Florida. The group performs data collection and assessment functions supporting launch site and field data collection activities.

  4. Hampshire College Center for Science Education. Final Report on Activities Supported by the Department of Energy Grant No. DE-FG02-06ER64256

    SciTech Connect

    Stillings, Neil; Wenk, Laura

    2009-12-30

    Hampshire College's Center for Science Education (Center) focuses on teacher professional development, curriculum development, and student enrichment programs. The Center also maintains research programs on teacher change, student learning and instructional effectiveness. The Center's work promotes learning that persists over time and transfers to new situations in and out of school. The projects develop the implications of the increasing agreement among teachers and researchers that effective learning involves active concept mastery and consistent practice with inquiry and critical thinking. The Center's objective is to help strengthen the pipeline of U.S. students pursuing postsecondary study in STEM fields. The Center achieves this by fostering an educational environment in which science is taught as an active, directly experienced endeavor across the K-16 continuum. Too often, young people are dissuaded from pursuing science because they do not see its relevance, instead experiencing it as dry, rote, technical. In contrast, when science is taught as a hands-on, inquiry-driven process, students are encouraged to ask questions grounded in their own curiosity and seek experimental solutions accordingly. In this way, they quickly discover both the profound relevance of science to their daily lives and its accessibility to them. Essentially, they learn to think and act like real scientists. The Center’s approach is multi-faceted: it includes direct inquiry-based science instruction to secondary and postsecondary students, educating the next generation of teachers, and providing new educational opportunities for teachers already working in the schools. Funding from the Department of Energy focused on the last population, enabling in-service teachers to explore and experience the pedagogy of inquiry-based science for themselves, and to take it back to their classrooms and students. The Center has demonstrated that the inquiry-based approach to science learning is

  5. Radiological Assistance Program plan, Region 8. Revision 1

    SciTech Connect

    Webb, D.E.

    1993-09-01

    The US Department of Energy (DOE) has sponsored a Radiological Assistance Program (RAP) since the late 1950`s. When a radiological incident occurs and exceeds the capability of the Federal, tribal, State, or local authorities, DOE resources are made available through the RAP to provide assistance to those authorities. The explicit purpose of the RAP is to assist in monitoring and assessing activities associated with radiological incidents or emergencies. The DOE`s philosophy is that assistance wig be provided in radiological accidents and will normally end when the need for assistance is over or if there are other sufficient resources available to handle the situation. The design of RAP is so that DOE`s response to a small incident can smoothly scale up for a major radiological emergency. In the event of a major radiological emergency, the law requires DOE to provide resources through the Federal Radiological Emergency Response Plan (FRERP) (FEMA 1985). The FRERP is a comprehensive Federal plan that describes the overall coordination of a Federal government response to a major radiological emergency. Implementation of RAP is done on a regional basis, with regional coordination between States and DOE response elements. This regional coordination is intended to foster a working relationship between DOE radiological response elements and those State, local, or other Federal agencies.

  6. Outreach and Education in the Life Sciences A Case Study of the U.S. Department of Energy National Laboratories

    SciTech Connect

    Weller, Richard E.; Burbank, Roberta L.; Mahy, Heidi A.

    2010-03-15

    This project was intended to assess the impact of the U.S. Department of Energy’s National Nuclear Security Agency (DOE/NNSA) -sponsored education and outreach activities on the Biological Weapons Convention (BWC) in DOE national laboratories. Key activities focused on a series of pilot education and outreach workshops conducted at ten national laboratories. These workshops were designed to increase awareness of the BWC, familiarize scientists with dual-use concerns related to biological research, and promote the concept of individual responsibility and accountability

  7. Graduate student theses supported by Carbon Dioxide Research Division, Office of Basic Energy Sciences, US Department of Energy

    SciTech Connect

    Millemann, R.E.

    1987-09-01

    The US Department of Energy's Carbon Dioxide Research Division (CDRD) has a strong commitment to support graduate education. The purpose of this report was to summarize information on thesis research supported by CDRD and to make it available to carbon dioxide researchers and other interested persons. To date, 25 Ph.D. and 23 Master's theses, including 4 internship reports for the M.En. degree from Miami University, have been written based on research supported in whole or in part by CDRD funds. Of these, 16 are in the Carbon Cycle area, 11 relate to Climate, 17 to Vegetation Response, 3 to Sea Level, and 4 pertain to the Carbon Dioxide Information and Analysis Center with a few theses relevant to more than one area. The following four lists appear in this report: An Author List with the complete thesis citation, names of the major professor, major department, and contractor, and contract number. A Contractor List with the affiliation of each contractor and the thesis research supported by that contractor. A Program Area List with the theses grouped by subject area. Finally, a University List with the theses grouped by the degree-granting institutions.

  8. Radiology interpretation process modeling.

    PubMed

    Noumeir, Rita

    2006-04-01

    Information and communication technology in healthcare promises optimized patient care while ensuring efficiency and cost-effectiveness. However, the promised results are not yet achieved; the healthcare process requires analysis and radical redesign to achieve improvements in care quality and productivity. Healthcare process reengineering is thus necessary and involves modeling its workflow. Even though the healthcare process is very large and not very well modeled yet, its sub-processes can be modeled individually, providing fundamental pieces of the whole model. In this paper, we are interested in modeling the radiology interpretation process that results in generating a diagnostic radiology report. This radiology report is an important clinical element of the patient healthcare record and assists in healthcare decisions. We present the radiology interpretation process by identifying its boundaries and by positioning it on the large healthcare process map. Moreover, we discuss an information data model and identify roles, tasks and several information flows. Furthermore, we describe standard frameworks to enable radiology interpretation workflow implementations between heterogeneous systems.

  9. Forensic aspects of maxillofacial radiology.

    PubMed

    Wood, R E

    2006-05-15

    Radiology has been used extensively in conventional dental identification, anatomically based identification and identification using maxillofacial skeletal landmarks such as the frontal sinus. Examples of these are well documented in the literature. The purpose of this paper was to revisit the methods where radiographic methods may be used to determine identity using the teeth, the root structures and the frontal sinuses. Additionally suggestions are offered for management of radiography in mass disasters and cases where age determination is required. Computer assisted tomography can be used in the assessment of the degree of fit of a weapon to a wound in cases of blunt force skull injury and plane films can assist in depicting the pattern of post mortem skull fractures. Micro-computed tomography has been used in matching weapons to wounds in sharp-force injury cases. The radiologist's role in cases of civil litigation and fraud is discussed and case examples are given. There are gaps in the science where radiological methods are used. The author offers several suggestions for possible research projects to close some of these gaps.

  10. Department of Energy`s Office of Science and Technology. Hearing before the Subcommittee on Oversight and Investigations of the Committee on Commerce, House of Representatives, One Hundred Fifth Congress, First session

    SciTech Connect

    1997-12-31

    This document contains the Hearing before the Subcommittee on Oversight and Investigations of the Committee on Commerce, House of Representatives, One Hundred Fifth Congress, First Session, May 7, 1997 on the Department of Energy`s Office of Science and Technology. This hearing describes a programmatic review of the small technology development office within the Department of Energy, the Office of Science and Technology, which has spent over 2 billion dollars of the taxpayers money in its 7 years of existence.

  11. Academic opportunities in radiology education and education research.

    PubMed

    Collins, Jannette

    2002-07-01

    Education can be the focus of a rewarding and successful career in academic radiology. Educational opportunities for academic radiologists include teaching medical students, residents, nursing students, physician assistant students, radiology technologist students, and other allied health profession students. Teaching can occur in large or small groups, or as a one-on-one encounter. Teaching is the very best way to learn a subject well; thus, educators are often considered experts in their fields. Educators can develop innovative teaching materials that are passed on to generations of students. Opportunities in educational administration and personal development are available both locally and nationally. Participation in radiology education research allows a radiologist to contribute to the body of knowledge in radiology education and advance the field of radiology education through science.

  12. Retracted Publications Within Radiology Journals.

    PubMed

    Rosenkrantz, Andrew B

    2016-02-01

    The purpose of this study was to characterize trends related to retracted publications within radiology journals. PubMed was queried to identify all articles with the publication type "retracted publication" or "notification of retraction." Articles published within radiology journals were identified using Journal Citation Reports' journal categories. Available versions of original articles and publication notices were accessed from journal websites. Citations to retracted publications were identified using Web of Science. Overall trends were assessed. Forty-eight retracted original research articles were identified within radiology journals since 1983, which included 1.1% of all PubMed "retracted publication" entries. Distinct PubMed entries were available for the retracted publication and retraction notification in 39 of 48 articles. The original PDF was available for 37 articles, although the articles were not watermarked as retracted in 23 cases. In six cases with a watermarked PDF, further searches identified nonwatermarked versions. Original HTML versions were available for 13 articles but 11 were not watermarked. The mean (± SD) delay between publication and retraction was 2.7 ± 2.8 years (range, 0-16 years). The mean number of citations to retracted articles was 10.9 ± 17.1 (range, 0-94 citations). Reasons for retraction included problematic or incorrect methods or results (although it typically was unclear whether these represented honest errors or misconduct) in 33.3% of cases, complete or partial duplicate publication in 33.3% of cases, plagiarism in 14.6% of cases, a permission issue in 8.3% of cases, the publisher's error in 6.3% of cases, and no identified reason in 6.3% of cases. One or no retractions occurred annually from 1986 to 2001, although two or more retractions occurred annually in nine of the 12 years from 2002 through 2013. Retraction represents an uncommon, yet potentially increasing, issue within radiology journals that publishers

  13. Advances in diagnostic radiology.

    PubMed

    Runge, Val M

    2010-12-01

    Recent advances in diagnostic radiology are discussed on the basis of current publications in Investigative Radiology. Publications in the journal during 2009 and 2010 are reviewed, evaluating developments by modality and anatomic region. Technological advances continue to play a major role in the evolution and clinical practice of diagnostic radiology, and as such constitute a major publication focus. In the past 2 years, this includes advances in both magnetic resonance and computed tomography (in particular, the advent of dual energy computed tomography). An additional major focus of publications concerns contrast media, and in particular continuing research involving nephrogenic systemic fibrosis, its etiology, and differentiation of the gadolinium chelates on the basis of in vivo stability.

  14. Radiology's value chain.

    PubMed

    Enzmann, Dieter R

    2012-04-01

    A diagnostic radiology value chain is constructed to define its main components, all of which are vulnerable to change, because digitization has caused disaggregation of the chain. Some components afford opportunities to improve productivity, some add value, while some face outsourcing to lower labor cost and to information technology substitutes, raising commoditization risks. Digital image information, because it can be competitive at smaller economies of scale, allows faster, differential rates of technological innovation of components, initiating a centralization-to-decentralization technology trend. Digitization, having triggered disaggregation of radiology's professional service model, may soon usher in an information business model. This means moving from a mind-set of "reading images" to an orientation of creating and organizing information for greater accuracy, faster speed, and lower cost in medical decision making. Information businesses view value chain investments differently than do small professional services. In the former model, producing a better business product will extend image interpretation beyond a radiologist's personal fund of knowledge to encompass expanding external imaging databases. A follow-on expansion with integration of image and molecular information into a report will offer new value in medical decision making. Improved interpretation plus new integration will enrich and diversify radiology's key service products, the report and consultation. A more robust, information-rich report derived from a "systems" and "computational" radiology approach will be facilitated by a transition from a professional service to an information business. Under health care reform, radiology will transition its emphasis from volume to greater value. Radiology's future brightens with the adoption of a philosophy of offering information rather than "reads" for decision making. Staunchly defending the status quo via turf wars is unlikely to constitute a

  15. DOE Region 6 Radiological Assistance Program plan. Revision 1

    SciTech Connect

    Jakubowski, F.M.

    1995-11-01

    The US Department of Energy (DOE) has sponsored a Radiological Assistance Program (RAP) since the 1950`s. The RAP is designed to make DOE resources available to other DOE facilities, state, tribal, local, private businesses, and individuals for the explicit purpose of assisting during radiological incidents. The DOE has an obligation, through the Atomic Energy Act of 1954, as amended, to provide resources through the Federal Radiological Emergency Response Plan (FRERP, Nov. 1985) in the event of a radiological incident. Toward this end, the RAP program is implemented on a regional basis, and has planned for an incremental response capability with regional coordination between states and DOE response elements. This regional coordination is intended to foster a working relationship between DOE radiological assistance elements and those state, tribal, and local agencies responsible for first response to protect public health and safety.

  16. Molecular Energy and Environmental Science: A Workshop Sponsored by The National Science Foundation and The Department of Energy May 26-27, 1999 in Rosemont, Illinois

    SciTech Connect

    Stair, Peter C; DeSimone, Joseph M.; Frost, John W.

    1999-05-26

    Energy and the environment pose major scientific and technological challenges for the 21st century. New technologies for increasing the efficiency of harvesting and utilizing energy resources are essential to the nation’s economic competitiveness. At the same time, the quality of life in the United States depends inherently on the environmental impact of energy production and utilization. This interdependence makes it imperative to develop a better understanding of the environment and new strategies for minimizing the impact of energy-related activities. Recent advances in techniques for the synthesis and characterization of chemicals and materials and for the molecular control of biological organisms make it possible, for the first time, to address this imperative. Chemistry, with its focus on the molecular level, plays a central role in addressing the needs for fundamental understanding and technology development in both the energy and environmental fields. Understanding environmental processes and consequences requires studying natural systems, rather than focussing exclusively on laboratory models. Natural systems and their complexity pose an enormous, perhaps the ultimate, challenge to chemists, and will provide them with varied and exciting new problems for years to come. In addition, the complexity of the underlying systems and processes often requires multi-disciplinary programs that bridge the interfaces between chemistry and other disciplines. (See Figure 1) This has ramifications in the approach to funding research and suggests needs for broadening the educational training of future scientists and engineers in these programs. Figure 1. NSF and DOE should consider sponsoring research centers and focused research groups organized to optimize their impact on Technological Challenges of national interest. The research will have significant impact if it addresses issues of fundamental molecular science in one or more Enabling Research Areas. Approximately 7

  17. Marketing a Radiology Practice.

    PubMed

    Levin, David C; Rao, Vijay M; Flanders, Adam E; Sundaram, Baskaran; Colarossi, Margaret

    2016-10-01

    In addition to being a profession, the practice of radiology is a business, and marketing is an important part of that business. There are many facets to marketing a radiology practice. The authors present a number of ideas on how to go about doing this. Some marketing methods can be directed to both patients and referring physicians. Others should be directed just to patients, while still others should be directed just to referring physicians. Aside from marketing, many of them provide value to both target audiences.

  18. Food Signs in Radiology

    PubMed Central

    Hussain, Mehboob; Al Damegh, Saleh

    2007-01-01

    Objective: Certain diseases show classic radiological signs that resemble various types of food items like fruits, meat, vegetables, eggs, bakery, grocery and confectionary items. In this article various food signs are discussed and correlated with the various food items in a pictorial way. The objective of this pictorial essay is to provide the information and learn the characteristic radiological signs resembling various food items. These food signs are easy to recognize and allows a confident diagnosis on the basis of imaging findings alone or can narrow down the differential diagnosis. PMID:21475464

  19. Westinghouse radiological containment guide

    SciTech Connect

    Aitken, S.B.; Brown, R.L.; Cantrell, J.R.; Wilcox, D.P.

    1994-03-01

    This document provides uniform guidance for Westinghouse contractors on the implementation of radiological containments. This document reflects standard industry practices and is provided as a guide. The guidance presented herein is consistent with the requirements of the DOE Radiological Control Manual (DOE N 5480.6). This guidance should further serve to enable and encourage the use of containments for contamination control and to accomplish the following: Minimize personnel contamination; Prevent the spread of contamination; Minimize the required use of protective clothing and personal protective equipment; Minimize the generation of waste.

  20. [Radiological diagnosis of osteoporosis].

    PubMed

    Issever, A S; Link, T M

    2011-02-01

    Having at their disposal a wide range of imaging techniques, radiologists play a crucial role in the diagnostic evaluation of patients with osteoporosis. The radiological tests range from dual energy X-ray absorptiometry (DXA), which is the only reference method accepted by the WHO, to conventional radiographs for fracture characterization, to more recent techniques for analyzing trabecular structure, and the findings are decisive in initiating correct management of osteoporosis patients. This review provides an overview of established radiological techniques and an outline of new diagnostic approaches.

  1. Science framework for conservation and restoration of the sagebrush biome: Linking the Department of the Interior’s Integrated Rangeland Fire Management Strategy to long-term strategic conservation actions

    Treesearch

    J.C. Chambers; J.L. Beck; J.B. Bradford; J. Bybee; S. Campbell; J. Carlson; T.J. Christiansen; K.J. Clause; G. Collins; M.R. Crist; J.B. Dinkins; K.E. Doherty; F. Edwards; S. Espinosa; K.A. Griffin; P. Griffin; J.R. Haas; S.E. Hanser; D.W. Havlina; K.F. Henke; J.D. Hennig; L.A. Joyce; F.M. Kilkenny; S.M. Kulpa; L.L. Kurth; J.D. Maestas; M. Manning; K.E. Mayer; B.A. Mealor; C. McCarthy; M. Pellant; M.A. Perea; K.L. Prentice; D.A. Pyke; L.A. Wiechman; A. Wuenschel

    2017-01-01

    The Science Framework is intended to link the Department of the Interior’s Integrated Rangeland Fire Management Strategy with long-term strategic conservation actions in the sagebrush biome. The Science Framework provides a multiscale approach for prioritizing areas for management and determining effective management strategies within the sagebrush biome. The emphasis...

  2. A report of the Basic Energy Sciences Advisory Committee: 1992 review of the Basic Energy Sciences Program of the Department of Energy

    SciTech Connect

    Not Available

    1993-09-01

    The general quality of BES research at each of the 4 laboratories is high. Diversity of management at the different laboratories is beneficial as long as the primary BES mission and goals are clearly identified and effectively pursued. External sources of personnel should be encouraged. DOE has been designing a new high flux research reactor, the Advanced Neutron Source, to replace DOE`s two aging research reactors; BESAC conducted a panel evaluation of neutron sources for the future. The two new light sources, Advanced Light Source and Advanced Photon source will come on line well before all of their beamline instrumentation can be funded, developed, and installed. Appointment of a permanent director and deputy for OBES would enhance OBES effectiveness in budget planning and intra-DOE program coordination. Some DOE and DP laboratories have substantial infrastructure which match well industry development-applications needs; interlaboratory partnerships in this area are encouraged. Funding for basic science research programs should be maintained at FY1993 levels, adjusted for inflation; OBES plans should be updated and monitored to maintain the balance between basic research and facilities construction and operation. The recommendations are discussed in detail in this document.

  3. Science framework for conservation and restoration of the sagebrush biome: Linking the Department of the Interior’s Integrated Rangeland Fire Management Strategy to long-term strategic conservation actions, Part 1. Science basis and applications

    USGS Publications Warehouse

    Chambers, Jeanne C.; Beck, Jeffrey L.; Bradford, John B.; Bybee, Jared; Campbell, Steve; Carlson, John; Christiansen, Thomas J; Clause, Karen J.; Collins, Gail; Crist, Michele R.; Dinkins, Jonathan B.; Doherty, Kevin E; Edwards, Fred; Espinosa, Shawn; Griffin, Kathleen A.; Griffin, Paul; Haas, Jessica R.; Hanser, Steve; Havlina, Douglas W.; Henke, Kenneth F.; Hennig, Jacob D.; Joyce, Linda A; Kilkenny, Francis F.; Kulpa, Sarah M; Kurth, Laurie L; Maestas, Jeremy D; Manning, Mary; Mayer, Kenneth E.; Mealor, Brian A.; McCarthy, Clinton; Pellant, Mike; Perea, Marco A.; Prentice, Karen L.; Pyke, David A.; Wiechman , Lief A.; Wuenschel, Amarina

    2017-01-01

    The Science Framework is intended to link the Department of the Interior’s Integrated Rangeland Fire Management Strategy with long-term strategic conservation actions in the sagebrush biome. The Science Framework provides a multiscale approach for prioritizing areas for management and determining effective management strategies within the sagebrush biome. The emphasis is on sagebrush (Artemisia spp.) ecosystems and Greater sage-grouse (Centrocercus urophasianus). The approach provided in the Science Framework links sagebrush ecosystem resilience to disturbance and resistance to nonnative, invasive plant species to species habitat information based on the distribution and abundance of focal species. A geospatial process is presented that overlays information on ecosystem resilience and resistance, species habitats, and predominant threats and that can be used at the mid-scale to prioritize areas for management. A resilience and resistance habitat matrix is provided that can help decisionmakers evaluate risks and determine appropriate management strategies. Prioritized areas and management strategies can be refined by managers and stakeholders at the local scale based on higher resolution data and local knowledge. Decision tools are discussed for determining appropriate management actions for areas that are prioritized for management. Geospatial data, maps, and models are provided through the U.S. Geological Survey (USGS) ScienceBase and Bureau of Land Management (BLM) Landscape Approach Data Portal. The Science Framework is intended to be adaptive and will be updated as additional data become available on other values and species at risk. It is anticipated that the Science Framework will be widely used to: (1) inform emerging strategies to conserve sagebrush ecosystems, sagebrush dependent species, and human uses of the sagebrush system, and (2) assist managers in prioritizing and planning on-the-ground restoration and mitigation actions across the sagebrush biome.

  4. Institutional Effectiveness Assessment Process, 1992-93. Executive Summary. Hospitality and Service Occupations Division, Food Sciences Department, Food Production Program, Food Production Management Program, Pastry and Specialty Baking Program.

    ERIC Educational Resources Information Center

    South Seattle Community Coll., Washington.

    In the 1992-93 academic year, the Hospitality and Food Sciences Department at South Seattle Community College conducted surveys of current and former students and local foodservice employers to determine the level of satisfaction with Department programs. Specifically, the surveys focused on four key outcomes: determining the extent to which…

  5. User questionnaire to evaluate the radiological workspace.

    PubMed

    van Ooijen, Peter M A; Koesoema, Allya P; Oudkerk, Matthijs

    2006-01-01

    Over the past few years, an increase in digitalization of radiology departments can be seen, which has a large impact on the work of the radiologists. This impact is not only demonstrated by the increased use of digital images but also by changing demands on the whole reading environment. In this study, we evaluated the satisfaction of our radiologists with our digital Picture Archival and Communication System environment and their workspace. This evaluation was performed by distribution of a questionnaire consisting of a score sheet and some open questions to all radiologists and residents. Out of 25 questionnaires, 12 were adequately answered and returned. Results clearly showed that most problems were present in the area of reading room design and layout and comfort and ergonomics. Based on the results from this study, adaptations were made and the results were also used in the planning of the redesign of the entire department of radiology.

  6. Radiology Undergraduate and Resident Curricula: A Narrative Review of the Literature

    PubMed Central

    Linaker, Kathleen L.

    2015-01-01

    Objective The purpose of this study was to examine the literature regarding radiology curricula for both undergraduates and residents. Methods A review of the literature was performed using relevant key words. Articles were retrieved through December 2012 using PubMed, ScienceDirect, ERIC, Proquest, and ICL databases along with a manual review of references. Results Of the 4716 unique abstracts reviewed by the author, 142 were found to be relevant to the purpose of this study. Undergraduate radiology education, radiology curriculum, and radiology pedagogy vary widely between disciplines and between colleges within disciplines. Formal radiology education is not taught at all medical programs and little radiology training is incorporated into non-radiology residencies. This results in some medical graduates not being taught how to interpret basic radiology images and not learning contraindications and indications for ordering diagnostic imaging tests. There are no definitive studies examining how to incorporate radiology into the curriculum, how to teach radiology to either undergraduates or residents, or how to assess this clinical competency. Conclusions This review shows that radiology education is perceived to be important in undergraduate and residency programs. However, some programs do not include radiology training, thus graduates from those programs do not learn radiology essentials. PMID:26770172

  7. Branching out with filmless radiology.

    PubMed

    Carbajal, R; Honea, R

    1999-05-01

    Texas Children's Hospital, a 456 bed pediatric hospital located in the Texas Medical Center, has been constructing a large-scale picture archiving and communications system (PACS), including ultrasound (US), computed tomography (CT), magnetic resonance (MR), and computed radiography (CR). Until recently, filmless radiology operations have been confined to the imaging department, the outpatient treatment center, and the emergency center. As filmless services expand to other clinical services, the PACS staff must engage each service in a dialog to determine the appropriate level of support required. The number and type of image examinations, the use of multiple modalities and comparison examinations, and the relationship between viewing and direct patient care activities have a bearing on the number and type of display stations provided. Some of the information about customer services is contained in documentation already maintained by the imaging department. For example, by a custom report from the radiology information system (RIS), we were able to determine the number and type of examinations ordered by each referring physician for the previous 6 months. By compiling these by clinical service, we were able to determine our biggest customers by examination type and volume. Another custom report was used to determine who was requesting old examinations from the film library. More information about imaging usage was gathered by means of a questionnaire. Some customers view images only where patients are also seen, while some services view images independently from the patient. Some services use their conference rooms for critical image viewing such as treatment planning. Additional information was gained from geographical surveys of where films are currently produced, delivered by the film library, and viewed. In some areas, available space dictates the type and configuration of display station that can be used. Active participation in the decision process by the

  8. The Quality Assurance in Diagnostic Radiology and their Effect in the Quality Image and Radiological Protection of the Patient

    NASA Astrophysics Data System (ADS)

    Gaona, Enrique

    2002-08-01

    The quality assurance in diagnostic radiology in Mexico before 1997 was virtually nonexistent except in few academic institutions and hospitals. The purpose of this study was to carry out an exploratory survey of the issue of quality control parameters of general and fluoroscopy x-ray systems in the Mexican Republic and their effects in the quality image and radiological protection of the patient. A general result of the survey is that there is not significant difference in the observed frequencies among public and private radiology departments for α = 0.05, then the results are valid for both departments. 37% of x-ray systems belong to public radiology departments. In the radiology departments that didn't agree with the Mexican regulations in: light field to mach the x-ray field, light field intensity, kV, time and output. In those cases, we found a repeat rate of radiography studies >30% with non necessary dose to patient, low quality image and high operating costs of the radiology service. We found in x-ray fiuoroscopy systems that 62% had a low quality image due to electronic noise in the television chain. In general the x-ray systems that didn't agree with Mexican regulations are 35% and they can affect in a way or other the quality image and the dose to patient.

  9. Advanced Neutron Source radiological design criteria

    SciTech Connect

    Westbrook, J.L.

    1995-08-01

    The operation of the proposed Advanced Neutron Source (ANS) facility will present a variety of radiological protection problems. Because it is desired to design and operate the ANS according to the applicable licensing standards of the Nuclear Regulatory Commission (NRC), it must be demonstrated that the ANS radiological design basis is consistent not only with state and Department of Energy (DOE) and other usual federal regulations, but also, so far as is practicable, with NRC regulations and with recommendations of such organizations as the Institute of Nuclear Power Operations (INPO) and the Electric Power Research Institute (EPRI). Also, the ANS radiological design basis is in general to be consistent with the recommendations of authoritative professional and scientific organizations, specifically the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP). As regards radiological protection, the principal goals of DOE regulations and guidance are to keep occupational doses ALARA [as low as (is) reasonably achievable], given the current state of technology, costs, and operations requirements; to control and monitor contained and released radioactivity during normal operation to keep public doses and releases to the environment ALARA; and to limit doses to workers and the public during accident conditions. Meeting these general design objectives requires that principles of dose reduction and of radioactivity control by employed in the design, operation, modification, and decommissioning of the ANS. The purpose of this document is to provide basic radiological criteria for incorporating these principles into the design of the ANS. Operations, modification, and decommissioning will be covered only as they are affected by design.

  10. [Quality improvement of resources in radiology on the internet].

    PubMed

    Grunewald, M; Gebhard, H; Wagner, M; Bautz, W A; Alibek, S

    2005-04-01

    Categorization and evaluation of online teaching files in radiology by representative members of the target group to make the specific search for adequate programs more effective. A representative team of board qualified radiologists, residents and medical students performed a basic search for radiology teaching files on the Internet using search machines, international mailing lists and link lists to collections of national and international radiological societies and departments. The programs were categorized by language, modality, target group and special features, such as qualification for CME-accreditation. For final evaluation and ranking of the detected files, a questionnaire was developed to assess completeness, image quality, page loading time, layout, orientation, interactivity, annotation and maintenance. The results were stored in an Access database on a web server. A query form in HTML format, including the parameters described above, was made accessible to the online user. A search machine for radiological teaching files (RadList/Entity-link List) was made available online ( www.tnt-radiology.de/radlist and www.tnt-radiology.de/entitylinklist ). A submitted request calls a cgi script that searches the database for the appropriate sites according to the individual search parameters selected by the user. The list of matching URLs is returned to the user as HTML page. Evaluating the single sites by applying the criteria listed above contributed to the quality assurance of the radiological teaching resources on the Internet. Adapting a new Internet interface to the particular needs of the user allows a more effective access to specific radiological teaching files online. RadList/Entity-link List ( www.tnt-radiology.de/radlist and www.tnt-radiology.de/entitylinklist ) is conducive to quality improvement and benefits users as well as authors of radiological teaching files on the Internet.

  11. 324 Building Baseline Radiological Characterization

    SciTech Connect

    R.J. Reeder, J.C. Cooper

    2010-06-24

    This report documents the analysis of radiological data collected as part of the characterization study performed in 1998. The study was performed to create a baseline of the radiological conditions in the 324 Building.

  12. Radiological controls integrated into design

    SciTech Connect

    Kindred, G.W.

    1995-03-01

    Radiological controls are required by law in the design of commercial nuclear power reactor facilities. These controls can be relatively minor or significant, relative to cost. To ensure that radiological controls are designed into a project, the health physicist (radiological engineer) must be involved from the beginning. This is especially true regarding keeping costs down. For every radiological engineer at a nuclear power plant there must be fifty engineers of other disciplines. The radiological engineer cannot be an expert on every discipline of engineering. However, he must be knowledgeable to the degree of how a design will impact the facility from a radiological perspective. This paper will address how to effectively perform radiological analyses with the goal of radiological controls integrated into the design package.

  13. Project Management for Quality Improvement in Radiology.

    PubMed

    Larson, David B; Mickelsen, L Jake

    2015-11-01

    This article outlines a structured approach for applying project management principles to quality improvement in radiology. We highlight the framework we use for managing improvement projects in our department and review basic project management principles. Project management involves techniques for executing projects effectively and efficiently. We recognize the following phases for managing improvement projects: idea, project evaluation and selection, role assignment, planning, improvement, and sustaining improvement.

  14. Paediatric musculoskeletal interventional radiology

    PubMed Central

    Paolantonio, Guglielmo; Fruhwirth, Rodolfo; Alvaro, Giuseppe; Parapatt, George K; Toma', Paolo; Rollo, Massimo

    2016-01-01

    Interventional radiology technique is now well established and widely used in the adult population. Through minimally invasive procedures, it increasingly replaces surgical interventions that involve higher percentages of invasiveness and, consequently, of morbidity and mortality. For these advantageous reasons, interventional radiology in recent years has spread to the paediatric age as well. The aim of this study was to review the literature on the development, use and perspectives of these procedures in the paediatric musculoskeletal field. Several topics are covered: osteomuscle neoplastic malignant and benign pathologies treated with invasive diagnostic and/or therapeutic procedures such as radiofrequency ablation in the osteoid osteoma; invasive and non-invasive procedures in vascular malformations; treatment of aneurysmal bone cysts; and role of interventional radiology in paediatric inflammatory and rheumatic inflammations. The positive results that have been generated with interventional radiology procedures in the paediatric field highly encourage both the development of new ad hoc materials, obviously adapted to young patients, as well as the improvement of such techniques, in consideration of the fact that childrens' pathologies do not always correspond to those of adults. In conclusion, as these interventional procedures have proven to be less invasive, with lower morbidity and mortality rates as well, they are becoming a viable and valid alternative to surgery in the paediatric population. PMID:26235144

  15. Research Training in Radiology.

    ERIC Educational Resources Information Center

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    Radiology today is a major clinical specialty of medicine in terms of the number and complexity of patient examinations, and the financial resources, physician manpower, and supporting personnel required for performing its functions. It reached its present status because it provides accurate methods of diagnosis for so many diseases. However, this…

  16. Radiological Safety Handbook.

    ERIC Educational Resources Information Center

    Army Ordnance Center and School, Aberdeen Proving Ground, MD.

    Written to be used concurrently with the U.S. Army's Radiological Safety Course, this publication discusses the causes, sources, and detection of nuclear radiation. In addition, the transportation and disposal of radioactive materials are covered. The report also deals with the safety precautions to be observed when working with lasers, microwave…

  17. Radiological Defense Manual.

    ERIC Educational Resources Information Center

    Defense Civil Preparedness Agency (DOD), Washington, DC.

    Originally prepared for use as a student textbook in Radiological Defense (RADEF) courses, this manual provides the basic technical information necessary for an understanding of RADEF. It also briefly discusses the need for RADEF planning and expected postattack emergency operations. There are 14 chapters covering these major topics: introduction…

  18. Radiology Technician (AFSC 90370).

    ERIC Educational Resources Information Center

    Sobczak, James

    This five-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for radiology technicians. Covered in the individual volumes are radiographic fundamentals (x-ray production; primary beams; exposure devices; film, film holders, and darkrooms; control of film quality; and environmental safety);…

  19. Radiology of spinal curvature

    SciTech Connect

    De Smet, A.A.

    1985-01-01

    This book offers the only comprehensive, concise summary of both the clinical and radiologic features of thoracic and lumbar spine deformity. Emphasis is placed on idiopathic scoliosis, which represents 85% of all patients with scoliosis, but less common areas of secondary scoliosis, kyphosis and lordosis are also covered.

  20. Practical interventional radiology

    SciTech Connect

    Von Sonnenberg, E.; Mueller, P.R.

    1988-01-01

    This book describes techniques employed in interventional radiology with emphasis on imaging leading to intervention. Includes the entire array of procedures available to the radiologist, discussing the indications, materials, technique, results, and complications for each. Covers the chest, abdomen, bone, pediatric considerations, and nursing care.