Science.gov

Sample records for radiological sciences department

  1. U.S. Department of Energy Radiological and Environmental Sciences Laboratory

    DTIC Science & Technology

    2012-03-29

    Radiological and Environmental Sciences Laboratory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...Thyroid Phantoms & • Urine / Fecal Samples – Actinide , fission, & activation products – Unique isotopic activities for each sample matrix – Chemical

  2. Risk management in radiology departments

    PubMed Central

    Craciun, Horea; Mankad, Kshitij; Lynch, Jeremy

    2015-01-01

    Medical imaging and interventional radiology sustained prompt changes in the last few years, mainly as a result of technology breakthroughs, rise in workload, deficit in workforce and globalization. Risk is considered to be the chance or possibility of incurring loss or of a negative event happening that may cause injury to patients or medical practitioners. There are various causes of risks leading to harm and injury in radiology departments, and it is one of the objectives of this paper to scrutinize some of the causes. This will drive to consideration of some of the approaches that are used in managing risks in radiology. This paper aims at investigating risk management in radiology, and this will be achieved through a thorough assessment of the risk control measures that are used in the radiology department. It has been observed that the major focus of risk management in such medical setting is to reduce and eliminate harm and injury to patients through integration of various medical precautions. The field of Radiology is rapidly evolving due to technology advances and the globalization of healthcare. This ongoing development will have a great impact on the level of quality of care and service delivery. Thus, risk management in radiology is essential in protecting the patients, radiologists, and the medical organization in terms of capital and widening of the reputation of the medical organization with the patients. PMID:26120383

  3. Research Challenges and Opportunities for Clinically Oriented Academic Radiology Departments.

    PubMed

    Decker, Summer J; Grajo, Joseph R; Hazelton, Todd R; Hoang, Kimberly N; McDonald, Jennifer S; Otero, Hansel J; Patel, Midhir J; Prober, Allen S; Retrouvey, Michele; Rosenkrantz, Andrew B; Roth, Christopher G; Ward, Robert J

    2016-01-01

    Between 2004 and 2012, US funding for the biomedical sciences decreased to historic lows. Health-related research was crippled by receiving only 1/20th of overall federal scientific funding. Despite the current funding climate, there is increased pressure on academic radiology programs to establish productive research programs. Whereas larger programs have resources that can be utilized at their institutions, small to medium-sized programs often struggle with lack of infrastructure and support. To address these concerns, the Association of University Radiologists' Radiology Research Alliance developed a task force to explore any untapped research productivity potential in these smaller radiology departments. We conducted an online survey of faculty at smaller clinically funded programs and found that while they were interested in doing research and felt it was important to the success of the field, barriers such as lack of resources and time were proving difficult to overcome. One potential solution proposed by this task force is a collaborative structured research model in which multiple participants from multiple institutions come together in well-defined roles that allow for an equitable distribution of research tasks and pooling of resources and expertise. Under this model, smaller programs will have an opportunity to share their unique perspective on how to address research topics and make a measureable impact on the field of radiology as a whole. Through a health services focus, projects are more likely to succeed in the context of limited funding and infrastructure while simultaneously providing value to the field.

  4. Strengthening Science Departments

    ERIC Educational Resources Information Center

    Campbell, Todd; Melville, Wayne; Bartley, Anthony

    2012-01-01

    Teachers do not work in a vacuum. They are, in most cases, part of a science department in which teachers and the chairperson have important roles in science education reform. Current reform is shaped by national standards documents that emphasize the pedagogical and conceptual importance of best practices framed by constructivism and focused on…

  5. The impact of a nuclear crisis on a radiology department.

    PubMed

    Weidner, W A; Miller, K L; Latshaw, R F; Rohrer, G V

    1980-06-01

    The experiences of the radiology department at the Milton S. Hershey Medical Center of the Pennsylvania State University College of Medicine during the Three Mile Island Nuclear Power Plant accident are presented. Emergency plans are reviewed.

  6. Radiological Dispersion Devices and Basic Radiation Science

    ERIC Educational Resources Information Center

    Bevelacqua, Joseph John

    2010-01-01

    Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous…

  7. Medical student radiology education: summary and recommendations from a national survey of medical school and radiology department leadership.

    PubMed

    Straus, Christopher M; Webb, Emily M; Kondo, Kimi L; Phillips, Andrew W; Naeger, David M; Carrico, Caroline W; Herring, William; Neutze, Janet A; Haines, G Rebecca; Dodd, Gerald D

    2014-06-01

    The ACR Task Force on Medical Student Education in Radiology, in partnership with the Alliance of Medical Student Educators in Radiology, investigated the current status of how and to what extent medical imaging was being taught in medical schools. The task force executed a 3-part survey of medical school deans, radiology department chairs, and intern physicians. The results provided an updated understanding of the status of radiology education in medical schools in the United States. This summary includes recommendations about how individual radiology departments and ACR members can assist in advancing the specialty of diagnostic radiology through medical student education.

  8. Emergency department digital radiology: moving from photos to pixels.

    PubMed

    White, Faber A; Zwemer, Frank L; Beach, Christopher; Westesson, Per-Lennart; Fairbanks, Rollin J; Scialdone, Gary

    2004-11-01

    Emergency department (ED) patient care relies heavily on radiologic imaging. As advances in technologic innovation continue to present opportunities to streamline and simplify the delivery of care, emergency medicine (EM) practitioners face the challenge of transitioning from a system of primarily film-based radiography to one that utilizes digitized images. The move to digital radiology can result in enhanced quality of patient care, reduction of errors, and increased ED efficiency; however, making this transition will necessarily involve changes in EM practice. As the technology evolves, digital radiology will gradually become ingrained into everyday practice because of these and other notable benefits; however, EM practitioners will need to overcome several challenges to make the transition smoothly and consider the potential impacts that this change will have on ED workflow. The authors discuss the benefits, challenges, and other operational considerations involved with the ED implementation of digital radiology and close by presenting guiding principles for current and future users. Despite the unresolved issues, digital radiology will mature as a technology and improve EM practice, making it one of the great information technology advances in EM.

  9. A Model Curriculum for Multiskilled Education in the Radiologic Sciences.

    ERIC Educational Resources Information Center

    Jensen, Steven C.; Grey, Michael L.

    1995-01-01

    Explains how multiskilled cross-trained health professionals provide cost-effective health care. Outlines a baccalaureate program in radiologic science with specialization in radiology therapy, medical sonography, or advanced imaging. (SK)

  10. Integrated interdisciplinary training in the radiological sciences.

    PubMed

    Brenner, D J; Vazquez, M; Buonanno, M; Amundson, S A; Bigelow, A W; Garty, G; Harken, A D; Hei, T K; Marino, S A; Ponnaiya, B; Randers-Pehrson, G; Xu, Y

    2014-02-01

    The radiation sciences are increasingly interdisciplinary, both from the research and the clinical perspectives. Beyond clinical and research issues, there are very real issues of communication between scientists from different disciplines. It follows that there is an increasing need for interdisciplinary training courses in the radiological sciences. Training courses are common in biomedical academic and clinical environments, but are typically targeted to scientists in specific technical fields. In the era of multidisciplinary biomedical science, there is a need for highly integrated multidisciplinary training courses that are designed for, and are useful to, scientists who are from a mix of very different academic fields and backgrounds. We briefly describe our experiences running such an integrated training course for researchers in the field of biomedical radiation microbeams, and draw some conclusions about how such interdisciplinary training courses can best function. These conclusions should be applicable to many other areas of the radiological sciences. In summary, we found that it is highly beneficial to keep the scientists from the different disciplines together. In practice, this means not segregating the training course into sections specifically for biologists and sections specifically for physicists and engineers, but rather keeping the students together to attend the same lectures and hands-on studies throughout the course. This structure added value to the learning experience not only in terms of the cross fertilization of information and ideas between scientists from the different disciplines, but also in terms of reinforcing some basic concepts for scientists in their own discipline.

  11. A Multimedia Medical Communication Link Between A Radiology Department And An Emergency Department

    NASA Astrophysics Data System (ADS)

    Goldberg, Morris; Robertson, John G.; Belanger, Garry; Georganas, Nicolas D.; Mastronardi, Jim; Cohn-Sfetcu, Sorin; Dillon, Richard F.; Tombaugh, Jo W.

    1989-05-01

    The most critical aspect of a radiologist's work is the communication of his findings to the attending physician responsible for the patient's care. This is also the part of the process that is least well organized and the most subject to failure. At the University of Ottawa Medical Communications Research Centre we are investigating technical means to improve communications between radiologists and attending physicians. We first introduce the radiology communication service problem and show why it is essentially a multimedia communication problem. We then briefly describe a multimedia communication system designed and implemented by our research team. The multimedia system consists of several workstations linked by the Hospital's LAN. Each physician workstation comprises a Compaq 386/20 Mhertz microcomputer with 16 Mbytes of RAM, a 500 Mbyte image disk, an image memory which drives a 1000 line monochrome monitor. The images are digitized using a Konica laser-based film digitizer (2430 by 2000 10-bit pixels for a standard chest radiograph). The multimedia file server manager station is built around a PC-AT compatible with a Northern Telecom MERIDIAN SL-1ST digital PBX and a Meridian Mail digital voice messaging system. This last device is used to store voice data and is linked via the PBX to the workstations' digital telephones. A SYTEK 6000 local area network (LAN) links all workstations to the file server. All data, image and graphic information is transmitted via this network, while the twisted pair connections linking the digital PBX to the telephone sets are used for transmitting voice data. Finally, we provide details of an in-hospital trial linking the Department of Radiological Sciences and the Emergency Department at the Ottawa Civic Hospital, a 950 bed tertiary care teaching hospital.

  12. US Department of Energy radiological control manual. Revision 1

    SciTech Connect

    Not Available

    1994-04-01

    This manual establishes practices for the conduct of Department of Energy radiological control activities. The Manual states DOE`s positions and views on the best courses of action currently available in the area of radiological controls. Accordingly, the provisions in the Manual should be viewed by contractors as an acceptable technique, method or solution for fulfilling their duties and responsibilities. This Manual shall be used by DOE in evaluating the performance of its contractors. This Manual is not a substitute for Regulations; it is intended to be consistent with all relevant statutory and regulatory requirements and shall be revised whenever necessary to ensure such consistency. Some of the Manual provisions, however, challenge the user to go well beyond minimum requirements. Following the course of action delineated in the Manual will result in achieving and surpassing related statutory or regulatory requirements.

  13. Impact of PACS On The Organization Of Radiology Departments

    NASA Astrophysics Data System (ADS)

    Zielonka, Jason S.

    1983-05-01

    The radiologist serves as a consultant to other physicians in the practice of clinical medicine; the image obtained and the reported interpretation of that image represent the service rendered and are therefore of major importance (medically, legally and economically) to the radiologist. Because many radiology departments are organized along subspecialty lines or (in the case of a single department serving several institutions) along combined institutional and subspecialty lines, many patients may undergo diagnostic evaluation sequences in which several studies are performed and multiple simultaneous consultations may result. In the past, the lack of availability of multiple copies of the study (for multiple interested parties) has prevented the effective tailoring of subsequent examinations until the prior exam results were available; the advent of digital networks for PACS may result in a significant change in this procedure and, accordingly, in the pattern of interpretation, internal referral and organization of radiology departments. In addition, since clinicians may have access to studies directly and, possibly, prior to official interpretation, the nature of the relationship between the clinician and the radiologist may be altered by PACS.

  14. [The balanced scorecard--applications in a radiology department].

    PubMed

    Maurer, M H; Teichgräber, U; Kröncke, T J; Hamm, B; Lemke, A J

    2012-12-01

    The balanced scorecard (BSC) represents a comprehensive management tool for organizations with the aim to focus all activities on a chosen strategy. Targets for various perspectives of the environment such as the customer, financial, process, and potential perspective are linked with concrete measures, and cause-effect relationships between the objectives are analyzed. This article shows that the BSC can also be used for the comprehensive control of a radiology department and thus provides a meaningful contribution in organizing the various diagnostic and treatment services, the management of complex clinical environment and can be of help with the tasks in research and teaching.

  15. Motivation in a multigenerational radiologic science workplace.

    PubMed

    Kalar, Traci

    2008-01-01

    For the first time in history, radiologic science (RS) workplaces consist of 4 generational cohorts. As each cohort possess their own attitudes, values, work habits, and expectations, motivating a generational diverse workplace is challenging. Through the understanding of generational differences, managers are better able to accommodate individual as well as generational needs and help create a more productive and higher performing workplace. The purpose of this paper is to assist managers in the understanding and utilization of generational differences to effectively motivate staff in an RS workplace. Generational cohorts will be defined and discussed along with an in-depth discussion on each of the generations performing in today's RS workplace. Motivators and how they impact the different generational cohorts will be addressed along with how to best motivate a multigenerational RS workplace.

  16. Implementation of a digital archive center for a radiology department

    NASA Astrophysics Data System (ADS)

    Wong, Albert W. K.; Taira, Ricky K.; Huang, H. K.

    1992-07-01

    A distributed digital archive system configured with dual archive devices (two archive servers, two database servers and two 680-Gbyte optical libraries) that provides fault-tolerant image archival has been implemented for the Radiology Department at UCLA. Digital images from various radiologic imaging devices are transmitted via Ethernet and FDDI networks to archive servers, where images are archived to optical disks and distributed to remote display stations or the print station via 1-Gbit/sec high-speed UltraNet network. The dual configuration of the system provides non-interrupt archive operations in the event of failure of any of the archive components. Once a failed device is detected, the system automatically re-configures itself so that all images are routed to the second equivalent device and archived. The global Ethernet network serves as a backup for the FDDI and UltraNet networks. In the even of FDDI or UltraNet failure, all images can be transmitted across the Ethernet. The system archives 1.5 to 2.0 Gbytes of data per day and provides inter-sectional image referencing throughout the department.

  17. Radiological Contingency Planning for the Mars Science Laboratory Launch

    SciTech Connect

    Paul Guss

    2008-03-01

    The U.S. Department of Energy (DOE) provides technical support to the requesting federal agency such as the Federal Bureau of Investigation, Department of Defense, the National Space and Aeronautics and Space Administration (NASA), or a state agency to address the radiological consequences of an event. These activities include measures to alleviate damage, loss, hardship, or suffering caused by the incident; protect public health and safety; restore essential government services; and provide emergency assistance to those affected. Scheduled to launch in the fall of 2009, Mars Science Laboratory is part of NASA's Mars Exploration Program, a long-term effort of robotic exploration of the red planet. Mars Science Laboratory is a rover that will assess whether Mars ever was, or is still today, an environment able to support microbial life. In other words, its mission is to determine the planet's "habitability." The Mars Science Laboratory rover will carry a radioisotope power system that generates electricity from the heat of plutonium's radioactive decay. This power source gives the mission an operating lifespan on Mars' surface of a full Martian year (687 Earth days) or more, while also providing significantly greater mobility and operational flexibility, enhanced science payload capability, and exploration of a much larger range of latitudes and altitudes than was possible on previous missions to Mars. National Security Technologies, LLC (NSTec), based in Las Vegas, Nevada, will support the DOE in its role for managing the overall radiological contingency planning support effort. This paper will focus on new technologies that NSTec is developing to enhance the overall response capability that would be required for a highly unlikely anomaly. This paper presents recent advances in collecting and collating data transmitted from deployed teams and sensors. NSTec is responsible to prepare the contingency planning for a range of areas from monitoring and assessment

  18. The cost of doing business in academic radiology departments.

    PubMed

    Novak, Ronald D; Mansoori, Bahar; Sivit, Carlos J; Ros, Pablo R

    2013-01-01

    This study identifies the major sources of overhead fees/costs and subsidies in academic radiology departments (ARDs) in the US and determines the differences between them based on geographic location or the size of their affiliated hospital. ARDs in the Northeast had the highest level of financial support from their affiliated hospitals when compared to those in the South/Southwest; however, a greater number of Midwest ARDs receive high levels of funding for teaching from their medical schools when compared to the northeast. Significantly fewer ARDs affiliated with hospitals of less than 200 beds receive subsidies for their activities when compared to those affiliated with larger hospitals. Differences in levels of overhead costs/ subsidies available to ARDs are associated with either geographic location or the size of the affiliated hospital. The reasons for these differences may be related to a variety of legal, contractual, or fiscal factors. Investigation of existing geographic and affiliate size fiscal differences and their causes by ARDs may be of benefit.

  19. Radiological Contingency Planning for the Mars Science Laboratory Launch

    SciTech Connect

    Paul P. Guss

    2008-04-01

    This paper describes the contingency planning for the launch of the Mars Science Laboratory scheduled for the 21-day window beginning on September 15, 2009. National Security Technologies, LLC (NSTec), based in Las Vegas, Nevada, will support the U.S. Department of Energy (DOE) in its role for managing the overall radiological contingency planning support effort. This paper will focus on new technologies that NSTec’s Remote Sensing Laboratory (RSL) is developing to enhance the overall response capability that would be required for a highly unlikely anomaly. This paper presents recent advances in collecting and collating data transmitted from deployed teams and sensors. RSL is responsible to prepare the contingency planning for a range of areas from monitoring and assessment, sample collection and control, contaminated material release criteria, data management, reporting, recording, and even communications. The tools RSL has available to support these efforts will be reported. The data platform RSL will provide shall also be compatible with integration of assets and field data acquired with other DOE, National Space and Aeronautics and Space Administration (NASA), state, and local resources, personnel, and equipment. This paper also outlines the organizational structure for response elements in radiological contingency planning.

  20. Radiological Contingency Planning for the Mars Science Laboratory Launch

    SciTech Connect

    Paul Guss, Robert Augdahl, Bill Nickels, Cassandra Zellers

    2008-04-16

    This paper describes the contingency planning for the launch of the Mars Science Laboratory scheduled for the 21-day window beginning on September 15, 2009. National Security Technologies, LLC (NSTec), based in Las Vegas, Nevada, will support the U.S. Department of Energy (DOE) in its role for managing the overall radiological contingency planning support effort. This paper will focus on new technologies that NSTec’s Remote Sensing Laboratory (RSL) is developing to enhance the overall response capability that would be required for a highly unlikely anomaly. This paper presents recent advances in collecting and collating data transmitted from deployed teams and sensors. RSL is responsible to prepare the contingency planning for a range of areas from monitoring and assessment, sample collection and control, contaminated material release criteria, data management, reporting, recording, and even communications. The tools RSL has available to support these efforts will be reported. The data platform RSL will provide shall also be compatible with integration of assets and field data acquired with other DOE, National Aeronautics and Space Administration, state, and local resources, personnel, and equipment. This paper also outlines the organizational structure for response elements in radiological contingency planning.

  1. Dental diagnostic radiology in the forensic sciences: two case presentations.

    PubMed

    Nicopoulou-Karayianni, K; Mitsea, A G; Horner, K

    2007-06-01

    Dentomaxillofacial radiology is a useful tool in forensic science to reveal characteristics of the structures of the dentomaxillofacial region. Postmortem radiographs are valuable to the forensic odontologist for comparison with antemortem radiographs, which are the most consistent part of the antemortem records that can be transmitted during forensic examination procedures. By using dentomaxillofacial radiology we can, therefore, give answers to problems dealing with identification cases, mass disasters and dental age estimation. We present the contribution of dentomaxillofacial radiology to the forensic sciences through two cases of deceased persons, where identification was based on information provided by radiographs. The right performance, interpretation and reportage of dentomaxillofacial radiological examination and procedures can be extremely valuable in solving forensic problems.

  2. Enhancing research in academic radiology departments: recommendations of the 2003 Consensus Conference.

    PubMed

    Alderson, Philip O; Bresolin, Linda B; Becker, Gary J; Thrall, James H; Dunnick, N Reed; Hillman, Bruce J; Lee, Joseph K T; Nagy, Edward C

    2004-08-01

    Opportunities for funded radiologic research are greater than ever, and the amount of federal funding coming to academic radiology departments is increasing. Even so, many medical school-based radiology departments have little or no research funding. Accordingly, a consensus panel was convened to discuss ways to enhance research productivity and broaden the base of research strength in as many academic radiology departments as possible. The consensus panel included radiologists who have leadership roles in some of the best-funded research departments, radiologists who direct other funded research programs, and radiologists with related expertise. The goals of the consensus panel were to identify the attributes associated with successful research programs and to develop an action plan for radiology research based on these characteristics.

  3. A Visit to the Computer Science Department,

    DTIC Science & Technology

    1983-01-11

    THE COMPUTER SCIENCE DEPARTMENT by Zbong Qing FES 23 I Approved for public "release; Udistribution unlimited. -- 83 02 023 AI FTD-zD(sj)T-&7-42 EDITED...TRANSLATION FTD-ID(RS)T-1722-82 11 January 1983 MICROFICHE NR: PTD-83-C-000022 A VISIT TO THE COMPUTER SCIENCE DEPARTMENT ly: Zhong Qing English...Zhong Qing AernauicsInstitute,anBejgAro nautics Institute all have computer science departments. Why are computer science departments needed at

  4. Handheld technology acceptance in radiologic science education and training programs

    NASA Astrophysics Data System (ADS)

    Powers, Kevin Jay

    The purpose of this study was to explore the behavioral intention of directors of educational programs in the radiologic sciences to adopt handheld devices to aid in managing student clinical data. Handheld devices were described to participants as a technology representing a class of mobile electronic devices including, but not limited to, personal digital assistants such as a Palm TX, Apple iPod Touch, Apple iPad or Hewlett Packard iPaq, and cellular or smartphones with third generation mobile capabilities such as an Apple iPhone, Blackberry or Android device. The study employed a non-experimental, cross-sectional survey design to determine the potential of adopting handheld technologies based on the constructs of Davis's (1989) Technology Acceptance Model. An online self-report questionnaire survey instrument was used to gather study data from 551 entry level radiologic science programs specializing in radiography, radiation therapy, nuclear medicine and medical sonography. The study design resulted in a single point in time assessment of the relationship between the primary constructs of the Technology Acceptance Model: perceived usefulness and perceived ease of use, and the behavioral intention of radiography program directors to adopt the information technology represented by hand held devices. Study results provide justification for investing resources to promote the adoption of mobile handheld devices in radiologic science programs and study findings serve as a foundation for further research involving technology adoption in the radiologic sciences.

  5. Handheld Technology Acceptance in Radiologic Science Education and Training Programs

    ERIC Educational Resources Information Center

    Powers, Kevin Jay

    2012-01-01

    The purpose of this study was to explore the behavioral intention of directors of educational programs in the radiologic sciences to adopt handheld devices to aid in managing student clinical data. Handheld devices were described to participants as a technology representing a class of mobile electronic devices including, but not limited to,…

  6. Clinical routine operation of a filmless radiology department: three years experience

    NASA Astrophysics Data System (ADS)

    Mosser, Hans M.; Paertan, Gerald; Hruby, Walter

    1995-05-01

    This paper communicates the operational implementation of filmless digital radiology in clinical routine, its feasibility and its effect on the radiology profession, based on the three years clinical experience from the filmless digital radiology department of the Danube Hospital, a major teaching hospital in Vienna, Austria, with currently 850 acute-care beds. Since April 1992 all radiological modalities are reported from the monitors of 16 reporting consoles in the radiology department. Images and reports are distributed by the hospital-wide network (Sienet, Siemens Medical Systems, Erlangen), and can be viewed on 60 display consoles throughout the hospital. Filmless radiology primarily is an efficient hospital-wide infrastructure to deliver radiological services along with other medical information, providing safe and fast access to this information anytime and anywhere, necessary for the conduct of the diagnostic and therapeutic task of patient care. In a comparative study of the Danube Hospital with the film based Rudolfstiftung Hospital in Vienna, we found a significant decrease of the mean patient length of hospital stay (1.99 to 3.72 days) that partially might be attributed to the implementation of filmless radiology.

  7. HIPAA security: compliance in radiology--an academic radiology department's plan contrasted with a small private practice.

    PubMed

    Haramati, N

    2000-01-01

    In complying with the HIPAA security regulations, the large, multi-site academic radiology department is quite different from the small, private radiology practice. This article compares and contrasts the methods each of these two model organizations use to achieve compliance. In common between the two organizations is that complete documentation of the procedures and processes involved in data management must be prepared and reviewed. Although not required in the regulations, having the documentation conform to the regulation allows for easy monitoring, auditing, and certification of compliance by future independent bodies. The level to which each organization must secure their data, perform threat assessments, and implement security procedures and intrusion detection systems are very different. The regulations do not specify what level of due diligence is required. This must be determined by each organization using their own common-sense dictum. Although the solutions used by these two types of organizations may not be the same as those adopted by other radiology departments and practices, the approaches may still serve as useful templates to guide compliance efforts by others.

  8. Limitations on diversity in basic science departments.

    PubMed

    Leboy, Phoebe S; Madden, Janice F

    2012-08-01

    It has been over 30 years since the beginning of efforts to improve diversity in academia. We can identify four major stages: (1) early and continuing efforts to diversify the pipeline by increasing numbers of women and minorities getting advanced degrees, particularly in science, technology, engineering, and math (STEM); (2) requiring academic institutions to develop their own "affirmative action plans" for hiring and promotion; (3) introducing mentoring programs and coping strategies to help women and minorities deal with faculty practices from an earlier era; (4) asking academic institutions to rethink their practices and policies with an eye toward enabling more faculty diversity, a process known as institutional transformation. The thesis of this article is that research-intensive basic science departments of highly ranked U.S. medical schools are stuck at stage 3, resulting in a less diverse tenured and tenure-track faculty than seen in well-funded science departments of major universities. A review of Web-based records of research-intensive departments in universities with both medical school and nonmedical school departments indicates that the proportion of women and Black faculty in science departments of medical schools is lower than the proportion in similarly research-intensive university science departments. Expectations for faculty productivity in research-intensive medical school departments versus university-based departments may lead to these differences in faculty diversity.

  9. Attitudes of Radiologic Science Students, Technologists, and Clinical Instructors Regarding Their Experiential Learning and Career Capacity

    ERIC Educational Resources Information Center

    Burns, Caroline

    2012-01-01

    Radiologic science is an essential part of the healthcare continuum and preparing radiologic science students with experiential learning is essential. It is from this experience working with the patient that students begin to prepare for entry-level practice. The purpose of the study was to examine the attitudes of current radiologic science…

  10. Strategies for establishing a comprehensive quality and performance improvement program in a radiology department.

    PubMed

    Kruskal, Jonathan B; Anderson, Stephan; Yam, Chun S; Sosna, Jacob

    2009-01-01

    To improve the safety and quality of the care that radiologists provide, and to allow radiologists and radiology personnel to remain competitive in an increasingly complex environment, it is essential that all imaging departments establish and maintain managed, comprehensive, and effective performance improvement programs. Although the structure and focus of these programs can vary, a number of common components exist, many of which are now widely mandated by organizations that regulate the field of radiology. Basic components include patient safety, process improvement, customer service, professional staff assessment, and education, each of which requires strategies for implementing continuous programs to monitor performance, analyzing and depicting data, implementing change, and meeting regulatory requirements. All of these components are part of a comprehensive quality management system in a large academic radiology department. For smaller departments or practices, the gradual introduction of one or more of these components is useful in ensuring the safety and quality of their services.

  11. Health Literacy Affects Likelihood of Radiology Testing in the Pediatric Emergency Department

    PubMed Central

    Morrison, Andrea K.; Brousseau, David C.; Brazauskas, Ruta; Levas, Michael N.

    2014-01-01

    Objective To test the hypothesis that the effect of race/ethnicity on decreased radiologic testing in the pediatric emergency department (ED) varies by caregiver health literacy. Study design This was a secondary analysis of a cross-sectional study of caregivers accompanying children ≤12 years to a pediatric ED. Caregiver health literacy was measured using the Newest Vital Sign. A blinded chart review determined whether radiologic testing was utilized. Bivariate and multivariate analyses, adjusting for ED triage level, child insurance, and chronic illness were used to determine the relationship between race/ethnicity, health literacy, and radiologic testing. Stratified analyses by caregiver health literacy were conducted. Results 504 caregivers participated; the median age was 31 years, 47% were white, 37% black, 10% Hispanic, and 49% had low health literacy. Black race and low health literacy were associated with less radiologic testing (p <0.01). In stratified analysis, minority race was associated with less radiologic testing only if a caregiver had low health literacy (aOR 0.5; 95% CI 0.3–0.9) and no difference existed in those with adequate health literacy (aOR 0.7; 95% CI 0.4–1.3). Conclusion Caregiver low health literacy modifies whether minority race/ethnicity is associated with decreased radiologic testing, with only children of minority caregivers with low health literacy receiving fewer radiologic studies. Future interventions to eliminate disparities in healthcare resource utilization should consider health literacy as a mutable factor. PMID:25596100

  12. Education Department's Senese Outlines Science, Math Programs.

    ERIC Educational Resources Information Center

    Lepkowski, Wil

    1983-01-01

    Presented is an interview with Donald J. Senese (Department of Education Assistant Secretary) in which the department's functions, responsibilities, and philosophies in precollege science/mathematics education are outlined and discussed. Specific questions answered relate to curriculum development, creationism, copyright ownership of software,…

  13. Development of radiological profiles for U.S. Department of Energy low-level mixed wastes

    SciTech Connect

    Wilkins, B.D.; Meshkov, N.K.; Dolak, D.A.; Wang, Y.Y.

    1995-03-01

    Radiological profiles have been developed by Argonne National Laboratory for low-level mixed wastes (LLMWs) that are under the management of the US Department of Energy (DOE). These profiles have been used in the Office of Environmental Management Programmatic Environmental Impact Statement (EM PEIS) to support the analysis of environmental and health risks associated with the various waste management strategies. The radiological characterization of DOE LLMWs is generally inadequate and has made it difficult to develop a site- and waste-stream-dependent radiological profile for LLMWs. On the basis of the operational history of the DOE sites, a simple model was developed to generate site-dependent and waste-stream-independent radiological profiles for LLMWs. This paper briefly discusses the assumptions used in this model and the uncertainties in the results.

  14. Environmental protection: researches in National Institute of Radiological Sciences.

    PubMed

    Fuma, Shoichi; Ban-nai, Tadaaki; Doi, Masahiro; Fujimori, Akira; Ishii, Nobuyoshi; Ishikawa, Yuji; Kawaguchi, Isao; Kubota, Yoshihisa; Maruyama, Kouichi; Miyamoto, Kiriko; Nakamori, Taizo; Takeda, Hiroshi; Watanabe, Yoshito; Yanagisawa, Kei; Yasuda, Takako; Yoshida, Satoshi

    2011-07-01

    Some studies for radiological protection of the environment have been made at the National Institute of Radiological Sciences (NIRS). Transfer of radionuclides and related elements has been investigated for dose estimation of non-human biota. A parameter database and radionuclide transfer models have been also developed for the Japanese environments. Dose (rate)-effect relationships for survival, growth and reproduction have been investigated in conifers, Arabidopsis, fungi, earthworms, springtails, algae, duckweeds, daphnia and medaka. Also genome-wide gene expression analysis has been carried out by high coverage expression profiling (HiCEP). Effects on aquatic microbial communities have been studied in experimental ecosystem models, i.e., microcosms. Some effects were detected at a dose rate of 1 Gy day(-1) and were likely to arise from interspecies interactions. The results obtained at NIRS have been used in development of frameworks for environmental protection by some international bodies, and will contribute to environmental protection in Japan and other Asian countries.

  15. Earth Sciences Department Annual Report, 1984

    SciTech Connect

    Henry, A.L.; Donohue, M.L.

    1985-09-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory comprises nine different disciplinary and programmatic groups that provide research in the geosciences, including nuclear waste management, containment of nuclear weapons tests, seismic treaty verification, stimulation of natural gas production by unconventional means, and oil shale retorting. Each group's accomplishments in 1984 are discussed, followed by a listing of the group's publications for the year.

  16. Leading Learning: Science Departments and the Chair

    ERIC Educational Resources Information Center

    Melville, Wayne; Campbell, Todd; Jones, Doug

    2016-01-01

    In this article, we have considered the role of the chair in leading the learning necessary for a department to become effective in the teaching and learning of science from a reformed perspective. We conceptualize the phrase "leading learning" to mean the chair's constitution of influence, power, and authority to intentionally impact…

  17. Definition of Local Diagnostic Reference Levels in a Radiology Department Using a Dose Tracking Software.

    PubMed

    Ghetti, C; Ortenzia, O; Palleri, F; Sireus, M

    2016-09-10

    Dose optimization in radiological examinations is a mandatory issue: in this study local Diagnostic Reference Levels (lDRLs) for Clinical Mammography (MG), Computed Tomography (CT) and Interventional Cardiac Procedures (ICP) performed in our Radiology Department were established. Using a dose tracking software, we have collected Average Glandular Dose (AGD) for two clinical mammographic units; CTDIvol, Size-Specific Dose Estimate (SSDE), Dose Length Product (DLP) and total DLP (DLPtot) for five CT scanners; Fluoro Time, Fluoro Dose Area Product (DAP) and total DAP (DAPtot) for two angiographic systems. Data have been compared with Italian Regulation and with the recent literature. The 75th percentiles of the different dosimetric indices have been calculated. Automated methods of radiation dose data collection allow a fast and detailed analysis of a great amount of data and an easy determination of lDRLs for different radiological procedures.

  18. Integration of basic sciences and clinical sciences in oral radiology education for dental students.

    PubMed

    Baghdady, Mariam T; Carnahan, Heather; Lam, Ernest W N; Woods, Nicole N

    2013-06-01

    Educational research suggests that cognitive processing in diagnostic radiology requires a solid foundation in the basic sciences and knowledge of the radiological changes associated with disease. Although it is generally assumed that dental students must acquire both sets of knowledge, little is known about the most effective way to teach them. Currently, the basic and clinical sciences are taught separately. This study was conducted to compare the diagnostic accuracy of students when taught basic sciences segregated or integrated with clinical features. Predoctoral dental students (n=51) were taught four confusable intrabony abnormalities using basic science descriptions integrated with the radiographic features or taught segregated from the radiographic features. The students were tested with diagnostic images, and memory tests were performed immediately after learning and one week later. On immediate and delayed testing, participants in the integrated basic science group outperformed those from the segregated group. A main effect of learning condition was found to be significant (p<0.05). The results of this study support the critical role of integrating biomedical knowledge in diagnostic radiology and shows that teaching basic sciences integrated with clinical features produces higher diagnostic accuracy in novices than teaching basic sciences segregated from clinical features.

  19. Application of failure mode and effect analysis in a radiology department.

    PubMed

    Thornton, Eavan; Brook, Olga R; Mendiratta-Lala, Mishal; Hallett, Donna T; Kruskal, Jonathan B

    2011-01-01

    With increasing deployment, complexity, and sophistication of equipment and related processes within the clinical imaging environment, system failures are more likely to occur. These failures may have varying effects on the patient, ranging from no harm to devastating harm. Failure mode and effect analysis (FMEA) is a tool that permits the proactive identification of possible failures in complex processes and provides a basis for continuous improvement. This overview of the basic principles and methodology of FMEA provides an explanation of how FMEA can be applied to clinical operations in a radiology department to reduce, predict, or prevent errors. The six sequential steps in the FMEA process are explained, and clinical magnetic resonance imaging services are used as an example for which FMEA is particularly applicable. A modified version of traditional FMEA called Healthcare Failure Mode and Effect Analysis, which was introduced by the U.S. Department of Veterans Affairs National Center for Patient Safety, is briefly reviewed. In conclusion, FMEA is an effective and reliable method to proactively examine complex processes in the radiology department. FMEA can be used to highlight the high-risk subprocesses and allows these to be targeted to minimize the future occurrence of failures, thus improving patient safety and streamlining the efficiency of the radiology department.

  20. Department of the Interior Climate Science Centers

    USGS Publications Warehouse

    Jones, Sonya A.

    2011-01-01

    What is a Climate Science Center? On September 14, 2009, the Secretary of the Interior signed a Secretarial Order (No. 3289) entitled, "Addressing the Impacts of Climate Change on America's Water, Land, and Other Natural and Cultural Resources." The Order effectively established the U.S. Department of the Interior (DOI) Climate Science Centers (CSCs), which will integrate DOI science and management expertise with similar contributions from our partners to provide information to support adaptation and mitigation efforts on both public and private lands, across the United States and internationally.The Southeast CSC, hosted by NC State University (NCSU), will collaborate with a number of other universities, State and Federal agencies, and nongovernmental organizations (NGOs) with interest and expertise in climate science. The primary partner for the Southeast CSC will be the Landscape Conservation Cooperatives (LCCs) in the Southeast, including the Appalachian, Gulf Coastal Plains and Ozarks, Gulf Coast Prairie, Peninsular Florida, and the South Atlantic. CSC collaborations are focused on common science priorities, addressing priority partner needs, minimizing redundancies in science, sharing scientific findings, and expanding understanding of climate change impacts in the Southeast.

  1. Determination of actinides at the radiological and environmental sciences laboratory

    NASA Astrophysics Data System (ADS)

    Williams, R. L.; Grothaus, G. E.

    1984-06-01

    This article briefly describes some of the techniques and procedures that have been developed at the Radiological and Environmental Sciences Laboratory (RESL) to determine the actinides in environmental and biological samples. Dried or ashed samples are totally decomposed in high temperature fusions or with an acid dissolution method. Actinides of interest are coprecipitated from the sample matrix with barium sulfate, cerium fluoride, or a combination of ferrous phosphate and calcium fluoride precipitations. The precipitates are dissolved in perchloric acid and extracted with bis(2-ethylhexyl)phosphoric acid (HDEHP) or dissolved in acidic aluminum nitrate and extracted with Aliquat-336. Actinides in the stripped fractions are coprecipitated with 50 μg of cerium as cerium fluoride, filtered onto membrane filters and counted by alpha spectrometry. The described procedures enable an experienced analyst to prepare sixteen 1 g soil or twelve 5 g faecal ash samples for alpha spectrometry in 14 to 16 working-hours.

  2. Annual report of the National Institute of Radiological Sciences

    NASA Astrophysics Data System (ADS)

    1992-01-01

    The annual report for the activities of the National Institute of Radiological Sciences in Japan in the fiscal year 1990 is presented. The activities are divided into research, technical aids, training, medical services, management affairs at the Nakaminato Laboratory Branch Office, library or editing, international cooperation, and general affairs. Research activities are described under the following sections: (1) special researches covering biological risk evaluation in public exposure and exposure assessment in the environment and the public involved in food chain, medical use of accelerated heavy ions, and survey for the demonstration of dose-response relationships in low dose irradiation; (2) five assigned researches; (3) ordinary researches concerning physics, pharmacochemistry, biology, genetics, pathology and physiology, cell biology, internal exposure, environmental science, clinical research, clinical research for radiation injuries, medical use of heavy particles, environmental radiation ecology, and aquatic radiation ecology; (4) risk estimation of radiation; (5) survey for radiation response phenomena in fish and in immunity associated with low dose irradiation; (6) actual surveys for Bikini victims, population doses of medical and occupational exposure, and thorotrast exposure; (7) project research; (8) integrated atomic energy-based technological research; (9) radioactivity survey; (10) research supported by Science and Technology Agency aids; (11) International research cooperation; and (12) government-private joint cooperative study. Appendices include the personnel list and the bibliography of articles reported by the staff.

  3. Assessing the impact of a radiology information management system in the emergency department

    NASA Astrophysics Data System (ADS)

    Redfern, Regina O.; Langlotz, Curtis P.; Lowe, Robert A.; Horii, Steven C.; Abbuhl, Stephanie B.; Kundel, Harold L.

    1998-07-01

    To evaluate a conventional radiology image management system, by investigating information accuracy, and information delivery. To discuss the customization of a picture archival and communication system (PACS), integrated radiology information system (RIS) and hospital information system (HIS) to a high volume emergency department (ED). Materials and Methods: Two data collection periods were completed. After the first data collection period, a change in work rules was implemented to improve the quality of data in the image headers. Data from the RIS, the ED information system, and the HIS as well as observed time motion data were collected for patients admitted to the ED. Data accuracy, patient waiting times, and radiology exam information delivery were compared. Results: The percentage of examinations scheduled in the RIS by the technologists increased from 0% (0 of 213) during the first period to 14% (44 of 317) during the second (p less than 0.001). The percentage of images missing identification numbers decreased from 36% (98 of 272) during the first data collection period to 10% (56 of 562) during the second period (p less than 0.001). Conclusions: Radiologic services in a high-volume ED, requiring rapid service, present important challenges to a PACS system. Strategies can be implemented to improve accuracy and completeness of the data in PACS image headers in such an environment.

  4. Science Ideals and Science Careers in a University Biology Department

    ERIC Educational Resources Information Center

    Long, David E.

    2014-01-01

    In an ethnographic study set within a biology department of a public university in the United States, incongruity between the ideals and practice of science education are investigated. Against the background of religious conservative students' complaints about evolution in the curriculum, biology faculty describe their political intents for…

  5. UNITED STATES DEPARTMENT OF HEALTH AND HUMAN SERVICES BIODOSIMETRY AND RADIOLOGICAL/NUCLEAR MEDICAL COUNTERMEASURE PROGRAMS.

    PubMed

    Homer, Mary J; Raulli, Robert; DiCarlo-Cohen, Andrea L; Esker, John; Hrdina, Chad; Maidment, Bert W; Moyer, Brian; Rios, Carmen; Macchiarini, Francesca; Prasanna, Pataje G; Wathen, Lynne

    2016-09-01

    The United States Department of Health and Human Services (HHS) is fully committed to the development of medical countermeasures to address national security threats from chemical, biological, radiological, and nuclear agents. Through the Public Health Emergency Medical Countermeasures Enterprise, HHS has launched and managed a multi-agency, comprehensive effort to develop and operationalize medical countermeasures. Within HHS, development of medical countermeasures includes the National Institutes of Health (NIH), (led by the National Institute of Allergy and Infectious Diseases), the Office of the Assistant Secretary of Preparedness and Response/Biomedical Advanced Research and Development Authority (BARDA); with the Division of Medical Countermeasure Strategy and Requirements, the Centers for Disease Control and Prevention, and the Food and Drug Administration as primary partners in this endeavor. This paper describes various programs and coordinating efforts of BARDA and NIH for the development of medical countermeasures for radiological and nuclear threats.

  6. Results from data mining in a radiology department: the relevance of data quality.

    PubMed

    Lang, Martin; Kirpekar, Nanda; Bürkle, Thomas; Laumann, Susanne; Prokosch, Hans-Ulrich

    2007-01-01

    This work is part of an ongoing effort to examine and improve clinical workflows in radiology. Classical workflow analysis is time consuming and expensive. Here we present a purely data-driven approach using data mining techniques to detect causes for poor data quality and areas with poor workflow performance. Data has been taken from a operational RIS system. We defined a set of four key indicators for both data quality and workflow performance. Using several mining techniques such as cluster analysis and correlation tests we were able to detect interesting effects regarding data quality and an abnormality in the workflow for some organizational units of the examined radiology departments. We conclude that data-driven data mining approaches may act as a valuable tool to support workflow analysis and can narrow down the problem space for a manual on-site workflow analysis. This can save time and effort and leads to less strain for clinicians and workflow analysts during interviews.

  7. Quality initiatives: lean approach to improving performance and efficiency in a radiology department.

    PubMed

    Kruskal, Jonathan B; Reedy, Allen; Pascal, Laurie; Rosen, Max P; Boiselle, Phillip M

    2012-01-01

    Many hospital radiology departments are adopting "lean" methods developed in automobile manufacturing to improve operational efficiency, eliminate waste, and optimize the value of their services. The lean approach, which emphasizes process analysis, has particular relevance to radiology departments, which depend on a smooth flow of patients and uninterrupted equipment function for efficient operation. However, the application of lean methods to isolated problems is not likely to improve overall efficiency or to produce a sustained improvement. Instead, the authors recommend a gradual but continuous and comprehensive "lean transformation" of work philosophy and workplace culture. Fundamental principles that must consistently be put into action to achieve such a transformation include equal involvement of and equal respect for all staff members, elimination of waste, standardization of work processes, improvement of flow in all processes, use of visual cues to communicate and inform, and use of specific tools to perform targeted data collection and analysis and to implement and guide change. Many categories of lean tools are available to facilitate these tasks: value stream mapping for visualizing the current state of a process and identifying activities that add no value; root cause analysis for determining the fundamental cause of a problem; team charters for planning, guiding, and communicating about change in a specific process; management dashboards for monitoring real-time developments; and a balanced scorecard for strategic oversight and planning in the areas of finance, customer service, internal operations, and staff development.

  8. Clinical impact of diagnostic imaging discrepancy by radiology trainees in an urban teaching hospital emergency department

    PubMed Central

    2013-01-01

    Background To characterize clinically significant diagnostic imaging (DI) discrepancies by radiology trainees and the impact on emergency department (ED) patients. Methods Consecutive case series methodology over a 6-month period in an urban, tertiary care teaching hospital. Emergency physicians (EPs) were recruited to flag discrepant DI interpretations by radiology trainees that the EP deemed clinically significant. Cases were characterized using chart review and EP interview. Results Twenty-eight discrepant reports were identified (representing 0.1% of 18,185 images interpreted). The mean time between provisional discrepant diagnosis (PDDx) and revised diagnosis (RDx) by attending radiology staff was 8.6 h (median 4.8 h, range 1.1-48.4), and 67.9% (n = 19) of the patients had left the ED by time of notification. The most frequently reported PDDx was CT abd/pelvis (32.1%, n = 9) and CT head (28.6%, n = 8). The impact of RDx was deemed major in 57.1% (n = 16) for reasons including altered admitting status (32.1%, n = 9), immediate subspecialty referral (n = 16, 57.1%), impact on management (25%, n = 7), and surgical management (21.4%, n = 6). EPs reported likely perceived impact of PDDx as resulting in increased pain (17. 9%, n = 5), morbidity (10.7%, n = 3), and prolonged hospitalization (25%, n = 7), but not altered long-term outcome or mortality. Conclusions Relatively few clinically important discrepant reads were reported. Revised diagnosis (RDx) was associated with major clinical impact in 57.1% of reports, but few patients experienced increased morbidity, and none increased mortality. The importance of expedient communication of discrepant reports by staff radiologists is stressed, as is EP verification of patient contact information prior to discharge. PMID:23866048

  9. Individual and Collective Leadership in School Science Departments

    ERIC Educational Resources Information Center

    Ritchie, Stephen M.; Mackay, Gail; Rigano, Donna L.

    2006-01-01

    Given that the subject department is recognised by subject specialist teachers as the central and immediate unit of organization in secondary schools it is surprising that so little attention has been paid by researchers to the leadership dynamics within science departments. The leadership dynamics within the science departments of two…

  10. Embedding Enterprise in Science and Engineering Departments

    ERIC Educational Resources Information Center

    Handscombe, Robert D.; Rodriguez-Falcon, Elena; Patterson, Eann A.

    2008-01-01

    Purpose: This paper aims to focus on the attempts to implement the challenges of teaching enterprise to science and engineering students by the embedding approach chosen by the White Rose Centre for Enterprise (WRCE), one of the centres formed under the Science Engineering Challenge in the UK. Design/methodology/approach: WRCE's objective was to…

  11. [Practical implementation of a quality management system in a radiological department].

    PubMed

    Huber, S; Zech, C J

    2011-10-01

    This article describes the architecture of a project aiming to implement a DIN EN ISO 9001 quality management system in a radiological department. It is intended to be a practical guide to demonstrate each step of the project leading to certification of the system. In a planning phase resources for the implementation of the project have to be identified and a quality management (QM) group as core team has to be formed. In the first project phase all available documents have to be checked and compiled in the QM manual. Moreover all relevant processes of the department have to be described in so-called process descriptions. In a second step responsibilities for the project are identified. Customer and employee surveys have to be carried out and a nonconformity management system has to be implemented. In this phase internal audits are also needed to check the new QM system, which is finally tested in the external certification audit with reference to its conformity with the standards.

  12. Secondary School Science Department Chairs Leading Change

    ERIC Educational Resources Information Center

    Gaubatz, Julie A.

    2012-01-01

    Secondary school department chairs are content area specialists in their schools and are responsible for providing students with the most appropriate curricula. However, most secondary school department chairs have limited authority to institute change unilaterally (Gmelch, 1993; Hannay & Erb, 1999). To explore how these educational leaders…

  13. Science Instructional Leadership: The Role of the Department Chair

    ERIC Educational Resources Information Center

    Peacock, Jeremy S.

    2014-01-01

    With science teachers facing comprehensive curriculum reform that will shape science education for decades to come, high school department chairs represent a critical resource for instructional leadership and teacher support. While the historical literature on the department chair indicates that chairs are in prime positions to provide…

  14. Bourdieu, Department Chairs and the Reform of Science Education

    ERIC Educational Resources Information Center

    Melville, Wayne; Hardy, Ian; Bartley, Anthony

    2011-01-01

    Using the insights of the French sociologist, Pierre Bourdieu, this article considers the role of the science department chair in the reform of school science education. Using Bourdieu's "thinking tools" of "field", "habitus" and "capital", we case study the work of two teachers who both actively pursue the teaching and learning of science as…

  15. Best Available Technology (BAT) guidance for radiological liquid effluents at US Department of Energy Facilities

    SciTech Connect

    Wallo, A. III; Peterson, H.T. Jr.; Ikenberry, T.A.; Baker, R.E.

    1993-01-01

    The US Department of Energy (DOE), in DOE Order 5400.5 (1990), directs operators of DOE facilities to apply the Best Available Technology (BAT) to control radiological liquid effluents from these facilities when specific conditions are present. DOE has published interim guidance to assist facility operators in knowing when a BAT analysis is needed and how such an analysis should be performed and documented. The purpose of the guidance is to provide a uniform basis in determining BAT throughout DOE and to assist in evaluating BAT determinations during programmatic audits. The BAT analysis process involves characterizing the effluent source; identifying and selecting candidate control technologies; evaluating the potential environmental, operational, resource, and economic impacts of the control technologies; developing an evaluation matrix for comparing the technologies; selecting the BAT; and documenting the evaluation process. The BAT analysis process provides a basis for consistent evaluation of liquid effluent releases, yet allows an individual site or facility the flexibility to address site-specific issues or concerns in the most appropriate manner.

  16. U.S. Department of Energy Region 6 Radiological Assistance Program response plan. Revision 2

    SciTech Connect

    Jakubowski, F.M.

    1998-02-01

    Upon request, the DOE, through the Radiological Assistance Program (RAP), makes available and will provide radiological advice, monitoring, and assessment activities during radiological incidents where the release of radioactive materials is suspected or has occurred. Assistance will end when the need for such assistance is over, or if there are other resources available to adequately address the incident. The implementation of the RAP is usually accomplished through the recommendation of the DOE Regional Coordinating Office`s (RCO) on duty Regional Response Coordinator (RRC) with the approval of the Regional Coordinating Office Director (RCOD). The DOE Idaho Operations Office (DOE-ID) is the designated RCO for DOE Region 6 RAP. The purpose of this document is: to describe the mechanism for responding to any organization or private citizen requesting assistance to radiological incidents; to coordinate radiological assistance among participating federal agencies, states, and tribes in DOE Region 6; and to describe the RAP Scaled Response concept of operations.

  17. Webometric Analysis of Departments of Librarianship and Information Science.

    ERIC Educational Resources Information Center

    Thomas, Owen; Willett, Peter

    2000-01-01

    Describes a webometric analysis of linkages to library and information science (LIS) department Web sites in United Kingdom universities. Concludes that situation data are not well suited to evaluation of LIS departments and that departments can boost Web site visibility by hosting a wide range of materials. (Author/LRW)

  18. On Hiring Science Faculty with Education Specialties for Your Science (Not Education) Department

    ERIC Educational Resources Information Center

    Bush, S. D.; Pelaez, N. J.; Rudd, J. A.; Stevens, M. T.; Williams, K. S.; Allen, D. E.; Tanner, K. D.

    2006-01-01

    In this article, the authors highlight an issue in science education facing many university and college science departments: hiring faculty who can bring to the department specialized expertise in science education. To begin to address this issue, a collaborative team of tenure-track faculty--all of whom are primarily trained in science and have…

  19. Individual and Collective Leadership in School Science Departments

    NASA Astrophysics Data System (ADS)

    Ritchie, Stephen M.; Mackay, Gail; Rigano, Donna L.

    2006-09-01

    Given that the subject department is recognised by subject specialist teachers as the central and immediate unit of organization in secondary schools it is surprising that so little attention has been paid by researchers to the leadership dynamics within science departments. The leadership dynamics within the science departments of two contrasting school contexts were explored dialectically in this study. The structure ∣ agency and individual∣collective dialectics guided our interpretation of data from lesson observations, interviews and questionnaire responses, especially as they related to teachers' preparation of units of work (i.e., planned curriculum). As well as recognising thin coherence in teachers' responses we identify contradictions in teachers' perceived and enacted leadership roles, and perceptions of influences on curriculum planning and teaming within the two science departments. Throughout the article we disrupt traditional individualistic leadership discourses and suggest possibilities for more widespread application of an individual | collective leadership dialectic in school science departments.

  20. Radiological Sciences Discipline Advisory Group Final Report. Kentucky Allied Health Project.

    ERIC Educational Resources Information Center

    Kentucky Council on Public Higher Education, Frankfort.

    Radiological sciences education in Kentucky and articulation within this field are examined, based on the Kentucky Allied Health Project (KAHP), which designed an articulated statewide system to promote entry and exit of personnel at a variety of educational levels. The KAHP model promotes articulation in learning, planning, and resource…

  1. Bourdieu, Department Chairs and the Reform of Science Education

    NASA Astrophysics Data System (ADS)

    Melville, Wayne; Hardy, Ian; Bartley, Anthony

    2011-11-01

    Using the insights of the French sociologist, Pierre Bourdieu, this article considers the role of the science department chair in the reform of school science education. Using Bourdieu's 'thinking tools' of 'field', 'habitus' and 'capital', we case study the work of two teachers who both actively pursue the teaching and learning of science as inquiry. One teacher, Dan, has been a department chair since 2000, and has actively encouraged his department to embrace science as inquiry. The other teacher, Leslie, worked for one year in Dan's department before being transferred to another school where science teaching continues to be more traditional. Our work suggests that there are three crucial considerations for chairs seeking to lead the reform of science teaching within their department. The first of these is the development of a reform-minded habitus, as this appears to be foundational to the capital that can be expended in the leadership of reform. The second is an understanding of how to wield power and position in the promotion of reform. The third is the capacity to operate simultaneously and strategically within, and across, two fields; the departmental field and the larger science education field. This involves downplaying administrative logics, and foregrounding more inquiry-focused logics as a vehicle to challenge traditional science-teaching dispositions-the latter being typically dominated by concerns about curriculum 'coverage'.

  2. Emergency radiology today between philosophy of science and the reality of "emergency care".

    PubMed

    Romano, L; Scaglione, M; Rotondo, A

    2006-03-01

    In the past 20 years, emergency care concept has substantially changed on a cultural point of view, going well beyond the boundaries of medical science. It is now a general understanding that the real enemy of the critical patient is time; thus, functional organisation and collocation of human and technological resources in the emergency department (ED) can help avoid the loss of human lives. This "cultural revolution" led to the creation and development of structural and organisational models (layouts) of EDs. Now, emergency radiology has a central role in ED organisation, and the radiologist, providing 24-h coverage in the emergency room, is crucial for the correct diagnostic approach and rapid management of trauma. If this is the cultural background to the "emergency care" concept, an overview of such care in our country shows great differences from a structural, technological and organisational point of view. The presence of the radiologist providing 24-h coverage in the emergency room is still uncommon in many EDs The qualification of emergency care must be sought by studying the needs of the population and by seeking qualified personnel with high professional skill levels. All this must be understood and pursued by politicians and health care managers whose aim should be to coordinate and check the measures and human resources applied to the system. This process necessarily involves rewarding those health care professionals who prove to be up to the job.

  3. Application of Analytical Hierarchy Process Approach for Service Quality Evaluation in Radiology Departments: A Cross-Sectional Study

    PubMed Central

    Alimohammadzadeh, Khalil; Bahadori, Mohammadkarim; Hassani, Fariba

    2016-01-01

    Background: Radiology department as a service provider organization requires realization of quality concept concerning service provisioning knowledge, satisfaction and all issues relating to the customer as well as quality assurance and improvement issues. At present, radiology departments in hospitals are regarded as income generating units and they should continuously seek performance improvement so that they can survive in the changing and competitive environment of the health care sector. Objectives: The aim of this study was to propose a method for ranking of radiology departments in selected hospitals of Tehran city using analytical hierarchical process (AHP) and quality evaluation of their service in 2015. Materials and Methods: This study was an applied and cross-sectional study, carried out in radiology departments of 6 Tehran educational hospitals in 2015. The hospitals were selected using non-probability and purposeful method. Data gathering was performed using customized joint commission international (JCI) standards. Expert Choice 10.0 software was used for data analysis. AHP method was used for prioritization. Results: “Management and empowerment of human resources’’ (weight = 0.465) and “requirements and facilities” (weight = 0.139) were of highest and lowest significance respectively in the overall ranking of the hospitals. MS (weight = 0.316), MD (weight = 0.259), AT (weight = 0.14), TS (weight = 0.108), MO (weight = 0.095), and LH (0.082) achieved the first to sixth rankings respectively. Conclusion: The use of AHP method can be promising for fostering the evaluation method and subsequently promotion of the efficiency and effectiveness of the radiology departments. The present model can fill in the gap in the accreditation system of the country’s hospitals in respect with ranking and comparing them considering the significance and value of each individual criteria and standard. Accordingly, it can predict an integration of qualitative

  4. Impact of Patient Protection and Affordable Care Act on academic radiology departments' clinical, research, and education missions.

    PubMed

    Mansoori, Bahar; Vidal, Lorenna L; Applegate, Kimberly; Rawson, James V; Novak, Ronald D; Ros, Pablo R

    2013-10-01

    The Patient Protection and Affordable Care Act (ACA) generated significant media attention since its inception. When the law was approved in 2010, the U.S. health care system began facing multiple changes to adapt and to incorporate measures to meet the new requirements. These mandatory changes will be challenging for academic radiology departments (ARDs) since they will need to promote a shift from a volume-focused to a value-focused practice. This will affect all components of the mission of ARDs, including clinical practice, education, and research. A unique key element to success in this transition is to focus on both quality and safety, thus improving the value of radiology in the post-ACA era. Given the changes ARDs will face during the implementation of ACA, suggestions are provided on how to adapt ARDs to this new environment.

  5. Creation and implementation of department-wide structured reports: an analysis of the impact on error rate in radiology reports.

    PubMed

    Hawkins, C Matthew; Hall, Seth; Zhang, Bin; Towbin, Alexander J

    2014-10-01

    The purpose of this study was to evaluate and compare textual error rates and subtypes in radiology reports before and after implementation of department-wide structured reports. Randomly selected radiology reports that were generated following the implementation of department-wide structured reports were evaluated for textual errors by two radiologists. For each report, the text was compared to the corresponding audio file. Errors in each report were tabulated and classified. Error rates were compared to results from a prior study performed prior to implementation of structured reports. Calculated error rates included the average number of errors per report, average number of nongrammatical errors per report, the percentage of reports with an error, and the percentage of reports with a nongrammatical error. Identical versions of voice-recognition software were used for both studies. A total of 644 radiology reports were randomly evaluated as part of this study. There was a statistically significant reduction in the percentage of reports with nongrammatical errors (33 to 26%; p = 0.024). The likelihood of at least one missense omission error (omission errors that changed the meaning of a phrase or sentence) occurring in a report was significantly reduced from 3.5 to 1.2% (p = 0.0175). A statistically significant reduction in the likelihood of at least one comission error (retained statements from a standardized report that contradict the dictated findings or impression) occurring in a report was also observed (3.9 to 0.8%; p = 0.0007). Carefully constructed structured reports can help to reduce certain error types in radiology reports.

  6. SU-E-P-07: Retrospective Analysis of Incident Reports at a Radiology Department: Feedback From Incident Reporting System

    SciTech Connect

    Kakinohana, Y; Toita, T; Heianna, J; Murayama, S

    2015-06-15

    Purpose: To provide an overview of reported incidents that occurred in a radiology department and to describe the most common causal source of incidents. Methods: Incident reports from the radiology department at the University of the Ryukyus Hospital between 2008 and 2013 were collected and analyzed retrospectively. The incident report form contains the following items, causal factors of the incident and desirable corrective actions to prevent recurrence of similar incidents. These items allow the institution to investigate/analyze root causes of the incidents and suggest measures to be taken to prevent further, similar incidents. The ‘causal factors of the incident’ item comprises multiple selections from among 24 selections and includes some synonymous selections. In this study, this item was re-categorized into four causal source types: (i) carelessness, (ii) lack of skill or knowledge, (iii) deficiencies in communication, and (iv) external factors. Results: There were a total of 7490 incident reports over the study period and 276 (3.7%) were identified as originating from the radiology department. The most frequent causal source type was carelessness (62%). The other three types showed similar frequencies (10–14%). The staff members involved in incidents indicate three predominant desirable corrective actions to prevent or decrease the recurrence of similar incidents. These are ‘improvement in communication’ (24%), ‘staff training/education’ (19%), and ‘daily medical procedures’ (22%), and the most frequent was ‘improvement in communication’. Even though the most frequent causal factor was related to carelessness, the most desirable corrective action indicated by the staff members was related to communication. Conclusion: Our finding suggests that the most immediate causes are strongly related to carelessness. However, the most likely underlying causes of incidents would be related to deficiencies in effective communication. At our

  7. On teaching computer ethics within a computer science department.

    PubMed

    Quinn, Michael J

    2006-04-01

    The author has surveyed a quarter of the accredited undergraduate computer science programs in the United States. More than half of these programs offer a 'social and ethical implications of computing' course taught by a computer science faculty member, and there appears to be a trend toward teaching ethics classes within computer science departments. Although the decision to create an 'in house' computer ethics course may sometimes be a pragmatic response to pressure from the accreditation agency, this paper argues that teaching ethics within a computer science department can provide students and faculty members with numerous benefits. The paper lists topics that can be covered in a computer ethics course and offers some practical suggestions for making the course successful.

  8. A developing crisis. Staffing overshadows all other challenges facing radiology departments.

    PubMed

    Greene, J

    2001-10-01

    The shortage of radiologists and technologists poses a huge problem for hospitals as the demand for imaging services grows. It behooves hospital executives, therefore, to find creative ways to partner with their radiology groups--before somebody else does. This is the first installment in H&HN's quarterly Clinical Management series, which examines how hospitals are responding to dramatic shifts in specific clinical areas.

  9. [Marketing mix in a radiology department: challenges for future radiologists in management].

    PubMed

    Claikens, B

    1998-08-01

    Radiology has gained an enviable position among medial specialities. Developments in new technology expand its horizons and the volume of radiologic imaging techniques and procedures increase far more than the overall growth in health care services. In this position radiology has become a prime target for restrictions, cutbacks, controlled financing in an area of managed care and new national health care policy based on partially fixed budgets. Future health care takers have to choose the best available diagnostic and therapeutic techniques. Evidence based medicine, cost-utility analysis, diagnostic performance analysis, patient outcome analysis, technology assessment and guidelines for practice are means to guide us through our obligatory choice. Our major objective is to use the most performant available imaging technique or intervention to achieve the best possible outcome for our patient at lower possible costs. A strategic response from radiologists is required to meet the imperatives of this new management situation. They must do far more than interpret imaging procedures. They must work as efficient managers of imaging resources, organise their practices and define their marketing-strategies using the different, so-called, marketing-mix elements. The challenges will be great but the rewards are worth our best efforts. In this article we highlight the marketing responsibilities of future radiologists and their clinical practice in this new socio-economic environment and we present different useful marketing tools.

  10. A radiological review of cervical spine injuries from an accident and emergency department: has the ATLS made a difference?

    PubMed Central

    Palmer, S H; Maheson, M

    1995-01-01

    The importance of visualizing the entire cervical spine on radiological examination in patients with cervical trauma is well known. A review of the cervical films of 98 patients attending an accident and emergency (A&E) department was undertaken in order to assess the adequacy of imaging. It was found that 33.7% of the films were not sufficient to exclude fracture or dislocation of the cervical spine. The number of patients with inadequate views was significantly reduced when an advanced trauma life support trained senior doctor was involved. PMID:8581244

  11. Tenure Standards in Political Science Departments: Results from a Survey of Department Chairs

    ERIC Educational Resources Information Center

    Rothgeb, John M., Jr.; Burger, Betsy

    2009-01-01

    This article presents the results from a survey of political science department chairs regarding the tenure procedures and standards at their colleges or universities. The findings reveal that only a small fraction of the colleges and universities in the United States refuse to offer tenure or are attempting to limit tenure. We also find general…

  12. District Leadership for Science Education: Using K-12 Departments to Support Elementary Science Education under NCLB

    ERIC Educational Resources Information Center

    Miller, Christopher L.

    2010-01-01

    By contrasting two case studies of school districts, this paper illustrates the effectiveness of K-12 science departments in supporting elementary science education, especially in response to NCLB's push towards the articulation of curriculum across all grades and as a response to the erosion of instructional time on science in elementary schools…

  13. Career Preparation and the Political Science Major: Evidence from Departments

    ERIC Educational Resources Information Center

    Collins, Todd A.; Knotts, H. Gibbs; Schiff, Jen

    2012-01-01

    We know little about the amount of career preparation offered to students in political science departments. This lack of information is particularly troubling given the state of the current job market and the growth of applied degree programs on university campuses. To address this issue, this article presents the results of a December 2010 survey…

  14. Affirmative Action in Science Departments: A Challenge for Higher Education.

    ERIC Educational Resources Information Center

    Marcus, Laurence R.

    As part of a study of the implementation of affirmative action in academic affairs at the University of Massachusetts at Amherst, interviews were conducted with the heads of ten of the eleven departments and programs of the Faculty of Natural Sciences and Mathematics (FNSM). The data received were combined with written data available in…

  15. Guide for radiological characterization and measurements for decommissioning of US Department of Energy surplus facilities

    SciTech Connect

    Denahm, D. H.; Barnes, M. G.; Jaquish, R. E.; Corley, J. P.; Gilbert, R. O.; Hoenes, G. R.; Jamison, J. D.; McMurray, B. J.; Watson, E. C.

    1983-08-01

    This Guide describes the elements of radiological characterization at DOE excess facilities in preparation for, during, and subsequent to decommissioning operations. It is the intent of this Guide and accompanying appendices to provide the reader (user) with sufficient information to carry out that task with a minimum of confusion and to provide a uniform basis for evaluating site conditions and verifying that decommissioning operations are conducted according to a specific plan. Some areas of particular interest in this Guide are: the need to involve appropriate staff from the affected states in the early planning stages of decommissioning; the need for and suggested methods of radiological site characterization to complete a decommissioning project, including: historical surveys, environmental pathway analyses, statistical sampling design, and choosing appropriate instrumentation and measurements; the need for and emphasis on quality assurance, documentation and records retention; the establishment of a Design Objective approach to applying site-specific contamination limits based on the ALARA philosophy; the establishment of a ''de minimis'' or minimum dose level of concern for decommissioning operations based on existing standards, experience and ALARA considerations.

  16. Chemistry and Materials Science Department annual report, 1988--1989

    SciTech Connect

    Borg, R.J.; Sugihara, T.T.; Cherniak, J.C.; Corey, C.W.

    1989-12-31

    This is the first annual report of the Chemistry & Materials Science (C&MS) Department. The principal purpose of this report is to provide a concise summary of our scientific and technical accomplishments for fiscal years 1988 and 1989. The report is also tended to become part of the archival record of the Department`s activities. We plan to publish future editions annually. The activities of the Department can be divided into three broad categories. First, C&MS staff are assigned by the matrix system to work directly in a program. These programmatic assignments typically involve short deadlines and critical time schedules. A second category is longer-term research and development in technologies important to Laboratory programs. The focus and direction of this technology-base work are generally determined by programmatic needs. Finally, the Department manages its own research program, mostly long-range in outlook and basic in orientation. These three categories are not mutually exclusive but form a continuum of technical activities. Representative examples of all three are included in this report. The principal subject matter of this report has been divided into six sections: Innovations in Analysis and Characterization, Advanced Materials, Metallurgical Science and Technology, Surfaces and Interfaces, Energetic Materials and Chemical Synthesis, and Energy-Related Research and Development.

  17. Decision-making and radiological protection at Three Mile Island: response of the Department of Health, Education and Welfare

    SciTech Connect

    Fabrikant, J.I.

    1982-02-01

    Decision-making by decision-makers during the nuclear accident at Three Mile Island all had to do in some way, and impacted on the public health and safety, the health and safety of the workers, and emergency preparedness and health care. This paper reviews the activities of only one federal agency during the accident, the Department of Health, Education, and Welfare (HEW), and its effectiveness in its role as the leading institution responsible for protecting the public health during the first accident in a nuclear power plant designed for the commerical generation of electricity in the United States. My comments are limited to only three acts dealing with radiological health and protection: the struggle for power and assertion of leadership in response to possible health consequences of the accident; the decisions to evacuate the area during the radiological emergency; and the use of potassium iodide as a means of protecting the public and the workers from the hazards of exposure to radioactive iodine released to the environment.

  18. The effectiveness of service delivery initiatives at improving patients' waiting times in clinical radiology departments: a systematic review.

    PubMed

    Olisemeke, B; Chen, Y F; Hemming, K; Girling, A

    2014-12-01

    We reviewed the literature for the impact of service delivery initiatives (SDIs) on patients' waiting times within radiology departments. We searched MEDLINE, EMBASE, CINAHL, INSPEC and The Cochrane Library for relevant articles published between 1995 and February, 2013. The Cochrane EPOC risk of bias tool was used to assess the risk of bias on studies that met specified design criteria. Fifty-seven studies met the inclusion criteria. The types of SDI implemented included extended scope practice (ESP, three studies), quality management (12 studies), productivity-enhancing technologies (PETs, 29 studies), multiple interventions (11 studies), outsourcing and pay-for-performance (one study each). The uncontrolled pre- and post-intervention and the post-intervention designs were used in 54 (95%) of the studies. The reporting quality was poor: many of the studies did not test and/or report the statistical significance of their results. The studies were highly heterogeneous, therefore meta-analysis was inappropriate. The following type of SDIs showed promising results: extended scope practice; quality management methodologies including Six Sigma, Lean methodology, and continuous quality improvement; productivity-enhancing technologies including speech recognition reporting, teleradiology and computerised physician order entry systems. We have suggested improved study design and the mapping of the definitions of patient waiting times in radiology to generic timelines as a starting point for moving towards a situation where it becomes less restrictive to compare and/or pool the results of future studies in a meta-analysis.

  19. Image Gently(SM): a national education and communication campaign in radiology using the science of social marketing.

    PubMed

    Goske, Marilyn J; Applegate, Kimberly E; Boylan, Jennifer; Butler, Priscilla F; Callahan, Michael J; Coley, Brian D; Farley, Shawn; Frush, Donald P; Hernanz-Schulman, Marta; Jaramillo, Diego; Johnson, Neil D; Kaste, Sue C; Morrison, Gregory; Strauss, Keith J

    2008-12-01

    Communication campaigns are an accepted method for altering societal attitudes, increasing knowledge, and achieving social and behavioral change particularly within public health and the social sciences. The Image Gently(SM) campaign is a national education and awareness campaign in radiology designed to promote the need for and opportunities to decrease radiation to children when CT scans are indicated. In this article, the relatively new science of social marketing is reviewed and the theoretical basis for an effective communication campaign in radiology is discussed. Communication strategies are considered and the type of outcomes that should be measured are reviewed. This methodology has demonstrated that simple, straightforward safety messages on radiation protection targeted to medical professionals throughout the radiology community, utilizing multiple media, can affect awareness potentially leading to change in practice.

  20. Observations on gender equality in a UK Earth Sciences department

    NASA Astrophysics Data System (ADS)

    Imber, Jonathan; Allen, Mark; Chamberlain, Katy; Foulger, Gillian; Gregory, Emma; Hoult, Jill; Macpherson, Colin; Winship, Sarah

    2016-04-01

    The progress of women to senior positions within UK higher education institutes has been slow. Women are worst represented in science, engineering and technology disciplines, where, in 2011, only 15% of professors were female. The national position is reflected in the Department of Earth Sciences at Durham University. The Department's gender profile shows steadily increasing proportions of females from undergraduate (ca. 38%) to postgraduate (ca. 42%) to postdoctoral (ca. 45%) levels, before dropping sharply with increasing seniority to 33% (n=1), 14% (n=1), 14% (n=1) and 13% (n=2), respectively, of lecturers, senior lecturers, readers and professors. The data suggest there is no shortage of talented female postgraduates and postdoctoral researchers; however, females are not applying, not being shortlisted, or not being appointed to academic roles in the expected proportions. Analysis of applications to academic positions in the Department during the period 2010-2015 suggests that "head hunting" senior academics, in some cases driven by external factors such as the UK Research Excellence Framework, resulted in a small proportion (between 0% and 11%) of female applicants. These results can be explained by the small number of senior female Earth Scientists nationally and, probably, internationally. Junior lectureship positions attracted between 24% and 33% female applicants, with the greatest proportion of females applying where the specialism within Earth Sciences was deliberately left open. In addition to these externally advertised posts, the Department has had some success converting independent research Fellowships, held by female colleagues, into permanent academic positions (n=2 between 2010 and 2015). Data for academic promotions show there is a significant negative correlation between year of appointment to first academic position within the Department (r=0.81, n=19, p<0.01), and the time taken to achieve first promotion at Durham. Data for our promoted

  1. An assessment of the performance and quality control procedures of PACS workstation monitors used in Irish radiology departments

    NASA Astrophysics Data System (ADS)

    Wade, Cherrie; Brennan, Patrick C.; Mc Entee, Mark F.

    2005-04-01

    Diagnostic efficacy in soft-copy reporting relies heavily on the quality of workstation monitors and an investigation performed in 2002 demonstrated that CRT monitors in Dublin imaging departments were not operating at optimal levels. The current work examines the performance of CRTs being used in Dublin and other parts of Ireland to establish if problems reported in the earlier work have been rectified. All hospitals performing soft-copy reporting for general radiology using CRTs were included in the work. Examination of ambient lighting, calibration of monitors and analysis of CRT performance using the SMPTE test pattern and a selection of the AAPM test images was performed. Maximum luminance, spatial uniformity of luminance, temporal luminance stability, gamma, geometry, sharpness, veiling glare and spatial resolution of each monitor was evaluated. Ambient lighting in all reporting areas was within recommended levels. All the monitors were calibrated appropriately and were performing at acceptable levels for maximum luminance and temporal stability and only one of the thirty-three investigated failed to reach the standard for spatial uniformity. In contrast a number of the CRTs investigated showed poor adherence to acceptable levels for geometrical distortions, veiling glare and spatial resolution all of which are important influencers of image quality. Gamma values also appeared to be low for a number of monitors but this interpretation is provisional and subject to the establishment of ratified guideline values. The results demonstrate that although some improvement on the previous situation is evident, greater adherence to acceptable levels is required for certain parameters.

  2. Technology as an Occasion for Structuring: Evidence from Observations of CT Scanners and the Social Order of Radiology Departments.

    ERIC Educational Resources Information Center

    Barley, Stephen R.

    1986-01-01

    New technologies such as the CT scanner are challenging traditional role relations among radiology workers and may be altering the organizational and occupational structure of radiological work. This paper expands recent sociological thought by showing how identical CT scanners occasion similar structuring processes and created divergent forms of…

  3. Science Goals of the U.S. Department of the Interior Southeast Climate Science Center

    USGS Publications Warehouse

    Dalton, Melinda S.

    2011-01-01

    In 2011, the U.S. Department of the Interior Southeast Climate Science Center (CSC) finalized the first draft of its goals for research needed to address the needs of natural and cultural partners for climate science in the Southeastern United States. The science themes described in this draft plan were established to address the information needs of ecoregion conservation partnerships, such as the Landscape Conservation Cooperatives (LCCs) and other regional conservation-science and resource-management partners. These themes were developed using priorities defined by partners and stakeholders in the Southeast and on a large-scale, multidisciplinary project-the Southeast Regional Assessment Project (SERAP)-developed in concert with those partners. Science products developed under these themes will provide models of potential future conditions, assessments of likely impacts, and tools that can be used to inform the conservation management decisions of LCCs and other partners. This information will be critical as managers try to anticipate and adapt to climate change. Resource managers in the Southeast are requesting this type of information, in many cases as a result of observed climate change effects. The Southeast CSC draft science plan identifies six science themes and frames the activities (tasks, with examples of recommended near-term work for each task included herein) related to each theme that are needed to achieve the objectives of the Southeast CSC.

  4. Spaced education activates students in a theoretical radiological science course: a pilot study

    PubMed Central

    2012-01-01

    Background The present study aimed at determining if the addition of spaced education to traditional face-to-face lectures increased the time students kept busy with the learning content of a theoretical radiological science course. Methods The study comprised two groups of 21 third-year dental students. The students were randomly assigned to a “traditional group” and a “spaced education group”. Both groups followed a traditional face-to-face course. The intervention in the spaced education group was performed in way that these students received e-mails with a delay of 14 days to each face-to-face lecture. These e-mails contained multiple choice questions on the learning content of the lectures. The students returned their answers to the questions also by e-mail. On return they received an additional e-mail that included the correct answers and additional explanatory material. All students of both groups documented the time they worked on the learning content of the different lectures before a multiple choice exam was held after the completion of the course. All students of both groups completed the TRIL questionnaire (Trierer Inventar zur Lehrevaluation) for the evaluation of courses at university after the completion of the course. The results for the time invested in the learning content and the results of the questionnaire for the two groups were compared using the Mann–Whitney-U test. Results The spaced education group spent significantly more time (216.2 ± 123.9 min) on keeping busy with the learning content compared to the traditional group (58.4 ± 94.8 min, p < .0005). The spaced education group rated the didactics of the course significantly better than the traditional group (p = .034). The students of the spaced education group also felt that their needs were fulfilled significantly better compared to the traditional group as far as communication with the teacher was concerned (p = .022). Conclusions Adding spaced

  5. The Reorganization of Basic Science Departments in U.S. Medical Schools, 1980-1999.

    ERIC Educational Resources Information Center

    Mallon, William T.; Biebuyck, Julien F.; Jones, Robert F.

    2003-01-01

    Constructed a longitudinal database to examine how basic science departments have been reorganized at U.S. medical schools. Found that there were fewer basic science departments in the traditional disciplines of anatomy, biochemistry, microbiology, pharmacology, and physiology in 1999 than in 1980. But as biomedical science has developed in an…

  6. Forecasting Science and Technology for the Department of Defense

    DTIC Science & Technology

    2009-12-01

    areas as astronomy, atmospheric sciences, and chemical engineering. Because the trend in research is toward multidisciplinary and transdisciplinary ...biosensing in a nonlinear manner. These technological convergences represented a transdisciplinary approach to science, one in which basic concepts

  7. Using Mathematics in Science: Working with Your Mathematics Department

    ERIC Educational Resources Information Center

    Lyon, Steve

    2014-01-01

    Changes to the mathematics and science curriculums are designed to increase rigour in mathematics, and place greater emphasis on mathematical content in science subjects at key stages 3, 4 and 5 (ages 11-18). One way to meet the growing challenge of providing increased emphasis on mathematics in the science curriculum is greater collaboration…

  8. [Comparison of accreditation procedures, ISO 9000 certification procedures and total quality management. Personal experiences and application of quality assurance in a department of radiology and medical imaging].

    PubMed

    Duvauferrier, R; Rolland, Y; Philippe, C; Milon, J; de Korvin, B; Rambeau, M; Morcet, N; Ramée, A

    1999-04-01

    Management of quality assurance protocols in a radiology department can be done by using several tools or models. Some are specific like accreditation manuals issued by some organizations, others like the ISO 9000 certification and the Total Quality management are more general and already well known by manufacturers. In order to implement a process of quality improvement, we have reviewed three models of quality assurance: evaluation in total quality based on the European model "EFQM", accreditation based on booklets from French cancer centers and Canadian radiology centers and, finally, accreditation based on the ISO 9002 certification model. Based on results of our comparative study, these three tools of quality management are not contradictory and may be complementary. However, they can be compared in terms of constraints they impose, of their historical background, of the criteria evaluated as well as the role of different teams. In conclusion, we suggest that directors of radiology department interested in implementing a quality assurance program first evaluate their department using the Canadian accreditation model issued in 1993 which is useful to become familiar with this new concept of quality. In a second step, a self assessment using the EFQM has to be done in collaboration with all members of the administration board in order to integrate all parameters and to share this protocol with all decision makers. The last step is to consolidate the organization of the quality assurance protocols by means of the ISO 9002 certification.

  9. The Effect of a State Department of Education Teacher Mentor Initiative on Science Achievement

    ERIC Educational Resources Information Center

    Pruitt, Stephen L.; Wallace, Carolyn S.

    2012-01-01

    This study investigated the effectiveness of a southern state's department of education program to improve science achievement through embedded professional development of science teachers in the lowest performing schools. The Science Mentor Program provided content and inquiry-based coaching by teacher leaders to science teachers in their own…

  10. User acceptance of a picture archiving and communication system (PACS) in a Saudi Arabian hospital radiology department

    PubMed Central

    2012-01-01

    Background Compared with the increasingly widespread use of picture archiving and communication systems (PACSs), knowledge concerning users’ acceptance of such systems is limited. Knowledge of acceptance is needed given the large (and growing) financial investment associated with the implementation of PACSs, and because the level of user acceptance influences the degree to which the benefits of the systems for healthcare can be realized. Methods A Technology Acceptance Model (TAM) was used to assess the level of acceptance of the host PACS by staff in the radiology department at King Abdulaziz Medical City (KAMC), Riyadh, Saudi Arabia. A questionnaire survey of 89 PACS users was employed to obtain data regarding user characteristics, perceived usefulness (PU) (6 items), perceived ease of use (PEU) (4 items), a change construct (4 items), and a behavior (acceptance) construct (9 items). Respondents graded each item in each construct using five-point likert scales. Results Surveyed users reported high levels of PU (4.33/5), PEU (4.15/5), change (4.26/5), and acceptance (3.86/5). The three constructs of PU, PEU, and change explained 41 % of the variation in PACS user acceptance. PU was the most important predictor, explaining 38 % of the variation on its own. The most important single item in the explanatory constructs was that users found PACS to have improved the quality of their work in providing better patient care. Technologists had lower acceptance ratings than did clinicians/radiologists, but no influence on acceptance level was found due to gender, age, or length of experience using the PACS. Although not directly measured, there appeared to be no cultural influence on either the level of acceptance or its determinants. Conclusions User acceptance must be considered when an organization implements a PACS, in order to enhance its successful adoption. Health organizations should adopt a PACS that offers all required functions and which is likely to

  11. Basic research supported by the Office of Basic Energy Sciences, U.S. Department of Energy

    SciTech Connect

    Kelley, R.D.

    1995-08-01

    This presentation will outline the basic research activities of the Office of Basic Energy Sciences (BES) of the U.S. Department of Energy. The BES mission is to develop understanding and to stimulate innovative thinking needed to fortify the Department`s mission. Of particular focus in the presentation are the research programs, amounting to about $10 million, supported by the Materials Sciences Division and the Chemical Sciences Division which are fairly directly related to electrochemical technologies.

  12. Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the Marine Sciences Laboratory, Sequim Site

    SciTech Connect

    Barnett, J. Matthew; Meier, Kirsten M.; Snyder, Sandra F.; Antonio, Ernest J.; Fritz, Brad G.; Poston, Theodore M.

    2012-12-27

    This document of Data Quality Objectives (DQOs) was prepared based on the U.S. Environmental Protection Agency (EPA) Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA, QA/G4, 2/2006 (EPA 2006), as well as several other published DQOs. The intent of this report is to determine the necessary steps required to ensure that radioactive emissions to the air from the Marine Sciences Laboratory (MSL) headquartered at the Pacific Northwest National Laboratory’s Sequim Marine Research Operations (Sequim Site) on Washington State’s Olympic Peninsula are managed in accordance with regulatory requirements and best practices. The Sequim Site was transitioned in October 2012 from private operation under Battelle Memorial Institute to an exclusive use contract with the U.S. Department of Energy, Office of Science, Pacific Northwest Site Office.

  13. How Is Science Being Taught? Measuring Evidence-Based Teaching Practices across Undergraduate Science Departments

    PubMed Central

    Drinkwater, Michael J.; Matthews, Kelly E.; Seiler, Jacob

    2017-01-01

    While there is a wealth of research evidencing the benefits of active-learning approaches, the extent to which these teaching practices are adopted in the sciences is not well known. The aim of this study is to establish an evidential baseline of teaching practices across a bachelor of science degree program at a large research-intensive Australian university. Our purpose is to contribute to knowledge on the adoption levels of evidence-based teaching practices by faculty within a science degree program and inform our science curriculum review in practical terms. We used the Teaching Practices Inventory (TPI) to measure the use of evidence-based teaching approaches in 129 courses (units of study) across 13 departments. We compared the results with those from a Canadian institution to identify areas in need of improvement at our institution. We applied a regression analysis to the data and found that the adoption of evidence-based teaching practices differs by discipline and is higher in first-year classes at our institution. The study demonstrates that the TPI can be used in different institutional contexts and provides data that can inform practice and policy. PMID:28232589

  14. How Is Science Being Taught? Measuring Evidence-Based Teaching Practices across Undergraduate Science Departments.

    PubMed

    Drinkwater, Michael J; Matthews, Kelly E; Seiler, Jacob

    2017-01-01

    While there is a wealth of research evidencing the benefits of active-learning approaches, the extent to which these teaching practices are adopted in the sciences is not well known. The aim of this study is to establish an evidential baseline of teaching practices across a bachelor of science degree program at a large research-intensive Australian university. Our purpose is to contribute to knowledge on the adoption levels of evidence-based teaching practices by faculty within a science degree program and inform our science curriculum review in practical terms. We used the Teaching Practices Inventory (TPI) to measure the use of evidence-based teaching approaches in 129 courses (units of study) across 13 departments. We compared the results with those from a Canadian institution to identify areas in need of improvement at our institution. We applied a regression analysis to the data and found that the adoption of evidence-based teaching practices differs by discipline and is higher in first-year classes at our institution. The study demonstrates that the TPI can be used in different institutional contexts and provides data that can inform practice and policy.

  15. DRAFT - Design of Radiological Survey and Sampling to Support Title Transfer or Lease of Property on the Department of Energy Oak Ridge Reservation

    SciTech Connect

    Cusick L.T.

    2002-09-25

    The U.S. Department of Energy (DOE) owns, operates, and manages the buildings and land areas on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. As land and buildings are declared excess or underutilized, it is the intent of DOE to either transfer the title of or lease suitable property to the Community Reuse Organization of East Tennessee (CROET) or other entities for public use. It is DOE's responsibility, in coordination with the U.S. Environmental Protection Agency (EPA), Region 4, and the Tennessee Department of Environment and Conservation (TDEC), to ensure that the land, facilities, and personal property that are to have the title transferred or are to be leased are suitable for public use. Release of personal property must also meet site requirements and be approved by the DOE contractor responsible for site radiological control. The terms title transfer and lease in this document have unique meanings. Title transfer will result in release of ownership without any restriction or further control by DOE. Under lease conditions, the government retains ownership of the property along with the responsibility to oversee property utilization. This includes involvement in the lessee's health, safety, and radiological control plans and conduct of site inspections. It may also entail lease restrictions, such as limiting access to certain areas or prohibiting digging, drilling, or disturbing material under surface coatings. Survey and sampling requirements are generally more rigorous for title transfer than for lease. Because of the accelerated clean up process, there is an increasing emphasis on title transfers of facilities and land. The purpose of this document is to describe the radiological survey and sampling protocols that are being used for assessing the radiological conditions and characteristics of building and land areas on the Oak Ridge Reservation that contain space potentially available for title transfer or lease. After necessary surveys and

  16. Department of Defense Laboratory Civilian Science and Engineering Workforce - 2013

    DTIC Science & Technology

    2013-10-01

    130 Foreign Affairs 633 Physical Therapist 1222 Patent Attorney 131 International Relations 644 Medical Technologist 1301 General Physical Science...132 Intelligence 662 Optometrist 1306 Health Physics 150 Geography 665 Speech Pathology and Audiology 1310 Physics 170 History 680 Dental Officer

  17. Individuals and Leadership in an Australian Secondary Science Department: A Qualitative Study

    ERIC Educational Resources Information Center

    Melville, Wayne; Wallace, John; Bartley, Anthony

    2007-01-01

    In this article, we consider the complex and dynamic inter-relationships between individual science teachers, the social space of their work and their dispositions towards teacher leadership. Research into the representation of school science departments through individual science teachers is scarce. We explore the representations of four…

  18. Basic Research Policy of the Department of Defense: Report of the Defense Science Board Task Force

    DTIC Science & Technology

    1968-02-20

    Classification) Basic Research Policy of the Department of Defense, Report of the Defense Science Board Task Force, UNCLASSIFIED 12 PERSONAL AUTHOR(S) N/A...obsolete. SECURITY CLASSIFICATION OF THIS PAGE — In wcnssrnw BASIC RESEARCH POLICY OF THE DEPARTMENT OF DEFENSE Report of the Defense Science Board Task...BOARD SUBJECT: Report of Task Force on Basic Research Policy The Task Force of the Defense Science Board, appointed at the request of the

  19. [The trial of business data analysis at the Department of Radiology by constructing the auto-regressive integrated moving-average (ARIMA) model].

    PubMed

    Tani, Yuji; Ogasawara, Katsuhiko

    2012-01-01

    This study aimed to contribute to the management of a healthcare organization by providing management information using time-series analysis of business data accumulated in the hospital information system, which has not been utilized thus far. In this study, we examined the performance of the prediction method using the auto-regressive integrated moving-average (ARIMA) model, using the business data obtained at the Radiology Department. We made the model using the data used for analysis, which was the number of radiological examinations in the past 9 years, and we predicted the number of radiological examinations in the last 1 year. Then, we compared the actual value with the forecast value. We were able to establish that the performance prediction method was simple and cost-effective by using free software. In addition, we were able to build the simple model by pre-processing the removal of trend components using the data. The difference between predicted values and actual values was 10%; however, it was more important to understand the chronological change rather than the individual time-series values. Furthermore, our method was highly versatile and adaptable compared to the general time-series data. Therefore, different healthcare organizations can use our method for the analysis and forecasting of their business data.

  20. Radiological dose assessment of Department of Energy Pinellas Plant waste proposed for disposal at Laidlaw Environmental Services of South Carolina, Inc.

    SciTech Connect

    Socolof, M.L.; Lee, D.W.

    1996-05-01

    The U.S. Department of Energy (DOE) Pinellas Plant in Largo, FL is proposing to ship and dispose of hazardous sludge, listed as F006 waste, to the Laidlaw Environmental Services of South Carolina, Inc. (Laidlaw) treatment, storage, and disposal facility in Pinewood, South Carolina. This sludge contains radioactive tritium in concentrations of about 28 pCi/g. The objective of this study is to assess the possible radiological impact to workers at the Laidlaw facility and members of the public due to the handling, processing, and burial of the DOE waste containing tritium.

  1. M. D. Faculty Salaries in Psychiatry and All Clinical Science Departments, 1980-2006

    ERIC Educational Resources Information Center

    Haviland, Mark G.; Dial, Thomas H.; Pincus, Harold Alan

    2009-01-01

    Objective: The authors compare trends in the salaries of physician faculty in academic departments of psychiatry with those of physician faculty in all academic clinical science departments from 1980-2006. Methods: The authors compared trend lines for psychiatry and all faculty by academic rank, including those for department chairs, by graphing…

  2. Radiation exposure and chromosome abnormalities. Human cytogenetic studies at the National Institute of Radiological Sciences, Japan, 1963-1988

    SciTech Connect

    Ishihara, T.; Kohno, S.; Minamihisamatsu, M. )

    1990-03-01

    The results of human cytogenetic studies performed at the National Institute of Radiological Sciences (NIRS), Chiba, Japan for about 25 years are described. The studies were pursued primarily under two major projects: one involving people exposed to radiation under various conditions and the other involving patients with malignant diseases, especially leukemias. Whereas chromosome abnormalities in radiation-exposed people are excellent indicators of radiation exposure, their behavior in bone marrow provide useful information for a better understanding of chromosome abnormalities in leukemias and related disorders. The role of chromosome abnormalities in the genesis and development of leukemia and related disorders is considered, suggesting a view for future studies in this field.

  3. U.S. Department of the Interior Southeast Climate Science Center Science and Operational Plan

    USGS Publications Warehouse

    Jones, Sonya A.; Dalton, Melinda S.

    2012-01-01

    Climate change challenges many of the basic assumptions routinely used by conservation planners and managers, including the identification and prioritization of areas for conservation based on current environmental conditions and the assumption those conditions could be controlled by management actions. Climate change will likely alter important ecosystem drivers (temperature, precipitation, and sea-level rise) and make it difficult, if not impossible, to maintain current environmental conditions into the future. Additionally, the potential for future conservation of non-conservation lands may be affected by climate change, which further complicates resource planning. Potential changes to ecosystem drivers, as a result of climate change, highlight the need to develop and adapt effective conservation strategies to cope with the effects of climate and landscape change. The U.S. Congress, recognized the potential effects of climate change and authorized the creation of the U.S. Geological Survey National Climate Change and Wildlife Science Center (NCCWSC) in 2008. The directive of the NCCWSC is to produce science that supports resource-management agencies as they anticipate and adapt to the effects of climate change on fish, wildlife, and their habitats. On September 14, 2009, U.S. Department of the Interior (DOI) Secretary Ken Salazar signed Secretarial Order 3289 (amended February 22, 2010), which expanded the mandate of the NCCWSC to address climate-change-related impacts on all DOI resources. Secretarial Order 3289 "Addressing the Impacts of Climate Change on America's Water, Land, and Other Natural and Cultural Resources," established the foundation of two partner-based conservation science entities: Climate Science Centers (CSC) and their primary partners, Landscape Conservation Cooperatives (LCC). CSCs and LCCs are the Department-wide approach for applying scientific tools to increase the understanding of climate change, and to coordinate an effective response

  4. Department of Defense Laboratory Civilian Science and Engineering Workforce - 2011

    DTIC Science & Technology

    2011-05-01

    Attorney 130 Foreign Affairs 633 Physical Therapist 1222 Patent Attorney 131 International Relations 644 Medical Technologist 1301 General Physical...Science 132 Intelligence 662 Optometrist 1306 Health Physics 150 Geography 665 Speech Pathology and Audiology 1310 Physics 170 History 680 Dental... teachers are in S&E fields. Within these limitations, the Census Bureau’s 2007 American Community Survey permits an analysis of trends in the

  5. Bridging the Gap between Basic and Clinical Sciences: A Description of a Radiological Anatomy Course

    ERIC Educational Resources Information Center

    Torres, Anna; Staskiewicz, Grzegorz J.; Lisiecka, Justyna; Pietrzyk, Lukasz; Czekajlo, Michael; Arancibia, Carlos U.; Maciejewski, Ryszard; Torres, Kamil

    2016-01-01

    A wide variety of medical imaging techniques pervade modern medicine, and the changing portability and performance of tools like ultrasound imaging have brought these medical imaging techniques into the everyday practice of many specialties outside of radiology. However, proper interpretation of ultrasonographic and computed tomographic images…

  6. The National Climate Change and Wildlife Science Center and Department of the Interior Climate Science Centers annual report for 2014

    USGS Publications Warehouse

    Varela Minder, Elda; Padgett, Holly A.

    2015-10-27

    The National Climate Change and Wildlife Science Center (NCCWSC) and the Department of the Interior (DOI) Climate Science Centers (CSCs) had another exciting year in 2014. The NCCWSC moved toward focusing their science funding on several high priority areas and, along with the CSCs, gained new agency partners; contributed to various workshops, meetings, publications, student activities, and Tribal/indigenous activities; increased outreach; and more. 

  7. Feminist Science in the Case of a Reform-Minded Biology Department

    NASA Astrophysics Data System (ADS)

    Buxton, Cory A.

    This study explores how science and scientists were produced and reproduced within the setting of a university biology department. Building on recent work in the anthropology of education and feminist science studies, the author explored the reflexive questions of whether increased women's representation in science changed science practice and whether changing science practice increased women's representation insolence. The author examined both the contextual and constitutive values of science as they were negotiated and played out in the training of scientists in this setting. The author found some ways in which these values were shifting as more women assumed places of leadership in the department. At the same time, the author identified other ways in which the presence of women did not seem to cause the types of changes that feminist science studies have hypothesized. These findings can be interpreted through the anthropological perspective of practice theory, in which individuals are seen as exerting agency both within and against institutional structures.

  8. The Gender and Race-Ethnicity of Faculty in Top Science and Engineering Research Departments

    NASA Astrophysics Data System (ADS)

    Beutel, Ann M.; Nelson, Donna J.

    This study examines the gender and racial-ethnic composition of faculty in top research departments for science and engineering "S-E - disciplines. There are critical masses of at least 15% women in top research departments in biological sciences, psychology, and social sciences but not in physical sciences and engineering. Blacks and Hispanics together make up only 4.1% of the faculty in our study. Black and Hispanic females are the most poorly represented groups; together, they make up only 1% of the faculty in top S-E research departments. For most S-E disciplines, less than 15% of full professors in top research departments are women or non-Whites.

  9. Bridging the gap between basic and clinical sciences: A description of a radiological anatomy course.

    PubMed

    Torres, Anna; Staśkiewicz, Grzegorz J; Lisiecka, Justyna; Pietrzyk, Łukasz; Czekajlo, Michael; Arancibia, Carlos U; Maciejewski, Ryszard; Torres, Kamil

    2016-05-06

    A wide variety of medical imaging techniques pervade modern medicine, and the changing portability and performance of tools like ultrasound imaging have brought these medical imaging techniques into the everyday practice of many specialties outside of radiology. However, proper interpretation of ultrasonographic and computed tomographic images requires the practitioner to not only hone certain technical skills, but to command an excellent knowledge of sectional anatomy and an understanding of the pathophysiology of the examined areas as well. Yet throughout many medical curricula there is often a large gap between traditional anatomy coursework and clinical training in imaging techniques. The authors present a radiological anatomy course developed to teach sectional anatomy with particular emphasis on ultrasonography and computed tomography, while incorporating elements of medical simulation. To assess students' overall opinions about the course and to examine its impact on their self-perceived improvement in their knowledge of radiological anatomy, anonymous evaluation questionnaires were provided to the students. The questionnaires were prepared using standard survey methods. A five-point Likert scale was applied to evaluate agreement with statements regarding the learning experience. The majority of students considered the course very useful and beneficial in terms of improving three-dimensional and cross-sectional knowledge of anatomy, as well as for developing practical skills in ultrasonography and computed tomography. The authors found that a small-group, hands-on teaching model in radiological anatomy was perceived as useful both by the students and the clinical teachers involved in their clinical education. In addition, the model was introduced using relatively few resources and only two faculty members. Anat Sci Educ 9: 295-303. © 2015 American Association of Anatomists.

  10. The impact of introducing a no oral contrast abdominopelvic CT examination (NOCAPE) pathway on radiology turn around times, emergency department length of stay, and patient safety.

    PubMed

    Razavi, Seyed Amirhossein; Johnson, Jamlik-Omari; Kassin, Michael T; Applegate, Kimberly E

    2014-12-01

    This investigation evaluates the impact of the no oral contrast abdominopelvic CT examination (NOCAPE) on radiology turn around time (TAT), emergency department (ED) length of stay (LOS), and patient safety metrics. During a 12-month period at two urban teaching hospitals, 6,409 ED abdominopelvic (AP) CTs were performed to evaluate acute abdominal pain. NOCAPE represented 70.9 % of all ED AP CT examinations with intravenous contrast. Data collection included patient demographics, use of intravenous (IV) and/or oral contrast, order to complete and order to final interpretation TAT, ED LOS, admission, recall and bounce back rates, and comparison and characterization of impressions. The NOCAPE pathway reduced median order to complete TAT by 32 min (22.9 %) compared to IV and oral contrast AP CT examinations (traditional pathway) (P < 0.001). Median order to final TAT was 2.9 h in NOCAPE patients and 3.5 h in the traditional pathway, a 36-min (17.1 %) reduction (P < 0.001). Overall, the NOCAPE pathway reduced ED LOS by a median of 43 min (8.8 %) compared to the traditional pathway (8.2 vs 7.5 h) (P = 0.003). Recall and bounce back rates were 3.2 %, and only one patient had change in impression after oral contrast CT was repeated. The NOCAPE pathway is associated with decreased radiology TAT and ED LOS metrics. The authors suggest that NOCAPE implementation in the ED setting is safe and positively impacts both radiology and emergency medicine workflow.

  11. Department of Energy – Office of Science Pacific Northwest Site Office Environmental Monitoring Plan for the DOE-SC PNNL Site

    SciTech Connect

    Snyder, Sandra F.; Meier, Kirsten M.; Barnett, J. Matthew; Bisping, Lynn E.; Poston, Ted M.; Rhoads, Kathleen

    2011-12-21

    The Pacific Northwest Site Office (PNSO) manages the contract for operations at the U.S. Depart¬ment of Energy Office of Science (DOE-SC) Pacific Northwest National Laboratory (PNNL) Site in Richland, Washington. Radiological operations at the DOE-SC PNNL Site expanded in 2010 with the completion of facilities at the Physical Sciences Facility. As a result of the expanded radiological work at the site, the Washington State Department of Health (WDOH) has required that offsite environmental surveillance be conducted as part of the PNNL Site Radioactive Air Emissions License. The environ¬mental monitoring and surveillance requirements of various orders, regulations, and guidance documents consider emission levels and subsequent risk of negative human and environmental impacts. This Environmental Monitoring Plan (EMP) describes air surveillance activities at the DOE-SC PNNL Site. The determination of offsite environmental surveillance needs evolved out of a Data Quality Objectives process (Barnett et al. 2010) and Implementation Plan (Snyder et al. 2010). The entire EMP is a compilation of several documents, which include the Main Document (this text), Attachment 1: Sampling and Analysis Plan, Attachment 2: Data Management Plan, and Attachment 3: Dose Assessment Guidance.

  12. Status of science education in state departments of education: An initial report

    NASA Astrophysics Data System (ADS)

    Dowling, Kenneth W.; Yager, Robert E.

    The past five years have been characterized as times of assessment in science education. One aspect of the profession where little information has been reported is the service and leadership provided by the various Departments of Education that exist as a part of the 50 state governments. Information was collected from the 50 states concerning the professional preparation of state science consultants, the nature of the positions, number of workers employed in such units, changes in support staff, facilities, and budget for each five year interval between 1960-1980. Science consultants are 46 years of age, have completed more than 10 years of classroom teaching, have been supervisors at the last level, have been in state positions for one-eight years, and have a Master's degree (half have the Ph.D.). Science consultants in the state department of education work in local schools, write proposals, assist with other administrative duties, work as members of evaluation teams. They spend two-thirds of their time in science education per se. The duties have become more general with less time spent exclusively on science education duties. The positions have become more involved with regulations, evaluations; the consultants enjoying less flexibility in their jobs. There has been a decline in terms of numbers of consultants, budget for science education; and general support for science education projects in state departments of education during the 20-year period surveyed.

  13. Status of a compact electron cyclotron resonance ion source for National Institute of Radiological Sciences-930 cyclotron.

    PubMed

    Hojo, S; Katagiri, K; Nakao, M; Sugiura, A; Muramatsu, M; Noda, A; Okada, T; Takahashi, Y; Komiyama, A; Honma, T; Noda, K

    2014-02-01

    The Kei-source is a compact electron cyclotron resonance ion source using only permanent magnets and a frequency of 10 GHz. It was developed at the National Institute of Radiological Sciences (NIRS) for producing C(4+) ions oriented for high-energy carbon therapy. It has also been used as an ion source for the NIRS-930 cyclotron. Its microwave band region for the traveling-wave-tube amplifier and maximum output power are 8-10 GHz and 350 W, respectively. Since 2006, it has provided various ion beams such as proton, deuteron, carbon, oxygen, and neon with sufficient intensity (200 μA for proton and deuteron, 50 μA for C(4+), for example) and good stability for radioisotope production, tests of radiation damage, and basic research experiments. Its horizontal and vertical emittances were measured using a screen monitor and waist-scan. The present paper reports the current status of the Kei-source.

  14. Implementing Change within a School Science Department: Progressive and Dissonant Voices

    NASA Astrophysics Data System (ADS)

    Rigano, Donna L.; Ritchie, Stephen M.

    2003-06-01

    The purpose of this study was to describe the teaching and leadership experiences of a science teacher who, as head of department, was preparing to introduce changes in the science department of an independent school in response to the requirements of the new junior science syllabus in Queensland, Australia. This teacher consented to classroom observations and interviews with the researchers where his beliefs about teaching practice and change were explored. Other science teachers at the school also were interviewed about their reactions to the planned changes. Interpretive analysis of the data provides an account of the complex interactions, negotiations, compromises, concessions, and trade-offs faced by the teacher during a period of education reform. Perceived barriers existing within the school that impeded proposed change are identified.

  15. Medical response to a radiologic/nuclear event: integrated plan from the Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services.

    PubMed

    Coleman, C Norman; Hrdina, Chad; Bader, Judith L; Norwood, Ann; Hayhurst, Robert; Forsha, Joseph; Yeskey, Kevin; Knebel, Ann

    2009-02-01

    The end of the Cold War led to a reduced concern for a major nuclear event. However, the current threats from terrorism make a radiologic (dispersal or use of radioactive material) or nuclear (improvised nuclear device) event a possibility. The specter and enormousness of the catastrophe resulting from a state-sponsored nuclear attack and a sense of nihilism about the effectiveness of a response were such that there had been limited civilian medical response planning. Although the consequences of a radiologic dispersal device are substantial, and the detonation of a modest-sized (10 kiloton) improvised nuclear device is catastrophic, it is both possible and imperative that a medical response be planned. To meet this need, the Office of the Assistant Secretary for Preparedness and Response in the Department of Health and Human Services, in collaboration within government and with nongovernment partners, has developed a scientifically based comprehensive planning framework and Web-based "just-in-time" medical response information called Radiation Event Medical Management (available at http://www.remm.nlm.gov). The response plan includes (1) underpinnings from basic radiation biology, (2) tailored medical responses, (3) delivery of medical countermeasures for postevent mitigation and treatment, (4) referral to expert centers for acute treatment, and (5) long-term follow-up. Although continuing to evolve and increase in scope and capacity, current response planning is sufficiently mature that planners and responders should be aware of the basic premises, tools, and resources available. An effective response will require coordination, communication, and cooperation at an unprecedented level. The logic behind and components of this response are presented to allow for active collaboration among emergency planners and responders and federal, state, local, and tribal governments.

  16. DOC/WSNSO (Department of Commerce/Weather Service Nuclear Support Office) operational support to Federal Radiological Monitoring and Assessment Center

    SciTech Connect

    Mueller, P.

    1989-01-01

    The National Weather Service (NWS) is an agency of the Department of Commerce. The NWS has hundreds of weather offices throughout the United States. The Weather Service Nuclear Support Office (WSNSO) is a highly specialized unit of NWS that provides direct support to the U.S. Department of Energy's (DOE's) underground nuclear testing program. The WSNSO has been associated with the DOE for >33 yr. As a result of the unique relationship with the DOE, all WSNSO emergency response meteorologists and meteorological technicians are allowed access to classified material. Meteorological phenomena play a significant role during a Federal Radiological Monitoring and Assessment Center (FRMAC) event, and WSNSO meteorologists provide direct support to ARAC. The marriage of state-of-the-art computer systems together with proven technology provides the on-scene WSNSO meteorologist with essentially a portable fully equipped, fully functional, advanced NWS weather station. The WSNSO's emergency response personnel and hardware are at the ready and can be mobilized within 2 h. WSNSO can provide on-scene weather forecasts and critical weather data collection whenever and wherever necessary.

  17. Turf wars in radiology: what must academic radiology do?

    PubMed

    Rao, Vijay M; Levin, David C

    2007-09-01

    In a previous article in this series, the authors called on private practice radiology groups to better support radiology research financially but also pointed out that academic radiology must make some changes as well. In this article, the authors discuss those changes in detail. They include revising the structure of the radiology residency, changing the timing of the American Board of Radiology oral examinations, requiring that all residents receive research training, and emphasizing the value of clinical and translational research. The Society of Chairmen of Academic Radiology Departments needs to assume a leadership role in implementing these changes.

  18. Department of Energy Nanoscale Science Research Centers: Approach to Nanomaterial ES&H

    SciTech Connect

    None, None

    2008-05-12

    The following non-mandatory guidance is intended for the Nanoscale Science Research Centers (NSRCs) funded by the Basic Energy Sciences program office under the U.S. Department of Energy's Office of Science. It describes practices thought appropriate to the management of environmental, safety and health (ES&H) concerns associated with laboratory-scale operations involving the design, synthesis, or characterization of engineered nanomaterials, In general, it is intended to apply to precursors, intermediates, and wastes used during, or resulting from synthesizing such nanomaterials. In general, it is not intended to apply to materials for which an occupational exposure limit has been established.

  19. Actionable Science Lessons Emerging from the Department of Interior Climate Science Center Network

    NASA Astrophysics Data System (ADS)

    McMahon, G.; Meadow, A. M.; Mikels-Carrasco, J.

    2015-12-01

    The DOI Advisory Committee on Climate Change and Natural Resource Science (ACCCNRS) has recommended that co-production of actionable science be the core programmatic focus of the Climate Science Center enterprise. Efforts by the Southeast Climate Science Center suggest that the complexity of many climate adaptation decision problems (many stakeholders that can influence implementation of a decision; the problems that can be viewed at many scales in space and time; dynamic objectives with competing values; complex, non-linear systems) complicates development of research-based information that scientists and non-scientists view as comprehensible, trustworthy, legitimate, and accurate. Going forward, organizers of actionable science efforts should consider inclusion of a broad set of stakeholders, beyond formal decisionmakers, and ensure that sufficient resources are available to explore the interests and values of this broader group. Co-produced research endeavors should foster agency and collaboration across a wide range of stakeholders. We recognize that stakeholder agency may be constrained by scientific or political power structures that limit the ability to initiate discussion, make claims, and call things into question. Co-production efforts may need to be preceded by more descriptive assessments that summarize existing climate science in ways that stakeholders can understand and link with their concerns. Such efforts can build rapport and trust among scientists and non-scientists, and may help stakeholders and scientists alike to frame adaptation decision problems amenable to a co-production effort. Finally, university and government researchers operate within an evaluation structure that rewards researcher-driven science that, at the extreme, "throws information over the fence" in the hope that information users will make better decisions. Research evaluation processes must reward more consultative, collaborative, and collegial research approaches if

  20. Growing Collegial Cultures in Subject Departments in Secondary Schools: Working with Science Staff.

    ERIC Educational Resources Information Center

    Busher, Hugh; Blease, Derek

    2000-01-01

    Considers how particular approaches to leading and managing laboratory technicians in some (British) secondary-school science departments enhanced collegiality. In some schools, lab paraprofessionals are involved in decision-making. Trust, delegation based on ability, cooperative values, inclusive leadership styles, and a sense of belonging were…

  1. Exploring Resource Sharing between Secondary School Teachers of Agriculture and Science Departments Nationally.

    ERIC Educational Resources Information Center

    Dormody, Thomas J.

    1992-01-01

    A survey of 372 secondary agriculture teachers received 274 responses showing a majority of agriculture and science departments share resources, although at low levels. Many more predicted future sharing. Equipment and supplies were most often shared, instructional services least often. (SK)

  2. An Assessment of Educational Needs for the Department of Wildlife Science.

    ERIC Educational Resources Information Center

    Eastmond, J. Nicholls, Jr.

    This study sought to identify the areas of most critical concern for curriculum emphasis for a department of wildlife science. The questionnaire was developed from existing documents and modified by a committee. Included in the sample were college seniors, graduates, employers, and faculty members. An overall rate of return of 65% (141 usable…

  3. Evaluating Usability of Radiology Information Systems in Hospitals of Tabriz University of Medical Sciences

    PubMed Central

    Rezaei-Hachesu, Peyman; Pesianian, Esmaeil; Mohammadian, Mohsen

    2016-01-01

    Introduction and purpose: Radiology information system (RIS) in order to reduce workload and improve the quality of services must be well-designed. Heuristic evaluation is one of the methods that understand usability problems with the least time, cost and resources. The aim of present study is to evaluate the usability of RISs in hospitals. Research Method: This is a cross-sectional descriptive study (2015) that uses heuristic evaluation method to evaluate the usability of RIS used in 3 hospitals of Tabriz city. The data are collected using a standard checklist based on 13 principles of Nielsen Heuristic evaluation method. Usability of RISs was investigated based on the number of components observed from Nielsen principles and problems of usability based on the number of non-observed components as well as non-existent or unrecognizable components. Results: by evaluation of RISs in each of the hospitals 1, 2 and 3, total numbers of observed components were obtained as 173, 202 and 196, respectively. It was concluded that the usability of RISs in the studied population, on average and with observing 190 components of the 291 components related to the 13 principles of Nielsen is 65.41 %. Furthermore, problems of usability were obtained as 26.35%. Discussion and Conclusion: The established and visible nature of some components such as response time of application, visual feedbacks, colors, view and design and arrangement of software objects cause more attention to these components as principal components in designing UI software. Also, incorrect analysis before system design leads to a lack of attention to secondary needs like Help software and security issues. PMID:27041810

  4. Research programs for Division of Chemical Sciences, Office of Basic Energy Sciences, Department of Energy

    SciTech Connect

    Not Available

    1988-01-01

    A chemical sciences review meeting was held in which research programs in chemistry were discussed. Major topics included: chemistry of actinides and fission products, interactions of solvents, solutes and surfaces in supercritical extraction, chemical and physical principles in multiphase separations, and chemical kinetics of enzyme catalyzed reactions. Individual projects are processed separately for the data bases. (CBS)

  5. The effect of a state Department of Education mentoring program for teachers on science student achievement

    NASA Astrophysics Data System (ADS)

    Lyon, Gilda Darlene

    The purpose of this study was to assess the effect of the Georgia Department of Education Science Specialist teacher-mentoring program on student achievement on science standardized tests. This study analyzed the impact this program has had on student achievement in participating high schools when compared with high schools across the state where the program had not intervened. The Georgia High School Graduation Test, physical science end-of-course, and biology end-of-course test data, from a three year period, were collected from the Georgia Department of Education website and analyzed using an independent-t test and the Mann-Whitney test. While test score improvements cannot be entirely attributed to the Science Specialist mentoring program, the study revealed state-wide increases in physical science end-of-course tests and the Georgia High School Graduation Test scores over the three-year period in those schools participating in the teacher-mentoring program. Significant increases in students with disabilities populations and economically disadvantaged populations were also noted.

  6. U.S. State Department urged to beef up science component

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The U.S. State Department often comes under pressure to respond to a variety of international emergencies one after another, from the U.S. embassy bombings in Kenya and Tanzania to Hurricane Mitch in Central America to the crisis in Kosovo.Many of the department's priorities include significant science, technology, and health (STH) components: nuclear nonproliferation, global climate change, protecting scientific databases, and international food and water supply safety, including arsenic in drinking water wells in Bangladesh, among other varied issues.

  7. The Jefferson Science Fellows (JSF) program at the US Department of State

    NASA Astrophysics Data System (ADS)

    Peterson, Roy

    2014-09-01

    In 2004 the US Department of State and the National Academies established the Jefferson Science Fellows program, to bring tenured faculty in sciences, engineering, and medicine to the Department of State or USAID for a year in residence, with continuing connections. Over twenty physical scientists have been Fellows, working in a wide variety of offices on a broad range of topics. The main advantage to Fellows is the opportunity to make an impact on important national and international issues, applying skills and judgments gained through their research, teaching, and service. The JSF experience can also create broader horizons for physicists, especially beyond the laboratory. The selection process and examples, including my own, will be described. Information can be found at //sites.nationalacademies.org/PGA/Jefferson/.

  8. The Effect of a State Department of Education Teacher Mentor Initiative on Science Achievement

    NASA Astrophysics Data System (ADS)

    Pruitt, Stephen L.; Wallace, Carolyn S.

    2012-06-01

    This study investigated the effectiveness of a southern state's department of education program to improve science achievement through embedded professional development of science teachers in the lowest performing schools. The Science Mentor Program provided content and inquiry-based coaching by teacher leaders to science teachers in their own classrooms. The study analyzed the mean scale scores for the science portion of the state's high school graduation test for the years 2004 through 2007 to determine whether schools receiving the intervention scored significantly higher than comparison schools receiving no intervention. The results showed that all schools achieved significant improvement of scale scores between 2004 and 2007, but there were no significant performance differences between intervention and comparison schools, nor were there any significant differences between various subgroups in intervention and comparison schools. However, one subgroup, economically disadvantaged (ED) students, from high-level intervention schools closed the achievement gap with ED students from no-intervention schools across the period of the study. The study provides important information to guide future research on and design of large-scale professional development programs to foster inquiry-based science.

  9. U.S. Department of the Interior South Central Climate Science Center

    USGS Publications Warehouse

    Shipp, Allison A.

    2012-01-01

    On September 14, 2009, the Secretary of the Interior signed a Secretarial Order (No. 3289) entitled, "Addressing the Impacts of Climate Change on America's Water, Land, and Other Natural and Cultural Resources." The Order effectively established the U.S. Department of the Interior (DOI) Climate Science Centers (CSCs) for the purpose of integrating DOI science and management expertise with similar contributions from our partners to provide information to support strategic adaptation and mitigation efforts on public and private lands across the United States and internationally. The South Central Climate Science Center (SC CSC) is supported by a consortium of partners that include The University of Oklahoma, Texas Tech University, Louisiana State University, The Chickasaw Nation, The Choctaw Nation of Oklahoma, Oklahoma State University, and the National Oceanic and Atmospheric Administration's Geophysical Fluid Dynamics Laboratory. Additionally, the SC CSC will collaborate with a number of other universities, State and federal agencies, and nongovernmental organizations (NGOs) with interests and expertise in climate science. The primary partners of the SC CSC are the Landscape Conservation Cooperatives (LCCs), which include the Desert, Eastern Tallgrass Prairie and Big Rivers, Great Plains, Gulf Coast Prairie, Gulf Coastal Plains and Ozarks, and Southern Rockies. CSC collaborations are focused on common science priorities that address priority partner needs, eliminate redundancies in science, share scientific information and findings, and expand understanding of climate change impacts in the south-central United States and Mexico.

  10. DEPARTMENT OF ENERGY SOIL AND GROUNDWATER SCIENCE AND TECHNOLOGY NEEDS, PLANS AND INITIATIVES

    SciTech Connect

    Aylward, B; V. ADAMS, V; G. M. CHAMBERLAIN, G; T. L. STEWART, T

    2007-12-12

    This paper presents the process used by the Department of Energy (DOE) Environmental Management (EM) Program to collect and prioritize DOE soil and groundwater site science and technology needs, develop and document strategic plans within the EM Engineering and Technology Roadmap, and establish specific program and project initiatives for inclusion in the EM Multi-Year Program Plan. The paper also presents brief summaries of the goals and objectives for the established soil and groundwater initiatives.

  11. Scientific Method in Teaching Physics in Languages and Social Sciences Department of High—Schools

    NASA Astrophysics Data System (ADS)

    Nagl, Mirko G.; Obadović, Dušanka Ž.; Stojanović, Maja M.

    2010-01-01

    The expansion of scientific materials in the last few decades, demands that the contemporary educational system should select and develop methods of effective learning in the process of acquiring skills and knowledge usable and feasible for a longer period of time. Grammar schools as general educational institutions possess all that is necessary for the development of new teaching methods and fitting into contemporary social tendencies. In the languages and social sciences department in of grammar schools physics is the only natural sciences subject present during all four years. The classical approach to teaching is tiring as such and creates aversion towards learning physic when it deals with pupils oriented towards social sciences. The introduction of scientific methods raises the motivation to a substantial level and when applied both the teacher and pupils forget when the class starts or ends. The assignment has shown the analysis of initial knowledge of physics of the pupils attending the first grade of languages and social sciences department of of grammar schools as a preparation for the introduction of the scientific method, the analysis of the initial test with the topic of gravitation, as well as the analysis of the final test after applying the scientific method through the topic of gravitation. The introduction of the scientific method has duly justified the expectations and resulted in increasing the level of achievement among the pupils in the experimental class.

  12. Soil Sampling to Demonstrate Compliance with Department of Energy Radiological Clearance Requirements for the ALE Unit of the Hanford Reach National Monument

    SciTech Connect

    Fritz, Brad G.; Dirkes, Roger L.; Napier, Bruce A.

    2007-04-01

    The Hanford Reach National Monument consists of several units, one of which is the Fitzner/Eberhardt Arid Lands Ecology Reserve (ALE) Unit. This unit is approximately 311 km2 of shrub-steppe habitat located to the south and west of Highway 240. To fulfill internal U. S. Department of Energy (DOE) requirements prior to any radiological clearance of land, DOE must evaluate the potential for residual radioactive contamination on this land and determine compliance with the requirements of DOE Order 5400.5. Historical soil monitoring conducted on ALE indicated soil concentrations of radionuclides were well below the Authorized Limits. However, the historical sampling was done at a limited number of sampling locations. Therefore, additional soil sampling was conducted to determine if the concentrations of radionuclides in soil on the ALE Unit were below the Authorized Limits. This report contains the results of 50 additional soil samples. The 50 soil samples collected from the ALE Unit all had concentrations of radionuclides far below the Authorized Limits. The average concentrations for all detectable radionuclides were less than the estimated Hanford Site background. Furthermore, the maximum observed soil concentrations for the radionuclides included in the Authorized Limits would result in a potential annual dose of 0.14 mrem assuming the most probable use scenario, a recreational visitor. This potential dose is well below the DOE 100-mrem per year dose limit for a member of the public. Spatial analysis of the results indicated no observable statistically significant differences between radionuclide concentrations across the ALE Unit. Furthermore, the results of the biota dose assessment screen, which used the ResRad Biota code, indicated that the concentrations of radionuclides in ALE Unit soil pose no significant health risk to biota.

  13. SU-E-P-57: Radiation Doses Assessment to Paediatric Patients for Some Digital Diagnostic Radiology Examination in Emergency Department in Qatar

    SciTech Connect

    Abdallah, I; Aly, A; Al Naemi, H

    2015-06-15

    Purpose: The aim of this study was to evaluate radiation doses to pediatric patients undergoing standard radiographic examinations using Direct Digital Radiography (DDR) in Paediatric emergency center of Hamad General Hospital (HGH) in state of Qatar and compared with regional and international Dose Reference Levels (DRLs). Methods: Entrance Skin Dose (ESD) was measured for 2739 patients for two common X-ray examinations namely: Chest AP/PA, Abdomen. Exposure factors such as kV, mAs and Focal to Skin Distance (FSD) were recorded for each patient. Tube Output was measured for a range of selected kV values. ESD for each individual patient was calculated using the tube output and the technical exposure factors for each examination. The ESD values were compared with the some international Dose Reference Levels (DRL) for all types of examinations. Results: The most performed procedure during the time of this study was chest PA/PA (85%). The mean ESD values obtained from AP chest, PA chest and AP abdomen ranged 91–120, 80–84 and 209 – 659 µGy per radiograph for different age’s groups respectively. Two protocols have been used for chest AP and PA using different radiological parameters, and the different of ESD values for chest PA and were 41% for 1 years old child, 57% for 5 years old for chest AP. Conclusion: The mean ESD were compared with those found in literature and were found to be comparable. The radiation dose can be reduced more for Chest AP and PA examination by optimization of each investigation and hence more studies are required for this task. The results presented will serve as a baseline data needed for deriving local reference doses for pediatric X-ray examinations in this local department and hence it can be applied in the whole Qatar.

  14. A Radiological Image Processing Facility and some of its Three-Dimensional Data Manipulation Capabilities

    PubMed Central

    Huang, H.K.; Mankovich, Nicholas J.; Chuang, K.S.; Papin, Patrick; Lo, S. B.; Wong, C. K.; Hernandez-Armas, Jose

    1983-01-01

    In anticipation of the arrival of a digital radiology department, a dedicated image processing laboratory has been established within the Department of Radiological Sciences, UCLA. This laboratory consists of a multiple user computer, an image processor, a communication system, and an image mass storage device. Three major areas of activities in the laboratory are the development of a radiological image archiving and communication system, installation of a multiple digital viewing station, and research on picture processing techniques to enhance the image diagnostic value. This paper describes the system configuration of the laboratory and some of its capabilities in manipulating three-dimensional medical images. ImagesFigure 2Figure 3Figure 4

  15. [Controlling instruments in radiology].

    PubMed

    Maurer, M

    2013-10-01

    Due to the rising costs and competitive pressures radiological clinics and practices are now facing, controlling instruments are gaining importance in the optimization of structures and processes of the various diagnostic examinations and interventional procedures. It will be shown how the use of selected controlling instruments can secure and improve the performance of radiological facilities. A definition of the concept of controlling will be provided. It will be shown which controlling instruments can be applied in radiological departments and practices. As an example, two of the controlling instruments, material cost analysis and benchmarking, will be illustrated.

  16. The Effect of a State Department of Education Teacher Mentor Initiative on Science Achievement

    NASA Astrophysics Data System (ADS)

    Pruitt, Stephen L.

    This study analyzed a state department of education's ability to have actual influence over the improvement of science achievement and proficiency by having direct relationships with science teachers in Georgia's lowest performing schools. The study employed a mixed ANOVA analysis of the mean scale scores and proficiency rates of the science portion of the Georgia High School Graduation Test (GHSGT) for the years 2004 through 2007 to determine if the intervention by the Science Mentor Program (SMP) had significant effect on the science achievement and proficiency within the cohort of schools, as compared to a set of schools receiving no intervention, on various subgroups within the schools, and on various levels of intervention within the SMP. All data used in this study are available to the public through the Georgia Department of Education (GaDOE). SMP schools were selected based on their level of intervention for three consecutive years. Non-SMP schools were selected based on demographic similarities in economically disadvantaged, white, African-American, and students with disabilities to ensure a match of pairings for analyses. The results of this study showed significant improvement of scale scores and proficiency rates between 2004 and 2007. The study showed significant increases in all schools regardless of treatment. The study also showed significant differences in performance within the subgroups. Males, white, non-Economically Disadvantaged, and regular education students were all found to have significantly better performance in both achievement and proficiency rate. Economically Disadvantaged students were found to have a significant difference with regard to treatment groups. There was a significant difference between the mean scale score and proficiency rates of Economically Disadvantaged students in schools receiving high-intervention and schools receiving no-intervention. Further analysis showed that the only significant difference was in 2004, the

  17. U.S. Department of the Interior South Central Climate Science Center strategic science plan, 2013--18

    USGS Publications Warehouse

    Winton, Kim T.; Dalton, Melinda S.; Shipp, Allison A.

    2013-01-01

    The Department of the Interior (DOI) recognizes and embraces the unprecedented challenges of maintaining our Nation’s rich natural and cultural resources in the 21st century. The magnitude of these challenges demands that the conservation community work together to develop integrated adaptation and mitigation strategies that collectively address the impacts of climate change and other landscape-scale stressors. On September 14, 2009, DOI Secretary Ken Salazar signed Secretarial Order 3289 (amended February 22, 2010) entitled, “Addressing the Impacts of Climate Change on America’s Water, Land, and Other Natural and Cultural Resources.” The Order establishes the foundation for two partner-based conservation science entities to address these unprecedented challenges: Climate Science Centers (CSCs and Landscape Conservation Cooperatives (LCCs). CSCs and LCCs are the Department-wide approach for applying scientific tools to increase understanding of climate change and to coordinate an effective response to its impacts on tribes and the land, water, ocean, fish and wildlife, and cultural-heritage resources that DOI manages. Eight CSCs have been established and are managed through the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC); each CSC works in close collaboration with their neighboring CSCs, as well as those across the Nation, to ensure the best and most efficient science is produced. The South Central CSC was established in 2012 through a cooperative agreement with the University of Oklahoma, Texas Tech University, Louisiana State University, the Chickasaw Nation, the Choctaw Nation of Oklahoma, Oklahoma State University, and NOAA’s Geophysical Fluid Dynamics Lab; hereafter termed the ”Consortium” of the South Central CSC. The Consortium has a broad expertise in the physical, biological, natural, and social sciences to address impacts of climate change on land, water, fish and wildlife, ocean, coastal, and

  18. [Forensic radiology].

    PubMed

    Stein, K M; Grünberg, K

    2009-01-01

    Forensic radiology includes both clinical and postmortem forensic radiology. Clinical forensic radiology deals with imaging of healthy people from a legal point of view, such as for determining age or to prove and document injuries in victims of crime. Postmortem forensic radiology deals with the application of modern radiological methods in order to optimise post-mortem diagnosis. X-ray examination has for decades been routinely used in postmortem diagnosis. Newer developments include the application of postmortem computer tomography and magnetic resonance imaging; these are the methods with the greatest information potential but also with the greatest deviations from diagnostics in living persons. Application of radiological methods for securing evidence in criminal procedures is still in its infancy. Radiologists' technical understanding and forensic doctors' knowledge of postmortem changes in a corpse must be synergised.

  19. Modeling Activities in the Department of Energy’s Atmospheric Sciences Program

    SciTech Connect

    Fast, Jerome D.; Ghan, Steven J.; Schwartz, Stephen E.

    2009-03-01

    The Department of Energy's Atmospheric Science Program (ASP) conducts research pertinent to radiative forcing of climate change by atmospheric aerosols. The program consists of approximately 40 highly interactive peer-reviewed research projects that examine aerosol properties and processes and the evolution of aerosols in the atmosphere. Principal components of the program are instrument development, laboratory experiments, field studies, theoretical investigations, and modeling. The objectives of the Program are to 1) improve the understanding of aerosol processes associated with light scattering and absorption properties and interactions with clouds that affect Earth's radiative balance and to 2) develop model-based representations of these processes that enable the effects of aerosols on Earth's climate system to be properly represented in global-scale numerical climate models. Although only a few of the research projects within ASP are explicitly identified as primarily modeling activities, modeling actually comprises a substantial component of a large fraction of ASP research projects. This document describes the modeling activities within the Program as a whole, the objectives and intended outcomes of these activities, and the linkages among the several modeling components and with global-scale modeling activities conducted under the support of the Department of Energy's Climate Sciences Program and other aerosol and climate research programs.

  20. Imaging and radiology

    MedlinePlus

    Interventional radiology; Diagnostic radiology; X-ray imaging ... DIAGNOSTIC RADIOLOGY Diagnostic radiology helps health care professionals see structures inside your body. Doctors that specialize in the interpretation ...

  1. Department of Energy's Biological and Environmental Research Strategic Data Roadmap for Earth System Science

    SciTech Connect

    Williams, Dean N.; Palanisamy, Giri; Shipman, Galen; Boden, Thomas A.; Voyles, Jimmy W.

    2014-04-25

    Rapid advances in experimental, sensor, and computational technologies and techniques are driving exponential growth in the volume, acquisition rate, variety, and complexity of scientific data. This wealth of scientifically meaningful data has tremendous potential to lead to scientific discovery. However, to achieve scientific breakthroughs, these data must be exploitable—they must be analyzed effectively and efficiently and the results shared and communicated easily within the wider Department of Energy’s (DOE’s) Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) community. The explosion in data complexity and scale makes these tasks exceedingly difficult to achieve, particularly given that an increasing number of disciplines are working across techniques, integrating simulation and experimental or observational results (see Table 5 in Appendix 2). Consequently, we need new approaches to data management, analysis, and visualization that provide research teams with easy-to-use and scalable end-to-end solutions. These solutions must facilitate (and where feasible, automate and capture) every stage in the data lifecycle (shown in Figure 1), from collection to management, annotation, sharing, discovery, analysis, and visualization. In addition, the core functionalities are the same across climate science communities, but they require customization to adapt to specific needs and fit into research and analysis workflows. To this end, the mission of CESD’s Data and Informatics Program is to integrate all existing and future distributed CESD data holdings into a seamless and unified environment for the acceleration of Earth system science.

  2. Graduate Students from Developing Countries in U.S. Science Departments. A Handbook for Department Chairs and Faculty Members.

    ERIC Educational Resources Information Center

    American Association for the Advancement of Science, Washington, DC.

    This guide is intended to assist college faculty members working with graduate students from developing nations who may need help bridging the gap between their educational backgrounds and the requirements of graduate science programs which are primarily planned for U.S. students. Differences are noted in the pre-graduate school training of such…

  3. Meeting at the crossroads: collaboration between information technology departments and health sciences libraries

    PubMed Central

    King, Samuel; Cataldi-Roberts, Erica; Wentz, Erin

    2017-01-01

    Objective The purposes of this survey were to determine the nature and extent of collaboration between health sciences libraries and their information technology (IT) departments, to identify strengths and issues connected to this relationship, and to provide examples demonstrating exceptional collaborative success. Methods A fourteen-question survey was sent to a broad selection of health care and academic libraries through a variety of email discussion lists and was limited to one response per institution. Convenience sampling was used to collect the responses. Results An overwhelming majority of libraries described the relationship with their IT departments as good or excellent, and there were a variety of creative joint initiatives underway. Opportunities exist for continued and expanded library/IT collaboration. Conclusions Good quality relationships between libraries and their IT departments are essential due to the interconnected nature of their services, and fortunately, this appears to be the norm at a variety of institutions. Mutual respect, open communication, realization of each department’s mission, and responsiveness to each other’s needs are part of what makes these relationships successful, which in turn leads to successful collaborative ventures that bode well for the future of both services. PMID:28096743

  4. Chest radiology

    SciTech Connect

    Austin, J.H.M.

    1982-01-01

    This review of chest radiology reexamines normal findings on plain chest radiographs, and presents a new plain film view for detecting metastases in the lungs, and describes new findings on acute and chronic inflammatory diseases. Various chest radiologic procedures are examined. (KRM)

  5. Annual Report and Abstracts of Research of the Department of Computer and Information Science, July 1976-June 1977.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Computer and Information Science Research Center.

    The annual report of the Department of Computer and Information Science includes abstracts of research carried out during the 1976-77 academic year with support from grants by governmental agencies and industry, as well as The Ohio State University. The report covers the department's organizational structure, objectives, highlights of department…

  6. Assessment that Matters: Integrating the "Chore" of Department-Based Assessment with Real Improvements in Political Science Education

    ERIC Educational Resources Information Center

    Deardorff, Michelle D.; Folger, Paul J.

    2005-01-01

    Assessment requirements often raise great concerns among departments and faculty: fear of loss of autonomy, distraction from primary departmental goals, and the creation of alien and artificial external standards. This article demonstrates how one political science department directly responded to their own unique circumstances in assessing their…

  7. A Look at the Definition, Pedagogy, and Evaluation of Scientific Literacy within the Natural Science Departments at a Southwestern University

    ERIC Educational Resources Information Center

    Flynn, Deborah Kay

    2011-01-01

    This study focuses on the promotion of scientific literacy within the natural science departments and how faculty within these departments define, incorporate, and evaluate scientific literacy in their courses. The researcher examined data from participant interviews, observations, and archival material from courses taught by the participants. The…

  8. Department of Energy Mathematical, Information, and Computational Sciences Division: High Performance Computing and Communications Program

    SciTech Connect

    1996-11-01

    This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, The DOE Program in HPCC), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW).

  9. Department of Energy: MICS (Mathematical Information, and Computational Sciences Division). High performance computing and communications program

    SciTech Connect

    1996-06-01

    This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, {open_quotes}The DOE Program in HPCC{close_quotes}), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW). The information pointed to by the URL is updated frequently, and the interested reader is urged to access the WWW for the latest information.

  10. [Paternity exclusion tests in the Department of Forensic Medicine, University of Medical Sciences in Poznan].

    PubMed

    Koralewska-Kordel, Małgorzata; Kordel, Krzysztof; Przybylski, Zygmunt; Wiśniewski, Sławomir A

    2006-01-01

    The study comprises the analysis of expert's hemogenetic reports carried out in the Department of Forensic Medicine, University of Medical Sciences in Poznan, in the years 1980-2004 and associated with paternity determination or exclusion. In the analyzed period, the authors established 1064 cases of paternity exclusion in serological tests, 97 paternity exclusions in the HLA examinations, and 129 cases of paternity exclusions processed in DNA testing. On the base of gene frequencies, the theoretical chance of paternity exclusion was determined for every test. The significant usefulness of DNA testing in legal processes did not cause an increase in the percentage of paternity exclusions. Moreover, the authors observed a significant decrease in the number of paternity exclusions in comparison with results of serological tests (from 24.25% to 19.43%). With the drop in the number of births, the number of expert's reports significantly decreased.

  11. Integrating IT into the radiology environment.

    PubMed

    McDonald, Andrea

    2002-01-01

    Rather than perpetuating the struggle, "who controls the PACS, Radiology or Information Technology (IT)," Community Hospital of the Monterey Peninsula (CHOMP) took the approach of incorporating IT support within the Radiology Department. CHOMP faced the challenge of staffing Radiology computer systems and networks by using a two-pronged approach; promoting and training clinical staff in IT functions and transferring an experienced IT person into the Radiology Department. Roles and responsibilities are divided. CHOMP's IT Department supports the Radiology Department's desktop devices, PCs, printers, and standard peripherals; while the department's DICOM print and archive network, specialized hardware (e.g., Merge DICOM interface computers), and applications are supported by the Radiology Department. The IT Department provides operating system support for multi-user VMS, Unix, and NT-based systems, e.g. Sun Solaris for the DICOM archive, and Windows NT for Mitra PACS Broker, the HL7/DICOM interface engine. IT also supports network communications, i.e., network electronics (routers, switches, etc.), TCP/IP communications, and network traffic analysis; and OS operations support for major Radiology systems, e.g. back-ups and off-site tape storage. Radiology staff provides applications support and troubleshooting, including analyst functions for RIS; and are the first point of contact with the Radiology systems vendors, e.g., GE Medical, or Siemens. The Radiology Department's senior IT person, the Clinical Technology Coordinator, transferred from CHOMP's IT Department after 7 years in that department. She performs analysis and design associated with Radiology's computer systems, coordinates development of the department's strategic plan, evaluates vendor proposals, and assists the department with product and application selection. Her IT experience and growing knowledge of Radiology's clinical tasks enhances communications between the Radiology and IT departments. Formal

  12. Department of Energy's Virtual Lab Infrastructure for Integrated Earth System Science Data

    NASA Astrophysics Data System (ADS)

    Williams, D. N.; Palanisamy, G.; Shipman, G.; Boden, T.; Voyles, J.

    2014-12-01

    The U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) produces a diversity of data, information, software, and model codes across its research and informatics programs and facilities. This information includes raw and reduced observational and instrumentation data, model codes, model-generated results, and integrated data products. Currently, most of this data and information are prepared and shared for program specific activities, corresponding to CESD organization research. A major challenge facing BER CESD is how best to inventory, integrate, and deliver these vast and diverse resources for the purpose of accelerating Earth system science research. This talk provides a concept for a CESD Integrated Data Ecosystem and an initial roadmap for its implementation to address this integration challenge in the "Big Data" domain. Towards this end, a new BER Virtual Laboratory Infrastructure will be presented, which will include services and software connecting the heterogeneous CESD data holdings, and constructed with open source software based on industry standards, protocols, and state-of-the-art technology.

  13. Gender Ratios in High School Science Departments: The Effect of Percent Female Faculty on Multiple Dimensions of Students' Science Identities

    ERIC Educational Resources Information Center

    Gilmartin, Shannon; Denson, Nida; Li, Erika; Bryant, Alyssa; Aschbacher, Pamela

    2007-01-01

    To examine how school characteristics are tied to science and engineering views and aspirations of students who are underrepresented in science and engineering fields, this mixed-methods study explores relationships between aspects of students' science identities, and the representation of women among high school science teachers. Quantitative…

  14. 21 CFR 892.1980 - Radiologic table.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiologic table. 892.1980 Section 892.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1980 Radiologic table. (a) Identification. A...

  15. 21 CFR 892.1980 - Radiologic table.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiologic table. 892.1980 Section 892.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1980 Radiologic table. (a) Identification. A...

  16. 21 CFR 892.1980 - Radiologic table.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiologic table. 892.1980 Section 892.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1980 Radiologic table. (a) Identification. A...

  17. 21 CFR 892.1980 - Radiologic table.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiologic table. 892.1980 Section 892.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1980 Radiologic table. (a) Identification. A...

  18. 21 CFR 892.1980 - Radiologic table.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiologic table. 892.1980 Section 892.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1980 Radiologic table. (a) Identification. A...

  19. 10 CFR 835.501 - Radiological areas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Radiological areas. 835.501 Section 835.501 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.501 Radiological areas. (a... commensurate with existing and potential radiological hazards within the area. (c) One or more of the...

  20. 10 CFR 835.501 - Radiological areas.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Radiological areas. 835.501 Section 835.501 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.501 Radiological areas. (a... commensurate with existing and potential radiological hazards within the area. (c) One or more of the...

  1. 10 CFR 835.501 - Radiological areas.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Radiological areas. 835.501 Section 835.501 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.501 Radiological areas. (a... commensurate with existing and potential radiological hazards within the area. (c) One or more of the...

  2. 10 CFR 835.501 - Radiological areas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Radiological areas. 835.501 Section 835.501 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.501 Radiological areas. (a... commensurate with existing and potential radiological hazards within the area. (c) One or more of the...

  3. U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect

    2010-07-01

    Alternative fuels from renewable cellulosic biomass - plant stalks, trunks, stems, and leaves - are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced.' Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain - the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 30 years. The DOE Genomic Science program is advancing a new generation of research focused on achieving whole-systems understanding of biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. For more information on the Genomic Science program, see p. 26. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel

  4. Radiology research and medical students.

    PubMed

    Whitworth, Pat W; Agarwal, Ankit; Colucci, Andrew; Sherry, Steven J; Subramaniam, Rathan M

    2013-12-01

    Fostering radiology research among medical students can enhance a student's interest and understanding of radiology and research. It increases the academic productivity of the mentor and the department. Radiology faculty and departments should actively seek to recruit and engage students in research. Once involved, students benefit greatly from being given clear responsibility, close supervision, timely feedback, and a degree of autonomy. At the heart of the student research process is the crucial mentor-mentee relationship, and mentors should be cognizant of their vital role and methods of encouraging and enhancing this relationship. Ultimately, the advancement of the field of radiology depends on constant innovation and improvement. Radiology research by medical students fuels both innovation and the development of future academic radiologists and physician-scientists, helping to secure future growth for our field.

  5. Radiological worker training

    SciTech Connect

    1998-10-01

    This Handbook describes an implementation process for core training as recommended in Implementation Guide G441.12, Radiation Safety Training, and as outlined in the DOE Radiological Control Standard (RCS). The Handbook is meant to assist those individuals within the Department of Energy, Managing and Operating contractors, and Managing and Integrating contractors identified as having responsibility for implementing core training recommended by the RCS. This training is intended for radiological workers to assist in meeting their job-specific training requirements of 10 CFR 835. While this Handbook addresses many requirements of 10 CFR 835 Subpart J, it must be supplemented with facility-specific information to achieve full compliance.

  6. Characteristics of physicians engaged in basic science: a questionnaire survey of physicians in basic science departments of a medical school in Japan.

    PubMed

    Yamazaki, Yuka; Uka, Takanori; Shimizu, Haruhiko; Miyahira, Akira; Sakai, Tatsuo; Marui, Eiji

    2012-01-01

    The number of physicians engaged in basic science and teaching is sharply decreasing in Japan. To alleviate this shortage, central government has increased the quota of medical students entering the field. This study aimed to determine the characteristics of physicians who are engaged in basic science in efforts to recruit talent. A questionnaire was distributed to all 30 physicians in the basic science departments of Juntendo University School of Medicine. Question items inquired about sex, years since graduation, years between graduation and time entering basic science, clinical experience, recommending the career to medical students, expected obstacles to students entering basic science, efforts to inspire students in research, increased number of lectures and practical training sessions on research, and career choice satisfaction. Correlations between the variables were examined using χ(2) tests. Overall, 26 physicians, including 7 female physicians, returned the questionnaire (response rate 86.7%). Most physicians were satisfied with their career choice. Medical students were deemed not to choose basic science as their future career, because they aimed to become clinicians and because they were concerned about salary. Women physicians in basic science departments were younger than men. Women physicians also considered themselves to make more efforts in inspiring medical students to be interested in research. Moreover, physicians who became basic scientists earlier in their career wanted more research-related lectures in medical education. Improving physicians' salaries in basic science is important to securing talent. In addition, basic science may be a good career path for women physicians to follow.

  7. U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect

    2009-07-01

    Alternative fuels from renewable cellulosic biomass--plant stalks, trunks, stems, and leaves--are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced'. In the United States, the Energy Independence and Security Act (EISA) of 2007 is an important driver for the sustainable development of renewable biofuels. As part of EISA, the Renewable Fuel Standard mandates that 36 billion gallons of biofuels are to be produced annually by 2022, of which 16 billion gallons are expected to come from cellulosic feedstocks. Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain--the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 25 years. The DOE Genomic Science Program is advancing a new generation of research focused on achieving whole-systems understanding for biology. This program

  8. Radiological dose assessment of Department of Energy Pinellas Plant waste proposed for disposal at United States Pollution Controll, Inc. in Tooele County, Utah

    SciTech Connect

    Socolof, M.L.; Lee, D.W.; Kocher, D.C.

    1996-04-01

    Pinellas Plant (Largo FL) is proposing to ship hazardous sludge (F006 waste) to US Pollution Control Inc. (USPCI) hazardous waste landfill in Utah for disposal. This sludge contains tritium in concentrations of about 28 pCi/g. Objective of this study is to assess possible radiological impact to workers at USPCI and the public due to handling, processing, and burial of the tritium waste. Estimated doses to workers from waste handling and to the public from disposed waste range from 4.7x10{sup -6} to 9.8x10{sup -4} mrem/y. Results reveal extremely low annual doses that are far below natural background radiation exposure and regulatory limits.

  9. White Paper: Radiological Curriculum for Undergraduate Medical Education in Germany.

    PubMed

    Ertl-Wagner, B; Barkhausen, J; Mahnken, A H; Mentzel, H J; Uder, M; Weidemann, J; Stumpp, P

    2016-11-01

    Purpose: Radiology represents a highly relevant part of undergraduate medical education from preclinical studies to subinternship training. It is therefore important to establish a content base for teaching radiology in German Medical Faculties. Materials and Methods: The German Society of Radiology (DRG) developed a model curriculum for radiological teaching at German medical universities, which is presented in this article. There is also a European model curriculum for undergraduate teaching (U-level curriculum of the European Society of Radiology). In a modular concept, the students shall learn important radiological core principles in the realms of knowledge, skills and competences as well as core scientific competences in the imaging sciences. Results: The curriculum is divided into two modules. Module 1 includes principles of radiation biology, radiation protection and imaging technology, imaging anatomy as well as the risks and side effects of radiological methods, procedures and contrast media. This module is modality-oriented. Module 2 comprises radiological diagnostic decision-making and imaging-based interventional techniques for various disease entities. This module is organ system-oriented. Conclusion: The curriculum is meant as a living document to be amended and revised at regular intervals. The curriculum can be used as a basis for individual curricular development at German Medical Faculties. It can be integrated into traditional or reformed medical teaching curricula. Key Points: • Radiology is an integral and important part of medical education.• The German Society of Radiology (DRG) developed a model curriculum for teaching radiology at German Medical Faculties to help students develop the ability to make medical decisions based on scientific knowledge and act accordingly.• This curriculum can be used for individual curricular development at medical departments. It is divided into two modules with several chapters. Citation Format

  10. The Department of the Interior Strategic Sciences Group and its Response to Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Ludwig, K. A.; Machlis, G. E.; Applegate, D.

    2013-12-01

    This presentation will describe the history, mission, and current activities of the newly formed Department of the Interior (DOI) Strategic Sciences Group (SSG), with a focus on its response to Hurricane Sandy and lessons learned from using scenario building to support decision making. There have been several environmental crises of national significance in recent years, including Hurricane Katrina (2005), large-scale California wildfires (2007-2008), the Deepwater Horizon oil spill (2010), and Hurricane Sandy (2012). Such events are complex because of their impacts on the ecology, economy, and people of the affected locations. In these and other environmental disasters, the DOI has had significant responsibilities to protect people and resources and to engage in emergency response, recovery, and restoration efforts. In recognition of the increasingly critical role of strategic science in responding to such complex events, the DOI established the SSG by Secretarial Order in 2012. Its purpose is to provide the DOI with science-based assessments and interdisciplinary scenarios of environmental crises affecting Departmental resources; rapidly assemble interdisciplinary teams of scientists from government, academia, and non-governmental organizations to conduct such work; and provide results to DOI leadership as usable knowledge to support decision making. March 2013 was the SSG's first deployment since its formation. The SSG's charge was to support DOI's participation on the Hurricane Sandy Rebuilding Task Force by developing scenarios of Hurricane Sandy's environmental, economic, and social consequences in the New York/New Jersey area and potential interventions that could improve regional resilience to future major storms. Over the course of one week, the SSG Sandy team (Operational Group Sandy) identified 13 first-tier consequences and 17 interventions. The SSG briefed DOI leadership, Task Force representatives, and other policy makers in both Washington, DC and

  11. The Department of Energy`s interagency agreement with the National Institute of Environmental Health Sciences: Audit report

    SciTech Connect

    1998-07-01

    The Department of Energy (Department) and the National Institute of Environmental Health Sciences (NIEHS) entered into an interagency agreement in September 1992 to develop model safety and health training programs for workers involved in waste cleanup activities at Departmental facilities. Under the terms of the agreement, recipients of NIEHS training grants were to provide Hazardous Waste Operations and Emergency Response (HAZWOPER) training to Departmental sites. By June 1997, the Department had obligated over $40 million to the agreement. The objective of this audit was to determine whether the interagency agreement with NIEHS was the most cost-effective method of acquiring the training.

  12. The scope of forensic radiology.

    PubMed

    Brogdon, B G

    1998-06-01

    The use of x-ray in the solution of forensic problems commenced within days of Röntgen's discovery; indeed, most of the applications of radiology to the forensic sciences were accomplished or anticipated within the next two years. The scope of forensic radiology ranges widely and includes determination of identity, evaluation of injury and death, applications in both criminal and civil litigation and in administrative proceedings, detection of abuse, investigation of gunshot wounds, medical education and research. Newer modalities and techniques afford opportunity for the expansion of forensic radiology if problems of accessibility and cost can be resolved along with improvement in interdisciplinary cooperation and understanding.

  13. The Gemini Science User Support Department: A community-centered approach to user support

    NASA Astrophysics Data System (ADS)

    Chené, André-Nicolas; Thomas-Osip, Joanna

    2016-01-01

    The Gemini Science User Support Department (SUSD) was formed a little more than a year ago to create a collaborative community of users and staff and to consolidate existing post-observing support throughout the observatory for more efficient use of resources as well as better visibility amongst our user community. This poster is an opportunity to exchange ideas about how Gemini can improve your experience while working with the Observatory and present details about new avenues of post-observing support coming soon. We encourage your feedback at any time.Shortly after its creation, the SUSD conducted a complete revision of the communication cycle between Gemini and its community of researchers. The cycle was then revisited from the perspective of an astronomer interested in using Gemini for their research. This exercise led to a series of proposed changes that are currently under development, and the implementation of a sub-selection is expected in 2016, including the following. (1) Email notifications: Gemini users will receive new forms of email communications that are more instructive and tailored to their program. The objective is to direct the users more efficiently toward the useful links and documentation all along the lifecycle of the program, from phaseII to after the data are completely reduced. (2) HelpDesk system: The HelpDesk will become more user-friendly and transparent. (3) Webpages: The organization of the Gemini webpages will be redesigned to optimize navigation; especially for anything regarding more critical periods likes phaseIs and phaseIIs. (4) Data Reduction User Forum: Following recommendations from Gemini users, new capabilities were added to the forum, like email notifications, and a voting system, in order to make it more practical. This forum's objective is to bring the Gemini community together to exchange their ideas, thoughts, questions and solutions about data reduction, a sort of Reddit, StackOverflow or Slashdot for Gemini data.

  14. Uncomfortable Departments: British Historians of Science and the Importance of Disciplinary Communities

    ERIC Educational Resources Information Center

    Fyfe, Aileen

    2015-01-01

    This paper explores issues around disciplinary belonging and academic identity. Historians of science learn to think and practise like historians in terms of research practice, but this paper shows that British historians of science do not think of themselves as belonging to the disciplinary community of historians. They may be confident that they…

  15. Capturing citation activity in three health sciences departments: a comparison study of Scopus and Web of Science.

    PubMed

    Sarkozy, Alexandra; Slyman, Alison; Wu, Wendy

    2015-01-01

    Scopus and Web of Science are the two major citation databases that collect and disseminate bibliometric statistics about research articles, journals, institutions, and individual authors. Liaison librarians are now regularly called upon to utilize these databases to assist faculty in finding citation activity on their published works for tenure and promotion, grant applications, and more. But questions about the accuracy, scope, and coverage of these tools deserve closer scrutiny. Discrepancies in citation capture led to a systematic study on how Scopus and Web of Science compared in a real-life situation encountered by liaisons: comparing three different disciplines at a medical school and nursing program. How many articles would each database retrieve for each faculty member using the author-searching tools provided? How many cited references for each faculty member would each tool generate? Results demonstrated troubling differences in publication and citation activity capture between Scopus and Web of Science. Implications for librarians are discussed.

  16. Success With Offering a Diversity of Majors in the Earth Science Department at the University of Northern Colorado

    NASA Astrophysics Data System (ADS)

    Nesse, W. D.; Taber, M. R.; Hoyt, W. H.

    2003-12-01

    Today, the number of geology majors at the University of Northern Colorado (UNC) has declined to just 10 percent of the mid-1980s peak. At issue is the sustainability of a viable geology program, with a minimum of three tenure-track faculty and few graduating geology students. One solution to the sustainability issue is diversity of Earth Science Majors within a given department. At UNC we have five emphasis areas: Environmental Earth Science, General Earth Science, Geology, Meteorology, and Secondary and Middle Level Teaching. We have had the good fortune to add many Meteorology and Environmental Earth Science majors, while the Geology, Middle Level Teaching, and General Earth Science majors have declined in number. As students' academic goals fluctuate in the geosciences (often directly tied to the marketability), the diversity of major offerings allows for the department to maintain a balance in the number of majors. Today, we are close to the number of Earth Science majors we've averaged over the last 20 years (~135 majors). Strong advising is essential for our evolving systems to work for the students and the Department. Another stabilizing factor for the Department is the masters program, which provides graduate student teaching assistants at a low cost to the university-most of our teaching assistants teach General Geology labs, and that course continues to be an effective recruiting mechanism for all of the emphasis areas to some degree. State budget constraints have forced creativity in course offerings. For example, we still require a Geology Field Camp for graduation, but send our students to other university field camps - a cost saving for us. In addition, many of our courses serve multiple emphasis areas, mirroring the nature of earth system science. Moreover, we have managed to combine some upper division courses (mineralogy and earth materials, for example), offered others on an alternate-year basis, reduce the number of upper division electives, and

  17. Professional development in person: identity and the construction of teaching within a high school science department

    NASA Astrophysics Data System (ADS)

    Deneroff, Victoria

    2016-06-01

    This is a narrative inquiry into the role of professional development in the construction of teaching practice by an exemplary urban high school science teacher. I collected data during 3 years of ethnographic participant observation in Marie Gonzalez's classroom. Marie told stories about her experiences in ten years of professional development focused on inquiry science teaching. I use a social practice theory lens to analyze my own stories as well as Marie's. I make the case that science teaching is best understood as mediated by socially-constructed identities rather than as the end-product of knowledge and beliefs. The cognitive paradigm for understanding teachers' professional learning fails to consistently produce transformations of teaching practice. In order to design professional development with science teachers that is generative of new knowledge, and is self-sustaining, we must understand how to build knowledge of how to problematize identities and consciously use social practice theory.

  18. A Magnetic Tape Library System for the Computer Science Department NPGS (Naval Postgraduate School); Requirements Analysis, Design, and Implementation.

    DTIC Science & Technology

    1985-12-01

    Willis R . Greer, Jr., Chairman, Department of Administrative Sciences Kneale T. Marshall, E .Yif Information and Policy Scie!es - iwV...FRA\\’ES---------------------------------------- ’,~~ r L - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - J. DATABASE...be ,eveicoed ’bv r theSiS Student I0 9 ’ The current tape library is a combination of a casual computer listing of approximately 600 tapes, and opened

  19. Scientific Infrastructure to Support Atmospheric Science and Aerosol Science for the Department of Energy's Atmospheric Radiation Measurement Programs at Barrow, Alaska.

    NASA Astrophysics Data System (ADS)

    Lucero, D. A.; Ivey, M.; Helsel, F.; Hardesty, J.; Dexheimer, D.

    2015-12-01

    Scientific infrastructure to support atmospheric science and aerosol science for the Department of Energy's Atmospheric Radiation Measurement programs at Barrow, Alaska.The Atmospheric Radiation Measurement (ARM) Program's located at Barrow, Alaska is a U.S. Department of Energy (DOE) site. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Barrow has been in place since 1998, with many improvements since then. Barrow instruments include: scanning precipitation Radar-cloud radar, Doppler Lidar, Eddy correlation flux systems, Ceilometer, Manual and state-of-art automatic Balloon sounding systems, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar, High Spectral Resolution Lidar (HSRL) along with all the standard metrological measurements. Data from these instruments is placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at Barrow and the challenges of maintaining these instruments in an Arctic site.

  20. The Department of Defense Statement on Science in the Science and Technology Program before the Subcommittee on Research and Development of the Committee on Armed Services of the United States House of Representatives, 99th Congress, Second Session.

    DTIC Science & Technology

    1986-03-12

    none. 4 TABLE I SCIENCE AND TECHNOLOGY PROGRAM (Dollars in Millions) FY 1986 FY 1987 Research Military Departments ............................. 858 876...is potentially applicable to a wide range of military aircraft from fighters to strategic bombers. )j 20 .~ .. . . . . Also, flight tests of the...Environmental Sciences Research and Global Environmental Support Meteorology, oceanography, terrestrial science and space science are major military

  1. U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2015

    USGS Publications Warehouse

    Varela Minder, Elda; Padgett, Holly A.

    2016-04-07

    2015 was another great year for the Department of the Interior (DOI) Climate Science Centers (CSCs) and U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC) network. The DOI CSCs and USGS NCCWSC continued their mission of providing the science, data, and tools that are needed for on-the-ground decision making by natural and cultural resource managers to address the effects of climate change on fish, wildlife, ecosystems, and communities. Our many accomplishments in 2015 included initiating a national effort to understand the influence of drought on wildlife and ecosystems; providing numerous opportunities for students and early career researchers to expand their networks and learn more about climate change effects; and working with tribes and indigenous communities to expand their knowledge of and preparation for the impacts of climate change on important resources and traditional ways of living. Here we illustrate some of these 2015 activities from across the CSCs and NCCWSC.

  2. The Radiological Research Accelerator Facility

    SciTech Connect

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993.

  3. The Radiological Research Accelerator Facility

    SciTech Connect

    Hall, E.J.

    1992-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Experiments performed from May 1991--April 1992 are described.

  4. Two-frequency heating technique at the 18 GHz electron cyclotron resonance ion source of the National Institute of Radiological Sciences

    SciTech Connect

    Biri, S.; Rácz, R.; Sasaki, N.; Takasugi, W.

    2014-02-15

    The two-frequency heating technique was studied to increase the beam intensities of highly charged ions provided by the high-voltage extraction configuration (HEC) ion source at the National Institute of Radiological Sciences (NIRS). The observed dependences on microwave power and frequency suggested that this technique improved plasma stability but it required precise frequency tuning and more microwave power than was available before 2013. Recently, a new, high-power (1200 W) wide band-width (17.1–18.5 GHz) travelling-wave-tube amplifier (TWTA) was installed. After some single tests with klystron and TWT amplifiers the simultaneous injection of the two microwaves has been successfully realized. The dependence of highly charged ions (HCI) currents on the superposed microwave power was studied by changing only the output power of one of the two amplifiers, alternatively. While operating the klystron on its fixed 18.0 GHz, the frequency of the TWTA was swept within its full limits (17.1–18.5 GHz), and the effect of this frequency on the HCI-production rate was examined under several operation conditions. As an overall result, new beam records of highly charged argon, krypton, and xenon beams were obtained at the NIRS-HEC ion source by this high-power two-frequency operation mode.

  5. Two-frequency heating technique at the 18 GHz electron cyclotron resonance ion source of the National Institute of Radiological Sciences

    NASA Astrophysics Data System (ADS)

    Biri, S.; Kitagawa, A.; Muramatsu, M.; Drentje, A. G.; Rácz, R.; Yano, K.; Kato, Y.; Sasaki, N.; Takasugi, W.

    2014-02-01

    The two-frequency heating technique was studied to increase the beam intensities of highly charged ions provided by the high-voltage extraction configuration (HEC) ion source at the National Institute of Radiological Sciences (NIRS). The observed dependences on microwave power and frequency suggested that this technique improved plasma stability but it required precise frequency tuning and more microwave power than was available before 2013. Recently, a new, high-power (1200 W) wide band-width (17.1-18.5 GHz) travelling-wave-tube amplifier (TWTA) was installed. After some single tests with klystron and TWT amplifiers the simultaneous injection of the two microwaves has been successfully realized. The dependence of highly charged ions (HCI) currents on the superposed microwave power was studied by changing only the output power of one of the two amplifiers, alternatively. While operating the klystron on its fixed 18.0 GHz, the frequency of the TWTA was swept within its full limits (17.1-18.5 GHz), and the effect of this frequency on the HCI-production rate was examined under several operation conditions. As an overall result, new beam records of highly charged argon, krypton, and xenon beams were obtained at the NIRS-HEC ion source by this high-power two-frequency operation mode.

  6. 75 FR 4411 - Agency Information Collection Activities: Department of the Interior Regional Climate Science...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... hired people with preordained minds and closed minds. They practice junk science. I would nominate the... divisions seem to hire people with their minds made up who blacklist those who have conflicting views. It is... carrying members of the gun clubs who believe in guns and killing. That kind of closed mind is...

  7. Mandated Curriculum Change and a Science Department: A Superficial Language Convergence?

    ERIC Educational Resources Information Center

    Melville, Wayne

    2008-01-01

    This article investigates the introduction of a systemic curriculum change, the Essential Learnings curriculum framework, in the Australian state of Tasmania. Using Gee's [(2003). Language in the science classroom: Academic social languages as the heart of school-based literacy. In: R. Yerrick, & W.-M. Roth (Eds.), "Establishing…

  8. Department-Level Representations: A New Approach to the Study of Science Teacher Cognition

    ERIC Educational Resources Information Center

    Hutner, Todd L.; Markman, Arthur B.

    2016-01-01

    Research on science teacher cognition is important as findings from this research can be used to improve teacher training, leading to improved classroom practice. Previous research has often relied on two underlying assumptions: Cognition is an individual process, and these processes are detailed and introspective. In this paper, we put forth a…

  9. Department of Defense Science, Technology, Engineering, and Mathematics (STEM) Education Workshop on Computing Education

    DTIC Science & Technology

    2010-10-18

    School Cybercampus ChicTech Tech Ambassadors Competition Arduino Project Lead the Way Pico Crickets™ Workshops MIT Media Lab , STEM Rays, UMASS...Computer Science Equity Alliance Way Arduino “Kids Ahead” SMU Caruth August 2010 14 , STEM Rays, UMASS US FIRST Robotics Competition Autonomous

  10. Putting Physics First: Three Case Studies of High School Science Department and Course Sequence Reorganization

    ERIC Educational Resources Information Center

    Larkin, Douglas B.

    2016-01-01

    This article examines the process of shifting to a "Physics First" sequence in science course offerings in three school districts in the United States. This curricular sequence reverses the more common U.S. high school sequence of biology/chemistry/physics, and has gained substantial support in the physics education community over the…

  11. Professional Development in Person: Identity and the Construction of Teaching within a High School Science Department

    ERIC Educational Resources Information Center

    Deneroff, Victoria

    2016-01-01

    This is a narrative inquiry into the role of professional development in the construction of teaching practice by an exemplary urban high school science teacher. I collected data during 3 years of ethnographic participant observation in Marie Gonzalez's classroom. Marie told stories about her experiences in ten years of professional development…

  12. Capital Middle Schools Science Department, Preliminary List of Behavioral/Performance Objectives.

    ERIC Educational Resources Information Center

    Del Mod System, Dover, DE.

    This monograph provides basic behavioral objectives designed for a middle school science curriculum. Emphasis is placed on the study of the living environment for students in grade five. This includes the study of plants, animals, the human body, and the use of the microscope, classification and the scientific method. Objectives for grade six are…

  13. Notes on the 1974 Conference for New Science Department Chairmen at Private Institutions.

    ERIC Educational Resources Information Center

    1974

    To provide firsthand knowledge of investigators and institutions for the evaluation of grants proposals, the Grants staff or Research Corporation visits hundreds of colleges and universities each year. Their finding reveal that department chairmen have a unique influence on the conduct of research and the motivation of students, as well as the…

  14. The Power of Partnerships: Exploring the Relationship between Campus Career Centers and Political Science Departments

    ERIC Educational Resources Information Center

    Despeaux, J. Michael; Knotts, H. Gibbs; Schiff, Jennifer S.

    2014-01-01

    Given the growing emphasis on career preparation in higher education, career centers play important roles on today's college campuses. The literature has focused on the reasons students use career services, but it has not addressed the vital linkage between career centers and academic departments. Using a survey of 279 political science…

  15. [The application of radiological image in forensic medicine].

    PubMed

    Zhang, Ji-Zong; Che, Hong-Min; Xu, Li-Xiang

    2006-04-01

    Personal identification is an important work in forensic investigation included sex discrimination, age and stature estimation. Human identification depended on radiological image technique analysis is a practice and proper method in forensic science field. This paper intended to understand the advantage and defect by reviewed the employing of forensic radiology in forensic science field broadly and provide a reference to perfect the application of forensic radiology in forensic science field.

  16. 10 CFR 835.4 - Radiological units.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Radiological units. 835.4 Section 835.4 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.4 Radiological units. Unless otherwise specified, the quantities used in the records required by this part shall be clearly indicated...

  17. 10 CFR 835.4 - Radiological units.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Radiological units. 835.4 Section 835.4 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.4 Radiological units. Unless otherwise specified, the quantities used in the records required by this part shall be clearly indicated...

  18. 10 CFR 835.4 - Radiological units.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... other conventional units, such as, dpm, dpm/100 cm2 or mass units. The SI units, becquerel (Bq), gray... 10 Energy 4 2010-01-01 2010-01-01 false Radiological units. 835.4 Section 835.4 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.4 Radiological units....

  19. INL@Work Radiological Search & Response Training

    SciTech Connect

    Turnage, Jennifer

    2010-01-01

    Dealing with radiological hazards is just part of the job for many INL scientists and engineers. Dodging bullets isn't. But some Department of Defense personnel may have to do both. INL employee Jennifer Turnage helps train soldiers in the art of detecting radiological and nuclear material. For more information about INL's research projects, visit http://www.facebook.com/idahonationallaboratory.

  20. Radiology Aide. Instructor Key [and] Student Manual.

    ERIC Educational Resources Information Center

    Hartwein, Jon; Dunham, John

    This manual can be used independently by students in secondary health occupations programs or by persons receiving on-the-job training in a radiology department. The manual includes an instructor's key that provides answers to the activity sheets and unit evaluations. The manual consists of the following five units: (1) orientation to radiology;…

  1. INL@Work Radiological Search & Response Training

    ScienceCinema

    Turnage, Jennifer

    2016-07-12

    Dealing with radiological hazards is just part of the job for many INL scientists and engineers. Dodging bullets isn't. But some Department of Defense personnel may have to do both. INL employee Jennifer Turnage helps train soldiers in the art of detecting radiological and nuclear material. For more information about INL's research projects, visit http://www.facebook.com/idahonationallaboratory.

  2. Geological and geophysical activities at Spallanzani Science Department (Liceo Scientifico Statale "Lazzaro Spallanzani" - Tivoli, Italy)

    NASA Astrophysics Data System (ADS)

    Favale, T.; De Angelis, F.; De Filippis, L.

    2012-04-01

    The high school Liceo Scientifico "Lazzaro Spallanzani" at Tivoli (Rome) has been fully involved in the study of geological and geophysical features of the town of Tivoli and the surrounding area in the last twelve years. Objective of this activity is to promote the knowledge of the local territory from the geological point of view. Main activities: • School year 2001-2002: Setting up inside the school building of a Geological Museum focusing on "Geological Evolution of Latium, Central Italy" (in collaboration with colleagues M. Mancini, and A. Pierangeli). • March, 15, 2001: Conference of Environmental Geology. Lecturer: Prof. Raniero Massoli Novelli, L'Aquila University and Società Italiana di Geologia Ambientale. • School years 2001-2002 and 2002-2003: Earth Sciences course for students "Brittle deformation and tectonic stress in Tivoli area". • November, 2003: Conference of Geology, GIS and Remote Sensing. Lecturers: Prof. Maurizio Parotto and Dr Alessandro Cecili (Roma Tre University, Rome), and Dr Stefano Pignotti (Istituto Nazionale per la Ricerca sulla Montagna, Rome). • November, 2003, 2004 and 2005: GIS DAY, organized in collaboration with ESRI Italia. • School year 2006-2007: Earth Sciences course for students "Acque Albule basin and the Travertine of Tivoli, Latium, Central Italy" (focus on travertine formation). • School year 2010-2011: Earth Sciences course for students "Acque Albule basin and the Travertine of Tivoli. Geology, Hydrogeology and Microbiology of the basin, Latium, Central Italy" (focus on thermal springs and spa). In the period 2009-2010 a seismic station with three channels, currently working, was designed and built in our school by the science teachers Felice De Angelis and Tomaso Favale. Our seismic station (code name LTTV) is part of Italian Experimental Seismic Network (IESN) with identification code IZ (international database IRIS-ISC). The three drums are online in real time on websites http

  3. Program report for FY 1984 and 1985 Atmospheric and Geophysical Sciences Division of the Physics Department

    SciTech Connect

    Knox, J.B.; MacCracken, M.C.; Dickerson, M.H.; Gresho, P.M.; Luther, F.M.

    1986-08-01

    This annual report for the Atmospheric and Geophysical Sciences Division (G-Division) summarizes the activities and highlights of the past three years, with emphasis on significant research findings in two major program areas: the Atmospheric Release Advisory Capability (ARAC), with its recent involvement in assessing the effects of the Chernobyl reactor accident, and new findings on the environmental consequences of nuclear war. The technical highlights of the many other research projects are also briefly reported, along with the Division's organization, budget, and publications.

  4. The Department of the Interior Southeast Climate Science Center synthesis report 2011–15—Projects, products, and science priorities

    USGS Publications Warehouse

    Varela Minder, Elda; Lascurain, Aranzazu R.; McMahon, Gerard

    2016-09-28

    IntroductionIn 2009, the U.S. Department of the Interior (DOI) Secretary Ken Salazar established a network of eight regional Climate Science Centers (CSCs) that, along with the Landscape Conservation Cooperatives (LCCs), would help define and implement the Department's climate adaptation response. The Southeast Climate Science Center (SE CSC) was established at North Carolina State University (NCSU) in Raleigh, North Carolina, in 2010, under a 5-year cooperative agreement with the U.S. Geological Survey (USGS), to identify and address the regional challenges presented by climate change and variability in the Southeastern United States. All eight regional CSC hosts, including NCSU, were selected through a competitive process.Since its opening, the focus of the SE CSC has been on working with partners in the identification and development of research-based information that can assist managers, including cultural and natural resource managers, in adapting to global change processes, such as climate and land use change, that operate at local to global scales and affect resources important to the DOI mission. The SE CSC was organized to accomplish three goals:Provide co-produced, researched based, actionable science that supports transparent global change adaptation decisions.Convene conversations among decision makers, scientists, and managers to identify key ecosystem adaptation decisions driven by climate and land use change, the values and objectives that will be used to make decisions, and the research-based information needed to assess adaptation options.Build the capacity of natural resource professionals, university faculty, and students to understand and frame natural resource adaptation decisions and develop and use research-based information to make adaptation decisions.This report provides an overview of the SE CSC and the projects developed by the SE CSC since its inception. An important goal of this report is to provide a framework for understanding the

  5. Final Report to the Department of the Energy for Project Entitled Rare Isotope Science Assessment Committee

    SciTech Connect

    Donald Shapero; Timothy I. Meyer

    2007-08-14

    The Rare Isotope Science Assessment Committee (RISAC) was convened by the National Research Council in response to an informal request from the DOE’s Office of Nuclear Physics and the White House Office of Management and Budget. The charge to the committee is to examine and assess the broader scientific and international contexts of a U.S.-based rare-isotope facility. The committee met for the first time on December 16-17, 2005, in Washington, DC, and held three subsequent meetings. The committee’s final report was publicly released in unedited, prepublication form on Friday, December 8, 2006. The report was published in full-color by the National Academies Press in April 2007. Copies of the report were distributed to key decision makers and stakeholders around the world.

  6. 21 CFR 892.1830 - Radiologic patient cradle.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiologic patient cradle. 892.1830 Section 892.1830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1830 Radiologic patient cradle....

  7. 21 CFR 892.1940 - Radiologic quality assurance instrument.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiologic quality assurance instrument. 892.1940 Section 892.1940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1940 Radiologic quality...

  8. 21 CFR 892.1830 - Radiologic patient cradle.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiologic patient cradle. 892.1830 Section 892.1830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1830 Radiologic patient cradle....

  9. 21 CFR 892.1830 - Radiologic patient cradle.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiologic patient cradle. 892.1830 Section 892.1830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1830 Radiologic patient cradle....

  10. 21 CFR 892.1830 - Radiologic patient cradle.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiologic patient cradle. 892.1830 Section 892.1830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1830 Radiologic patient cradle....

  11. 21 CFR 892.1940 - Radiologic quality assurance instrument.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiologic quality assurance instrument. 892.1940 Section 892.1940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1940 Radiologic quality...

  12. 21 CFR 892.1940 - Radiologic quality assurance instrument.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiologic quality assurance instrument. 892.1940 Section 892.1940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1940 Radiologic quality...

  13. 21 CFR 892.1940 - Radiologic quality assurance instrument.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiologic quality assurance instrument. 892.1940 Section 892.1940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1940 Radiologic quality...

  14. 21 CFR 892.1830 - Radiologic patient cradle.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiologic patient cradle. 892.1830 Section 892.1830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1830 Radiologic patient cradle....

  15. 21 CFR 892.1940 - Radiologic quality assurance instrument.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiologic quality assurance instrument. 892.1940 Section 892.1940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1940 Radiologic quality...

  16. Interactive Online Modules and Videos for Learning Geological Concepts at the University of Toronto Department of Earth Sciences

    NASA Astrophysics Data System (ADS)

    Veglio, E.; Graves, L. W.; Bank, C. G.

    2014-12-01

    We designed various computer-based applications and videos as educational resources for undergraduate courses at the University of Toronto in the Earth Science Department. These resources were developed in effort to enhance students' self-learning of key concepts as identified by educators at the department. The interactive learning modules and videos were created using the programs MATLAB and Adobe Creative Suite 5 (Photoshop and Premiere) and range from optical mineralogy (extinction and Becke line), petrology (equilibrium melting in 2-phase systems), crystallography (crystal systems), geophysics (gravity anomaly), and geologic history (evolution of Canada). These resources will be made available for students on internal course websites as well as through the University of Toronto Earth Science's website (www.es.utoronto.ca) where appropriate; the video platform YouTube.com may be used to reach a wide audience and promote the material. Usage of the material will be monitored and feedback will be collected over the next academic year in order to gage the use of these interactive learning tools and to assess if these computer-based applications and videos foster student engagement and active learning, and thus offer an enriched learning experience.

  17. The importance of motivating radiology department employees.

    PubMed

    Kowalczyk, N

    1984-01-01

    Motivational theories are viewed as management tools concerned with human resources. The premise of most theories is that human needs give rise to certain behavior. The performance of radiographers and their relationships with others depend upon this internal force. A technologist whose job does not meet his need for acceptance and ego satisfaction is not likely to be productive. Therefore, management must develop an environment that is supportive, caring, and encourages each radiographer to grow.

  18. The future role of the health sciences library in the Department of Veterans Affairs.

    PubMed Central

    Wiesenthal, D

    1993-01-01

    The Department of Veterans Affairs (VA) conducted a survey to ascertain the perceptions of 322 library service chiefs and health care administrators within the VA health care system. Participants were asked to rate the desirability and probability of twenty-five predetermined statements and to identify the forces that would have an impact, either positive or negative, on whatever statements became reality. The response rate was 93%. Analysis of the data indicated that there was no significant difference between the library managers and health care administrators in their perceptions. Results indicate that both groups believe libraries serve an integral role in VA medical centers and that library services cannot be provided as successfully off site. The data also appear to reveal a clear consensus on the part of both groups for increased library involvement in educational activities and information delivery. PMID:8471999

  19. 2000 U.S. Department of Energy Strategic Plan: Strength through Science Powering the 21st Century

    SciTech Connect

    None,

    2000-09-01

    The Department of Energy conducts programs relating to energy resources, national nuclear security, environmental quality, and science. In each of these areas, the US is facing significant challenges. Our economic well-being depends on the continuing availability of reliable and affordable supplies of clean energy. Our Nation's security is threatened by the proliferation of weapons of mass destruction. Our environment is under threat from the demands a more populated planet and the legacies of 20th-century activities. Science and the technology derived from it offer the promise to improve the Nation's health and well-being and broadly expand human knowledge. In conducting its programs, the Department of Energy (DOE) employs unique scientific and technical assets, including 30,000 scientists, engineers, and other technical staff, in a complex of outstanding national laboratories that have a capital value of over $45 billion. Through its multidisciplinary research and development activities and its formidable assemblage of scientific and engineering talent, DOE focuses its efforts on four programmatic business lines: (1) Energy Resources--promoting the development and deployment of systems and practices that provide energy that is clean, efficient, reasonably priced, and reliable. (2) National Nuclear Security--enhancing national security through military application of nuclear technology and by reducing global danger from the potential spread of weapons of mass destruction. (3) Environmental Quality--cleaning up the legacy of nuclear weapons and nuclear research activities, safely managing nuclear materials, and disposing of radioactive wastes. (4) Science--advancing science and scientific tools to provide the foundation for DOE's applied missions and to provide remarkable insights into our physical and biological world. In support of the above four business lines, DOE provides management services to ensure that the technical programs can run efficiently. Our

  20. ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM RESEARCH PROJECTS TO IMPROVE DECONTAMINATION AND DECOMMISIONING OF U.S. DEPARTMENT OF ENERGY FACILITIES

    SciTech Connect

    Phillips, Ann Marie

    2003-02-27

    This paper describes fourteen basic science projects aimed at solving decontamination and decommissioning (D&D) problems within the U.S. Department of Energy (DOE). Funded by the Environmental Science Management Program (EMSP), these research projects address D&D problems where basic science is needed to expand knowledge and develop solutions to help DOE meet its cleanup milestones. EMSP uses directed solicitations targeted at identified Environmental Management (EM) needs to ensure that research results are directly applicable to DOE's EM problems. The program then helps transition the projects from basic to applied research by identifying end-users and coordinating proof-of-principle field tests. EMSP recently funded fourteen D&D research projects through the directed solicitation process. These research projects will be discussed, including description, current status, and potential impact. Through targeted research and proof-of-principle tests, it is hoped that EMSP's fourteen D&D basic research projects will directly impact and provide solutions to DOE's D&D problems.

  1. Current radiology. Volume 5

    SciTech Connect

    Wilson, G.H.; Hanafee, W.N.

    1984-01-01

    This book contains 10 selections. They are: Nuclear Magnetic Resonance Imaging, Interventional Vascular Radiology, Genitourinary Radiology, Skeletal Radiology, Digital Subtraction Angiography, Neuroradiology, Computed Tomographic Evaluation of Degenerative Diseases of the Lumbar Spine, The Lung, Otolaringology and Opthalmology, and Pediatric Radiology: Cranial, Facial, Cervical, Vertebral, and Appendicular.

  2. Radiological Control Manual

    SciTech Connect

    Not Available

    1993-04-01

    This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

  3. Staff Report to the Senior Department Official on Recognition Compliance Issues. Recommendation Page: National Accrediting Commission Of Cosmetology Arts and Sciences

    ERIC Educational Resources Information Center

    US Department of Education, 2010

    2010-01-01

    The National Accrediting Commission of Cosmetology Arts and Sciences (NACCAS) is a national accreditor whose scope of recognition is for the accreditation throughout the United States of postsecondary schools and departments of cosmetology arts and sciences and massage therapy. The agency accredits approximately 1,300 institutions offering…

  4. The Archives of the Department of Terrestrial Magnetism: Documenting 100 Years of Carnegie Science

    NASA Astrophysics Data System (ADS)

    Hardy, S. J.

    2005-12-01

    The archives of the Department of Terrestrial Magnetism (DTM) of the Carnegie Institution of Washington document more than a century of geophysical and astronomical investigations. Primary source materials available for historical research include field and laboratory notebooks, equipment designs, plans for observatories and research vessels, scientists' correspondence, and thousands of expedition and instrument photographs. Yet despite its history, DTM long lacked a systematic approach to managing its documentary heritage. A preliminary records survey conducted in 2001 identified more than 1,000 linear feet of historically-valuable records languishing in dusty, poorly-accessible storerooms. Intellectual control at that time was minimal. With support from the National Historical Publications and Records Commission, the "Carnegie Legacy Project" was initiated in 2003 to preserve, organize, and facilitate access to DTM's archival records, as well as those of the Carnegie Institution's administrative headquarters and Geophysical Laboratory. Professional archivists were hired to process the 100-year backlog of records. Policies and procedures were established to ensure that all work conformed to national archival standards. Records were appraised, organized, and rehoused in acid-free containers, and finding aids were created for the project web site. Standardized descriptions of each collection were contributed to the WorldCat bibliographic database and the AIP International Catalog of Sources for History of Physics. Historic photographs and documents were digitized for online exhibitions to raise awareness of the archives among researchers and the general public. The success of the Legacy Project depended on collaboration between archivists, librarians, historians, data specialists, and scientists. This presentation will discuss key aspects (funding, staffing, preservation, access, outreach) of the Legacy Project and is aimed at personnel in observatories, research

  5. The Role of a Computer Science Department in the Use of the Computer in Undergraduate Curricula at a Small Liberal Arts College.

    ERIC Educational Resources Information Center

    Keller, Mary K.

    There are several ways in which the computer science department at the small liberal arts college can contribute to the richness of the institution's undergraduate curriculum. In addition to providing training for students interested in computer-related careers, the department, by offering courses for non-majors in the field, can broaden the…

  6. Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences, Japan

    NASA Astrophysics Data System (ADS)

    Inaniwa, Taku; Kanematsu, Nobuyuki; Matsufuji, Naruhiro; Kanai, Tatsuaki; Shirai, Toshiyuki; Noda, Koji; Tsuji, Hiroshi; Kamada, Tadashi; Tsujii, Hirohiko

    2015-04-01

    At the National Institute of Radiological Sciences (NIRS), more than 8,000 patients have been treated for various tumors with carbon-ion (C-ion) radiotherapy in the past 20 years based on a radiobiologically defined clinical-dose system. Through clinical experience, including extensive dose escalation studies, optimum dose-fractionation protocols have been established for respective tumors, which may be considered as the standards in C-ion radiotherapy. Although the therapeutic appropriateness of the clinical-dose system has been widely demonstrated by clinical results, the system incorporates several oversimplifications such as dose-independent relative biological effectiveness (RBE), empirical nuclear fragmentation model, and use of dose-averaged linear energy transfer to represent the spectrum of particles. We took the opportunity to update the clinical-dose system at the time we started clinical treatment with pencil beam scanning, a new beam delivery method, in 2011. The requirements for the updated system were to correct the oversimplifications made in the original system, while harmonizing with the original system to maintain the established dose-fractionation protocols. In the updated system, the radiation quality of the therapeutic C-ion beam was derived with Monte Carlo simulations, and its biological effectiveness was predicted with a theoretical model. We selected the most used C-ion beam with αr = 0.764 Gy-1 and β = 0.0615 Gy-2 as reference radiation for RBE. The C-equivalent biological dose distribution is designed to allow the prescribed survival of tumor cells of the human salivary gland (HSG) in entire spread-out Bragg peak (SOBP) region, with consideration to the dose dependence of the RBE. This C-equivalent biological dose distribution is scaled to a clinical dose distribution to harmonize with our clinical experiences with C-ion radiotherapy. Treatment plans were made with the original and the updated clinical-dose systems, and both

  7. A new era in science at Washington University, St. Louis: Viktor Hamburger's zoology department in the 1940's.

    PubMed

    Carson, H L

    2001-04-01

    In the early 1940s, the administration of the College of Arts and Sciences at Washington University, St. Louis was firmly in the hands of classical scholars who were not inclined to promote the development of modern research on scientific subjects. Funds supporting research in biology favored the School of Medicine and the Missouri Botanical Garden. Viktor Hamburger arrived at Washington University in 1935. At about the time he became the Acting Chairman of Zoology in 1942, research work in the biological departments began a dramatic surge that has continued to this day. For 65 years under his counsel and leadership, basic biology has thrived at this fine institution. As an early faculty recruit, I recount here a few personal recollections from those formative years.

  8. Science fiction and the history of the astro-department of Carl Zeiss Jena (German Title: Science Fiction und die Geschichte der Astroabteilung von Carl Zeiss Jena)

    NASA Astrophysics Data System (ADS)

    Beck, Hans G.

    This contribution uses the literary form of science fiction in retrospect, in order to display the initial conditions given in the run-up of the founding of the astro-department of the Zeiss factory. Written minutes (supposedly found during restoration works in the people's house in Jena) introduce the participants of a sort of founding party of the main actors Ernst Abbe, Otto Schott, Siegfried Czapski, Hans Harting, Albert König, Franz Meyer and Walter Villiger. Their contributions to the discussion yield a market analysis, based on the past development of the technology of astronomical instruments, the international competitors' state of the art, and the assessment of the future development in astronomy and especially of astrophysics. The contribution presents a piece of modern history of the year 1987; it was presented as a talk on May 13 of the same year, when Rolf Riekher celebrated his 65th birthday.

  9. Advancing the Use of Evidence-Based Decision-Making in Local Health Departments With Systems Science Methodologies

    PubMed Central

    Li, Yan; Kong, Nan; Lawley, Mark; Weiss, Linda

    2015-01-01

    Objectives. We assessed how systems science methodologies might be used to bridge resource gaps at local health departments (LHDs) so that they might better implement evidence-based decision-making (EBDM) to address population health challenges. Methods. We used the New York Academy of Medicine Cardiovascular Health Simulation Model to evaluate the results of a hypothetical program that would reduce the proportion of people smoking, eating fewer than 5 fruits and vegetables per day, being physically active less than 150 minutes per week, and who had a body mass index (BMI) of 25 kg/m2 or greater. We used survey data from the Behavioral Risk Factor Surveillance System to evaluate health outcomes and validate simulation results. Results. Smoking rates and the proportion of the population with a BMI of 25 kg/m2 or greater would have decreased significantly with implementation of the hypothetical program (P < .001). Two areas would have experienced a statistically significant reduction in the local population with diabetes between 2007 and 2027 (P < .05). Conclusions. The use of systems science methodologies might be a novel and efficient way to systematically address a number of EBDM adoption barriers at LHDs. PMID:25689181

  10. The top 100 articles in the radiology of trauma: a bibliometric analysis.

    PubMed

    Dolan, Ryan Scott; Hanna, Tarek N; Warraich, Gohar Javed; Johnson, Jamlik-Omari; Khosa, Faisal

    2015-12-01

    The purpose of this study was to identify the 100 top-cited articles in the radiology of trauma, analyze the resulting database to understand factors resulting in highly cited works, and establish trends in trauma imaging. An initial database was created via a Web of Science (WOS) search of all scientific journals using the search terms "trauma" and either "radiology" or a diagnostic modality. Articles were ranked by citation count and screened by two attending radiologists plus a tiebreaker for appropriateness. The following information was collected from each article: WOS all database citations, year, journal, authors, department affiliation, study type and design, sample size, imaging modality, subspecialty, organ, and topic. Citations for the top 100 articles ranged from 82-252, and citations per year ranged from 2.6-37.2. A plurality of articles were published in the 1990s (n = 45) and 1980s (n = 31). Articles were published across 24 journals, most commonly Radiology (n = 31) and Journal of Trauma-Injury, Infection, and Critical Care (n = 28). Articles had an average of five authors and 35 % of first authors were affiliated with a department other than radiology. Forty-six articles had sample sizes of 100 or fewer. Computed tomography (CT) was the most common modality (n = 67), followed by magnetic resonance (MR; n = 22), and X-ray (XR; n = 11). Neuroradiology (n = 48) and abdominal radiology (n = 36) were the most common subspecialties. The 100 top-cited articles in the radiology of trauma are diverse. Subspecialty bibliometric analyses identify the most influential articles of a particular field, providing more implications to clinical radiologists, trainees, researchers, editors, and reviewers than radiology-wide lists.

  11. Educational treasures in Radiology: The Radiology Olympics - striving for gold in Radiology education.

    PubMed

    Talanow, Roland

    2010-01-01

    This article focuses on Radiology Olympics (www.RadiologyOlympics.com) - a collaboration with the international Radiology community for Radiology education, Radiolopolis (www.Radiolopolis.com). The Radiology Olympics honour the movers and shakers in Radiology education and offer an easy to use platform for educating medical professionals based on Radiology cases.

  12. Radiological sinonasal anatomy

    PubMed Central

    Alrumaih, Redha A.; Ashoor, Mona M.; Obidan, Ahmed A.; Al-Khater, Khulood M.; Al-Jubran, Saeed A.

    2016-01-01

    Objectives: To assess the prevalence of common radiological variants of sinonasal anatomy among Saudi population and compare it with the reported prevalence of these variants in other ethnic and population groups. Methods: This is a retrospective cross-sectional study of 121 computerized tomography scans of the nose and paranasal sinuses of patients presented with sinonasal symptoms to the Department of Otorhinolarngology, King Fahad Hospital of the University, Khobar, Saudi Arabia, between January 2014 and May 2014. Results: Scans of 121 patients fulfilled inclusion criteria were reviewed. Concha bullosa was found in 55.4%, Haller cell in 39.7%, and Onodi cell in 28.9%. Dehiscence of the internal carotid artery was found in 1.65%. Type-1 and type-2 optic nerve were the prevalent types. Type-II Keros classification of the depth of olfactory fossa was the most common among the sample (52.9%). Frontal cells were found in 79.3%; type I was the most common. Conclusions: There is a difference in the prevalence of some radiological variants of the sinonasal anatomy between Saudi population and other study groups. Surgeon must pay special attention in the preoperative assessment of patients with sinonasal pathology to avoid undesirable complications. PMID:27146614

  13. Radiological Illustration of Spontaneous Ovarian Hyperstimulation Syndrome

    PubMed Central

    Mittal, Kartik; Koticha, Raj; Dey, Amit K.; Anandpara, Karan; Agrawal, Rajat; Sarvothaman, Madhva P.; Thakkar, Hemangini

    2015-01-01

    Summary Background The role of radiology is of utmost importance not only in diagnosing s-OHSS but also in ruling out other cystic ovarian diseases and to determine the underlying etiology and course of the disease. We presented a radiological algorithm for diagnosing the various causes of s-OHSS. Case Report A 26-year-old female, gravida one was referred to radiology department with history of lower abdominal pain, nausea and vomiting since 2 days which was gradual in onset and progression. The patient had no significant medical and surgical history. Conclusions This article illustrates and emphasizes that diagnosis of s-OHSS and its etiology can be completely evaluated radiologically. Biochemical markers will confirm the radiological diagnosis. PMID:25960820

  14. Historical Radiological Event Monitoring

    EPA Pesticide Factsheets

    During and after radiological events EPA's RadNet monitors the environment for radiation. EPA monitored environmental radiation levels during and after Chernobyl, Fukushima and other international and domestic radiological incidents.

  15. Mobile computing for radiology.

    PubMed

    Auffermann, William F; Chetlen, Alison L; Sharma, Arjun; Colucci, Andrew T; DeQuesada, Ivan M; Grajo, Joseph R; Kung, Justin W; Loehfelm, Thomas W; Sherry, Steven J

    2013-12-01

    The rapid advances in mobile computing technology have the potential to change the way radiology and medicine as a whole are practiced. Several mobile computing advances have not yet found application to the practice of radiology, while others have already been applied to radiology but are not in widespread clinical use. This review addresses several areas where radiology and medicine in general may benefit from adoption of the latest mobile computing technologies and speculates on potential future applications.

  16. Lessons learned from curriculum changes and setting curriculum objectives at the University of Pennsylvania's Earth and Environmental Science Department

    NASA Astrophysics Data System (ADS)

    Dmochowski, J. E.

    2009-12-01

    Recent restructuring of the University of Pennsylvania’s curriculum, including a revised multi-disciplinary Environmental Studies major and a proposed Environmental Science major has led to several changes, including a mandatory junior research seminar. Feedback from students indicates that a more structured curriculum has helped guide them through the multi-disciplinary Environmental Studies major. The addition of mandatory courses in Statistics, Geographical and Environmental Modeling, as well as Economics and Policy has ensured that students have important skills needed to succeed after graduation. We have compiled a curriculum objective matrix to clarify both the broad and focused objectives of our curriculum and how each course helps to fulfill these objectives. An important aspect of both majors is the Senior Thesis. The junior research seminar was recently revised to help students prepare for their thesis research. Topic selection, library research, data presentation, basic research methods, advisor identification, and funding options are discussed. Throughout the course, faculty from within the department lecture about their research and highlight opportunities for undergraduates. In one assignment, students are given a few types of datasets and asked to present the data and error analysis in various formats using different software (SPSS and Excel). The final paper was a research proposal outlining the student’s Senior Thesis. Based on both the university and instructor written course evaluations, students felt they benefited most from writing their senior thesis proposal; doing assignments on data analysis, library research and critical analysis; and the faculty research lectures. The lessons learned in restructuring this flexible major and providing a research seminar in the junior year may benefit other departments considering such changes.

  17. Research Briefings 1986. For the Office of Science and Technology Policy, the National Science Foundation, and Selected Federal Departments and Agencies.

    ERIC Educational Resources Information Center

    National Academy of Sciences, Washington, DC.

    This is part of a series on selected areas of science and technology prepared by the Committee on Science, Engineering, and Public Policy, at the request of the Science Advisor to the President of the United States. This volume includes four individual reports. The first is the report of the "Research Briefing Panel on Science of Interfaces…

  18. Report of the Defense Science Board Subcommittee on Department of Defense Research Policy. Part 1. Policy on Support of Basic Research

    DTIC Science & Technology

    1963-12-31

    f. .. AD-A955 482 Report of the Defen e Science Board Subcomtnittee on Depart•eat of Defense RESEARCH POLICY OTIC SELECTED NOV 2 91J88 0(/H...ACCESSION NO NA 11 TITLE (inc/ud* Stcunty Oassificat/on) Report of the Defense Science Board Subcomittee on Department of Defense Research Policy , Part...Defense Research Policy Office of the Director of Defense Research and Engineering Washington, D. C. 31 December 1963 OFFICE OF THE DIRECTOR OF DEFENSE

  19. Current Trends in Gamma Radiation Detection for Radiological Emergency Response

    SciTech Connect

    Mukhopadhyay, S., Guss, P., Maurer, R.

    2011-09-01

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of interdisciplinary research and development has taken place–techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation–the so-called second line of defense.

  20. Current trends in gamma radiation detection for radiological emergency response

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Guss, Paul; Maurer, Richard

    2011-09-01

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of inter-disciplinary research and development has taken place-techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation-the so-called second line of defense.

  1. A brief history of Sandia National Laboratories and the Department of Energy%3CU%2B2019%3Es Office of Science : interplay between science, technology, and mission.

    SciTech Connect

    Tsao, Jeffrey Yeenien; Myers, Samuel Maxwell, Jr.; Simmons, Jerry Alvon; McIlroy, Andrew; Vook, Frederick L.; Collis, Samuel Scott; Picraux, Samuel Thomas

    2011-08-01

    In 1957, Sandia National Laboratories (Sandia) initiated its first programs in fundamental science, in support of its primary nuclear weapons mission. In 1974, Sandia initiated programs in fundamental science supported by the Department of Energy's Office of Science (DOE-SC). These latter programs have grown to the point where, today in 2011, support of Sandia's programs in fundamental science is dominated by that Office. In comparison with Sandia's programs in technology and mission applications, however, Sandia's programs in fundamental science are small. Hence, Sandia's fundamental science has been strongly influenced by close interactions with technology and mission applications. In many instances, these interactions have been of great mutual benefit, with synergies akin to a positive 'Casimir's spiral' of progress. In this report, we review the history of Sandia's fundamental science programs supported by the Office of Science. We present: (a) a technical and budgetary snapshot of Sandia's current programs supported by the various suboffices within DOE-SC; (b) statistics of highly-cited articles supported by DOE-SC; (c) four case studies (ion-solid interactions, combustion science, compound semiconductors, advanced computing) with an emphasis on mutually beneficial interactions between science, technology, and mission; and (d) appendices with key memos and reminiscences related to fundamental science at Sandia.

  2. Self Assessment in Higher Education: An Empirical Evidence from the Department of Business Administration of Shahjalal University of Science and Technology, Bangladesh

    ERIC Educational Resources Information Center

    Islam, Nazrul; Chowdhury, Mohmmad Ashraful Ferdous

    2015-01-01

    The paper aimed to explore the self assessment practices in higher education in Bangladesh with special reference to Department of Business Administration of Shahjalal University of Science and Technology. For self assessment purpose the researchers have collected opinion from students, alumni, employer and faculty members on eight areas. In…

  3. Soil Sampling to Demonstrate Compliance with Department of Energy Radiological Clearance Requirements for the McGee Ranch-Riverlands and North Slope Units of the Hanford Reach National Monument

    SciTech Connect

    Fritz, Brad G.; Dirkes, Roger L.; Napier, Bruce A.

    2007-09-21

    The Hanford Reach National Monument (HRNM) was created by presidential proclamation in 2000. It is located along the Columbia River in south central Washington and consists of five distinct units. The McGee Ranch-Riverlands and the North Slope units are addressed in this report. North Slope refers to two of the HRNM units: the Saddle Mountain Unit and the Wahluke Slope Unit. The Saddle Mountain and Wahluke Slope Units are located north of the Columbia River, while the McGee Ranch-Riverlands Unit is located south of the Columbia River and north and west of Washington State Highway 24. To fulfill internal U.S. Department of Energy (DOE) requirements prior to any radiological clearance of land, the DOE must evaluate the potential for residual radioactive contamination on this land and determine compliance with the requirements of DOE Order 5400.5. Authorized limits for residual radioactive contamination were developed based on the DOE annual exposure limit to the public (100 mrem) using future potential land-use scenarios. The DOE Office of Environmental Management approved these authorized limits on March 1, 2004. Historical soil monitoring conducted on and around the HRNM indicated soil concentrations of radionuclides were well below the authorized limits (Fritz et al. 2003). However, the historical sampling was done at a limited number of sampling locations. Therefore, additional soil sampling was conducted to determine if the concentrations of radionuclides in soil on the McGee Ranch-Riverlands and North Slope units were below the authorized limits. Sixty-seven soil samples were collected from the McGee Ranch-Riverlands and North Slope units. A software package (Visual Sample Plan) was used to plan the collection to assure an adequate number of samples were collected. The number of samples necessary to decide with a high level of confidence (99%) that the soil concentrations of radionuclides on the North Slope and McGee Ranch-Riverlands units did not exceed the

  4. Scientific Futures. Selected Areas of Opportunity for the Office of Science and Technology Policy, the National Science Foundation, and Selected Federal Departments and Agencies.

    ERIC Educational Resources Information Center

    National Academy of Sciences, Washington, DC.

    In response to the President's Office of Science and Technology Policy request to identify promising areas for U.S. research investment in science and technology, this report contains briefings by outstanding researchers in several fields of science. This volume is the fifth in a series of briefings which are used to anticipate important new…

  5. [Bibliometric study of the activity, structure, and evolution of radiology in Spain].

    PubMed

    Miguel-Dasit, A

    2006-01-01

    From a bibliometric perspective, we reviewed: 1) the scientific activity in the field of diagnostic imaging in Spain, based on the percentage of presentations at the SERAM congresses (1994-1998) later published as articles in scientific journals. The value obtained (15%) is low in comparison with other international congresses, although similar to values for other national congresses in radiology. Both in national and international congresses, collaboration among radiologists from different institutions or countries and between radiologists and clinicians increases the percentage of publications, thus confirming the positive correlation between collaboration and scientific productivity. 2) We also examined the relationship between scientific productivity and the hierarchical structure of Spanish radiology departments (resident, associate, section chief, and department chief). Hierarchical groupings with the participation of residents were found to be more stable from year to year in scientific production, and the group residents + associates had the highest percentage of authorship (21%). 3) Finally, we reviewed the literature to assess the visibility and dissemination of the journal Radiología, estimating the impact factor that the journal would obtain if it were included in the Journal Citation Reports (JRC) database. We emphasize the importance of the inclusion of Radiología both in Medline, the best known and most widely used source of information in the health sciences, and in the JCR.

  6. "HTLV-I Infection" Twenty-Year Research in Neurology Department of Mashhad University of Medical Sciences.

    PubMed

    Shoeibi, Ali; Etemadi, Mohammdmahdi; Moghaddam Ahmadi, Amir; Amini, Mona; Boostani, Reza

    2013-03-01

    Human T-cell lymphotropic virus (HTLV) types 1 and 2 belong to the Oncorna group of retroviridae, a large family of viruses, grouped initially by pathogenic features, but later revised on the basis of genome structure and nucleotide sequence. HTLV-I was the first discovered human retrovirus to be associated with a malignancy in 1980. The malignancy, first described by Uchiyama and co-workers in southwestern Japan, was named Adult T-cell Leukemia/Lymphoma (ATL) and characterized with cutaneous and respiratory involvement, hepatosplenomegaly, lymphadenopathy and various metabolic abnormalities such as hypercalcemia. The HTLV-I has been known to be endemic to certain parts of Iran like the province of Khorasan in the northeast since 1990, with a 2.3% prevalence rate of infection. The main manifestations of HTLV-I infection are neurologic and hematologic (such as ATL) disorders, but it has also other manifestations such as uveitis, arthritis, dermatitis, vitiligo and lymphocytic alveolitis. Its main neurologic manifestation is a chronic progressive myelopathy that is referred to HTLV-I Associated Myelopathy (HAM) in Japan and Tropical Spastic Paraparesis (TSP) in Caribbean. But other disorders such as peripheral neuropathy, polyradiculoneuropathy, myopathy, peripheral facial paresis, and so on have been reported too. In this review we wish to give some brief information on the different aspects (including epidemiology, pathogenesis and pathology, clinical findings, and treatment) of HTLV-I infection according to our twenty-year researches. The department of neurology of Mashhad University of Medical Sciences has been a pioneer in researches on HTLV-I in the last twenty years.

  7. “HTLV-I Infection” Twenty-Year Research in Neurology Department of Mashhad University of Medical Sciences

    PubMed Central

    Shoeibi, Ali; Etemadi, Mohammdmahdi; Moghaddam Ahmadi, Amir; Amini, Mona; Boostani, Reza

    2013-01-01

    Human T-cell lymphotropic virus (HTLV) types 1 and 2 belong to the Oncorna group of retroviridae, a large family of viruses, grouped initially by pathogenic features, but later revised on the basis of genome structure and nucleotide sequence. HTLV-I was the first discovered human retrovirus to be associated with a malignancy in 1980. The malignancy, first described by Uchiyama and co-workers in southwestern Japan, was named Adult T-cell Leukemia/Lymphoma (ATL) and characterized with cutaneous and respiratory involvement, hepatosplenomegaly, lymphadenopathy and various metabolic abnormalities such as hypercalcemia. The HTLV-I has been known to be endemic to certain parts of Iran like the province of Khorasan in the northeast since 1990, with a 2.3% prevalence rate of infection. The main manifestations of HTLV-I infection are neurologic and hematologic (such as ATL) disorders, but it has also other manifestations such as uveitis, arthritis, dermatitis, vitiligo and lymphocytic alveolitis. Its main neurologic manifestation is a chronic progressive myelopathy that is referred to HTLV-I Associated Myelopathy (HAM) in Japan and Tropical Spastic Paraparesis (TSP) in Caribbean. But other disorders such as peripheral neuropathy, polyradiculoneuropathy, myopathy, peripheral facial paresis, and so on have been reported too. In this review we wish to give some brief information on the different aspects (including epidemiology, pathogenesis and pathology, clinical findings, and treatment) of HTLV-I infection according to our twenty-year researches. The department of neurology of Mashhad University of Medical Sciences has been a pioneer in researches on HTLV-I in the last twenty years. PMID:24470862

  8. Positioning a medical school for modern biomedical research: the department of genome sciences at the University of Washington School of Medicine.

    PubMed

    Fields, Stanley; Nickerson, Deborah A; Waterston, Robert H; Ramsey, Paul G

    2006-10-01

    The availability of genome sequences from a multitude of organisms, which began about a decade ago, has had enormous impact throughout the biomedical sciences. These sequence data have changed the way research studies are carried out and have led to the explosive growth of computational biology as an approach to analyze biological processes and evolution. In medicine, the completion of the human genome sequence has illuminated the function of many genes, facilitated the correlation of mutant genes to disease phenotypes, and provided a basis for the study of human variation. At the University of Washington, the two academic departments whose overall programs were most centrally affected by the sequencing revolution were Genetics and Molecular Biotechnology. These departments were fused in 2001 to form the Department of Genome Sciences in order to best exploit these developments and to become a prototype for the basic biomedical science department of the future. The department's goal is to address leading-edge questions in biology and medicine through the application of genetics, genomics, proteomics, and computational approaches to the increasing collection of known genome sequences and their encoded products. The authors review the events that led up to the founding of this department and discuss the initiatives that have been undertaken, which include the recruitment of faculty, the establishment of a new interdisciplinary graduate program, the continued development of an outreach program, and the construction of a building to house the department. Lessons learned in crafting this department are also discussed, as well as how these might apply to other medical schools.

  9. A Design Protocol to Develop Radiology Dashboards

    PubMed Central

    Karami, Mahtab

    2014-01-01

    ABSTRACT Aim: The main objective of this descriptive and development research was to introduce a design protocol to develop radiology dashboards. Material and methods: The first step was to determine key performance indicators for radiology department. The second step was to determine required infrastructure for implementation of radiology dashboards. Infrastructure was extracted from both data and technology perspectives. The third step was to determine main features of the radiology dashboards. The fourth step was to determine the key criteria for evaluating the dashboards. In all these steps, non-probability sampling methods including convenience and purposive were employed and sample size determined based on a persuasion model. Results: Results showed that there are 92 KPIs, 10 main features for designing dashboards and 53 key criteria for dashboards evaluation. As well as, a Prototype of radiology management dashboards in four aspects including services, clients, personnel and cost-income were implemented and evaluated. Applying such dashboards could help managers to enhance performance, productivity and quality of services in radiology department. PMID:25568585

  10. What is Diagnostic Radiology's Place in Medicine?

    PubMed Central

    Bull, J. W. D.

    1974-01-01

    The question that the title of this lecture poses must depend considerably on the attitude of physicians and surgeons. I have indicated the very low position diagnostic radiology holds in this country relative to our peers in medicine elsewhere. If its improvement is considered to be warranted, we must: (1) Interest medical students at the beginning of their career. (2) Bear in mind that radiologists are likely to be able to teach some anatomy but the reciprocal seldom applies. (3) Obtain chairs in radiology, which are desperately needed. (4) Obtain the acceptance by the medical establishment of the proper place of radiology in clinical medicine. (5) See to the reduction in numbers of unnecessary x-ray examinations. (6) Press for the improvement and enlargement of radiological departments with proper provision for expansion. ImagesFIG. 1FIG. 5 PMID:4855415

  11. Machine Learning and Radiology

    PubMed Central

    Wang, Shijun; Summers, Ronald M.

    2012-01-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. PMID:22465077

  12. Radiological evaluation of dysphagia

    SciTech Connect

    Ott, D.J.; Gelfand, D.W.; Wu, W.C.; Chen, Y.M.

    1986-11-21

    Dysphagia is a common complaint in patients presenting for radiological or endoscopic examination of the esophagus and is usually due to functional or structural abnormalities of the esophageal body or esophagogastric region. The authors review the radiological evaluation of the esophagus and esophagogastric region in patients with esophageal dysphagia and discuss the roentgenographic techniques used, radiological efficacy for common structural disorders, and evaluation of esophageal motor function. Comparison is made with endoscopy in assessing dysphagia, with the conclusion that the radiological examination be used initially in patients with this complaint.

  13. Radiological Scoping Survey of the Scotia Depot Scotia, New York

    SciTech Connect

    E. N. Bailey

    2005-02-05

    At the request of the Defense Logistics Agency, the Oak Ridge Institute for Science and Education conducted radiological scoping surveys of the Scotia Depot during the period of September 24 through 27, 2007. The scoping survey included visual inspections and limited radiological surveys performed in accordance with area classification that included surface scans, total and removable activity measurements, and soil sampling.

  14. Math and Science School (MASS): A Department of Energy enhancement program to benefit students from Native American Tribes affected by the Hanford Reservation

    SciTech Connect

    Jaeger, M.

    1993-03-20

    Math and Science School is a program designed to enrich and encourage elementary students and teachers of the Confederated Tribes of the Umatilla Indian Reservation in the areas of mathematics and science activities. By providing access to special hands-on workshop sessions held in the mobile science laboratory at the school sites during the school year for students and teachers and with a separate summer inservice program for students, elementary children and teachers are encouraged to explore the fascination of science and the utility of mathematics through use of integrated curricula. The Department of Energy grant underwrites the instructional costs of this system while the grantee provides the mobile laboratory and the majority of the materials.

  15. Math and Science School (MASS): A Department of Energy enhancement program to benefit students from Native American Tribes affected by the Hanford Reservation. Progress report

    SciTech Connect

    Jaeger, M.

    1993-03-20

    Math and Science School is a program designed to enrich and encourage elementary students and teachers of the Confederated Tribes of the Umatilla Indian Reservation in the areas of mathematics and science activities. By providing access to special hands-on workshop sessions held in the mobile science laboratory at the school sites during the school year for students and teachers and with a separate summer inservice program for students, elementary children and teachers are encouraged to explore the fascination of science and the utility of mathematics through use of integrated curricula. The Department of Energy grant underwrites the instructional costs of this system while the grantee provides the mobile laboratory and the majority of the materials.

  16. Health Care Delivery Meets Hospitality: A Pilot Study in Radiology.

    PubMed

    Steele, Joseph Rodgers; Jones, A Kyle; Clarke, Ryan K; Shoemaker, Stowe

    2015-06-01

    The patient experience has moved to the forefront of health care-delivery research. The University of Texas MD Anderson Cancer Center Department of Diagnostic Radiology began collaborating in 2011 with the University of Houston Conrad N. Hilton College of Hotel and Restaurant Management, and in 2013 with the University of Nevada, Las Vegas, William F. Harrah College of Hotel Administration, to explore the application of service science to improving the patient experience. A collaborative pilot study was undertaken by these 3 institutions to identify and rank the specific needs and expectations of patients undergoing imaging procedures in the MD Anderson Department of Diagnostic Radiology. We first conducted interviews with patients, providers, and staff to identify factors perceived to affect the patient experience. Next, to confirm these factors and determine their relative importance, we surveyed more than 6,000 patients by e-mail. All factors considered important in the interviews were confirmed as important in the surveys. The surveys showed that the most important factors were acknowledgment of the patient's concerns, being treated with respect, and being treated like a person, not a "number"; these factors were more important than privacy, short waiting times, being able to meet with a radiologist, and being approached by a staff member versus having one's name called out in the waiting room. Our work shows that it is possible to identify and rank factors affecting patient satisfaction using techniques employed by the hospitality industry. Such factors can be used to measure and improve the patient experience.

  17. Radiological design guide

    SciTech Connect

    Evans, R.A.

    1994-08-16

    The purpose of this design guide is to provide radiological safety requirements, standards, and information necessary for designing facilities that will operate without unacceptable risk to personnel, the public, or the environment as required by the US Department of Energy (DOE). This design guide, together with WHC-CM-4-29, Nuclear Criticality Safety, WHC-CM-4-46, Nonreactor Facility Safety Analysis, and WHC-CM-7-5, Environmental Compliance, covers the radiation safety design requirements at Westinghouse Hanford Company (WHC). This design guide applies to the design of all new facilities. The WHC organization with line responsibility for design shall determine to what extent this design guide shall apply to the modifications to existing facilities. In making this determination, consideration shall include a cost versus benefit study. Specifically, facilities that store, handle, or process radioactive materials will be covered. This design guide replaces WHC-CM-4-9 and is designated a living document. This design guide is intended for design purposes only. Design criteria are different from operational criteria and often more stringent. Criteria that might be acceptable for operations might not be adequate for design.

  18. Radiological Defense. Textbook.

    ERIC Educational Resources Information Center

    Defense Civil Preparedness Agency (DOD), Washington, DC.

    This textbook has been prepared under the direction of the Defense Civil Preparedness Agency (DCPA) Staff College for use as a student reference manual in radiological defense (RADEF) courses. It provides much of the basic technical information necessary for a proper understanding of radiological defense and summarizes RADEF planning and expected…

  19. Science and Mathematics Faculty Responses to a Policy-Based Initiative: Change Processes, Self-Efficacy Beliefs, and Department Culture

    ERIC Educational Resources Information Center

    Ellett, Chad D.; Demir, Kadir; Monsaas, Judith

    2015-01-01

    The purpose of this study was to examine change processes, self-efficacy beliefs, and department culture and the roles these elements play in faculty engagement in working in K-12 schools. The development of three new web-based measures of faculty perceptions of change processes, self-efficacy beliefs, and department culture are described. The…

  20. Ebola virus disease: radiology preparedness.

    PubMed

    Bluemke, David A; Meltzer, Carolyn C

    2015-02-01

    At present, there is a major emphasis on Ebola virus disease (EVD) preparedness training at medical facilities throughout the United States. Failure to have proper EVD procedures in place was cited as a major reason for infection of medical personnel in the United States. Medical imaging does not provide diagnosis of EVD, but patient assessment in the emergency department and treatment isolation care unit is likely to require imaging services. The purpose of this article is to present an overview of relevant aspects of EVD disease and preparedness relevant to the radiologic community.

  1. Report of the Defense Science Board Subcommittee on Department of Defense Research Policy. Part 2. Further Analysis of Basic Research Policy

    DTIC Science & Technology

    1965-01-14

    POLICY „_-, < ^ZLECTE OCT 1 7 1988 Ha Part n. Further Analysis of Basic Research Policy 14 January 1965 Office of the Director of Defense Research... Research Policy Part II. Further Analysis of Basic Rssearch Policy, UNCLASSIFIED 12. PERSONAL AUTHOR(S) N/A 13a. TYPE OF REPORT Final 13b TIME COVERED...UNCLASSIFIED UNCLASSIFIED Report of the Defense Science Board Subcommittee on DEPARTMENT OF DEFENSE RESEARCH POLICY ThÄtocument contains information

  2. Downgrading Nuclear Facilities to Radiological Facilities

    SciTech Connect

    Jarry, Jeffrey F.; Farr, Jesse Oscar; Duran, Leroy

    2015-08-01

    Based on inventory reductions and the use of alternate storage facilities, the Sandia National Laboratories (SNL) downgraded 4 SNL Hazard Category 3 (HC-3) nuclear facilities to less-than-HC-3 radiological facilities. SNL’s Waste Management and Pollution Prevention Department (WMPPD) managed the HC-3 nuclear facilities and implemented the downgrade. This paper will examine the downgrade process,

  3. Region 1: Radiological Assistance Program (RAP). Revision 2, Part 1

    SciTech Connect

    Hull, A.P.; Kuehner, A.V.

    1993-10-01

    The Department of Energy`s Radiological Assistance Program (RAP) is established under DOE Order 5530.3 to: (a) Establish and maintain response plans and resources to provide radiological assistance to other Federal agencies, State, local, and tribal governments, and private groups requesting such assistance. (b) Assist State, local, and tribal jurisdictions in preparing for radiological emergencies. (c) In the event of a real, or potential radiological accident, provide resources and monitoring and assessment assistance to other federal agencies, State, local, and tribal Governments. This plan is an integral part of a nationwide program of regionally based radiological assistance which has been established by DOE. The Brookhaven Area Office is the Regional Coordinating Office (RCO) for the Radiological Assistance Program in DOE Region 1, which consists of the New England States, New York, New Jersey, Pennsylvania, Delaware, Maryland and the District of Columbia.

  4. Interventional Radiology in Paediatrics.

    PubMed

    Chippington, Samantha J; Goodwin, Susie J

    2015-01-01

    As in adult practice, there is a growing role for paediatric interventional radiology expertise in the management of paediatric pathologies. This review is targeted for clinicians who may refer their patients to paediatric interventional radiology services, or who are responsible for patients who are undergoing paediatric interventional radiology procedures. The article includes a brief overview of the indications for intervention, techniques involved and the commonest complications. Although some of the procedures described are most commonly performed in a tertiary paediatric centre, many are performed in most Children's hospitals.

  5. Society of Interventional Radiology

    MedlinePlus

    ... decoded SIR’s Health Policy and Economics team provides information on the varied activities the society engages in to ensure proper coding of interventional radiology services. SIR is committed to assisting you, your institution ...

  6. Assuring the U.S. Department of Defense a Strong Science, Technology, Engineering, and Mathematics (STEM) Workforce

    ERIC Educational Resources Information Center

    National Academies Press, 2012

    2012-01-01

    The ability of the nation's military to prevail during future conflicts, and to fulfill its humanitarian and other missions, depends on continued advances in the nation's technology base. A workforce with robust Science, Technology, Engineering and Mathematics (STEM) capabilities is critical to sustaining U.S. preeminence. Today, however, the STEM…

  7. Relative Evaluation System as an Obstacle to Cooperative Learning: The Views of Lecturers in a Science Education Department

    ERIC Educational Resources Information Center

    Tatar, Erdal; Oktay, Munir

    2008-01-01

    This study attempts to define the contradiction between cooperative learning, which has an important place in science education, and the relative evaluation system. The fixation of the situation which was done with the data obtained from the literature also has been supported with a semi-structured interview study conducted with eighteen science…

  8. Power at the Interfaces: The Contested Orderings of Academic Presents and Futures in a Social Science Department

    ERIC Educational Resources Information Center

    Stöckelová, Tereza

    2014-01-01

    The changes in and transformations of academic institutions and practices we are currently witnessing are complex. I argue that there are no clear-cut historical transitions between different regimes of science, such as from the "public knowledge regime" to "academic capitalism". Drawing upon John Law's analysis of "modes…

  9. DOE standard: Radiological control

    SciTech Connect

    Not Available

    1999-07-01

    The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal Regulations, Part 835 (10 CFR 835), ``Occupational Radiation Protection``. Failure to comply with these requirements may lead to appropriate enforcement actions as authorized under the Price Anderson Act Amendments (PAAA). While this Standard does not establish requirements, it does restate, paraphrase, or cite many (but not all) of the requirements of 10 CFR 835 and related documents (e.g., occupational safety and health, hazardous materials transportation, and environmental protection standards). Because of the wide range of activities undertaken by DOE and the varying requirements affecting these activities, DOE does not believe that it would be practical or useful to identify and reproduce the entire range of health and safety requirements in this Standard and therefore has not done so. In all cases, DOE cautions the user to review any underlying regulatory and contractual requirements and the primary guidance documents in their original context to ensure that the site program is adequate to ensure continuing compliance with the applicable requirements. To assist its operating entities in achieving and maintaining compliance with the requirements of 10 CFR 835, DOE has established its primary regulatory guidance in the DOE G 441.1 series of Guides. This Standard supplements the DOE G 441.1 series of Guides and serves as a secondary source of guidance for achieving compliance with 10 CFR 835.

  10. Interventional Radiology in China

    SciTech Connect

    Teng Gaojun Xu Ke; Ni Caifang; Li Linsun

    2008-03-15

    With more than 3000 members, the Chinese Society of Interventional Radiology (CSIR) is one of the world's largest societies for interventional radiology (IR). Nevertheless, compared to other societies such as CIRSE and SIR, the CSIR is a relatively young society. In this article, the status of IR in China is described, which includes IR history, structure and patient management, personnel, fellowship, training, modalities, procedures, research, turf battle, and insightful visions for IR from Chinese interventional radiologists.

  11. Building Partnerships Between Research Institutions, University Academic Departments, Local School Districts, and Private Enterprise to Advance K-12 Science Education in Texas

    NASA Astrophysics Data System (ADS)

    Ellins, K. K.; Ganey-Curry, P.; Fennell, T.

    2003-12-01

    The University of Texas at Austin Institute for Geophysics (UTIG) is engaged in six K-12 education and outreach programs, including two NSF-sponsored projects--GK-12: Linking Graduate Fellows with K-12 Students and Teachers and Cataclysms and Catastrophes--Texas Teachers in the Field, Adopt-a-School, Geoscience in the Classroom, and UT's Science and Engineering Apprenticeship Program. The GK-12 Program is central to UTIG's effort and links the six education projects together. While the specific objectives of each project differ, the broad goals of UTIG's education and outreach are to provide high-quality professional development for teachers, develop curriculum resources aligned with state and national education standards, and promote interaction between teachers, scientists, graduate students, and science educators. To achieve these goals, UTIG has forged funded partnerships with scientific colleagues at UT's Bureau of Economic Geology, Marine Science Institute and Department of Geological Sciences; science educators at UT's Charles A. Dana Center and in the Department of Curriculum and Instruction in the College of Education; teachers in six Texas independent school districts; and 4empowerment.com, a private education company that established the "Cyberways and Waterways" Web site to integrate technology and education through an environmentally-based curriculum. These partnerships have allowed UTIG to achieve far more than would have been possible through individual projects alone. Examples include the development of more than 30 inquiry-based activities, hosting workshops and a summer institute, and participation in local science fairs. UTIG has expanded the impact of its education and outreach and achieved broader dissemination of learning activities through 4empowerment's web-based programs, which reach ethnically diverse students in schools across Texas. These partnerships have also helped UTIG and 4empowerment to secure additional funding for other education

  12. 2003 U.S. Department of Energy Strategic Plan: Protecting National, Energy, and Economic Security with Advanced Science and Technology and Ensuring Environmental Cleanup

    SciTech Connect

    None,

    2003-09-30

    The Department of Energy contributes to the future of the Nation by ensuring energy security, maintaining the safety, security and reliability of the nuclear weapons stockpile, cleaning up the environment from the legacy of the Cold War, and developing innovations in science and technology. After 25 years in existence, the Department now operates 24 preeminent research laboratories and facilities and four power marketing administrations, and manages the environmental cleanup from 50 years of nuclear defense activities that impacted two million acres in communities across the country. The Department has an annual budget of about $23 billion and employs about 14,500 Federal and 100,000 contractor employees. The Department of Energy is principally a national security agency and all of its missions flow from this core mission to support national security. That is true not just today, but throughout the history of the agency. The origins of the Department can be traced to the Manhattan Project and the race to develop the atomic bomb during World War II. Following the war, Congress engaged in a vigorous and contentious debate over civilian versus military control of the atom. The Atomic Energy Act of 1946 settled the debate by creating the Atomic Energy Commission, which took over the Manhattan Project’s sprawling scientific and industrial complex.

  13. Routine Radiological Environmental Monitoring Plan. Volume 1

    SciTech Connect

    Bechtel Nevada

    1999-12-31

    The U.S. Department of Energy manages the Nevada Test Site in a manner that meets evolving DOE Missions and responds to the concerns of affected and interested individuals and agencies. This Routine Radiological Monitoring Plan addressess complicance with DOE Orders 5400.1 and 5400.5 and other drivers requiring routine effluent monitoring and environmental surveillance on the Nevada Test Site. This monitoring plan, prepared in 1998, addresses the activities conducted onsite NTS under the Final Environmental Impact Statement and Record of Decision. This radiological monitoring plan, prepared on behalf of the Nevada Test Site Landlord, brings together sitewide environmental surveillance; site-specific effluent monitoring; and operational monitoring conducted by various missions, programs, and projects on the NTS. The plan provides an approach to identifying and conducting routine radiological monitoring at the NTS, based on integrated technical, scientific, and regulatory complicance data needs.

  14. Behavioral Sciences in a Changing Army: Proceedings of Army Medical Department (AMEDD) Behavioral Sciences Seminar, 19-23 March 1979 held at Fitzsimons Army Medical Center, Aurora, Colorado,

    DTIC Science & Technology

    1979-01-01

    related to other sexual deviates. How should we handle excellent soldiers found to be homosexual? My wife suggested that we should actively recruit them...aictivities hear directly upon tivity necessiry for cont rol. Sexual activity with a patient hi0rcie hswudovosyb h ae Hoever is unethical. -in other...34Behavioral Sciences - 30 year perspectives" R.H. Gemmill - "Single-Parent Family: Active Duty and Dependent." \\ Eight Task GroupSreported on the following

  15. Radiological Assistance Program plan, Region 8. Revision 1

    SciTech Connect

    Webb, D.E.

    1993-09-01

    The US Department of Energy (DOE) has sponsored a Radiological Assistance Program (RAP) since the late 1950`s. When a radiological incident occurs and exceeds the capability of the Federal, tribal, State, or local authorities, DOE resources are made available through the RAP to provide assistance to those authorities. The explicit purpose of the RAP is to assist in monitoring and assessing activities associated with radiological incidents or emergencies. The DOE`s philosophy is that assistance wig be provided in radiological accidents and will normally end when the need for assistance is over or if there are other sufficient resources available to handle the situation. The design of RAP is so that DOE`s response to a small incident can smoothly scale up for a major radiological emergency. In the event of a major radiological emergency, the law requires DOE to provide resources through the Federal Radiological Emergency Response Plan (FRERP) (FEMA 1985). The FRERP is a comprehensive Federal plan that describes the overall coordination of a Federal government response to a major radiological emergency. Implementation of RAP is done on a regional basis, with regional coordination between States and DOE response elements. This regional coordination is intended to foster a working relationship between DOE radiological response elements and those State, local, or other Federal agencies.

  16. The PULSE Vision & Change Rubrics, Version 1.0: A Valid and Equitable Tool to Measure Transformation of Life Sciences Departments at All Institution Types

    PubMed Central

    Brancaccio-Taras, Loretta; Pape-Lindstrom, Pamela; Peteroy-Kelly, Marcy; Aguirre, Karen; Awong-Taylor, Judy; Balser, Teri; Cahill, Michael J.; Frey, Regina F.; Jack, Thomas; Kelrick, Michael; Marley, Kate; Miller, Kathryn G.; Osgood, Marcy; Romano, Sandra; Uzman, J. Akif; Zhao, Jiuqing

    2016-01-01

    The PULSE Vision & Change Rubrics, version 1.0, assess life sciences departments’ progress toward implementation of the principles of the Vision and Change report. This paper reports on the development of the rubrics, their validation, and their reliability in measuring departmental change aligned with the Vision and Change recommendations. The rubrics assess 66 different criteria across five areas: Curriculum Alignment, Assessment, Faculty Practice/Faculty Support, Infrastructure, and Climate for Change. The results from this work demonstrate the rubrics can be used to evaluate departmental transformation equitably across institution types and represent baseline data about the adoption of the Vision and Change recommendations by life sciences programs across the United States. While all institution types have made progress, liberal arts institutions are farther along in implementing these recommendations. Generally, institutions earned the highest scores on the Curriculum Alignment rubric and the lowest scores on the Assessment rubric. The results of this study clearly indicate that the Vision & Change Rubrics, version 1.0, are valid and equitable and can track long-term progress of the transformation of life sciences departments. In addition, four of the five rubrics have broad applicability and can be used to evaluate departmental transformation by other science, technology, engineering, and mathematics disciplines. PMID:27856548

  17. The Department of Defense Statement on Science in the Mission Agencies and Federal Laboratories before the Task Force on Science Policy of the Committee on Science and Technology of the United States House of Representatives, 99th Congress, First Session.

    DTIC Science & Technology

    1985-10-02

    1986 I BEFORE THE TASK FORCE ON SCIENCE POLICY OF THE COMMITTEE ON SCIENCE AND TECHNOLOGY CF THE UNITED STATES HOUSE OF REPRESENTATIVES 99th CONGRESS...RESEARCH AND ADVANCED TECHNOLOGY BEFORE THE TASR FORCE ON SCIENCE POLICY OF THE COMMITTEE ON SCIENCE AND TECHNOLOGY OF THE UNITED STATES HOUSE OF... governmental organizations. TABLE I SCIENCE AND TECHNOLOGY PROGRAM (Dollars in Millions) FY 1985 FY 198b Research 861 971 Exploratory Development 2,201 2,555

  18. Hampshire College Center for Science Education. Final Report on Activities Supported by the Department of Energy Grant No. DE-FG02-06ER64256

    SciTech Connect

    Stillings, Neil; Wenk, Laura

    2009-12-30

    Hampshire College's Center for Science Education (Center) focuses on teacher professional development, curriculum development, and student enrichment programs. The Center also maintains research programs on teacher change, student learning and instructional effectiveness. The Center's work promotes learning that persists over time and transfers to new situations in and out of school. The projects develop the implications of the increasing agreement among teachers and researchers that effective learning involves active concept mastery and consistent practice with inquiry and critical thinking. The Center's objective is to help strengthen the pipeline of U.S. students pursuing postsecondary study in STEM fields. The Center achieves this by fostering an educational environment in which science is taught as an active, directly experienced endeavor across the K-16 continuum. Too often, young people are dissuaded from pursuing science because they do not see its relevance, instead experiencing it as dry, rote, technical. In contrast, when science is taught as a hands-on, inquiry-driven process, students are encouraged to ask questions grounded in their own curiosity and seek experimental solutions accordingly. In this way, they quickly discover both the profound relevance of science to their daily lives and its accessibility to them. Essentially, they learn to think and act like real scientists. The Center’s approach is multi-faceted: it includes direct inquiry-based science instruction to secondary and postsecondary students, educating the next generation of teachers, and providing new educational opportunities for teachers already working in the schools. Funding from the Department of Energy focused on the last population, enabling in-service teachers to explore and experience the pedagogy of inquiry-based science for themselves, and to take it back to their classrooms and students. The Center has demonstrated that the inquiry-based approach to science learning is

  19. Overview of the NASA/RECON educational, research, and development activities of the Computer Science Departments of the University of Southwestern Louisiana and Southern University

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor)

    1984-01-01

    This document presents a brief overview of the scope of activities undertaken by the Computer Science Departments of the University of Southern Louisiana (USL) and Southern University (SU) pursuant to a contract with NASA. Presented are only basic identification data concerning the contract activities since subsequent entries within the Working Paper Series will be oriented specifically toward a detailed development and presentation of plans, methodologies, and results of each contract activity. Also included is a table of contents of the entire USL/DBMS NASA/RECON Working Paper Series.

  20. The role of the Department of Homeland Security, Science and Technology Directorate in the development of vaccines and diagnostics for Transboundary Animal Diseases.

    PubMed

    Colby, M; Coats, M; Brake, D; Fine, J

    2013-01-01

    The development of countermeasures to support an effective response to Transboundary Animal Diseases (TAD) poses a challenge on a global scale and necessitates the coordinated involvement of scientists from government, industry and academia, as well as regulatory entities. The Agricultural Defense Branch under the Chemical and Biological Defense Division (CBD) of the Department of Homeland Security (DHS), Science and Technology Directorate (S&T) supports this important mission within the United States. This article provides an overview of the Agricultural Defense Branch's vaccine and diagnostic TAD project.

  1. Forensic aspects of maxillofacial radiology.

    PubMed

    Wood, R E

    2006-05-15

    Radiology has been used extensively in conventional dental identification, anatomically based identification and identification using maxillofacial skeletal landmarks such as the frontal sinus. Examples of these are well documented in the literature. The purpose of this paper was to revisit the methods where radiographic methods may be used to determine identity using the teeth, the root structures and the frontal sinuses. Additionally suggestions are offered for management of radiography in mass disasters and cases where age determination is required. Computer assisted tomography can be used in the assessment of the degree of fit of a weapon to a wound in cases of blunt force skull injury and plane films can assist in depicting the pattern of post mortem skull fractures. Micro-computed tomography has been used in matching weapons to wounds in sharp-force injury cases. The radiologist's role in cases of civil litigation and fraud is discussed and case examples are given. There are gaps in the science where radiological methods are used. The author offers several suggestions for possible research projects to close some of these gaps.

  2. Academic opportunities in radiology education and education research.

    PubMed

    Collins, Jannette

    2002-07-01

    Education can be the focus of a rewarding and successful career in academic radiology. Educational opportunities for academic radiologists include teaching medical students, residents, nursing students, physician assistant students, radiology technologist students, and other allied health profession students. Teaching can occur in large or small groups, or as a one-on-one encounter. Teaching is the very best way to learn a subject well; thus, educators are often considered experts in their fields. Educators can develop innovative teaching materials that are passed on to generations of students. Opportunities in educational administration and personal development are available both locally and nationally. Participation in radiology education research allows a radiologist to contribute to the body of knowledge in radiology education and advance the field of radiology education through science.

  3. Outreach and Education in the Life Sciences A Case Study of the U.S. Department of Energy National Laboratories

    SciTech Connect

    Weller, Richard E.; Burbank, Roberta L.; Mahy, Heidi A.

    2010-03-15

    This project was intended to assess the impact of the U.S. Department of Energy’s National Nuclear Security Agency (DOE/NNSA) -sponsored education and outreach activities on the Biological Weapons Convention (BWC) in DOE national laboratories. Key activities focused on a series of pilot education and outreach workshops conducted at ten national laboratories. These workshops were designed to increase awareness of the BWC, familiarize scientists with dual-use concerns related to biological research, and promote the concept of individual responsibility and accountability

  4. Advances in diagnostic radiology.

    PubMed

    Runge, Val M

    2010-12-01

    Recent advances in diagnostic radiology are discussed on the basis of current publications in Investigative Radiology. Publications in the journal during 2009 and 2010 are reviewed, evaluating developments by modality and anatomic region. Technological advances continue to play a major role in the evolution and clinical practice of diagnostic radiology, and as such constitute a major publication focus. In the past 2 years, this includes advances in both magnetic resonance and computed tomography (in particular, the advent of dual energy computed tomography). An additional major focus of publications concerns contrast media, and in particular continuing research involving nephrogenic systemic fibrosis, its etiology, and differentiation of the gadolinium chelates on the basis of in vivo stability.

  5. Radiology's value chain.

    PubMed

    Enzmann, Dieter R

    2012-04-01

    A diagnostic radiology value chain is constructed to define its main components, all of which are vulnerable to change, because digitization has caused disaggregation of the chain. Some components afford opportunities to improve productivity, some add value, while some face outsourcing to lower labor cost and to information technology substitutes, raising commoditization risks. Digital image information, because it can be competitive at smaller economies of scale, allows faster, differential rates of technological innovation of components, initiating a centralization-to-decentralization technology trend. Digitization, having triggered disaggregation of radiology's professional service model, may soon usher in an information business model. This means moving from a mind-set of "reading images" to an orientation of creating and organizing information for greater accuracy, faster speed, and lower cost in medical decision making. Information businesses view value chain investments differently than do small professional services. In the former model, producing a better business product will extend image interpretation beyond a radiologist's personal fund of knowledge to encompass expanding external imaging databases. A follow-on expansion with integration of image and molecular information into a report will offer new value in medical decision making. Improved interpretation plus new integration will enrich and diversify radiology's key service products, the report and consultation. A more robust, information-rich report derived from a "systems" and "computational" radiology approach will be facilitated by a transition from a professional service to an information business. Under health care reform, radiology will transition its emphasis from volume to greater value. Radiology's future brightens with the adoption of a philosophy of offering information rather than "reads" for decision making. Staunchly defending the status quo via turf wars is unlikely to constitute a

  6. DOE Region 6 Radiological Assistance Program plan. Revision 1

    SciTech Connect

    Jakubowski, F.M.

    1995-11-01

    The US Department of Energy (DOE) has sponsored a Radiological Assistance Program (RAP) since the 1950`s. The RAP is designed to make DOE resources available to other DOE facilities, state, tribal, local, private businesses, and individuals for the explicit purpose of assisting during radiological incidents. The DOE has an obligation, through the Atomic Energy Act of 1954, as amended, to provide resources through the Federal Radiological Emergency Response Plan (FRERP, Nov. 1985) in the event of a radiological incident. Toward this end, the RAP program is implemented on a regional basis, and has planned for an incremental response capability with regional coordination between states and DOE response elements. This regional coordination is intended to foster a working relationship between DOE radiological assistance elements and those state, tribal, and local agencies responsible for first response to protect public health and safety.

  7. Westinghouse radiological containment guide

    SciTech Connect

    Aitken, S.B.; Brown, R.L.; Cantrell, J.R.; Wilcox, D.P.

    1994-03-01

    This document provides uniform guidance for Westinghouse contractors on the implementation of radiological containments. This document reflects standard industry practices and is provided as a guide. The guidance presented herein is consistent with the requirements of the DOE Radiological Control Manual (DOE N 5480.6). This guidance should further serve to enable and encourage the use of containments for contamination control and to accomplish the following: Minimize personnel contamination; Prevent the spread of contamination; Minimize the required use of protective clothing and personal protective equipment; Minimize the generation of waste.

  8. [Radiological diagnosis of osteoporosis].

    PubMed

    Issever, A S; Link, T M

    2011-02-01

    Having at their disposal a wide range of imaging techniques, radiologists play a crucial role in the diagnostic evaluation of patients with osteoporosis. The radiological tests range from dual energy X-ray absorptiometry (DXA), which is the only reference method accepted by the WHO, to conventional radiographs for fracture characterization, to more recent techniques for analyzing trabecular structure, and the findings are decisive in initiating correct management of osteoporosis patients. This review provides an overview of established radiological techniques and an outline of new diagnostic approaches.

  9. Marketing a Radiology Practice.

    PubMed

    Levin, David C; Rao, Vijay M; Flanders, Adam E; Sundaram, Baskaran; Colarossi, Margaret

    2016-10-01

    In addition to being a profession, the practice of radiology is a business, and marketing is an important part of that business. There are many facets to marketing a radiology practice. The authors present a number of ideas on how to go about doing this. Some marketing methods can be directed to both patients and referring physicians. Others should be directed just to patients, while still others should be directed just to referring physicians. Aside from marketing, many of them provide value to both target audiences.

  10. Food Signs in Radiology

    PubMed Central

    Hussain, Mehboob; Al Damegh, Saleh

    2007-01-01

    Objective: Certain diseases show classic radiological signs that resemble various types of food items like fruits, meat, vegetables, eggs, bakery, grocery and confectionary items. In this article various food signs are discussed and correlated with the various food items in a pictorial way. The objective of this pictorial essay is to provide the information and learn the characteristic radiological signs resembling various food items. These food signs are easy to recognize and allows a confident diagnosis on the basis of imaging findings alone or can narrow down the differential diagnosis. PMID:21475464

  11. Radiology Undergraduate and Resident Curricula: A Narrative Review of the Literature

    PubMed Central

    Linaker, Kathleen L.

    2015-01-01

    Objective The purpose of this study was to examine the literature regarding radiology curricula for both undergraduates and residents. Methods A review of the literature was performed using relevant key words. Articles were retrieved through December 2012 using PubMed, ScienceDirect, ERIC, Proquest, and ICL databases along with a manual review of references. Results Of the 4716 unique abstracts reviewed by the author, 142 were found to be relevant to the purpose of this study. Undergraduate radiology education, radiology curriculum, and radiology pedagogy vary widely between disciplines and between colleges within disciplines. Formal radiology education is not taught at all medical programs and little radiology training is incorporated into non-radiology residencies. This results in some medical graduates not being taught how to interpret basic radiology images and not learning contraindications and indications for ordering diagnostic imaging tests. There are no definitive studies examining how to incorporate radiology into the curriculum, how to teach radiology to either undergraduates or residents, or how to assess this clinical competency. Conclusions This review shows that radiology education is perceived to be important in undergraduate and residency programs. However, some programs do not include radiology training, thus graduates from those programs do not learn radiology essentials. PMID:26770172

  12. 324 Building Baseline Radiological Characterization

    SciTech Connect

    R.J. Reeder, J.C. Cooper

    2010-06-24

    This report documents the analysis of radiological data collected as part of the characterization study performed in 1998. The study was performed to create a baseline of the radiological conditions in the 324 Building.

  13. Advanced Neutron Source radiological design criteria

    SciTech Connect

    Westbrook, J.L.

    1995-08-01

    The operation of the proposed Advanced Neutron Source (ANS) facility will present a variety of radiological protection problems. Because it is desired to design and operate the ANS according to the applicable licensing standards of the Nuclear Regulatory Commission (NRC), it must be demonstrated that the ANS radiological design basis is consistent not only with state and Department of Energy (DOE) and other usual federal regulations, but also, so far as is practicable, with NRC regulations and with recommendations of such organizations as the Institute of Nuclear Power Operations (INPO) and the Electric Power Research Institute (EPRI). Also, the ANS radiological design basis is in general to be consistent with the recommendations of authoritative professional and scientific organizations, specifically the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP). As regards radiological protection, the principal goals of DOE regulations and guidance are to keep occupational doses ALARA [as low as (is) reasonably achievable], given the current state of technology, costs, and operations requirements; to control and monitor contained and released radioactivity during normal operation to keep public doses and releases to the environment ALARA; and to limit doses to workers and the public during accident conditions. Meeting these general design objectives requires that principles of dose reduction and of radioactivity control by employed in the design, operation, modification, and decommissioning of the ANS. The purpose of this document is to provide basic radiological criteria for incorporating these principles into the design of the ANS. Operations, modification, and decommissioning will be covered only as they are affected by design.

  14. Branching out with filmless radiology.

    PubMed

    Carbajal, R; Honea, R

    1999-05-01

    Texas Children's Hospital, a 456 bed pediatric hospital located in the Texas Medical Center, has been constructing a large-scale picture archiving and communications system (PACS), including ultrasound (US), computed tomography (CT), magnetic resonance (MR), and computed radiography (CR). Until recently, filmless radiology operations have been confined to the imaging department, the outpatient treatment center, and the emergency center. As filmless services expand to other clinical services, the PACS staff must engage each service in a dialog to determine the appropriate level of support required. The number and type of image examinations, the use of multiple modalities and comparison examinations, and the relationship between viewing and direct patient care activities have a bearing on the number and type of display stations provided. Some of the information about customer services is contained in documentation already maintained by the imaging department. For example, by a custom report from the radiology information system (RIS), we were able to determine the number and type of examinations ordered by each referring physician for the previous 6 months. By compiling these by clinical service, we were able to determine our biggest customers by examination type and volume. Another custom report was used to determine who was requesting old examinations from the film library. More information about imaging usage was gathered by means of a questionnaire. Some customers view images only where patients are also seen, while some services view images independently from the patient. Some services use their conference rooms for critical image viewing such as treatment planning. Additional information was gained from geographical surveys of where films are currently produced, delivered by the film library, and viewed. In some areas, available space dictates the type and configuration of display station that can be used. Active participation in the decision process by the

  15. User questionnaire to evaluate the radiological workspace.

    PubMed

    van Ooijen, Peter M A; Koesoema, Allya P; Oudkerk, Matthijs

    2006-01-01

    Over the past few years, an increase in digitalization of radiology departments can be seen, which has a large impact on the work of the radiologists. This impact is not only demonstrated by the increased use of digital images but also by changing demands on the whole reading environment. In this study, we evaluated the satisfaction of our radiologists with our digital Picture Archival and Communication System environment and their workspace. This evaluation was performed by distribution of a questionnaire consisting of a score sheet and some open questions to all radiologists and residents. Out of 25 questionnaires, 12 were adequately answered and returned. Results clearly showed that most problems were present in the area of reading room design and layout and comfort and ergonomics. Based on the results from this study, adaptations were made and the results were also used in the planning of the redesign of the entire department of radiology.

  16. A report of the Basic Energy Sciences Advisory Committee: 1992 review of the Basic Energy Sciences Program of the Department of Energy

    SciTech Connect

    Not Available

    1993-09-01

    The general quality of BES research at each of the 4 laboratories is high. Diversity of management at the different laboratories is beneficial as long as the primary BES mission and goals are clearly identified and effectively pursued. External sources of personnel should be encouraged. DOE has been designing a new high flux research reactor, the Advanced Neutron Source, to replace DOE`s two aging research reactors; BESAC conducted a panel evaluation of neutron sources for the future. The two new light sources, Advanced Light Source and Advanced Photon source will come on line well before all of their beamline instrumentation can be funded, developed, and installed. Appointment of a permanent director and deputy for OBES would enhance OBES effectiveness in budget planning and intra-DOE program coordination. Some DOE and DP laboratories have substantial infrastructure which match well industry development-applications needs; interlaboratory partnerships in this area are encouraged. Funding for basic science research programs should be maintained at FY1993 levels, adjusted for inflation; OBES plans should be updated and monitored to maintain the balance between basic research and facilities construction and operation. The recommendations are discussed in detail in this document.

  17. Radiologic Technology Program Guide.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    This guide presents the standard curriculum for technical institutes in Georgia. The curriculum addresses the minimum competencies for a radiologic technology program. The guide contains four major sections. The General Information section contains an introduction giving an overview and defining purpose and objectives; a program description,…

  18. Practical interventional radiology

    SciTech Connect

    Von Sonnenberg, E.; Mueller, P.R.

    1988-01-01

    This book describes techniques employed in interventional radiology with emphasis on imaging leading to intervention. Includes the entire array of procedures available to the radiologist, discussing the indications, materials, technique, results, and complications for each. Covers the chest, abdomen, bone, pediatric considerations, and nursing care.

  19. Paediatric musculoskeletal interventional radiology

    PubMed Central

    Paolantonio, Guglielmo; Fruhwirth, Rodolfo; Alvaro, Giuseppe; Parapatt, George K; Toma', Paolo; Rollo, Massimo

    2016-01-01

    Interventional radiology technique is now well established and widely used in the adult population. Through minimally invasive procedures, it increasingly replaces surgical interventions that involve higher percentages of invasiveness and, consequently, of morbidity and mortality. For these advantageous reasons, interventional radiology in recent years has spread to the paediatric age as well. The aim of this study was to review the literature on the development, use and perspectives of these procedures in the paediatric musculoskeletal field. Several topics are covered: osteomuscle neoplastic malignant and benign pathologies treated with invasive diagnostic and/or therapeutic procedures such as radiofrequency ablation in the osteoid osteoma; invasive and non-invasive procedures in vascular malformations; treatment of aneurysmal bone cysts; and role of interventional radiology in paediatric inflammatory and rheumatic inflammations. The positive results that have been generated with interventional radiology procedures in the paediatric field highly encourage both the development of new ad hoc materials, obviously adapted to young patients, as well as the improvement of such techniques, in consideration of the fact that childrens' pathologies do not always correspond to those of adults. In conclusion, as these interventional procedures have proven to be less invasive, with lower morbidity and mortality rates as well, they are becoming a viable and valid alternative to surgery in the paediatric population. PMID:26235144

  20. Radiology Technician (AFSC 90370).

    ERIC Educational Resources Information Center

    Sobczak, James

    This five-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for radiology technicians. Covered in the individual volumes are radiographic fundamentals (x-ray production; primary beams; exposure devices; film, film holders, and darkrooms; control of film quality; and environmental safety);…

  1. Radiology in emergency medicine

    SciTech Connect

    Levy, R.; Barsan, W.G.

    1986-01-01

    This book gives a discussion of radiologic modalities currently being used in emergency situations. Radiographs, echocardiographs, radionuclide scans and CT scans are systematically analyzed and evaluated to provide a step-by-step diagnostic process for emergency physicians to follow when a radiologist is not present.

  2. Collaborative Radiological Response Planning

    DTIC Science & Technology

    2013-12-01

    Exercise and Evaluation Guide EMS Emergency Medical Services EPA Environmental Protection Agency FBI Federal Bureau of Investigation FEMA Federal...Investigation (FBI), water regulators, food regulators, agricultural agencies, hazardous waste regulators, local environmental health agencies...FEDERAL PLANNING EFFORTS The United States Environmental Protection Agency ( EPA ) has had radiological responsibilities since 1970.18 The General

  3. Research Training in Radiology.

    ERIC Educational Resources Information Center

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    Radiology today is a major clinical specialty of medicine in terms of the number and complexity of patient examinations, and the financial resources, physician manpower, and supporting personnel required for performing its functions. It reached its present status because it provides accurate methods of diagnosis for so many diseases. However, this…

  4. Radiological Defense Manual.

    ERIC Educational Resources Information Center

    Defense Civil Preparedness Agency (DOD), Washington, DC.

    Originally prepared for use as a student textbook in Radiological Defense (RADEF) courses, this manual provides the basic technical information necessary for an understanding of RADEF. It also briefly discusses the need for RADEF planning and expected postattack emergency operations. There are 14 chapters covering these major topics: introduction…

  5. Radiological Safety Handbook.

    ERIC Educational Resources Information Center

    Army Ordnance Center and School, Aberdeen Proving Ground, MD.

    Written to be used concurrently with the U.S. Army's Radiological Safety Course, this publication discusses the causes, sources, and detection of nuclear radiation. In addition, the transportation and disposal of radioactive materials are covered. The report also deals with the safety precautions to be observed when working with lasers, microwave…

  6. The Quality Assurance in Diagnostic Radiology and their Effect in the Quality Image and Radiological Protection of the Patient

    NASA Astrophysics Data System (ADS)

    Gaona, Enrique

    2002-08-01

    The quality assurance in diagnostic radiology in Mexico before 1997 was virtually nonexistent except in few academic institutions and hospitals. The purpose of this study was to carry out an exploratory survey of the issue of quality control parameters of general and fluoroscopy x-ray systems in the Mexican Republic and their effects in the quality image and radiological protection of the patient. A general result of the survey is that there is not significant difference in the observed frequencies among public and private radiology departments for α = 0.05, then the results are valid for both departments. 37% of x-ray systems belong to public radiology departments. In the radiology departments that didn't agree with the Mexican regulations in: light field to mach the x-ray field, light field intensity, kV, time and output. In those cases, we found a repeat rate of radiography studies >30% with non necessary dose to patient, low quality image and high operating costs of the radiology service. We found in x-ray fiuoroscopy systems that 62% had a low quality image due to electronic noise in the television chain. In general the x-ray systems that didn't agree with Mexican regulations are 35% and they can affect in a way or other the quality image and the dose to patient.

  7. Ethical problems in radiology: radiological consumerism.

    PubMed

    Magnavita, N; Bergamaschi, A

    2009-10-01

    One of the causes of the increasing request for radiological examinations occurring in all economically developed countries is the active role played by the patient-consumer. Consumerism places the radiologist in an ethical dilemma, between the principle of autonomy on the one hand and the ethical principles of beneficence, nonmaleficence and justice on the other. The choice made by radiologists in moral dilemmas is inspired by an adherence to moral principles, which in Italy and elsewhere refer to the Judaeo-Christian tradition or to neo-Darwinian relativism. Whatever the choice, the radiologist is bound to adhere to that choice and to provide the patient with all the relevant information regarding his or her state of health.

  8. Balancing the three missions and the impact on academic radiology.

    PubMed

    Rawson, James V; Baron, Richard L

    2013-10-01

    The three missions of academic radiology compete with one another for time and funding. Revenue for the clinical mission often subsidizes education and research. Given the internal and external drivers/pressures on health care and, more particularly, on academic health centers, the current model is unsustainable. Trends seen in other industries are entering academic health care. The radiology department of the future will need to be more efficient with increasingly fewer resources while meeting its missions at higher levels of expectation.

  9. Computerized Monitoring and Analysis of Radiology Report Turnaround Times

    NASA Astrophysics Data System (ADS)

    Wang, Yen

    1989-05-01

    A computerized Radiology Management System was used to monitor the turnaround time of radiology reports in a large university hospital. The time from patient entry into the department until the printing and distribution of the final examination report was monitored periodically for two-week time intervals. Total turnaround time was divided into four separate components. Analysis of the data enabled us to assess individual and departmental performance and thereby improve important patient service functions.

  10. Institutional Effectiveness Assessment Process, 1992-93. Executive Summary. Hospitality and Service Occupations Division, Food Sciences Department, Food Production Program, Food Production Management Program, Pastry and Specialty Baking Program.

    ERIC Educational Resources Information Center

    South Seattle Community Coll., Washington.

    In the 1992-93 academic year, the Hospitality and Food Sciences Department at South Seattle Community College conducted surveys of current and former students and local foodservice employers to determine the level of satisfaction with Department programs. Specifically, the surveys focused on four key outcomes: determining the extent to which…

  11. A history of radiology and radiation oncology at Thomas Jefferson University.

    PubMed

    Steiner, R M; Kramer, S

    1996-09-01

    The Departments of Radiology and Radiation Oncology have evolved during the last 100 years from a small combined facility into two large comprehensive departments characterized by the highest quality of patient care. Both departments, now under the direction of David C. Levin and Walter J. Curran, Jr., are leaders in graduate education and research productivity. As a result, both departments clearly represent another golden age in the history of radiology at Thomas Jefferson University.

  12. [Occurrence of psychoactive substance in driver's blood samples in the materials of Poznan University of Medical Sciences, Department of Forensic Medicine].

    PubMed

    Tezyk, Artur; Geppert, Bogna; Florek, Ewa; Zaba, Czesław

    2010-01-01

    Recently it has been observed increasing number of drugged drivers in Wielkopolska region. In the period from 2006 to 2009 a total number of 2473 blood samples collected from drivers (2141 from alive suspects and 332 from deceased) and examined for psychoactive agents in the Department of Forensic Medicine Poznan University of Medical Sciences. Positive results were obtained in 68.8% and 22.3% of blood samples taken from living men and women respectively. In the group of deceased 7.3% (male) and 8.4% (female) were found positive. The most frequently detected substance were cannabinoids - 57.8%, then amphetamines and its analogues 18.8%, benzodiazepines 5.8%, opiates 3.4% and cocaine benzoiloecgonine 0.9%. In 13.0% concomitant use of amphetamine and cannabinoids were reported.

  13. Oak Ridge Institute for Science and Education: A guide to record series supporting epidemiologic studies conducted for the Department of Energy

    SciTech Connect

    1995-07-17

    This guide describes record series that pertain to epidemiologic and health-related studies at the Center for Epidemiologic Research (CER) of the Oak Ridge Institute for Science and Education (ORISE). These records document the health and safety monitoring of employees and contract employees of the Department of Energy (DOE) and its predecessor organizations, the Manhattan Engineer District (MED), the Atomic Energy Commission (AEC), and the Energy Research and Development Administration (ERDA). History Associates Incorporated (HAI) prepared this guide as part of DOE`s Epidemiologic Records Inventory Project. This introduction briefly describes the Epidemiologic Records Inventory Project, HAI`s role in the project, the history of the DOE and its epidemiologic research program, and the history of the Oak Ridge Reservation and the Oak Ridge Institute for Science and Education. It also furnishes information on the procedures that HAI sued to select, inventory, and describe pertinent records; the methodology used to produce the guide; the arrangement of the record series descriptions; the location of the records; and procedures for accessing records repositories.

  14. [Emphysematous pyelonephritis: radiologic diagnosis].

    PubMed

    Kably, M I; Elamraoui, F; Chikhaoui, N

    2003-10-01

    Emphysematous pyelonephritis (EPN) is a rare and severe form of acute pyelonephritis. Escherichia coli accounts for 60% of the cases. Predisposing factors are: diabetus mellitus, recent urinary tract infection and obstruction. There is a female predominance (2/1). Conventional radiography reveals the renal emphysema in 85% of the cases. Ultrasonography shows hyperechoic areas corresponding to the gaz. CT scan is the best technique, allowing the exact localization of the gaz inside the renal parenchyma. The natural course of the disease allows its radiologic classification in 4 grades. EPN has a poor prognosis if only a medical treatment is initiated. Every urinary tract infection, in a diabetic patient must be treated, and must lead to a radiologic exploration, which allows an early detection of severe forms of the disease.

  15. Data mining in radiology.

    PubMed

    Kharat, Amit T; Singh, Amarjit; Kulkarni, Vilas M; Shah, Digish

    2014-04-01

    Data mining facilitates the study of radiology data in various dimensions. It converts large patient image and text datasets into useful information that helps in improving patient care and provides informative reports. Data mining technology analyzes data within the Radiology Information System and Hospital Information System using specialized software which assesses relationships and agreement in available information. By using similar data analysis tools, radiologists can make informed decisions and predict the future outcome of a particular imaging finding. Data, information and knowledge are the components of data mining. Classes, Clusters, Associations, Sequential patterns, Classification, Prediction and Decision tree are the various types of data mining. Data mining has the potential to make delivery of health care affordable and ensure that the best imaging practices are followed. It is a tool for academic research. Data mining is considered to be ethically neutral, however concerns regarding privacy and legality exists which need to be addressed to ensure success of data mining.

  16. Disabling Radiological Dispersal Terror

    SciTech Connect

    Hart, M

    2002-11-08

    Terror resulting from the use of a radiological dispersal device (RDD) relies upon an individual's lack of knowledge and understanding regarding its significance. Disabling this terror will depend upon realistic reviews of the current conservative radiation protection regulatory standards. It will also depend upon individuals being able to make their own informed decisions merging perceived risks with reality. Preparation in these areas will reduce the effectiveness of the RDD and may even reduce the possibility of its use.

  17. Priorities for a 21st-century defense: aligning u.s. Army environmental science and engineering officer resources with the department of defense strategic guidance.

    PubMed

    Licina, Derek; Rufolo, Dennis; Story, Mike

    2013-01-01

    The recently published Department of Defense (DoD) strategic guidance highlights the need to ?shape a joint force for the future.? Supporting requirements to shape the joint force while the overall DoD force structure is reduced will be challenging. Fortunately, based on its unique training and experience, the Army Environmental Science and Engineering Officer (ESEO) profession is positioned today to fill anticipated joint public health requirements. Obtaining the U.S. Army Medical Department (AMEDD) approval to meet these requirements will have near-term consequences for the ESEO profession as some existing (albeit antiquated) authorizations may go unfilled. However, long-term dividends for the Medical Service Corps (MSC), AMEDD, Army, and DoD will be achieved by realigning critical resources to future joint and interagency requirements. Assigning ESEOs now to organizations such as the Theater Special Operations Commands (TSOCs), U.S. Agency for International Development (USAID), and the North Atlantic Treaty Organization (NATO) with perceived and real joint force health protection/public health requirements through unique means will ensure our profession remains relevant today and supports the joint force of tomorrow.

  18. Report to Congress on the U.S. Department of Energy`s Environmental Management Science Program: Research funded and its linkages to environmental cleanup problems, and Environmental Management Science Program research award abstracts. Volume 2 of 3 -- Appendix B

    SciTech Connect

    1998-04-01

    The Department of Energy`s Environmental Management Science Program (EMSP) serves as a catalyst for the application of scientific discoveries to the development and deployment of technologies that will lead to reduction of the costs and risks associated with cleaning up the nation`s nuclear complex. Appendix B provides details about each of the 202 research awards funded by the EMSP. This information may prove useful to researchers who are attempting to address the Department`s environmental management challenges in their work, program managers who are planning, integrating, and prioritizing Environmental Management projects, and stakeholders and regulators who are interested in the Department`s environmental challenges. The research award information is organized by the state and institution in which the lead principal investigator is located. In many cases, the lead principal investigator is one of several investigators at a number of different institutions. In these cases, the lead investigator (major collaborator) at each of the additional institutions is listed. Each research award abstract is followed by a list of high cost projects that can potentially be impacted by the research results. High cost projects are Environmental Management projects that have total costs greater than $50 million from the year 2007 and beyond, based on the March 1998 Accelerating Cleanup: Paths to Closure Draft data, and have costs or quantities of material associated with an Environmental Management problem area. High cost projects which must remain active in the year 2007 and beyond to manage high risk are also identified. Descriptions of these potentially related high cost Environmental Management projects can be found in Appendix C. Additional projects in the same problem area as a research award can be located using the Index of High Cost Environmental Management Projects by Problem Area, at the end of Appendices B and C.

  19. Feminist theoretical perspectives on ethics in radiology.

    PubMed

    Condren, Mary

    2009-07-01

    The substantive safety of radiological and other medical procedures can be radically reduced by unconscious factors governing scientific thought. In addition, the historical exclusion of women from these disciplines has possibly skewed their development in directions that now need to be addressed. This paper focuses on three such factors: gendered libidos that privilege risk taking over prevention, fragmented forms of knowledge that encourage displaced forms of responsibility and group dynamics that discourage critique of accepted practices and limit the definition of one's group. The substantive safety of the practice and scientific contribution of radiologists might be considerably enhanced were the focus to switch from radiology to diagnosis. Such enlargement might redefine the brief of radiologists towards preventing as well as curing; evaluating some non-invasive and low-tech options, adopting some inclusive paradigms of clinical ecology and enlarging group identities to include those currently excluded through geography or social class from participating in the benefits of science.

  20. ICPP radiological and toxicological sabotage analysis

    SciTech Connect

    Kubiak, V.R.; Mortensen, F.G.

    1995-10-01

    In June of 1993, the Department of Energy (DOE) issued Notice 5630.3A, {open_quotes}Protection of Departmental Facilities Against Radiological and Toxicological Sabotage,{close_quotes} which states that all significant radiological and toxicological hazards at Department facilities must be examined for potential sabotage. This analysis has been completed at the Idaho Chemical Processing Plant (ICPP). The ICPP radiological and toxicological hazards include spent government and commercial fuels, Special Nuclear Materials (SNM), high-level liquid wastes, high-level solid wastes, and process and decontamination chemicals. The analysis effort included identification and assessment of quantities of hazardous materials present at the facility; identification and ranking of hazardous material targets; development of worst case scenarios detailing possible sabotage actions and hazard releases; performance of vulnerability assessments using table top and computer methodologies on credible threat targets; evaluation of potential risks to the public, workers, and the environment; evaluation of sabotage risk reduction options; and selection of cost effective prevention and mitigation options.

  1. Motivation and compensation in academic radiology.

    PubMed

    Bhagwat, Jui G; Ondategui-Parra, Silvia; Zou, Kelly H; Gogate, Adheet; Intriere, Lisa A; Kelly, Pauline; Seltzer, Steven E; Ros, Pablo R

    2004-07-01

    As radiologists are increasingly faced with the challenges of rising demand for imaging services and staff shortages, the implementation of incentive plans in radiology is gaining importance. A key factor to be considered while developing an incentive plan is the strategic goal of the department. In academic radiology, management should decide whether it will reward research and teaching productivity in addition to clinical productivity. Various models have been suggested for incentive plans based on (1) clinical productivity, (2) multifactor productivity, (3) individual productivity, (4) section productivity, and (5) chair's discretion. Although fiscal rewards are most common, managers should consider other incentives, such as research time, resources for research, vacation time, and recognition awards, because academic radiologists may be motivated by factors other than financial gains.

  2. NV/YMP RADIOLOGICAL CONTROL MANUAL

    SciTech Connect

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE; BECHTEL NEVADA

    2004-11-01

    This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) and the Yucca Mountain Office of Repository Development (YMORD). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations Part 835 (10 CFR 835), Occupational Radiation Protection. Programs covered by this manual are located at the Nevada Test Site (NTS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Pleasanton, California; and at Andrews Air Force Base, Maryland. In addition, field work by NNSA/NSO at other locations is also covered by this manual.

  3. Science.

    ERIC Educational Resources Information Center

    Roach, Linda E., Ed.

    This document contains the following papers on science instruction and technology: "A 3-D Journey in Space: A New Visual Cognitive Adventure" (Yoav Yair, Rachel Mintz, and Shai Litvak); "Using Collaborative Inquiry and Interactive Technologies in an Environmental Science Project for Middle School Teachers: A Description and…

  4. Nevada National Security Site Radiological Control Manual

    SciTech Connect

    Radiological Control Managers’ Council

    2012-03-26

    This document supersedes DOE/NV/25946--801, 'Nevada Test Site Radiological Control Manual,' Revision 1 issued in February 2010. Brief Description of Revision: A complete revision to reflect a recent change in name for the NTS; changes in name for some tenant organizations; and to update references to current DOE policies, orders, and guidance documents. Article 237.2 was deleted. Appendix 3B was updated. Article 411.2 was modified. Article 422 was re-written to reflect the wording of DOE O 458.1. Article 431.6.d was modified. The glossary was updated. This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE) and the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection.' Programs covered by this manual are located at the Nevada National Security Site (NNSS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Livermore, California; and Andrews Air Force Base, Maryland. In addition, fieldwork by NNSA/NSO at other locations is covered by this manual. Current activities at NNSS include operating low-level radioactive and mixed waste disposal facilities for United States defense-generated waste, assembly and execution of subcritical experiments, assembly/disassembly of special experiments, the storage and use of special nuclear materials, performing criticality experiments, emergency responder training, surface cleanup and site characterization of contaminated land areas, environmental activity by the University system, and nonnuclear test operations, such as controlled spills of hazardous materials at the Hazardous Materials Spill Center. Currently, the major potential for occupational radiation exposure is associated with the burial of

  5. Radiological Toolbox User's Manual

    SciTech Connect

    Eckerman, KF

    2004-07-01

    A toolbox of radiological data has been assembled to provide users access to the physical, chemical, anatomical, physiological and mathematical data relevant to the radiation protection of workers and member of the public. The software runs on a PC and provides users, through a single graphical interface, quick access to contemporary data and the means to extract these data for further computations and analysis. The numerical data, for the most part, are stored within databases in SI units. However, the user can display and extract values using non-SI units. This is the first release of the toolbox which was developed for the U.S. Nuclear Regulatory Commission.

  6. Survey Determinant Factors of Telemedicine Strategic Planning from the Managers and Experts Perspective in the Health Department, Isfahan University of Medical Sciences

    PubMed Central

    Keshvari, Hamid; Haddadpoor, Asefeh; Taheri, Behjat; Nasri, Mehran; Aghdak, Pezhman

    2014-01-01

    ABSTRACT Introduction: Awareness of Outlook, objectives, benefits and impact of telemedicine technology that can promote services quality, reduce costs, increase access to Specialized and subspecialty services, and immediately guide the health system subconsciously to the introduction greater use of technology. Therefore, the aim of this study was to determine the strengths, weaknesses, opportunities and threats in the telemedicine strategic planning from the managers and experts perspective in the health department, Isfahan University of Medical Sciences, in order to take a step towards facilitating strategic planning and approaching the equity aim in health in the province. Method: This is a descriptive–analytical study, that data collection was done cross-sectional. The study population was composed of all managers and certified experts at the health department in Isfahan university of Medical Sciences. The sample size was 60 patients according to inclusion criteria. Information was collected by interview method. Researcher attempted to use the structured and specific questionnaire Then were investigated the viewpoints of experts and managers about determinative factors (strengths, weaknesses, opportunities and threats) in the strategic planning telemedicine. Data were analyzed using descriptive statistics (frequency, mean) and software SPSS 19. Results: Data analysis showed that change management (100%) and continuity of supply of credit (79/3%) were weakness point within the organization and strengths of the program were, identity and health telemedicine programs (100%), goals and aspirations of the current directors of the organization and its compliance with the goals of telemedicine (100%), human resources interested using computers in daily activities in peripheral levels (93/1%). Also organization in the field of IT professionals, had opportunities, and repayment specialist's rights by insurance organizations is a threat for it. Conclusions: According

  7. Patient-centered Radiology.

    PubMed

    Itri, Jason N

    2015-10-01

    Patient-centered care (ie, care organized around the patient) is a model in which health care providers partner with patients and families to identify and satisfy patients' needs and preferences. In this model, providers respect patients' values and preferences, address their emotional and social needs, and involve them and their families in decision making. Radiologists have traditionally been characterized as "doctor-to-doctor" consultants who are distanced from patients and work within a culture that does not value patient centeredness. As medicine becomes more patient driven and the trajectory of health care is toward increasing patient self-reliance, radiologists must change the perception that they are merely consultants and become more active participants in patient care by embracing greater patient interaction. The traditional business model for radiology practices, which devalues interaction between patients and radiologists, must be transformed into a patient-centered model in which radiologists are reintegrated into direct patient care and imaging processes are reorganized around patients' needs and preferences. Expanding radiology's core assets to include direct patient care may be the most effective deterrent to the threat of commoditization. As the assault on the growth of Medicare spending continues, with medical imaging as a highly visible target, radiologists must adapt to the changing landscape by focusing on their most important consumer: the patient. This may yield substantial benefits in the form of improved quality and patient safety, reduced costs, higher-value care, improved patient outcomes, and greater patient and provider satisfaction.

  8. Pacific Northwest Laboratory annual report for 1989 to the DOE (Department of Energy) Office of Energy Research - Part 3: Atmospheric Sciences

    SciTech Connect

    Not Available

    1990-06-01

    This 1989 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment, safety, and health conducted during fiscal year 1989. The report again consists of five parts, each in a separate volume. This volume contains research in the atmospheric sciences. Currently, the broad goals of atmospheric research at PNL are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, continental, and global scales in the air, in clouds, and on the surface. The redistribution and long-range transport of transformed contaminants passing through clouds is recognized as a necessary extension of our research to even larger scales in the future. Eventually, large-scale experiments on cloud processing and redistribution of contaminants will be integrated into the national program on global change, investigating how energy pollutants affect aerosols and clouds and the transfer of radiant energy through them. As the significance of this effect becomes clear, its global impact on climate will be studied through experimental and modeling research. The description of ongoing atmospheric research at PNL is organized in terms of the following study areas: atmospheric studies in complex terrain, large-scale atmospheric transport and processing of emissions, and climate change. This report describes the progress in FY 1989 in each of these areas. A divider page summarizes the goals of each area and lists project titles that support research activities. 9 refs., 2 figs., 3 tabs.

  9. Pharmacotherapy of Traumatic Brain Injury: State of the Science and the Road Forward: Report of the Department of Defense Neurotrauma Pharmacology Workgroup

    PubMed Central

    Kochanek, Patrick M.; Bergold, Peter; Kenney, Kimbra; Marx, Christine E.; Grimes, Col. Jamie B.; Loh, LTC Yince; Adam, LTC Gina E.; Oskvig, Devon; Curley, Kenneth C.; Salzer, Col. Wanda

    2014-01-01

    Abstract Despite substantial investments by government, philanthropic, and commercial sources over the past several decades, traumatic brain injury (TBI) remains an unmet medical need and a major source of disability and mortality in both developed and developing societies. The U.S. Department of Defense neurotrauma research portfolio contains more than 500 research projects funded at more than $700 million and is aimed at developing interventions that mitigate the effects of trauma to the nervous system and lead to improved quality of life outcomes. A key area of this portfolio focuses on the need for effective pharmacological approaches for treating patients with TBI and its associated symptoms. The Neurotrauma Pharmacology Workgroup was established by the U.S. Army Medical Research and Materiel Command (USAMRMC) with the overarching goal of providing a strategic research plan for developing pharmacological treatments that improve clinical outcomes after TBI. To inform this plan, the Workgroup (a) assessed the current state of the science and ongoing research and (b) identified research gaps to inform future development of research priorities for the neurotrauma research portfolio. The Workgroup identified the six most critical research priority areas in the field of pharmacological treatment for persons with TBI. The priority areas represent parallel efforts needed to advance clinical care; each requires independent effort and sufficient investment. These priority areas will help the USAMRMC and other funding agencies strategically guide their research portfolios to ensure the development of effective pharmacological approaches for treating patients with TBI. PMID:23968241

  10. Decoupling of the minority PhD talent pool and assistant professor hiring in medical school basic science departments in the US.

    PubMed

    Gibbs, Kenneth D; Basson, Jacob; Xierali, Imam M; Broniatowski, David A

    2016-11-17

    Faculty diversity is a longstanding challenge in the US. However, we lack a quantitative and systemic understanding of how the career transitions into assistant professor positions of PhD scientists from underrepresented minority (URM) and well-represented (WR) racial/ethnic backgrounds compare. Between 1980 and 2013, the number of PhD graduates from URM backgrounds increased by a factor of 9.3, compared with a 2.6-fold increase in the number of PhD graduates from WR groups. However, the number of scientists from URM backgrounds hired as assistant professors in medical school basic science departments was not related to the number of potential candidates (R(2)=0.12, p>0.07), whereas there was a strong correlation between these two numbers for scientists from WR backgrounds (R(2)=0.48, p<0.0001). We built and validated a conceptual system dynamics model based on these data that explained 79% of the variance in the hiring of assistant professors and posited no hiring discrimination. Simulations show that, given current transition rates of scientists from URM backgrounds to faculty positions, faculty diversity would not increase significantly through the year 2080 even in the context of an exponential growth in the population of PhD graduates from URM backgrounds, or significant increases in the number of faculty positions. Instead, the simulations showed that diversity increased as more postdoctoral candidates from URM backgrounds transitioned onto the market and were hired.

  11. Radiology in World War II (Medical Department, United States Army)

    DTIC Science & Technology

    1966-01-01

    Improvised serialograph for gastric radiography ------------------------- 388 141 Army field unit adapted for examination of paranasal sinuses ...paranasal sinuses . 7. A cradle (fig. 32), to suspend the head of the patient beneath a cassette, so that roentgenography could be accomplished with the X-ray...was regarded as conservative. At many hospitals, it was the practice to make multiple exposures on single films, particularly in X-raying the sinuses

  12. 2015 Groundwater Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Ponds

    SciTech Connect

    Lewis, Michael George

    2016-02-01

    This report summarizes radiological monitoring results from groundwater wells associated with the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Ponds Reuse Permit (I-161-02). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  13. Building Virtual Models by Postprocessing Radiology Images: A Guide for Anatomy Faculty

    ERIC Educational Resources Information Center

    Tam, Matthew D. B. S.

    2010-01-01

    Radiology and radiologists are recognized as increasingly valuable resources for the teaching and learning of anatomy. State-of-the-art radiology department workstations with industry-standard software applications can provide exquisite demonstrations of anatomy, pathology, and more recently, physiology. Similar advances in personal computers and…

  14. 2013 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Mike Lewis

    2014-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  15. 2014 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Lewis, Mike

    2015-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  16. 2012 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Mike Lewis

    2013-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  17. 2011 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Mike Lewis

    2012-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  18. 2010 Radiological Monitoring Results Associated with the Advance Test Reactor Complex Cold Waste Pond

    SciTech Connect

    mike lewis

    2011-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  19. 75 FR 68200 - Medical Devices; Radiology Devices; Reclassification of Full-Field Digital Mammography System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 892 Medical Devices; Radiology Devices... the Commissioner of Food and Drugs, 21 CFR part 892 is amended as follows: PART 892--RADIOLOGY...

  20. Use of OsiriX in developing a digital radiology teaching library.

    PubMed

    Shamshuddin, S; Matthews, H R

    2014-10-01

    Widespread adoption of digital imaging in clinical practice and for the image-based examinations of the Royal College of Radiologists has created a desire to provide a digital radiology teaching library in many hospital departments around the UK. This article describes our experience of using OsiriX software in developing digital radiology teaching libraries.

  1. Big Data and the Future of Radiology Informatics.

    PubMed

    Kansagra, Akash P; Yu, John-Paul J; Chatterjee, Arindam R; Lenchik, Leon; Chow, Daniel S; Prater, Adam B; Yeh, Jean; Doshi, Ankur M; Hawkins, C Matthew; Heilbrun, Marta E; Smith, Stacy E; Oselkin, Martin; Gupta, Pushpender; Ali, Sayed

    2016-01-01

    Rapid growth in the amount of data that is electronically recorded as part of routine clinical operations has generated great interest in the use of Big Data methodologies to address clinical and research questions. These methods can efficiently analyze and deliver insights from high-volume, high-variety, and high-growth rate datasets generated across the continuum of care, thereby forgoing the time, cost, and effort of more focused and controlled hypothesis-driven research. By virtue of an existing robust information technology infrastructure and years of archived digital data, radiology departments are particularly well positioned to take advantage of emerging Big Data techniques. In this review, we describe four areas in which Big Data is poised to have an immediate impact on radiology practice, research, and operations. In addition, we provide an overview of the Big Data adoption cycle and describe how academic radiology departments can promote Big Data development.

  2. Prophylactic Antibiotic Guidelines in Modern Interventional Radiology Practice

    PubMed Central

    Moon, Eunice; Tam, Matthew D.B.S.; Kikano, Raghid N.; Karuppasamy, Karunakaravel

    2010-01-01

    Modern interventional radiology practice is continuously evolving. Developments include increases in the number of central venous catheter placements and tumor treatments (uterine fibroid therapy, radio- and chemoembolization of liver tumor, percutaneous radiofrequency and cryoablation), and new procedures such as abdominal aortic aneurysm stent-graft repair, vertebroplasty, kyphoplasty, and varicose vein therapies. There have also been recent advancements in standard biliary and urinary drainage procedures, percutaneous gastrointestinal feeding tube placement, and transjugular intrahepatic portosystemic shunts. Prophylactic antibiotics have become the standard of care in many departments, with little clinical data to support its wide acceptance. The rise in antibiotic-resistant strains of organisms in all hospitals worldwide have forced every department to question the use of prophylactic antibiotics. The authors review the evidence behind use of prophylactic antibiotics in standard interventional radiology procedures, as well as in newer procedures that have only recently been incorporated into interventional radiology practice. PMID:22550374

  3. Financing radiology graduate medical education: today's challenges.

    PubMed

    Otero, Hansel J; Ondategui-Parra, Silvia; Erturk, Sukru Mehmet; Ros, Pablo R

    2006-03-01

    Radiology graduate medical education (GME) is exposed to huge financial challenges. First, there is a continuous increase in demand for imaging services by referring doctors and the general population, aggravating the staff shortage. Second, there has been an important decline in reimbursements. Third and probably most important is the progressive reduction of federal funds subsidizing GME. Medicare is the largest single contributor to GME. The Balanced Budget Act (BBA) of 1997 introduced reductions in Medicare payments to the major teaching hospitals calculated at $5.6 billion over the first 5 years after implementation. The BBA also brought other changes directly affecting GME. Financial changes in health care over the past decade have increased the pressure on academic institutions, which must preserve or improve the quality of training and the quality of care and manage an increased workload with fewer funds available and a narrow margin for errors. Yet the use of new technology promises to help simplify processes, decreasing workloads for residents and faculty members and increasing overall productivity, and new sources of funding have been suggested. By reviewing the financial challenges of radiologic training in today's academic centers, the authors reach the conclusion that there is still space for improving academic quality and the quality of care within current financial boundaries. But more reliable data about the specific benefits and drawbacks of having a residency program in a clinical radiology department are required.

  4. Standardized radiological dose evaluations

    SciTech Connect

    Peterson, V.L.; Stahlnecker, E.

    1996-05-01

    Following the end of the Cold War, the mission of Rocky Flats Environmental Technology Site changed from production of nuclear weapons to cleanup. Authorization baseis documents for the facilities, primarily the Final Safety Analysis Reports, are being replaced with new ones in which accident scenarios are sorted into coarse bins of consequence and frequency, similar to the approach of DOE-STD-3011-94. Because this binning does not require high precision, a standardized approach for radiological dose evaluations is taken for all the facilities at the site. This is done through a standard calculation ``template`` for use by all safety analysts preparing the new documents. This report describes this template and its use.

  5. Radiology today. Volume 4

    SciTech Connect

    Heuck, F.H.W.; Donner, M.W.

    1987-01-01

    The book discusses the following contents: Advances in Cardiovascular Imaging: Digital Arteriography: Ongoing Developments. Magnetic Resonance Imaging of the Cardiovascular System. Comparison of Vascular CT and MRI. Characterization of Vascular Lesions by Ultrasound - Progress in Vascular Interventions: Laser Angioplasty: A Review. Fibrinolytic Therapy Combined with Clot Extraction. Drugs Useful in Angioplasty. Developments in Cardiovascular Imaging: Blood Flow Measurements with Digital Arteriography. Selection of Imaging Techniques for Venous Thromboembolic Disease. Clinical Usefulness of High-Verus Low-Osmolality Contrast Agents. Developments in Angiographic and Interventional Instrumentation. Progress in Cardiovascular Interventions. Inferior Vena Cava Filters: Types, Placement, and Efficiency. Transluminal Vascular Stenting and Grafting. Venography and Sclerotherapy of Varioceles in Children and Adolescents. A New Catheter System - Important Hip Problems: Radiologic and Pathologic Correlation and Hip Disease. Comparison of Imaging Modalities in Femoral Head Necrosis. Osteoartrosis and Arthritis (Synovitis) of the Hip. Hip Anthrography.

  6. Assessment of Chemical and Radiological Vulnerabilities

    SciTech Connect

    SETH, S.S.

    2000-05-17

    Following the May 14, 1997 chemical explosion at Hanford's Plutonium Reclamation Facility, the Department of Energy Richland Operations Office and its prime contractor, Fluor Hanford, Inc., completed an extensive assessment to identify and address chemical and radiological safety vulnerabilities at all facilities under the Project Hanford Management Contract. This was a challenging undertaking because of the immense size of the problem, unique technical issues, and competing priorities. This paper focuses on the assessment process, including the criteria and methodology for data collection, evaluation, and risk-based scoring. It does not provide details on the facility-specific results and corrective actions, but discusses the approach taken to address the identified vulnerabilities.

  7. Storage media for computers in radiology.

    PubMed

    Dandu, Ravi Varma

    2008-11-01

    The introduction and wide acceptance of digital technology in medical imaging has resulted in an exponential increase in the amount of data produced by the radiology department. There is an insatiable need for storage space to archive this ever-growing volume of image data. Healthcare facilities should plan the type and size of the storage media that they needed, based not just on the volume of data but also on considerations such as the speed and ease of access, redundancy, security, costs, as well as the longevity of the archival technology. This article reviews the various digital storage media and compares their merits and demerits.

  8. Storage media for computers in radiology

    PubMed Central

    Dandu, Ravi Varma

    2008-01-01

    The introduction and wide acceptance of digital technology in medical imaging has resulted in an exponential increase in the amount of data produced by the radiology department. There is an insatiable need for storage space to archive this ever-growing volume of image data. Healthcare facilities should plan the type and size of the storage media that they needed, based not just on the volume of data but also on considerations such as the speed and ease of access, redundancy, security, costs, as well as the longevity of the archival technology. This article reviews the various digital storage media and compares their merits and demerits. PMID:19774182

  9. Lack of security of networked medical equipment in radiology.

    PubMed

    Moses, Vinu; Korah, Ipeson

    2015-02-01

    OBJECTIVE. There are few articles in the literature describing the security and safety aspects of networked medical equipment in radiology departments. Most radiologists are unaware of the security issues. We review the security of the networked medical equipment of a typical radiology department. MATERIALS AND METHODS. All networked medical equipment in a radiology department was scanned for vulnerabilities with a port scanner and a network vulnerability scanner, and the vulnerabilities were classified using the Common Vulnerability Scoring System. A network sniffer was used to capture and analyze traffic on the radiology network for exposure of confidential patient data. We reviewed the use of antivirus software and firewalls on the networked medical equipment. USB ports and CD and DVD drives in the networked medical equipment were tested to see whether they allowed unauthorized access. Implementation of the virtual private network (VPN) that vendors use to access the radiology network was reviewed. RESULTS. Most of the networked medical equipment in our radiology department used vulnerable software with open ports and services. Of the 144 items scanned, 64 (44%) had at least one critical vulnerability, and 119 (83%) had at least one high-risk vulnerability. Most equipment did not encrypt traffic and allowed capture of confidential patient data. Of the 144 items scanned, two (1%) used antivirus software and three (2%) had a firewall enabled. The USB ports were not secure on 49 of the 58 (84%) items with USB ports, and the CD or DVD drive was not secure on 17 of the 31 (55%) items with a CD or DVD drive. One of three vendors had an insecure implementation of VPN access. CONCLUSION. Radiologists and the medical industry need to urgently review and rectify the security issues in existing networked medical equipment. We hope that the results of our study and this article also raise awareness among radiologists about the security issues of networked medical equipment.

  10. [Contributions of radiology to surgery. A history older than a century].

    PubMed

    Van Tiggelen, René

    2012-01-01

    The discovery of X rays was immediately highly valued by all the surgeons. At its beginnings, radiology only allowed to objectivize the lesions of the bones and to localize the radio-opaque foreign bodies. WWI materialized this synergy and after the conflict every hospital had to have a radiological department. By slow and progressive technological advances, radiology managed to visualize other organs. The two world wars generated new methods permitting the diagnosis of otherwise unsuspected lesions. Finally, after the demonstration of the anatomy, radiological research started to investigate the function of the organs. A brief look of the major steps of this collaboration shall be topic of this talk.

  11. ASPECT Emergency Response Chemical and Radiological Mapping

    SciTech Connect

    LANL

    2008-05-12

    A unique airborne emergency response tool, ASPECT is a Los Alamos/U.S. Environmental Protection Agency project that can put chemical and radiological mapping tools in the air over an accident scene. The name ASPECT is an acronym for Airborne Spectral Photometric Environmental Collection Technology. Update, Sept. 19, 2008: Flying over storm-damaged refineries and chemical factories, a twin-engine plane carrying the ASPECT (Airborne Spectral Photometric Environmental Collection Technology) system has been on duty throughout the recent hurricanes that have swept the Florida and Gulf Coast areas. ASPECT is a project of the U.S. U.S. Environmental Protection Agencys National Decontamination Team. Los Alamos National Laboratory leads a science and technology program supporting the EPA and the ASPECT aircraft. Casting about with a combination of airborne photography and infrared spectroscopy, the highly instrumented plane provides emergency responders on the ground with a clear concept of where danger lies, and the nature of the sometimes-invisible plumes that could otherwise kill them. ASPECT is the nations only 24/7 emergency response aircraft with chemical plume mapping capability. Bob Kroutil of Bioscience Division is the project leader, and while he said the team has put in long hours, both on the ground and in the air, its a worthwhile effort. The plane flew over 320 targeted sites in four days, he noted. Prior to the deployment to the Gulf Coast, the plane had been monitoring the Democratic National Convention in Denver, Colorado. Los Alamos National Laboratory Divisions that are supporting ASPECT include, in addition to B-Division, CTN-5: Networking Engineering and IRM-CAS: Communication, Arts, and Services. Leslie Mansell, CTN-5, and Marilyn Pruitt, IRM-CAS, were recognized the the U.S. EPA for their outstanding support to the hurricane response of Gustav in Louisiana and Ike in Texas. The information from the data collected in the most recent event, Hurricane

  12. ASPECT Emergency Response Chemical and Radiological Mapping

    ScienceCinema

    LANL

    2016-07-12

    A unique airborne emergency response tool, ASPECT is a Los Alamos/U.S. Environmental Protection Agency project that can put chemical and radiological mapping tools in the air over an accident scene. The name ASPECT is an acronym for Airborne Spectral Photometric Environmental Collection Technology. Update, Sept. 19, 2008: Flying over storm-damaged refineries and chemical factories, a twin-engine plane carrying the ASPECT (Airborne Spectral Photometric Environmental Collection Technology) system has been on duty throughout the recent hurricanes that have swept the Florida and Gulf Coast areas. ASPECT is a project of the U.S. U.S. Environmental Protection Agencys National Decontamination Team. Los Alamos National Laboratory leads a science and technology program supporting the EPA and the ASPECT aircraft. Casting about with a combination of airborne photography and infrared spectroscopy, the highly instrumented plane provides emergency responders on the ground with a clear concept of where danger lies, and the nature of the sometimes-invisible plumes that could otherwise kill them. ASPECT is the nations only 24/7 emergency response aircraft with chemical plume mapping capability. Bob Kroutil of Bioscience Division is the project leader, and while he said the team has put in long hours, both on the ground and in the air, its a worthwhile effort. The plane flew over 320 targeted sites in four days, he noted. Prior to the deployment to the Gulf Coast, the plane had been monitoring the Democratic National Convention in Denver, Colorado. Los Alamos National Laboratory Divisions that are supporting ASPECT include, in addition to B-Division, CTN-5: Networking Engineering and IRM-CAS: Communication, Arts, and Services. Leslie Mansell, CTN-5, and Marilyn Pruitt, IRM-CAS, were recognized the the U.S. EPA for their outstanding support to the hurricane response of Gustav in Louisiana and Ike in Texas. The information from the data collected in the most recent event, Hurricane

  13. Bayer Facts of Science Education XV: A View from the Gatekeepers--STEM Department Chairs at America's Top 200 Research Universities on Female and Underrepresented Minority Undergraduate STEM Students

    ERIC Educational Resources Information Center

    Journal of Science Education and Technology, 2012

    2012-01-01

    Diversity and the underrepresentation of women, African-Americans, Hispanics and American Indians in the nation's science, technology, engineering and mathematics (STEM) fields are the subjects of the XV: A View from the Gatekeepers--STEM Department Chairs at America's Top 200 Research Universities on Female and Underrepresented Minority…

  14. Decoupling of the minority PhD talent pool and assistant professor hiring in medical school basic science departments in the US

    PubMed Central

    Gibbs, Kenneth D; Basson, Jacob; Xierali, Imam M; Broniatowski, David A

    2016-01-01

    Faculty diversity is a longstanding challenge in the US. However, we lack a quantitative and systemic understanding of how the career transitions into assistant professor positions of PhD scientists from underrepresented minority (URM) and well-represented (WR) racial/ethnic backgrounds compare. Between 1980 and 2013, the number of PhD graduates from URM backgrounds increased by a factor of 9.3, compared with a 2.6-fold increase in the number of PhD graduates from WR groups. However, the number of scientists from URM backgrounds hired as assistant professors in medical school basic science departments was not related to the number of potential candidates (R2=0.12, p>0.07), whereas there was a strong correlation between these two numbers for scientists from WR backgrounds (R2=0.48, p<0.0001). We built and validated a conceptual system dynamics model based on these data that explained 79% of the variance in the hiring of assistant professors and posited no hiring discrimination. Simulations show that, given current transition rates of scientists from URM backgrounds to faculty positions, faculty diversity would not increase significantly through the year 2080 even in the context of an exponential growth in the population of PhD graduates from URM backgrounds, or significant increases in the number of faculty positions. Instead, the simulations showed that diversity increased as more postdoctoral candidates from URM backgrounds transitioned onto the market and were hired. DOI: http://dx.doi.org/10.7554/eLife.21393.001 PMID:27852433

  15. Radiological Materials Security Act

    THOMAS, 111th Congress

    Rep. Clarke, Yvette D. [D-NY-11

    2009-04-23

    05/04/2009 Referred to the Subcommittee on Emerging Threats, Cybersecurity, and Science and Technology. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  16. RADRELAY RADIOLOGICAL DATA LINK DEVICE

    SciTech Connect

    Harpring, L; Frank Heckendorn, F

    2007-11-06

    The RadRelay effort developed small, field appropriate, portable prototype devices that allow radiological spectra to be downloaded from field radiological detectors, like the identiFINDER-U, and transmitted to land based experts. This communications capability was designed for the U. S. Coast Guard (USCG) but is also applicable to the Customs and Border Protection (CBP) personnel working in remote locations. USCG Level II personnel currently use the identiFINDER-U Hand-Held Radioisotope ID Devices (HHRIID) to detect radiological materials during specific boarding operations. These devices will detect not only radiological emissions but will also evaluate those emissions against a table of known radiological spectra. The RadRelay has been developed to significantly improve the functionality of HHRIID, by providing the capability to download radiological spectra and then transmit them using satellite or cell phone technology. This remote wireless data transfer reduces the current lengthy delay often encountered between the shipboard detection of unknown radiological material and the evaluation of that data by technical and command personnel. That delay is reduced from hours to minutes and allows the field located personnel to remain on station during the inspection and evaluation process.

  17. Radiological Operations Support Specialist (ROSS) Pilot Course Summary and Recommendations

    SciTech Connect

    Alai, M.; Askin, A.; Buddemeier, B.; Wogan, L.; Doshi, P.; Tai, L.

    2016-09-30

    In support of the Department of Homeland Security / Science and Technology Directorate’s (DHS/S&T) creation of a new position called the Radiological Operations Support Specialist (ROSS), Lawrence Livermore National Laboratory (LLNL) in Sub-task 1.1 and 1.2 has assisted in the development of the ROSS skills, knowledge, and abilities (SKAs); identified potentially relevant training; cross-mapped the training to the SKAs; and identified gaps in the training related to the SKAs, as well as their respective level of training knowledge - current versus desired. In the follow on task, Sub-task 1.3, a 5 day ROSS Pilot Training course was developed to fill the priority gaps identified in Sub-Task 1.2. Additionally, in Sub-Task 1.5, LLNL has performed a gap analysis of electronic tools, handbooks, and job-aides currently available to the ROSS and developed recommendations for additional and next generation tools to ensure the operational effectiveness of the ROSS position. This document summarizes the feedback received from the instructors and pilot course observers on what worked in the course and what could be improved as well as an assessment of the Pre- and Post-Test administered to the students.

  18. Building a Radiology Service Line: Key Elements and Necessary Actions.

    PubMed

    Hawkins, C Matthew

    2016-01-01

    Building a radiology service line is a challenge. Beyond the science of imaging and pathophysiology of disease, there are a number of key elements and necessary actions--related to personnel, communication, and resources--that must be taken to make the service line successful and sustainable. Although there is no single best way to build an imaging-based service line, there are a number of essential components. The purpose of this article is to delineate these components and describe how ambitious radiologists may successfully build and sustain a radiology service line.

  19. Instrumentation Needs of Academic Departments of Chemistry: A Survey Study. Report of a Joint Task Force of the Committee on Science and Committee on Chemistry and Public Affairs.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    A questionnaire was mailed to 50 major chemistry departments, 112 smaller chemistry departments, and 25 chemical engineering (CE) departments. The survey (included in an appendix) consists of a series of questions on two broad subjects--the current inventory at the surveyed institutions and the needs for instrumentation. Responses were received…

  20. Nuclear and Radiological Forensics and Attribution Overview

    SciTech Connect

    Smith, D K; Niemeyer, S

    2005-11-04

    The goal of the U.S. Department of Homeland Security (DHS) Nuclear and Radiological Forensics and Attribution Program is to develop the technical capability for the nation to rapidly, accurately, and credibly attribute the origins and pathways of interdicted or collected materials, intact nuclear devices, and radiological dispersal devices. A robust attribution capability contributes to threat assessment, prevention, and deterrence of nuclear terrorism; it also supports the Federal Bureau of Investigation (FBI) in its investigative mission to prevent and respond to nuclear terrorism. Development of the capability involves two major elements: (1) the ability to collect evidence and make forensic measurements, and (2) the ability to interpret the forensic data. The Program leverages the existing capability throughout the U.S. Department of Energy (DOE) national laboratory complex in a way that meets the requirements of the FBI and other government users. At the same time the capability is being developed, the Program also conducts investigations for a variety of sponsors using the current capability. The combination of operations and R&D in one program helps to ensure a strong linkage between the needs of the user community and the scientific development.

  1. Cardiac radiology: centenary review.

    PubMed

    de Roos, Albert; Higgins, Charles B

    2014-11-01

    During the past century, cardiac imaging technologies have revolutionized the diagnosis and treatment of acquired and congenital heart disease. Many important contributions to the field of cardiac imaging were initially reported in Radiology. The field developed from the early stages of cardiac imaging, including the use of coronary x-ray angiography and roentgen kymography, to nowadays the widely used echocardiographic, nuclear medicine, cardiac computed tomographic (CT), and magnetic resonance (MR) applications. It is surprising how many of these techniques were not recognized for their potential during their early inception. Some techniques were described in the literature but required many years to enter the clinical arena and presently continue to expand in terms of clinical application. The application of various CT and MR contrast agents for the diagnosis of myocardial ischemia is a case in point, as the utility of contrast agents continues to expand the noninvasive characterization of myocardium. The history of cardiac imaging has included a continuous process of advances in our understanding of the anatomy and physiology of the cardiovascular system, along with advances in imaging technology that continue to the present day.

  2. Self-citation: comparison between Radiología, European Radiology and Radiology for 1997-1998.

    PubMed

    Miguel, Alberto; Martí-Bonmatí, Luis

    2002-01-01

    Self-citation, considered as the number of times a paper cites other papers in the same journal, is an important criteria of journal quality. Our objective is to evaluate the self-citation in the official journal of the Spanish Society of Radiology (Radiología), and to compare it with the European Radiology and Radiology journals. Papers published in Radiología, European Radiology, and Radiology during 1997 and 1998 were analyzed. The Self Citation Index, considered as the ratio between self-references and total number of references per article, for the journals Radiología (SCIR), European Radiology (SCIER), and Radiology (SCIRY), were obtained and expressed as percentages. Also, the number of references to Radiología in European Radiology and Radiology papers were calculated. Stratification of the index per thematic area and article type was also performed. Mean SCIR, SCIER, and SCIRY values were compared with the ANOVA and the Student-Newman-Keuls tests. The self-citation index was statistically higher in Radiology (23.2%; p<0.0001) than in Radiología (1.8%) and European Radiology (0.8%). There were no statistically significant differences between SCIR and SCIER indexes ( p=0.25). In the stratification per thematic areas and article type, self-citation in Radiology was statistically higher ( p<0.0001), with the only exception of "Radioprotection" area ( p=0.2), to SCIR and SCIER. Although there were no statistically significant differences, by thematic areas SCIR was always larger than SCIER, with the only exception of the "Genitourinary imaging" area, and by article type SCIR also went greater to SCIER, except in review articles. Radiología, The Spanish official radiological journal, although not included in Index Medicus and its database Medline, had a larger number of self-citing than European Radiology in the period 1997-1998.

  3. Environmental Tools and Radiological Assessment

    EPA Science Inventory

    This presentation details two tools (SADA and FRAMES) available for use in environmental assessments of chemicals that can also be used for radiological assessments of the environment. Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporate...

  4. Negotiating the radiologically isolated syndrome.

    PubMed

    Cummings, A; Chataway, J

    2014-10-01

    Multiple sclerosis, always challenging, hands down a particular gauntlet with the concept of the radiologically isolated syndrome. This article discusses what it is, recent developments in the field and how these patients should be managed.

  5. Peer review in cardiothoracic radiology.

    PubMed

    Kanne, Jeffrey P

    2014-09-01

    A variety of peer review methods can be used as part of quality assurance and quality improvement in cardiothoracic radiology. Traditionally, peer review in radiology is a retrospective process relying primarily on review of previously interpreted studies at the time of follow-up or additional imaging. However, peer review can be enhanced with other methods such as double reads, focused practice review, practice audit, and correlation with operative and pathologic findings. Furthermore, feedback from referring physicians can be extremely useful in improving the quality of a radiology practice. This article discusses peer review in radiology with a focus on cardiothoracic imaging. Types of peer review, advantages and shortcomings, and future challenges are addressed.

  6. Savannah River Site Radiological Technology Center's Efforts Supporting Waste Minimization

    SciTech Connect

    Rosenberger, K. H.; Smith, L. S.; Bates, R. L.

    2003-02-25

    This paper describes the efforts of the newly formed Radiological Technology Center (RTC) at the Department of Energy's Savannah River Site (SRS) to support waste minimization. The formation of the RTC was based upon the highly successful ALARA Center at the DOE Hanford Site. The RTC is tasked with evaluation and dissemination of new technologies and techniques for radiological hazard reduction and waste minimization. Initial waste minimization efforts have focused on the promotion of SRS containment fabrication capabilities, new personal protective equipment and use of recyclable versus disposable materials.

  7. Preparing radiology staff to meet service goals: a training model.

    PubMed

    Ricciardone, E B; Stepanovich, P H; West, V T

    1994-01-01

    This article describes a model used to train radiology staff in customer service relations at a large southeastern medical center. Information about the needs of the radiology department and staff was acquired through quantitative and qualitative assessments. The primary goal of the training was twofold: 1) to develop employee awareness of customer expectations and 2) to develop problem-solving skills to respond to customer service related issues. Instructional methods compatible with adult learning were used and training results were assessed. Positive changes in employee attitudes and behaviors are described and recommendations for training development and implementation are discussed.

  8. Hanford Radiological Protection Support Services Annual Report for 2000

    SciTech Connect

    Lynch, Timothy P.; Bihl, Donald E.; Johnson, Michelle L.; Maclellan, Jay A.; Piper, Roman K.

    2001-05-07

    During calendar year 2000, the Pacific Northwest National Laboratory performed its customary radiological protection support services in support of the U.S. Department of Energy Richland Operations Office and the Hanford contractors. These services included: 1) external dosimetry, 2) internal dosimetry, 3) in vivo monitoring, 4) radiological records, 5) instrument calibration and evaluation, and 6) calibration of radiation sources traceable to the National Institute of Standards and Technology. Each program summary describes the routine operations, program changes and improvements, program assessments, supporting technical studies, and professional activities.

  9. Hanford Radiological Protection Support Services Annual Report for 1998

    SciTech Connect

    DE Bihl; JA MacLellan; ML Johnson; RK Piper; TP Lynch

    1999-05-14

    During calendar year (CY) 1998, the Pacific Northwest National Laboratory (PNNL) performed its customary radiological protection support services in support of the U.S. Department of Energy (DOE) Richland Operations OffIce (RL) and the Hanford contractors. These services included: 1) external dosimetry, 2) internal dosimetry, 3) in vivo measurements, 4) radiological records, 5) instrument calibra- tion and evaluation, and 6) calibration of radiation sources traceable to the National Institute of Standards and Technology (MST). The services were provided under a number of projects as summarized here.

  10. Radiologic diagnosis of explosion casualties.

    PubMed

    Eastridge, Brian J; Blackbourne, Lorne; Wade, Charles E; Holcomb, John B

    2008-01-01

    The threat of terrorist events on domestic soil remains an ever-present risk. Despite the notoriety of unconventional weapons, the mainstay in the armament of the terrorist organization is the conventional explosive. Conventional explosives are easily weaponized and readily obtainable, and the recipes are widely available over the Internet. According to the US Department of State and the Federal Bureau of Investigation, over one half of the global terrorist events involve explosions, averaging two explosive events per day worldwide in 2005 (Terrorism Research Center. Available at www.terrorism.com. Accessed April 1, 2007). The Future of Emergency Care in the United States Health System: Emergency Medical Services at the Crossroads, published by the Institute of Medicine, states that explosions were the most common cause of injuries associated with terrorism (Institute of Medicine Report: The Future of Emergency Care in the United States Health System: Emergency Medical Services at the Crossroads. Washington DC: National Academic Press, 2007). Explosive events have the potential to inflict numerous casualties with multiple injuries. The complexity of this scenario is exacerbated by the fact that few providers or medical facilities have experience with mass casualty events in which human and material resources can be rapidly overwhelmed. Care of explosive-related injury is based on same principles as that of standard trauma management paradigms. The basic difference between explosion-related injury and other injury mechanisms are the number of patients and multiplicity of injuries, which require a higher allocation of resources. With this caveat, the appropriate utilization of radiology resources has the potential to impact in-hospital diagnosis and triage and is an essential element in optimizing the management of the explosive-injured patients.

  11. Radiology system evolution in the new millennium.

    PubMed

    Nauert, R C

    2001-01-01

    For many decades the practice of radiology grew slowly in America and was largely a secondary function under the control of hospitals. In more recent times it has vastly expanded its array of diagnostic, interventional, and therapeutic abilities. There is increasing consumer logic for direct access. Motivations have grown to create large independent entities with broadly diverse capabilities in order to succeed in the new millennium. Most regional markets are evolving rapidly in terms of managed care penetration, health system formation, physician practice consolidation and aggressive purchaser behavior by employers and consumers. To understand the enormity of healthcare evolution, it is useful to look at the industry's paradigm shifts in recent decades. Virtually every aspect of organizational infrastructure, delivery approaches, and the business environment has evolved markedly during the past fifty years. These changes will accelerate. To succeed financially, radiology groups must strengthen their market positions, technical capabilities, continuums of care and geographic dominance. Equally important is the wisdom of diversifying incomes into related services and businesses that provide additional related revenues. Key factors for successful development include facility market growth, full coverage of managed care contracts, high efficiency and aggressive diversification. A fully evolved system generates significant revenues and profitability by protecting and strengthening its financial position in this environment. That is accomplished through the development of strategically located radiology groups, aggressive alliances with medical practices in allied disciplines, and managed radiology departments and facilities for partner health systems. Organizational success ultimately depends on the ability to accept capitated payments under risk-bearing arrangements. The strategic business plan should be organized with the appropriate levels of detail needed to

  12. Interventional Radiology: Equipment and Techniques.

    PubMed

    Scansen, Brian A

    2016-05-01

    The breadth of small animal diseases that can now be treated by a minimally invasive, transcatheter approach continues to expand. Interventional radiology is the field of medicine that affects a therapeutic outcome via minimally invasive catheterization of peripheral blood vessels or body orifices guided by imaging. The intent of this article is to provide an overview of the equipment required for interventional radiology in veterinary medicine with a discussion of technical uses in diseases of dogs and cats.

  13. FDH radiological design review guidelines

    SciTech Connect

    Millsap, W.J.

    1998-09-29

    These guidelines discuss in more detail the radiological design review process used by the Project Hanford Management Contractors as described in HNF-PRO-1622, Radiological Design Review Process. They are intended to supplement the procedure by providing background information on the design review process and providing a ready source of information to design reviewers. The guidelines are not intended to contain all the information in the procedure, but at points, in order to maintain continuity, they contain some of the same information.

  14. Financial accounting for radiology executives.

    PubMed

    Seidmann, Abraham; Mehta, Tushar

    2005-03-01

    The authors review the role of financial accounting information from the perspective of a radiology executive. They begin by introducing the role of pro forma statements. They discuss the fundamental concepts of accounting, including the matching principle and accrual accounting. The authors then explore the use of financial accounting information in making investment decisions in diagnostic medical imaging. The paper focuses on critically evaluating the benefits and limitations of financial accounting for decision making in a radiology practice.

  15. Radiology of congenital heart disease

    SciTech Connect

    Amplatz, K.

    1986-01-01

    This is a text on the radiologic diagnosis of congenital heart disease and its clinical manifestations. The main thrust of the book is the logical approach which allows an understanding of the complex theory of congenital heart disease. The atlas gives a concise overview of the entire field of congenital heart disease. Emphasis is placed on the understanding of the pathophysiology and its clinical and radiological consequences. Surgical treatment is included since it provides a different viewpoint of the anatomy.

  16. Radiological training for tritium facilities

    SciTech Connect

    1996-12-01

    This program management guide describes a recommended implementation standard for core training as outlined in the DOE Radiological Control Manual (RCM). The standard is to assist those individuals, both within DOE and Managing and Operating contractors, identified as having responsibility for implementing the core training recommended by the RCM. This training may also be given to radiological workers using tritium to assist in meeting their job specific training requirements of 10 CFR 835.

  17. Radiology and the Health Policy Agenda for the American People.

    PubMed

    MacEwan, D W

    1987-05-01

    Eleven radiologists appointed by the major radiological societies participated for the past 5 years in the development of the Health Policy Agenda for the American People. The Agenda is an action plan to address a wide variety of serious problems in medicine. The first phase involved establishment of 159 principles, broad value statements that were the foundation of the project. Phase 2 involved the development of policy proposals on 38 urgent issues for action in medical science; education; health resources; delivery mechanisms; evaluation, assessment, and control; and payment for services. These proposals are summarized in this report. The activities and recommendations of representatives for the field of radiology are described. The Agenda has been released, and an implementation phase has begun. It will likely be of great importance to the practice of radiology over the next decade. Important issues can be addressed by acting with the coalitions that are being formed from among the more than 150 participating organizations.

  18. Radiological Control Manual. Revision 0, January 1993

    SciTech Connect

    Not Available

    1993-04-01

    This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

  19. Eponyms in cardiothoracic radiology--part II: vascular.

    PubMed

    Mohammed, Tan-Lucien H; Saettele, Megan R; Saettele, Timothy; Patel, Vikas; Kanne, Jeffrey P

    2014-01-01

    Eponyms serve the purpose of honoring individuals who have made important observations and discoveries. As with other fields of medicine, eponyms are frequently encountered in radiology, particularly in chest radiology. However, inappropriate use of an eponym may lead to potentially dangerous miscommunication. Moreover, an eponym may honor the incorrect person or a person who falls into disrepute. Despite their limitations, eponyms are still widespread in the medical literature. Furthermore, in some circumstances, more than one individual may have contributed to the description or discovery of a particular anatomical structure or disease, whereas in others, an eponym may have been incorrectly applied initially and propagated for years in the medical literature. Nevertheless, radiologic eponyms are a means of honoring those who have made lasting contributions to the field of radiology, and familiarity with these eponyms is critical for proper reporting and accurate communication. In addition, the acquisition of some historical knowledge about those whose names are associated with various structures or pathologic conditions conveys a sense of humanity in the science of medicine. In this second part of a multipart series, the authors discuss a number of chest radiology eponyms as they relate to the pulmonary vasculature, including relevant clinical and imaging features, as well biographic information of the respective eponym׳s namesake.

  20. Eponyms in cardiothoracic radiology: part III--interstitium.

    PubMed

    Mohammed, Tan-Lucien H; Saettele, Megan R; Saettele, Timothy; Patel, Vikas; Kanne, Jeffrey P

    2014-01-01

    Eponyms serve the purpose of honoring individuals who have made important observations and discoveries. As with other fields of medicine, eponyms are frequently encountered in radiology, particularly in chest radiology. However, inappropriate use of an eponym may lead to potentially dangerous miscommunication. Moreover, an eponym may honor the incorrect person or a person who falls into disrepute. Despite their limitations, eponyms are still widespread in the medical literature. Furthermore, in some circumstances, more than one individual may have contributed to the description or discovery of a particular anatomical structure or disease, whereas in others, an eponym may have been incorrectly applied initially and propagated for years in the medical literature. Nevertheless, radiologic eponyms are a means of honoring those who have made lasting contributions to the field of radiology, and familiarity with these eponyms is critical for proper reporting and accurate communication. In addition, the acquisition of some historical knowledge about those whose names are associated with various structures or pathologic conditions conveys a sense of humanity in the science of medicine. In this third installment of this series, the authors discuss a number of chest radiology eponyms as they relate to the pulmonary interstitium, including relevant clinical and imaging features, as well biographical information of the respective eponym's namesake.

  1. CSU-FDA collaborative radiological health laboratory annual report 1979

    SciTech Connect

    Benjamin, S.A.

    1981-01-01

    The Collaborative Radiological Health Laboratory was established in 1962 by the Division of Biological Effects, Bureau of Radiological Health, and the Department of Radiology and Radiation Biology, Colorado State University, to assess possible long-term effects in the beagle from low-level whole-body gamma irradiation. The first section of this annual report summarizes the current status of the long-term effects of irradiation during development in the beagle. The second section addresses studies of radiation-induced and spontaneous disease in the beagle. Cardiovascular disease has also been noted to be a significant clinical disease problem in the aging beagle. The third section describes the CRHL data processing system as it existed and the current changes being made. Several aspects of the methods and procedures available for statistical analysis of data are discussed.

  2. Coping in a calamity: Radiology during the cloudburst at Leh

    PubMed Central

    Sen, Debraj

    2013-01-01

    The service hospital at Leh is a multispeciality hospital situated at an altitude of 11000 feet above mean sea level. On the nights of 4 and 5 Aug 2010, Leh was struck by a cloudburst leading to mudslides and consequently extensive damage to life and property. Being the only functional hospital, over a period of about 48 hours, 331 casualties were received. 549 casualties were received over the week with 108 admissions, 16 major surgeries and 138 minor surgeries. 178 radiographs, 17 CT scans and 09 ultrasound-colour Doppler examinations were performed on an urgent basis over 48 hours apart from the routine radiological investigations. Apart from chronicling the event, we hope that sharing the unique experience of the Radiology Department in dealing with the large influx of patients would provide an insight into the role of Radiology during the disaster and help in planning and developing management protocols during other calamities. PMID:23986626

  3. National radiology fellowship match program: success or failure?

    PubMed

    Arenson, Ronald L

    2004-03-01

    In early 2003, with strong support from radiology leaders, the first national fellowship match was conducted in radiology. Most programs (358 programs in 9 categories) in the country participated, and 411 positions were filled out of 769 available in the match. Residents who selected to stay at their home departments were chosen before the match. A survey was conducted after the match to assess the satisfaction of chairpersons, program directors, and residents. Overall, the match was rated a success. However, a number of the pediatric fellowship programs remained outside of the match, possibly threatening its future. The initial radiology fellowship match that involved all fellowship specialties was deemed by residents and program leaders to be an overall success. Future matches will attempt to deal with such issues as incomplete participation. A significant problem is the continuing excess of offered fellowship positions over the number of applicants.

  4. Vision and benefits of a virtual radiology environment for the U.S. Army

    NASA Astrophysics Data System (ADS)

    Chacko, Anna K.; Griffin, Robert; Cook, Jay F.; Martinez, Ralph; Lollar, H. William; Perez, Guadalupe

    1998-07-01

    The changes that have overtaken the U.S. healthcare industry in the last five years could be best characterized as tectonic shifts. Every aspect of the healthcare market has been affected by the changes in Government policy and the attitude of society to issues in Healthcare. Most of these changes have been viewed as adversarial both to the health care provider and to the consumer. Healthcare reform was to have made healthcare more affordable and more available. Although healthcare reform was not passed, attempts have been made nationwide to address the ills of the system. These attempts have been largely half-hearted and weak-kneed. In most instances, only half a solution has been provided. There has been no improvement in the quality of care. In fact, in many instances, there has been degradation in quality and it has not become more available. We are faced with seemingly conflicting mandates -- providing quality care making it more available working under severe capitation constraints and attracting and retaining a quality workforce. How do we address these problems? We have to change. We have to adopt the military paradigm of agility, adaptability and flexibility applicable to military science to our field of endeavor. We have to consider achieving all our goals without sacrificing any aspect. The most obvious step is to improve efficiency. This can be done best by incorporating the advantages that information technology has bestowed on other fields of endeavor. Properly applied information technology will provide the answer to improving efficiency in the Healthcare field. In the Department of Defense (DoD), we are now embarking on an extremely exciting new idea -- rendering the entire Virtual Radiology Environment (VRE). The business of radiology in the military therefore, is being re-engineered on several fronts. This is achieved in several sequential steps: (1) Equipping every radiology department to become digital and PACS-network capable. (2) Information

  5. [Management control and operative budget at a radiology center].

    PubMed

    Ferrari, G; Musconi, V; Zappi, A; Cavina, A; Zanetti, M

    1996-06-01

    The laws reforming the National Health Service (SSN) (DL 30.12.92 n. 502 converted into DL 7.12.93 n.517) strongly modify the operation rules of the local sociosanitary units (USL) and imply that the rules themselves be reorganized with flexible and agile organization systems, introducing, in addition, a budget system as a tool for programming and checking the results. The essential elements for management evaluation are: -an accurate accounting system for every department, based on a detailed analysis of the productive factors directly used; -a survey of the activity data with uniform and established indices. This work deals with a radiology department as a responsible unit belonging to Imola State Administration. It is an intermediate service as its activity is for both in- and outpatients. To calculate the cost of the service provided to users and to define the use of resources, inpatients and outpatients costs were included. This involves adding the cost of the examinations requested of the intermediate service, that is, the radiology department. The operative tool used to ascribe the cost of these demands to the departments needs a transfer cost system showing the increasing value of the number of services that the intermediate service gives the final user. To evaluate the activity of the radiology department, we tried to identify an index of respective complexity for every examination: a figure which allows us to express the use of resources according to the complexity of the services given and to turn the number of examinations into significant activity.

  6. NNSA/NV Consequence Management Capabilities for Radiological Emergency Response

    SciTech Connect

    D. R. Bowman

    2002-10-01

    The U.S. Department of Energy's National Nuclear Security Administration Nevada Operations Office (NNSA/NV) provides an integrated Consequence Management (CM) response capability for the (NNSA) in the event of a radiological emergency. This encompasses planning, technical operations, and home team support. As the lead organization for CM planning and operations, NNSA/NV coordinates the response of the following assets during the planning and operational phases of a radiological accident or incident: (1) Predictive dispersion modeling through the Atmospheric Release Advisory Capability (ARAC) at Lawrence Livermore National Laboratory (LLNL) and the High Consequence Assessment Group at Sandia National Laboratories (SNL); (2) Regional radiological emergency assistance through the eight Radiological Assistance Program (RAP) regional response centers; (3) Medical advice and assistance through the Radiation Emergency Assistance Center/Training Site (REAC/TS) in Oak Ridge, Tennessee; (4) Aerial radiological mapping using the fixed-wing and rotor-wing aircraft of the Aerial Measuring System (AMS); (5) Consequence Management Planning Teams (CMPT) and Consequence Management Response Teams (CMRT) to provide CM field operations and command and control. Descriptions of the technical capabilities employed during planning and operations are given below for each of the elements comprising the integrated CM capability.

  7. Federal Radiological Monitoring and Assessment Center Analytical Response

    SciTech Connect

    E.C. Nielsen

    2003-04-01

    The Federal Radiological Monitoring and Assessment Center (FRMAC) is authorized by the Federal Radiological Emergency Response Plan to coordinate all off-site radiological response assistance to state and local government s, in the event of a major radiological emergency in the United States. The FRMAC is established by the U.S. Department of Energy, National Nuclear Security Administration, to coordinate all Federal assets involved in conducting a comprehensive program of radiological environmental monitoring, sampling, radioanalysis, quality assurance, and dose assessment. During an emergency response, the initial analytical data is provided by portable field instrumentation. As incident responders scale up their response based on the seriousness of the incident, local analytical assets and mobile laboratories add additional capability and capacity. During the intermediate phase of the response, data quality objectives and measurement quality objectives are more rigorous. These higher objectives will require the use of larger laboratories, with greater capacity and enhanced capabilities. These labs may be geographically distant from the incident, which will increase sample management challenges. This paper addresses emergency radioanalytical capability and capacity and its utilization during FRMAC operations.

  8. [No exchange of information without technology : modern infrastructure in radiology].

    PubMed

    Hupperts, H; Hermann, K-G A

    2014-01-01

    Modern radiology cannot accomplish the daily numbers of examinations without supportive technology. Even though technology seems to be becoming increasingly more indispensable, business continuity should be ensured at any time and if necessary even with a limited technical infrastructure by business continuity management. An efficient information security management system forms the basis. The early radiology information systems were islands of information processing. A modern radiology department must be able to be modularly integrated into an informational network of a bigger organization. The secondary use of stored data for clinical decision-making support poses new challenges for the integrity of the data or systems because medical knowledge is displayed and provided in a context of treatment. In terms of imaging the creation and distribution radiology services work in a fully digital manner which is often different for radiology reports. Legally secure electronic diagnostic reports require a complex technical infrastructure; therefore, diagnostic findings still need to be filed as a paper document. The internal exchange and an improved dose management can be simplified by systems which continuously and automatically record the doses and thus provide the possibility of permanent analysis and reporting. Communication between patient and radiologist will gain ongoing importance. Intelligent use of technology will convey this to the radiologist and it will facilitate the understanding of the information by the patient.

  9. Cost accounting of radiological examinations. Cost analysis of radiological examinations of intermediate referral hospitals and general practice.

    PubMed

    Lääperi, A L

    1996-01-01

    The purpose of this study was to analyse the cost structure of radiological procedures in the intermediary referral hospitals and general practice and to develop a cost accounting system for radiological examinations that takes into consideration all relevant cost factors and is suitable for management of radiology departments and regional planning of radiological resources. The material comprised 174,560 basic radiological examinations performed in 1991 at 5 intermediate referral hospitals and 13 public health centres in the Pirkanmaa Hospital District in Finland. All radiological departments in the hospitals were managed by a specialist in radiology. The radiology departments at the public health care centres operated on a self-referral basis by general practitioners. The data were extracted from examination lists, inventories and balance sheets; parts of the data were estimated or calculated. The radiological examinations were compiled according to the type of examination and equipment used: conventional, contrast medium, ultrasound, mammography and roentgen examinations with mobile equipment. The majority of the examinations (87%) comprised conventional radiography. For cost analysis the cost items were grouped into 5 cost factors: personnel, equipment, material, real estate and administration costs. The depreciation time used was 10 years for roentgen equipment, 5 years for ultrasound equipment and 5 to 10 years for other capital goods. An annual interest rate of 10% was applied. Standard average values based on a sample at 2 hospitals were used for the examination-specific radiologist time, radiographer time and material costs. Four cost accounting versions with varying allocation of the major cost items were designed. Two-way analysis of variance of the effect of different allocation methods on the costs and cost structure of the examination groups was performed. On the basis of the cost analysis a cost accounting program containing both monetary and

  10. Improved robotic equipment for radiological emergencies

    SciTech Connect

    Chester, C.V.

    1984-09-01

    A study has been made of the requirements for an improved mobile manipulator for use by the US Department of Energy (DOE) in radiological emergencies. Emergency personnel with experience in past or present (Three Mile Island) radiological emergencies were interviewed to determine the shortcomings of present equipment and features most desired in future equipment. The present technology of mobile manipulators was reviewed. The existing DOE remotely controlled mobile manipulators are single-arm, nonforce-reflecting and have inherent limitations to their mobility and ease of operation. A survey of past radiological emergencies and routine operations at DOE facilities and two commercial power reactors, including TMI, indicates that great improvements in mobility and manipulator dexterity will be required if mobile manipulators are to be more useful in reducing radiation exposure to operating and emergency personnel. In particular, the ability to climb stairs and climb over airlock thresholds is required. Bilateral, force-feedback manipulators would greatly increase the speed, reliability, and safety of manipulator operations. In recent years dramatic advances have been made in manipulator technology with the development of digital control and force feedback. The development of a six-legged, computer-controlled walker by the Odetic Corporation is a quantum improvement in mobility. Unfortunately the Odex walker will likely require another $1 million in development funds before it will be ready for commercial production. The cost of the first-advanced capability, walker-mounted mobile manipulator will likely be between $1 and $2 million dollars but holds the promise of removing the need for men in a variety of hazardous environments. In 1984 NTG Nukleartechnik of West Germany offered a bilateral, force-reflecting master/slave-controlled manipulator mounted on a variable-geometry crawler for only $250,000.

  11. Radiological impacts of phosphogypsum.

    PubMed

    Al Attar, Lina; Al-Oudat, Mohammad; Kanakri, Salwa; Budeir, Youssef; Khalily, Hussam; Al Hamwi, Ahmad

    2011-09-01

    This study was carried out to assess the radiological impact of Syrian phosphogypsum (PG) piles in the compartments of the surrounding ecosystem. Estimating the distribution of naturally occurring radionuclides (i.e. (226)Ra, (238)U, (232)Th, (210)Po and (210)Pb) in the raw materials, product and by-product of the Syrian phosphate fertilizer industry was essential. The data revealed that the concentrations of the radionuclides were enhanced in the treated phosphate ore. In PG, (226)Ra content had a mean activity of 318 Bq kg(-1). The uranium content in PG was low, ca. 33 Bq kg(-1), because uranium remained in the phosphoric acid produced. Over 80% of (232)Th, (210)Po and (210)Pb present partitioned in PG. The presence of PG piles did not increase significantly the concentration of (222)Rn or gamma rays exposure dose in the area studied. The annual effective dose was only 0.082 mSv y(-1). The geometric mean of total suspended air particulates (TSP) ca. 85 μg m(-3). The activity concentration of the radionuclides in filtrates and runoff waters were below the detection limits (ca. 0.15 mBq L(-1) for (238)U, 0.1 mBq L(-1) for (232)Th and 0.18 mBq L(-1) for both of (210)Po and (210)Pb); the concentration of the radionuclides in ground water samples and Qattina Lake were less than the permissible limits set for drinking water by the World Health Organisation, WHO, (10, 1 and 0.1 Bq L(-1) for (238)U, (232)Th and both of (210)Po and (210)Pb, respectively). Eastern sites soil samples of PG piles recorded the highest activity concentrations, i.e. 26, 33, 28, 61 and 40 Bq kg(-1) for (226)Ra, (238)U, (232)Th, (210)Po and (210)Pb, respectively, due to the prevailing western and north-western wind in the area, but remained within the natural levels reported in Syrian soil (13-32 Bq kg(-1) for (226)Ra, 24.9-62.2 Bq kg(-1) for (238)U and 10-32 Bq kg(-1) for (232)Th). The impact of PG piles on plants varied upon the plant species. Higher concentrations of the radionuclides were

  12. Workflow management systems in radiology

    NASA Astrophysics Data System (ADS)

    Wendler, Thomas; Meetz, Kirsten; Schmidt, Joachim

    1998-07-01

    In a situation of shrinking health care budgets, increasing cost pressure and growing demands to increase the efficiency and the quality of medical services, health care enterprises are forced to optimize or complete re-design their processes. Although information technology is agreed to potentially contribute to cost reduction and efficiency improvement, the real success factors are the re-definition and automation of processes: Business Process Re-engineering and Workflow Management. In this paper we discuss architectures for the use of workflow management systems in radiology. We propose to move forward from information systems in radiology (RIS, PACS) to Radiology Management Systems, in which workflow functionality (process definitions and process automation) is implemented through autonomous workflow management systems (WfMS). In a workflow oriented architecture, an autonomous workflow enactment service communicates with workflow client applications via standardized interfaces. In this paper, we discuss the need for and the benefits of such an approach. The separation of workflow management system and application systems is emphasized, and the consequences that arise for the architecture of workflow oriented information systems. This includes an appropriate workflow terminology, and the definition of standard interfaces for workflow aware application systems. Workflow studies in various institutions have shown that most of the processes in radiology are well structured and suited for a workflow management approach. Numerous commercially available Workflow Management Systems (WfMS) were investigated, and some of them, which are process- oriented and application independent, appear suitable for use in radiology.

  13. Radiological Work Planning and Procedure

    SciTech Connect

    KURTZ, J.E.

    2000-01-01

    Each facility is tasked with maintaining personnel radiation exposure as low as reasonably achievable (ALARA). A continued effort is required to meet this goal by developing and implementing improvements to technical work documents (TWDs) and work performance. A review of selected TWDs from most facilities shows there is a need to incorporate more radiological control requirements into the TWD. The Radioactive Work Permit (RWP) provides a mechanism to place some of the requirements but does not provide all the information needed by the worker as he/she is accomplishing the steps of the TWD. Requiring the engineers, planners and procedure writers to put the radiological control requirements in the work steps would be very easy if all personnel had a strong background in radiological work planning and radiological controls. Unfortunately, many of these personnel do not have the background necessary to include these requirements without assistance by the Radiological Control organization at each facility. In addition, there seems to be confusion as to what should be and what should not be included in the TWD.

  14. The role of the VA in academic radiology: a report of the ACR's Committee on Governmental and Regulatory Affairs in Academic Radiology.

    PubMed

    Sherrier, Robert H; Chang, Barbara K; Rawson, James V; Romanelli, Gloria

    2012-08-01

    Academic radiology departments have benefited from their relationships with US Department of Veterans Affairs hospitals. Review of the history of the care of veterans shows a unique relationship with academic medical centers. Opportunities for future collaborations include clinical care, teaching, and research.

  15. White Paper: Curriculum in Interventional Radiology.

    PubMed

    Mahnken, Andreas H; Bücker, Arno; Hohl, Christian; Berlis, Ansgar

    2017-04-01

    Purpose Scope and clinical importance of interventional radiology markedly evolved over the last decades. Consequently it was acknowledged as independent subspecialty by the "European Union of Medical Specialists" (UEMS). Based on radiological imaging techniques Interventional Radiology is an integral part of Radiology. Materials und Methods In 2009 the German Society for Interventional Radiology and minimally-invasive therapy (DeGIR) developed a structured training in Interventional Radiology. In cooperation with the German Society of Neuroradiology (DGNR) this training was extended to also cover Interventional Neuroradiology in 2012. Tailored for this training in Interventional Radiology a structured curriculum was developed, covering the scope of this modular training. Results The curriculum is based on the DeGIR/DGNR modular training concept in Interventional Radiology. There is also an European Curriculum and Syllabus for Interventional Radiology developed by the "Cardiovascular and Interventional Radiological Society of Europe" (CIRSE). The presented curriculum in Interventional Radiology is designed to provide a uniform base for the training in Interventional Radiology in Germany, based on the competencies obtained during residency. Conclusion This curriculum can be used as a basis for training in Interventional Radiology by all training sites. Key Points: · Interventional Radiology is an integral part of clinical radiology. · The German Society for Interventional Radiology and minimally-invasive therapy (DeGIR) developed a curriculum in Interventional Radiology. · This curriculum is an integrative basis for the training in interventional. Citation Format · Mahnken AH, Bücker A, Hohl C et al. White Paper: Curriculum in Interventional Radiology. Fortschr Röntgenstr 2017; 189: 309 - 311.

  16. Inpatient Complexity in Radiology-a Practical Application of the Case Mix Index Metric.

    PubMed

    Mabotuwana, Thusitha; Hall, Christopher S; Flacke, Sebastian; Thomas, Shiby; Wald, Christoph

    2017-01-12

    With ongoing healthcare payment reforms in the USA, radiology is moving from its current state of a revenue generating department to a new reality of a cost-center. Under bundled payment methods, radiology does not get reimbursed for each and every inpatient procedure, but rather, the hospital gets reimbursed for the entire hospital stay under an applicable diagnosis-related group code. The hospital case mix index (CMI) metric, as defined by the Centers for Medicare and Medicaid Services, has a significant impact on how much hospitals get reimbursed for an inpatient stay. Oftentimes, patients with the highest disease acuity are treated in tertiary care radiology departments. Therefore, the average hospital CMI based on the entire inpatient population may not be adequate to determine department-level resource utilization, such as the number of technologists and nurses, as case length and staffing intensity gets quite high for sicker patients. In this study, we determine CMI for the overall radiology department in a tertiary care setting based on inpatients undergoing radiology procedures. Between April and September 2015, CMI for radiology was 1.93. With an average of 2.81, interventional neuroradiology had the highest CMI out of the ten radiology sections. CMI was consistently higher across seven of the radiology sections than the average hospital CMI of 1.81. Our results suggest that inpatients undergoing radiology procedures were on average more complex in this hospital setting during the time period considered. This finding is relevant for accurate calculation of labor analytics and other predictive resource utilization tools.

  17. [Useful radiological techniques in orthodontics].

    PubMed

    Felizardo, Rufino; Thomas, Alexis; Foucart, Jean-Michel

    2012-03-01

    Specialists in dento-facial orthopedics have a large range of dental radiological techniques at their disposal to help them in their diagnostic and therapeutic procedures. Peri-apical, occlusal, panoramic, and cephalometric X-Rays are two-dimensional techniques that orthodontists can complement, if necessary, with Multi slices CT scan or Cone Beam Computed Tomography. Orthodontists must apply and respect quality criteria for each type of film in order to derive the best information from every image and to avoid producing artifacts or false images that will reduce their diagnostic value and, accordingly, the service that they render to patients. Practitioners must be willing to spend the few moments it takes to position patients correctly in the radiological apparatus instead of taking multiple views to compensate for failing to scrupulously follow protocols of radiology.

  18. Radiological control manual. Revision 1

    SciTech Connect

    Kloepping, R.

    1996-05-01

    This Lawrence Berkeley National Laboratory Radiological Control Manual (LBNL RCM) has been prepared to provide guidance for site-specific additions, supplements and interpretation of the DOE Radiological Control Manual. The guidance provided in this manual is one methodology to implement the requirements given in Title 10 Code of Federal Regulations Part 835 (10 CFR 835) and the DOE Radiological Control Manual. Information given in this manual is also intended to provide demonstration of compliance to specific requirements in 10 CFR 835. The LBNL RCM (Publication 3113) and LBNL Health and Safety Manual Publication-3000 form the technical basis for the LBNL RPP and will be revised as necessary to ensure that current requirements from Rules and Orders are represented. The LBNL RCM will form the standard for excellence in the implementation of the LBNL RPP.

  19. [Vocal recognition in dental and oral radiology].

    PubMed

    La Fianza, A; Giorgetti, S; Marelli, P; Campani, R

    1993-10-01

    Speech reporting benefits by units which can recognize sentences in any natural language in real time. The use of this method in the everyday practice of radiology departments shows its possible application fields. We used the speech recognition method to report orthopantomographic exams in order to evaluate the advantages the method offers to the management and quality of reporting the exams which are difficult to fit in other closed computed reporting systems. Both speech recognition and the conventional reporting method (tape recording and typewriting) were used to report 760 orthopantomographs. The average time needed to make the report, the legibility (or Flesch) index, as adapted for the Italian language, and finally a clinical index (the subjective opinion of 4 odontostomatologists) were evaluated for each exam, with both techniques. Moreover, errors in speech reporting (crude, human and overall errors) were also evaluated. The advantages of speech reporting consisted in the shorter time needed for the report to become available (2.24 vs 2.99 minutes) (p < 0.0005), in the improved Flesch index (30.62 vs 28.9) and in the clinical index. The data obtained from speech reporting in odontostomatologic radiology were useful not only to reduce the mean reporting time of orthopantomographic exams but also to improve report quality by reducing both grammar and transmission mistakes. However, the basic condition for such results to be obtained is the speaker's skills to make a good report.

  20. Analysis of radiology business models.

    PubMed

    Enzmann, Dieter R; Schomer, Donald F

    2013-03-01

    As health care moves to value orientation, radiology's traditional business model faces challenges to adapt. The authors describe a strategic value framework that radiology practices can use to best position themselves in their environments. This simplified construct encourages practices to define their dominant value propositions. There are 3 main value propositions that form a conceptual triangle, whose vertices represent the low-cost provider, the product leader, and the customer intimacy models. Each vertex has been a valid market position, but each demands specific capabilities and trade-offs. The underlying concepts help practices select value propositions they can successfully deliver in their competitive environments.

  1. Interventional Radiology in Liver Transplantation

    SciTech Connect

    Karani, John B. Yu, Dominic F.Q.C.; Kane, Pauline A.

    2005-04-15

    Radiology is a key specialty within a liver transplant program. Interventional techniques not only contribute to graft and recipient survival but also allow appropriate patient selection and ensure that recipients with severe liver decompensation, hepatocellular carcinoma or portal hypertension are transplanted with the best chance of prolonged survival. Equally inappropriate selection for these techniques may adversely affect survival. Liver transplantation is a dynamic field of innovative surgical techniques with a requirement for interventional radiology to parallel these developments. This paper reviews the current practice within a major European center for adult and pediatric transplantation.

  2. Industrial Pleuropulmonary Disorders: Radiological Considerations

    PubMed Central

    Garland, L. Henry

    1965-01-01

    Industrial pleuropulmonary disorders may result from exposure of the human respiratory tract to diverse types of dusts and fumes, visible and invisible, benign and toxic, organic and inorganic. Meticulous radiological examination, combined with history and physical examination, appropriate laboratory tests, and the exclusion of other disorders which could produce similar changes, is essential for correct diagnosis. Criteria for the radiological diagnosis of pulmonary fibrosis, of generalized emphysema, and of cor pulmonale are outlined. The commoner types of pneumoconiosis are discussed in some detail, and the possible relationship of various inhaled noxa to primary bronchial carcinoma is considered. PMID:14288143

  3. [Radiological media and modern supporting tools in radiology].

    PubMed

    Sachs, A; Pokieser, P

    2014-01-01

    Radiology is a field with a high demand on information. Nowadays, a huge variety of electronic media and tools exists in addition to the classical media. Asynchronous and synchronous e-learning are constantly growing and support radiology with case collections, webinars and online textbooks. Various internet resources, social media and online courses have been established. Dynamic websites show a variety of interactive elements and it is easier and faster to access large amounts of data. Social media have an exponentially growing number of users and enable an efficient collaboration as well as forming professional networks. Massive open online courses (MOOCs) complete the offer of education and increase the opportunity to take part in educational activities. Apart from the existing variety of resources it is essential to focus on a critical selection for using these radiological media. It is reasonable to combine classical and electronic media instead of a one-sided use. As dynamic as the progress in the field of radiological media and its tools may be, the personal contact remains and should be maintained.

  4. Political Science's Responsibility to the Community: A Promise Fulfilled? Anniversary Sessions of the Department of Political Science, University of Illinois (75th, Urbana-Champaign, Illinois, November 20-21, 1981). The Edmund James James Lecture.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Dept. of Political Science.

    This report contains the keynote speech, the panel discussions, and questions (with responses) from the audience for each of two major sessions on the responsibility of political science to the community. The focus of the first session was academic political science and public service. The keynote speaker was William N. Cassella. Panelists were…

  5. A Gifted and Talented Curriculum Handbook for Science in the Intermediate Grades of Lee County's Department of Exceptional Children. Gifted and Talented Resource Program, Grades 4-6.

    ERIC Educational Resources Information Center

    Baggarley, Margaret; And Others

    Intended for regular classroom teachers in intermediate science classes serving the gifted and talented student, the curriculum handbook is designed to give a basic understanding of gifted education, to list appropriate goals and objectives for the gifted student, and to suggest materials and strategies for implementation within the regular…

  6. Black Scientists and Inventors in the United States: 1731-1980. Curriculum Guide: Department of Science, Cambridge Rindge and Latin School.

    ERIC Educational Resources Information Center

    Walcott, Phyllis B.

    Four units focusing on 16 different Black scientists or inventors who have contributed to American life and research are presented. As part of an interdisciplinary high school science course, the units are designed to help students develop an understanding of and appreciation for the talents of the individuals studied, motivate minority students…

  7. Survey of radiologic practices among dental practitioners

    SciTech Connect

    Goren, A.D.; Sciubba, J.J.; Friedman, R.; Malamud, H. )

    1989-04-01

    The purpose of this study was to determine the factors that influence and contribute to patient exposure in radiologic procedures performed in the offices of 132 staff members within the dental department of a teaching hospital. A questionnaire was prepared in which data were requested on brands of film used, type of x-ray unit used, processing, and use of leaded apron, cervical shield, and film holder. Offices were also visited to evaluate performance of existing dental x-ray equipment. Both the Dental Radiographic Normalizing and Monitoring Device and the Dental Quality Control Test Tool were evaluated. The average exposure was equivalent to the class D film (220 mR), but only 13% of those surveyed used the faster class E film, which would reduce patient exposure in half. The survey indicates that dentists are not using the newer low-exposure class E film in their practices.

  8. U.S. Department of Energy Consequence Management Under the National Response Framework

    SciTech Connect

    Don Van Etten and Paul Guss

    2009-02-03

    Under the Nuclear/Radiological Incident Annex of the National Response Framework, the U.S. Department of Energy (DOE) has specific responsibilities as a coordinating agency and for leading interagency response elements in the Federal Radiological Monitoring and Assessment Center (FRMAC). Emergency response planning focuses on rapidly providing response elements in stages after being notified of a nuclear/radiological incident. The use of Home Teams during the field team deployment period and recent advances in collecting and transmitting data from the field directly to assessment assets has greatly improved incident assessment times for public protection decisions. The DOE’s Remote Sensing Laboratory (RSL) based in Las Vegas, Nevada, has successfully deployed technical and logistical support for this mission at national exercises such as Top Officials Exercise IV (TOPOFF IV). In a unique response situation, DOE will provide advance contingency support to NASA during the scheduled launch in the fall of 2009 of the Mars Science Laboratory (MSL). The MSL rover will carry a radioisotope power system that generates electricity from the heat of plutonium’s radioactive decay. DOE assets and contingency planning will provide a pre-incident response posture for rapid early plume phase assessment in the highly unlikely launch anomaly.

  9. International Data on Radiological Sources

    SciTech Connect

    Martha Finck; Margaret Goldberg

    2010-07-01

    ABSTRACT The mission of radiological dispersal device (RDD) nuclear forensics is to identify the provenance of nuclear and radiological materials used in RDDs and to aid law enforcement in tracking nuclear materials and routes. The application of databases to radiological forensics is to match RDD source material to a source model in the database, provide guidance regarding a possible second device, and aid the FBI by providing a short list of manufacturers and distributors, and ultimately to the last legal owner of the source. The Argonne/Idaho National Laboratory RDD attribution database is a powerful technical tool in radiological forensics. The database (1267 unique vendors) includes all sealed sources and a device registered in the U.S., is complemented by data from the IAEA Catalogue, and is supported by rigorous in-lab characterization of selected sealed sources regarding physical form, radiochemical composition, and age-dating profiles. Close working relationships with global partners in the commercial sealed sources industry provide invaluable technical information and expertise in the development of signature profiles. These profiles are critical to the down-selection of potential candidates in either pre- or post- event RDD attribution. The down-selection process includes a match between an interdicted (or detonated) source and a model in the database linked to one or more manufacturers and distributors.

  10. Radiological Defense Officer. Student Workbook.

    ERIC Educational Resources Information Center

    Defense Civil Preparedness Agency (DOD), Washington, DC.

    This student workbook includes the necessary administrative materials, briefs, exercises and answer sheets for the quizzes and final course examination as needed by the students during the conduct of the Radiological Defense Officer course. Among the briefs included are the following: (1) Reporting Forms; (2) Forecasting Dose Rates; (3) Dose…

  11. Informatics in radiology: automated Web-based graphical dashboard for radiology operational business intelligence.

    PubMed

    Nagy, Paul G; Warnock, Max J; Daly, Mark; Toland, Christopher; Meenan, Christopher D; Mezrich, Reuben S

    2009-11-01

    Radiology departments today are faced with many challenges to improve operational efficiency, performance, and quality. Many organizations rely on antiquated, paper-based methods to review their historical performance and understand their operations. With increased workloads, geographically dispersed image acquisition and reading sites, and rapidly changing technologies, this approach is increasingly untenable. A Web-based dashboard was constructed to automate the extraction, processing, and display of indicators and thereby provide useful and current data for twice-monthly departmental operational meetings. The feasibility of extracting specific metrics from clinical information systems was evaluated as part of a longer-term effort to build a radiology business intelligence architecture. Operational data were extracted from clinical information systems and stored in a centralized data warehouse. Higher-level analytics were performed on the centralized data, a process that generated indicators in a dynamic Web-based graphical environment that proved valuable in discussion and root cause analysis. Results aggregated over a 24-month period since implementation suggest that this operational business intelligence reporting system has provided significant data for driving more effective management decisions to improve productivity, performance, and quality of service in the department.

  12. Implementation of DICOM Modality Worklist at Patient Registration Systems in Radiology Unit

    NASA Astrophysics Data System (ADS)

    Kartawiguna, Daniel; Georgiana, Vina

    2014-03-01

    Currently, the information and communication technology is developing very rapidly. A lot of hospitals have digital radiodiagnostic modality that supports the DICOM protocol. However, the implementation of integrated radiology information system with medical imaging equipment is still very limited until now, especially in developing countries like Indonesia. One of the obstacles is high prices for radiology information system. Whereas the radiology information systems can be widely used by radiologists to provide many benefit for patient, hospitals, and the doctors themselves. This study aims to develop a system that integrates the radiology administration information system with radiodiagnostic imaging modalities. Such a system would give some benefits that the information obtained is more accurate, timely, relevant, and accelerate the workflow of healthcare workers. This research used direct observation method to some hospital radiology unit. Data was collected through interviews, questionnaires, and surveys directly to some of the hospital's radiology department in Jakarta, and supported by the literature study. Based on the observations, the prototype of integrated patient registration systems in radiology unit is developed and interfaced to imaging equipment radiodiagnostic using standard DICOM communications. The prototype of radiology patient registration system is tested with the modality MRI and CT scan.

  13. Biotechnology: The U.S. Department of Agriculture's Biotechnology Research Efforts. Briefing Report. To the Chairman, Committee on Science and Technology, House of Representatives.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC.

    Information pertaining to biotechnology research that was funded in whole or in part by the U.S. Department of Agriculture (USDA) is presented in this report. Findings obtained from state agricultural experimental stations and colleges of veterinary medicine are discussed in 11 appendices. These include: (1) information on USDA's biotechnology…

  14. Using ISI Web of Science to Compare Top-Ranked Journals to the Citation Habits of a "Real World" Academic Department

    ERIC Educational Resources Information Center

    Cusker, Jeremy

    2012-01-01

    Quantitative measurements can be used to yield lists of top journals for individual fields. However, these lists represent assessments of the entire "universe" of citation. A much more involved process is needed if the goal is to develop a nuanced picture of what a specific group of authors, such as an academic department, is citing. This article…

  15. Bayer Facts of Science Education XV: A View from the Gatekeepers—STEM Department Chairs at America's Top 200 Research Universities on Female and Underrepresented Minority Undergraduate STEM Students

    NASA Astrophysics Data System (ADS)

    Bayer Corporation

    2012-06-01

    Diversity and the underrepresentation of women, African-Americans, Hispanics and American Indians in the nation's science, technology, engineering and mathematics (STEM) fields are the subjects of the XV: A View from the Gatekeepers—STEM Department Chairs at America's Top 200 Research Universities on Female and Underrepresented Minority Undergraduate STEM Students. Annual public opinion research project commissioned by Bayer Corporation, the Bayer Facts surveys examine science education and science literacy issues. The 15th in the series and the fifth to explore diversity and underrepresentation, this research is a direct outgrowth of last year's results which found 40 percent of the country's female and underrepresented minority (URM) chemists and chemical engineers working today were discouraged from pursuing their STEM career at some point in their lives. US colleges were cited as places where this discouragement most often happened and college professors as the individuals most likely responsible. Does such discouragement still occur in American colleges today? To answer this and other questions about the undergraduate environment in which today's students make their career decisions, the survey polls 413 STEM department chairs at the nation's 200 top research universities and those that produce the highest proportion of female and URM STEM graduates. The survey also asks the chairs about their institutions track record recruiting and retaining female and URM STEM undergraduates, preparedness of these students to study STEM, the impact of traditional introductory STEM courses on female and URM students and barriers these students face pursuing their STEM degrees.

  16. A Business Analytics Software Tool for Monitoring and Predicting Radiology Throughput Performance.

    PubMed

    Jones, Stephen; Cournane, Seán; Sheehy, Niall; Hederman, Lucy

    2016-12-01

    Business analytics (BA) is increasingly being utilised by radiology departments to analyse and present data. It encompasses statistical analysis, forecasting and predictive modelling and is used as an umbrella term for decision support and business intelligence systems. The primary aim of this study was to determine whether utilising BA technologies could contribute towards improved decision support and resource management within radiology departments. A set of information technology requirements were identified with key stakeholders, and a prototype BA software tool was designed, developed and implemented. A qualitative evaluation of the tool was carried out through a series of semi-structured interviews with key stakeholders. Feedback was collated, and emergent themes were identified. The results indicated that BA software applications can provide visibility of radiology performance data across all time horizons. The study demonstrated that the tool could potentially assist with improving operational efficiencies and management of radiology resources.

  17. The 1985 year book of diagnostic radiology

    SciTech Connect

    Bragg, D.G.

    1984-01-01

    This book provides reviews of 343 significant articles from 79 journals. Topics include the following: expanding use of nuclear magnetic resonance imaging; sonography and pediatric radiology; radiographic evaluation of skeletal stress injuries; cost effectiveness of radiographic procedures; radiologic manifestations of iatrogenic complications; breast cancer diagnosis; interventional radiology and underutilization; and computed tomography in diagnosis and staging of neoplasms.

  18. CP-50 calibration facility radiological safety assessment document

    SciTech Connect

    Chilton, M.W.; Hill, R.L.; Eubank, B.F.

    1980-03-01

    The CP-50 Calibration Facility Radiological Safety Assessment document, prepared at the request of the Nevada Operations Office of the US Department of Energy to satisfy provisions of ERDA Manual Chapter 0531, presents design features, systems controls, and procedures used in the operation of the calibration facility. Site and facility characteristics and routine and non-routine operations, including hypothetical incidents or accidents are discussed and design factors, source control systems, and radiation monitoring considerations are described.

  19. Radiological survey results at Beverly Harbor, Beverly, Massachusetts (VB025)

    SciTech Connect

    Foley, R.D.; Johnson, C.A.

    1992-08-01

    At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at Beverly Harbor, Beverly, Massachusetts. The survey was performed in may 1991. The purpose of the survey was to determine if uranium from work performed under government contract at the former Ventron facility had migrated off-site to the harbor and neighboring areas. The survey included a surface gamma scan and the collection of soil and biological samples for radionuclide analyses.

  20. Network infrastructure for a large radiology environment

    NASA Astrophysics Data System (ADS)

    Humphrey, Louis M.; Do Van, Minh; Ravin, Carl E.

    1996-05-01

    As image transmission becomes a more important part of the way radiology departments operate, the need for a high speed network infrastructure has become more important. We have installed a high speed network in the department that uses the latest Asynchronous Transfer Mode (ATM) networking technology combined with Ethernet switching. This network combination is capable of handling a tremendous amount of data traffic while maintaining compatibility with the existing Ethernet environment. These network changes have significantly improved Ethernet throughput on some of the most heavily used segments of the network by effectively isolating common traffic onto different network segments using new network management software and capabilities that are the result of the ATM backbone. Additional capabilities have allowed us to provide a number of serves that would not have been available using older techniques and architecture. Careful planning of the network before any new installations or changes is important for overall network and traffic management. The installation of this high speed network has allowed us to make imaging within the department and throughout the Medical Center and the connected region a reality.

  1. Bibliometric Analysis of Manuscript Title Characteristics Associated With Higher Citation Numbers: A Comparison of Three Major Radiology Journals, AJNR, AJR, and Radiology.

    PubMed

    Chokshi, Falgun H; Kang, Jian; Kundu, Suprateek; Castillo, Mauricio

    Our purpose was to determine if associations exist between titles characteristics and citation numbers in Radiology, American Journal of Roentgenology (AJR), and American Journal of Neuroradiology (AJNR). This retrospective study is Institutional Review Board exempt. We searched Web of Science for all original research and review articles in Radiology, AJR, and AJNR between 2006 and 2012 and tabulated number of words in the title, presence of a colon symbol, and presence of an acronym. We used a Poisson regression model to evaluate the association between number of citations and title characteristics. We then used the Wald test to detect pairwise differences in the effect of title characteristics on number of citations among the 3 journals. Between 2006 and 2012, Radiology published 2662, AJR 3998, and AJNR 2581 original research and review articles. There was a citation number increase per title word increase of 1.6% for AJNR and 2.6% for AJR and decrease of 0.8% for Radiology. For all, P < 0.001. A title colon was associated with citation increases for AJNR (16%), Radiology (14%), and AJR (7.4%). Title acronym was associated with citation increases for AJNR (10%), Radiology (14%), and AJR (13.3%). All P < 0.001. AJR had greatest effect for number of words in title vs Radiology and AJNR (P < 0.001), AJNR for presence of colon vs Radiology (P < 0.001), and AJR for presence of acronym vs AJNR (P = 0.028). Title characteristics investigated here showed a strong association with higher citation numbers in Radiology, AJR, and AJNR.

  2. [Apprenticeship in radiology at the University Hospital Center in Grenoble: research on the most effective methods].

    PubMed

    Roland, S; Charlin, B; Ferretti, G; Bergeron, D; Coulomb, M

    1999-05-01

    From analyses of strengths and weaknesses of the apprenticeship of radiology in France, of existing pedagogic methods, of time constraints within clinical settings and of scientific theories of teaching and learning, the authors define objectives that teaching should target and propose a new method of instruction problem and practise-based. The method appears applicable in French radiology departments. It should forster early acquisition by residents of professional attitudes and way of thinking, and make them active self-directed learners.

  3. PUREX environmental radiological surveillance - preoperational and operational support program conducted by Pacific Northwest Laboratory

    SciTech Connect

    Sula, M.J.; Price, K.R.

    1983-10-01

    This report describes the radiological environmental sampling program that is being conducted at the US Department of Energy's (DOE) Hanford Site in support of resumed operation of the PUREX fuel processing plant. The report also summarizes preoperational radiological environmental data collected to date. The activities described herein are part of the ongoing Hanford Environmental Surveillance Program, operated by the Pacific Northwest Laboratory (PNL) for the DOE.

  4. Is Your Interventional Radiology Service Ready for SARS?: The Singapore Experience

    SciTech Connect

    Lau, Te-Neng; Teo, Ngee; Tay, Kiang-Hiong; Chan, Ling-Ling; Wong, Daniel; Lim, Winston E.H.; Tan, Bien-Soo

    2003-09-15

    The recent epidemic of severe acute respiratory syndrome caught many by surprise. Hitherto, infection control has not been in the forefront of radiological practice. Many interventional radiology (IR) services are therefore not equipped to deal with such a disease. In this review, we share our experience from the interventional radiologist's perspective, report on the acute measures instituted within our departments and explore the long-term effects of such a disease on the practice of IR.

  5. Radiological image transfer and communication within the BERKOM/RADKOM project

    NASA Astrophysics Data System (ADS)

    Langer, Matthias; Hunger, J.; Zendel, W.; Zwicker, C.; Felix, Roland; Pack, G.; Kuritke, D.

    1990-08-01

    In this radiologic communication project two PAC-systems were installed in two locations of one radiologic department of the Rudolf Virchow University Clinic lying about 10 km apart. The realisation of a well-operating PACS-to-PACS communication is related to a fast image- and video- data transfer and a command processing technic. The PACS-workstation has to enable the manipulation and post-processing technics known from CT-, MR- and DSA- imaging.

  6. Improving Departments of Psychology.

    PubMed

    Diener, Ed

    2016-11-01

    Our procedures for creating excellent departments of psychology are based largely on selection-hiring and promoting the best people. I argue that these procedures have been successful, but I suggest the implementation of policies that I believe will further improve departments in the behavioral and brain sciences. I recommend that we institute more faculty development programs attached to incentives to guarantee continuing education and scholarly activities after the Ph.D. degree. I also argue that we would do a much better job if we more strongly stream our faculty into research, education, or service and not expect all faculty members to carry equal responsibility for each of these. Finally, I argue that more hiring should occur at advanced levels, where scholars have a proven track record of independent scholarship. Although these practices will be a challenge to implement, institutions do ossify over time and thus searching for ways to improve our departments should be a key element of faculty governance.

  7. Radiological/toxicological sabotage assessments at the Savannah River Site

    SciTech Connect

    Johnson, H.D.; Pascal, M.D.; Richardson, D.L.

    1995-11-01

    This paper describes the methods being employed by Westinghouse Savannah River Company (WSRC) to perform graded assessments of radiological and toxicological sabotage vulnerability at Savannah River Site (SRS) facilities. These assessments are conducted to ensure that effective measures are in place to prevent, mitigate, and respond to a potential sabotage event which may cause an airborne release of radiological/toxicological material, causing an adverse effect on the health and safety of employees, the public, and the environment. Department of Energy (DOE) Notice 5630.3A, {open_quotes}Protection of Departmental Facilities Against Radiological and Toxicological Sabotage,{close_quotes} and the associated April 1993 DOE-Headquarters guidance provide the requirements and outline an eight-step process for hazardous material evaluation. The process requires the integration of information from a variety of disciplines, including safety, safeguards and security, and emergency preparedness. This paper summarizes WSRC`s approach towards implementation of the DOE requirements, and explains the inter-relationships between the Radiological and Toxicological Assessments developed using this process, and facility Hazard Assessment Reports (HAs), Safety Analysis Reports (SARs), and Facility Vulnerability Assessments (VAs).

  8. Radiology education: a glimpse into the future.

    PubMed

    Scarsbrook, A F; Graham, R N J; Perriss, R W

    2006-08-01

    The digital revolution in radiology continues to advance rapidly. There are a number of interesting developments within radiology informatics which may have a significant impact on education and training of radiologists in the near future. These include extended functionality of handheld computers, web-based skill and knowledge assessment, standardization of radiological procedural training using simulated or virtual patients, worldwide videoconferencing via high-quality health networks such as Internet2 and global collaboration of radiological educational resources via comprehensive, multi-national databases such as the medical imaging resource centre initiative of the Radiological Society of North America. This article will explore the role of e-learning in radiology, highlight a number of useful web-based applications in this area, and explain how the current and future technological advances might best be incorporated into radiological training.

  9. Interventional radiology in the elderly

    PubMed Central

    Katsanos, Konstantinos; Ahmad, Farhan; Dourado, Renato; Sabharwal, Tarun; Adam, Andreas

    2009-01-01

    Interventional radiological percutaneous procedures are becoming all the more important in the curative or palliative management of elderly frail patients with multiple underlying comorbidities. They may serve either as alternative primary minimally invasive therapies or adjuncts to traditional surgical treatments. The present report provides a concise review of the most important interventional radiological procedures with a special focus on the treatment of the primary debilitating pathologies of the elderly population. The authors elaborate on the scientific evidence and latest developments of thermoablation of solid organ malignancies, palliative stent placement for gastrointestinal tract cancer, airway stenting for tracheobronchial strictures, endovascular management of aortic and peripheral arterial vascular disease, and cement stabilization of osteoporotic vertebral fractures. The added benefits of high technical and clinical success coupled with lower procedural mortality and morbidity are highlighted. PMID:19503761

  10. A hypermedia radiological reporting system.

    PubMed

    De Simone, M; Drudi, F M; Lalle, C; Poggi, R; Ricci, F L

    1997-01-01

    Report is the main phase of a diagnostic process by images. The product of the process is the diagnostic report. We are proposing an hypermedia structure of diagnostic report in radiology, in order to facilitate exchange between radiologist and clinician (specialist in internal medicine or surgeon) on a clinical case, without anymore charge on the side of the radiologist but with an 'off-line' consultation. An hypermedia radiological report software will produce further advantages in many aspects: radiologist and clinician could access patient's data directly from DB on patients; radiologist could check DB on exemplary cases real-time; clinician could read preliminary and final reports available in network and make requests online. The proposed hyper-report system is modular. Starting from the 'report text' writing, edited by the radiologist on the basis of most significative images, it is possible to insert comments in text, drawing and 'external' images form.

  11. Radiology applications of financial accounting.

    PubMed

    Leibenhaut, Mark H

    2005-03-01

    A basic knowledge of financial accounting can help radiologists analyze business opportunities and examine the potential impacts of new technology or predict the adverse consequences of new competitors entering their service area. The income statement, balance sheet, and cash flow statement are the three basic financial statements that document the current financial position of the radiology practice and allow managers to monitor the ongoing financial operations of the enterprise. Pro forma, or hypothetical, financial statements can be generated to predict the financial impact of specific business decisions or investments on the profitability of the practice. Sensitivity analysis, or what-if scenarios, can be performed to determine the potential impact of changing key revenue, investment, operating cost or financial assumptions. By viewing radiology as both a profession and a business, radiologists can optimize their use of scarce economic resources and maximize the return on their financial investments.

  12. Environmental monitoring in interventional radiology

    NASA Astrophysics Data System (ADS)

    Del Sol, S.; Garcia, R.; Sánchez, D.; Ramirez, G.; Chavarin, E. U.; Rivera, T.

    2017-01-01

    The procedures in Interventional Radiology involve long times of exposure and high number of radiographic images that bring higher radiation doses to patients, staff and environmental than those received in conventional Radiology. Currently for monitoring the dose, the thermoluminescent dosimetry use is recommended. The aim of this work was to carry out the monitoring of the environmental scattered radiation inside the IR room using two types of thermoluminescent dosimeters, TLD-100 (reference dosimeter), CaSO4:Dy (synthesized in our laboratory). The results indicate that the TLD-100 is not effective for the environmental monitoring of low-energy Rx rooms. The CaSO4:Dy presented good behaviour over the 6 months of study. The results will be specific to each room so it is recommended such studies as part of the program of quality control of each Rx room.

  13. [Radiation protection in interventional radiology].

    PubMed

    Adamus, R; Loose, R; Wucherer, M; Uder, M; Galster, M

    2016-03-01

    The application of ionizing radiation in medicine seems to be a safe procedure for patients as well as for occupational exposition to personnel. The developments in interventional radiology with fluoroscopy and dose-intensive interventions require intensified radiation protection. It is recommended that all available tools should be used for this purpose. Besides the options for instruments, x‑ray protection at the intervention table must be intensively practiced with lead aprons and mounted lead glass. A special focus on eye protection to prevent cataracts is also recommended. The development of cataracts might no longer be deterministic, as confirmed by new data; therefore, the International Commission on Radiological Protection (ICRP) has lowered the threshold dose value for eyes from 150 mSv/year to 20 mSv/year. Measurements show that the new values can be achieved by applying all X‑ray protection measures plus lead-containing eyeglasses.

  14. Facility wide benefits of radiology vascular access teams.

    PubMed

    Burns, Tim; Lamberth, Becky

    2010-01-01

    Many PICC lines are inserted in the radiology department and, at the rate they are inserted, can have serious financial implications for a facility. These costs combined with the increase in the number of line placements performed annually have imaging leadership evaluating alternatives for catheter placements in their departments. Several benefits to forming an in-house vascular access team include increased patient satisfaction, improved care, decreased length of stay, optimizing DRG reimbursement, and increased revenue. Considerations prior to initiating a vascular access team include: staff members involved, location of insertions, and up front funds available.

  15. Evaluation of the tri-service radiology system at the naval hospital, bethesda. Final report 26 Oct 81-11 Feb 83

    SciTech Connect

    Not Available

    1983-02-11

    The Tri-Service Medical Information Systems (TRIMIS) Program Office (TPO) has installed four initial stand-alone computer systems for support of radiology operations in Medical Treatment Facilities (MTFs). The system, known as the Tri-Service Radiology System (or TRIRAD), provides automated support to patient management, scheduling, film management, administrative reporting statistics, teaching and research, and reporting assistance to radiologists. The experience with the implementation of this system in the Radiology Department at the Naval Hospital, Bethesda (NHB), has been evaluated in order to provide information for use in decision-making about the future use of automation in radiology departments in other MTFs.

  16. Otologic radiology with clinical correlations

    SciTech Connect

    Ruenes, R.; De la Cruz, A.

    1986-01-01

    This manual covers developments in the radiologic diagnosis of otologic problems. To demonstrate the appearance of each disorder comprehensively, a large number of radiographs are included, many of them annotated to highlight both diagnostic signs and the subtle aspects of normal pathologic anatomy. Contents: X-ray and Imaging Techniques and Anatomy. Congenital Malformations. Middle and External Ear Infections. Otosclerosis and Otospongiosis. Temporal Bone Fractures. The Facial Nerve. Tumors of the Temporal Bone and Skull Base. Tumors of the Cerebellopontine Angle. Cochlear Implants.

  17. Online social networking for radiology.

    PubMed

    Auffermann, William F; Chetlen, Alison L; Colucci, Andrew T; DeQuesada, Ivan M; Grajo, Joseph R; Heller, Matthew T; Nowitzki, Kristina M; Sherry, Steven J; Tillack, Allison A

    2015-01-01

    Online social networking services have changed the way we interact as a society and offer many opportunities to improve the way we practice radiology and medicine in general. This article begins with an introduction to social networking. Next, the latest advances in online social networking are reviewed, and areas where radiologists and clinicians may benefit from these new tools are discussed. This article concludes with several steps that the interested reader can take to become more involved in online social networking.

  18. Radiologic diagnosis of gastrointestinal perforation.

    PubMed

    Rubesin, Stephen E; Levine, Marc S

    2003-11-01

    Perforations of the gastrointestinal tract have many causes. Holes in the wall of gastrointestinal organs can be created by blunt or penetrating trauma, iatrogenic injury, inflammatory conditions that penetrate the serosa or adventitia, extrinsic neoplasms that invade the gastrointestinal tract, or primary neoplasms that penetrate outside the wall of gastrointestinal organs. This article provides a radiologic approach for investigating the wide variety of gastrointestinal perforations. General principles about contrast agents and studies are reviewed, and then perforations in specific gastrointestinal organs are discussed.

  19. Telemetry of Aerial Radiological Measurements

    SciTech Connect

    H. W. Clark, Jr.

    2002-10-01

    Telemetry has been added to National Nuclear Security Administration's (NNSA's) Aerial Measuring System (AMS) Incident Response aircraft to accelerate availability of aerial radiological mapping data. Rapid aerial radiological mapping is promptly performed by AMS Incident Response aircraft in the event of a major radiological dispersal. The AMS airplane flies the entire potentially affected area, plus a generous margin, to provide a quick look at the extent and severity of the event. The primary result of the AMS Incident Response over flight is a map of estimated exposure rate on the ground along the flight path. Formerly, it was necessary to wait for the airplane to land before the map could be seen. Now, while the flight is still in progress, data are relayed via satellite directly from the aircraft to an operations center, where they are displayed and disseminated. This permits more timely utilization of results by decision makers and redirection of the mission to optimize its value. The current telemetry capability can cover all of North America. Extension to a global capability is under consideration.

  20. Understanding Mechanisms of Radiological Contamination

    SciTech Connect

    Rick Demmer; John Drake; Ryan James, PhD

    2014-03-01

    Over the last 50 years, the study of radiological contamination and decontamination has expanded significantly. This paper addresses the mechanisms of radiological contamination that have been reported and then discusses which methods have recently been used during performance testing of several different decontamination technologies. About twenty years ago the Idaho Nuclear Technology Engineering Center (INTEC) at the INL began a search for decontamination processes which could minimize secondary waste. In order to test the effectiveness of these decontamination technologies, a new simulated contamination, termed SIMCON, was developed. SIMCON was designed to replicate the types of contamination found on stainless steel, spent fuel processing equipment. Ten years later, the INL began research into methods for simulating urban contamination resulting from a radiological dispersal device (RDD). This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and included the initial development an aqueous application of contaminant to substrate. Since 2007, research sponsored by the US Environmental Protection Agency (EPA) has advanced that effort and led to the development of a contamination method that simulates particulate fallout from an Improvised Nuclear Device (IND). The IND method diverges from previous efforts to create tenacious contamination by simulating a reproducible “loose” contamination. Examining these different types of contamination (and subsequent decontamination processes), which have included several different radionuclides and substrates, sheds light on contamination processes that occur throughout the nuclear industry and in the urban environment.

  1. Radiological Evaluation of Bowel Ischemia

    PubMed Central

    Dhatt, Harpreet S.; Behr, Spencer C; Miracle, Aaron; Wang, Zhen Jane; Yeh, Benjamin M.

    2015-01-01

    Intestinal ischemia, which refers to insufficient blood flow to the bowel, is a potentially catastrophic entity that may require emergent intervention or surgery in the acute setting. Although the clinical signs and symptoms of intestinal ischemia are nonspecific, CT findings can be highly suggestive in the correct clinical setting. In this chapter we review the CT diagnosis of arterial, venous, and non-occlusive intestinal ischemia. We discuss the vascular anatomy, pathophysiology of intestinal ischemia, CT techniques for optimal imaging, key and ancillary radiological findings, and differential diagnosis. In the setting of an acute abdomen, rapid evaluation is necessary to identify intraabdominal processes that require emergent surgical intervention (1). While a wide-range of intraabdominal diseases may be present from trauma to inflammation, one of the most feared disorders is mesenteric ischemia, also known as intestinal ischemia, which refers to insufficient blood flow to the bowel (2). Initial imaging evaluation for intestinal ischemia is typically obtained with CT. Close attention to technique and search for key radiologic features with relation to the CT technique is required. Accurate diagnosis depends on understanding the vascular anatomy, epidemiology, and pathophysiology of various forms of mesenteric ischemia and their corresponding radiological findings on MDCT. At imaging, not only is inspection of the bowel itself important, but evaluation of the mesenteric fat, vasculature, and surrounding peritoneal cavity also helps improves accuracy in the diagnosis of bowel ischemia. PMID:26526436

  2. Predictive Radiological Background Distributions from Geochemical Data

    NASA Astrophysics Data System (ADS)

    Haber, D.; Burnley, P. C.; Marsac, K.; Malchow, R.

    2014-12-01

    Gamma ray surveys are an important tool for both national security interests as well as industry in determininglocations of both anthropogenic radiological sources and natural occurrences of radiologic material. The purpose ofthis project is to predict the radiologic exposure rate of geologic materials by creating a model using publishedgeochemical data, geologic data, GIS software, and freely available remote sensing data sets. If K, U, and Thabundance values are known for a given geologic unit, the expected radiation exposure rate can be calculated. Oneof the primary challenges surrounding this project is that alluvial units are classified by age rather than rock type. Itis therefore important to determine sediment sources and estimate their relative contribution to alluvial units.ASTER data from the Terra satellite can differentiate between surface mineralogies and can aid us in calculating therelative percentage of sediment from each source and by extension the geochemical concentrations of challengingsurfaces such as alluvium. An additional problem is that U and Th do not directly contribute to the measuredradiation exposure rate. Instead, daughter isotopes of these radioelements emit detectable gamma rays and may nothave reached equilibrium in younger surfaces. U can take up to 1.5 Ma to come to equilibrium with its daughterisotopes while Th takes only about 40 years. Further modeling with software such as Monte Carlo N-ParticleTransport from Los Alamos National Laboratory, will help us correct for this disequilibrium in our models. Once the predicted exposure rate is calculated for a geologic unit, it can then be assigned to a geographic area basedon geologic and geomorphic trends. This prediction will be subtracted from data collected through aerial surveys,effectively ignoring geology, and allowing areas of interest to be narrowed down considerably. The study areasinclude the alluvium on the west shore of Lake Mohave and Government Wash north of Lake Mead

  3. 44 CFR 351.28 - The Department of Commerce.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false The Department of Commerce... Assignments § 351.28 The Department of Commerce. (a) Assist State and local governments in determining their... in responding to radiological emergencies. (e) Provide representation to and support for the...

  4. Pacific Northwest Laboratory annual report for 1989 to the DOE (Department of Energy) Office of Energy Research - Part 2: Environmental Sciences

    SciTech Connect

    Not Available

    1990-03-01

    This report summarizes progress in environmental sciences research conducted by Pacific Northwest Laboratory (PBL) for the Office of Health and Environmental Research in FY 1989. Research is directed toward developing a fundamental understanding of processes controlling the long-term fate and biological effects of fugitive chemicals and other stressors resulting from energy development. The report is organized by major research areas. Within this division, individual reports summarize the progress of projects in these areas. Additional sections summarize exploratory research, educational institutional interactions, technology transfer, and publications. The research, focused principally on subsurface contaminant transport and detection and management of human-induced changes in biological systems, forms the basis for defining and quantifying processes that affect humans and the environment at the local, regional, and global levels.

  5. Energy payback and CO{sub 2} gas emissions from fusion and solar photovoltaic electric power plants. Final report to Department of Energy, Office of Fusion Energy Sciences

    SciTech Connect

    Kulcinski, G.L.

    2002-12-01

    A cradle-to-grave net energy and greenhouse gas emissions analysis of a modern photovoltaic facility that produces electricity has been performed and compared to a similar analysis on fusion. A summary of the work has been included in a Ph.D. thesis titled ''Life-cycle assessment of electricity generation systems and applications for climate change policy analysis'' by Paul J. Meier, and a synopsis of the work was presented at the 15th Topical meeting on Fusion Energy held in Washington, DC in November 2002. In addition, a technical note on the effect of the introduction of fusion energy on the greenhouse gas emissions in the United States was submitted to the Office of Fusion Energy Sciences (OFES).

  6. Pacific Northwest Laboratory annual report for 1989 to the DOE (Department of Energy) Office of Energy Research - Part 4: Physical Sciences

    SciTech Connect

    Toburen, L.H.; Stults, B.R.; Mahaffey, J.A.

    1990-04-01

    This 1989 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment, safety, and health conducted during fiscal year 1989. The report again consists of five parts, each in a separate volume. This volume contains 20 papers. Part 4 of the Pacific Northwest Laboratory Annual Report of 1989 to the DOE Office of Energy Research includes those programs funded under the title Physical and Technological Research.'' The Field Task Program Studies reported in this document are grouped by budget category and each Field Task proposal/agreement is introduced by an abstract that describes the projects reported in that section. These reports only briefly indicate progress made during 1989. 74 refs., 29 figs., 6 tabs.

  7. Nucleating emergency radiology specialization in India.

    PubMed

    Agrawal, Anjali; Khandelwal, Niranjan

    2016-04-01

    Emergency radiology is being recognized as an important and distinct specialty of radiology which merits utmost attention of educators, radiology program curricula committees, and radiology practices in India. Providing an accurate but timely diagnosis requires a skilled judgement and a strong process framework, particularly in acute trauma setting or a life-threatening acute illness. However, due to a shortage of radiologists in India and lack of awareness and suitable opportunities, there has been no concerted movement towards emergency radiology subspecialty training or dedicated emergency radiology positions. It was with these gaps in mind that the Society for Emergency Radiology was envisioned in 2012 and formulated in 2013. The proposed role of the Society for Emergency Radiology is to identify deficiencies in the field, namely, lack of adequate exposure, lack of mentorship by experienced emergency radiologists, lack of suitable opportunities for emergency radiologists; establish standards of practice; and promote education and implementation research to bridge the gaps. Through collaboration with other societies and partnership with the journal Emergency Radiology, the Society for Emergency Radiology hopes to promote a free exchange of ideas, protocols, and multi-institutional trials across continents.

  8. Employing the radiological and nuclear risk assessment methods (RNRAM) for assessing radiological and nuclear detection architectures

    SciTech Connect

    Brigantic, Robert T.; Eddy, Ryan R.

    2014-03-20

    The United States Department of Homeland Security’s Domestic Nuclear Detection Office (DNDO) is charged with implementing domestic nuclear detection efforts to protect the U.S. from radiological and nuclear threats. DNDO is also responsible for coordinating the development of the Global Nuclear Detection Architecture (GNDA). DNDO utilizes a unique risk analysis tool to conduct a holistic risk assessment of the GNDA known as the Radiological and Nuclear Risk Assessment Methods (RNRAM). The capabilities of this tool will be used to support internal DNDO analyses and has also been used for other entities such as the International Atomic Energy Agency. The model uses a probabilistic risk assessment methodology and includes the ability to conduct a risk assessment of the effectiveness of layered architectures in the GNDA against an attack by an intelligent, adaptive adversary. This paper overviews the basic structure, capabilities, and use of RNRAM as used to assess different architectures and how various risk components are calculated through a series of interconnected modules. Also highlighted is flexible structure of RNRAM which can accommodate new modules in order to examine a variety of threat detection architectures and concepts.

  9. Comparative Guide to Science and Engineering Programs.

    ERIC Educational Resources Information Center

    Cass, James; Birnbaum, Max

    Comparative information about individual departments and programs in colleges and universities is presented for the biological sciences, chemistry, earth sciences, engineering, general science, mathematical sciences, physics, and astronomy. Institutions are listed alphabetically within the seven major fields. Department information includes…

  10. Verification of Minimum Detectable Activity for Radiological Threat Source Search

    NASA Astrophysics Data System (ADS)

    Gardiner, Hannah; Myjak, Mitchell; Baciak, James; Detwiler, Rebecca; Seifert, Carolyn

    2015-10-01

    The Department of Homeland Security's Domestic Nuclear Detection Office is working to develop advanced technologies that will improve the ability to detect, localize, and identify radiological and nuclear sources from airborne platforms. The Airborne Radiological Enhanced-sensor System (ARES) program is developing advanced data fusion algorithms for analyzing data from a helicopter-mounted radiation detector. This detector platform provides a rapid, wide-area assessment of radiological conditions at ground level. The NSCRAD (Nuisance-rejection Spectral Comparison Ratios for Anomaly Detection) algorithm was developed to distinguish low-count sources of interest from benign naturally occurring radiation and irrelevant nuisance sources. It uses a number of broad, overlapping regions of interest to statistically compare each newly measured spectrum with the current estimate for the background to identify anomalies. We recently developed a method to estimate the minimum detectable activity (MDA) of NSCRAD in real time. We present this method here and report on the MDA verification using both laboratory measurements and simulated injects on measured backgrounds at or near the detection limits. This work is supported by the US Department of Homeland Security, Domestic Nuclear Detection Office, under competitively awarded contract/IAA HSHQDC-12-X-00376. This support does not constitute an express or implied endorsement on the part of the Gov't.

  11. Report to Congress on the U.S. Department of Energy`s Environmental Management Science Program: Research funded and its linkages to environmental cleanup problems. Volume 1 of 3 -- Report and Appendix A

    SciTech Connect

    1998-04-01

    This report is submitted in response to a Congressional request and is intended to communicate the nature, content, goals, and accomplishments of the Environmental Management Science Program (EMSP) to interested and affected parties in the Department and its contractors, at Federal agencies, in the scientific community, and in the general public. The EMSP was started in response to a request to mount an effort in longer term basic science research to seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective. Section 1, ``Background of the Program,`` provides information on the evolution of the EMSP and how it is managed, and summarizes recent accomplishments. Section 2, ``Research Award Selection Process,`` provides an overview of the ongoing needs identification process, solicitation development, and application review for scientific merit and programmatic relevance. Section 3, ``Linkages to Environmental Cleanup Problems,`` provides an overview of the major interrelationships (linkages) among EMSP basic research awards, Environmental Management problem areas, and high cost projects. Section 4, ``Capitalizing on Science Investments,`` discusses the steps the EMSP plans to use to facilitate the application of research results in Environmental Management strategies through effective communication and collaboration. Appendix A contains four program notices published by the EMSP inviting applications for grants.

  12. [Results of the studies on radiation ecology and radiation biology at the Institute of Biology of Komi Science Center of Ural division of Russian Academy of Science (on 40th anniversary of the Department of Radiation Ecology)].

    PubMed

    Taskaev, A I; Kudiasheva, A G; Popova, O N; Materiĭ, L D; Shuktomova, I I; Frolova, N P; Kozubov, G M; Zaĭnullin, V G; Ermakova, O V; Rakin, A O; Bashlykova, L A

    2000-01-01

    Information about the foundation and history of the Radiation Ecology Department and results of the researches on the effect of increased background radiation level on plant and animal populations, migration of radionuclides in natural biocoenosies with increased radiation level are presented.

  13. Development of an Integrated Performance Evaluation Program (IPEP) for the Department of Energy`s Office of Environmental Restoration and Waste Management

    SciTech Connect

    Streets, W.E.; Ka; Lindahl, P.C.; Bottrell, D.; Newberry, R.; Klusek, C.; Morton, S.; Karp, K.

    1993-09-01

    Argonne National Laboratory (ANL), in collaboration with DOE`s Radiological and Environmental Sciences Laboratory (RESL), Environmental Measurements Laboratory (EML), and Grand Junction Project Office (GJPO), is working with the Department of Energy (DOE) Headquarters and the US Environmental Protection Agency (EPA) to develop the Integrated Performance Evaluation Program (IPEP). The purpose of IPEP is to integrate performance evaluation (PE) information from existing PE programs with expanded quality assurance (QA) activities to develop information about the quality of radiological, mixed waste, and hazardous environmental sample analyses provided by all laboratories supporting DOE Environmental Restoration and Waste Management (EM) programs. The IPEP plans to utilize existing PE programs when available and appropriate for use by DOE-EM; new PE programs will be developed only when no existing program meets DOE`s needs.

  14. Hanford radiological protection support services annual report for 1987

    SciTech Connect

    Lyon, M.; Fix, J.J.; Kenoyer, J.L.; Leonowich, J.A.; Palmer, H.E.; Sula, M.J.

    1988-08-01

    This report documents the performance of certain radiological protection sitewide services during calendar year (CY) 1987 by Pacific Northwest Laboratory in support of the US Department of Energy-Richland Operations Office (DOE-RL) and contractor activities on the Hanford Site. The routine program for each service is discussed along with any significant program changes and tasks, investigations, and studies performed in support of each program. Other related activities such as publications, presentations, and memberships on standards or industry committees are also discussed. The programs covered provide services in the areas of: external dosimetry, internal dosimetry, in vivo measurements, instrument calibration and evaluation, calibration of radiation sources traceable to the National Bureau of Standards, and radiological records. 21 refs., 10 figs., 12 tabs.

  15. Release criteria and pathway analysis for radiological remediation

    SciTech Connect

    Subbaraman, G.; Tuttle, R.J.; Oliver, B.M. . Rocketdyne Div.); Devgun, J.S. )

    1991-01-01

    Site-specific activity concentrations were derived for soils contaminated with mixed fission products (MFP), or uranium-processing residues, using the Department of Energy (DOE) pathway analysis computer code RESRAD at four different sites. The concentrations and other radiological parameters, such as limits on background-subtracted gamma exposure rate were used as the basis to arrive at release criteria for two of the sites. Valid statistical parameters, calculated for the distribution of radiological data obtained from site surveys, were then compared with the criteria to determine releasability or need for further decontamination. For the other two sites, RESRAD has been used as a preremediation planning tool to derive residual material guidelines for uranium. 11 refs., 4 figs., 3 tabs.

  16. Hanford radiological protection support services annual report for 1988

    SciTech Connect

    Lyon, M.; Fix, J.J.; Kenoyer, J.L.; Leonowich, J.A.; Palmer, H.E.; Sula, M.J.

    1989-06-01

    The report documents the performance of certain radiological protection sitewide services during calendar year (CY) 1988 by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy-Richland Operations Office (DOE-RL) and contractor activities on the Hanford Site. The routine program for each service is discussed along with any significant program changes and tasks, investigations, and studies performed in support of each program. Other related activities such as publications, presentations, and memberships on standard or industry committees are also listed. The programs covered provide services in the areas of (1) internal dosimetry, (2) in vivo measurements, (3) external dosimetry, (4) instrument calibration and evaluation, (5) calibration of radiation sources traceable to the National Institute of Standards and Technology (NIST) (formerly the National Bureau of Standards), and (6) radiological records. 23 refs., 15 figs., 15 tabs.

  17. Academic Radiology in the New Healthcare Delivery Environment

    PubMed Central

    Qayyum, Aliya; Yu, John-Paul J.; Kansagra, Akash P.; von Fischer, Nathaniel; Costa, Daniel; Heller, Matthew; Kantartzis, Stamatis; Plowman, R. Scooter; Itri, Jason

    2014-01-01

    Ongoing concerns over the rising cost of health care are driving large-scale changes in the way that health care is practiced and reimbursed in the United States. To effectively implement and thrive within this new health care delivery environment, academic medical institutions will need to modify financial and business models and adapt institutional cultures. In this paper, we review the expected features of the new health care environment from the perspective of academic radiology departments. Our review will include background on Accountable Care Organizations, identify challenges associated with the new managed care model, and outline key strategies—including expanding the use of existing information technology infrastructure, promoting continued medical innovation, balancing academic research with clinical care, and exploring new roles for radiologists in efficient patient management—that will ensure continued success for academic radiology. PMID:24200477

  18. Virtual management of radiology examinations in the virtual radiology environment using common object request broker architecture services.

    PubMed

    Martinez, R; Rozenblit, J; Cook, J F; Chacko, A K; Timboe, H L

    1999-05-01

    In the Department of Defense (DoD), US Army Medical Command is now embarking on an extremely exciting new project--creating a virtual radiology environment (VRE) for the management of radiology examinations. The business of radiology in the military is therefore being reengineered on several fronts by the VRE Project. In the VRE Project, a set of intelligent agent algorithms determine where examinations are to routed for reading bases on a knowledge base of the entire VRE. The set of algorithms, called the Meta-Manager, is hierarchical and uses object-based communications between medical treatment facilities (MTFs) and medical centers that have digital imaging network picture archiving and communications systems (DIN-PACS) networks. The communications is based on use of common object request broker architecture (CORBA) objects and services to send patient demographics and examination images from DIN-PACS networks in the MTFs to the DIN-PACS networks at the medical centers for diagnosis. The Meta-Manager is also responsible for updating the diagnosis at the originating MTF. CORBA services are used to perform secure message communications between DIN-PACS nodes in the VRE network. The Meta-Manager has a fail-safe architecture that allows the master Meta-Manager function to float to regional Meta-Manager sites in case of server failure. A prototype of the CORBA-based Meta-Manager is being developed by the University of Arizona's Computer Engineering Research Laboratory using the unified modeling language (UML) as a design tool. The prototype will implement the main functions described in the Meta-Manager design specification. The results of this project are expected to reengineer the process of radiology in the military and have extensions to commercial radiology environments.

  19. [European curriculum for further education in radiology].

    PubMed

    Ertl-Wagner, B

    2014-11-01

    The European training curriculum for radiology of the European Society of Radiology (ESR) aims to harmonize training in radiology in Europe. Levels I and II constitute the centerpiece of the curriculum. The ESR recommends a 5-year training period in radiology with 3 years of level I and 2 years of level II training. The undergraduate (U) level curriculum is conceived as a basis for teaching radiology in medical schools and consists of a modality-oriented U1 level and an organ-based U2 level. Level III curricula provide contents for subspecialty and fellowship training after board certification in radiology. The curricular contents of all parts of the European Training Curriculum are divided into the sections knowledge, skills as well as competences and attitudes. The European training curriculum is meant to be a recommendation and a basis for the development of national curricula, but is not meant to replace existing national regulations.

  20. Activation and implementation of a Federal Radiological Monitoring and Assessment Center

    SciTech Connect

    Doyle, J.F. III

    1989-01-01

    The Nevada Operations Office of the U.S. Department of Energy (DOE/NV) has been assigned the primary responsibility for responding to a major radiological emergency. The initial response to any radiological emergency, however, will probably be conducted under the DOE regional radiological assistance plan (RAP). If the dimensions of the crisis demand federal assistance, the following sequence of events may be anticipated: (1) DOE regional RAP response, (2) activation of the Federal Radiological Monitoring and Assistance Center (FRMAC) requested, (3) aerial measuring systems and DOE/NV advance party respond, (4) FRMAC activated, (5) FRMAC responds to state(s) and cognizant federal agency (CFA), and (6) management of FRMAC transferred to the Environmental Protection Agency (EPA). The paper discusses activation channels, authorization, notification, deployment, and interfaces.

  1. Radioactive Waste Management Complex low-level waste radiological performance assessment

    SciTech Connect

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

    1994-04-01

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.

  2. Radiological survey report for the Weldon Spring Raffinate Pits site, Weldon Spring, Missouri

    SciTech Connect

    Not Available

    1984-08-01

    The Weldon Spring Site (WSS) is a US Department of Energy (DOE) surplus facility comprising the Raffinate Pits facility, the Quarry, and potentially contaminated vicinity properties. Radiological characterization of the WSS will be conducted in three phases: the Raffinate Pits facility, Quarry, and the vicinity properties. Bechtel National, Inc. (BNI) and its radiological support subcontractor, Eberline Instrument Corporation (EIC), conducted a radiological characterization survey of the Raffinate Pits during 1982 and 1983 in support of on-site construction work and a technical evaluation of site geology. The survey consisted of direct beta-gamma surface readings, near-surface gamma readings, exposure level measurements, and gamma-logs of boreholes. Soil samples were also collected from the surface, shallow boreholes, and trenches on the site. This report describes the radiological characterization of the Raffinate Pits facility, the procedures used to conduct the survey, the survey results, and their significance. 5 references, 9 figures, 8 tables.

  3. The Radiological Research Accelerator Facility. Progress report, December 1, 1992--November 30, 1993

    SciTech Connect

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993.

  4. The Radiological Research Accelerator Facility. Progress report, December 1, 1991--November 30, 1992

    SciTech Connect

    Hall, E.J.

    1992-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Experiments performed from May 1991--April 1992 are described.

  5. Computer network security for the radiology enterprise.

    PubMed

    Eng, J

    2001-08-01

    As computer networks become an integral part of the radiology practice, it is appropriate to raise concerns regarding their security. The purpose of this article is to present an overview of computer network security risks and preventive strategies as they pertain to the radiology enterprise. A number of technologies are available that provide strong deterrence against attacks on networks and networked computer systems in the radiology enterprise. While effective, these technologies must be supplemented with vigilant user and system management.

  6. [Interventional radiology: current problems and new directions].

    PubMed

    Santos Martín, E; Crespo Vallejo, E

    2014-01-01

    In recent years, vascular and interventional radiology has become one of the fastest growing diagnostic and therapeutic specialties. This growth has been based on a fundamental concept: performing minimally invasive procedures under imaging guidance. This attractive combination has led to the interest of professionals from other clinical specialties outside radiology in performing this type of intervention. The future of vascular and interventional radiology, although uncertain, must be linked to clinical practice and multidisciplinary teamwork.

  7. Semantic information extracting system for classification of radiological reports in radiology information system (RIS)

    NASA Astrophysics Data System (ADS)

    Shi, Liehang; Ling, Tonghui; Zhang, Jianguo

    2016-03-01

    Radiologists currently use a variety of terminologies and standards in most hospitals in China, and even there are multiple terminologies being used for different sections in one department. In this presentation, we introduce a medical semantic comprehension system (MedSCS) to extract semantic information about clinical findings and conclusion from free text radiology reports so that the reports can be classified correctly based on medical terms indexing standards such as Radlex or SONMED-CT. Our system (MedSCS) is based on both rule-based methods and statistics-based methods which improve the performance and the scalability of MedSCS. In order to evaluate the over all of the system and measure the accuracy of the outcomes, we developed computation methods to calculate the parameters of precision rate, recall rate, F-score and exact confidence interval.

  8. Radiology.

    PubMed

    Patel, Ketan; Wallace, Roxanne; Busconi, Brian D

    2011-04-01

    Hip and groin pain are a common complaint among athletes of all ages, and may result from an acute injury or from chronic, repetitive trauma. Hip injuries can be intraarticular, extraarticular, or both. Labral abnormalities may occur in asymptomatic patients as well as in those with incapacitating symptoms and signs. Athletic hip injury leading to disabling intraarticular hip pain most commonly involves labral tear. The extraarticular causes are usually the result of overuse activity, leading to inflammation, tendonitis, or bursitis. In clinical practice, the term athletic pubalgia is used to describe exertional pubic or groin pain.

  9. Techniques and indications in radiology

    SciTech Connect

    Lange, S.

    1987-01-01

    The stated purpose of this book is to review modern radiologic diagnostic techniques as applied to the study of the kidney and urinary tract, and their pertinent indications. This goal is partially accomplished in the first two segments of the book, which consist of about 100 pages. These include a synoptic description of various techniques - including classic uroradiologic studies such as excretory urography and retrograde pyelography, plus sonography, computed tomography, angiography, and nuclear medicine. The diagnostic signs and the differential diagnoses are fairly well described, aided by a profusion of tables and diagrams. The overall quality of the reproduction of the illustrations is good.

  10. Managerial accounting applications in radiology.

    PubMed

    Lexa, Frank James; Mehta, Tushar; Seidmann, Abraham

    2005-03-01

    We review the core issues in managerial accounting for radiologists. We introduce the topic and then explore its application to diagnostic imaging. We define key terms such as fixed cost, variable cost, marginal cost, and marginal revenue and discuss their role in understanding the operational and financial implications for a radiology facility by using a cost-volume-profit model. Our work places particular emphasis on the role of managerial accounting in understanding service costs, as well as how it assists executive decision making.

  11. Nuclear and radiological Security: Introduction.

    SciTech Connect

    Miller, James Christopher

    2016-02-24

    Nuclear security includes the prevention and detection of, and response to, theft, sabotage, unauthorized access, illegal transfer, or other malicious acts involving nuclear or other radioactive substances or their associated facilities. The presentation begins by discussing the concept and its importance, then moves on to consider threats--insider threat, sabotage, diversion of materials--with considerable emphasis on the former. The intrusion at Pelindaba, South Africa, is described as a case study. The distinction between nuclear security and security of radiological and portable sources is clarified, and the international legal framework is touched upon. The paper concludes by discussing the responsibilities of the various entities involved in nuclear security.

  12. Essential radiology for head injury

    SciTech Connect

    Mok, D.W.H.; Kreel, L.

    1988-01-01

    The book covers the guidelines established by the Royal College of Radiologists for the radiographic evaluation of head injuries. It presents a chapter reviewing the normal radiologic anatomy of the skull in six different projections. The advantages and limitations of each projection are addressed. The third chapter, contains 43 radiographs dedicated to the calcified pineal gland and other intracranial calcifications. The book reports on specific types of fractures: linear fractures of the vault, depressed fractures of the vault, fractures in children, fractures of the base of the skull, and fractures of the facial bones.

  13. Radiological Assistance Program Flight Planning Tool

    SciTech Connect

    Messick, C.; Pham, M.; Ridgeway, J.; Smith, R.

    2011-12-19

    The Radiological Assitance Program (RAP) is the National Nuclear Security Administration's (NNSA) first responder to radiological emergencies. RAP's mission is to identify and minimize radiological hazards, as well as provide radiological emergency response and technical advice to decision makers. One tool commonly used is aerial radiation detection equipment. During a response getting this equipment in the right place quickly is critical. The RAP Flight Planning Tool (a ArcGIS 10 Desktop addin) helps minimize this response time and provides specific customizable flight path information to the flight staff including maps, coordinates, and azimuths.

  14. Implementation of a Radiological Safety Coach program

    SciTech Connect

    Konzen, K.K.; Langsted, J.M.

    1998-02-01

    The Safe Sites of Colorado Radiological Safety program has implemented a Safety Coach position, responsible for mentoring workers and line management by providing effective on-the-job radiological skills training and explanation of the rational for radiological safety requirements. This position is significantly different from a traditional classroom instructor or a facility health physicist, and provides workers with a level of radiological safety guidance not routinely provided by typical training programs. Implementation of this position presents a challenge in providing effective instruction, requiring rapport with the radiological worker not typically developed in the routine radiological training environment. The value of this unique training is discussed in perspective with cost-savings through better radiological control. Measures of success were developed to quantify program performance and providing a realistic picture of the benefits of providing one-on-one or small group training. This paper provides a description of the unique features of the program, measures of success for the program, a formula for implementing this program at other facilities, and a strong argument for the success (or failure) of the program in a time of increased radiological safety emphasis and reduced radiological safety budgets.

  15. Chemical, Biological, Radiological, and Nuclear Consequence Management

    EPA Pesticide Factsheets

    The Chemical, Biological, Radiological, and Nuclear CMAD provides scientific support and technical expertise for decontamination of buildings, building contents, public infrastructure, agriculture, and associated environmental media.

  16. [From the x-ray department to the institute for imaging diagnosis].

    PubMed

    Voegeli, E; Steck, W

    1985-02-01

    The increasing sophistication of diagnostic radiology has led to rising emphasis on modality-related training and practice in radiological subspecialties. To accomplish both optimal patient management and a rational, cost-effective analysis of imaging procedures, a comprehensive approach to modern radiology is needed rather than a technology-related attitude. The imaging department, where the various imaging data are synthesized and correlation by a general practitioner of radiology, as opposed to the subspecialty radiologist, is the most suitable solution. The principles of management and the layout of such a center are described by the authors.

  17. Radiation exposure in interventional radiology

    NASA Astrophysics Data System (ADS)

    Pinto, N. G. V.; Braz, D.; Vallim, M. A.; Filho, L. G. P.; Azevedo, F. S.; Barroso, R. C.; Lopes, R. T.

    2007-09-01

    The aim of this study is to evaluate dose values in patients and staff involved in some interventional radiology procedures. Doses have been measured using thermoluminescent dosemeters for single procedures (such as renal and cerebral arteriography, transjungular intrahepatic portasystemic shunt (TIPS) and chemoembolization). The magnitude of doses through the hands of interventional radiologists has been studied. Dose levels were evaluated in three points for patients (eye, thyroid and gonads). The dose-area product (DAP) was also investigated using a Diamentor (PTW-M2). The dose in extremities was estimated for a professional who generally performed one TIPS, two chemoembolizations, two cerebral arteriographies and two renal arteriographies in a week. The estimated annual radiation dose was converted to effective dose as suggested by the 453-MS/Brazil norm The annual dose values were 137.25 mSv for doctors, 40.27 mSv for nurses and 51.95 mSv for auxiliary doctors, and all these annual dose values are below the limit established. The maximum values of the dose obtained for patients were 6.91, 10.92 and 15.34 mGy close to eye, thyroid and gonads, respectively. The DAP values were evaluated for patients in the same interventional radiology procedures. The dose and DAP values obtained are in agreement with values encountered in the literature.

  18. Pediatric Interventional Radiology: Vascular Interventions.

    PubMed

    Kandasamy, Devasenathipathy; Gamanagatti, Shivanand; Gupta, Arun Kumar

    2016-07-01

    Pediatric interventional radiology (PIR) comprises a range of minimally invasive diagnostic and therapeutic procedures that are performed using image guidance. PIR has emerged as an essential adjunct to various surgical and medical conditions. Over the years, technology has undergone dramatic and continuous evolution, making this speciality grow. In this review, the authors will discuss various vascular interventional procedures undertaken in pediatric patients. It is challenging for the interventional radiologist to accomplish a successful interventional procedure. There are many vascular interventional radiology procedures which are being performed and have changed the way the diseases are managed. Some of the procedures are life saving and have become the treatment of choice in those patients. The future is indeed bright for the practice and practitioners of pediatric vascular and non-vascular interventions. As more and more of the procedures that are currently being performed in adults get gradually adapted for use in the pediatric population, it may be possible to perform safe and successful interventions in many of the pediatric vascular lesions that are otherwise being referred for surgery.

  19. Applying industrial engineering practices to radiology.

    PubMed

    Rosen, Len

    2004-01-01

    Seven hospitals in Oregon and Washington have successfully adopted the Toyota Production System (TPS). Developed by Taiichi Ohno, TPS focuses on finding efficiencies and cost savings in manufacturing processes. A similar effort has occurred in Canada, where Toronto's Hospital for Sick Children has developed a database for its diagnostic imaging department built on the principles of TPS applied to patient encounters. Developed over the last 5 years, the database currently manages all interventional patient procedures for quality assurance, inventory, equipment, and labor. By applying industrial engineering methodology to manufacturing processes, it is possible to manage these constraints, eliminate the obstacles to achieving streamlined processes, and keep the cost of delivering products and services under control. Industrial engineering methodology has encouraged all stakeholders in manufacturing plants to become participants in dealing with constraints. It has empowered those on the shop floor as well as management to become partners in the change process. Using a manufacturing process model to organize patient procedures enables imaging department and imaging centers to generate reports that can help them understand utilization of labor, materials, equipment, and rooms. Administrators can determine the cost of individual procedures as well as the total and average cost of specific procedure types. When Toronto's Hospital for Sick Children first implemented industrial engineering methodology to medical imaging interventional radiology patient encounters, it focused on materials management. Early in the process, the return on investment became apparent as the department improved its management of more than 500,000 dollars of inventory. The calculated accumulated savings over 4 years for 10,000 interventional procedures alone amounted to more than 140,000 dollars. The medical imaging department in this hospital is only now beginning to apply what it has learned to

  20. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology

    SciTech Connect

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory were 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

  1. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology.

    SciTech Connect

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R. E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory where 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

  2. Radiology Preparedness in Ebola Virus Disease: Guidelines and Challenges for Disinfection of Medical Imaging Equipment for the Protection of Staff and Patients

    PubMed Central

    Palmore, Tara N.; Folio, Les R.; Bluemke, David A.

    2015-01-01

    The overlap of early Ebola virus disease (EVD) symptoms (eg, fever, headache, abdominal pain, diarrhea, emesis, and fatigue) with symptoms of other more common travel-related diseases (eg, malaria, typhoid fever, pneumonia, and meningococcemia) may result in delayed diagnosis of EVD before isolation of infected patients. Radiology departments should consider policies for and approaches to decontamination of expensive and potentially easily damaged radiology equipment. In addition, the protection of radiology personnel must be considered during the work-up phase of undiagnosed EVD patients presenting to emergency departments. The purpose of this article is to consider the effect of EVD on radiology departments and imaging equipment, with particular consideration of guidelines currently available from the Centers for Disease Control and Prevention that may be applicable to radiology. © RSNA, 2015 PMID:25654616

  3. Radiology preparedness in ebola virus disease: guidelines and challenges for disinfection of medical imaging equipment for the protection of staff and patients.

    PubMed

    Mollura, Daniel J; Palmore, Tara N; Folio, Les R; Bluemke, David A

    2015-05-01

    The overlap of early Ebola virus disease (EVD) symptoms (eg, fever, headache, abdominal pain, diarrhea, emesis, and fatigue) with symptoms of other more common travel-related diseases (eg, malaria, typhoid fever, pneumonia, and meningococcemia) may result in delayed diagnosis of EVD before isolation of infected patients. Radiology departments should consider policies for and approaches to decontamination of expensive and potentially easily damaged radiology equipment. In addition, the protection of radiology personnel must be considered during the work-up phase of undiagnosed EVD patients presenting to emergency departments. The purpose of this article is to consider the effect of EVD on radiology departments and imaging equipment, with particular consideration of guidelines currently available from the Centers for Disease Control and Prevention that may be applicable to radiology.

  4. Mechanical Engineering Department Technical Review

    SciTech Connect

    Carr, R.B.; Denney, R.M.

    1981-07-01

    The Mechanical Engineering Department Technical Review is published to inform readers of various technical activities within the Department, promote exchange of ideas, and give credit to personnel who are achieving the results. The report is presented in two parts: technical achievements and publication abstracts. The first is divided into seven sections, each of which reports on an engineering division and its specific activities related to nuclear tests, nuclear explosives, weapons, energy systems, engineering sciences, magnetic fusion, and materials fabrication.

  5. MRI simulator: a teaching tool for radiology

    NASA Astrophysics Data System (ADS)

    Rundle, Debra A.; Kishore, Sheel; Seshadri, Sridhar B.; Wehrli, Felix W.

    1990-08-01

    The increasing use of magnetic resonance imaging (MRI) as a clinical modality has put an enormous burden on medical institutions to cost-effectively teach Mill scanning techniques to technologists and physicians. Since MRI scanner time is a scarce resource, it would be ideal if the teaching could be effectively performed off-line. In order to meet this goal, the Radiology Department has designed and developed a Magnetic Resonance Imaging Simulator. The Simulator in its current implementation mimics the General Electric Signa scanner's user-interface for image acquisition. The design is general enough to be applied to other MRI scanners. One unique feature of the simulator is its incorporation of an image-synthesis module which permits the user to derive images for any arbitrary combination of pulsing parameters for spin-echo, gradient-echo, and inversion recovery pulse sequences. These images are computed in five seconds. The development platform chosen is a standard Apple Macintosh-Il computer with no specialized hardware peripherals. The user-interface is implemented in HyperCard. All other software development including synthesis and display functions are implemented under the MPW 'C' environment. The scan parameters, demographics and images are tracked using an Oracle database. Images are currently stored on magnetic disk but could be stored on optical media with minimal effort.

  6. Radiological assistance program: Region I. Part I

    SciTech Connect

    Musolino, S.V.; Kuehner, A.V.; Hull, A.P.

    1985-07-15

    The purpose of the Radiological Assistance Program (RAP) is to make DOE resources available and provide emergency assistance to state and local agencies in order to control radiological hazards, protect the public health and safety, and minimize the loss of property. This plan is an integral part of a nationwide program of radiological assistance established by the US DOE, and is implemented on a regional basis. The Brookhaven Area Office (BHO) Radiological Assistance Program is applicable to DOE Region I, which consists of the New England States, New York, New Jersey, Pennsylvania, Delaware, Maryland and the District of Columbia. The BHO RAP-1 has been developed to: (a) ensure the availability of an effective radiological assistance capability to ensure the protection of persons and property; (b) provide guidelines to RAP-1 Team personnel for the evaluation of radiological incidents and implementation of corrective actions; (c) maintain liaison with other DOE installations, Federal, State and local organizations which may become involved in radiological assistance operations in Region I; and (d) encourage development of a local capability to cope with radiological incidents.

  7. Radiological Defense. Planning and Operations Guide. Revised.

    ERIC Educational Resources Information Center

    Office of Civil Defense (DOD), Washington, DC.

    This guide is a reprint of published and draft materials from the Federal Civil Defense Guide. This guide is intended to assist the student in planning, developing, implementing and operating a local, county, or state radiological defense (RADEF) system. The state and local radiological defense program objectives are to create an effective and…

  8. Nevada Test Site Radiological Control Manual

    SciTech Connect

    Radiological Control Managers' Council - Nevada Test Site

    2009-10-01

    This document supersedes DOE/NV/11718--079, “NV/YMP Radiological Control Manual,” Revision 5 issued in November 2004. Brief Description of Revision: A complete revision to reflect the recent changes in compliance requirements with 10 CFR 835, and for use as a reference document for Tenant Organization Radiological Protection Programs.

  9. Curricular Guidelines for Dental Auxiliary Radiology.

    ERIC Educational Resources Information Center

    Journal of Dental Education, 1981

    1981-01-01

    AADS curricular guidelines suggest objectives for these areas of dental auxiliary radiology: physical principles of X-radiation in dentistry, related radiobiological concepts, principles of radiologic health, radiographic technique, x-ray films and intensifying screens, factors contributing to film quality, darkroom, and normal variations in…

  10. New trends in radiology workstation design

    NASA Astrophysics Data System (ADS)

    Moise, Adrian; Atkins, M. Stella

    2002-05-01

    In the radiology workstation design, the race for adding more features is now morphing into an iterative user centric design with the focus on ergonomics and usability. The extent of the list of features for the radiology workstation used to be one of the most significant factors for a Picture Archiving and Communication System (PACS) vendor's ability to sell the radiology workstation. Not anymore is now very much the same between the major players in the PACS market. How these features work together distinguishes different radiology workstations. Integration (with the PACS/Radiology Information System (RIS) systems, with the 3D tool, Reporting Tool etc.), usability (user specific preferences, advanced display protocols, smart activation of tools etc.) and efficiency (what is the output a radiologist can generate with the workstation) are now core factors for selecting a workstation. This paper discusses these new trends in radiology workstation design. We demonstrate the importance of the interaction between the PACS vendor (software engineers) and the customer (radiologists) during the radiology workstation design. We focus on iterative aspects of the workstation development, such as the presentation of early prototypes to as many representative users as possible during the software development cycle and present the results of a survey of 8 radiologists on designing a radiology workstation.

  11. 76 FR 49458 - TRICARE; Hospital Outpatient Radiology Discretionary Appeal Adjustments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... of the Secretary TRICARE; Hospital Outpatient Radiology Discretionary Appeal Adjustments AGENCY... hospitals of an opportunity for net adjusted payments for radiology services for which TRICARE payments were... radiology services specified in the regulation as being reimbursed under the allowable charge...

  12. Critical Path to Nuclear Science and Technology Knowledge Transfer and Skill Development in K-12 Schools: Why America Needs Action and Support from Federal and State Education Departments Now

    SciTech Connect

    Vincenti, J.R.; Anderson, G.E.

    2006-07-01

    With the signing of President Bush's energy bill in August of 2005, the successful application of the new energy legislation may have more to do with educational standards required in our schools than applications of research and technology in the long-term. Looking inside the new legislation, the future of that legislation's success may not just hinge on investment in technology, but ensuring that our citizens, especially our youth, are prepared and better informed to be able to understand, react, and apply the economically and national security driven intent of the law. How can our citizens make sense of change if they lack the skills to be able to understand, not only the technology, but also the science that drives the change? President Bush's passage of the 1,724-page bill emphasizes conservation, clean energy research, and new and improved technology. The legislation also provides for economic incentives toward building more nuclear power plants. This paper will use four questions as a focal point to emphasize the need for both state and federal education departments to review their current standards and respond to deficiencies regarding learning about radioactivity, radiation, and nuclear science and technology. The questions are: 1. Will America accept new nuclear power development? 2. Will waste issues be resolved concerning high- and low-level radioactive waste management and disposal? 3. Will nuclear 'anything' be politically correct when it comes to your backyard? 4. Is our youth adequately educated and informed about radioactivity, radiation, and nuclear science and technology? This paper will use Pennsylvania as a case study to better understand the implications and importance of the educational standards in our school systems. This paper will also show how the deficiency found in Pennsylvania's academic standards, and in other states, has a significant impact on the ability to fulfill the legislation's intent of realizing energy independence and

  13. HIPERCIR: a low-cost high-performance 3D radiology image analysis system

    NASA Astrophysics Data System (ADS)

    Blanquer, Ignacio; Hernandez, Vincente; Ramirez, Javier; Vidal, Antonio M.; Alcaniz-Raya, Mariano L.; Grau Colomer, Vincente; Monserrat, Carlos A.; Concepcion, Luis; Marti-Bonmati, Luis

    1999-07-01

    Clinics have to deal currently with hundreds of 3D images a day. The processing and visualization using currently affordable systems is very costly and slow. The present work shows the features of a software integrated parallel computing package developed at the Universidad Politecnica de Valencia (UPV), under the European Project HIPERCIR, which is aimed at reducing the time and requirements for processing and visualizing the 3D images with low-cost solutions, such as networks of PCs running standard operating systems. HIPERCIR is targeted to Radiology Departments of Hospitals and Radiology System Providers to provide them with a tool for easing the day-to-day diagnosis. This project is being developed by a consortium formed by medical image processing and parallel computing experts from the Computing Systems Department of the UPV, experts on biomedical software and radiology and tomography clinic experts.

  14. Radiological characterization plan for the Tritium Research Laboratory, Sandia National Laboratories/California

    SciTech Connect

    Garcia, T.

    1995-05-01

    In this Radiological Characterization Plan (RCP), the Health Protection Department, 8641 of Sandia National Laboratories/California provides specific information for an assessment of the radiological conditions of Building 968, the Tritium Research Laboratory (TRL), and the TRL Complex area. This RCP provides historical background information on each laboratory within the TRL Complex as related to both radiological conditions and hazardous materials. Since this plan chronicles past and present activities and outlines future actions, a final complex status report will follow the completion of this document. The Health Protection Department, 8641 anticipates that the TRL Complex will ultimately undergo a termination survey; however, this RCP does not include environmental surveys such as soil, vegetation, or ground water. The RCP does provide the basis for a final termination survey plan, when appropriate.

  15. Development of a statewide hospital plan for radiologic emergencies

    SciTech Connect

    Dainiak, Nicholas . E-mail: pndain@bpthosp.org; Delli Carpini, Domenico; Bohan, Michael; Werdmann, Michael; Wilds, Edward; Barlow, Agnus; Beck, Charles; Cheng, David; Daly, Nancy; Glazer, Peter; Mas, Peter; Nath, Ravinder; Piontek, Gregory; Price, Kenneth; Albanese, Joseph; Roberts, Kenneth; Salner, Andrew L.; Rockwell, Sara

    2006-05-01

    Although general guidelines have been developed for triage of victims in the field and for hospitals to plan for a radiologic event, specific information for clinicians and administrators is not available for guidance in efficient management of radiation victims during their early encounter in the hospital. A consensus document was developed by staff members of four Connecticut hospitals, two institutions of higher learning, and the State of Connecticut Department of Environmental Protection and Office of Emergency Preparedness, with assistance of the American Society for Therapeutic Radiology and Oncology. The objective was to write a practical manual for clinicians (including radiation oncologists, emergency room physicians, and nursing staff), hospital administrators, radiation safety officers, and other individuals knowledgeable in radiation monitoring that would be useful for evaluation and management of radiation injury. The rationale for and process by which the radiation response plan was developed and implemented in the State of Connecticut are reviewed. Hospital admission pathways are described, based on classification of victims as exposed, contaminated, and/or physically injured. This manual will be of value to those involved in planning the health care response to a radiologic event.

  16. Radiological characterization of Yankee Nuclear Power Station

    SciTech Connect

    Bellini, F.X.; Cumming, E.R.; Hollenbeck, P. )

    1993-01-01

    The Yankee nuclear power station located in Rowe, Massachusetts, permanently ceased power operations on February 26, 1992, after 31 yr of operation. Yankee has since initiated decommissioning planning activities. A significant component of these activities is the determination of the extent of radiological contamination of the Yankee site. This paper describes the site radiological characterization program that has been implemented for decommissioning the Yankee plant. Radiological scoping surveys were completed to support submittal of a decommissioning plan to the U.S. Nuclear Regulatory Commission (NRC) by October 1, 1993. These surveys were designed to provide sufficient detail to estimate the extent of contamination, volume of radiological waste, activity of radiological waste, and personnel dose estimates for removal activities. Surveys were conducted both inside and on the grounds outside of the Yankee plant buildings. Survey results were combined with analytical evaluations to characterize the Yankee site.

  17. American diagnostic radiology residency and fellowship programmes.

    PubMed

    Rumack, Carol Masters

    2011-03-01

    American Diagnostic Radiology Residency and Fellowship programmes are Graduate Medical Education programmes in the United States (US) equivalent to the Postgraduate Medical Education programmes in Singapore. Accreditation Council for Graduate Medical Education (ACGME) accredited diagnostic radiology residency programmes require 5 years total with Post Graduate Year (PGY) 1 year internship in a clinical specialty, e.g. Internal Medicine following medical school. PGY Years 2 to 5 are the core years which must include Radiology Physics, Radiation Biology and rotations in 9 required subspecialty rotations: Abdominal, Breast, Cardiothoracic, Musculoskeletal, Neuroradiology, Nuclear and Paediatric Radiology, Obstetric & Vascular Ultrasound and Vascular Interventional Radiology. A core curriculum of lectures must be organised by the required 9 core subspecialty faculty. All residents (PGY 2 to 4) take a yearly American College of Radiology Diagnostic In-Training Examination based on national benchmarks of medical knowledge in each subspecialty. Because the American Board of Radiology (ABR) examinations are changing, until 2012, residents have to take 3 ABR examinations: (i) ABR physics examination in the PGY 2 to 3 years, (ii) a written examination at the start of the PGY 5 year and (iii) an oral exam at the end of the PGY 5 year. Beginning in 2013, there will be only 2 examinations: (i) the physics and written examinations after PGY 4 will become a combined core radiology examination. Beginning in 2015, the final certifying examination will be given 15 months after the completion of residency. After residency, ACGME fellowships in PGY 6 are all one-year optional programmes which focus on only one subspecialty discipline. There are 4 ACGME accredited fellowships which have a Board Certifi cation Examination: Neuroradiology, Nuclear, Paediatric and Vascular Interventional Radiology. Some ACGME fellowships do not have a certifying examination: Abdominal, Endovascular

  18. The interventional radiology business plan.

    PubMed

    Beheshti, Michael V; Meek, Mary E; Kaufman, John A

    2012-09-01

    Strategic planning and business planning are processes commonly employed by organizations that exist in competitive environments. Although it is difficult to prove a causal relationship between formal strategic/business planning and positive organizational performance, there is broad agreement that formal strategic and business plans are components of successful organizations. The various elements of strategic plans and business plans are not common in the vernacular of practicing physicians. As health care becomes more competitive, familiarity with these tools may grow in importance. Herein we provide an overview of formal strategic and business planning, and offer a roadmap for an interventional radiology-specific plan that may be useful for organizations confronting competitive and financial threats.

  19. Hanford radiological protection support services annual report for 1997

    SciTech Connect

    Lyon, M.; Bihl, D.E.; Fix, J.J.; Johnson, M.L.; Lynch, T.P.; Piper, R.K.

    1998-06-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1997. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological exposure record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

  20. Hanford radiological protection support services annual report for 1991

    SciTech Connect

    Lyon, M.; Bihl, D.E.; Fix, J.J.; Piper, R.K.; Froelich, T.J.; Leonwich, J.A.; Lynch, T.P.

    1992-07-01

    Various Hanford sitewide radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy, Richland Field Office and Hanford contractors are described In this annual report for calendar year 1991. These activities include internal dosimetry measurements and evaluations, in vivo measurements, external dosimetry measurements and evaluations, instrument calibration and evaluation, radiation source calibration, and radiological records keeping. For each of these activities, the routine program, program changes and enhancements, associated tasks, investigations and studies, and related publications, presentations, and other staff professional activities are discussed as applicable.