Sample records for radiometric multiple parameter

  1. Electronic transport characterization of silicon wafers by spatially resolved steady-state photocarrier radiometric imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qian; University of the Chinese Academy of Sciences, Beijing 100039; Li, Bincheng, E-mail: bcli@ioe.ac.cn

    2015-09-28

    Spatially resolved steady-state photocarrier radiometric (PCR) imaging technique is developed to characterize the electronic transport properties of silicon wafers. Based on a nonlinear PCR theory, simulations are performed to investigate the effects of electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) on the steady-state PCR intensity profiles. The electronic transport parameters of an n-type silicon wafer are simultaneously determined by fitting the measured steady-state PCR intensity profiles to the three-dimensional nonlinear PCR model. The determined transport parameters are in good agreement with the results obtained by the conventional modulated PCR technique withmore » multiple pump beam radii.« less

  2. Airborne gamma-ray spectrometer and magnetometer survey: Durango Quadrangle (Colorado). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-07-01

    Results from the airborne gamma-ray spectrometer and magnetometer survey of Durango Quadrangle in Colorado are presented in the form of radiometric multiple-parameter stacked profiles, histograms, flight path map, and magnetic and ancillary stacked profile data.

  3. Phase difference statistics related to sensor and forest parameters

    NASA Technical Reports Server (NTRS)

    Lopes, A.; Mougin, E.; Beaudoin, A.; Goze, S.; Nezry, E.; Touzi, R.; Karam, M. A.; Fung, A. K.

    1992-01-01

    The information content of ordinary synthetic aperture radar (SAR) data is principally contained in the radiometric polarization channels, i.e., the four Ihh, Ivv, Ihv and Ivh backscattered intensities. In the case of clutter, polarimetric information is given by the four complex degrees of coherence, from which the mean polarization phase differences (PPD), correlation coefficients or degrees of polarization can be deduced. For radiometric features, the polarimetric parameters are corrupted by multiplicative speckle noise and by some sensor effects. The PPD distribution is related to the sensor, speckle and terrain properties. Experimental results are given for the variation of the terrain hh/vv mean phase difference and magnitude of the degree of coherence observed on bare soil and on different pine forest stands.

  4. Nure aerial gamma-ray and magnetic reconnaissance survey: Chugach/Yakutat area, Alaska, Mt. Saint Elias Quadrangle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-10-01

    Volume II contains the following data on Mt. Saint Elias, Alaska: geologic base map, flight path map, anomaly maps (U, Th, K, UlTh, UlK, ThlK), radiometric multiple-parameter stacked profiles, magnetic and ancillary profile data, and statistical data. (LK)

  5. Application of side-oblique image-motion blur correction to Kuaizhou-1 agile optical images.

    PubMed

    Sun, Tao; Long, Hui; Liu, Bao-Cheng; Li, Ying

    2016-03-21

    Given the recent development of agile optical satellites for rapid-response land observation, side-oblique image-motion (SOIM) detection and blur correction have become increasingly essential for improving the radiometric quality of side-oblique images. The Chinese small-scale agile mapping satellite Kuaizhou-1 (KZ-1) was developed by the Harbin Institute of Technology and launched for multiple emergency applications. Like other agile satellites, KZ-1 suffers from SOIM blur, particularly in captured images with large side-oblique angles. SOIM detection and blur correction are critical for improving the image radiometric accuracy. This study proposes a SOIM restoration method based on segmental point spread function detection. The segment region width is determined by satellite parameters such as speed, height, integration time, and side-oblique angle. The corresponding algorithms and a matrix form are proposed for SOIM blur correction. Radiometric objective evaluation indices are used to assess the restoration quality. Beijing regional images from KZ-1 are used as experimental data. The radiometric quality is found to increase greatly after SOIM correction. Thus, the proposed method effectively corrects image motion for KZ-1 agile optical satellites.

  6. "TNOs are Cool": A survey of the trans-Neptunian region. XIII. Statistical analysis of multiple trans-Neptunian objects observed with Herschel Space Observatory

    NASA Astrophysics Data System (ADS)

    Kovalenko, I. D.; Doressoundiram, A.; Lellouch, E.; Vilenius, E.; Müller, T.; Stansberry, J.

    2017-11-01

    Context. Gravitationally bound multiple systems provide an opportunity to estimate the mean bulk density of the objects, whereas this characteristic is not available for single objects. Being a primitive population of the outer solar system, binary and multiple trans-Neptunian objects (TNOs) provide unique information about bulk density and internal structure, improving our understanding of their formation and evolution. Aims: The goal of this work is to analyse parameters of multiple trans-Neptunian systems, observed with Herschel and Spitzer space telescopes. Particularly, statistical analysis is done for radiometric size and geometric albedo, obtained from photometric observations, and for estimated bulk density. Methods: We use Monte Carlo simulation to estimate the real size distribution of TNOs. For this purpose, we expand the dataset of diameters by adopting the Minor Planet Center database list with available values of the absolute magnitude therein, and the albedo distribution derived from Herschel radiometric measurements. We use the 2-sample Anderson-Darling non-parametric statistical method for testing whether two samples of diameters, for binary and single TNOs, come from the same distribution. Additionally, we use the Spearman's coefficient as a measure of rank correlations between parameters. Uncertainties of estimated parameters together with lack of data are taken into account. Conclusions about correlations between parameters are based on statistical hypothesis testing. Results: We have found that the difference in size distributions of multiple and single TNOs is biased by small objects. The test on correlations between parameters shows that the effective diameter of binary TNOs strongly correlates with heliocentric orbital inclination and with magnitude difference between components of binary system. The correlation between diameter and magnitude difference implies that small and large binaries are formed by different mechanisms. Furthermore, the statistical test indicates, although not significant with the sample size, that a moderately strong correlation exists between diameter and bulk density. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  7. NASA IKONOS Radiometric Characterization

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Frisbee, Troy; Zanoni, Vicki; Blonski, Slawek; Daehler, Erik; Grant, Brennan; Holekamp, Kara; Ryan, Robert; Sellers, Richard; Smith, Charles

    2002-01-01

    The objective of this program: Perform radiometric vicarious calibrations of IKQNOS imagery and compare with Space Imaging calibration coefficients The approach taken: utilize multiple well-characterized sites which are widely used by the NASA science community for radiometric characterization of airborne and spaceborne sensors; and to Perform independent characterizations with independent teams. Each team has slightly different measurement techniques and data processing methods.

  8. SIFT optimization and automation for matching images from multiple temporal sources

    NASA Astrophysics Data System (ADS)

    Castillo-Carrión, Sebastián; Guerrero-Ginel, José-Emilio

    2017-05-01

    Scale Invariant Feature Transformation (SIFT) was applied to extract tie-points from multiple source images. Although SIFT is reported to perform reliably under widely different radiometric and geometric conditions, using the default input parameters resulted in too few points being found. We found that the best solution was to focus on large features as these are more robust and not prone to scene changes over time, which constitutes a first approach to the automation of processes using mapping applications such as geometric correction, creation of orthophotos and 3D models generation. The optimization of five key SIFT parameters is proposed as a way of increasing the number of correct matches; the performance of SIFT is explored in different images and parameter values, finding optimization values which are corroborated using different validation imagery. The results show that the optimization model improves the performance of SIFT in correlating multitemporal images captured from different sources.

  9. The radiometric characteristics of KOMPSAT-3A by using reference radiometric tarps and ground measurement

    NASA Astrophysics Data System (ADS)

    Yeom, Jong-Min

    2016-09-01

    In this study, we performed the vicarious radiometric calibration of KOMPSAT-3A multispectral bands by using 6S radiative transfer model, radiometric tarps, MFRSR measurements. Furthermore, to prepare the accurate input parameter, we also did experiment work to measure the BRDF of radiometric tarps based on hyperspectral gonioradiometer to compensate the observation geometry difference between satellite and ASD Fieldspec 3. Also, we measured point spread function (PSF) by using the bright star and corrected multispectral bands based on the Wiener filter. For accurate atmospheric constituent effects such as aerosol optical depth, column water, and total ozone, we used MFRSR instrument and estimated related optical depth of each gases. Based on input parameters for 6S radiative transfer model, we simulated top of atmosphere (TOA) radiance by observed by KOMPSAT-3A and matched-up the digital number. Consequently, DN to radiance coefficients was determined based on aforementioned methods and showed reasonable statistics results.

  10. Landsat-8 Operational Land Imager (OLI) radiometric performance on-orbit

    USGS Publications Warehouse

    Morfitt, Ron; Barsi, Julia A.; Levy, Raviv; Markham, Brian L.; Micijevic, Esad; Ong, Lawrence; Scaramuzza, Pat; Vanderwerff, Kelly

    2015-01-01

    Expectations of the Operational Land Imager (OLI) radiometric performance onboard Landsat-8 have been met or exceeded. The calibration activities that occurred prior to launch provided calibration parameters that enabled ground processing to produce imagery that met most requirements when data were transmitted to the ground. Since launch, calibration updates have improved the image quality even more, so that all requirements are met. These updates range from detector gain coefficients to reduce striping and banding to alignment parameters to improve the geometric accuracy. This paper concentrates on the on-orbit radiometric performance of the OLI, excepting the radiometric calibration performance. Topics discussed in this paper include: signal-to-noise ratios that are an order of magnitude higher than previous Landsat missions; radiometric uniformity that shows little residual banding and striping, and continues to improve; a dynamic range that limits saturation to extremely high radiance levels; extremely stable detectors; slight nonlinearity that is corrected in ground processing; detectors that are stable and 100% operable; and few image artifacts.

  11. Radiometric Block Adjusment and Digital Radiometric Model Generation

    NASA Astrophysics Data System (ADS)

    Pros, A.; Colomina, I.; Navarro, J. A.; Antequera, R.; Andrinal, P.

    2013-05-01

    In this paper we present a radiometric block adjustment method that is related to geometric block adjustment and to the concept of a terrain Digital Radiometric Model (DRM) as a complement to the terrain digital elevation and surface models. A DRM, in our concept, is a function that for each ground point returns a reflectance value and a Bidirectional Reflectance Distribution Function (BRDF). In a similar way to the terrain geometric reconstruction procedure, given an image block of some terrain area, we split the DRM generation in two phases: radiometric block adjustment and DRM generation. In the paper we concentrate on the radiometric block adjustment step, but we also describe a preliminary DRM generator. In the block adjustment step, after a radiometric pre-calibraton step, local atmosphere radiative transfer parameters, and ground reflectances and BRDFs at the radiometric tie points are estimated. This radiometric block adjustment is based on atmospheric radiative transfer (ART) models, pre-selected BRDF models and radiometric ground control points. The proposed concept is implemented and applied in an experimental campaign, and the obtained results are presented. The DRM and orthophoto mosaics are generated showing no radiometric differences at the seam lines.

  12. A Digital Sensor Simulator of the Pushbroom Offner Hyperspectral Imaging Spectrometer

    PubMed Central

    Tao, Dongxing; Jia, Guorui; Yuan, Yan; Zhao, Huijie

    2014-01-01

    Sensor simulators can be used in forecasting the imaging quality of a new hyperspectral imaging spectrometer, and generating simulated data for the development and validation of the data processing algorithms. This paper presents a novel digital sensor simulator for the pushbroom Offner hyperspectral imaging spectrometer, which is widely used in the hyperspectral remote sensing. Based on the imaging process, the sensor simulator consists of a spatial response module, a spectral response module, and a radiometric response module. In order to enhance the simulation accuracy, spatial interpolation-resampling, which is implemented before the spatial degradation, is developed to compromise the direction error and the extra aliasing effect. Instead of using the spectral response function (SRF), the dispersive imaging characteristics of the Offner convex grating optical system is accurately modeled by its configuration parameters. The non-uniformity characteristics, such as keystone and smile effects, are simulated in the corresponding modules. In this work, the spatial, spectral and radiometric calibration processes are simulated to provide the parameters of modulation transfer function (MTF), SRF and radiometric calibration parameters of the sensor simulator. Some uncertainty factors (the stability, band width of the monochromator for the spectral calibration, and the integrating sphere uncertainty for the radiometric calibration) are considered in the simulation of the calibration process. With the calibration parameters, several experiments were designed to validate the spatial, spectral and radiometric response of the sensor simulator, respectively. The experiment results indicate that the sensor simulator is valid. PMID:25615727

  13. Radiometric Normalization of Large Airborne Image Data Sets Acquired by Different Sensor Types

    NASA Astrophysics Data System (ADS)

    Gehrke, S.; Beshah, B. T.

    2016-06-01

    Generating seamless mosaics of aerial images is a particularly challenging task when the mosaic comprises a large number of im-ages, collected over longer periods of time and with different sensors under varying imaging conditions. Such large mosaics typically consist of very heterogeneous image data, both spatially (different terrain types and atmosphere) and temporally (unstable atmo-spheric properties and even changes in land coverage). We present a new radiometric normalization or, respectively, radiometric aerial triangulation approach that takes advantage of our knowledge about each sensor's properties. The current implementation supports medium and large format airborne imaging sensors of the Leica Geosystems family, namely the ADS line-scanner as well as DMC and RCD frame sensors. A hierarchical modelling - with parameters for the overall mosaic, the sensor type, different flight sessions, strips and individual images - allows for adaptation to each sensor's geometric and radiometric properties. Additional parameters at different hierarchy levels can compensate radiome-tric differences of various origins to compensate for shortcomings of the preceding radiometric sensor calibration as well as BRDF and atmospheric corrections. The final, relative normalization is based on radiometric tie points in overlapping images, absolute radiometric control points and image statistics. It is computed in a global least squares adjustment for the entire mosaic by altering each image's histogram using a location-dependent mathematical model. This model involves contrast and brightness corrections at radiometric fix points with bilinear interpolation for corrections in-between. The distribution of the radiometry fixes is adaptive to each image and generally increases with image size, hence enabling optimal local adaptation even for very long image strips as typi-cally captured by a line-scanner sensor. The normalization approach is implemented in HxMap software. It has been successfully applied to large sets of heterogeneous imagery, including the adjustment of original sensor images prior to quality control and further processing as well as radiometric adjustment for ortho-image mosaic generation.

  14. Extreme Ultraviolet Variability Experiment (EVE) Multiple EUV Grating Spectrographs (MEGS): Radiometric Calibrations and Results

    NASA Technical Reports Server (NTRS)

    Hock, R. A.; Woods, T. N.; Crotser, D.; Eparvier, F. G.; Woodraska, D. L.; Chamberlin, P. C.; Woods, E. C.

    2010-01-01

    The NASA Solar Dynamics Observatory (SDO), scheduled for launch in early 2010, incorporates a suite of instruments including the Extreme Ultraviolet Variability Experiment (EVE). EVE has multiple instruments including the Multiple Extreme ultraviolet Grating Spectrographs (MEGS) A, B, and P instruments, the Solar Aspect Monitor (SAM), and the Extreme ultraviolet SpectroPhotometer (ESP). The radiometric calibration of EVE, necessary to convert the instrument counts to physical units, was performed at the National Institute of Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF III) located in Gaithersburg, Maryland. This paper presents the results and derived accuracy of this radiometric calibration for the MEGS A, B, P, and SAM instruments, while the calibration of the ESP instrument is addressed by Didkovsky et al. . In addition, solar measurements that were taken on 14 April 2008, during the NASA 36.240 sounding-rocket flight, are shown for the prototype EVE instruments.

  15. Mechanically scanned deployable antenna study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The conceptual design of a Mechanically Scanned Deployable Antenna which is launched by the STS (Space Shuttle) to provide radiometric brightness temperature maps of the Earth and oceans at selected frequency bands in the frequency range of 1.4 GHz to 11 GHz is presented. Unlike previous scanning radiometric systems, multiple radiometers for each frequency are required in order to fill in the resolution cells across the swath created by the 15 meter diameter spin stabilized system. This multiple beam radiometric system is sometimes designated as a ""whiskbroom'' system in that it combines the techniques of the scanning and ""pushbroom'' type systems. The definition of the feed system including possible feed elements and location, determination of the fundamental reflector feed offset geometry including offset angles and f/D ratio, preliminary estimates of the beam efficiency of the feed reflector system, a summary of reflector mesh losses at the proposed radiometric frequency bands, an overall conceptual configuration design and preliminary structural and thermal analyses are included.

  16. Classification of high-resolution multi-swath hyperspectral data using Landsat 8 surface reflectance data as a calibration target and a novel histogram based unsupervised classification technique to determine natural classes from biophysically relevant fit parameters

    NASA Astrophysics Data System (ADS)

    McCann, C.; Repasky, K. S.; Morin, M.; Lawrence, R. L.; Powell, S. L.

    2016-12-01

    Compact, cost-effective, flight-based hyperspectral imaging systems can provide scientifically relevant data over large areas for a variety of applications such as ecosystem studies, precision agriculture, and land management. To fully realize this capability, unsupervised classification techniques based on radiometrically-calibrated data that cluster based on biophysical similarity rather than simply spectral similarity are needed. An automated technique to produce high-resolution, large-area, radiometrically-calibrated hyperspectral data sets based on the Landsat surface reflectance data product as a calibration target was developed and applied to three subsequent years of data covering approximately 1850 hectares. The radiometrically-calibrated data allows inter-comparison of the temporal series. Advantages of the radiometric calibration technique include the need for minimal site access, no ancillary instrumentation, and automated processing. Fitting the reflectance spectra of each pixel using a set of biophysically relevant basis functions reduces the data from 80 spectral bands to 9 parameters providing noise reduction and data compression. Examination of histograms of these parameters allows for determination of natural splitting into biophysical similar clusters. This method creates clusters that are similar in terms of biophysical parameters, not simply spectral proximity. Furthermore, this method can be applied to other data sets, such as urban scenes, by developing other physically meaningful basis functions. The ability to use hyperspectral imaging for a variety of important applications requires the development of data processing techniques that can be automated. The radiometric-calibration combined with the histogram based unsupervised classification technique presented here provide one potential avenue for managing big-data associated with hyperspectral imaging.

  17. The Landsat Data Continuity Mission Operational Land Imager (OLI) Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Dabney, Philip W.; Murphy-Morris, Jeanine E.; Knight, Edward J.; Kvaran, Geir; Barsi, Julia A.

    2010-01-01

    The Operational Land Imager (OLI) on the Landsat Data Continuity Mission (LDCM) has a comprehensive radiometric characterization and calibration program beginning with the instrument design, and extending through integration and test, on-orbit operations and science data processing. Key instrument design features for radiometric calibration include dual solar diffusers and multi-lamped on-board calibrators. The radiometric calibration transfer procedure from NIST standards has multiple checks on the radiometric scale throughout the process and uses a heliostat as part of the transfer to orbit of the radiometric calibration. On-orbit lunar imaging will be used to track the instruments stability and side slither maneuvers will be used in addition to the solar diffuser to flat field across the thousands of detectors per band. A Calibration Validation Team is continuously involved in the process from design to operations. This team uses an Image Assessment System (IAS), part of the ground system to characterize and calibrate the on-orbit data.

  18. HiRadProp: High-Frequency Modeling and Prediction of Tropospheric Radiopropagation Parameters from Ground-Based-Multi-Channel Radiometric Measurements between Ka and W Band

    DTIC Science & Technology

    2016-05-11

    new physically -based prediction models for all-weather path attenuation estimation at Ka, V and W band from multi- channel microwave radiometric data...of new physically -based prediction models for all-weather path attenuation estimation at Ka, V and W band from multi- channel microwave radiometric...the medium behavior at these frequency bands from both a physical and a statistical point of view (e.g., [5]-[7]). However, these campaigns are

  19. Economic Outlook for Radiometric Selection of Ores; POSSIBILITES OUVERTES EN MATIERE ECONOMIQUE PAR SELECTION RADIOMETRIQUE DES MINERAIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Formery, P.; Ziegler, V.

    1959-10-31

    The radiometric grading of uranium ores is analyzed. The cut-off is defined, and its parameters are derived. Cut-off above ground and underground are statistically interpreted. An evaluation is made of the combined effects of both kinds of cut-off made in succession. The corrections to be made to the radiometric apparatus used are determined. Application of the theory of cutoff to the evaluation of reserves is discussed. (J.S.R.)

  20. Radiometric packaging of uncooled bolometric infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    García-Blanco, Sonia; Pope, Timothy; Côté, Patrice; Leclerc, Mélanie; Ngo Phong, Linh; Châteauneuf, François

    2017-11-01

    INO has a wide experience in the design and fabrication of different kinds of microbolometer focal plane arrays (FPAs). In particular, a 512x3 pixel microbolometer FPA has been selected as the sensor for the New Infrared Sensor Technology (NIRST) instrument, one of the payloads of the SACD/Aquarius mission. In order to make the absolute temperature measurements necessary for many infrared Earth observation applications, the microbolometer FPA must be integrated into a package offering a very stable thermal environment. The radiometric packaging technology developed at INO presents an innovative approach since it was conceived to be modular and adaptable for the packaging of different microbolometer FPAs and for different sets of assembly requirements without need for requalification of the assembly process. The development of the radiometric packaging technology has broadened the position of INO as a supplier of radiometric detector modules integrating FPAs of microbolometers inside a radiometric package capable of achieving the requirements of different space missions. This paper gives an overview of the design of INO's radiometric package. Key performance parameters are also discussed and the test campaign conducted with the radiometric package is presented.

  1. Machine processing of ERTS and ground truth data

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator); Peacock, K.

    1973-01-01

    The author has identified the following significant results. Results achieved by ERTS-Atmospheric Experiment PR303, whose objective is to establish a radiometric calibration technique, are reported. This technique, which determines and removes solar and atmospheric parameters that degrade the radiometric fidelity of ERTS-1 data, transforms the ERTS-1 sensor radiance measurements to absolute target reflectance signatures. A radiant power measuring instrument and its use in determining atmospheric parameters needed for ground truth are discussed. The procedures used and results achieved in machine processing ERTS-1 computer -compatible tapes and atmospheric parameters to obtain target reflectance are reviewed.

  2. Mesoscale, Radiometrically Referenced, Multi-Temporal Hyperspectral Data for Co2 Leak Detection by Locating Spatial Variation of Biophysically Relevant Parameters

    NASA Astrophysics Data System (ADS)

    McCann, Cooper Patrick

    Low-cost flight-based hyperspectral imaging systems have the potential to provide valuable information for ecosystem and environmental studies as well as aide in land management and land health monitoring. This thesis describes (1) a bootstrap method of producing mesoscale, radiometrically-referenced hyperspectral data using the Landsat surface reflectance (LaSRC) data product as a reference target, (2) biophysically relevant basis functions to model the reflectance spectra, (3) an unsupervised classification technique based on natural histogram splitting of these biophysically relevant parameters, and (4) local and multi-temporal anomaly detection. The bootstrap method extends standard processing techniques to remove uneven illumination conditions between flight passes, allowing the creation of radiometrically self-consistent data. Through selective spectral and spatial resampling, LaSRC data is used as a radiometric reference target. Advantages of the bootstrap method include the need for minimal site access, no ancillary instrumentation, and automated data processing. Data from a flight on 06/02/2016 is compared with concurrently collected ground based reflectance spectra as a means of validation achieving an average error of 2.74%. Fitting reflectance spectra using basis functions, based on biophysically relevant spectral features, allows both noise and data reductions while shifting information from spectral bands to biophysical features. Histogram splitting is used to determine a clustering based on natural splittings of these fit parameters. The Indian Pines reference data enabled comparisons of the efficacy of this technique to established techniques. The splitting technique is shown to be an improvement over the ISODATA clustering technique with an overall accuracy of 34.3/19.0% before merging and 40.9/39.2% after merging. This improvement is also seen as an improvement of kappa before/after merging of 24.8/30.5 for the histogram splitting technique compared to 15.8/28.5 for ISODATA. Three hyperspectral flights over the Kevin Dome area, covering 1843 ha, acquired 06/21/2014, 06/24/2015 and 06/26/2016 are examined with different methods of anomaly detection. Detection of anomalies within a single data set is examined to determine, on a local scale, areas that are significantly different from the surrounding area. Additionally, the detection and identification of persistent anomalies and non-persistent anomalies was investigated across multiple data sets.

  3. Intra-annual NDVI validation of the Landsat 5 TM radiometric calibration

    USGS Publications Warehouse

    Chander, G.; Groeneveld, D.P.

    2009-01-01

    Multispectral data from the Landsat 5 (L5) Thematic Mapper (TM) sensor provide the backbone of the extensive archive of moderate‐resolution Earth imagery. Even after more than 24 years of service, the L5 TM is still operational. Given the longevity of the satellite, the detectors have aged and the sensor's radiometric characteristics have changed since launch. The calibration procedures and parameters in the National Land Archive Production System (NLAPS) have also changed with time. Revised radiometric calibrations in 2003 and 2007 have improved the radiometric accuracy of recently processed data. This letter uses the Normalized Difference Vegetation Index (NDVI) as a metric to evaluate the radiometric calibration. The calibration change has improved absolute calibration accuracy, consistency over time, and consistency with Landsat 7 (L7) Enhanced Thematic radiometry and will provide the basis for continued long‐term studies of the Earth's land surfaces.

  4. Discrimination of fluoride and phosphate contamination in central Florida for analyses of environmental effects

    NASA Technical Reports Server (NTRS)

    Coker, A. E.; Marshall, R.; Thomson, F.

    1972-01-01

    A study was made of the spatial registration of fluoride and phosphate pollution parameters in central Florida by utilizing remote sensing techniques. Multispectral remote sensing data were collected over the area and processed to produce multispectral recognition maps. These processed data were used to map land areas and waters containing concentrations of fluoride and phosphate. Maps showing distribution of affected and unaffected vegetation were produced. In addition, the multispectral data were processed by single band radiometric slicing to produce radiometric maps used to delineate areas of high ultraviolet radiance, which indicates high fluoride concentrations. The multispectral parameter maps and radiometric maps in combination showed distinctive patterns, which are correlated with areas known to be affected by fluoride and phosphate contamination. These remote sensing techniques have the potential for regional use to assess the environmental impact of fluoride and phosphate wastes in central Florida.

  5. Verification of the radiometric map of the Czech Republic.

    PubMed

    Matolín, Milan

    2017-01-01

    The radiometric map of the Czech Republic is based on uniform regional airborne radiometric total count measurements (1957-1959) which covered 100% of the country. The airborne radiometric instrument was calibrated to a 226 Ra point source. The calibration facility for field gamma-ray spectrometers, established in the Czech Republic in 1975, significantly contributed to the subsequent radiometric data standardization. In the 1990's, the original analogue airborne radiometric data were digitized and using the method of back-calibration (IAEA, 2003) converted to dose rate. The map of terrestrial gamma radiation expressed in dose rate (nGy/h) was published on the scale 1:500,000 in 1995. Terrestrial radiation in the Czech Republic, formed by magmatic, sedimentary and metamorphic rocks of Proterozoic to Quaternary age, ranges mostly from 6 to 245 nGy/h, with a mean of 65.6 ± 19.0 nGy/h. The elevated terrestrial radiation in the Czech Republic, in comparison to the global dose rate average of 54 nGy/h, reflects an enhanced content of natural radioactive elements in the rocks. The 1995 published radiometric map of the Czech Republic was successively studied and verified by additional ground gamma-ray spectrometric measurements and by comparison to radiometric maps of Germany, Poland and Slovakia in border zones. A ground dose rate intercomparison measurement under participation of foreign and domestic professional institutions revealed mutual dose rate deviations about 20 nGy/h and more due to differing technical parameters of applied radiometric instruments. Studies and verification of the radiometric map of the Czech Republic illustrate the magnitude of current deviations in dose rate data. This gained experience can assist in harmonization of dose rate data on the European scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The EarthCARE multi spectral imager thermal infrared optical unit

    NASA Astrophysics Data System (ADS)

    Chang, M. P. J. L.; Woods, D.; Baister, Guy; Lobb, Dan; Wood, Trevor

    2017-11-01

    The EarthCARE satellite mission objective is the observation of clouds and aerosols from low Earth orbit. The key spatial context providing instrument within the payload suite of 4 instruments is the Multi-Spectral Imager (MSI), previously described in [1]. The MSI is intended to provide information on the horizontal variability of the atmospheric conditions and to identify e.g. cloud type, textures, and temperature. It will form Earth images at 500m ground sample distance (GSD) over a swath width of 150km; it will image Earth in 7 spectral bands: one visible, one near-IR, two short-wave IR and three thermal IR. The instrument will be comprised of two key parts: • a visible-NIR-SWIR (VNS) optical unit radiometrically calibrated using a sun illuminated quasivolume diffuser and shutter system • a thermal IR (TIR) optical unit radiometrically calibrated using cold space and an internal black-body. This paper, being the first of a sequence of two, will provide an overview of the MSI and enter into more detail the critical performance parameters and detailed design the MSI TIR optical design. The TIR concept is to provide pushbroom imaging of its 3 bands through spectral separation from a common aperture. The result is an efficient, well controlled optical design without the need for multiple focal plane arrays. The designed focal plane houses an area array detector and will meet a challenging set of requirements, including radiometric resolution, accuracy, distortion and MTF.

  7. Airborne gamma-ray spectrometer and magnetometer survey: Weed quadrangle, California. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-05-01

    Volume II contains the flight path, radiometric multi-parameter stacked profiles, magnetic and ancillary parameter stacked profiles, histograms, and anomaly maps for the Weed Quadrangle in California.

  8. Lidar-Radiometer Inversion Code (LIRIC) for the Retrieval of Vertical Aerosol Properties from Combined Lidar Radiometer Data: Development and Distribution in EARLINET

    NASA Technical Reports Server (NTRS)

    Chaikovsky, A.; Dubovik, O.; Holben, Brent N.; Bril, A.; Goloub, P.; Tanre, D.; Pappalardo, G.; Wandinger, U.; Chaikovskaya, L.; Denisov, S.; hide

    2015-01-01

    This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code)algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles. As the lidar radiometric input data we use measurements from European Aerosol Re-search Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC data processing provides sequential inversion of the combined lidar and radiometric data by the estimations of column-integrated aerosol parameters from radiometric measurements followed by the retrieval of height-dependent concentrations of fine and coarse aerosols from lidar signals using integrated column characteristics of aerosol layer as a priori constraints. The use of polarized lidar observations allows us to discriminate between spherical and non-spherical particles of the coarse aerosol mode. The LIRIC software package was implemented and tested at a number of EARLINET stations. Inter-comparison of the LIRIC-based aerosol retrievals was performed for the observations by seven EARLNET lidars in Leipzig, Germany on 25 May 2009. We found close agreement between the aerosol parameters derived from different lidars that supports high robustness of the LIRIC algorithm. The sensitivity of the retrieval results to the possible reduction of the available observation data is also discussed.

  9. Producing Science-Ready Radar Datasets for the Retrieval of Forest Structure Parameters from Backscatter: Correcting for Terrain Topography and Changes in Vegetation Reflectivity

    NASA Technical Reports Server (NTRS)

    Simard, M.; Riel, Bryan; Hensley, S.; Lavalle, Marco

    2011-01-01

    Radar backscatter data contain both geometric and radiometric distortions due to underlying topography and the radar viewing geometry. Our objective is to develop a radiometric correction algorithm specific to the UAVSAR system configuration that would improve retrieval of forest structure parameters. UAVSAR is an airborne Lband radar capable of repeat?pass interferometry producing images with a spatial resolution of 5m. It is characterized by an electronically steerable antenna to compensate for aircraft attitude. Thus, the computation of viewing angles (i.e. look, incidence and projection) must include aircraft attitude angles (i.e. yaw, pitch and roll) in addition to the antenna steering angle. In this presentation, we address two components of radiometric correction: area projection and vegetation reflectivity. The first correction is applied by normalization of the radar backscatter by the local ground area illuminated by the radar beam. The second is a correction due to changes in vegetation reflectivity with viewing geometry.

  10. Radiometrie recalibration procedure for landsat-5 thematic mapper data

    USGS Publications Warehouse

    Chander, G.; Micijevic, E.; Hayes, R.W.; Barsi, J.A.

    2008-01-01

    The Landsat-5 (L5) satellite was launched on March 01, 1984, with a design life of three years. Incredibly, the L5 Thematic Mapper (TM) has collected data for 23 years. Over this time, the detectors have aged, and its radiometric characteristics have changed since launch. The calibration procedures and parameters have also changed with time. Revised radiometric calibrations have improved the radiometric accuracy of recently processed data; however, users with data that were processed prior to the calibration update do not benefit from the revisions. A procedure has been developed to give users the ability to recalibrate their existing Level 1 (L1) products without having to purchase reprocessed data from the U.S. Geological Survey (USGS). The accuracy of the recalibration is dependent on the knowledge of the prior calibration applied to the data. The ""Work Order" file, included with standard National Land Archive Production System (NLAFS) data products, gives parameters that define the applied calibration. These are the Internal Calibrator (IC) calibration parameters or the default prelaunch calibration, if there were problems with the IC calibration. This paper details the recalibration procedure for data processed using IC, in which users have the Work Order file. ?? 2001 IEEE.

  11. Retrieval of effective cloud field parameters from radiometric data

    NASA Astrophysics Data System (ADS)

    Paulescu, Marius; Badescu, Viorel; Brabec, Marek

    2017-06-01

    Clouds play a key role in establishing the Earth's climate. Real cloud fields are very different and very complex in both morphological and microphysical senses. Consequently, the numerical description of the cloud field is a critical task for accurate climate modeling. This study explores the feasibility of retrieving the effective cloud field parameters (namely the cloud aspect ratio and cloud factor) from systematic radiometric measurements at high frequency (measurement is taken every 15 s). Two different procedures are proposed, evaluated, and discussed with respect to both physical and numerical restrictions. None of the procedures is classified as best; therefore, the specific advantages and weaknesses are discussed. It is shown that the relationship between the cloud shade and point cloudiness computed using the estimated cloud field parameters recovers the typical relationship derived from measurements.

  12. The OLI Radiometric Scale Realization Round Robin Measurement Campaign

    NASA Technical Reports Server (NTRS)

    Cutlip, Hansford; Cole,Jerold; Johnson, B. Carol; Maxwell, Stephen; Markham, Brian; Ong, Lawrence; Hom, Milton; Biggar, Stuart

    2011-01-01

    A round robin radiometric scale realization was performed at the Ball Aerospace Radiometric Calibration Laboratory in January/February 2011 in support of the Operational Land Imager (OLI) Program. Participants included Ball Aerospace, NIST, NASA Goddard Space Flight Center, and the University of Arizona. The eight day campaign included multiple observations of three integrating sphere sources by nine radiometers. The objective of the campaign was to validate the radiance calibration uncertainty ascribed to the integrating sphere used to calibrate the OLI instrument. The instrument level calibration source uncertainty was validated by quatnifying: (1) the long term stability of the NIST calibrated radiance artifact, (2) the responsivity scale of the Ball Aerospace transfer radiometer and (3) the operational characteristics of the large integrating sphere.

  13. The measurement and evaluation of bidirectional reflectance characteristics of Dunhuang radiometric calibration test site

    NASA Astrophysics Data System (ADS)

    Zhao, Chun-yan; Li, Xin; Wei, Wei; Zheng, Xiao-bing

    2016-10-01

    With the progress of quantitative remote sensing, the acquisition of surface BRDF becomes more and more important. In order to improve the accuracy of the surface BRDF measurements, a VNIR-SWIR Bidirectional Reflectance Automatic Measurement System, which was developed by Hefei Institutes of Physical Science (HIPS), is introduced that allows in situ measurements of hyperspectral bidirectional reflectance data. Hyperspectral bidirectional reflectance distribution function data sets taken with the BRDF automatic measurement system nominally cover the spectral range between 390 and 2390 nm in 971 bands. In July 2007, September 2008, June 2011, we acquired a series of the BRDF data covered Dunhuang radiometric calibration test site in terms of the BRDF measurement system. We have not obtained such comprehensive and accurate data as they are, since 1990s when the site was built up. These data are applied to calibration for FY-2 and other satellites sensors. Field BRDF data of a Dunhuang site surface reveal a strong spectral variability. An anisotropy factor (ANIF), defined as the ratio between the directional reflectance and nadir reflectance over the hemisphere, is introduced as a surrogate measurement for the extent of spectral BRDF effects. The ANIF data show a very high correlation with the solar zenith angle due to multiple scattering effects over a desert site. Since surface geometry, multiple scattering, and BRDF effects are related, these findings may help to derive BRDF model parameters from the in-situ BRDF measurement remotely sensed hyperspectral data sets.

  14. Cloud and Radiation Mission with Active and Passive Sensing from the Space Station

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.

    1998-01-01

    A cloud and aerosol radiative forcing and physical process study involving active laser and radar profiling with a combination of passive radiometric sounders and imagers would use the space station as an observation platform. The objectives are to observe the full three dimensional cloud and aerosol structure and the associated physical parameters leading to a complete measurement of radiation forcing processes. The instruments would include specialized radar and lidar for cloud and aerosol profiling, visible, infrared and microwave imaging radiometers with comprehensive channels for cloud and aerosol observation and specialized sounders. The low altitude,. available power and servicing capability of the space station are significant advantages for the active sensors and multiple passive instruments.

  15. A Broadband Microwave Radiometer Technique at X-band for Rain and Drop Size Distribution Estimation

    NASA Technical Reports Server (NTRS)

    Meneghini, R.

    2005-01-01

    Radiometric brightess temperatures below about 12 GHz provide accurate estimates of path attenuation through precipitation and cloud water. Multiple brightness temperature measurements at X-band frequencies can be used to estimate rainfall rate and parameters of the drop size distribution once correction for cloud water attenuation is made. Employing a stratiform storm model, calculations of the brightness temperatures at 9.5, 10 and 12 GHz are used to simulate estimates of path-averaged median mass diameter, number concentration and rainfall rate. The results indicate that reasonably accurate estimates of rainfall rate and information on the drop size distribution can be derived over ocean under low to moderate wind speed conditions.

  16. Vicarious absolute radiometric calibration of GF-2 PMS2 sensor using permanent artificial targets in China

    NASA Astrophysics Data System (ADS)

    Liu, Yaokai; Li, Chuanrong; Ma, Lingling; Wang, Ning; Qian, Yonggang; Tang, Lingli

    2016-10-01

    GF-2, launched on August 19 2014, is one of the high-resolution land resource observing satellite of the China GF series satellites plan. The radiometric performance evaluation of the onboard optical pan and multispectral (PMS2) sensor of GF-2 satellite is very important for the further application of the data. And, the vicarious absolute radiometric calibration approach is one of the most useful way to monitor the radiometric performance of the onboard optical sensors. In this study, the traditional reflectance-based method is used to vicarious radiometrically calibrate the onboard PMS2 sensor of GF-2 satellite using three black, gray and white reflected permanent artificial targets located in the AOE Baotou site in China. Vicarious field calibration campaign were carried out in the AOE-Baotou calibration site on 22 April 2016. And, the absolute radiometric calibration coefficients were determined with in situ measured atmospheric parameters and surface reflectance of the permanent artificial calibration targets. The predicted TOA radiance of a selected desert area with our determined calibrated coefficients were compared with the official distributed calibration coefficients. Comparison results show a good consistent and the mean relative difference of the multispectral channels is less than 5%. Uncertainty analysis was also carried out and a total uncertainty with 3.87% is determined of the TOA radiance.

  17. Optical Imaging and Radiometric Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Ha, Kong Q.; Fitzmaurice, Michael W.; Moiser, Gary E.; Howard, Joseph M.; Le, Chi M.

    2010-01-01

    OPTOOL software is a general-purpose optical systems analysis tool that was developed to offer a solution to problems associated with computational programs written for the James Webb Space Telescope optical system. It integrates existing routines into coherent processes, and provides a structure with reusable capabilities that allow additional processes to be quickly developed and integrated. It has an extensive graphical user interface, which makes the tool more intuitive and friendly. OPTOOL is implemented using MATLAB with a Fourier optics-based approach for point spread function (PSF) calculations. It features parametric and Monte Carlo simulation capabilities, and uses a direct integration calculation to permit high spatial sampling of the PSF. Exit pupil optical path difference (OPD) maps can be generated using combinations of Zernike polynomials or shaped power spectral densities. The graphical user interface allows rapid creation of arbitrary pupil geometries, and entry of all other modeling parameters to support basic imaging and radiometric analyses. OPTOOL provides the capability to generate wavefront-error (WFE) maps for arbitrary grid sizes. These maps are 2D arrays containing digital sampled versions of functions ranging from Zernike polynomials to combination of sinusoidal wave functions in 2D, to functions generated from a spatial frequency power spectral distribution (PSD). It also can generate optical transfer functions (OTFs), which are incorporated into the PSF calculation. The user can specify radiometrics for the target and sky background, and key performance parameters for the instrument s focal plane array (FPA). This radiometric and detector model setup is fairly extensive, and includes parameters such as zodiacal background, thermal emission noise, read noise, and dark current. The setup also includes target spectral energy distribution as a function of wavelength for polychromatic sources, detector pixel size, and the FPA s charge diffusion modulation transfer function (MTF).

  18. Landsat-7 Enhanced Thematic Mapper plus radiometric calibration

    USGS Publications Warehouse

    Markham, B.L.; Boncyk, Wayne C.; Helder, D.L.; Barker, J.L.

    1997-01-01

    Landsat-7 is currently being built and tested for launch in 1998. The Enhanced Thematic Mapper Plus (ETM+) sensor for Landsat-7, a derivative of the highly successful Thematic Mapper (TM) sensors on Landsats 4 and 5, and the Landsat-7 ground system are being built to provide enhanced radiometric calibration performance. In addition, regular vicarious calibration campaigns are being planned to provide additional information for calibration of the ETM+ instrument. The primary upgrades to the instrument include the addition of two solar calibrators: the full aperture solar calibrator, a deployable diffuser, and the partial aperture solar calibrator, a passive device that allows the ETM+ to image the sun. The ground processing incorporates for the first time an off-line facility, the Image Assessment System (IAS), to perform calibration, evaluation and analysis. Within the IAS, processing capabilities include radiometric artifact characterization and correction, radiometric calibration from the multiple calibrator sources, inclusion of results from vicarious calibration and statistical trending of calibration data to improve calibration estimation. The Landsat Product Generation System, the portion of the ground system responsible for producing calibrated products, will incorporate the radiometric artifact correction algorithms and will use the calibration information generated by the IAS. This calibration information will also be supplied to ground processing systems throughout the world.

  19. Calibration Software for Use with Jurassicprok

    NASA Technical Reports Server (NTRS)

    Chapin, Elaine; Hensley, Scott; Siqueira, Paul

    2004-01-01

    The Jurassicprok Interferometric Calibration Software (also called "Calibration Processor" or simply "CP") estimates the calibration parameters of an airborne synthetic-aperture-radar (SAR) system, the raw measurement data of which are processed by the Jurassicprok software described in the preceding article. Calibration parameters estimated by CP include time delays, baseline offsets, phase screens, and radiometric offsets. CP examines raw radar-pulse data, single-look complex image data, and digital elevation map data. For each type of data, CP compares the actual values with values expected on the basis of ground-truth data. CP then converts the differences between the actual and expected values into updates for the calibration parameters in an interferometric calibration file (ICF) and a radiometric calibration file (RCF) for the particular SAR system. The updated ICF and RCF are used as inputs to both Jurassicprok and to the companion Motion Measurement Processor software (described in the following article) for use in generating calibrated digital elevation maps.

  20. Importance of Calibration/Validation Traceability for Multi-Sensor Imaging Spectrometry Applications

    NASA Technical Reports Server (NTRS)

    Thome, K.

    2017-01-01

    Knowledge of calibration traceability is essential for ensuring the quality of data products relying on multiple sensors and especially true for imaging spectrometers. The current work discusses the expected impact that imaging spectrometers have in ensuring radiometric traceability for both multispectral and hyperspectral products. The Climate Absolute Radiance and Refractivity Observatory Pathfinder mission is used to show the role that high-accuracy imaging spectrometers can play in understanding test sites used for vicarious calibration of sensors. The associated Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer calibration demonstration system is used to illustrate recent advances in laboratory radiometric calibration approaches that will allow both the use of imaging spectrometers as calibration standards as well as to ensure the consistency of the multiple imaging spectrometers expected to be on orbit in the next decade.

  1. A Review of LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration.

    PubMed

    Kashani, Alireza G; Olsen, Michael J; Parrish, Christopher E; Wilson, Nicholas

    2015-11-06

    In addition to precise 3D coordinates, most light detection and ranging (LIDAR) systems also record "intensity", loosely defined as the strength of the backscattered echo for each measured point. To date, LIDAR intensity data have proven beneficial in a wide range of applications because they are related to surface parameters, such as reflectance. While numerous procedures have been introduced in the scientific literature, and even commercial software, to enhance the utility of intensity data through a variety of "normalization", "correction", or "calibration" techniques, the current situation is complicated by a lack of standardization, as well as confusing, inconsistent use of terminology. In this paper, we first provide an overview of basic principles of LIDAR intensity measurements and applications utilizing intensity information from terrestrial, airborne topographic, and airborne bathymetric LIDAR. Next, we review effective parameters on intensity measurements, basic theory, and current intensity processing methods. We define terminology adopted from the most commonly-used conventions based on a review of current literature. Finally, we identify topics in need of further research. Ultimately, the presented information helps lay the foundation for future standards and specifications for LIDAR radiometric calibration.

  2. A Review of LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration

    PubMed Central

    Kashani, Alireza G.; Olsen, Michael J.; Parrish, Christopher E.; Wilson, Nicholas

    2015-01-01

    In addition to precise 3D coordinates, most light detection and ranging (LIDAR) systems also record “intensity”, loosely defined as the strength of the backscattered echo for each measured point. To date, LIDAR intensity data have proven beneficial in a wide range of applications because they are related to surface parameters, such as reflectance. While numerous procedures have been introduced in the scientific literature, and even commercial software, to enhance the utility of intensity data through a variety of “normalization”, “correction”, or “calibration” techniques, the current situation is complicated by a lack of standardization, as well as confusing, inconsistent use of terminology. In this paper, we first provide an overview of basic principles of LIDAR intensity measurements and applications utilizing intensity information from terrestrial, airborne topographic, and airborne bathymetric LIDAR. Next, we review effective parameters on intensity measurements, basic theory, and current intensity processing methods. We define terminology adopted from the most commonly-used conventions based on a review of current literature. Finally, we identify topics in need of further research. Ultimately, the presented information helps lay the foundation for future standards and specifications for LIDAR radiometric calibration. PMID:26561813

  3. Airborne interferometer for atmospheric emission and solar absorption.

    PubMed

    Keith, D W; Dykema, J A; Hu, H; Lapson, L; Anderson, J G

    2001-10-20

    The interferometer for emission and solar absorption (INTESA) is an infrared spectrometer designed to study radiative transfer in the troposphere and lower stratosphere from a NASA ER-2 aircraft. The Fourier-transform spectrometer (FTS) operates from 0.7 to 50 mum with a resolution of 0.7 cm(-1). The FTS observes atmospheric thermal emission from multiple angles above and below the aircraft. A heliostat permits measurement of solar absorption spectra. INTESA's calibration system includes three blackbodies to permit in-flight assessment of radiometric error. Results suggest that the in-flight radiometric accuracy is ~0.5 K in the mid-infrared.

  4. Display Parameters and Requirements

    NASA Astrophysics Data System (ADS)

    Bahadur, Birendra

    The following sections are included: * INTRODUCTION * HUMAN FACTORS * Anthropometry * Sensory * Cognitive * Discussions * THE HUMAN VISUAL SYSTEM - CAPABILITIES AND LIMITATIONS * Cornea * Pupil and Iris * Lens * Vitreous Humor * Retina * RODS - NIGHT VISION * CONES - DAY VISION * RODS AND CONES - TWILIGHT VISION * VISUAL PIGMENTS * MACULA * BLOOD * CHOROID COAT * Visual Signal Processing * Pathways to the Brain * Spatial Vision * Temporal Vision * Colour Vision * Colour Blindness * DICHROMATISM * Protanopia * Deuteranopia * Tritanopia * ANOMALOUS TRICHROMATISM * Protanomaly * Deuteranomaly * Tritanomaly * CONE MONOCHROMATISM * ROD MONOCHROMATISM * Using Colour Effectively * COLOUR MIXTURES AND THE CHROMATICITY DIAGRAM * Colour Matching Functions and Chromaticity Co-ordinates * CIE 1931 Colour Space * CIE PRIMARIES * CIE COLOUR MATCHING FUNCTIONS AND CHROMATICITY CO-ORDINATES * METHODS FOR DETERMINING TRISTIMULUS VALUES AND COLOUR CO-ORDINATES * Spectral Power Distribution Method * Filter Method * CIE 1931 CHROMATICITY DIAGRAM * ADDITIVE COLOUR MIXTURE * CIE 1976 Chromaticity Diagram * CIE Uniform Colour Spaces and Colour Difference Formulae * CIELUV OR L*u*v* * CIELAB OR L*a*b* * CIE COLOUR DIFFERENCE FORMULAE * Colour Temperature and CIE Standard Illuminants and source * RADIOMETRIC AND PHOTOMETRIC QUANTITIES * Photopic (Vλ and Scotopic (Vλ') Luminous Efficiency Function * Photometric and Radiometric Flux * Luminous and Radiant Intensities * Incidence: Illuminance and Irradiance * Exitance or Emittance (M) * Luminance and Radiance * ERGONOMIC REQUIREMENTS OF DISPLAYS * ELECTRO-OPTICAL PARAMETERS AND REQUIREMENTS * Contrast and Contrast Ratio * Luminance and Brightness * Colour Contrast and Chromaticity * Glare * Other Aspects of Legibility * SHAPE AND SIZE OF CHARACTERS * DEFECTS AND BLEMISHES * FLICKER AND DISTORTION * ANGLE OF VIEW * Switching Speed * Threshold and Threshold Characteristic * Measurement Techniques For Electro-optical Parameters * RADIOMETRIC MEASUREMENTS * Broadband Radiometry or Filtered Photodetector Radiometric Method * Spectroradiometric Method * PHOTOMETRIC MEASUREMENTS * COLOUR MEASUREMENTS * LUMINANCE, CONTRAST RATIO, THRESHOLD CHARACTERISTIC AND POLAR PLOT * SWITCHING SPEED * ELECTRICAL AND LIFE PARAMETERS AND REQUIREMENTS * Operating Voltage, Current Drainage and Power Consumption * Operating Frequency * Life Expectancy * LCD FAILURE MODES * Liquid Crystal Materials * Substrate Glass * Electrode Patterns * Alignment and Aligning Material * Peripheral and End Plug Seal * Spacers * Crossover Material * Polarizers and Reflectors * Connectors * Heater * Colour Filters * Backlighting System * Explanation For Some of the Observed Defects * BLOOMING PIXELS * POLARIZER RELATED DEFECTS * DIFFERENTIAL THERMAL EXPANSION RELATED DEFECTS * ELECTROCHEMICAL AND ELECTROHYDRODYNAMIC RELATED DEFECTS * REVERSE TWIST AND REVERSE TILT * MEMORY OR REMINISCENT CONTRAST * LCD RELIABILRY AND ACCELERATED LIFE TESTING * ACKNOWLEDGEMENTS * REFERENCES * APPENDIX

  5. Data inversion algorithm development for the hologen occultation experiment

    NASA Technical Reports Server (NTRS)

    Gordley, Larry L.; Mlynczak, Martin G.

    1986-01-01

    The successful retrieval of atmospheric parameters from radiometric measurement requires not only the ability to do ideal radiometric calculations, but also a detailed understanding of instrument characteristics. Therefore a considerable amount of time was spent in instrument characterization in the form of test data analysis and mathematical formulation. Analyses of solar-to-reference interference (electrical cross-talk), detector nonuniformity, instrument balance error, electronic filter time-constants and noise character were conducted. A second area of effort was the development of techniques for the ideal radiometric calculations required for the Halogen Occultation Experiment (HALOE) data reduction. The computer code for these calculations must be extremely complex and fast. A scheme for meeting these requirements was defined and the algorithms needed form implementation are currently under development. A third area of work included consulting on the implementation of the Emissivity Growth Approximation (EGA) method of absorption calculation into a HALOE broadband radiometer channel retrieval algorithm.

  6. Transponder-aided joint calibration and synchronization compensation for distributed radar systems.

    PubMed

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results.

  7. LANDSAT-4 band 6 data evaluation

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The radiometric integrity of the LANDSAT-D thematic mapper (TM) thermal infrared channel (band 6) data was evaluated to develop improved radiometric preprocessing calibration techniques for removal of atmospheric effects. Primary data analysis was spent in evaluating the line to line and detector to detector variation in the thermal infrared data. The data studied was in the core area of Lake Ontario where very stable temperatures were expected. The detectors and the scan direction were taken as separate parameters and an analysis of variance was conducted. The data indicate that significant variability exists both between detectors and between scan directions.

  8. Radiant Power Measuring Instrument (RPMI)

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator)

    1973-01-01

    There are no author-identified significant results in this report. The radiant power measuring instrument is a rugged, hand-carried instrument which provides an ERTS investigator with a capability of obtaining radiometric measurements needed to determine solar and atmospheric parameters that affect the ERTS radiance measurements. With these parameters, ERTS data can be transformed into absolute target reflectance signatures, making accurate unambiguous interpretations possible.

  9. Radiometric characterization of Landsat Collection 1 products

    USGS Publications Warehouse

    Micijevic, Esad; Haque, Md. Obaidul; Mishra, Nischal

    2017-01-01

    Landsat data in the U.S. Geological Survey (USGS) archive are being reprocessed to generate a tiered collection of consistently geolocated and radiometrically calibrated products that are suitable for time series analyses. With the implementation of the collection management, no major updates will be made to calibration of the Landsat sensors within a collection. Only calibration parameters needed to maintain the established calibration trends without an effect on derived environmental records will be regularly updated, while all other changes will be deferred to a new collection. This first collection, Collection 1, incorporates various radiometric calibration updates to all Landsat sensors including absolute and relative gains for Landsat 8 Operational Land Imager (OLI), stray light correction for Landsat 8 Thermal Infrared Sensor (TIRS), absolute gains for Landsat 4 and 5 Thematic Mappers (TM), recalibration of Landsat 1-5 Multispectral Scanners (MSS) to ensure radiometric consistency among different formats of archived MSS data, and a transfer of Landsat 8 OLI reflectance based calibration to all previous Landsat sensors. While all OLI/TIRS, ETM+ and majority of TM data have already been reprocessed to Collection 1, a completion of MSS and remaining TM data reprocessing is expected by the end of this year. It is important to note that, although still available for download from the USGS web pages, the products generated using the Pre-Collection processing do not benefit from the latest radiometric calibration updates. In this paper, we are assessing radiometry of solar reflective bands in Landsat Collection 1 products through analysis of trends in on-board calibrator and pseudo invariant site (PICS) responses.

  10. Radiometric characterization of Landsat Collection 1 products

    NASA Astrophysics Data System (ADS)

    Micijevic, Esad; Haque, Md. Obaidul; Mishra, Nischal

    2017-09-01

    Landsat data in the U.S. Geological Survey (USGS) archive are being reprocessed to generate a tiered collection of consistently geolocated and radiometrically calibrated products that are suitable for time series analyses. With the implementation of the collection management, no major updates will be made to calibration of the Landsat sensors within a collection. Only calibration parameters needed to maintain the established calibration trends without an effect on derived environmental records will be regularly updated, while all other changes will be deferred to a new collection. This first collection, Collection 1, incorporates various radiometric calibration updates to all Landsat sensors including absolute and relative gains for Landsat 8 Operational Land Imager (OLI), stray light correction for Landsat 8 Thermal Infrared Sensor (TIRS), absolute gains for Landsat 4 and 5 Thematic Mappers (TM), recalibration of Landsat 1-5 Multispectral Scanners (MSS) to ensure radiometric consistency among different formats of archived MSS data, and a transfer of Landsat 8 OLI reflectance based calibration to all previous Landsat sensors. While all OLI/TIRS, ETM+ and majority of TM data have already been reprocessed to Collection 1, a completion of MSS and remaining TM data reprocessing is expected by the end of this year. It is important to note that, although still available for download from the USGS web pages, the products generated using the Pre-Collection processing do not benefit from the latest radiometric calibration updates. In this paper, we are assessing radiometry of solar reflective bands in Landsat Collection 1 products through analysis of trends in on-board calibrator and pseudo invariant site (PICS) responses.

  11. Feasibility study of a synthesis procedure for array feeds to improve radiation performance of large distorted reflector antennas

    NASA Technical Reports Server (NTRS)

    Stutzman, W. L.; Takamizawa, K.; Werntz, P.; Lapean, J.; Barts, R.

    1991-01-01

    The following subject areas are covered: General Reflector Antenna Systems Program version 7(GRASP7); Multiple Reflector Analysis Program for Cylindrical Antennas (MRAPCA); Tri-Reflector 2D Synthesis Code (TRTDS); a geometrical optics and a physical optics synthesis techniques; beam scanning reflector, the type 2 and 6 reflectors, spherical reflector, and multiple reflector imaging systems; and radiometric array design.

  12. Algorithm Science to Operations for the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Visible/Infrared Imager/Radiometer Suite (VIIRS)

    NASA Technical Reports Server (NTRS)

    Duda, James L.; Barth, Suzanna C

    2005-01-01

    The VIIRS sensor provides measurements for 22 Environmental Data Records (EDRs) addressing the atmosphere, ocean surface temperature, ocean color, land parameters, aerosols, imaging for clouds and ice, and more. That is, the VIIRS collects visible and infrared radiometric data of the Earth's atmosphere, ocean, and land surfaces. Data types include atmospheric, clouds, Earth radiation budget, land/water and sea surface temperature, ocean color, and low light imagery. This wide scope of measurements calls for the preparation of a multiplicity of Algorithm Theoretical Basis Documents (ATBDs), and, additionally, for intermediate products such as cloud mask, et al. Furthermore, the VIIRS interacts with three or more other sensors. This paper addresses selected and crucial elements of the process being used to convert and test an immense volume of a maturing and changing science code to the initial operational source code in preparation for launch of NPP. The integrity of the original science code is maintained and enhanced via baseline comparisons when re-hosted, in addition to multiple planned code performance reviews.

  13. IRIS - A concept for microwave sensing of soil moisture and ocean salinity

    NASA Technical Reports Server (NTRS)

    Moghaddam, M.; Njoku, E.

    1997-01-01

    A concept is described for passive microwave sensing of soil moisture and ocean salinity from space. The Inflatable Radiometric Imaging System (IRIS) makes use of a large-diameter, offset-fed, parabolic-torus antenna with multiple feeds, in a conical pushbroom configuration.

  14. In-flight radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Green, Robert O.; Alley, Ronald E.; Bruegge, Carol J.; Carrere, Veronique; Margolis, Jack S.; Vane, Gregg; Chrien, Thomas G.; Slater, Philip N.; Biggard, Stuart F.

    1988-01-01

    A reflectance-based method was used to provide an analysis of the in-flight radiometric performance of AVIRIS. Field spectral reflectance measurements of the surface and extinction measurements of the atmosphere using solar radiation were used as input to atmospheric radiative transfer calculations. Five separate codes were used in the analysis. Four include multiple scattering, and the computed radiances from these for flight conditions were in good agreement. Code-generated radiances were compared with AVIRIS-predicted radiances based on two laboratory calibrations (pre- and post-season of flight) for a uniform highly reflecting natural dry lake target. For one spectrometer (C), the pre- and post-season calibration factors were found to give identical results, and to be in agreement with the atmospheric models that include multiple scattering. This positive result validates the field and laboratory calibration technique. Results for the other spectrometers (A, B and D) were widely at variance with the models no matter which calibration factors were used. Potential causes of these discrepancies are discussed.

  15. CRISM Multispectral and Hyperspectral Mapping Data - A Global Data Set for Hydrated Mineral Mapping

    NASA Astrophysics Data System (ADS)

    Seelos, F. P.; Hash, C. D.; Murchie, S. L.; Lim, H.

    2017-12-01

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is a visible through short-wave infrared hyperspectral imaging spectrometer (VNIR S-detector: 364-1055 nm; IR L-detector: 1001-3936 nm; 6.55 nm sampling) that has been in operation on the Mars Reconnaissance Orbiter (MRO) since 2006. Over the course of the MRO mission, CRISM has acquired 290,000 individual mapping observation segments (mapping strips) with a variety of observing modes and data characteristics (VNIR/IR; 100/200 m/pxl; multi-/hyper-spectral band selection) over a wide range of observing conditions (atmospheric state, observation geometry, instrument state). CRISM mapping data coverage density varies primarily with latitude and secondarily due to seasonal and operational considerations. The aggregate global IR mapping data coverage currently stands at 85% ( 80% at the equator with 40% repeat sampling), which is sufficient spatial sampling density to support the assembly of empirically optimized radiometrically consistent mapping mosaic products. The CRISM project has defined a number of mapping mosaic data products (e.g. Multispectral Reduced Data Record (MRDR) map tiles) with varying degrees of observation-specific processing and correction applied prior to mosaic assembly. A commonality among the mosaic products is the presence of inter-observation radiometric discrepancies which are traceable to variable observation circumstances or associated atmospheric/photometric correction residuals. The empirical approach to radiometric reconciliation leverages inter-observation spatial overlaps and proximal relationships to construct a graph that encodes the mosaic structure and radiometric discrepancies. The graph theory abstraction allows the underling structure of the msaic to be evaluated and the corresponding optimization problem configured so it is well-posed. Linear and non-linear least squares optimization is then employed to derive a set of observation- and wavelength- specific model parameters for a series of transform functions that minimize the total radiometric discrepancy across the mosaic. This empirical approach to CRISM data radiometric reconciliation and the utility of the resulting mapping data mosaic products for hydrated mineral mapping will be presented.

  16. Inflight Radiometric Calibration of New Horizons' Multispectral Visible Imaging Camera (MVIC)

    NASA Technical Reports Server (NTRS)

    Howett, C. J. A.; Parker, A. H.; Olkin, C. B.; Reuter, D. C.; Ennico, K.; Grundy, W. M.; Graps, A. L.; Harrison, K. P.; Throop, H. B.; Buie, M. W.; hide

    2016-01-01

    We discuss two semi-independent calibration techniques used to determine the inflight radiometric calibration for the New Horizons Multi-spectral Visible Imaging Camera (MVIC). The first calibration technique compares the measured number of counts (DN) observed from a number of well calibrated stars to those predicted using the component-level calibration. The ratio of these values provides a multiplicative factor that allows a conversation between the preflight calibration to the more accurate inflight one, for each detector. The second calibration technique is a channel-wise relative radiometric calibration for MVIC's blue, near-infrared and methane color channels using Hubble and New Horizons observations of Charon and scaling from the red channel stellar calibration. Both calibration techniques produce very similar results (better than 7% agreement), providing strong validation for the techniques used. Since the stellar calibration described here can be performed without a color target in the field of view and covers all of MVIC's detectors, this calibration was used to provide the radiometric keyword values delivered by the New Horizons project to the Planetary Data System (PDS). These keyword values allow each observation to be converted from counts to physical units; a description of how these keyword values were generated is included. Finally, mitigation techniques adopted for the gain drift observed in the near-infrared detector and one of the panchromatic framing cameras are also discussed.

  17. High-precision radiometric tracking for planetary approach and encounter in the inner solar system

    NASA Technical Reports Server (NTRS)

    Christensen, C. S.; Thurman, S. W.; Davidson, J. M.; Finger, M. H.; Folkner, W. M.

    1989-01-01

    The benefits of improved radiometric tracking data have been studied for planetary approach within the inner Solar System using the Mars Rover Sample Return trajectory as a model. It was found that the benefit of improved data to approach and encounter navigation was highly dependent on the a priori uncertainties assumed for several non-estimated parameters, including those for frame-tie, Earth orientation, troposphere delay, and station locations. With these errors at their current levels, navigational performance was found to be insensitive to enhancements in data accuracy. However, when expected improvements in these errors are modeled, performance with current-accuracy data significantly improves, with substantial further improvements possible with enhancements in data accuracy.

  18. Intrinsic coincident full-Stokes polarimeter using stacked organic photovoltaics.

    PubMed

    Yang, Ruonan; Sen, Pratik; O'Connor, B T; Kudenov, M W

    2017-02-20

    An intrinsic coincident full-Stokes polarimeter is demonstrated by using strain-aligned polymer-based organic photovoltaics (OPVs) that can preferentially absorb certain polarized states of incident light. The photovoltaic-based polarimeter is capable of measuring four Stokes parameters by cascading four semitransparent OPVs in series along the same optical axis. This in-line polarimeter concept potentially ensures high temporal and spatial resolution with higher radiometric efficiency as compared to the existing polarimeter architecture. Two wave plates were incorporated into the system to modulate the S3 Stokes parameter so as to reduce the condition number of the measurement matrix and maximize the measured signal-to-noise ratio. Radiometric calibration was carried out to determine the measurement matrix. The polarimeter presented in this paper demonstrated an average RMS error of 0.84% for reconstructed Stokes vectors after normalized to S0. A theoretical analysis of the minimum condition number of the four-cell OPV design showed that for individually optimized OPV cells, a condition number of 2.4 is possible.

  19. From SED HI concept to Pleiades FM detection unit measurements

    NASA Astrophysics Data System (ADS)

    Renard, Christophe; Dantes, Didier; Neveu, Claude; Lamard, Jean-Luc; Oudinot, Matthieu; Materne, Alex

    2017-11-01

    The first flight model PLEIADES high resolution instrument under Thales Alenia Space development, on behalf of CNES, is currently in integration and test phases. Based on the SED HI detection unit concept, PLEIADES detection unit has been fully qualified before the integration at telescope level. The main radiometric performances have been measured on engineering and first flight models. This paper presents the results of performances obtained on the both models. After a recall of the SED HI concept, the design and performances of the main elements (charge coupled detectors, focal plane and video processing unit), detection unit radiometric performances are presented and compared to the instrument specifications for the panchromatic and multispectral bands. The performances treated are the following: - video signal characteristics, - dark signal level and dark signal non uniformity, - photo-response non uniformity, - non linearity and differential non linearity, - temporal and spatial noises regarding system definitions PLEIADES detection unit allows tuning of different functions: reference and sampling time positioning, anti-blooming level, gain value, TDI line number. These parameters are presented with their associated criteria of optimisation to achieve system radiometric performances and their sensitivities on radiometric performances. All the results of the measurements performed by Thales Alenia Space on the PLEIADES detection units demonstrate the high potential of the SED HI concept for Earth high resolution observation system allowing optimised performances at instrument and satellite levels.

  20. System implications of large radiometric array antennas

    NASA Technical Reports Server (NTRS)

    Levis, C. A.; Lin, H. C.

    1976-01-01

    Current radiometric earth and atmospheric sensing systems in the centimeter wavelength range generally employ a directive antenna connected through a single terminal pair to a Dicke receiver. It is shown that this approach does not lend itself to systems with greatly increased spatial resolution. Signal to noise considerations relating to antenna efficiency force the introduction of active elements at the subarray level; thus, if Dicke switching is to be used, it must be distributed throughout the system. Some possible approaches are suggested. The introduction of active elements at the subarray level is found to ease the design constraints on time delay elements, necessary for bandwidth, and on multiple beam generation, required in order to achieve sufficient integration time with high resolution.

  1. Simulation of multi-element multispectral UV radiation source for optical-electronic system of minerals luminescence analysis

    NASA Astrophysics Data System (ADS)

    Peretyagin, Vladimir S.; Korolev, Timofey K.; Chertov, Aleksandr N.

    2017-02-01

    The problems of dressability the solid minerals are attracted attention of specialists, where the extraction of mineral raw materials is a significant sector of the economy. There are a significant amount of mineral ore dressability methods. At the moment the radiometric dressability methods are considered the most promising. One of radiometric methods is method photoluminescence. This method is based on the spectral analysis, amplitude and kinetic parameters luminescence of minerals (under UV radiation), as well as color parameters of radiation. The absence of developed scientific and methodological approaches of analysis irradiation area to UV radiation as well as absence the relevant radiation sources are the factors which hinder development and use of photoluminescence method. The present work is devoted to the development of multi-element UV radiation source designed for the solution problem of analysis and sorting minerals by their selective luminescence. This article is presented a method of theoretical modeling of the radiation devices based on UV LEDs. The models consider such factors as spectral component, the spatial and energy parameters of the LEDs. Also, this article is presented the results of experimental studies of the some samples minerals.

  2. Analysis of multispectral scanner (MSS) and Thematic Mapper (TM) performance (pre-launch and post-launch)

    NASA Technical Reports Server (NTRS)

    Barker, J. L.

    1983-01-01

    Tables and graphs show the results of the spectral, radiometric, and geometric characterization of LANDSAT 4 sensors associated with imagery and of the imagery associated with sensors and processing. Specifications for the various parameters are compared with the photoflight and flight values.

  3. Radiometric Measurement Comparisons Using Transfer Radiometers in Support of the Calibration of NASA's Earth Observing System (EOS) Sensors

    NASA Technical Reports Server (NTRS)

    Butler, James J.; Johnson, B. Carol; Brown, Steven W.; Yoon, Howard W.; Barnes, Robert A.; Markham, Brian L.; Biggar, Stuart F.; Zalewski, Edward F.; Spyak, Paul R.; Cooper, John W.; hide

    1999-01-01

    EOS satellite instruments operating in the visible through the shortwave infrared wavelength regions (from 0.4 micrometers to 2.5 micrometers) are calibrated prior to flight for radiance response using integrating spheres at a number of instrument builder facilities. The traceability of the radiance produced by these spheres with respect to international standards is the responsibility of the instrument builder, and different calibration techniques are employed by those builders. The National Aeronautics and Space Administration's (NASA's) Earth Observing System (EOS) Project Science Office, realizing the importance of preflight calibration and cross-calibration, has sponsored a number of radiometric measurement comparisons, the main purpose of which is to validate the radiometric scale assigned to the integrating spheres by the instrument builders. This paper describes the radiometric measurement comparisons, the use of stable transfer radiometers to perform the measurements, and the measurement approaches and protocols used to validate integrating sphere radiances. Stable transfer radiometers from the National Institute of Standards and Technology, the University of Arizona Optical Sciences Center Remote Sensing Group, NASA's Goddard Space Flight Center, and the National Research Laboratory of Metrology in Japan, have participated in these comparisons. The approaches used in the comparisons include the measurement of multiple integrating sphere lamp levels, repeat measurements of select lamp levels, the use of the stable radiometers as external sphere monitors, and the rapid reporting of measurement results. Results from several comparisons are presented. The absolute radiometric calibration standard uncertainties required by the EOS satellite instruments are typically in the +/- 3% to +/- 5% range. Preliminary results reported during eleven radiometric measurement comparisons held between February 1995 and May 1998 have shown the radiance of integrating spheres agreed to within +/- 2.5% from the average at blue wavelengths and to within +/- 1.7% from the average at red and near infrared wavelengths. This level of agreement lends confidence in the use of the transfer radiometers in validating the radiance scales assigned by EOS instrument calibration facilities to their integrating sphere sources.

  4. High spatial resolution LWIR hyperspectral sensor

    NASA Astrophysics Data System (ADS)

    Roberts, Carson B.; Bodkin, Andrew; Daly, James T.; Meola, Joseph

    2015-06-01

    Presented is a new hyperspectral imager design based on multiple slit scanning. This represents an innovation in the classic trade-off between speed and resolution. This LWIR design has been able to produce data-cubes at 3 times the rate of conventional single slit scan devices. The instrument has a built-in radiometric and spectral calibrator.

  5. CIRiS: Compact Infrared Radiometer in Space

    NASA Astrophysics Data System (ADS)

    Osterman, D. P.; Collins, S.; Ferguson, J.; Good, W.; Kampe, T.; Rohrschneider, R.; Warden, R.

    2016-09-01

    The Compact Infrared Radiometer in Space (CIRiS) is a thermal infrared radiometric imaging instrument under development by Ball Aerospace for a Low Earth Orbit mission on a CubeSat spacecraft. Funded by the NASA Earth Science Technology Office's In-Space Validation of Earth Science Technology (InVEST) program, the mission objective is technology demonstration for improved on-orbit radiometric calibration. The CIRiS calibration approach uses a scene select mirror to direct three calibration views to the focal plane array and to transfer the resulting calibrated response to earth images. The views to deep space and two blackbody sources, including one at a selectable temperature, provide multiple options for calibration optimization. Two new technologies, carbon nanotube blackbody sources and microbolometer focal plane arrays with reduced pixel sizes, enable improved radiometric performance within the constrained 6U CubeSat volume. The CIRiS instrument's modular design facilitates subsystem modifications as required by future mission requirements. CubeSat constellations of CIRiS and derivative instruments offer an affordable approach to achieving revisit times as short as one day for diverse applications including water resource and drought management, cloud, aerosol, and dust studies, and land use and vegetation monitoring. Launch is planned for 2018.

  6. Radiometric calibration of SeaWiFS in the near infrared

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martiny, Nadege; Frouin, Robert; Santer, Richard

    2005-12-20

    The radiometric calibration of the Sea-Viewing Wide-Field-of-View Sensor (SeaWiFS) in the near infrared (band 8, centered on 865 nm) is evaluated by use of ground-based radiometer measurements of solar extinction and sky radiance in the Sun's principal plane at two sites, one located 13 km off Venice, Italy, and the other on the west coast of Lanai Island, Hawaii. The aerosol optical thickness determined from solar extinction is used in an iterative scheme to retrieve the pseudo aerosol phase function, i.e., the product of single-scattering albedo and phase function, in which sky radiance is corrected for multiple scattering effects. Nomore » assumption about the aerosol model is required. The aerosol parameters are the inputs into a radiation-transfer code used to compute the SeaWiFS radiance. The calibration method has a theoretical inaccuracy of plus or minus 2.0-3.6%, depending on the solar zenith angle and the SeaWiFS geometry. The major source of error is in the calibration of the ground-based radiometer operated in radiance mode, assumed to be accurate to {+-}2%. The establishment of strict criteria for atmospheric stability, angular geometry, and surface conditions resulted in selection of only 26 days for the analysis during 1999-2000 (Venice site) and 1998-2001 (Lanai site). For these days the measured level-1B radiance from the SeaWiFS Project Office was generally lower than the corresponding simulated radiance in band 8 by 7.0% on average, {+-}2.8%.« less

  7. Sentinel 2B: the image quality performances at the beginning of the mission

    NASA Astrophysics Data System (ADS)

    Trémas, T.; Lonjou, V.; Dick, A.; Languille, F.; Gaudel-Vacaresse, A.; Vidal, B.; Revel, C.

    2017-09-01

    Launched on March 6th, 2017 from Kourou, Sentinel 2B has passed the phase of commissioning. Sentinel 2B will work together with Sentinel 2A launched in June 2015. The building and implementation of the satellite has been made under the responsibility of ESA, for the European Commission. The subset of Image Quality commissioning was delegated by ESA to CNES, referring to the experience of the French Space Agency on previous imagers. This phase lasted 4 months after the launch, a little longer than the formal In Orbit Calibration period conducted by ESA, some Image Quality parameters requiring several months before converging to a stable state. This paper presents the status of the satellite, from an IQ prospective, just before it entered its operational phase. The radiometric and geometric performances are listed, including: the absolute radiometric calibration, the equalization, the SNR, the absolute and the multi-temporal location accuracy. The performances of both satellites Sentinel and Sentinel 2B working together, will be addressed. A particular focus will be done on multi-temporal location performances, homogeneity of radiometric inter calibrations. The accomplishment of the Global Reference Image over Europe is evoked as well. The IQ commissioning phase ended on June 2017. From this date, the monitoring of IQ parameters is under the responsibility of ESA/ESRIN. Nevertheless, CNES continues to support ESA to survey the accuracy of S2A and S2B performances. The article ends by dealing with the prospective offered by the couple Sentinel 2A + Sentinel 2B.

  8. Preliminary Evaluation of the Radiometric Calibration of LANDSAT-4 Thematic Mapper Data by the Canada Centre for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Murphy, J.; Park, W.; Fitzgerald, A.

    1985-01-01

    The radiometric characteristics of the LANDSAT-4 TM sensor are being studied with a view to developing absolute and relative radiometric calibration procedures. Preliminary results from several different approaches to the relative correction of all detectors within each band are reported. Topics covered include: the radiometric correction method; absolute calibration; the relative radiometric calibration algorithm; relative gain and offset calibration; relative gain and offset observations; and residual radiometric stripping.

  9. Can we settle with single-band radiometric temperature monitoring during hyperthermia treatment of chestwall recurrence of breast cancer using a dual-mode transceiving applicator?

    PubMed

    Jacobsen, Svein; Stauffer, Paul R

    2007-02-21

    The total thermal dose that can be delivered during hyperthermia treatments is frequently limited by temperature heterogeneities in the heated tissue volume. Reliable temperature information on the heated area is thus vital for the optimization of clinical dosimetry. Microwave radiometry has been proposed as an accurate, quick and painless temperature sensing technique for biological tissue. Advantages include the ability to sense volume-averaged temperatures from subsurface tissue non-invasively, rather than with a limited set of point measurements typical of implanted temperature probes. We present a procedure to estimate the maximum tissue temperature from a single radiometric brightness temperature which is based on a numerical simulation of 3D tissue temperature distributions induced by microwave heating at 915 MHz. The temperature retrieval scheme is evaluated against errors arising from unknown variations in thermal, electromagnetic and design model parameters. Whereas realistic deviations from base values of dielectric and thermal parameters have only marginal impact on performance, pronounced deviations in estimated maximum tissue temperature are observed for unanticipated variations of the temperature or thickness of the bolus compartment. The need to pay particular attention to these latter applicator construction parameters in future clinical implementation of the thermometric method is emphasized.

  10. Can we settle with single-band radiometric temperature monitoring during hyperthermia treatment of chestwall recurrence of breast cancer using a dual-mode transceiving applicator?

    NASA Astrophysics Data System (ADS)

    Jacobsen, Svein; Stauffer, Paul R.

    2007-02-01

    The total thermal dose that can be delivered during hyperthermia treatments is frequently limited by temperature heterogeneities in the heated tissue volume. Reliable temperature information on the heated area is thus vital for the optimization of clinical dosimetry. Microwave radiometry has been proposed as an accurate, quick and painless temperature sensing technique for biological tissue. Advantages include the ability to sense volume-averaged temperatures from subsurface tissue non-invasively, rather than with a limited set of point measurements typical of implanted temperature probes. We present a procedure to estimate the maximum tissue temperature from a single radiometric brightness temperature which is based on a numerical simulation of 3D tissue temperature distributions induced by microwave heating at 915 MHz. The temperature retrieval scheme is evaluated against errors arising from unknown variations in thermal, electromagnetic and design model parameters. Whereas realistic deviations from base values of dielectric and thermal parameters have only marginal impact on performance, pronounced deviations in estimated maximum tissue temperature are observed for unanticipated variations of the temperature or thickness of the bolus compartment. The need to pay particular attention to these latter applicator construction parameters in future clinical implementation of the thermometric method is emphasized.

  11. A procedure for radiometric recalibration of Landsat 5 TM reflective-band data

    USGS Publications Warehouse

    Chander, G.; Haque, M.O.; Micijevic, E.; Barsi, J.A.

    2010-01-01

    From the Landsat program's inception in 1972 to the present, the Earth science user community has been benefiting from a historical record of remotely sensed data. The multispectral data from the Landsat 5 (L5) Thematic Mapper (TM) sensor provide the backbone for this extensive archive. Historically, the radiometric calibration procedure for the L5 TM imagery used the detectors' response to the internal calibrator (IC) on a scene-by-scene basis to determine the gain and offset for each detector. The IC system degraded with time, causing radiometric calibration errors up to 20%. In May 2003, the L5 TM data processed and distributed by the U.S. Geological Survey (USGS) Earth Resources Observation and Science Center through the National Landsat Archive Production System (NLAPS) were updated to use a lifetime lookup-table (LUT) gain model to radiometrically calibrate TM data instead of using scene-specific IC gains. Further modification of the gain model was performed in 2007. The L5 TM data processed using IC prior to the calibration update do not benefit from the recent calibration revisions. A procedure has been developed to give users the ability to recalibrate their existing level-1 products. The best recalibration results are obtained if the work-order report that was included in the original standard data product delivery is available. However, if users do not have the original work-order report, the IC trends can be used for recalibration. The IC trends were generated using the radiometric gain trends recorded in the NLAPS database. This paper provides the details of the recalibration procedure for the following: 1) data processed using IC where users have the work-order file; 2) data processed using IC where users do not have the work-order file; 3) data processed using prelaunch calibration parameters; and 4) data processed using the previous version of the LUT (e.g., LUT03) that was released before April 2, 2007.

  12. Characterization of Titan surface scenarios combining Cassini SAR images and radiometric data

    NASA Astrophysics Data System (ADS)

    Ventura, B.; Notarnicola, C.; Casarano, D.; Janssen, M.; Posa, F.; Cassini RADAR Science Team

    2009-04-01

    A great amount of data and images was provided by the radar on Cassini probe, thus opening and suggesting new scenarios about Titan's formation and evolution. An important result was the detection, among the peculiar and heterogeneous Titan's surface features, of lakes most likely constituted by liquid hydrocarbons, thus supporting the hypothesis of a methane cycle similar to water cycle on Earth.These areas, which resemble terrestrial lakes, seem to be sprinkled all over the high latitudes surrounding Titan's pole. The abundant methane in Titan's atmosphere combined with the low temperature, 94 K, lead scientists to interpret them as lakes of liquid methane or ethane. In this work, scattering models and a Bayesian inversion algorithm are applied in order to characterize lake and land surfaces. The possibility of combining the SAR data with radiometric ones on both lakes and neighboring land areas is also presented. Radar backscattering from lakes is described in terms of a double layer model, consisting of Bragg or facets scattering for the upper liquid layer and the Integral Equation Model (IEM) model for the lower solid surface. Furthermore, by means of a gravity-capillary wave model (Donelan-Pierson), the wave spectra of liquid hydrocarbons surfaces are introduced as a function of wind speed and direction. Theoretical radar backscattering coefficient values are compared with the experimental ones collected by the radar in order to estimate physical and morphological surface parameters, and to evaluate their compatibility with the expected constituents for Titan surfaces. This electromagnetic analysis is the starting point for a statistical inversion algorithm which allows determining limits on the parameters values, especially on the optical thickness and wind speed of the lakes. The physical surface parameters inferred by using the inversion algorithm are used as input for a forward radiative transfer model calculation to obtain simulated brightness temperatures. The radiometric model has been introduced to further verify the values ranges for the different parameters. In fact the same parameters derived from the radar data analysis have been used as input for the radiometric model. The comparison between the observed and computed brightness temperatures has been performed in order to address the consistency of the observations from the two instruments and to determine the coarse characteristics of the surface parameters. For both radar and radiometric data the soil medium is horizontally stratified into 2 layers. Each layer can be characterized by different absorption coefficients depending on the optical thickness, dielectric constant and physical temperature. In this algorithm, the starting point is the map of optical thickness derived from the SAR images. The simulated brightness temperature is calculated by applying the forward radiative transfer model to the optical thickness map with the same hypotheses assumed to derive it. The simulation is also carried out on the neighboring land areas by considering a double layer model including a contribution of volume scattering. Each layer is described in terms of dielectric constant values, albedo and roughness parameters with the hypothesis of water ice ammonia on layers of solid hydrocarbons and organic compounds like tholins. The analysis is applied to the areas detected on flybys 25 and 30. One important result arises from the analysis of the inverted optical thickness on deep lakes. In this case, found values of optical thickness can be considered limit values because, beyond these values, a complete attenuation can be considered. This limit value is important as it is stable even if the other parameters vary. Starting from this point, posing the condition of a complete attenuation of the second layer, i.e. fixing the value of the optical thickness, the algorithm can be used to estimate the wind speed. The retrieved values vary between 0.2 to 0.5 m/s. The first results also show a good agreement between the simulated data and the measured brightness temperature for both the liquid surface and the surrounding areas. In the last case, a good agreement is obtained only if the contribution from volume scattering is included in the model

  13. Comparative physiology of mice and rats: radiometric measurement of vascular parameters in rodent tissues.

    PubMed

    Boswell, C Andrew; Mundo, Eduardo E; Ulufatu, Sheila; Bumbaca, Daniela; Cahaya, Hendry S; Majidy, Nicholas; Van Hoy, Marjie; Schweiger, Michelle G; Fielder, Paul J; Prabhu, Saileta; Khawli, Leslie A

    2014-05-05

    A solid understanding of physiology is beneficial in optimizing drug delivery and in the development of clinically predictive models of drug disposition kinetics. Although an abundance of data exists in the literature, it is often confounded by the use of various experimental methods and a lack of consensus in values from different sources. To help address this deficiency, we sought to directly compare three important vascular parameters at the tissue level using the same experimental approach in both mice and rats. Interstitial volume, vascular volume, and blood flow were radiometrically measured in selected harvested tissues of both species by extracellular marker infusion, red blood cell labeling, and rubidium chloride bolus distribution, respectively. The latter two parameters were further compared by whole-body autoradiographic imaging. An overall good interspecies agreement was observed for interstitial volume and blood flow on a weight-normalized basis in most tissues. In contrast, the measured vascular volumes of most rat tissues were higher than for mouse. Mice and rats, the two most commonly utilized rodent species in translational drug development, should not be considered as interchangeable in terms of vascular volume per gram of tissue. This will be particularly critical in biodistribution studies of drugs, as the amount of drug in the residual blood of tissues is often not negligible, especially for biologic drugs (e.g., antibodies) having long circulation half-lives. Physiologically based models of drug pharmacokinetics and/or pharmacodynamics also rely on accurate knowledge of biological parameters in tissues. For tissue parameters with poor interspecies agreement, the significance and possible drivers are discussed.

  14. Photovoltaics radiometric issues and needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, D.R.

    1995-11-01

    This paper presents a summary of issues discussed at the photovoltaic radiometric measurements workshop. Topics included radiometric measurements guides, the need for well-defined goals, documentation, calibration checks, accreditation of testing laboratories and methods, the need for less expensive radiometric instrumentation, data correlations, and quality assurance.

  15. Evaluation on Radiometric Capability of Chinese Optical Satellite Sensors

    PubMed Central

    Yang, Aixia; Zhong, Bo; Wu, Shanlong; Liu, Qinhuo

    2017-01-01

    The radiometric capability of on-orbit sensors should be updated on time due to changes induced by space environmental factors and instrument aging. Some sensors, such as Moderate Resolution Imaging Spectroradiometer (MODIS), have onboard calibrators, which enable real-time calibration. However, most Chinese remote sensing satellite sensors lack onboard calibrators. Their radiometric calibrations have been updated once a year based on a vicarious calibration procedure, which has affected the applications of the data. Therefore, a full evaluation of the sensors’ radiometric capabilities is essential before quantitative applications can be made. In this study, a comprehensive procedure for evaluating the radiometric capability of several Chinese optical satellite sensors is proposed. In this procedure, long-term radiometric stability and radiometric accuracy are the two major indicators for radiometric evaluation. The radiometric temporal stability is analyzed by the tendency of long-term top-of-atmosphere (TOA) reflectance variation; the radiometric accuracy is determined by comparison with the TOA reflectance from MODIS after spectrally matching. Three Chinese sensors including the Charge-Coupled Device (CCD) camera onboard Huan Jing 1 satellite (HJ-1), as well as the Visible and Infrared Radiometer (VIRR) and Medium-Resolution Spectral Imager (MERSI) onboard the Feng Yun 3 satellite (FY-3) are evaluated in reflective bands based on this procedure. The results are reasonable, and thus can provide reliable reference for the sensors’ application, and as such will promote the development of Chinese satellite data. PMID:28117745

  16. Evaluation on Radiometric Capability of Chinese Optical Satellite Sensors.

    PubMed

    Yang, Aixia; Zhong, Bo; Wu, Shanlong; Liu, Qinhuo

    2017-01-22

    The radiometric capability of on-orbit sensors should be updated on time due to changes induced by space environmental factors and instrument aging. Some sensors, such as Moderate Resolution Imaging Spectroradiometer (MODIS), have onboard calibrators, which enable real-time calibration. However, most Chinese remote sensing satellite sensors lack onboard calibrators. Their radiometric calibrations have been updated once a year based on a vicarious calibration procedure, which has affected the applications of the data. Therefore, a full evaluation of the sensors' radiometric capabilities is essential before quantitative applications can be made. In this study, a comprehensive procedure for evaluating the radiometric capability of several Chinese optical satellite sensors is proposed. In this procedure, long-term radiometric stability and radiometric accuracy are the two major indicators for radiometric evaluation. The radiometric temporal stability is analyzed by the tendency of long-term top-of-atmosphere (TOA) reflectance variation; the radiometric accuracy is determined by comparison with the TOA reflectance from MODIS after spectrally matching. Three Chinese sensors including the Charge-Coupled Device (CCD) camera onboard Huan Jing 1 satellite (HJ-1), as well as the Visible and Infrared Radiometer (VIRR) and Medium-Resolution Spectral Imager (MERSI) onboard the Feng Yun 3 satellite (FY-3) are evaluated in reflective bands based on this procedure. The results are reasonable, and thus can provide reliable reference for the sensors' application, and as such will promote the development of Chinese satellite data.

  17. An Overview of Lunar Calibration and Characterization for the EOS Terra and Aqua MODIS

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Salomonson, V. V.; Sun, J.; Chiang, K.; Xiong, S.; Humphries, S.; Barnes, W.; Guenther, B.

    2004-01-01

    The Moon can be used as a stable source for Earth-observing sensors on-orbit radiometric and spatial stability monitoring in the VIS and NIR spectral regions. It can also serve as a calibration transfer vehicle among multiple sensors. Nearly identical copies of the Moderate Resolution Imaging Spectroradiometer (MODE) have been operating on-board the NASA's Earth Observing System (EOS) Terra and Aqua satellites since their launches in December 1999 and May 2002, respectively. Terra and Aqua MODIS each make observations in 36 spectral bands covering the spectral range from 0.41 to 14.5 microns and are calibrated on-orbit by a set of on-board calibrations (OBCs) including: 1) a solar diffuser (SD), 2) a solar diffuser stability monitor (SDSM), 3) a blackbody (BB), and 4) a spectro-radiometric calibration assembly (SRCA). In addition to fully utilizing the OBCs, the Moon has been used extensively by both Terra and Aqua MODIS to support their on-orbit calibration and characterization. A 4 This paper provides an overview of applications of lunar calibration and characterization from the MODIS perspective, including monitoring radiometric calibration stability for the reflective solar bands (RSBs), tracking changes of the sensors response versus scan-angle (RVS), examining the sensors spatial performance , and characterizing optical leaks and electronic crosstalk among different spectral bands and detectors. On-orbit calibration consistency between the two MODIS instruments is also addressed. Based on the existing on-orbit time series of the Terra and Aqua MODIS lunar observations, the radiometric difference between the two sensors is less than +/-1% for the RSBs. This method provides a powerful means of performing calibration comparisons among Earth-observing sensors and assures consistent data and science products for the long-term studies of climate and environmental changes.

  18. Airborne lidar/radiometric measurements of cirrus cloud parameters and their application to LOWTRAN radiance evaluations

    NASA Technical Reports Server (NTRS)

    Uthe, Edward E.

    1990-01-01

    SRI has assembled an airborne lidar/radiometric instrumentation suite for mapping cirrus cloud distribution and analyzing cirrus cloud optical properties. Operation of upward viewing infrared radiometers from an airborne platform provides the optimum method of measuring high altitude cold cloud radiative properties with minimum interference from the thermal emission by the earth's surface and lower atmospheric components. Airborne installed sensors can also operate over large regional areas including water, urban, and mountain surfaces and above lower atmospheric convective clouds and haze layers. Currently available sensors installed on the SRI Queen Air aircraft are illustrated. Lidar and radiometric data records are processed for real time viewing on a color video screen. A cirrus cloud data example is presented as a black and white reproduction of a color display of data at the aircraft altitude of 12,000 ft, the 8 to 14 micron atmospheric radiation background was equivalent to a blackbody temperature of about -60 C and, therefore, the radiometer did not respond strongly to low density cirrus cloud concentrations detected by the lidar. Cloud blackbody temperatures (observed by radiometer) are shown plotted against midcloud temperatures (derived from lidar observed cloud heights and supporting temperature profiles) for data collected on 30 June and 28 July.

  19. A process for reducing rocks and concentrating heavy minerals

    USGS Publications Warehouse

    Strong, Thomas R.; Driscoll, Rhonda L.

    2016-03-30

    Once the rock is reduced to grains, it is necessary to separate the grains into paramagnetic and nonparamagnetic and heavy and light mineral fractions. In separating grains by property, those minerals chemically suited for radiometric dating are abundantly concentrated. Grams of mineralogical material can then be analyzed and characterized by multiple methods including trace element chemistry, laser ablation, and in particular, ion geochronology.

  20. Design and optimization of an ultra wideband and compact microwave antenna for radiometric monitoring of brain temperature.

    PubMed

    Rodrigues, Dario B; Maccarini, Paolo F; Salahi, Sara; Oliveira, Tiago R; Pereira, Pedro J S; Limao-Vieira, Paulo; Snow, Brent W; Reudink, Doug; Stauffer, Paul R

    2014-07-01

    We present the modeling efforts on antenna design and frequency selection to monitor brain temperature during prolonged surgery using noninvasive microwave radiometry. A tapered log-spiral antenna design is chosen for its wideband characteristics that allow higher power collection from deep brain. Parametric analysis with the software HFSS is used to optimize antenna performance for deep brain temperature sensing. Radiometric antenna efficiency (η) is evaluated in terms of the ratio of power collected from brain to total power received by the antenna. Anatomical information extracted from several adult computed tomography scans is used to establish design parameters for constructing an accurate layered 3-D tissue phantom. This head phantom includes separate brain and scalp regions, with tissue equivalent liquids circulating at independent temperatures on either side of an intact skull. The optimized frequency band is 1.1-1.6 GHz producing an average antenna efficiency of 50.3% from a two turn log-spiral antenna. The entire sensor package is contained in a lightweight and low-profile 2.8 cm diameter by 1.5 cm high assembly that can be held in place over the skin with an electromagnetic interference shielding adhesive patch. The calculated radiometric equivalent brain temperature tracks within 0.4 °C of the measured brain phantom temperature when the brain phantom is lowered 10 °C and then returned to the original temperature (37 °C) over a 4.6-h experiment. The numerical and experimental results demonstrate that the optimized 2.5-cm log-spiral antenna is well suited for the noninvasive radiometric sensing of deep brain temperature.

  1. Absolute Radiometric Calibration of KOMPSAT-3A

    NASA Astrophysics Data System (ADS)

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-06-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  2. Directional radiance measurements: Challenges in the sampling of landscapes

    NASA Technical Reports Server (NTRS)

    Deering, D. W.

    1994-01-01

    Most earth surfaces, particularly those supporting natural vegetation ecosystems, constitute structurally and spectrally complex surfaces that are distinctly non-Lambertian reflectors. Obtaining meaningful measurements of the directional radiances of landscapes and obtaining estimates of the complete bidirectional reflectance distribution functions of ground targets with complex and variable landscape and radiometric features are challenging tasks. Reasons for the increased interest in directional radiance measurements are presented, and the issues that must be addressed when trying to acquire directional radiances for vegetated land surfaces from different types of remote sensing platforms are discussed. Priority research emphases are suggested, concerning field measurements of directional surface radiances and reflectances for future research. Primarily, emphasis must be given to the acquisition of more complete and directly associated radiometric and biometric parameter data sets that will empower the exploitation of the 'angular dimension' in remote sensing of vegetation through enabling the further development and rigorous validation of state of the art plant canopy models.

  3. Spectroradiometric considerations for advanced land observing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1986-01-01

    Research aimed at improving the inflight absolute radiometric calibration of advanced land observing systems was initiated. Emphasis was on the satellite sensor calibration program at White Sands. Topics addressed include: absolute radiometric calibration of advanced remote sensing; atmospheric effects on reflected radiation; inflight radiometric calibration; field radiometric methods for reflectance and atmospheric measurement; and calibration of field relectance radiometers.

  4. Rice Crop Monitoring Using Microwave and Optical Remotely Sensed Image Data

    NASA Astrophysics Data System (ADS)

    Suga, Y.; Konishi, T.; Takeuchi, S.; Kitano, Y.; Ito, S.

    Hiroshima Institute of Technology HIT is operating the direct down-links of microwave and optical satellite data in Japan This study focuses on the validation for rice crop monitoring using microwave and optical remotely sensed image data acquired by satellites referring to ground truth data such as height of crop ratio of crop vegetation cover and leaf area index in the test sites of Japan ENVISAT-1 ASAR data has a capability to capture regularly and to monitor during the rice growing cycle by alternating cross polarization mode images However ASAR data is influenced by several parameters such as landcover structure direction and alignment of rice crop fields in the test sites In this study the validation was carried out combined with microwave and optical satellite image data and ground truth data regarding rice crop fields to investigate the above parameters Multi-temporal multi-direction descending and ascending and multi-angle ASAR alternating cross polarization mode images were used to investigate rice crop growing cycle LANDSAT data were used to detect landcover structure direction and alignment of rice crop fields corresponding to the backscatter of ASAR As the result of this study it was indicated that rice crop growth can be precisely monitored using multiple remotely sensed data and ground truth data considering with spatial spectral temporal and radiometric resolutions

  5. Multiple beacons for supporting lunar landing navigation

    NASA Astrophysics Data System (ADS)

    Theil, Stephan; Bora, Leonardo

    2018-02-01

    The exploration and potential future exploitation of solar system bodies requires technologies for precise and safe landings. Current navigation systems for landing probes are relying on a combination of inertial and optical sensor measurements to determine the current flight state with respect to the target body and the desired landing site. With a future transition from single exploration missions to more frequent first exploration and then exploitation missions, the implementation and operation of these missions changes, since it can be expected that a ground infrastructure on the target body is available in the vicinity of the landing site. In a previous paper, the impact of a single ground-based beacon on the navigation performance was investigated depending on the type of radiometric measurements and on the location of the beacon with respect to the landing site. This paper extends this investigation on options for ground-based multiple beacons supporting the on-board navigation system. It analyzes the impact on the achievable navigation accuracy. For that purpose, the paper introduces briefly the existing navigation architecture based on optical navigation and its extension with radiometric measurements. The same scenario of lunar landing as in the previous paper is simulated. The results are analyzed and discussed. They show a single beacon at a large distance along the landing trajectory and multiple beacons close to the landing site can improve the navigation performance. The results show how large the landing area can be increased where a sufficient navigation performance is achieved using the beacons.

  6. Retrieval of Dry Snow Parameters from Radiometric Data Using a Dense Medium Model and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Tedesco, Marco; Kim, Edward J.

    2005-01-01

    In this paper, GA-based techniques are used to invert the equations of an electromagnetic model based on Dense Medium Radiative Transfer Theory (DMRT) under the Quasi Crystalline Approximation with Coherent Potential to retrieve snow depth, mean grain size and fractional volume from microwave brightness temperatures. The technique is initially tested on both noisy and not-noisy simulated data. During this phase, different configurations of genetic algorithm parameters are considered to quantify how their change can affect the algorithm performance. A configuration of GA parameters is then selected and the algorithm is applied to experimental data acquired during the NASA Cold Land Process Experiment. Snow parameters retrieved with the GA-DMRT technique are then compared with snow parameters measured on field.

  7. Radiometric performance of the Voyager cameras

    NASA Technical Reports Server (NTRS)

    Danielson, G. E.; Kupferman, P. N.; Johnson, T. V.; Soderblom, L. A.

    1981-01-01

    The Voyager Imaging Experiment provided high-quality data of Jupiter and the Galilean satellites with the two flyby trajectories in March and July of 1979. Moderately accurate radiometric measurements have been made using these data. This paper evaluates the radiometric results and describes the inflight and ground geometric and radiometric correction factors. The radiometric quantities of intensity I and geometric albedo I/F are derived, and scaling factors for each of the filters are tabulated for correcting the 'calibrated' data from the Image Processing Laboratory at JPL. In addition, the key characteristics of both Voyager I and Voyager 2 cameras are tabulated.

  8. Retrieval of cloud cover parameters from multispectral satellite images

    NASA Technical Reports Server (NTRS)

    Arking, A.; Childs, J. D.

    1985-01-01

    A technique is described for extracting cloud cover parameters from multispectral satellite radiometric measurements. Utilizing three channels from the AVHRR (Advanced Very High Resolution Radiometer) on NOAA polar orbiting satellites, it is shown that one can retrieve four parameters for each pixel: cloud fraction within the FOV, optical thickness, cloud-top temperature and a microphysical model parameter. The last parameter is an index representing the properties of the cloud particle and is determined primarily by the radiance at 3.7 microns. The other three parameters are extracted from the visible and 11 micron infrared radiances, utilizing the information contained in the two-dimensional scatter plot of the measured radiances. The solution is essentially one in which the distributions of optical thickness and cloud-top temperature are maximally clustered for each region, with cloud fraction for each pixel adjusted to achieve maximal clustering.

  9. TES radiometric assessment

    NASA Technical Reports Server (NTRS)

    Worden, H.; Sarkissian, E.; Bowman, K.; Fisher, B.; Rider, D.; Aumann, H. H.; Apolinski, M.; Debaca, R. C.; Gluck, S.; Madatyan, M.; hide

    2005-01-01

    TES is an infrared Fourier transform spectrometer on board the EOS-Aura spacecraft launched July 15, 2004. Improvements to the radiometric calibration and consequent assessment of radiometric accuracy have been on-going since launch.

  10. A design of an on-orbit radiometric calibration device for high dynamic range infrared remote sensors

    NASA Astrophysics Data System (ADS)

    Sheng, Yicheng; Jin, Weiqi; Dun, Xiong; Zhou, Feng; Xiao, Si

    2017-10-01

    With the demand of quantitative remote sensing technology growing, high reliability as well as high accuracy radiometric calibration technology, especially the on-orbit radiometric calibration device has become an essential orientation in term of quantitative remote sensing technology. In recent years, global launches of remote sensing satellites are equipped with innovative on-orbit radiometric calibration devices. In order to meet the requirements of covering a very wide dynamic range and no-shielding radiometric calibration system, we designed a projection-type radiometric calibration device for high dynamic range sensors based on the Schmidt telescope system. In this internal radiometric calibration device, we select the EF-8530 light source as the calibration blackbody. EF-8530 is a high emittance Nichrome (Ni-Cr) reference source. It can operate in steady or pulsed state mode at a peak temperature of 973K. The irradiance from the source was projected to the IRFPA. The irradiance needs to ensure that the IRFPA can obtain different amplitude of the uniform irradiance through the narrow IR passbands and cover the very wide dynamic range. Combining the internal on-orbit radiometric calibration device with the specially designed adaptive radiometric calibration algorithms, an on-orbit dynamic non-uniformity correction can be accomplished without blocking the optical beam from outside the telescope. The design optimizes optics, source design, and power supply electronics for irradiance accuracy and uniformity. The internal on-orbit radiometric calibration device not only satisfies a series of indexes such as stability, accuracy, large dynamic range and uniformity of irradiance, but also has the advantages of short heating and cooling time, small volume, lightweight, low power consumption and many other features. It can realize the fast and efficient relative radiometric calibration without shielding the field of view. The device can applied to the design and manufacture of the scanning infrared imaging system, the infrared remote sensing system, the infrared early-warning satellite, and so on.

  11. Ground-Based Radiometric Measurements of Slant Path Attenuation in the V/W Bands

    DTIC Science & Technology

    2016-04-01

    GROUND-BASED RADIOMETRIC MEASUREMENTS OF SLANT PATH ATTENUATION IN THE V/W BANDS APRIL 2016 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE...2. REPORT TYPE FINAL TECHNICAL REPORT 3. DATES COVERED (From - To) OCT 2012 – SEP 2015 4. TITLE AND SUBTITLE GROUND-BASED RADIOMETRIC MEASUREMENTS ...SUPPLEMENTARY NOTES 14. ABSTRACT Ground-based radiometric techniques were applied to measure the slant path attenuation cumulative distribution function to

  12. RapidEye constellation relative radiometric accuracy measurement using lunar images

    NASA Astrophysics Data System (ADS)

    Steyn, Joe; Tyc, George; Beckett, Keith; Hashida, Yoshi

    2009-09-01

    The RapidEye constellation includes five identical satellites in Low Earth Orbit (LEO). Each satellite has a 5-band (blue, green, red, red-edge and near infrared (NIR)) multispectral imager at 6.5m GSD. A three-axes attitude control system allows pointing the imager of each satellite at the Moon during lunations. It is therefore possible to image the Moon from near identical viewing geometry within a span of 80 minutes with each one of the imagers. Comparing the radiometrically corrected images obtained from each band and each satellite allows a near instantaneous relative radiometric accuracy measurement and determination of relative gain changes between the five imagers. A more traditional terrestrial vicarious radiometric calibration program has also been completed by MDA on RapidEye. The two components of this program provide for spatial radiometric calibration ensuring that detector-to-detector response remains flat, while a temporal radiometric calibration approach has accumulated images of specific dry dessert calibration sites. These images are used to measure the constellation relative radiometric response and make on-ground gain and offset adjustments in order to maintain the relative accuracy of the constellation within +/-2.5%. A quantitative comparison between the gain changes measured by the lunar method and the terrestrial temporal radiometric calibration method is performed and will be presented.

  13. LAPR: An experimental aircraft pushbroom scanner

    NASA Technical Reports Server (NTRS)

    Wharton, S. W.; Irons, J. I.; Heugel, F.

    1980-01-01

    A three band Linear Array Pushbroom Radiometer (LAPR) was built and flown on an experimental basis by NASA at the Goddard Space Flight Center. The functional characteristics of the instrument and the methods used to preprocess the data, including radiometric correction, are described. The radiometric sensitivity of the instrument was tested and compared to that of the Thematic Mapper and the Multispectral Scanner. The radiometric correction procedure was evaluated quantitatively, using laboratory testing, and qualitatively, via visual examination of the LAPR test flight imagery. Although effective radiometric correction could not yet be demonstrated via laboratory testing, radiometric distortion did not preclude the visual interpretation or parallel piped classification of the test imagery.

  14. S-NPP VIIRS thermal emissive bands on-orbit calibration and performance

    NASA Astrophysics Data System (ADS)

    Efremova, Boryana; McIntire, Jeff; Moyer, David; Wu, Aisheng; Xiong, Xiaoxiong

    2014-09-01

    Presented is an assessment of the on-orbit radiometric performance of the thermal emissive bands (TEB) of the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) instrument based on data from the first 2 years of operations—from 20 January 2012 to 20 January 2014. The VIIRS TEB are calibrated on orbit using a V-grooved blackbody (BB) as a radiance source. Performance characteristics trended over the life of the mission include the F factor—a measure of the gain change of the TEB detectors; the Noise Equivalent differential Temperature (NEdT)—a measure of the detector noise; and the detector offset and nonlinear terms trended at the quarterly performed BB warm-up cool-down cycles. We find that the BB temperature is well controlled and stable within the 30mK requirement. The F factor trends are very stable and showing little degradation (within 0.8%). The offsets and nonlinearity terms are also without noticeable drifts. NEdT is stable and does not show any trend. Other TEB radiometric calibration-related activities discussed include the on-orbit assessment of the response versus scan-angle functions and an approach to improve the M13 low-gain calibration using onboard lunar measurements. We conclude that all the assessed parameters comply with the requirements, and the TEB provide radiometric measurements with the required accuracy.

  15. Nonuniform Liouville transformers for quasi-homogeneous optical fields. Final technical report, September 25, 1989--January 22, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jannson, T.

    1993-03-01

    During the last two decades, there have been dramatic improvements in the development of optical sources. Examples of this development range from semiconductor laser diodes to free electron beam lasers and synchrotron radiation. Before these developments, standards for the measurement of basic optical parameters (quantities) were less demanding. Now, however, there is a fundamental need for new, reliable methods for providing fast quantitative results for a very broad variety of optical systems and sources. This is particularly true for partially coherent optical beams, since all optical sources are either fully or partially spatially coherent (including Lambertian sources). Until now, theremore » has been no satisfactory solution to this problem. During the last two decades, however, the foundations of physical radiometry have been developed by Walther, Wolf and co-workers. By integrating physical optics, statistical optics and conventional radiometry, this body of work provides necessary tools for the evaluation of radiometric quantities for partially coherent optical beams propagating through optical systems. In this program, Physical Optics Corporation (POC) demonstrated the viability of such a radiometric approach for the specific case of generalized energy concentrators called Liouville transformers. We believe that this radiometric approach is necessary to fully characterize any type of optical system since it takes into account the partial coherence of radiation. 90 refs., 57 figs., 4 tabs.« less

  16. An overview of in-orbit radiometric calibration of typical satellite sensors

    NASA Astrophysics Data System (ADS)

    Zhou, G. Q.; Li, C. Y.; Yue, T.; Jiang, L. J.; Liu, N.; Sun, Y.; Li, M. Y.

    2015-06-01

    This paper reviews the development of in-orbit radiometric calibration methods in the past 40 years. It summarizes the development of in-orbit radiometric calibration technology of typical satellite sensors in the visible/near-infrared bands and the thermal infrared band. Focuses on the visible/near-infrared bands radiometric calibration method including: Lamp calibration and solar radiationbased calibration. Summarizes the calibration technology of Landsat series satellite sensors including MSS, TM, ETM+, OLI, TIRS; SPOT series satellite sensors including HRV, HRS. In addition to the above sensors, there are also summarizing ALI which was equipped on EO-1, IRMSS which was equipped on CBERS series satellite. Comparing the in-orbit radiometric calibration technology of different periods but the same type satellite sensors analyzes the similarities and differences of calibration technology. Meanwhile summarizes the in-orbit radiometric calibration technology in the same periods but different country satellite sensors advantages and disadvantages of calibration technology.

  17. A validation procedure for a LADAR system radiometric simulation model

    NASA Astrophysics Data System (ADS)

    Leishman, Brad; Budge, Scott; Pack, Robert

    2007-04-01

    The USU LadarSIM software package is a ladar system engineering tool that has recently been enhanced to include the modeling of the radiometry of Ladar beam footprints. This paper will discuss our validation of the radiometric model and present a practical approach to future validation work. In order to validate complicated and interrelated factors affecting radiometry, a systematic approach had to be developed. Data for known parameters were first gathered then unknown parameters of the system were determined from simulation test scenarios. This was done in a way to isolate as many unknown variables as possible, then build on the previously obtained results. First, the appropriate voltage threshold levels of the discrimination electronics were set by analyzing the number of false alarms seen in actual data sets. With this threshold set, the system noise was then adjusted to achieve the appropriate number of dropouts. Once a suitable noise level was found, the range errors of the simulated and actual data sets were compared and studied. Predicted errors in range measurements were analyzed using two methods: first by examining the range error of a surface with known reflectivity and second by examining the range errors for specific detectors with known responsivities. This provided insight into the discrimination method and receiver electronics used in the actual system.

  18. Dawn Orbit Determination Team: Modeling and Fitting of Optical Data at Vesta

    NASA Technical Reports Server (NTRS)

    Kennedy, Brian; Abrahamson, Matt; Ardito, Alessandro; Haw, Robert; Mastrodemos, Nicholas; Nandi, Sumita; Park, Ryan; Rush, Brian; Vaughan, Andrew

    2013-01-01

    The Dawn spacecraft was launched on September 27th, 2007. Its mission is to consecutively rendezvous with and observe the two largest bodies in the main asteroid belt, Vesta and Ceres. It has already completed over a year's worth of direct observations of Vesta (spanning from early 2011 through late 2012) and is currently on a cruise trajectory to Ceres, where it will begin scientific observations in mid-2015. Achieving this data collection required careful planning and execution from all Dawn operations teams. Dawn's Orbit Determination (OD) team was tasked with reconstruction of the as-flown trajectory as well as determination of the Vesta rotational rate, pole orientation and ephemeris, among other Vesta parameters. Improved knowledge of the Vesta pole orientation, specifically, was needed to target the final maneuvers that inserted Dawn into the first science orbit at Vesta. To solve for these parameters, the OD team used radiometric data from the Deep Space Network (DSN) along with optical data reduced from Dawn's Framing Camera (FC) images. This paper will de-scribe the initial determination of the Vesta ephemeris and pole using a combination of radiometric and optical data, and also the progress the OD team has made since then to further refine the knowledge of Vesta's body frame orientation and rate with these data.

  19. Landsat-8 Operational Land Imager On-Orbit Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Barsi, Julia A.

    2017-01-01

    The Operational Land Imager (OLI), the VIS/NIR/SWIR sensor on the Landsat-8 has been successfully acquiring Earth Imagery for more than four years. The OLI incorporates two on-board radiometric calibration systems, one diffuser based and one lamp based, each with multiple sources. For each system one source is treated as primary and used frequently and the other source(s) are used less frequently to assist in tracking any degradation in the primary sources. In addition, via a spacecraft maneuver, the OLI instrument views the moon once a lunar cycle (approx. 29 days). The integrated lunar irradiances from these acquisitions are compared to the output of a lunar irradiance model. The results from all these techniques, combined with cross calibrations with other sensors and ground based vicarious measurements are used to monitor the OLI's stability and correct for any changes observed. To date, the various techniques have other detected significant changes in the shortest wavelength OLI band centered at 443 nm and these are currently being adjusted in the operational processing.

  20. Wireless Sensor Network for Radiometric Detection and Assessment of Partial Discharge in High-Voltage Equipment

    NASA Astrophysics Data System (ADS)

    Upton, D. W.; Saeed, B. I.; Mather, P. J.; Lazaridis, P. I.; Vieira, M. F. Q.; Atkinson, R. C.; Tachtatzis, C.; Garcia, M. S.; Judd, M. D.; Glover, I. A.

    2018-03-01

    Monitoring of partial discharge (PD) activity within high-voltage electrical environments is increasingly used for the assessment of insulation condition. Traditional measurement techniques employ technologies that either require off-line installation or have high power consumption and are hence costly. A wireless sensor network is proposed that utilizes only received signal strength to locate areas of PD activity within a high-voltage electricity substation. The network comprises low-power and low-cost radiometric sensor nodes which receive the radiation propagated from a source of PD. Results are reported from several empirical tests performed within a large indoor environment and a substation environment using a network of nine sensor nodes. A portable PD source emulator was placed at multiple locations within the network. Signal strength measured by the nodes is reported via WirelessHART to a data collection hub where it is processed using a location algorithm. The results obtained place the measured location within 2 m of the actual source location.

  1. Lessons learned from the AIRS pre-flight radiometric calibration

    NASA Astrophysics Data System (ADS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Weiler, Margie

    2013-09-01

    The Atmospheric Infrared Sounder (AIRS) instrument flies on the NASA Aqua satellite and measures the upwelling hyperspectral earth radiance in the spectral range of 3.7-15.4 μm with a nominal ground resolution at nadir of 13.5 km. The AIRS spectra are achieved using a temperature controlled grating spectrometer and HgCdTe infrared linear arrays providing 2378 channels with a nominal spectral resolution of approximately 1200. The AIRS pre-flight tests that impact the radiometric calibration include a full system radiometric response (linearity), polarization response, and response vs scan angle (RVS). We re-derive the AIRS instrument radiometric calibration coefficients from the pre-flight polarization measurements, the response vs scan (RVS) angle tests as well as the linearity tests, and a recent lunar roll test that allowed the AIRS to view the moon. The data and method for deriving the coefficients is discussed in detail and the resulting values compared amongst the different tests. Finally, we examine the residual errors in the reconstruction of the external calibrator blackbody radiances and the efficacy of a new radiometric uncertainty model. Results show the radiometric calibration of AIRS to be excellent and the radiometric uncertainty model does a reasonable job of characterizing the errors.

  2. Improved Thermal-Vacuum Compatible Flat Plate Radiometric Souce for System-Level Testing of Optical Sensors

    NASA Technical Reports Server (NTRS)

    Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.

    2015-01-01

    This work describes the development of an improved vacuum compatible flat plate radiometric source used for characterizing and calibrating remote optical sensors, in situ, throughout their testing period. The original flat plate radiometric source was developed for use by the VIIRS instrument during the NPOESS Preparatory Project (NPP). Following this effort, the FPI has had significant upgrades in order to improve both the radiometric throughput and uniformity. Results of the VIIRS testing with the reconfigured FPI are reported and discussed.

  3. Pre-Flight Radiometric Model of Linear Imager on LAPAN-IPB Satellite

    NASA Astrophysics Data System (ADS)

    Hadi Syafrudin, A.; Salaswati, Sartika; Hasbi, Wahyudi

    2018-05-01

    LAPAN-IPB Satellite is Microsatellite class with mission of remote sensing experiment. This satellite carrying Multispectral Line Imager for captured of radiometric reflectance value from earth to space. Radiometric quality of image is important factor to classification object on remote sensing process. Before satellite launch in orbit or pre-flight, Line Imager have been tested by Monochromator and integrating sphere to get spectral and every pixel radiometric response characteristic. Pre-flight test data with variety setting of line imager instrument used to see correlation radiance input and digital number of images output. Output input correlation is described by the radiance conversion model with imager setting and radiometric characteristics. Modelling process from hardware level until normalize radiance formula are presented and discussed in this paper.

  4. Dual frequency microwave radiometer measurements of soil moisture for bare and vegetated rough surfaces

    NASA Technical Reports Server (NTRS)

    Lee, S. L.

    1974-01-01

    Controlled ground-based passive microwave radiometric measurements on soil moisture were conducted to determine the effects of terrain surface roughness and vegetation on microwave emission. Theoretical predictions were compared with the experimental results and with some recent airborne radiometric measurements. The relationship of soil moisture to the permittivity for the soil was obtained in the laboratory. A dual frequency radiometer, 1.41356 GHz and 10.69 GHz, took measurements at angles between 0 and 50 degrees from an altitude of about fifty feet. Distinct surface roughnesses were studied. With the roughness undisturbed, oats were later planted and vegetated and bare field measurements were compared. The 1.4 GHz radiometer was less affected than the 10.6 GHz radiometer, which under vegetated conditions was incapable of detecting soil moisture. The bare surface theoretical model was inadequate, although the vegetation model appeared to be valid. Moisture parameters to correlate apparent temperature with soil moisture were compared.

  5. Digital Correlation Microwave Polarimetry: Analysis and Demonstration

    NASA Technical Reports Server (NTRS)

    Piepmeier, J. R.; Gasiewski, A. J.; Krebs, Carolyn A. (Technical Monitor)

    2000-01-01

    The design, analysis, and demonstration of a digital-correlation microwave polarimeter for use in earth remote sensing is presented. We begin with an analysis of three-level digital correlation and develop the correlator transfer function and radiometric sensitivity. A fifth-order polynomial regression is derived for inverting the digital correlation coefficient into the analog statistic. In addition, the effects of quantizer threshold asymmetry and hysteresis are discussed. A two-look unpolarized calibration scheme is developed for identifying correlation offsets. The developed theory and calibration method are verified using a 10.7 GHz and a 37.0 GHz polarimeter. The polarimeters are based upon 1-GS/s three-level digital correlators and measure the first three Stokes parameters. Through experiment, the radiometric sensitivity is shown to approach the theoretical as derived earlier in the paper and the two-look unpolarized calibration method is successfully compared with results using a polarimetric scheme. Finally, sample data from an aircraft experiment demonstrates that the polarimeter is highly-useful for ocean wind-vector measurement.

  6. Prospects for the application of radiometric methods in the measurement of two-phase flows

    NASA Astrophysics Data System (ADS)

    Zych, Marcin

    2018-06-01

    The article constitutes an overview of the application of radiometric methods in the research of two-phase flows: liquid-solid particles and liquid-gas flows. The methods which were used were described on the basis of the experiments which were conducted in the Water Laboratory of the Wrocław University of Environmental and Life Sciences and in the Sedimentological Laboratory of the Faculty of Geology, Geophysics and Environmental Protection, AGH-UST in Kraków. The advanced mathematical methods for the analysis of signals from scintillation probes that were applied enable the acquisition of a number of parameters associated with the flowing two-phase mixture, such as: average velocities of the particular phases, concentration of the solid phase, and void fraction for a liquid-gas mixture. Despite the fact that the application of radioactive sources requires considerable carefulness and a number of state permits, in many cases these sources become useful in the experiments which are presented.

  7. GPM Microwave Imager Engineering Model Results

    NASA Technical Reports Server (NTRS)

    Newell, David; Krimchansky, Sergey

    2010-01-01

    The Global Precipitation Measurement (GPM) Microwave Imager (GMI) Instrument is being developed by Ball Aerospace and Technology Corporation (BATC) for the GPM program at NASA Goddard. The Global Precipitation Measurement (GPM) mission is an international effort managed by the National Aeronautics and Space Administration (NASA) to improve climate, weather, and hydro-meteorological predictions through more accurate and more frequent precipitation measurements. The GPM Microwave Imager (GMI) will be used to make calibrated, radiometric measurements from space at multiple microwave frequencies and polarizations. GMI will be placed on the GPM Core Spacecraft together with the Dualfrequency Precipitation Radar (DPR). The DPR is two-frequency precipitation measurement radar, which will operate in the Ku-band and Ka-band of the microwave spectrum. The Core Spacecraft will make radiometric and radar measurements of clouds and precipitation and will be the central element ofGPM's space segment. The data products from GPM will provide information concerning global precipitation on a frequent, near-global basis to meteorologists and scientists making weather forecasts and performing research on the global energy and water cycle, precipitation, hydrology, and related disciplines. In addition, radiometric measurements from GMI and radar measurements from the DPR will be used together to develop a retrieval transfer standard for the purpose of calibrating precipitation retrieval algorithms. This calibration standard will establish a reference against which other retrieval algorithms using only microwave radiometers (and without the benefit of the DPR) on other satellites in the GPM constellation will be compared.

  8. GPM Microwave Imager Design, Predicted Performance and Status

    NASA Technical Reports Server (NTRS)

    Krimchansky, Sergey; Newell, David

    2010-01-01

    The Global Precipitation Measurement (GPM) Microwave Imager (GMI) Instrument is being developed by Ball Aerospace and Technology Corporation (BATC) for the GPM program at NASA Goddard. The Global Precipitation Measurement (GPM) mission is an international effort managed by the National Aeronautics and Space Administration (t.JASA) to improve climate, weather, and hydro-meteorological predictions through more accurate and more frequent precipitation measurements. The GPM Microwave Imager (GMI) will be used to make calibrated, radiometric measurements from space at multiple microwave frequencies and polarizations. GMI will be placed on the GPM Core Spacecraft together with the Dual-frequency Precipitation Radar (DPR). The DPR is two-frequency precipitation measurement radar, which will operate in the Ku-band and Ka-band of the microwave spectrum. The Core Spacecraft will make radiometric and radar measurements of clouds and precipitation and will be the central element of GPM's space segment. The data products from GPM will provide information concerning global precipitation on a frequent, near-global basis to meteorologists and scientists making weather forecasts and performing research on the global energy and water cycle, precipitation, hydrology, and related disciplines. In addition, radiometric measurements from GMI and radar measurements from the DPR will be used together to develop a retrieval transfer standard for the purpose of calibrating precipitation retrieval algorithms. This calibration standard will establish a reference against which other retrieval algorithms using only microwave radiometers (and without the benefit of the DPR) on other satellites in the GPM constellation will be compared.

  9. Geometry of the hemispherical radiometric footprint over plant canopies

    NASA Astrophysics Data System (ADS)

    Marcolla, B.; Cescatti, A.

    2017-11-01

    Radiometric measurements of hemispherical surface reflectance and long-wave irradiance are required to quantify the broadband albedo and the outgoing thermal radiation. These observations are typically integrated with eddy covariance measurements of sensible and latent heat fluxes to characterize the surface energy budget. While the aerodynamic footprint has been widely investigated, the geometry of the hemispherical radiometric footprint over plant canopies has been rarely tackled. In the present work, the size and shape of the hemispherical radiometric footprint are formalized for a bare surface and in presence of a vegetation cover. For this purpose, four idealized canopies are analyzed and the dependency of the radiometric footprint on leaf area index and canopy height is explored. Besides, the radiometric footprint is compared with the aerodynamic footprint in conditions of neutral stability. It was observed that almost 100% of the hemispherical radiometric signal originates within a distance of a few radiometer heights, while only about 50-80% of the cumulative aerodynamic signal is generated within a distance of about 20 sensor heights. In order to achieve comparable extensions of the footprint areas, hemispherical radiometric measurements should therefore be taken about 6-15 times higher than turbulent flux ones, depending on the vegetation type. The analysis also highlights that the size of the radiative footprint decreases at increasing leaf area index, whereas the aerodynamic footprint shows an opposite behavior. For the abovementioned reasons, this work may support the interpretation of energy flux measurements and the optimal design of eddy covariance stations located in heterogeneous sites.

  10. OCRA radiometric cloud fractions for GOME-2 on MetOp-A/B

    NASA Astrophysics Data System (ADS)

    Lutz, R.; Loyola, D.; Gimeno García, S.; Romahn, F.

    2015-12-01

    This paper describes an approach for cloud parameter retrieval (radiometric cloud fraction estimation) using the polarization measurements of the Global Ozone Monitoring Experiment-2 (GOME-2) on-board the MetOp-A/B satellites. The core component of the Optical Cloud Recognition Algorithm (OCRA) is the calculation of monthly cloud-free reflectances for a global grid (resolution of 0.2° in longitude and 0.2° in latitude) and to derive radiometric cloud fractions. These cloud fractions will serve as a priori information for the retrieval of cloud top height (CTH), cloud top pressure (CTP), cloud top albedo (CTA) and cloud optical thickness (COT) with the Retrieval Of Cloud Information using Neural Networks (ROCINN) algorithm. This approach is already being implemented operationally for the GOME/ERS-2 and SCIAMACHY/ENVISAT sensors and here we present version 3.0 of the OCRA algorithm applied to the GOME-2 sensors. Based on more than six years of GOME-2A data (February 2007-June 2013), reflectances are calculated for ≈ 35 000 orbits. For each measurement a degradation correction as well as a viewing angle dependent and latitude dependent correction is applied. In addition, an empirical correction scheme is introduced in order to remove the effect of oceanic sun glint. A comparison of the GOME-2A/B OCRA cloud fractions with co-located AVHRR geometrical cloud fractions shows a general good agreement with a mean difference of -0.15±0.20. From operational point of view, an advantage of the OCRA algorithm is its extremely fast computational time and its straightforward transferability to similar sensors like OMI (Ozone Monitoring Instrument), TROPOMI (TROPOspheric Monitoring Instrument) on Sentinel 5 Precursor, as well as Sentinel 4 and Sentinel 5. In conclusion, it is shown that a robust, accurate and fast radiometric cloud fraction estimation for GOME-2 can be achieved with OCRA by using the polarization measurement devices (PMDs).

  11. OCRA radiometric cloud fractions for GOME-2 on MetOp-A/B

    NASA Astrophysics Data System (ADS)

    Lutz, Ronny; Loyola, Diego; Gimeno García, Sebastián; Romahn, Fabian

    2016-05-01

    This paper describes an approach for cloud parameter retrieval (radiometric cloud-fraction estimation) using the polarization measurements of the Global Ozone Monitoring Experiment-2 (GOME-2) onboard the MetOp-A/B satellites. The core component of the Optical Cloud Recognition Algorithm (OCRA) is the calculation of monthly cloud-free reflectances for a global grid (resolution of 0.2° in longitude and 0.2° in latitude) to derive radiometric cloud fractions. These cloud fractions will serve as a priori information for the retrieval of cloud-top height (CTH), cloud-top pressure (CTP), cloud-top albedo (CTA) and cloud optical thickness (COT) with the Retrieval Of Cloud Information using Neural Networks (ROCINN) algorithm. This approach is already being implemented operationally for the GOME/ERS-2 and SCIAMACHY/ENVISAT sensors and here we present version 3.0 of the OCRA algorithm applied to the GOME-2 sensors. Based on more than five years of GOME-2A data (April 2008 to June 2013), reflectances are calculated for ≈ 35 000 orbits. For each measurement a degradation correction as well as a viewing-angle-dependent and latitude-dependent correction is applied. In addition, an empirical correction scheme is introduced in order to remove the effect of oceanic sun glint. A comparison of the GOME-2A/B OCRA cloud fractions with colocated AVHRR (Advanced Very High Resolution Radiometer) geometrical cloud fractions shows a general good agreement with a mean difference of -0.15 ± 0.20. From an operational point of view, an advantage of the OCRA algorithm is its very fast computational time and its straightforward transferability to similar sensors like OMI (Ozone Monitoring Instrument), TROPOMI (TROPOspheric Monitoring Instrument) on Sentinel 5 Precursor, as well as Sentinel 4 and Sentinel 5. In conclusion, it is shown that a robust, accurate and fast radiometric cloud-fraction estimation for GOME-2 can be achieved with OCRA using polarization measurement devices (PMDs).

  12. Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots

    PubMed Central

    Lelong, Camille C. D.; Burger, Philippe; Jubelin, Guillaume; Roux, Bruno; Labbé, Sylvain; Baret, Frédéric

    2008-01-01

    This paper outlines how light Unmanned Aerial Vehicles (UAV) can be used in remote sensing for precision farming. It focuses on the combination of simple digital photographic cameras with spectral filters, designed to provide multispectral images in the visible and near-infrared domains. In 2005, these instruments were fitted to powered glider and parachute, and flown at six dates staggered over the crop season. We monitored ten varieties of wheat, grown in trial micro-plots in the South-West of France. For each date, we acquired multiple views in four spectral bands corresponding to blue, green, red, and near-infrared. We then performed accurate corrections of image vignetting, geometric distortions, and radiometric bidirectional effects. Afterwards, we derived for each experimental micro-plot several vegetation indexes relevant for vegetation analyses. Finally, we sought relationships between these indexes and field-measured biophysical parameters, both generic and date-specific. Therefore, we established a robust and stable generic relationship between, in one hand, leaf area index and NDVI and, in the other hand, nitrogen uptake and GNDVI. Due to a high amount of noise in the data, it was not possible to obtain a more accurate model for each date independently. A validation protocol showed that we could expect a precision level of 15% in the biophysical parameters estimation while using these relationships. PMID:27879893

  13. Airborne Hyperspectral Imaging of Seagrass and Coral Reef

    NASA Astrophysics Data System (ADS)

    Merrill, J.; Pan, Z.; Mewes, T.; Herwitz, S.

    2013-12-01

    This talk presents the process of project preparation, airborne data collection, data pre-processing and comparative analysis of a series of airborne hyperspectral projects focused on the mapping of seagrass and coral reef communities in the Florida Keys. As part of a series of large collaborative projects funded by the NASA ROSES program and the Florida Fish and Wildlife Conservation Commission and administered by the NASA UAV Collaborative, a series of airborne hyperspectral datasets were collected over six sites in the Florida Keys in May 2012, October 2012 and May 2013 by Galileo Group, Inc. using a manned Cessna 172 and NASA's SIERRA Unmanned Aerial Vehicle. Precise solar and tidal data were used to calculate airborne collection parameters and develop flight plans designed to optimize data quality. Two independent Visible and Near-Infrared (VNIR) hyperspectral imaging systems covering 400-100nm were used to collect imagery over six Areas of Interest (AOIs). Multiple collections were performed over all sites across strict solar windows in the mornings and afternoons. Independently developed pre-processing algorithms were employed to radiometrically correct, synchronize and georectify individual flight lines which were then combined into color balanced mosaics for each Area of Interest. The use of two different hyperspectral sensor as well as environmental variations between each collection allow for the comparative analysis of data quality as well as the iterative refinement of flight planning and collection parameters.

  14. The Future Spaceborne Hyperspectral Imager Enmap: its In-Flight Radiometric and Geometric Calibration Concept

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Müller, R.; Krawzcyk, H.; Bachmann, M.; Storch, T.; Mogulsky, V.; Hofer, S.

    2012-07-01

    The German Aerospace Center DLR - namely the Earth Observation Center EOC and the German Space Operations Center GSOC - is responsible for the establishment of the ground segment of the future German hyperspectral satellite mission EnMAP (Environmental Mapping and Analysis Program). The Earth Observation Center has long lasting experiences with air- and spaceborne acquisition, processing, and analysis of hyperspectral image data. In the first part of this paper, an overview of the radiometric in-flight calibration concept including dark value measurements, deep space measurements, internal lamps measurements and sun measurements is presented. Complemented by pre-launch calibration and characterization these analyses will deliver a detailed and quantitative assessment of possible changes of spectral and radiometric characteristics of the hyperspectral instrument, e.g. due to degradation of single elements. A geometric accuracy of 100 m, which will be improved to 30 m with respect to a used reference image, if it exists, will be achieved by ground processing. Therfore, and for the required co-registration accuracy between SWIR and VNIR channels, additional to the radiometric calibration, also a geometric calibration is necessary. In the second part of this paper, the concept of the geometric calibration is presented in detail. The geometric processing of EnMAP scenes will be based on laboratory calibration results. During repeated passes over selected calibration areas images will be acquired. The update of geometric camera model parameters will be done by an adjustment using ground control points, which will be extracted by automatic image matching. In the adjustment, the improvements of the attitude angles (boresight angles), the improvements of the interior orientation (view vector) and the improvements of the position data are estimated. In this paper, the improvement of the boresight angles is presented in detail as an example. The other values and combinations follow the same rules. The geometric calibration will mainly be executed during the commissioning phase, later in the mission it is only executed if required, i.e. if the geometric accuracy of the produced images is close to or exceeds the requirements of 100 m or 30 m respectively, whereas the radiometric calibration will be executed periodically during the mission with a higher frequency during commissioning phase.

  15. Application of radiometric surface temperature for surface energy balance estimation: John Monteith's contributions

    USDA-ARS?s Scientific Manuscript database

    Over 25 years ago, Huband and Monteith paper’s investigating the radiative surface temperature and the surface energy balance of a wheat canopy, highlighted the key issues in computing fluxes with radiometric surface temperature. These included the relationship between radiometric and aerodynamic s...

  16. Relative radiometric calibration of LANDSAT TM reflective bands

    NASA Technical Reports Server (NTRS)

    Barker, J. L.

    1984-01-01

    A common scientific methodology and terminology is outlined for characterizing the radiometry of both TM sensors. The magnitude of the most significant sources of radiometric variability are discussed and methods are recommended for achieving the exceptional potential inherent in the radiometric precision and accuracy of the TM sensors.

  17. Radiometric Characterization of the IKONOS, QuickBird, and OrbView-3 Sensors

    NASA Technical Reports Server (NTRS)

    Holekamp, Kara

    2006-01-01

    Radiometric calibration of commercial imaging satellite products is required to ensure that science and application communities can better understand their properties. Inaccurate radiometric calibrations can lead to erroneous decisions and invalid conclusions and can limit intercomparisons with other systems. To address this calibration need, satellite at-sensor radiance values were compared to those estimated by each independent team member to determine the sensor's radiometric accuracy. The combined results of this evaluation provide the user community with an independent assessment of these commercially available high spatial resolution sensors' absolute calibration values.

  18. Radiometric Calibration Assessment of Commercial High Spatial Resolution Multispectral Image Products

    NASA Technical Reports Server (NTRS)

    Holekamp, Kara; Aaron, David; Thome, Kurtis

    2006-01-01

    Radiometric calibration of commercial imaging satellite products is required to ensure that science and application communities can better understand their properties. Inaccurate radiometric calibrations can lead to erroneous decisions and invalid conclusions and can limit intercomparisons with other systems. To address this calibration need, satellite at-sensor radiance values were compared to those estimated by each independent team member to determine the sensor's radiometric accuracy. The combined results of this evaluation provide the user community with an independent assessment of these commercially available high spatial resolution sensors' absolute calibration values.

  19. Accurate estimation of sigma(exp 0) using AIRSAR data

    NASA Technical Reports Server (NTRS)

    Holecz, Francesco; Rignot, Eric

    1995-01-01

    During recent years signature analysis, classification, and modeling of Synthetic Aperture Radar (SAR) data as well as estimation of geophysical parameters from SAR data have received a great deal of interest. An important requirement for the quantitative use of SAR data is the accurate estimation of the backscattering coefficient sigma(exp 0). In terrain with relief variations radar signals are distorted due to the projection of the scene topography into the slant range-Doppler plane. The effect of these variations is to change the physical size of the scattering area, leading to errors in the radar backscatter values and incidence angle. For this reason the local incidence angle, derived from sensor position and Digital Elevation Model (DEM) data must always be considered. Especially in the airborne case, the antenna gain pattern can be an additional source of radiometric error, because the radar look angle is not known precisely as a result of the the aircraft motions and the local surface topography. Consequently, radiometric distortions due to the antenna gain pattern must also be corrected for each resolution cell, by taking into account aircraft displacements (position and attitude) and position of the backscatter element, defined by the DEM data. In this paper, a method to derive an accurate estimation of the backscattering coefficient using NASA/JPL AIRSAR data is presented. The results are evaluated in terms of geometric accuracy, radiometric variations of sigma(exp 0), and precision of the estimated forest biomass.

  20. The application of geostationary propagation models to non-geostationary propagation measurements

    NASA Astrophysics Data System (ADS)

    Haddock, Paul Christopher

    Atmospheric attenuation becomes evident above 10 GHz due to the absorption of microwave energy from the molecular motion of the atmospheric constituents. Atmospheric effects on satellite communications systems operating at frequencies greater than 10 GHz become more pronounced. Most geostationary (GEO) climate models, which predict the fading statistics for earth-space telecommunications, have satellite elevation angle as one of the input parameters. There has been an interest in the industry to apply the propagation models developed for the GEO satellites to the non-geostationary (NGO) satellite case. With the NGO satellites, the elevation angle to the satellite is time-variable, and as a result the earth-space propagation medium is time varying. We can calculate the expected probability that a satellite, in a given orbit, will be found at a given elevation angle as a percentage of the year based on the satellite orbital elements, the minimum elevation angle allowed in the constellation operation plan, and the constellation configuration. From this calculation, we can develop an empirical fit to a given probability density function (PDF) to account for the distribution of elevation angles. This PDF serves as a weighting function for the elevation input into the GEO climate model to produce the overall fading statistics for the NGO case. In this research, a Ka-band total power radiometer was developed to measure the down-dwelling incoherent radiant electromagnetic energy from the atmosphere. This whole sky sampling radiometer collected 1 year of radiometric measurements. These observations occurred at varying elevation and azimuthal angles, in close proximity to a weak water vapor absorption line. By referencing the output power of the radiometer to known radiometric emissions and by performing frequent internal calibrations, the developed radiometer provided long term highly accurate and stable low-level derived attenuation measurements. By correlating the 1 year of atmospheric measurements to the modified GEO climate model, the hypothesis is tested. That by application of the proper elevation weighting factors, the GEO model is applicable to the NGO case, where the time-varying angle changes are occurring on a short-time period. Finally, we look at the joint statistics of multiple link failures. Using the 1 year of observed attenuations for multiple sky sections, we show that for a given sky section what the probability is that its attenuation level will be equaled or exceeded for each of the remaining sky sections.

  1. Estimating Tides from a Planetary Flyby Mission

    NASA Astrophysics Data System (ADS)

    Mazarico, Erwan; Genova, Antonio; Smith, David; Zuber, Maria; Sun, Xiaoli

    2014-05-01

    Previous and current laser altimeter instruments (e.g. MOLA, NLR, LOLA, MLA) acquired measurements in orbit to provide global topography and study the surface and sub-surface properties of planetary bodies. We show that altimetric data from multiple flybys can make significant contributions to the geophysical understanding of the target body. In particular, the detection of the body tide (e.g. surface deformation due to the tides raised by the Sun or the parent body) and the estimation of its amplitude can yield critical information about the interior structure. We conduct a full simulation of a planetary flyby mission around Europa. We use the GEODYN II program developed and maintained at NASA GSFC to process altimetric and radiometric tracking data created using truth models. The data are processed in short two-day segments (arcs) centered on each closest approach. The initial trajectory is integrated using a priori (truth) models of the planetary ephemeris, the gravity field, the tidal Love numbers k2 and h2 (which describe the amplitudes of the time-variable tidal potential and the time-variable radial deformation respectively). The gravity field is constructed using a Kaula-like power law and scaling considerations from other planetary bodies. The global-scale static topography is also chosen to follow a power law, and higher-resolution local maps consistent with recent stereo-topography work are used to assess the expected variations along altimetric profiles. We assume realistic spacecraft orientation to drive a spacecraft macro-model and model the solar radiation pressure acceleration. Radiometric tracking data are generated from the truth trajectory accounting for geometry (occultations by Europa or Jupiter or the Sun), DSN visibility and scheduling (8h per day) and measurement noise (Ka-band quality, plasma noise). Doppler data have a 10-second integration step while Range data occur every 5 minutes. The altimetric data are generated using realistic instrument performance (frequency, maximum range, measurement noise) and an artificial topographic map of the surface. These simulated data are processed using perturbed initial states, and batched least-squares estimation yield estimated values and uncertainties for selected parameters. Preliminary results with Ka-band radiometric data alone suggest the Love number k2 can be recovered to about 1 percent with this flyby tour trajectory. Altimetric crossovers are to be constructed and used to constrain the deformational tidal Love number h2. The number, and impact, of available crossovers strongly depends on the capability of the laser altimeter, and we quantify how a larger maximum range can contribute to the recovery of the body tide.

  2. Galileo SSI/Ida Radiometrically Calibrated Images V1.0

    NASA Astrophysics Data System (ADS)

    Domingue, D. L.

    2016-05-01

    This data set includes Galileo Orbiter SSI radiometrically calibrated images of the asteroid 243 Ida, created using ISIS software and assuming nadir pointing. This is an original delivery of radiometrically calibrated files, not an update to existing files. All images archived include the asteroid within the image frame. Calibration was performed in 2013-2014.

  3. Improved Thermal-Vacuum Compatible Flat Plate Radiometric Source For System-Level Testing Of Optical Sensors

    NASA Technical Reports Server (NTRS)

    Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.

    2016-01-01

    In this work, we describe an improved thermal-vacuum compatible flat plate radiometric source which has been developed and utilized for the characterization and calibration of remote optical sensors. This source is unique in that it can be used in situ, in both ambient and thermal-vacuum environments, allowing it to follow the sensor throughout its testing cycle. The performance of the original flat plate radiometric source was presented at the 2009 SPIE1. Following the original efforts, design upgrades were incorporated into the source to improve both radiometric throughput and uniformity. The pre-thermal-vacuum (pre-TVAC) testing results of a spacecraft-level optical sensor with the improved flat plate illumination source, both in ambient and vacuum environments, are presented. We also briefly discuss potential FPI configuration changes in order to improve its radiometric performance.

  4. Analysis of airborne radiometric data. Volume 3. Topical reports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, J.H.; Shreve, D.C.; Sperling, M.

    1978-05-01

    This volume consists of four topical reports: a general discussion of the philosophy of unfolding spectra with continuum and discrete components, a mathematical treatment of the effects of various physical parameters on the uncollided gamma-ray spectrum at aircraft elevations, a discussion of the application of the unfolding code MAZNAI to airborne data, and a discussion of the effects of the nonlinear relationship between energy deposited and pulse height in NaI(T1) detectors.

  5. Radiometric age file for Alaska: A section in The United States Geological Survey in Alaska: Accomplishments during 1980

    USGS Publications Warehouse

    Shew, Nora B.; Wilson, Frederic H.

    1982-01-01

    The Alaska radiometric age file of the Branch of Alaskan Geology is a computer-based compilation of radiometric dates from the state of Alaska and the western parts of the Yukon Territory and British Columbia. More than 1800 age determinations from over 250 references have been entered in the file. References date back to 1958 and include both published and unpublished sources. The file is the outgrowth of an original radiometric age file compiled by Don Grybeck and students at the University of Alaska-Fairbanks (Turner and others, 1975).

  6. Radiometric calibration updates to the Landsat collection

    USGS Publications Warehouse

    Micijevic, Esad; Haque, Md. Obaidul; Mishra, Nischal

    2016-01-01

    The Landsat Project is planning to implement a new collection management strategy for Landsat products generated at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center. The goal of the initiative is to identify a collection of consistently geolocated and radiometrically calibrated images across the entire Landsat archive that is readily suitable for time-series analyses. In order to perform an accurate land change analysis, the data from all Landsat sensors must be on the same radiometric scale. Landsat 7 Enhanced Thematic Mapper Plus (ETM+) is calibrated to a radiance standard and all previous sensors are cross-calibrated to its radiometric scale. Landsat 8 Operational Land Imager (OLI) is calibrated to both radiance and reflectance standards independently. The Landsat 8 OLI reflectance calibration is considered to be most accurate. To improve radiometric calibration accuracy of historical data, Landsat 1-7 sensors also need to be cross-calibrated to the OLI reflectance scale. Results of that effort, as well as other calibration updates including the absolute and relative radiometric calibration and saturated pixel replacement for Landsat 8 OLI and absolute calibration for Landsat 4 and 5 Thematic Mappers (TM), will be implemented into Landsat products during the archive reprocessing campaign planned within the new collection management strategy. This paper reports on the planned radiometric calibration updates to the solar reflective bands of the new Landsat collection.

  7. Comparison of diverse methods for the correction of atmospheric effects on LANDSAT and SKYLAB images. [radiometric correction in Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Camara, G.; Dias, L. A. V.; Mascarenhas, N. D. D.; Desouza, R. C. M.; Pereira, A. E. C.

    1982-01-01

    Earth's atmosphere reduces a sensors ability in currently discriminating targets. Using radiometric correction to reduce the atmospheric effects may improve considerably the performance of an automatic image interpreter. Several methods for radiometric correction from the open literature are compared leading to the development of an atmospheric correction system.

  8. Remote sensing of environmental particulate pollutants - Optical methods for determinations of size distribution and complex refractive index

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1978-01-01

    A unifying approach, based on a generalization of Pearson's differential equation of statistical theory, is proposed for both the representation of particulate size distribution and the interpretation of radiometric measurements in terms of this parameter. A single-parameter gamma-type distribution is introduced, and it is shown that inversion can only provide the dimensionless parameter, r/ab (where r = particle radius, a = effective radius, b = effective variance), at least when the distribution vanishes at both ends. The basic inversion problem in reconstructing the particle size distribution is analyzed, and the existing methods are reviewed (with emphasis on their capabilities) and classified. A two-step strategy is proposed for simultaneously determining the complex refractive index and reconstructing the size distribution of atmospheric particulates.

  9. Experimental methods of indoor millimeter-wave radiometric imaging for personnel concealed contraband detection

    NASA Astrophysics Data System (ADS)

    Hu, Taiyang; Xiao, Zelong; Li, Hao; Lv, Rongchuan; Lu, Xuan

    2014-11-01

    The increasingly emerging terrorism attacks and violence crimes around the world have posed severe threats to public security, so carrying out relevant research on advanced experimental methods of personnel concealed contraband detection is crucial and meaningful. All of the advantages of imaging covertly, avoidance of interference with other systems, intrinsic property of being safe to persons under screening , and the superior ability of imaging through natural or manmade obscurants, have significantly combined to enable millimeter-wave (MMW) radiometric imaging to offer great potential in personnel concealed contraband detection. Based upon the current research status of MMW radiometric imaging and urgent demands of personnel security screening, this paper mainly focuses on the experimental methods of indoor MMW radiometric imaging. The reverse radiation noise resulting from super-heterodyne receivers seriously affects the image experiments carried out at short range, so both the generation mechanism and reducing methods of this noise are investigated. Then, the benefit of sky illumination no longer exists for the indoor radiometric imaging, and this leads to the decrease in radiometric temperature contrast between target and background. In order to enhance the radiometric temperature contrast for improving indoor imaging performance, the noise illumination technique is adopted in the indoor imaging scenario. In addition, the speed and accuracy of concealed contraband detection from acquired MMW radiometric images are usually restricted to the deficiencies in traditional artificial interpretation by security inspectors, thus an automatic recognition and location algorithm by integrating improved Fuzzy C-means clustering with moment invariants is put forward. A series of original results are also presented to demonstrate the significance and validity of these methods.

  10. English/Russian terminology on radiometric calibration of space-borne optoelectronic sensors

    NASA Astrophysics Data System (ADS)

    Privalsky, V.; Zakharenkov, V.; Humpherys, T.; Sapritsky, V.; Datla, R.

    The efficient use of data acquired through exo-atmospheric observations of the Earth within the framework of existing and newly planned programs requires a unique understanding of respective terms and definitions. Yet, the last large-scale document on the subject - The International Electrotechnical Vocabulary - had been published 18 years ago. This lack of a proper document, which would reflect the changes that had occurred in the area since that time, is especially detrimental to the developing international efforts aimed at global observations of the Earth from space such as the Global Earth Observations Program proposed by the U.S.A. at the 2003 WMO Congress. To cover this gap at least partially, a bi-lingual explanatory dictionary of terms and definitions in the area of radiometric calibration of space-borne IR sensors is developed. The objectives are to produce a uniform terminology for the global space-borne observations of the Earth, establish a unique understanding of terms and definitions by the radiometric communities, including a correspondence between the Russian and American terms and definitions, and to develop a formal English/Russian reference dictionary for use by scientists and engineers involved in radiometric observations of the Earth from space. The dictionary includes close to 400 items covering basic concepts of geometric, wave and corpuscular optics, remote sensing technologies, and ground-based calibration as well as more detailed treatment of terms and definitions in the areas of radiometric quantities, symbols and units, optical phenomena and optical properties of objects and media, and radiometric systems and their properties. The dictionary contains six chapters: Basic Concepts, Quantities, Symbols, and Units, Optical phenomena, Optical characteristics of surfaces and media, Components of Radiometric Systems, Characteristics of radiometric system components, plus English/Russian and Russian/Inglish indices.

  11. Radiometric Short-Term Fourier Transform analysis of photonic Doppler velocimetry recordings and detectivity limit

    NASA Astrophysics Data System (ADS)

    Prudhomme, G.; Berthe, L.; Bénier, J.; Bozier, O.; Mercier, P.

    2017-01-01

    Photonic Doppler Velocimetry is a plug-and-play and versatile diagnostic used in dynamic physic experiments to measure velocities. When signals are analyzed using a Short-Time Fourier Transform, multiple velocities can be distinguished: for example, the velocities of moving particle-cloud appear on spectrograms. In order to estimate the back-scattering fluxes of target, we propose an original approach "PDV Radiometric analysis" resulting in an expression of time-velocity spectrograms coded in power units. Experiments involving micron-sized particles raise the issue of detection limit; particle-size limit is very difficult to evaluate. From the quantification of noise sources, we derive an estimation of the spectrogram noise leading to a detectivity limit, which may be compared to the fraction of the incoming power which has been back-scattered by the particle and then collected by the probe. This fraction increases with their size. At last, some results from laser-shock accelerated particles using two different PDV systems are compared: it shows the improvement of detectivity with respect to the Effective Number of Bits (ENOB) of the digitizer.

  12. Laboratory Measurement of Bidirectional Reflectance of Radiometric Tarps

    NASA Technical Reports Server (NTRS)

    Knowlton, Kelly

    2006-01-01

    Objectives: a) To determine the magnitude of radiometric tarp BRDF; b) To determine whether an ASD FieldSpec Pro spectroradiometer can be used to perform the experiment. Radiometric tarps with nominal reflectance values of 52%, 35%, and 3.5%, deployed for IKONOS. QuickBird, and OrbView-3 overpasses Ground-based spectroradiometric measurements of tarp and Spectralon@ panel taken during overpass using ASD FieldSpec Pro spectroradiometer, and tarp reflectance calculated. Reflectance data used in atmospheric radiative transfer model (MODTRAN) to predict satellite at-sensor radiance for radiometric calibration. Reflectance data also used to validate atmospheric correction of high-spatial-resolution multispectral image products

  13. Reflectance characteristics of the Viking lander camera reference test charts

    NASA Technical Reports Server (NTRS)

    Wall, S. D.; Burcher, E. E.; Jabson, D. J.

    1975-01-01

    Reference test charts provide radiometric, colorimetric, and spatial resolution references for the Viking lander cameras on Mars. Reflectance measurements of these references are described, including the absolute bidirectional reflectance of the radiometric references and the relative spectral reflectance of both radiometric and colorimetric references. Results show that the bidirection reflectance of the radiometric references is Lambertian to within + or - 7% for incidence angles between 20 deg and 60 deg, and that their spectral reflectance is constant with wavelength to within + or - 5% over the spectral range of the cameras. Estimated accuracy of the measurements is + or - 0.05 in relative spectral reflectance.

  14. Improved Absolute Radiometric Calibration of a UHF Airborne Radar

    NASA Technical Reports Server (NTRS)

    Chapin, Elaine; Hawkins, Brian P.; Harcke, Leif; Hensley, Scott; Lou, Yunling; Michel, Thierry R.; Moreira, Laila; Muellerschoen, Ronald J.; Shimada, Joanne G.; Tham, Kean W.; hide

    2015-01-01

    The AirMOSS airborne SAR operates at UHF and produces fully polarimetric imagery. The AirMOSS radar data are used to produce Root Zone Soil Moisture (RZSM) depth profiles. The absolute radiometric accuracy of the imagery, ideally of better than 0.5 dB, is key to retrieving RZSM, especially in wet soils where the backscatter as a function of soil moisture function tends to flatten out. In this paper we assess the absolute radiometric uncertainty in previously delivered data, describe a method to utilize Built In Test (BIT) data to improve the radiometric calibration, and evaluate the improvement from applying the method.

  15. Novel dental dynamic depth profilometric imaging using simultaneous frequency-domain infrared photothermal radiometry and laser luminescence

    NASA Astrophysics Data System (ADS)

    Nicolaides, Lena; Mandelis, Andreas

    2000-01-01

    A high-spatial-resolution dynamic experimental imaging setup, which can provide simultaneous measurements of laser- induced frequency-domain infrared photothermal radiometric and luminescence signals from defects in teeth, has been developed for the first time. The major findings of this work are: (1) radiometric images are complementary to (anticorrelated with) luminescence images, as a result of the nature of the two physical signal generation processes; (2) the radiometric amplitude exhibits much superior dynamic (signal resolution) range to luminescence in distinguishing between intact and cracked sub-surface structures in the enamel; (3) the radiometric signal (amplitude and phase) produces dental images with much better defect localization, delineation, and resolution; (4) radiometric images (amplitude and phase) at a fixed modulation frequency are depth profilometric, whereas luminescence images are not; and (5) luminescence frequency responses from enamel and hydroxyapatite exhibit two relaxation lifetimes, the longer of which (approximately ms) is common to all and is not sensitive to the defect state and overall quality of the enamel. Simultaneous radiometric and luminescence frequency scans for the purpose of depth profiling were performed and a quantitative theoretical two-lifetime rate model of dental luminescence was advanced.

  16. Estimating physiological skin parameters from hyperspectral signatures

    NASA Astrophysics Data System (ADS)

    Vyas, Saurabh; Banerjee, Amit; Burlina, Philippe

    2013-05-01

    We describe an approach for estimating human skin parameters, such as melanosome concentration, collagen concentration, oxygen saturation, and blood volume, using hyperspectral radiometric measurements (signatures) obtained from in vivo skin. We use a computational model based on Kubelka-Munk theory and the Fresnel equations. This model forward maps the skin parameters to a corresponding multiband reflectance spectra. Machine-learning-based regression is used to generate the inverse map, and hence estimate skin parameters from hyperspectral signatures. We test our methods using synthetic and in vivo skin signatures obtained in the visible through the short wave infrared domains from 24 patients of both genders and Caucasian, Asian, and African American ethnicities. Performance validation shows promising results: good agreement with the ground truth and well-established physiological precepts. These methods have potential use in the characterization of skin abnormalities and in minimally-invasive prescreening of malignant skin cancers.

  17. Applications of Microwaves to Remote Sensing of Terrain

    NASA Technical Reports Server (NTRS)

    Porter, R. A.

    1975-01-01

    A survey and study was conducted to define the role that microwaves may play in the measurement of a variety of terrain-related parameters. The survey consisted of discussions with many users and researchers in the field of remote sensing. In addition, a survey questionnaire was prepared and replies were solicited from these and other users and researchers. The results of the survey, and associated bibliography, were studied and conclusions were drawn as to the usefulness of radiometric systems for remote sensing of terrain.

  18. A Traceable Ground to On-Orbit Radiometric Calibration System for the Solar Reflective Wavelength Region

    NASA Technical Reports Server (NTRS)

    Heath, Donald F.; Georgiev, Georgi

    2012-01-01

    This paper describes the combination of a Mie scattering spectral BSDF and BTDF albedo standard whose calibration is traceable to the NIST SIRCUS Facility or the NIST STARR II Facility. The Space-based Calibration Transfer Spectroradiometer (SCATS) sensor uses a simple, invariant optical configuration and dedicated narrow band spectral channel modules to provide very accurate, polarization-insensitive, stable measurements of earth albedo and lunar disk albedo. Optical degradation effects on calibration stability are eliminated through use of a common optical system for observations of the Sun, Earth, and Moon. The measurements from space would be traceable to SI units through preflight calibrations of radiance and irradiance at NIST's SIRCUS facility and the invariant optical system used in the sensor. Simultaneous measurements are made in multiple spectral channels covering the solar reflective wavelength range of 300 nm to 2.4 microns. The large dynamic range of signals is handled by use of single-element, highly-linear detectors, stable discrete electronic components, and a non imaging optical configuration. Up to 19 spectral modules can be mounted on a single-axis drive to give direct pointing at the Earth and at least once per orbit view of the Sun and Moon. By observing the Sun on every orbit, the most stringent stability requirements of the system are limited to short time periods. The invariant optical system for both radiance and irradiance measurements also give excellent transfer to-orbit SI traceability. Emerging instrumental requirements for remotely sensing tropospheric trace species have led to a rethinking by some of the paradigm for Systeme International d'Unites (SI) traceability of the spectral irradiance and radiance radiometric calibrations to spectral albedo (sr(exp -1)) which is not a SI unit. In the solar reflective wavelength region the spectral albedo calibrations are tied often to either the spectral albedo of a solar diffuser or the Moon. This new type of Mie scattering diffuser (MSD) is capable of withstanding high temperatures, and is more Lambertian than Spectralon(tm). It has the potential of covering the entire solar reflective wavelength region. Laboratory measurements have shown that the specular reflectance component is negligible, and indicate that internal absorption by multiple scattering is small. This MSD, a true volume diffuser, exhibits a high degree of radiometric stability which suggests that measurements at the National Institute of Standards and Technology (NIST) could provide a spectral albedo standard. Measurements have been made of its radiometric stability under a simulated space environment of high energy gamma rays, high energy protons, and UV radiation from ambient down to the vacuum ultraviolet H Lyman alpha at 121.6 nm for its eventual use in space as a solar diffuser.

  19. Upper-Tropospheric Winds Derived from Geostationary Satellite Water Vapor Observations

    NASA Technical Reports Server (NTRS)

    Velden, Christopher S.; Hayden, Christopher M.; Nieman, Steven J.; Menzel, W. Paul; Wanzong, Steven; Goerss, James S.

    1997-01-01

    The coverage and quality of remotely sensed upper-tropospheric moisture parameters have improved considerably with the deployment of a new generation of operational geostationary meteorological satellites: GOES-8/9 and GMS-5. The GOES-8/9 water vapor imaging capabilities have increased as a result of improved radiometric sensitivity and higher spatial resolution. The addition of a water vapor sensing channel on the latest GMS permits nearly global viewing of upper-tropospheric water vapor (when joined with GOES and Meteosat) and enhances the commonality of geostationary meteorological satellite observing capabilities. Upper-tropospheric motions derived from sequential water vapor imagery provided by these satellites can be objectively extracted by automated techniques. Wind fields can be deduced in both cloudy and cloud-free environments. In addition to the spatially coherent nature of these vector fields, the GOES-8/9 multispectral water vapor sensing capabilities allow for determination of wind fields over multiple tropospheric layers in cloud-free environments. This article provides an update on the latest efforts to extract water vapor motion displacements over meteorological scales ranging from subsynoptic to global. The potential applications of these data to impact operations, numerical assimilation and prediction, and research studies are discussed.

  20. Utilization of the Deep Space Atomic Clock for Europa Gravitational Tide Recovery

    NASA Technical Reports Server (NTRS)

    Seubert, Jill; Ely, Todd

    2015-01-01

    Estimation of Europa's gravitational tide can provide strong evidence of the existence of a subsurface liquid ocean. Due to limited close approach tracking data, a Europa flyby mission suffers strong coupling between the gravity solution quality and tracking data quantity and quality. This work explores utilizing Low Gain Antennas with the Deep Space Atomic Clock (DSAC) to provide abundant high accuracy uplink-only radiometric tracking data. DSAC's performance, expected to exhibit an Allan Deviation of less than 3e-15 at one day, provides long-term stability and accuracy on par with the Deep Space Network ground clocks, enabling one-way radiometric tracking data with accuracy equivalent to that of its two-way counterpart. The feasibility of uplink-only Doppler tracking via the coupling of LGAs and DSAC and the expected Doppler data quality are presented. Violations of the Kalman filter's linearization assumptions when state perturbations are included in the flyby analysis results in poor determination of the Europa gravitational tide parameters. B-plane targeting constraints are statistically determined, and a solution to the linearization issues via pre-flyby approach orbit determination is proposed and demonstrated.

  1. Automatic Coregistration and orthorectification (ACRO) and subsequent mosaicing of NASA high-resolution imagery over the Mars MC11 quadrangle, using HRSC as a baseline

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, Panagiotis; Muller, Jan-Peter; Watson, Gillian; Michael, Gregory; Walter, Sebastian

    2018-02-01

    This work presents the coregistered, orthorectified and mosaiced high-resolution products of the MC11 quadrangle of Mars, which have been processed using novel, fully automatic, techniques. We discuss the development of a pipeline that achieves fully automatic and parameter independent geometric alignment of high-resolution planetary images, starting from raw input images in NASA PDS format and following all required steps to produce a coregistered geotiff image, a corresponding footprint and useful metadata. Additionally, we describe the development of a radiometric calibration technique that post-processes coregistered images to make them radiometrically consistent. Finally, we present a batch-mode application of the developed techniques over the MC11 quadrangle to validate their potential, as well as to generate end products, which are released to the planetary science community, thus assisting in the analysis of Mars static and dynamic features. This case study is a step towards the full automation of signal processing tasks that are essential to increase the usability of planetary data, but currently, require the extensive use of human resources.

  2. Simultaneous measurement of temperature and emissivity of lunar regolith simulant using dual-channel millimeter-wave radiometry.

    PubMed

    McCloy, J S; Sundaram, S K; Matyas, J; Woskov, P P

    2011-05-01

    Millimeter wave (MMW) radiometry can be used for simultaneous measurement of emissivity and temperature of materials under extreme environments (high temperature, pressure, and corrosive environments). The state-of-the-art dual channel MMW passive radiometer with active interferometric capabilities at 137 GHz described here allows for radiometric measurements of sample temperature and emissivity up to at least 1600 °C with simultaneous measurement of sample surface dynamics. These capabilities have been used to demonstrate dynamic measurement of melting of powders of simulated lunar regolith and static measurement of emissivity of solid samples. The paper presents the theoretical background and basis for the dual-receiver system, describes the hardware in detail, and demonstrates the data analysis. Post-experiment analysis of emissivity versus temperature allows further extraction from the radiometric data of millimeter wave viewing beam coupling factors, which provide corroboratory evidence to the interferometric data of the process dynamics observed. These results show the promise of the MMW system for extracting quantitative and qualitative process parameters for industrial processes and access to real-time dynamics of materials behavior in extreme environments.

  3. Testing of focal plane arrays at the AEDC

    NASA Astrophysics Data System (ADS)

    Nicholson, Randy A.; Mead, Kimberly D.; Smith, Robert W.

    1992-07-01

    A facility was developed at the Arnold Engineering Development Center (AEDC) to provide complete radiometric characterization of focal plane arrays (FPAs). The highly versatile facility provides the capability to test single detectors, detector arrays, and hybrid FPAs. The primary component of the AEDC test facility is the Focal Plane Characterization Chamber (FPCC). The FPCC provides a cryogenic, low-background environment for the test focal plane. Focal plane testing in the FPCC includes flood source testing, during which the array is uniformly irradiated with IR radiation, and spot source testing, during which the target radiation is focused onto a single pixel or group of pixels. During flood source testing, performance parameters such as power consumption, responsivity, noise equivalent input, dynamic range, radiometric stability, recovery time, and array uniformity can be assessed. Crosstalk is evaluated during spot source testing. Spectral response testing is performed in a spectral response test station using a three-grating monochromator. Because the chamber can accommodate several types of testing in a single test installation, a high throughput rate and good economy of operation are possible.

  4. Improved Monitoring of Vegetation Productivity using Continuous Assimilation of Radiometric Data

    NASA Astrophysics Data System (ADS)

    Baret, F.; Lauvernet, C.; Weiss, M.; Prevot, L.; Rochdi, N.

    Canopy functioning models describe crop production from meteorological and soil inputs. However, because of the large number of variables and parameters used, and the poor knowledge of the actual values of some of them, the time course of the canopy and thus final production simulated by these models is often not very accurate. Satellite observations sensors allow controlling the simulations through assimilation of the radiometric data within radiative transfer models coupled to canopy functioning models. An assimilation scheme is presented with application to wheat crops. The coupling between radiative transfer models and canopy functioning models is described. The assimilation scheme is then applied to an experiment achieved within the ReSeDA project. Several issues relative to the assimilation process are discussed. They concern the type of canopy functioning model used, the possibility to assimilate biophysical products rather than radiances, and the use of ancillary information. Further, considerations associated to the problems linked to high spatial and temporal resolution data are listed and illustrated by preliminary results acquired within the ADAM project. Further discussion is made on the required temporal sampling for space observations.

  5. How to improve a critical performance for an ExoMars 2020 Scientific Instrument (RLS). Raman Laser Spectrometer Signal to Noise Ratio (SNR) Optimization

    NASA Astrophysics Data System (ADS)

    Canora, C. P.; Moral, A. G.; Rull, F.; Maurice, S.; Hutchinson, I.; Ramos, G.; López-Reyes, G.; Belenguer, T.; Canchal, R.; Prieto, J. A. R.; Rodriguez, P.; Santamaria, P.; Berrocal, A.; Colombo, M.; Gallago, P.; Seoane, L.; Quintana, C.; Ibarmia, S.; Zafra, J.; Saiz, J.; Santiago, A.; Marin, A.; Gordillo, C.; Escribano, D.; Sanz-Palominoa, M.

    2017-09-01

    The Raman Laser Spectrometer (RLS) is one of the Pasteur Payload instruments, within the ESA's Aurora Exploration Programme, ExoMars mission. Raman spectroscopy is based on the analysis of spectral fingerprints due to the inelastic scattering of light when interacting with matter. RLS is composed by Units: SPU (Spectrometer Unit), iOH (Internal Optical Head), and ICEU (Instrument Control and Excitation Unit) and the harnesses (EH and OH). The iOH focuses the excitation laser on the samples and collects the Raman emission from the sample via SPU (CCD) and the video data (analog) is received, digitalizing it and transmiting it to the processor module (ICEU). The main sources of noise arise from the sample, the background, and the instrument (Laser, CCD, focuss, acquisition parameters, operation control). In this last case the sources are mainly perturbations from the optics, dark signal and readout noise. Also flicker noise arising from laser emission fluctuations can be considered as instrument noise. In order to evaluate the SNR of a Raman instrument in a practical manner it is useful to perform end-to-end measurements on given standards samples. These measurements have to be compared with radiometric simulations using Raman efficiency values from literature and taking into account the different instrumental contributions to the SNR. The RLS EQM instrument performances results and its functionalities have been demonstrated in accordance with the science expectations. The Instrument obtained SNR performances in the RLS EQM will be compared experimentally and via analysis, with the Instrument Radiometric Model tool. The characterization process for SNR optimization is still on going. The operational parameters and RLS algorithms (fluorescence removal and acquisition parameters estimation) will be improved in future models (EQM-2) until FM Model delivery.

  6. Effects of Spectral Band Differences between Landsat 8 Operational Land Imager (OLI) and Sentinel 2A Multispectral Instrument (MSI)

    NASA Astrophysics Data System (ADS)

    Micijevic, E.; Haque, M. O.

    2015-12-01

    In satellite remote sensing, Landsat sensors are recognized for providing well calibrated satellite images for over four decades. This image data set provides an important contribution to detection and temporal analysis of land changes. Landsat 8 (L8), the latest satellite of the Landsat series, was designed to continue its legacy as well as to embrace advanced technology and satisfy the demand of the broader scientific community. Sentinel 2A (S2A), a European satellite launched in June 2015, is designed to keep data continuity of Landsat and SPOT like satellites. The S2A MSI sensor is equipped with spectral bands similar to L8 OLI and includes some additional ones. Compared to L8 OLI, green and near infrared MSI bands have narrower bandwidths, whereas coastal-aerosol (CA) and cirrus have larger bandwidths. The blue and red MSI bands cover higher wavelengths than the matching OLI bands. Although the spectral band differences are not large, their combination with the spectral signature of a studied target can largely affect the Top Of Atmosphere (TOA) reflectance seen by the sensors. This study investigates the effect of spectral band differences between S2A MSI and L8 OLI sensors. The differences in spectral bands between sensors can be assessed by calculating Spectral Band Adjustment Factors (SBAF). For radiometric calibration purposes, the SBAFs for the calibration test site are used to bring the two sensors to the same radiometric scale. However, the SBAFs are target dependent and different sensors calibrated to the same radiometric scale will (correctly!) measure different reflectance for the same target. Thus, when multiple sensors are used to study a given target, the sensor responses need to be adjusted using SBAFs specific to that target. Comparison of the SBAFs for S2A MSI and L8 OLI based on various vegetation spectral profiles revealed variations in radiometric responses as high as 15%. Depending on target under study, these differences could be even higher.

  7. Mapping surface soil moisture with L-band radiometric measurements

    NASA Technical Reports Server (NTRS)

    Wang, James R.; Shiue, James C.; Schmugge, Thomas J.; Engman, Edwin T.

    1989-01-01

    A NASA C-130 airborne remote sensing aircraft was used to obtain four-beam pushbroom microwave radiometric measurements over two small Kansas tall-grass prairie region watersheds, during a dry-down period after heavy rainfall in May and June, 1987. While one of the watersheds had been burned 2 months before these measurements, the other had not been burned for over a year. Surface soil-moisture data were collected at the time of the aircraft measurements and correlated with the corresponding radiometric measurements, establishing a relationship for surface soil-moisture mapping. Radiometric sensitivity to soil moisture variation is higher in the burned than in the unburned watershed; surface soil moisture loss is also faster in the burned watershed.

  8. Performance Assessment and Geometric Calibration of RESOURCESAT-2

    NASA Astrophysics Data System (ADS)

    Radhadevi, P. V.; Solanki, S. S.; Akilan, A.; Jyothi, M. V.; Nagasubramanian, V.

    2016-06-01

    Resourcesat-2 (RS-2) has successfully completed five years of operations in its orbit. This satellite has multi-resolution and multi-spectral capabilities in a single platform. A continuous and autonomous co-registration, geo-location and radiometric calibration of image data from different sensors with widely varying view angles and resolution was one of the challenges of RS-2 data processing. On-orbit geometric performance of RS-2 sensors has been widely assessed and calibrated during the initial phase operations. Since then, as an ongoing activity, various geometric performance data are being generated periodically. This is performed with sites of dense ground control points (GCPs). These parameters are correlated to the direct geo-location accuracy of the RS-2 sensors and are monitored and validated to maintain the performance. This paper brings out the geometric accuracy assessment, calibration and validation done for about 500 datasets of RS-2. The objectives of this study are to ensure the best absolute and relative location accuracy of different cameras, location performance with payload steering and co-registration of multiple bands. This is done using a viewing geometry model, given ephemeris and attitude data, precise camera geometry and datum transformation. In the model, the forward and reverse transformations between the coordinate systems associated with the focal plane, payload, body, orbit and ground are rigorously and explicitly defined. System level tests using comparisons to ground check points have validated the operational geo-location accuracy performance and the stability of the calibration parameters.

  9. A Procedure for High Resolution Satellite Imagery Quality Assessment

    PubMed Central

    Crespi, Mattia; De Vendictis, Laura

    2009-01-01

    Data products generated from High Resolution Satellite Imagery (HRSI) are routinely evaluated during the so-called in-orbit test period, in order to verify if their quality fits the desired features and, if necessary, to obtain the image correction parameters to be used at the ground processing center. Nevertheless, it is often useful to have tools to evaluate image quality also at the final user level. Image quality is defined by some parameters, such as the radiometric resolution and its accuracy, represented by the noise level, and the geometric resolution and sharpness, described by the Modulation Transfer Function (MTF). This paper proposes a procedure to evaluate these image quality parameters; the procedure was implemented in a suitable software and tested on high resolution imagery acquired by the QuickBird, WorldView-1 and Cartosat-1 satellites. PMID:22412312

  10. Estimation of Multiple Parameters over Vegetated Surfaces by Integrating Optical-Thermal Remote Sensing Observations

    NASA Astrophysics Data System (ADS)

    Ma, H.

    2016-12-01

    Land surface parameters from remote sensing observations are critical in monitoring and modeling of global climate change and biogeochemical cycles. Current methods for estimating land surface parameters are generally parameter-specific algorithms and are based on instantaneous physical models, which result in spatial, temporal and physical inconsistencies in current global products. Besides, optical and Thermal Infrared (TIR) remote sensing observations are usually separated to use based on different models , and the Middle InfraRed (MIR) observations have received little attention due to the complexity of the radiometric signal that mixes both reflected and emitted fluxes. In this paper, we proposed a unified algorithm for simultaneously retrieving a total of seven land surface parameters, including Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), land surface albedo, Land Surface Temperature (LST), surface emissivity, downward and upward longwave radiation, by exploiting remote sensing observations from visible to TIR domain based on a common physical Radiative Transfer (RT) model and a data assimilation framework. The coupled PROSPECT-VISIR and 4SAIL RT model were used for canopy reflectance modeling. At first, LAI was estimated using a data assimilation method that combines MODIS daily reflectance observation and a phenology model. The estimated LAI values were then input into the RT model to simulate surface spectral emissivity and surface albedo. Besides, the background albedo and the transmittance of solar radiation, and the canopy albedo were also calculated to produce FAPAR. Once the spectral emissivity of seven MODIS MIR to TIR bands were retrieved, LST can be estimated from the atmospheric corrected surface radiance by exploiting an optimization method. At last, the upward longwave radiation were estimated using the retrieved LST, broadband emissivity (converted from spectral emissivity) and the downward longwave radiation (modeled by MODTRAN). These seven parameters were validated over several representative sites with different biome type, and compared with MODIS and GLASS product. Results showed that this unified inversion algorithm can retrieve temporally complete and physical consistent land surface parameters with high accuracy.

  11. Development of a car-borne γ-ray survey system, KURAMA

    NASA Astrophysics Data System (ADS)

    Tanigaki, M.; Okumura, R.; Takamiya, K.; Sato, N.; Yoshino, H.; Yamana, H.

    2013-10-01

    A compact radiometric survey system, named KURAMA (Kyoto University RAdiation MApping system), has been developed as a response to the nuclear disaster of Fukushima Daiichi nuclear power plant. KURAMA is based on GPS (Global Positioning System) and network technology, and intended for the realtime data accumulation of multiple mobile monitoring stations, such as monitoring cars. KURAMA now serves for the car-borne surveys in Fukushima and surrounding prefectures by the Japanese Government and local authorities. An outline of KURAMA and discussions on car-borne γ-ray surveys using KURAMA are introduced.

  12. Numerical study of radiometric forces via the direct solution of the Boltzmann kinetic equation

    NASA Astrophysics Data System (ADS)

    Anikin, Yu. A.

    2011-07-01

    The two-dimensional rarefied gas motion in a Crookes radiometer and the resulting radiometric forces are studied by numerically solving the Boltzmann kinetic equation. The collision integral is directly evaluated using a projection method, and second-order accurate TVD schemes are used to solve the advection equation. The radiometric forces are found as functions of the Knudsen number and the temperatures, and their spatial distribution is analyzed.

  13. Artifact correction and absolute radiometric calibration techniques employed in the Landsat 7 image assessment system

    USGS Publications Warehouse

    Boncyk, Wayne C.; Markham, Brian L.; Barker, John L.; Helder, Dennis

    1996-01-01

    The Landsat-7 Image Assessment System (IAS), part of the Landsat-7 Ground System, will calibrate and evaluate the radiometric and geometric performance of the Enhanced Thematic Mapper Plus (ETM +) instrument. The IAS incorporates new instrument radiometric artifact correction and absolute radiometric calibration techniques which overcome some limitations to calibration accuracy inherent in historical calibration methods. Knowledge of ETM + instrument characteristics gleaned from analysis of archival Thematic Mapper in-flight data and from ETM + prelaunch tests allow the determination and quantification of the sources of instrument artifacts. This a priori knowledge will be utilized in IAS algorithms designed to minimize the effects of the noise sources before calibration, in both ETM + image and calibration data.

  14. Processing multispectral data obtained by orbital platforms of the LANDSAT series for studies of water quality in Guanabara Bay. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Verdesio, J. J.

    1981-01-01

    The relationship existing between Guanabara Bay water quality ground truth parameters and LANDSAT MSS video data was investigated. The parameters considered were: chorophyll content, water transparency usng the Secchi disk, salinity, and dissolved ammonia. Data from two overflights was used, and methods of processing digital data were compared. Linear and nonlinear regression analyses were utilized, comparing original data with processed data by using the correlation coefficient and the estimation mean error. It was determined that better quality data are obtained by using radiometric correction programs with a physical basis, contrast ratio, and normalization. Incidental locations of floating vegetation, changes in bottom depth, oil slicks, and ships at anchor were made.

  15. Experimental analysis of bruises in human volunteers using radiometric depth profiling and diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Vidovič, Luka; Milanič, Matija; Majaron, Boris

    2015-07-01

    We combine pulsed photothermal radiometry (PPTR) depth profiling with diffuse reflectance spectroscopy (DRS) measurements for a comprehensive analysis of bruise evolution in vivo. While PPTR enables extraction of detailed depth distribution and concentration profiles of selected absorbers (e.g. melanin, hemoglobin), DRS provides information in a wide range of visible wavelengths and thus offers an additional insight into dynamics of the hemoglobin degradation products. Combining the two approaches enables us to quantitatively characterize bruise evolution dynamics. Our results indicate temporal variations of the bruise evolution parameters in the course of bruise self-healing process. The obtained parameter values and trends represent a basis for a future development of an objective technique for bruise age determination.

  16. Radiometric Characterization Results for the IKONOS, Quickbird, and OrbView-3 Sensor

    NASA Technical Reports Server (NTRS)

    Holekamp, Kara; Aaron, David; Thome, Kurtis

    2006-01-01

    Radiometric calibration of commercial imaging satellite products is required to ensure that science and application communities better understand commercial imaging satellite properties. Inaccurate radiometric calibrations can lead to erroneous decisions and invalid conclusions and can limit intercomparisons with other systems. To address this calibration need, the NASA Applied Sciences Directorate (ASD) at Stennis Space Center established a commercial satellite imaging radiometric calibration team consisting of three independent groups: NASA ASD, the University of Arizona Remote Sensing Group, and South Dakota State University. Each group independently determined the absolute radiometric calibration coefficients of available high-spatial-resolution commercial 4-band multispectral products, in the visible though near-infrared spectrum, from GeoEye(tradeMark) (formerly SpaceImaging(Registered TradeMark)) IKONOS, DigitalGlobe(Regitered TradeMark) QuickBird, and GeoEye (formerly ORBIMAGE(Registered TradeMark) OrbView. Each team member employed some variant of reflectance-based vicarious calibration approach, requiring ground-based measurements coincident with image acquisitions and radiative transfer calculations. Several study sites throughout the United States that covered a significant portion of the sensor's dynamic range were employed. Satellite at-sensor radiance values were compared to those estimated by each independent team member to evaluate the sensor's radiometric accuracy. The combined results of this evaluation provide the user community with an independent assessment of these sensors' absolute calibration values.

  17. PHASS99: A software program for retrieving and decoding the radiometric ages of igneous rocks from the international database IGBADAT

    NASA Astrophysics Data System (ADS)

    Al-Mishwat, Ali T.

    2016-05-01

    PHASS99 is a FORTRAN program designed to retrieve and decode radiometric and other physical age information of igneous rocks contained in the international database IGBADAT (Igneous Base Data File). In the database, ages are stored in a proprietary format using mnemonic representations. The program can handle up to 99 ages in an igneous rock specimen and caters to forty radiometric age systems. The radiometric age alphanumeric strings assigned to each specimen description in the database consist of four components: the numeric age and its exponential modifier, a four-character mnemonic method identification, a two-character mnemonic name of analysed material, and the reference number in the rock group bibliography vector. For each specimen, the program searches for radiometric age strings, extracts them, parses them, decodes the different age components, and converts them to high-level English equivalents. IGBADAT and similarly-structured files are used for input. The output includes three files: a flat raw ASCII text file containing retrieved radiometric age information, a generic spreadsheet-compatible file for data import to spreadsheets, and an error file. PHASS99 builds on the old program TSTPHA (Test Physical Age) decoder program and expands greatly its capabilities. PHASS99 is simple, user friendly, fast, efficient, and does not require users to have knowledge of programing.

  18. Determination of the microbolometric FPA's responsivity with imaging system's radiometric considerations

    NASA Astrophysics Data System (ADS)

    Gogler, Slawomir; Bieszczad, Grzegorz; Krupinski, Michal

    2013-10-01

    Thermal imagers and used therein infrared array sensors are subject to calibration procedure and evaluation of their voltage sensitivity on incident radiation during manufacturing process. The calibration procedure is especially important in so-called radiometric cameras, where accurate radiometric quantities, given in physical units, are of concern. Even though non-radiometric cameras are not expected to stand up to such elevated standards, it is still important, that the image faithfully represents temperature variations across the scene. Detectors used in thermal camera are illuminated by infrared radiation transmitted through an infrared transmitting optical system. Often an optical system, when exposed to uniform Lambertian source forms a non-uniform irradiation distribution in its image plane. In order to be able to carry out an accurate non-uniformity correction it is essential to correctly predict irradiation distribution from a uniform source. In the article a non-uniformity correction method has been presented, that takes into account optical system's radiometry. Predictions of the irradiation distribution have been confronted with measured irradiance values. Presented radiometric model allows fast and accurate non-uniformity correction to be carried out.

  19. Adjustments to the MODIS Terra Radiometric Calibration and Polarization Sensitivity in the 2010 Reprocessing

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard; Franz, Bryan A.

    2011-01-01

    The Moderate-Resolution Imaging Spectroradiometer (MODIS) on NASA s Earth Observing System (EOS) satellite Terra provides global coverage of top-of-atmosphere (TOA) radiances that have been successfully used for terrestrial and atmospheric research. The MODIS Terra ocean color products, however, have been compromised by an inadequate radiometric calibration at the short wavelengths. The Ocean Biology Processing Group (OBPG) at NASA has derived radiometric corrections using ocean color products from the SeaWiFS sensor as truth fields. In the R2010.0 reprocessing, these corrections have been applied to the whole mission life span of 10 years. This paper presents the corrections to the radiometric gains and to the instrument polarization sensitivity, demonstrates the improvement to the Terra ocean color products, and discusses issues that need further investigation. Although the global averages of MODIS Terra ocean color products are now in excellent agreement with those of SeaWiFS and MODIS Aqua, and image quality has been significantly improved, the large corrections applied to the radiometric calibration and polarization sensitivity require additional caution when using the data.

  20. Generating Vegetation Leaf Area Index Earth System Data Record from Multiple Sensors. Part 1; Theory

    NASA Technical Reports Server (NTRS)

    Ganguly, Sangram; Schull, Mitchell A.; Samanta, Arindam; Shabanov, Nikolay V.; Milesi, Cristina; Nemani, Ramakrishna R.; Knyazikhin, Yuri; Myneni, Ranga B.

    2008-01-01

    The generation of multi-decade long Earth System Data Records (ESDRs) of Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) from remote sensing measurements of multiple sensors is key to monitoring long-term changes in vegetation due to natural and anthropogenic influences. Challenges in developing such ESDRs include problems in remote sensing science (modeling of variability in global vegetation, scaling, atmospheric correction) and sensor hardware (differences in spatial resolution, spectral bands, calibration, and information content). In this paper, we develop a physically based approach for deriving LAI and FPAR products from the Advanced Very High Resolution Radiometer (AVHRR) data that are of comparable quality to the Moderate resolution Imaging Spectroradiometer (MODIS) LAI and FPAR products, thus realizing the objective of producing a long (multi-decadal) time series of these products. The approach is based on the radiative transfer theory of canopy spectral invariants which facilitates parameterization of the canopy spectral bidirectional reflectance factor (BRF). The methodology permits decoupling of the structural and radiometric components and obeys the energy conservation law. The approach is applicable to any optical sensor, however, it requires selection of sensor-specific values of configurable parameters, namely, the single scattering albedo and data uncertainty. According to the theory of spectral invariants, the single scattering albedo is a function of the spatial scale, and thus, accounts for the variation in BRF with sensor spatial resolution. Likewise, the single scattering albedo accounts for the variation in spectral BRF with sensor bandwidths. The second adjustable parameter is data uncertainty, which accounts for varying information content of the remote sensing measurements, i.e., Normalized Difference Vegetation Index (NDVI, low information content), vs. spectral BRF (higher information content). Implementation of this approach indicates good consistency in LAI values retrieved from NDVI (AVHRRmode) and spectral BRF (MODIS-mode). Specific details of the implementation and evaluation of the derived products are detailed in the second part of this two-paper series.

  1. Feasibility Study of Radiometry for Airborne Detection of Aviation Hazards

    NASA Technical Reports Server (NTRS)

    Gimmestad, Gary G.; Papanicolopoulos, Chris D.; Richards, Mark A.; Sherman, Donald L.; West, Leanne L.; Johnson, James W. (Technical Monitor)

    2001-01-01

    Radiometric sensors for aviation hazards have the potential for widespread and inexpensive deployment on aircraft. This report contains discussions of three aviation hazards - icing, turbulence, and volcanic ash - as well as candidate radiometric detection techniques for each hazard. Dual-polarization microwave radiometry is the only viable radiometric technique for detection of icing conditions, but more research will be required to assess its usefulness to the aviation community. Passive infrared techniques are being developed for detection of turbulence and volcanic ash by researchers in this country and also in Australia. Further investigation of the infrared airborne radiometric hazard detection approaches will also be required in order to develop reliable detection/discrimination techniques. This report includes a description of a commercial hyperspectral imager for investigating the infrared detection techniques for turbulence and volcanic ash.

  2. Aquarius Digital Processing Unit

    NASA Technical Reports Server (NTRS)

    Forgione, Joshua; Winkert, George; Dobson, Norman

    2009-01-01

    Three documents provide information on a digital processing unit (DPU) for the planned Aquarius mission, in which a radiometer aboard a spacecraft orbiting Earth is to measure radiometric temperatures from which data on sea-surface salinity are to be deduced. The DPU is the interface between the radiometer and an instrument-command-and-data system aboard the spacecraft. The DPU cycles the radiometer through a programmable sequence of states, collects and processes all radiometric data, and collects all housekeeping data pertaining to operation of the radiometer. The documents summarize the DPU design, with emphasis on innovative aspects that include mainly the following: a) In the radiometer and the DPU, conversion from analog voltages to digital data is effected by means of asynchronous voltage-to-frequency converters in combination with a frequency-measurement scheme implemented in field-programmable gate arrays (FPGAs). b) A scheme to compensate for aging and changes in the temperature of the DPU in order to provide an overall temperature-measurement accuracy within 0.01 K includes a high-precision, inexpensive DC temperature measurement scheme and a drift-compensation scheme that was used on the Cassini radar system. c) An interface among multiple FPGAs in the DPU guarantees setup and hold times.

  3. Possible test at Jupiter of the nonsymmetric gravitational theory

    NASA Technical Reports Server (NTRS)

    Krisher, Timothy P.

    1989-01-01

    Radiometric data generated during spacecraft flybys of Jupiter have the capability to provide an interesting constraint on the coupling of cosmions in the nonsymmetric gravitational theory (NGT) of Moffat. It is shown that the close flyby of Jupiter by Pioneer 11 could imply a possible limit on the NGT l parameter of the sun of solar l less than 2800 km, a limit which could affect the ability of the NGT to account for the precession of the perihelion of Mercury with a large solar quadrupole moment.

  4. Analysis of soil moisture extraction algorithm using data from aircraft experiments

    NASA Technical Reports Server (NTRS)

    Burke, H. H. K.; Ho, J. H.

    1981-01-01

    A soil moisture extraction algorithm is developed using a statistical parameter inversion method. Data sets from two aircraft experiments are utilized for the test. Multifrequency microwave radiometric data surface temperature, and soil moisture information are contained in the data sets. The surface and near surface ( or = 5 cm) soil moisture content can be extracted with accuracy of approximately 5% to 6% for bare fields and fields with grass cover by using L, C, and X band radiometer data. This technique is used for handling large amounts of remote sensing data from space.

  5. A continuous hyperspatial monitoring system of evapotranspiration and gross primary productivity from Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Bandini, Filippo; Jakobsen, Jakob; Zarco-Tejada, Pablo J.; Köppl, Christian Josef; Haugård Olesen, Daniel; Ibrom, Andreas; Bauer-Gottwein, Peter; Garcia, Monica

    2017-04-01

    Unmanned Aerial Systems (UAS) can collect optical and thermal hyperspatial (<1m) imagery with low cost and flexible revisit times regardless of cloudy conditions. The reflectance and radiometric temperature signatures of the land surface, closely linked with the vegetation structure and functioning, are already part of models to predict Evapotranspiration (ET) and Gross Primary Productivity (GPP) from satellites. However, there remain challenges for an operational monitoring using UAS compared to satellites: the payload capacity of most commercial UAS is less than 2 kg, but miniaturized sensors have low signal to noise ratios and small field of view requires mosaicking hundreds of images and accurate orthorectification. In addition, wind gusts and lower platform stability require appropriate geometric and radiometric corrections. Finally, modeling fluxes on days without images is still an issue for both satellite and UAS applications. This study focuses on designing an operational UAS-based monitoring system including payload design, sensor calibration, based on routine collection of optical and thermal images in a Danish willow field to perform a joint monitoring of ET and GPP dynamics over continuous time at daily time steps. The payload (<2 kg) consists of a multispectral camera (Tetra Mini-MCA6), a thermal infrared camera (FLIR Tau 2), a digital camera (Sony RX-100) used to retrieve accurate digital elevation models (DEMs) for multispectral and thermal image orthorectification, and a standard GNSS single frequency receiver (UBlox) or a real time kinematic double frequency system (Novatel Inc. flexpack6+OEM628). Geometric calibration of the digital and multispectral cameras was conducted to recover intrinsic camera parameters. After geometric calibration, accurate DEMs with vertical errors about 10cm could be retrieved. Radiometric calibration for the multispectral camera was conducted with an integrating sphere (Labsphere CSTM-USS-2000C) and the laboratory calibration showed that the camera measured radiance had a bias within ±4.8%. The thermal camera was calibrated using a black body at varying target and ambient temperatures and resulted in laboratory accuracy with RMSE of 0.95 K. A joint model of ET and GPP was applied using two parsimonious, physiologically based models, a modified version of the Priestley-Taylor Jet Propulsion Laboratory model (Fisher et al., 2008; Garcia et al., 2013) and a Light Use Efficiency approach (Potter et al., 1993). Both models estimate ET and GPP under optimum potential conditions down-regulated by the same biophysical constraints dependent on remote sensing and atmospheric data to reflect multiple stresses. Vegetation indices were calculated from the multispectral data to assess vegetation conditions, while thermal infrared imagery was used to compute a thermal inertia index to infer soil moisture constraints. To interpolate radiometric temperature between flights, a prognostic Surface Energy Balance model (Margulis et al., 2001) based on the force-restore method was applied in a data assimilation scheme to obtain continuous ET and GPP fluxes. With this operational system, regular flight campaigns with a hexacopter (DJI S900) have been conducted in a Danish willow flux site (Risø) over the 2016 growing season. The observed energy, water and carbon fluxes from the Risø eddy covariance flux tower were used to validate the model simulation. This UAS monitoring system is suitable for agricultural management and land-atmosphere interaction studies.

  6. Study of Spectral/Radiometric Characteristics of the Thematic Mapper for Land Use Applications

    NASA Technical Reports Server (NTRS)

    Malila, W. A. (Principal Investigator); Metzler, M. D. (Principal Investigator)

    1985-01-01

    An investigation conducted in support of the LANDSAT 4/5 Image Data Quality Analysis (LIDQA) Program is discussed. Results of engineering analyses of radiometric, spatial, spectral, and geometric properties of the Thematic Mapper systems are summarized; major emphasis is placed on the radiometric analysis. Details of the analyses are presented in appendices, which contain three of the eight technical papers produced during this investigation; these three, together, describe the major activities and results of the investigation.

  7. Contruction and physical parameters of multiscan whole-body scanner (in Czech)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silar, J.; Smidova, M.; Vacek, J.

    The construction of a commercial whole-body scanner which permits scanning in the form of a photographic picture, and the distribution in the human body of the activity of gamma emitters having an energy of up to 1.3 MeV, at relatively short intervals are described. The results are presented of the measurement of physical parameters affecting the scanning possibilities of a Model No. 602 Multiscan, produced by Cyclotron Corporation. The resulting radiometric parameters are listed. The results of measurement show that the device can be used in the whole-body scanning of the distribution of the activity of gamma emitters applied inmore » routine procedures, such as 100 mu Ci of /sup 85/ Sr, with a position resolution of 25 to 50 mm in a tissue layer in a height of up to 100 mm above the Multiscan table. (INIS)« less

  8. Teaching the Mathematics of Radioactive Dating.

    ERIC Educational Resources Information Center

    Shea, James H.

    2001-01-01

    Describes a method used to teach the concept of radiometric dating using mathematical equations. Explores the lack of information in textbooks on how to solve radiometric dating problems using mathematical concepts. (SAH)

  9. Four years of Landsat-7 on-orbit geometric calibration and performance

    USGS Publications Warehouse

    Lee, D.S.; Storey, James C.; Choate, M.J.; Hayes, R.W.

    2004-01-01

    Unlike its predecessors, Landsat-7 has undergone regular geometric and radiometric performance monitoring and calibration since launch in April 1999. This ongoing activity, which includes issuing quarterly updates to calibration parameters, has generated a wealth of geometric performance data over the four-year on-orbit period of operations. A suite of geometric characterization (measurement and evaluation procedures) and calibration (procedures to derive improved estimates of instrument parameters) methods are employed by the Landsat-7 Image Assessment System to maintain the geometric calibration and to track specific aspects of geometric performance. These include geodetic accuracy, band-to-band registration accuracy, and image-to-image registration accuracy. These characterization and calibration activities maintain image product geometric accuracy at a high level - by monitoring performance to determine when calibration is necessary, generating new calibration parameters, and verifying that new parameters achieve desired improvements in accuracy. Landsat-7 continues to meet and exceed all geometric accuracy requirements, although aging components have begun to affect performance.

  10. Advanced Land Imager Assessment System

    NASA Technical Reports Server (NTRS)

    Chander, Gyanesh; Choate, Mike; Christopherson, Jon; Hollaren, Doug; Morfitt, Ron; Nelson, Jim; Nelson, Shar; Storey, James; Helder, Dennis; Ruggles, Tim; hide

    2008-01-01

    The Advanced Land Imager Assessment System (ALIAS) supports radiometric and geometric image processing for the Advanced Land Imager (ALI) instrument onboard NASA s Earth Observing-1 (EO-1) satellite. ALIAS consists of two processing subsystems for radiometric and geometric processing of the ALI s multispectral imagery. The radiometric processing subsystem characterizes and corrects, where possible, radiometric qualities including: coherent, impulse; and random noise; signal-to-noise ratios (SNRs); detector operability; gain; bias; saturation levels; striping and banding; and the stability of detector performance. The geometric processing subsystem and analysis capabilities support sensor alignment calibrations, sensor chip assembly (SCA)-to-SCA alignments and band-to-band alignment; and perform geodetic accuracy assessments, modulation transfer function (MTF) characterizations, and image-to-image characterizations. ALIAS also characterizes and corrects band-toband registration, and performs systematic precision and terrain correction of ALI images. This system can geometrically correct, and automatically mosaic, the SCA image strips into a seamless, map-projected image. This system provides a large database, which enables bulk trending for all ALI image data and significant instrument telemetry. Bulk trending consists of two functions: Housekeeping Processing and Bulk Radiometric Processing. The Housekeeping function pulls telemetry and temperature information from the instrument housekeeping files and writes this information to a database for trending. The Bulk Radiometric Processing function writes statistical information from the dark data acquired before and after the Earth imagery and the lamp data to the database for trending. This allows for multi-scene statistical analyses.

  11. Radiometric calibration and stability of the Landsat-8 Operational Land Imager (OLI)

    NASA Astrophysics Data System (ADS)

    Markham, Brian L.; Barsi, Julia A.; Kaita, Edward; Ong, Lawrence; Morfitt, Ron A.; Haque, Md. O.

    2015-09-01

    Landsat-8 and its two Earth imaging sensors, the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) have been operating on-orbit for 2 1/2 years. The OLI radiometric calibration, which is monitored using on-board lamps, on-board solar diffusers, the moon and vicarious calibration techniques has been stable to within 1% over this period of time. The Coastal Aerosol band, band 1, shows the largest change at about 1% over the period; all other bands have shown no significant trend. OLI bands 1- 4 show small discontinuities in response (+0.1% to 0.2%) beginning about 7 months after launch and continuing for about 1 month associated with a power cycling of the instrument, though the origin of the recovery is unclear. To date these small changes have not been compensated for, but this will change with a reprocessing campaign that is currently scheduled for Fall 2015. The calibration parameter files (each typically covering a 3 month period) will be updated for these observed gain changes. A fitted response to an adjusted average of the lamps, solar and lunar results will represent the trend, sampled at the rate of one value per CPF.

  12. Radiometric Calibration and Stability of the Landsat-8 Operational Land Imager (OLI)

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Barsi, Julia A.; Kaita, Edward; Ong, Lawrence; Morfitt, Ron; Haque, Md Obaidul

    2015-01-01

    Landsat-8 and its two Earth imaging sensors, the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) have been operating on-orbit for 2 1/2 years. The OLI radiometric calibration, which is monitored using on-board lamps, on-board solar diffusers, the moon and vicarious calibration techniques has been stable to within 1% over this period of time. The Coastal Aerosol band, band 1, shows the largest change at about 1% over the period; all other bands have shown no significant trend. OLI bands 1- 4 show small discontinuities in response (+0.1% to 0.2%) beginning about 7 months after launch and continuing for about 1 month associated with a power cycling of the instrument, though the origin of the recovery is unclear. To date these small changes have not been compensated for, but this will change with a reprocessing campaign that is currently scheduled for Fall 2015. The calibration parameter files (each typically covering a 3 month period) will be updated for these observed gain changes. A fitted response to an adjusted average of the lamps, solar and lunar results will represent the trend, sampled at the rate of one value per CPF.

  13. Simultaneous measurement of temperature and emissivity of lunar regolith simulant using dual-channel millimeter-wave radiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCloy, J. S.; Sundaram, S. K.; Matyas, J.

    Millimeter wave (MMW) radiometry can be used for simultaneous measurement of emissivity and temperature of materials under extreme environments (high temperature, pressure, and corrosive environments). The state-of-the-art dual channel MMW passive radiometer with active interferometric capabilities at 137 GHz described here allows for radiometric measurements of sample temperature and emissivity up to at least 1600 °C with simultaneous measurement of sample surface dynamics. These capabilities have been used to demonstrate dynamic measurement of melting of powders of simulated lunar regolith and static measurement of emissivity of solid samples. The paper presents the theoretical background and basis for the dual-receiver system,more » describes the hardware in detail, and demonstrates the data analysis. Post-experiment analysis of emissivity versus temperature allows further extraction from the radiometric data of millimeter wave viewing beam coupling factors, which provide corroboratory evidence to the interferometric data of the process dynamics observed. Finally, these results show the promise of the MMW system for extracting quantitative and qualitative process parameters for industrial processes and access to real-time dynamics of materials behavior in extreme environments.« less

  14. Broadband radiometric LED measurements

    NASA Astrophysics Data System (ADS)

    Eppeldauer, G. P.; Cooksey, C. C.; Yoon, H. W.; Hanssen, L. M.; Podobedov, V. B.; Vest, R. E.; Arp, U.; Miller, C. C.

    2016-09-01

    At present, broadband radiometric LED measurements with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed.

  15. Design and analysis of radiometric instruments using high-level numerical models and genetic algorithms

    NASA Astrophysics Data System (ADS)

    Sorensen, Ira Joseph

    A primary objective of the effort reported here is to develop a radiometric instrument modeling environment to provide complete end-to-end numerical models of radiometric instruments, integrating the optical, electro-thermal, and electronic systems. The modeling environment consists of a Monte Carlo ray-trace (MCRT) model of the optical system coupled to a transient, three-dimensional finite-difference electrothermal model of the detector assembly with an analytic model of the signal-conditioning circuitry. The environment provides a complete simulation of the dynamic optical and electrothermal behavior of the instrument. The modeling environment is used to create an end-to-end model of the CERES scanning radiometer, and its performance is compared to the performance of an operational CERES total channel as a benchmark. A further objective of this effort is to formulate an efficient design environment for radiometric instruments. To this end, the modeling environment is then combined with evolutionary search algorithms known as genetic algorithms (GA's) to develop a methodology for optimal instrument design using high-level radiometric instrument models. GA's are applied to the design of the optical system and detector system separately and to both as an aggregate function with positive results.

  16. Laboratory-Based Bidirectional Reflectance Distribution Functions of Radiometric Tarps

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Butler, James J.

    2008-01-01

    Laboratory-based bidirectional reflectance distribution functions of radiometric tarp samples used in the vicarious calibration of Earth remote sensing satellite instruments are presented in this paper. The results illustrate the BRDF dependence on the orientation of the tarps weft and warp threads. The study was performed using the GSFC scatterometer at incident zenith angles of 0 deg, 10 deg, and 30 deg; scatter zenith angles from 0 deg. to 60 deg.; and scatter azimuth angles of 0 deg., 45 deg., 90 deg., 135 deg. and 180 deg. The wavelengths were 485nm, 550nm, 633nm and 800nm. The tarp's weft and warp dependence on BRDF is well defined at all measurement geometries and wavelengths. The BRDF difference can be as high as 8% at 0o incident angle and 12% at 30 deg. incident angle. The fitted BRDF data shows a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps are reported. The backward scatter is well pronounced for the white samples. The black sample has well pronounced forward scatter. The provided BRDF characterization of radiometric tarps is an excellent reference for anyone interested in using tarps for radiometric calibrations. The results are NIST traceable.

  17. Measurements of Regolith Simulant Thermal Conductivity Under Asteroid and Mars Surface Conditions

    NASA Astrophysics Data System (ADS)

    Ryan, A. J.; Christensen, P. R.

    2017-12-01

    Laboratory measurements have been necessary to interpret thermal data of planetary surfaces for decades. We present a novel radiometric laboratory method to determine temperature-dependent thermal conductivity of complex regolith simulants under rough to high vacuum and across a wide range of temperatures. This method relies on radiometric temperature measurements instead of contact measurements, eliminating the need to disturb the sample with thermal probes. We intend to determine the conductivity of grains that are up to 2 cm in diameter and to parameterize the effects of angularity, sorting, layering, composition, and eventually cementation. We present the experimental data and model results for a suite of samples that were selected to isolate and address regolith physical parameters that affect bulk conductivity. Spherical glass beads of various sizes were used to measure the effect of size frequency distribution. Spherical beads of polypropylene and well-rounded quartz sand have respectively lower and higher solid phase thermal conductivities than the glass beads and thus provide the opportunity to test the sensitivity of bulk conductivity to differences in solid phase conductivity. Gas pressure in our asteroid experimental chambers is held at 10^-6 torr, which is sufficient to negate gas thermal conduction in even our coarsest of samples. On Mars, the atmospheric pressure is such that the mean free path of the gas molecules is comparable to the pore size for many regolith particulates. Thus, subtle variations in pore size and/or atmospheric pressure can produce large changes in bulk regolith conductivity. For each sample measured in our martian environmental chamber, we repeat thermal measurement runs at multiple pressures to observe this behavior. Finally, we present conductivity measurements of angular basaltic simulant that is physically analogous to sand and gravel that may be present on Bennu. This simulant was used for OSIRIS-REx TAGSAM Sample Return Arm engineering tests. We measure the original size frequency distribution as well as several sorted size fractions. These results will support the efforts of the OSIRIS-REx team in selecting a site on asteroid Bennu that is safe for the spacecraft and meets grain size requirements for sampling.

  18. Use of the moon to support on-orbit sensor calibration for climate change measurements

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.

    2006-01-01

    Production of reliable climate datasets from multiple observational measurements acquired by remote sensing satellite systems available now and in the future places stringent requirements on the stability of sensors and consistency among the instruments and platforms. Detecting trends in environmental parameters measured at solar reflectance wavelengths (0.3 to 2.5 microns) requires on-orbit instrument stability at a level of 1% over a decade. This benchmark can be attained using the Moon as a radiometric reference. The lunar calibration program at the U.S. Geological Survey has an operational model to predict the lunar spectral irradiance with precision ???1%, explicitly accounting for the effects of phase, lunar librations, and the lunar surface photometric function. A system for utilization of the Moon by on-orbit instruments has been established. With multiple lunar views taken by a spacecraft instrument, sensor response characterization with sub-percent precision over several years has been achieved. Meteorological satellites in geostationary orbit (GEO) capture the Moon in operational images; applying lunar calibration to GEO visible-channel image archives has the potential to develop a climate record extending decades into the past. The USGS model and system can provide reliable transfer of calibration among instruments that have viewed the Moon as a common source. This capability will be enhanced with improvements to the USGS model absolute scale. Lunar calibration may prove essential to the critical calibration needs to cover a potential gap in observational capabilities prior to deployment of NPP/NPOESS. A key requirement is that current and future instruments observe the Moon.

  19. LANDSAT-D data format control book. Volume 6: (Products)

    NASA Technical Reports Server (NTRS)

    Kabat, F.

    1981-01-01

    Four basic product types are generated from the raw thematic mapper (TM) and multispectral scanner (MSS) payload data by the NASA GSFC LANDSAT 4 data management system: (1) unprocessed data (raw sensor data); (2) partially processed data, which consists of radiometrically corrected sensor data with geometric correction information appended; (3) fully processed data, which consists of radiometrically and geometrically corrected sensor data; and (4) inventory data which consists of summary information about product types 2 and 3. High density digital recorder formatting and the radiometric correction process are described. Geometric correction information is included.

  20. SNPP VIIRS RSB Earth View Reflectance Uncertainty

    NASA Technical Reports Server (NTRS)

    Lei, Ning; Twedt, Kevin; McIntire, Jeff; Xiong, Xiaoxiong

    2017-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (SNPP) satellite uses its 14 reflective solar bands to passively collect solar radiant energy reflected off the Earth. The Level 1 product is the geolocated and radiometrically calibrated top-of- the-atmosphere solar reflectance. The absolute radiometric uncertainty associated with this product includes contributions from the noise associated with measured detector digital counts and the radiometric calibration bias. Here, we provide a detailed algorithm for calculating the estimated standard deviation of the retrieved top-of-the-atmosphere spectral solar radiation reflectance.

  1. Numerical study of the radiometric phenomenon exhibited by a rotating Crookes radiometer

    NASA Astrophysics Data System (ADS)

    Anikin, Yu. A.

    2011-11-01

    The two-dimensional rarefied gas flow around a rotating Crookes radiometer and the arising radiometric forces are studied by numerically solving the Boltzmann kinetic equation. The computations are performed in a noninertial frame of reference rotating together with the radiometer. The collision integral is directly evaluated using a projection method, while second- and third-order accurate TVD schemes are used to solve the advection equation and the equation for inertia-induced transport in the velocity space, respectively. The radiometric forces are found as functions of the rotation frequency.

  2. BOREAS RSS-3 Reflectance Measured from a Helicopter-Mounted SE-590

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Walthall, Charles L.; Loechel, Sara

    2000-01-01

    The BOREAS RSS-3 team collected multiple remotely sensed data sets from the NASA UH-1 helicopter. This data set includes helicopter-based radiometric measurements of forested sites acquired during BOREAS made with an SE-590 processed to reflectance factors. The data used in this analysis were collected in 1994 during the three BOREAS IFCs at numerous tower and auxiliary sites in both the NSA and the SSA. The 15-degree FOV of the SE-590 yielded a ground resolution of approximately 79 m at the 300-m nominal altitude. The data are provided in tabular ASCII files.

  3. Spacecraft navigation at Mars using earth-based and in situ radio tracking techniques

    NASA Astrophysics Data System (ADS)

    Thurman, S. W.; Edwards, C. D.; Kahn, R. D.; Vijayaraghavan, A.; Hastrup, R. C.; Cesarone, R. J.

    1992-08-01

    A survey of earth-based and in situ radiometric data types and results from a number of studies investigating potential radio navigation performance for spacecraft approaching/orbiting Mars and for landed spacecraft and rovers on the surface of Mars are presented. The performance of Doppler, ranging and interferometry earth-based data types involving single or multiple spacecraft is addressed. This evaluation is conducted with that of in situ data types, such as Doppler and ranging measurements between two spacecraft near Mars, or between a spacecraft and one or more surface radio beacons.

  4. Spacecraft navigation at Mars using earth-based and in situ radio tracking techniques

    NASA Technical Reports Server (NTRS)

    Thurman, S. W.; Edwards, C. D.; Kahn, R. D.; Vijayaraghavan, A.; Hastrup, R. C.; Cesarone, R. J.

    1992-01-01

    A survey of earth-based and in situ radiometric data types and results from a number of studies investigating potential radio navigation performance for spacecraft approaching/orbiting Mars and for landed spacecraft and rovers on the surface of Mars are presented. The performance of Doppler, ranging and interferometry earth-based data types involving single or multiple spacecraft is addressed. This evaluation is conducted with that of in situ data types, such as Doppler and ranging measurements between two spacecraft near Mars, or between a spacecraft and one or more surface radio beacons.

  5. Development of techniques and associated instrumentation for high temperature emissivity measurements

    NASA Technical Reports Server (NTRS)

    Cunnington, G. R.; Funai, A. I.

    1972-01-01

    The progress during the sixth quarterly period is reported on construction and assembly of a test facility to determine the high temperature emittance properties of candidate thermal protection system materials for the space shuttle. This facility will provide simulation of such reentry environment parameters as temperature, pressure, and gas flow rate to permit studies of the effects of these parameters on the emittance stability of the materials. Also reported are the completed results for emittance tests on a set of eight Rene 41 samples and one anodized titanium alloy sample which were tested at temperatures up to 1600 F in vacuum. The data includes calorimetric determinations of total hemispherical emittance, radiometric determinations of total and spectral normal emittance, and pre- and post-test room temperature reflectance measurements.

  6. An Empirical Approach to Ocean Color Data: Reducing Bias and the Need for Post-Launch Radiometric Re-Calibration

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Casey, Nancy W.; O'Reilly, John E.; Esaias, Wayne E.

    2009-01-01

    A new empirical approach is developed for ocean color remote sensing. Called the Empirical Satellite Radiance-In situ Data (ESRID) algorithm, the approach uses relationships between satellite water-leaving radiances and in situ data after full processing, i.e., at Level-3, to improve estimates of surface variables while relaxing requirements on post-launch radiometric re-calibration. The approach is evaluated using SeaWiFS chlorophyll, which is the longest time series of the most widely used ocean color geophysical product. The results suggest that ESRID 1) drastically reduces the bias of ocean chlorophyll, most impressively in coastal regions, 2) modestly improves the uncertainty, and 3) reduces the sensitivity of global annual median chlorophyll to changes in radiometric re-calibration. Simulated calibration errors of 1% or less produce small changes in global median chlorophyll (less than 2.7%). In contrast, the standard NASA algorithm set is highly sensitive to radiometric calibration: similar 1% calibration errors produce changes in global median chlorophyll up to nearly 25%. We show that 0.1% radiometric calibration error (about 1% in water-leaving radiance) is needed to prevent radiometric calibration errors from changing global annual median chlorophyll more than the maximum interannual variability observed in the SeaWiFS 9-year record (+/- 3%), using the standard method. This is much more stringent than the goal for SeaWiFS of 5% uncertainty for water leaving radiance. The results suggest ocean color programs might consider less emphasis of expensive efforts to improve post-launch radiometric re-calibration in favor of increased efforts to characterize in situ observations of ocean surface geophysical products. Although the results here are focused on chlorophyll, in principle the approach described by ESRID can be applied to any surface variable potentially observable by visible remote sensing.

  7. Evolution of a Man-Made Plume in Coastal Waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinmaus, Karen L.; Bowles, Jeff; Woodruff, Dana L.

    2006-12-19

    The ability to understand the biogeophysical parameters that create ocean color in coastal waters is fundamental to the ability to exploit remote sensing for coastal applications. This article describes an experiment in which a controlled quantity of a single inorganic material with known absorption and scattering properties was released into a coastal environment. The plume experiment was conducted in conjunction with a Pacific Northwest National Laboratory (PNNL) field collection campaign in and around Sequim Bay on the Strait of Juan de Fuca in Washington State. The objective of the field campaign was to identify and characterize features in the nearmore » shore environment from the standpoint of quantifying environmental parameters to improve operational planning in littoral regions. The aerial component of the mission involved imagery acquisitions from the NRL's PHILLS hyperspectral sensor, and two commercial IR cameras. Coincident satellite data was obtained from commercial sources. Ground truth activities included atmospheric profiles, ground, surface water, and in-water spectral measurements, panels for radiometric calibration, water column water optics, water samples and profiles from support vessels, in-situ tide and weather measurements, and beach and intertidal transects and surveys (via scientific dive teams). This field collection campaign provided a unique opportunity for a multisensor data collection effort in littoral regions, to identify and characterize features from multiple platforms (satellite, aerial, water surface and subsurface) and sensors. Data from this mission is being used as input to both radiative transfer and ocean transport models, for characterizing the water column and the near-shore, and quantitatively estimating circulation and transport in coastal environments.« less

  8. OrbView-3 Technical Performance Evaluation 2005: Modulation Transfer Function

    NASA Technical Reports Server (NTRS)

    Cole, Aaron

    2007-01-01

    The Technical performance evaluation of OrbView-3 using the Modulation Transfer Function (MTF) is presented. The contents include: 1) MTF Results and Methodology; 2) Radiometric Calibration Methodology; and 3) Relative Radiometric Assessment Results

  9. Radiometric Dating Does Work!

    ERIC Educational Resources Information Center

    Dalrymple, G. Brent

    2000-01-01

    Discusses the accuracy of dating methods and creationist arguments that radiometric dating does not work. Explains the Manson meteorite impact and the Pierre shale, the ages of meteorites, the K-T tektites, and dating the Mount Vesuvius eruption. (Author/YDS)

  10. Revised Radiometric Calibration Technique for LANDSAT-4 Thematic Mapper Data by the Canada Centre for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Murphy, J.; Butlin, T.; Duff, P.; Fitzgerald, A.

    1984-01-01

    A technique for the radiometric correction of LANDSAT-4 Thematic Mapper data was proposed by the Canada Center for Remote Sensing. Subsequent detailed observations of raw image data, raw radiometric calibration data and background measurements extracted from the raw data stream on High Density Tape highlighted major shortcomings in the proposed method which if left uncorrected, can cause severe radiometric striping in the output product. Results are presented which correlate measurements of the DC background with variations in both image data background and calibration samples. The effect on both raw data and on data corrected using the earlier proposed technique is explained, and the correction required for these factors as a function of individual scan line number for each detector is described. It is shown how the revised technique can be incorporated into an operational environment.

  11. Validation of Radiometric Standards for the Laboratory Calibration of Reflected-Solar Earth Observing Satellite Instruments

    NASA Technical Reports Server (NTRS)

    Butler, James J.; Johnson, B. Carol; Rice, Joseph P.; Brown, Steven W.; Barnes, Robert A.

    2007-01-01

    Historically, the traceability of the laboratory calibration of Earth-observing satellite instruments to a primary radiometric reference scale (SI units) is the responsibility of each instrument builder. For the NASA Earth Observing System (EOS), a program has been developed using laboratory transfer radiometers, each with its own traceability to the primary radiance scale of a national metrology laboratory, to independently validate the radiances assigned to the laboratory sources of the instrument builders. The EOS Project Science Office also developed a validation program for the measurement of onboard diffuse reflecting plaques, which are also used as radiometric standards for Earth-observing satellite instruments. Summarized results of these validation campaigns, with an emphasis on the current state-of-the-art uncertainties in laboratory radiometric standards, will be presented. Future mission uncertainty requirements, and possible enhancements to the EOS validation program to ensure that those uncertainties can be met, will be presented.

  12. Landsat-5 TM reflective-band absolute radiometric calibration

    USGS Publications Warehouse

    Chander, G.; Helder, D.L.; Markham, B.L.; Dewald, J.D.; Kaita, E.; Thome, K.J.; Micijevic, E.; Ruggles, T.A.

    2004-01-01

    The Landsat-5 Thematic Mapper (TM) sensor provides the longest running continuous dataset of moderate spatial resolution remote sensing imagery, dating back to its launch in March 1984. Historically, the radiometric calibration procedure for this imagery used the instrument's response to the Internal Calibrator (IC) on a scene-by-scene basis to determine the gain and offset of each detector. Due to observed degradations in the IC, a new procedure was implemented for U.S.-processed data in May 2003. This new calibration procedure is based on a lifetime radiometric calibration model for the instrument's reflective bands (1-5 and 7) and is derived, in part, from the IC response without the related degradation effects and is tied to the cross calibration with the Landsat-7 Enhanced Thematic Mapper Plus. Reflective-band absolute radiometric accuracy of the instrument tends to be on the order of 7% to 10%, based on a variety of calibration methods.

  13. Ice Cloud Optical Thickness and Extinction Estimates from Radar Measurements.

    NASA Astrophysics Data System (ADS)

    Matrosov, Sergey Y.; Shupe, Matthew D.; Heymsfield, Andrew J.; Zuidema, Paquita

    2003-11-01

    A remote sensing method is proposed to derive vertical profiles of the visible extinction coefficients in ice clouds from measurements of the radar reflectivity and Doppler velocity taken by a vertically pointing 35-GHz cloud radar. The extinction coefficient and its vertical integral, optical thickness τ, are among the fundamental cloud optical parameters that, to a large extent, determine the radiative impact of clouds. The results obtained with this method could be used as input for different climate and radiation models and for comparisons with parameterizations that relate cloud microphysical parameters and optical properties. An important advantage of the proposed method is its potential applicability to multicloud situations and mixed-phase conditions. In the latter case, it might be able to provide the information on the ice component of mixed-phase clouds if the radar moments are dominated by this component. The uncertainties of radar-based retrievals of cloud visible optical thickness are estimated by comparing retrieval results with optical thicknesses obtained independently from radiometric measurements during the yearlong Surface Heat Budget of the Arctic Ocean (SHEBA) field experiment. The radiometric measurements provide a robust way to estimate τ but are applicable only to optically thin ice clouds without intervening liquid layers. The comparisons of cloud optical thicknesses retrieved from radar and from radiometer measurements indicate an uncertainty of about 77% and a bias of about -14% in the radar estimates of τ relative to radiometric retrievals. One possible explanation of the negative bias is an inherently low sensitivity of radar measurements to smaller cloud particles that still contribute noticeably to the cloud extinction. This estimate of the uncertainty is in line with simple theoretical considerations, and the associated retrieval accuracy should be considered good for a nonoptical instrument, such as radar. This paper also presents relations between radar-derived characteristic cloud particle sizes and effective sizes used in models. An average relation among τ, cloud ice water path, and the layer mean value of cloud particle characteristic size is also given. This relation is found to be in good agreement with in situ measurements. Despite a high uncertainty of radar estimates of extinction, this method is useful for many clouds where optical measurements are not available because of cloud multilayering or opaqueness.

  14. Analysis of the Radiometric Response of Orange Tree Crown in Hyperspectral Uav Images

    NASA Astrophysics Data System (ADS)

    Imai, N. N.; Moriya, E. A. S.; Honkavaara, E.; Miyoshi, G. T.; de Moraes, M. V. A.; Tommaselli, A. M. G.; Näsi, R.

    2017-10-01

    High spatial resolution remote sensing images acquired by drones are highly relevant data source in many applications. However, strong variations of radiometric values are difficult to correct in hyperspectral images. Honkavaara et al. (2013) presented a radiometric block adjustment method in which hyperspectral images taken from remotely piloted aerial systems - RPAS were processed both geometrically and radiometrically to produce a georeferenced mosaic in which the standard Reflectance Factor for the nadir is represented. The plants crowns in permanent cultivation show complex variations since the density of shadows and the irradiance of the surface vary due to the geometry of illumination and the geometry of the arrangement of branches and leaves. An evaluation of the radiometric quality of the mosaic of an orange plantation produced using images captured by a hyperspectral imager based on a tunable Fabry-Pérot interferometer and applying the radiometric block adjustment method, was performed. A high-resolution UAV based hyperspectral survey was carried out in an orange-producing farm located in Santa Cruz do Rio Pardo, state of São Paulo, Brazil. A set of 25 narrow spectral bands with 2.5 cm of GSD images were acquired. Trend analysis was applied to the values of a sample of transects extracted from plants appearing in the mosaic. The results of these trend analysis on the pixels distributed along transects on orange tree crown showed the reflectance factor presented a slightly trend, but the coefficients of the polynomials are very small, so the quality of mosaic is good enough for many applications.

  15. Cross-Calibration between ASTER and MODIS Visible to Near-Infrared Bands for Improvement of ASTER Radiometric Calibration

    PubMed Central

    Tsuchida, Satoshi; Thome, Kurtis

    2017-01-01

    Radiometric cross-calibration between the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) has been partially used to derive the ASTER radiometric calibration coefficient (RCC) curve as a function of date on visible to near-infrared bands. However, cross-calibration is not sufficiently accurate, since the effects of the differences in the sensor’s spectral and spatial responses are not fully mitigated. The present study attempts to evaluate radiometric consistency across two sensors using an improved cross-calibration algorithm to address the spectral and spatial effects and derive cross-calibration-based RCCs, which increases the ASTER calibration accuracy. Overall, radiances measured with ASTER bands 1 and 2 are on averages 3.9% and 3.6% greater than the ones measured on the same scene with their MODIS counterparts and ASTER band 3N (nadir) is 0.6% smaller than its MODIS counterpart in current radiance/reflectance products. The percentage root mean squared errors (%RMSEs) between the radiances of two sensors are 3.7, 4.2, and 2.3 for ASTER band 1, 2, and 3N, respectively, which are slightly greater or smaller than the required ASTER radiometric calibration accuracy (4%). The uncertainty of the cross-calibration is analyzed by elaborating the error budget table to evaluate the International System of Units (SI)-traceability of the results. The use of the derived RCCs will allow further reduction of errors in ASTER radiometric calibration and subsequently improve interoperability across sensors for synergistic applications. PMID:28777329

  16. Radiometric temperature reference

    NASA Technical Reports Server (NTRS)

    Monford, L. G., Jr.

    1969-01-01

    Radiometric Temperature Reference uses a thermistor as both a heating and sensing element to maintain its resistance at a preselected level to continuously control the power supplying it. The fixed infrared radiation level must be simple, rugged, and capable of high temperature operation.

  17. Flight Technology Improvement. [spaceborne optical radiometric instruments, attitude control, and electromechanical and power subsystems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Shortcomings in spaceborne instrumentation technology are analyzed and recommendations are given for corrections and technology development. The technologies discussed are optical radiometric instruments and calibration, attitude control and determination, and electromechanical and power subsystems.

  18. Broadband Radiometric LED Measurements

    PubMed Central

    Eppeldauer, G. P.; Cooksey, C. C.; Yoon, H. W.; Hanssen, L. M.; Podobedov, V. B.; Vest, R. E.; Arp, U.; Miller, C. C.

    2017-01-01

    At present, broadband radiometric measurements of LEDs with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed. PMID:28649167

  19. Broadband Radiometric LED Measurements.

    PubMed

    Eppeldauer, G P; Cooksey, C C; Yoon, H W; Hanssen, L M; Podobedov, V B; Vest, R E; Arp, U; Miller, C C

    2016-01-01

    At present, broadband radiometric measurements of LEDs with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed.

  20. Texture analysis of radiometric signatures of new sea ice forming in Arctic leads

    NASA Technical Reports Server (NTRS)

    Eppler, Duane T.; Farmer, L. Dennis

    1991-01-01

    Analysis of 33.6-GHz, high-resolution, passive microwave images suggests that new sea ice accumulating in open leads is characterized by a unique textural signature which can be used to discriminate new ice forming in this environment from adjacent surfaces of similar radiometric temperature. Ten training areas were selected from the data set, three of which consisted entirely of first-year ice, four entirely of multilayer ice, and three of new ice in open leads in the process of freezing. A simple gradient operator was used to characterize the radiometric texture in each training region in terms of the degree to which radiometric gradients are oriented. New ice in leads has a sufficiently high proportion of well-oriented features to distinguish it uniquely from first-year ice and multiyear ice. The predominance of well-oriented features probably reflects physical processes by which new ice accumulates in open leads. Banded structures, which are evident in aerial photographs of new ice, apparently give rise to the radiometric signature observed, in which the trend of brightness temperature gradients is aligned parallel to lead trends. First-year ice and multiyear ice, which have been subjected to a more random growth and process history, lack this banded structure and therefore are characterized by signatures in which well-aligned elements are less dominant.

  1. Next-generation pushbroom filter radiometers for remote sensing

    NASA Astrophysics Data System (ADS)

    Tarde, Richard W.; Dittman, Michael G.; Kvaran, Geir E.

    2012-09-01

    Individual focal plane size, yield, and quality continue to improve, as does the technology required to combine these into large tiled formats. As a result, next-generation pushbroom imagers are replacing traditional scanning technologies in remote sensing applications. Pushbroom architecture has inherently better radiometric sensitivity and significantly reduced payload mass, power, and volume than previous generation scanning technologies. However, the architecture creates challenges achieving the required radiometric accuracy performance. Achieving good radiometric accuracy, including image spectral and spatial uniformity, requires creative optical design, high quality focal planes and filters, careful consideration of on-board calibration sources, and state-of-the-art ground test facilities. Ball Aerospace built the Landsat Data Continuity Mission (LDCM) next-generation Operational Landsat Imager (OLI) payload. Scheduled to launch in 2013, OLI provides imagery consistent with the historical Landsat spectral, spatial, radiometric, and geometric data record and completes the generational technology upgrade from the Enhanced Thematic Mapper (ETM+) whiskbroom technology to modern pushbroom technology afforded by advanced focal planes. We explain how Ball's capabilities allowed producing the innovative next-generational OLI pushbroom filter radiometer that meets challenging radiometric accuracy or calibration requirements. OLI will improve the multi-decadal land surface observation dataset dating back to the 1972 launch of ERTS-1 or Landsat 1.

  2. Laboratory-based bidirectional reflectance distribution functions of radiometric tarps.

    PubMed

    Georgiev, Georgi T; Butler, James J

    2008-06-20

    Laboratory-based bidirectional reflectance distribution functions (BRDFs) of radiometric tarp samples used in the vicarious calibration of Earth remote sensing satellite instruments are presented in this paper. The results illustrate the BRDF dependence on the orientation of the tarps' weft and warp threads. The study was performed using the GSFC scatterometer at incident zenith angles of 0 degrees, 10 degrees, and 30 degrees; scatter zenith angles from 0 degrees to 60 degrees; and scatter azimuth angles of 0 degrees, 45 degrees, 90 degrees, 135 degrees, and 180 degrees. The wavelengths were 485 nm, 550 nm, 633 nm, and 800 nm. The tarp's weft and warp dependence on BRDF is well defined at all measurement geometries and wavelengths. The BRDF difference can be as high as 8% at 0 degrees incident angle and 12% at 30 degrees incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps are reported. The backward scatter is well pronounced for the white samples. The black sample has well-pronounced forward scatter. The provided BRDF characterization of radiometric tarps is an excellent reference for anyone interested in using tarps for radiometric calibrations. The results are NIST traceable.

  3. A study on characterization of stratospheric aerosol and gas parameters with the spacecraft solar occultation experiment

    NASA Technical Reports Server (NTRS)

    Chu, W. P.

    1977-01-01

    Spacecraft remote sensing of stratospheric aerosol and ozone vertical profiles using the solar occultation experiment has been analyzed. A computer algorithm has been developed in which a two step inversion of the simulated data can be performed. The radiometric data are first inverted into a vertical extinction profile using a linear inversion algorithm. Then the multiwavelength extinction profiles are solved with a nonlinear least square algorithm to produce aerosol and ozone vertical profiles. Examples of inversion results are shown illustrating the resolution and noise sensitivity of the inversion algorithms.

  4. Sm-Nd and Rb-Sr Ages for MIL 05035: Implications for Surface and Mantle Sources

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C-Y.; Reese, Y. D.

    2007-01-01

    The Sm-Nd and Rb-Sr ages and also the initial Nd and Sr isotopic compositions of MIL 05035 are the same as those of A-881757. Comparing the radiometric ages of these meteorites to lunar surface ages as modeled from crater size-frequency distributions as well as the TiO2 abundances and initial Sr-isotopic compositions of other basalts places their likely place of origin as within the Australe or Humboldtianum basins. If so, a fundamental west-east lunar asymmetry in compositional and isotopic parameters that likely is due to the PKT is implied.

  5. Method for radiometric calibration of an endoscope's camera and light source

    NASA Astrophysics Data System (ADS)

    Rai, Lav; Higgins, William E.

    2008-03-01

    An endoscope is a commonly used instrument for performing minimally invasive visual examination of the tissues inside the body. A physician uses the endoscopic video images to identify tissue abnormalities. The images, however, are highly dependent on the optical properties of the endoscope and its orientation and location with respect to the tissue structure. The analysis of endoscopic video images is, therefore, purely subjective. Studies suggest that the fusion of endoscopic video images (providing color and texture information) with virtual endoscopic views (providing structural information) can be useful for assessing various pathologies for several applications: (1) surgical simulation, training, and pedagogy; (2) the creation of a database for pathologies; and (3) the building of patient-specific models. Such fusion requires both geometric and radiometric alignment of endoscopic video images in the texture space. Inconsistent estimates of texture/color of the tissue surface result in seams when multiple endoscopic video images are combined together. This paper (1) identifies the endoscope-dependent variables to be calibrated for objective and consistent estimation of surface texture/color and (2) presents an integrated set of methods to measure them. Results show that the calibration method can be successfully used to estimate objective color/texture values for simple planar scenes, whereas uncalibrated endoscopes performed very poorly for the same tests.

  6. Terrestrial hyperspectral image shadow restoration through fusion with terrestrial lidar

    NASA Astrophysics Data System (ADS)

    Hartzell, Preston J.; Glennie, Craig L.; Finnegan, David C.; Hauser, Darren L.

    2017-05-01

    Recent advances in remote sensing technology have expanded the acquisition and fusion of active lidar and passive hyperspectral imagery (HSI) from exclusively airborne observations to include terrestrial modalities. In contrast to airborne collection geometry, hyperspectral imagery captured from terrestrial cameras is prone to extensive solar shadowing on vertical surfaces leading to reductions in pixel classification accuracies or outright removal of shadowed areas from subsequent analysis tasks. We demonstrate the use of lidar spatial information for sub-pixel HSI shadow detection and the restoration of shadowed pixel spectra via empirical methods that utilize sunlit and shadowed pixels of similar material composition. We examine the effectiveness of radiometrically calibrated lidar intensity in identifying these similar materials in sun and shade conditions and further evaluate a restoration technique that leverages ratios derived from the overlapping lidar laser and HSI wavelengths. Simulations of multiple lidar wavelengths, i.e., multispectral lidar, indicate the potential for HSI spectral restoration that is independent of the complexity and costs associated with rigorous radiometric transfer models, which have yet to be developed for horizontal-viewing terrestrial HSI sensors. The spectral restoration performance of shadowed HSI pixels is quantified for imagery of a geologic outcrop through improvements in spectral shape, spectral scale, and HSI band correlation.

  7. Mapping water table depth using geophysical and environmental variables.

    PubMed

    Buchanan, S; Triantafilis, J

    2009-01-01

    Despite its importance, accurate representation of the spatial distribution of water table depth remains one of the greatest deficiencies in many hydrological investigations. Historically, both inverse distance weighting (IDW) and ordinary kriging (OK) have been used to interpolate depths. These methods, however, have major limitations: namely they require large numbers of measurements to represent the spatial variability of water table depth and they do not represent the variation between measurement points. We address this issue by assessing the benefits of using stepwise multiple linear regression (MLR) with three different ancillary data sets to predict the water table depth at 100-m intervals. The ancillary data sets used are Electromagnetic (EM34 and EM38), gamma radiometric: potassium (K), uranium (eU), thorium (eTh), total count (TC), and morphometric data. Results show that MLR offers significant precision and accuracy benefits over OK and IDW. Inclusion of the morphometric data set yielded the greatest (16%) improvement in prediction accuracy compared with IDW, followed by the electromagnetic data set (5%). Use of the gamma radiometric data set showed no improvement. The greatest improvement, however, resulted when all data sets were combined (37% increase in prediction accuracy over IDW). Significantly, however, the use of MLR also allows for prediction in variations in water table depth between measurement points, which is crucial for land management.

  8. Solar Tower Experiments for Radiometric Calibration and Validation of Infrared Imaging Assets and Analysis Tools for Entry Aero-Heating Measurements

    NASA Technical Reports Server (NTRS)

    Splinter, Scott C.; Daryabeigi, Kamran; Horvath, Thomas J.; Mercer, David C.; Ghanbari, Cheryl M.; Ross, Martin N.; Tietjen, Alan; Schwartz, Richard J.

    2008-01-01

    The NASA Engineering and Safety Center sponsored Hypersonic Thermodynamic Infrared Measurements assessment team has a task to perform radiometric calibration and validation of land-based and airborne infrared imaging assets and tools for remote thermographic imaging. The IR assets and tools will be used for thermographic imaging of the Space Shuttle Orbiter during entry aero-heating to provide flight boundary layer transition thermography data that could be utilized for calibration and validation of empirical and theoretical aero-heating tools. A series of tests at the Sandia National Laboratories National Solar Thermal Test Facility were designed for this task where reflected solar radiation from a field of heliostats was used to heat a 4 foot by 4 foot test panel consisting of LI 900 ceramic tiles located on top of the 200 foot tall Solar Tower. The test panel provided an Orbiter-like entry temperature for the purposes of radiometric calibration and validation. The Solar Tower provided an ideal test bed for this series of radiometric calibration and validation tests because it had the potential to rapidly heat the large test panel to spatially uniform and non-uniform elevated temperatures. Also, the unsheltered-open-air environment of the Solar Tower was conducive to obtaining unobstructed radiometric data by land-based and airborne IR imaging assets. Various thermocouples installed on the test panel and an infrared imager located in close proximity to the test panel were used to obtain surface temperature measurements for evaluation and calibration of the radiometric data from the infrared imaging assets. The overall test environment, test article, test approach, and typical test results are discussed.

  9. Research on orbit prediction for solar-based calibration proper satellite

    NASA Astrophysics Data System (ADS)

    Chen, Xuan; Qi, Wenwen; Xu, Peng

    2018-03-01

    Utilizing the mathematical model of the orbit mechanics, the orbit prediction is to forecast the space target's orbit information of a certain time based on the orbit of the initial moment. The proper satellite radiometric calibration and calibration orbit prediction process are introduced briefly. On the basis of the research of the calibration space position design method and the radiative transfer model, an orbit prediction method for proper satellite radiometric calibration is proposed to select the appropriate calibration arc for the remote sensor and to predict the orbit information of the proper satellite and the remote sensor. By analyzing the orbit constraint of the proper satellite calibration, the GF-1solar synchronous orbit is chose as the proper satellite orbit in order to simulate the calibration visible durance for different satellites to be calibrated. The results of simulation and analysis provide the basis for the improvement of the radiometric calibration accuracy of the satellite remote sensor, which lays the foundation for the high precision and high frequency radiometric calibration.

  10. Passive microwave sensing of soil moisture content: Soil bulk density and surface roughness

    NASA Technical Reports Server (NTRS)

    Wang, J. R.

    1982-01-01

    Microwave radiometric measurements over bare fields of different surface roughnesses were made at the frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz to study the frequency dependence as well as the possible time variation of surface roughness. The presence of surface roughness was found to increase the brightness temperature of soils and reduce the slope of regression between brightness temperature and soil moisture content. The frequency dependence of the surface roughness effect was relatively weak when compared with that of the vegetation effect. Radiometric time series observation over a given field indicated that field surface roughness might gradually diminish with time, especially after a rainfall or irrigation. This time variation of surface roughness served to enhance the uncertainty in remote soil moisture estimate by microwave radiometry. Three years of radiometric measurements over a test site revealed a possible inconsistency in the soil bulk density determination, which turned out to be an important factor in the interpretation of radiometric data.

  11. A Preliminary Analysis of LANDSAT-4 Thematic Mapper Radiometric Performance

    NASA Technical Reports Server (NTRS)

    Justice, C.; Fusco, L.; Mehl, W.

    1985-01-01

    The NASA raw (BT) product, the radiometrically corrected (AT) product, and the radiometrically and geometrically corrected (PT) product of a TM scene were analyzed examine the frequency distribution of the digital data; the statistical correlation between the bands; and the variability between the detectors within a band. The analyses were performed on a series of image subsets from the full scence. Results are presented from one 1024 c 1024 pixel subset of Realfoot Lake, Tennessee which displayed a representative range of ground conditions and cover types occurring within the full frame image. From this cursory examination of one of the first seven channel TM data sets, it would appear that the radiometric performance of the system is most satisfactory and largely meets pre-launch specifications. Problems were noted with Band 5 Detector 3 and Band 2 Detector 4. Differences were observed between forward and reverse scan detector responses both for the BT and AT products. No systematic variations were observed between odd and even detectors.

  12. Passive microwave sensing of soil moisture content - The effects of soil bulk density and surface roughness

    NASA Technical Reports Server (NTRS)

    Wang, J. R.

    1983-01-01

    Microwave radiometric measurements over bare fields of different surface roughness were made at frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz to study the frequency dependence, as well as the possible time variation, of surface roughness. An increase in surface roughness was found to increase the brightness temperature of soils and reduce the slope of regression between brightness temperature and soil moisture content. The frequency dependence of the surface roughness effect was relatively weak when compared with that of the vegetation effect. Radiometric time-series observations over a given field indicate that field surface roughness might gradually diminish with time, especially after a rainfall or irrigation. The variation of surface roughness increases the uncertainty of remote soil moisture estimates by microwave radiometry. Three years of radiometric measurements over a test site revealed a possible inconsistency in the soil bulk density determination, which is an important factor in the interpretation of radiometric data.

  13. Spectral and Radiometric Calibration Using Tunable Lasers

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel (Inventor)

    2017-01-01

    A tunable laser system includes a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, and a controller operable to simultaneously control parameters of at least the tunable laser, the first optical parametric oscillator, and the adjustable laser cavity to produce a range of wavelengths emitted from the tunable laser system. A method of operating a tunable laser system includes using a controller to simultaneously control parameters of a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, and a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, to produce a range of wavelengths emitted from the tunable laser system.

  14. New constraints on Mars rotation determined from radiometric tracking of the Opportunity Mars Exploration Rover

    NASA Astrophysics Data System (ADS)

    Kuchynka, Petr; Folkner, William M.; Konopliv, Alex S.; Parker, Timothy J.; Park, Ryan S.; Le Maistre, Sebastien; Dehant, Veronique

    2014-02-01

    The Opportunity Mars Exploration Rover remained stationary between January and May 2012 in order to conserve solar energy for running its survival heaters during martian winter. While stationary, extra Doppler tracking was performed in order to allow an improved estimate of the martian precession rate. In this study, we determine Mars rotation by combining the new Opportunity tracking data with historic tracking data from the Viking and Pathfinder landers and tracking data from Mars orbiters (Mars Global Surveyor, Mars Odyssey and Mars Reconnaissance Orbiter). The estimated rotation parameters are stable in cross-validation tests and compare well with previously published values. In particular, the Mars precession rate is estimated to be -7606.1 ± 3.5 mas/yr. A representation of Mars rotation as a series expansion based on the determined rotation parameters is provided.

  15. Automated geographic registration and radiometric correction for UAV-based mosaics

    NASA Astrophysics Data System (ADS)

    Thomasson, J. Alex; Shi, Yeyin; Sima, Chao; Yang, Chenghai; Cope, Dale A.

    2017-05-01

    Texas A and M University has been operating a large-scale, UAV-based, agricultural remote-sensing research project since 2015. To use UAV-based images in agricultural production, many high-resolution images must be mosaicked together to create an image of an agricultural field. Two key difficulties to science-based utilization of such mosaics are geographic registration and radiometric calibration. In our current research project, image files are taken to the computer laboratory after the flight, and semi-manual pre-processing is implemented on the raw image data, including ortho-mosaicking and radiometric calibration. Ground control points (GCPs) are critical for high-quality geographic registration of images during mosaicking. Applications requiring accurate reflectance data also require radiometric-calibration references so that reflectance values of image objects can be calculated. We have developed a method for automated geographic registration and radiometric correction with targets that are installed semi-permanently at distributed locations around fields. The targets are a combination of black (≍5% reflectance), dark gray (≍20% reflectance), and light gray (≍40% reflectance) sections that provide for a transformation of pixel-value to reflectance in the dynamic range of crop fields. The exact spectral reflectance of each target is known, having been measured with a spectrophotometer. At the time of installation, each target is measured for position with a real-time kinematic GPS receiver to give its precise latitude and longitude. Automated location of the reference targets in the images is required for precise, automated, geographic registration; and automated calculation of the digital-number to reflectance transformation is required for automated radiometric calibration. To validate the system for radiometric calibration, a calibrated UAV-based image mosaic of a field was compared to a calibrated single image from a manned aircraft. Reflectance values in selected zones of each image were strongly linearly related, and the average error of UAV-mosaic reflectances was 3.4% in the red band, 1.9% in the green band, and 1.5% in the blue band. Based on these results, the proposed physical system and automated software for calibrating UAV mosaics show excellent promise.

  16. Characterization of intra-annual reflectance properties of land cover classes in southeastern South Dakota using Landsat TM and ETM+ data

    USGS Publications Warehouse

    Vogelmann, James E.; DeFelice, Thomas P.

    2003-01-01

    Landsat-7 and Landsat-5 have orbits that are offset from each other by 8 days. During the time that the sensors on both satellites are operational, there is an opportunity for conducting analyses that incorporate multiple intra-annual high spatial resolution data sets for characterizing the Earth's land surface. In the current study, nine Landsat thematic mapper (TM) and enhanced thematic mapper plus (ETM+) data sets, covering the same path and row on different dates, were acquired during a 1-year time interval for a region in southeastern South Dakota and analyzed. Scenes were normalized using pseudoinvariant objects, and digital data from a series of test sites were extracted from the imagery and converted to surface reflectance. Sunphotometer data acquired on site were used to atmospherically correct the data. Ground observations that were made throughout the growing season by a large group of volunteers were used to help interpret spectroradiometric patterns and trends. Normalized images were found to be very effective in portraying the seasonal patterns of reflectance change that occurred throughout the region. Many of the radiometric patterns related to plant growth and development, but some also related to different background properties. The different kinds of land cover in the region were spectrally and radiometrically characterized and were found to have different seasonal patterns of reflectance. The degree to which the land cover classes could be separated spectrally and radiometrically, however, depended on the time of year during which the data sets were acquired, and no single data set appeared to be adequate for separating all types of land cover. This has practical implications for classification studies because known patterns of seasonal reflectance properties for the different types of land cover within a region will facilitate selection of the most appropriate data sets for producing land cover classifications.

  17. Landsat-7 ETM+ on-orbit reflective-band radiometric characterization

    USGS Publications Warehouse

    Scaramuzza, P.L.; Markham, B.L.; Barsi, J.A.; Kaita, E.

    2004-01-01

    The Landsat-7 Enhanced Thematic Mapper Plus (ETM+) has been and continues to be radiometrically characterized using the Image Assessment System (IAS), a component of the Landsat-7 Ground System. Key radiometric properties analyzed include: overall, coherent, and impulse noise; bias stability; relative gain stability; and other artifacts. The overall instrument noise is characterized across the dynamic range of the instrument during solar diffuser deployments. Less than 1% per year increases are observed in signal-independent (dark) noise levels, while signal-dependent noise is stable with time. Several coherent noise sources exist in ETM+ data with scene-averaged magnitudes of up to 0.4 DN, and a noise component at 20 kHz whose magnitude varies across the scan and peaks at the image edges. Bit-flip noise does not exist on the ETM+. However, impulse noise due to charged particle hits on the detector array has been discovered. The instrument bias is measured every scan line using a shutter. Most bands show less than 0.1 DN variations in bias across the instrument lifetime. The panchromatic band is the exception, where the variation approaches 2 DN and is related primarily to temperature. The relative gains of the detectors, i.e., each detector's gain relative to the band average gain, have been stable to /spl plusmn/0.1% over the mission life. Two exceptions to this stability include band 2 detector 2, which dropped about 1% in gain about 3.5 years after launch and stabilized, and band 7 detector 5, which has changed several tenths of a percent several times since launch. Memory effect and scan-correlated shift, a hysteresis and a random change in bias between multiple states, respectively, both of which have been observed in previous Thematic Mapper sensors, have not been convincingly found in ETM+ data. Two artifacts, detector ringing and "oversaturation", affect a small amount of ETM+ data.

  18. Imager for Mars Pathfinder (IMP) image calibration

    USGS Publications Warehouse

    Reid, R.J.; Smith, P.H.; Lemmon, M.; Tanner, R.; Burkland, M.; Wegryn, E.; Weinberg, J.; Marcialis, R.; Britt, D.T.; Thomas, N.; Kramm, R.; Dummel, A.; Crowe, D.; Bos, B.J.; Bell, J.F.; Rueffer, P.; Gliem, F.; Johnson, J. R.; Maki, J.N.; Herkenhoff, K. E.; Singer, Robert B.

    1999-01-01

    The Imager for Mars Pathfinder returned over 16,000 high-quality images from the surface of Mars. The camera was well-calibrated in the laboratory, with <5% radiometric uncertainty. The photometric properties of two radiometric targets were also measured with 3% uncertainty. Several data sets acquired during the cruise and on Mars confirm that the system operated nominally throughout the course of the mission. Image calibration algorithms were developed for landed operations to correct instrumental sources of noise and to calibrate images relative to observations of the radiometric targets. The uncertainties associated with these algorithms as well as current improvements to image calibration are discussed. Copyright 1999 by the American Geophysical Union.

  19. All-digital precision processing of ERTS images

    NASA Technical Reports Server (NTRS)

    Bernstein, R. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Digital techniques have been developed and used to apply precision-grade radiometric and geometric corrections to ERTS MSS and RBV scenes. Geometric accuracies sufficient for mapping at 1:250,000 scale have been demonstrated. Radiometric quality has been superior to ERTS NDPF precision products. A configuration analysis has shown that feasible, cost-effective all-digital systems for correcting ERTS data are easily obtainable. This report contains a summary of all results obtained during this study and includes: (1) radiometric and geometric correction techniques, (2) reseau detection, (3) GCP location, (4) resampling, (5) alternative configuration evaluations, and (6) error analysis.

  20. Sentinel 2A: the image quality performances at the beginning of its mission

    NASA Astrophysics Data System (ADS)

    Trémas, T.; Lonjou, V.; Lachérade, S.; Languille, F.; Gaudel-Vacaresse, A.,

    2016-09-01

    Launched on June 23rd, 2015 from Kourou, Sentinel 2A has been providing images for more than 1 year now. The satellite behavior is very satisfactory and the quality of data fulfills the requirements with comfortable margins. The realization and implementation of the satellite has been realized under the responsibility of ESA, for the European Commission. The In Orbit Commissioning phase lasted 4 months, concluded by a review on October 16th, 2015. At this date, the S2A space segment handover took place from the Project Manager (ESA/ESTEC) to the Mission Manager (ESA/ESRIN). The subset of Image Quality commissioning was delegated by ESA to CNES, referring to the experience of the French Space Agency on previous imagers. This phase lasted 7 months after the launch, extending beyond the IOCR. Actually, some parameters required several months before converging to a stable state. This paper presents the status of the satellite, from an IQ prospective, just before it entered its operational phase. The radiometric and geometric performances are listed, including: the absolute radiometric calibration, the equalization, the SNR, the absolute and the multi-temporal location accuracy. The accomplishment of a part of the Global Reference Image over Europe is evoked as well. The IQ commissioning phase ended on January 28th, 2016. From this date, the monitoring of IQ parameters is under the responsibility of ESA/ESRIN. Nevertheless, CNES continues to support ESA to survey the accuracy of S2A performances. The article ends by dealing with the future of S2A that will work together with S2B by the end of 2016.

  1. Precise orbits of the Lunar Reconnaissance Orbiter from radiometric tracking data

    NASA Astrophysics Data System (ADS)

    Löcher, Anno; Kusche, Jürgen

    2018-02-01

    Since 2009, the Lunar Reconnaissance Orbiter (LRO) acquires images and altimetric profiles of the lunar surface. Assembling these data to maps and terrain models requires the precise knowledge of the spacecraft trajectory. In this contribution, we present 5 years of LRO orbits from radiometric data processed with a software tailored to this mission. The presented orbits are the first independent validation of the LRO science orbits from NASA and are available for public use. A key feature of our processing is the elaborate treatment of model and observation errors by empirical parameters and an adaptive data weighting by variance component estimation. The quality of the resulting orbits is assessed by analyzing overlapping arcs. For our solution based on arcs of 2.5 days, such analysis yields a mean error of 2.81 m in total position and 0.11 m in radial direction. It is shown that this result greatly benefits from the adaptive data weighting, reducing the error by 2.54 and 0.13 m, respectively. Unfortunately, the precision achieved varies strongly, dependent on the view onto the orbital ellipse which changes with the lunar cycle. To mitigate this dependency, the arc length was extended in steps up to 10.5 days, leading in the best case to a further improvement of 0.80 m.

  2. Evaluation of data thinning strategies for climate applications using the first four years of AIRS hyperspectral data

    NASA Astrophysics Data System (ADS)

    Aumann, Hartmut H.; Fishbein, Evan; Gohlke, Jan

    2007-09-01

    The application of infrared hyper-spectral sounder data to climate research requires the global analysis of multi-decadal time series of various atmosphere, surface or cloud related parameters. The data used in this analysis has to meet stringent global and scene independent absolute accuracy and stability requirements, it also has to be spatially and radiometrically unbiased, manageable in size and self-contained. Self-contained means that the data set contains not only a globally unbiased sample of the state of the Earth Climate system as seen in the infrared, it has to contain enough data to contrast clear with average (cloudy) data and to allow an independent assessment of the radiometric and spectral accuracy and stability of the data. We illustrate this with data from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounder Interferometer (IASI) data. AIRS and IASI were designed with fairly similar functional requirements. AIRS was launched on the EOS Aqua spacecraft in May 2002 into a 705 km polar sun-synchronous orbit with accurately maintained 1:30 PM ascending node. Essentially un-interrupted data are available since September 2002. Since October 2006 IASI is in a 9:30 AM polar orbit at 815 km altitude on the MetOp2 satellite, with data available since May 2007.

  3. Accuracy of Flight Altitude Measured with Low-Cost GNSS, Radar and Barometer Sensors: Implications for Airborne Radiometric Surveys.

    PubMed

    Albéri, Matteo; Baldoncini, Marica; Bottardi, Carlo; Chiarelli, Enrico; Fiorentini, Giovanni; Raptis, Kassandra Giulia Cristina; Realini, Eugenio; Reguzzoni, Mirko; Rossi, Lorenzo; Sampietro, Daniele; Strati, Virginia; Mantovani, Fabio

    2017-08-16

    Flight height is a fundamental parameter for correcting the gamma signal produced by terrestrial radionuclides measured during airborne surveys. The frontiers of radiometric measurements with UAV require light and accurate altimeters flying at some 10 m from the ground. We equipped an aircraft with seven altimetric sensors (three low-cost GNSS receivers, one inertial measurement unit, one radar altimeter and two barometers) and analyzed ~3 h of data collected over the sea in the (35-2194) m altitude range. At low altitudes (H < 70 m) radar and barometric altimeters provide the best performances, while GNSS data are used only for barometer calibration as they are affected by a large noise due to the multipath from the sea. The ~1 m median standard deviation at 50 m altitude affects the estimation of the ground radioisotope abundances with an uncertainty less than 1.3%. The GNSS double-difference post-processing enhanced significantly the data quality for H > 80 m in terms of both altitude median standard deviation and agreement between the reconstructed and measured GPS antennas distances. Flying at 100 m the estimated uncertainty on the ground total activity due to the uncertainty on the flight height is of the order of 2%.

  4. State of the Art and Development Trends of the Digital Radiography Systems for Cargo Inspection

    NASA Astrophysics Data System (ADS)

    Udod, V.; Van, J.; Osipov, S.; Chakhlov, S.; Temnik, A.

    2016-01-01

    Increasing requirements for technical parameters of inspection digital radiography systems are caused by increasing incidences of terrorism, drug trafficking and explosives via variety of transport. These requirements have determined research for new technical solutions that enable to ensure the safety of passengers and cargos in real-time. The main efforts in the analyzed method of testing are aimed at the creation of new and modernization of operated now systems of digital radiography as a whole and their main components and elements in particular. The number of these main components and elements includes sources of X-ray recording systems and transformation of radiometric information as well as algorithms and software that implements these algorithms for processing, visualization and results interpretation of inspection. Recent developments of X-ray units and betatrons used for inspection of small- and large-sized objects that are made from different materials are deserve special attention. The most effective X-ray detectors are a line and a radiometric detector matrix based on various scintillators. The most promising methods among the algorithms of material identification of testing objects are dual-energy methods. The article describes various models of digital radiography systems applied in Russia and abroad to inspection of baggage, containers, vehicles and large trucks.

  5. Accuracy of Flight Altitude Measured with Low-Cost GNSS, Radar and Barometer Sensors: Implications for Airborne Radiometric Surveys

    PubMed Central

    Baldoncini, Marica; Chiarelli, Enrico; Fiorentini, Giovanni; Raptis, Kassandra Giulia Cristina; Realini, Eugenio; Reguzzoni, Mirko; Rossi, Lorenzo; Sampietro, Daniele; Strati, Virginia

    2017-01-01

    Flight height is a fundamental parameter for correcting the gamma signal produced by terrestrial radionuclides measured during airborne surveys. The frontiers of radiometric measurements with UAV require light and accurate altimeters flying at some 10 m from the ground. We equipped an aircraft with seven altimetric sensors (three low-cost GNSS receivers, one inertial measurement unit, one radar altimeter and two barometers) and analyzed ~3 h of data collected over the sea in the (35–2194) m altitude range. At low altitudes (H < 70 m) radar and barometric altimeters provide the best performances, while GNSS data are used only for barometer calibration as they are affected by a large noise due to the multipath from the sea. The ~1 m median standard deviation at 50 m altitude affects the estimation of the ground radioisotope abundances with an uncertainty less than 1.3%. The GNSS double-difference post-processing enhanced significantly the data quality for H > 80 m in terms of both altitude median standard deviation and agreement between the reconstructed and measured GPS antennas distances. Flying at 100 m the estimated uncertainty on the ground total activity due to the uncertainty on the flight height is of the order of 2%. PMID:28813023

  6. An industrial perspective of the LANDSAT opportunity

    NASA Technical Reports Server (NTRS)

    Williams, B. F.

    1981-01-01

    The feasibility of enhancing LANDSAT products to provide the greatest usability low cost data possible can be determined through government sponsorship and finance of one or more task forces composed of a critical number of experts in multiple disciplines from many industries and academia. The synergism of multiple minds addressing singular problems without the creation of permanent or perpetual structures must yield output in the form of implementable specifications, even if presented as alternatives. Changes are needed within the spacecraft in order to account for Sun angle changes. The use of pointing accuracy to make geometric corrections (and possible radiometric corrections, is needed more than onboard data reduction and information extraction, which assume a proper knowledge of application and reduce potential utilization. Multilinear arrays need to be investigated and methods for sensor calibration and for determining the effects of atmospheric inversion, as well as the best way to back out the modulation transfer function must be determined.

  7. TOGA - A GNSS Reflections Instrument for Remote Sensing Using Beamforming

    NASA Technical Reports Server (NTRS)

    Esterhuizen, S.; Meehan, T. K.; Robison, D.

    2009-01-01

    Remotely sensing the Earth's surface using GNSS signals as bi-static radar sources is one of the most challenging applications for radiometric instrument design. As part of NASA's Instrument Incubator Program, our group at JPL has built a prototype instrument, TOGA (Time-shifted, Orthometric, GNSS Array), to address a variety of GNSS science needs. Observing GNSS reflections is major focus of the design/development effort. The TOGA design features a steerable beam antenna array which can form a high-gain antenna pattern in multiple directions simultaneously. Multiple FPGAs provide flexible digital signal processing logic to process both GPS and Galileo reflections. A Linux OS based science processor serves as experiment scheduler and data post-processor. This paper outlines the TOGA design approach as well as preliminary results of reflection data collected from test flights over the Pacific ocean. This reflections data demonstrates observation of the GPS L1/L2C/L5 signals.

  8. An Independent Orbit Determination Simulation for the OSIRIS-REx Asteroid Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Getzandanner, Kenneth; Rowlands, David; Mazarico, Erwan; Antreasian, Peter; Jackman, Coralie; Moreau, Michael

    2016-01-01

    After arriving at the near-Earth asteroid (101955) Bennu in late 2018, the OSIRIS-REx spacecraft will execute a series of observation campaigns and orbit phases to accurately characterize Bennu and ultimately collect a sample of pristine regolith from its surface. While in the vicinity of Bennu, the OSIRIS-REx navigation team will rely on a combination of ground-based radiometric tracking data and optical navigation (OpNav) images to generate and deliver precision orbit determination products. Long before arrival at Bennu, the navigation team is performing multiple orbit determination simulations and thread tests to verify navigation performance and ensure interfaces between multiple software suites function properly. In this paper, we will summarize the results of an independent orbit determination simulation of the Orbit B phase of the mission performed to test the interface between the OpNav image processing and orbit determination software packages.

  9. Summary of the Flight Technology Improvement Workshop. [spaceborne optical radiometric instruments, attitude control, and electromechanical and power subsystems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Spaceborne instrumentation technology deficiencies are summarized. Recommendations are given for technology development, improvements in existing technology, and policy changes needed to facilitate the use of improved technology. Optical radiometric instruments, attitude control, and electromechanical and power subsystems are considered.

  10. Correction to Method of Establishing the Absolute Radiometric Accuracy of Remote Sensing Systems While On-orbit Using Characterized Stellar Sources

    NASA Technical Reports Server (NTRS)

    Bowen, Howard S.; Cunningham, Douglas M.

    2007-01-01

    The contents include: 1) Brief history of related events; 2) Overview of original method used to establish absolute radiometric accuracy of remote sensing instruments using stellar sources; and 3) Considerations to improve the stellar calibration approach.

  11. Validating the MISR radiometric scale for the ocean aerosol science communities

    NASA Technical Reports Server (NTRS)

    Bruegge, Carol J.; Abdou, Wedad; Diner, David J.; Gaitley, Barbara; Helmlinger, Mark; Kahn, Ralph; Martonchik, John V.

    2004-01-01

    This paper validates that radiometric accuracy is maintained throughout the dynamic range of the instrument. As part of this study, a new look has been taken on the band-relative scale, and a decrease in the radiance reported for the Red and NIR Bands has resulted.

  12. Investigation of coastal areas in Northern Germany using airborne geophysical surveys

    NASA Astrophysics Data System (ADS)

    Miensopust, Marion; Siemon, Bernhard; Wiederhold, Helga; Steuer, Annika; Ibs-von Seht, Malte; Voß, Wolfgang; Meyer, Uwe

    2014-05-01

    Since 2000, the German Federal Institute for Geosciences and Natural Resources (BGR) carried out several airborne geophysical surveys in Northern Germany to investigate the coastal areas of the North Sea and some of the North and East Frisian Islands. Several of those surveys were conducted in cooperation with the Leibniz Institute for Applied Geophysics (LIAG). Two helicopter-borne geophysical systems were used, namely the BGR system, which collects simultaneously frequency-domain electromagnetic, magnetic and radiometric data, and the SkyTEM system, a time-domain electromagnetic system developed by the University of Aarhus. Airborne geophysical surveys enable to investigate huge areas almost completely with high lateral resolution in a relatively short time at economic cost. In general, the results can support geological and hydrogeological mapping. Of particular importance are the airborne electromagnetic results, as the surveyed parameter - the electrical conductivity - depends on both lithology and groundwater status. Therefore, they can reveal buried valleys and the distribution of sandy and clayey sediments as well as salinization zones and fresh-water occurrences. The often simultaneously recorded magnetic and radiometric data support the electromagnetic results. Lateral changes of Quaternary and Tertiary sediments (shallow source - several tens of metres) as well as evidences of the North German Basin (deep source - several kilometres) are revealed by the magnetic results. The radiometric data indicate the various mineral compositions of the soil sediments. This BGR/LIAG project aims to build up a geophysics data base (http://geophysics-database.de/) which contains all airborne geophysical data sets. However, the more significant effort is to create a reference data set as basis for monitoring climate or man-made induced changes of the salt-water/fresh-water interface at the German North Sea coast. The significance of problems for groundwater extraction and treatment caused by groundwater salinization is more and more increasing and particularly coastal areas are affected by a latent risk for the sustainable usage of aquifers.

  13. Radiometry from Bio-Argo Floats: a New Strategy to Validate Ocean Color Products at the Global Scale.

    NASA Astrophysics Data System (ADS)

    Organelli, E.; Claustre, H.; Serra, R.; Bricaud, A.; Schmechtig, C.; D'Ortenzio, F.; Poteau, A.; Mangin, A.; Leymarie, E.; Obolensky, G.; Prieur, L. M.; Dall'Olmo, G.; Xing, X.

    2016-02-01

    Thanks to a new generation of Bio-Argo floats equipped with sensors for PAR (Photosynthetically Available Irradiance) and downward irradiance measurements at selected wavelengths (i.e., 380, 412 and 490 nm), the number of radiometric measurements has been dramatically increasing and data are available for diverse open ocean systems, including winter periods with harsh seas when ships can hardly sample. More than 6500 radiometric profiles have so far been acquired around solar noon in the upper 250 m of the ocean. These radiometric profiles, acquired simultaneously to other key biogeochemical and bio-optical variables (chlorophyll a, CDOM, light backscattering), represent a fruitful data source for validation of Ocean Color (OC) products. Two different strategies can be implemented: direct validation of satellite OC products and identification of regions characterized by bio-optical anomalies. Diffuse attenuation coefficients (Kd) derived from these profiles, after a specifically developed quality control, are used for these purposes.A good agreement is observed between satellite-derived Kd values at 490 nm and their Bio-Argo counterparts. However, satellite overestimates low in situ Kd values found in very clear waters (e.g., Atlantic and Pacific Sub-Tropical Gyres). The analysis of the spectral Kd variability in the surface ocean shows the potential of Bio-Argo floats in identifying those regions with optical properties departing from global bio-optical relationships. Divergences of the ratio between Kd values at 380 nm and those at 490 nm from global bio-optical models are observed in areas such as the Mediterranean Sea and the North Atlantic in winter. This might cause difficulties in retrieving biogeochemical parameters from satellite data. Hence, delineation of "anomalous" regions by Bio-Argo floats represents a useful strategy for planning dedicated cruises, setting mooring buoys or using CAL/VAL floats in order to improve Ocean Color applications.

  14. Ellipsoidal geometry in asteroid thermal models - The standard radiometric model

    NASA Technical Reports Server (NTRS)

    Brown, R. H.

    1985-01-01

    The major consequences of ellipsoidal geometry in an othewise standard radiometric model for asteroids are explored. It is shown that for small deviations from spherical shape a spherical model of the same projected area gives a reasonable aproximation to the thermal flux from an ellipsoidal body. It is suggested that large departures from spherical shape require that some correction be made for geometry. Systematic differences in the radii of asteroids derived radiometrically at 10 and 20 microns may result partly from nonspherical geometry. It is also suggested that extrapolations of the rotational variation of thermal flux from a nonspherical body based solely on the change in cross-sectional area are in error.

  15. DIGITAL CARTOGRAPHY OF THE PLANETS: NEW METHODS, ITS STATUS, AND ITS FUTURE.

    USGS Publications Warehouse

    Batson, R.M.

    1987-01-01

    A system has been developed that establishes a standardized cartographic database for each of the 19 planets and major satellites that have been explored to date. Compilation of the databases involves both traditional and newly developed digital image processing and mosaicking techniques, including radiometric and geometric corrections of the images. Each database, or digital image model (DIM), is a digital mosaic of spacecraft images that have been radiometrically and geometrically corrected and photometrically modeled. During compilation, ancillary data files such as radiometric calibrations and refined photometric values for all camera lens and filter combinations and refined camera-orientation matrices for all images used in the mapping are produced.

  16. Target contrast considerations in millimeter wave radiometry for airborne navigation

    NASA Technical Reports Server (NTRS)

    Mayer, A.

    1971-01-01

    Target signal requirements for aircraft navigation systems that use radiometric receivers which map thermally emitted power radiated by terrain or power radiated by ground-based beacons are discussed. For selected millimeter wavelength bands, microwaves suffer relatively little degradation by absorption or scattering on passage through the atmosphere, despite extreme weather variations. Interest centers on 8-millimeter waves because of component availability, portability (small size), high image resolution, and all-weather capability at this wavelength. The idea of radiometric airborne navigation is introduced. Elements of radiometry, terrain radiation, and atmospheric transmission characteristics are reviewed. Data pertaining to these elements at 8 mm wavelength are collected. Calculation of radiometric contrasts is discussed for some simple models of terrain targets.

  17. Radiometric Method for the Detection of Coliform Organisms in Water

    PubMed Central

    Bachrach, Uriel; Bachrach, Zelilah

    1974-01-01

    A new radiometric method for the detection of coliform bacteria in water has been described. The method is based on the release of 14CO2 from [14C]lactose by bacteria suspended in growth medium and incubated at 37 C. The evolved 14CO2 is trapped by hyamine hydroxide and counted in a liquid scintillation spectrometer. The method permits the detection of 1 to 10 organisms within 6 h of incubation. Coliform bacteria suspended in water for several days recover from starvation and may be quantitated by the proposed method. Bacteria from water samples may also be concentrated by filtration through membrane filters and detected by the radiometric assay. PMID:4605007

  18. An equivalent method of mixed dielectric constant in passive microwave/millimeter radiometric measurement

    NASA Astrophysics Data System (ADS)

    Su, Jinlong; Tian, Yan; Hu, Fei; Gui, Liangqi; Cheng, Yayun; Peng, Xiaohui

    2017-10-01

    Dielectric constant is an important role to describe the properties of matter. This paper proposes This paper proposes the concept of mixed dielectric constant(MDC) in passive microwave radiometric measurement. In addition, a MDC inversion method is come up, Ratio of Angle-Polarization Difference(RAPD) is utilized in this method. The MDC of several materials are investigated using RAPD. Brightness temperatures(TBs) which calculated by MDC and original dielectric constant are compared. Random errors are added to the simulation to test the robustness of the algorithm. Keywords: Passive detection, microwave/millimeter, radiometric measurement, ratio of angle-polarization difference (RAPD), mixed dielectric constant (MDC), brightness temperatures, remote sensing, target recognition.

  19. Lakewide monitoring of suspended solids using satellite data. [Lake Superior water reclamation

    NASA Technical Reports Server (NTRS)

    Sydor, M. (Principal Investigator)

    1981-01-01

    In anticipation of using LANDSAT and Nimbus 7 coastal zone color scanner data to observe the decrease in suspended solids in Lake Superior following cessation of the dumping of taconite tailings, a series of lakewide sampling cruises was conducted to make radiometric measurements at a lake level. A means for identifying particulates and measuring their concentration from LANDSAT data was developed. The initial distribution of chemical parameters in the extreme western arm of the lake, where the concentration gradients are high, is to be based on the LANDSAT data. Subsequent lakewide dispersal and distribution is to be based on the coastal zone color scanner data.

  20. LANDSAT-D data format control book. Volume 6, appendix D: Thematic mapper Computer Compatible Tape (CCT-AT/PT)

    NASA Technical Reports Server (NTRS)

    Ahmed, H.

    1981-01-01

    The format of computer compatible tapes which contain LANDSAT 4 and D Prime thematic mapper data is defined. A complete specification of the CCT-AT (radiometric corrections applied and geometric matrices appended) and the CCT-PT (radiometric and geometric corrections) data formats is provided.

  1. Space Object Radiometric Modeling for Hardbody Optical Signature Database Generation

    DTIC Science & Technology

    2009-09-01

    Introduction This presentation summarizes recent activity in monitoring spacecraft health status using passive remote optical nonimaging ...Approved for public release; distribution is unlimited. Space Object Radiometric Modeling for Hardbody Optical Signature Database Generation...It is beneficial to the observer/analyst to understand the fundamental optical signature variability associated with these detection and

  2. EREP geothermal. [northern California

    NASA Technical Reports Server (NTRS)

    Johnston, E. W. (Principal Investigator); Dunklee, A. L.; Wychgram, D. C.

    1974-01-01

    The author has identified the following significant results. A reasonably good agreement was found for the radiometric temperatures calculated from the ground truth data and the radiometric temperatures measured by the S192 scanner. This study showed that the S192 scanner data could be used to create good thermal images, particularly with the x-5 detector array.

  3. Tracking and Data Relay Satellite System (TDRSS) navigation with DSN radio metric data

    NASA Technical Reports Server (NTRS)

    Ellis, J.

    1981-01-01

    The use of DSN radiometric data for enhancing the orbit determination capability for TDRS is examined. Results of a formal covariance analysis are presented which establish the nominal TDRS navigation performance and assess the performance improvement based on augmenting the nominal TDRS data strategy with radiometric data from DSN sites.

  4. Calibration of passive remote observing optical and microwave instrumentation; Proceedings of the Meeting, Orlando, FL, Apr. 3-5, 1991

    NASA Technical Reports Server (NTRS)

    Guenther, Bruce W. (Editor)

    1991-01-01

    Various papers on the calibration of passive remote observing optical and microwave instrumentation are presented. Individual topics addressed include: on-board calibration device for a wide field-of-view instrument, calibration for the medium-resolution imaging spectrometer, cryogenic radiometers and intensity-stabilized lasers for EOS radiometric calibrations, radiometric stability of the Shuttle-borne solar backscatter ultraviolet spectrometer, ratioing radiometer for use with a solar diffuser, requirements of a solar diffuser and measurements of some candidate materials, reflectance stability analysis of Spectralon diffuse calibration panels, stray light effects on calibrations using a solar diffuser, radiometric calibration of SPOT 23 HRVs, surface and aerosol models for use in radiative transfer codes. Also addressed are: calibrated intercepts for solar radiometers used in remote sensor calibration, radiometric calibration of an airborne multispectral scanner, in-flight calibration of a helicopter-mounted Daedalus multispectral scanner, technique for improving the calibration of large-area sphere sources, remote colorimetry and its applications, spatial sampling errors for a satellite-borne scanning radiometer, calibration of EOS multispectral imaging sensors and solar irradiance variability.

  5. Study on radiometric consistency of LANDSAT-4 multispectral scanner. [borders between North and South Carolina and between the Imperial Valley of California and Mexico

    NASA Technical Reports Server (NTRS)

    Malila, W. A. (Principal Investigator)

    1983-01-01

    Two full frames of radiometrically corrected LANDSAT-4 MSS data were examined to determine a number of radiometric properties. It was found that LANDSAT-4 MSS produces data of good quality with dynamic ranges and target responses qualitatively similar to those of previous MSS sensors. Banding appears to be quite well corrected, with a residual rms error of about 0.3 digital counts being measured; the histogram equalization algorithm appears to be working as advertised. A low level coherent noise effect was found in all bands, appearing in uniform areas as a diagonal striping pattern. The principle component of this noise was found by Fourier analysis to be a highly consistent wavelength of 3.6 pixels along a scan line (28 KHz). The magnitude of this effect ranged from about 0.75 of one count in the worst band (Band 1) to only about 0.25 counts in the best band (Band 4). Preparations were made for establishing a relative radiometric calibration from MSS 4 data with respect to MSS 3.

  6. Radiometric assessment method for diffraction effects in hyperspectral imagers applied to the earth explorer #8 mission candidate flex

    NASA Astrophysics Data System (ADS)

    Berlich, R.; Harnisch, B.

    2017-11-01

    An accurate stray light analysis represents a crucial part in the early design phase of hyperspectral imaging systems, since scattering effects can severely limit the radiometric accuracy performance. In addition to conventional contributors including ghost images and surface scattering, i.e. caused by a residual surface micro-roughness and particle contamination, diffraction effects can result in significant radiometric errors in the spatial and spectral domain of pushbroom scanners. In this paper, we present a mathematical approach that efficiently evaluates these diffraction effects based on a Fourier analysis. It is shown that considering the conventional diffraction at the systems entrance pupil only, significantly overestimates the stray light contribution. In fact, a correct assessment necessitates taking into account the joint influence of the entrance pupil, the spectrometer slit as well as the dispersion element. We quantitatively investigate the corresponding impact on the Instrument Spectral Response Function (ISRF) of the Earth Explorer #8 Mission Candidate FLEX and analyse the expected radiometric error distribution for a typical earth observation scenario requirement.

  7. Classification of Dual-Wavelength Airborne Laser Scanning Point Cloud Based on the Radiometric Properties of the Objects

    NASA Astrophysics Data System (ADS)

    Pilarska, M.

    2018-05-01

    Airborne laser scanning (ALS) is a well-known and willingly used technology. One of the advantages of this technology is primarily its fast and accurate data registration. In recent years ALS is continuously developed. One of the latest achievements is multispectral ALS, which consists in obtaining simultaneously the data in more than one laser wavelength. In this article the results of the dual-wavelength ALS data classification are presented. The data were acquired with RIEGL VQ-1560i sensor, which is equipped with two laser scanners operating in different wavelengths: 532 nm and 1064 nm. Two classification approaches are presented in the article: classification, which is based on geometric relationships between points and classification, which mostly relies on the radiometric properties of registered objects. The overall accuracy of the geometric classification was 86 %, whereas for the radiometric classification it was 81 %. As a result, it can be assumed that the radiometric features which are provided by the multispectral ALS have potential to be successfully used in ALS point cloud classification.

  8. Radiometric resolution enhancement by lossy compression as compared to truncation followed by lossless compression

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Manohar, Mareboyana

    1994-01-01

    Recent advances in imaging technology make it possible to obtain imagery data of the Earth at high spatial, spectral and radiometric resolutions from Earth orbiting satellites. The rate at which the data is collected from these satellites can far exceed the channel capacity of the data downlink. Reducing the data rate to within the channel capacity can often require painful trade-offs in which certain scientific returns are sacrificed for the sake of others. In this paper we model the radiometric version of this form of lossy compression by dropping a specified number of least significant bits from each data pixel and compressing the remaining bits using an appropriate lossless compression technique. We call this approach 'truncation followed by lossless compression' or TLLC. We compare the TLLC approach with applying a lossy compression technique to the data for reducing the data rate to the channel capacity, and demonstrate that each of three different lossy compression techniques (JPEG/DCT, VQ and Model-Based VQ) give a better effective radiometric resolution than TLLC for a given channel rate.

  9. Preliminary radiometric calibration assessment of ALOS AVNIR-2

    USGS Publications Warehouse

    Bouvet, M.; Goryl, P.; Chander, G.; Santer, R.; Saunier, S.

    2008-01-01

    This paper summarizes the activities carried out in the frame of the data quality activities of the Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2) sensor onboard the Advanced Land Observing Satellite (ALOS). Assessment of the radiometric calibration of the AVNIR-2 multi-spectral imager is achieved via three intercomparisons to currently flying sensors over the Libyan desert, during the first year of operation. AU three methodologies indicate a slight underestimation of AVNIR-2 in band 1 by 4 to 7% with respect to other sensors radiometric scale. Band 2 does not show any obvious bias. Results for band 3 are affected by saturation due to inappropriate gain setting. Two methodologies indicate no significant bias in band 4. Preliminary results indicate possible degradations of the AVNIR-2 channels, which, when modeled as an exponentially decreasing functions, have time constants of respectively 13.2 %.year-1, 8.8%.year-1 and 0.1%.year-1 in band 1, 2 and 4 (with respect to the radiometric scale of the MEdium Resolution Imaging Spectrometer, MERIS). Longer time series of AVNIR-2 data are needed to draw final conclusions. ?? 2007 IEEE.

  10. Radiometric age map of Aleutian Islands

    USGS Publications Warehouse

    Wilson, Frederic H.; Turner, D.L.

    1975-01-01

    This map includes published, thesis, and open-file radiometric data available to us as of June, 1975. Some dates are not plotted because of inadequate location data in the original references.The map is divided into five sections, based on 1:1,000,000 scale enlargements of the National Atlas maps of Alaska. Within each section (e.g., southeastern Alaska), radiometric dates are plotted and keyed to 1:250,000 scale quadrangles. Accompanying each map section is table 1, listing map numbers and the sample identification numbers used in DGGS Special Report 10: Radiometric Dates from Alaska-A 1975 Compilation”. The reader is referred to Special Report 10 for more complete information on location, rock type, dating method, and literature references for each age entry. A listing of dates in Special Report lo which require correction or deletion is included S table 2. Corrected and additional entries are listed in table 3. The listings in tables 2 and 3 follow the format of Special Report 10. Table 4 is a glossary of abbreviations used for quadrangle name, rock type, mineral dated, and type of dating method used.

  11. Radiometric age map of southcentral Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Turner, D.L.

    1975-01-01

    This map includes published, thesis, and open-file radiometric data available to us as of June, 1975. Some dates are not plotted because of inadequate location data in the original references.The map is divided into five sections, based on 1:1,000,000 scale enlargements of the National Atlas maps of Alaska. Within each section (e.g., southeastern Alaska), radiometric dates are plotted and keyed to 1:250,000 scale quadrangles. Accompanying each map section is table 1, listing map numbers and the sample identification numbers used in DGGS Special Report 10: Radiometric Dates from Alaska-A 1975 Compilation”. The reader is referred to Special Report 10 for more complete information on location, rock type, dating method, and literature references for each age entry. A listing of dates in Special Report lo which require correction or deletion is included S table 2. Corrected and additional entries are listed in table 3. The listings in tables 2 and 3 follow the format of Special Report 10. Table 4 is a glossary of abbreviations used for quadrangle name, rock type, mineral dated, and type of dating method used.

  12. Radiometric age map of southwest Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Turner, D.L.

    1975-01-01

    This map includes published, thesis, and open-file radiometric data available to us as of June, 1975. Some dates are not plotted because of inadequate location data in the original references.The map is divided into five sections, based on 1:1,000,000 scale enlargements of the National Atlas maps of Alaska. Within each section (e.g., southeastern Alaska), radiometric dates are plotted and keyed to 1:250,000 scale quadrangles. Accompanying each map section is table 1, listing map numbers and the sample identification numbers used in DGGS Special Report 10: Radiometric Dates from Alaska-A 1975 Compilation”. The reader is referred to Special Report 10 for more complete information on location, rock type, dating method, and literature references for each age entry. A listing of dates in Special Report lo which require correction or deletion is included S table 2. Corrected and additional entries are listed in table 3. The listings in tables 2 and 3 follow the format of Special Report 10. Table 4 is a glossary of abbreviations used for quadrangle name, rock type, mineral dated, and type of dating method used.

  13. Radiometric age map of southeast Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Turner, D.L.

    1975-01-01

    This map includes published, thesis, and open-file radiometric data available to us as of June, 1975. Some dates are not plotted because of inadequate location data in the original references.The map is divided into five sections, based on 1:1,000,000 scale enlargements of the National Atlas maps of Alaska. Within each section (e.g., southeastern Alaska), radiometric dates are plotted and keyed to 1:250,000 scale quadrangles. Accompanying each map section is table 1, listing map numbers and the sample identification numbers used in DGGS Special Report 10: Radiometric Dates from Alaska-A 1975 Compilation”. The reader is referred to Special Report 10 for more complete information on location, rock type, dating method, and literature references for each age entry. A listing of dates in Special Report lo which require correction or deletion is included S table 2. Corrected and additional entries are listed in table 3. The listings in tables 2 and 3 follow the format of Special Report 10. Table 4 is a glossary of abbreviations used for quadrangle name, rock type, mineral dated, and type of dating method used.

  14. Radiometric age map of northern Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Turner, D.L.

    1975-01-01

    This map includes published, thesis, and open-file radiometric data available to us as of June, 1975. Some dates are not plotted because of inadequate location data in the original references.The map is divided into five sections, based on 1:1,000,000 scale enlargements of the National Atlas maps of Alaska. Within each section (e.g., southeastern Alaska), radiometric dates are plotted and keyed to 1:250,000 scale quadrangles. Accompanying each map section is table 1, listing map numbers and the sample identification numbers used in DGGS Special Report 10: Radiometric Dates from Alaska-A 1975 Compilation”. The reader is referred to Special Report 10 for more complete information on location, rock type, dating method, and literature references for each age entry. A listing of dates in Special Report lo which require correction or deletion is included S table 2. Corrected and additional entries are listed in table 3. The listings in tables 2 and 3 follow the format of Special Report 10. Table 4 is a glossary of abbreviations used for quadrangle name, rock type, mineral dated, and type of dating method used.

  15. Laboratory-Based BRDF Calibration of Radiometric Tarps

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Butler, James J.

    2007-01-01

    The current study provides the remote sensing community with important high accuracy laboratory-based BRDF calibration of radiometric tarps. The results illustrate the dependence of tarps' weft and warp threads orientation on BRDF. The study was done at incident angles of 0deg, 10deg, and 30deg; scatter zenith angles from 0deg to 60deg, and scatter azimuth angles of 0deg, 45deg, 90deg, 135deg, and 180deg. The wavelengths were 485nm, 550nm, 633nm and 800nm. The dependence is well defined at all measurement geometries and wavelengths. It can be as high as 8% at 0deg incident angle and 2% at 30deg incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps is reported. The backward scatter is well pronounced for the white samples. The black sample has well pronounced forward scatter. The BRDF characterization of radiometric tarps can be successfully extended to other structured surface fabric samples. The results are NIST traceable.

  16. Melanoma thickness measurement in two-layer tissue phantoms using pulsed photothermal radiometry (PPTR)

    NASA Astrophysics Data System (ADS)

    Wang, Tianyi; Qiu, Jinze; Paranjape, Amit; Milner, Thomas E.

    2009-02-01

    Melanoma is a malignant tumor of melanocytes which are found predominantly in skin. Melanoma is one of the rarer types of skin cancer but causes the majority of skin cancer related deaths. The staging of malignant melanoma using Breslow thickness is important because of the relationship to survival rate after five years. Pulsed photothermal radiometry (PPTR) is based on the time-resolved acquisition of infrared (IR) emission from a sample after pulsed laser exposure. PPTR can be used to investigate the relationship between melanoma thickness and detected radiometric temperature using two-layer tissue phantoms. We used a Monte Carlo simulation to mimic light transport in melanoma and employed a three-dimensional heat transfer model to obtain simulated radiometric temperature increase and, in comparison, we also conducted PPTR experiments to confirm our simulation results. Simulation and experimental results show similar trends: thicker absorbing layers corresponding to deeper lesions produce slower radiometric temperature decays. A quantitative relationship exists between PPTR radiometric temperature decay time and thickness of the absorbing layer in tissue phantoms.

  17. Revised landsat-5 thematic mapper radiometric calibration

    USGS Publications Warehouse

    Chander, G.; Markham, B.L.; Barsi, J.A.

    2007-01-01

    Effective April 2, 2007, the radiometric calibration of Landsat-5 (L5) Thematic Mapper (TM) data that are processed and distributed by the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) will be updated. The lifetime gain model that was implemented on May 5, 2003, for the reflective bands (1-5, 7) will be replaced by a new lifetime radiometric-calibration curve that is derived from the instrument's response to pseudoinvariant desert sites and from cross calibration with the Landsat-7 (L7) Enhanced TM Plus (ETM+). Although this calibration update applies to all archived and future L5 TM data, the principal improvements in the calibration are for the data acquired during the first eight years of the mission (1984-1991), where the changes in the instrument-gain values are as much as 15%. The radiometric scaling coefficients for bands 1 and 2 for approximately the first eight years of the mission have also been changed. Users will need to apply these new coefficients to convert the calibrated data product digital numbers to radiance. The scaling coefficients for the other bands have not changed.

  18. Analysis of a commercial small unmanned airborne system (sUAS) in support of the Radiometric Calibration Test Site (RadCaTS) at Railroad Valley

    NASA Astrophysics Data System (ADS)

    Czapla-Myers, Jeffrey S.; Anderson, Nikolaus J.

    2017-09-01

    The Radiometric Calibration Test Site (RadCaTS) is an automated facility developed by the Remote Sensing Group (RSG) at the University of Arizona to provide radiometric calibration data for airborne and satellite sensors. RadCaTS uses stationary ground-viewing radiometers (GVRs) to spatially sample the surface reflectance of the site. The number and location of the GVRs is based on previous spatial, spectral, and temporal analyses of Railroad Valley. With the increase in high-resolution satellite sensors, there is renewed interest in examining the spatial uniformity the 1-km2 RadCaTS area at scales smaller than a typical 30-m sensor. RadCaTS is one of the four instrumented sites currently in the CEOS WGCV Radiometric Calibration Network (RadCalNet), which aims to harmonize the post-launch radiometric calibration of satellite sensors through the use of a global network of automated calibration sites. A better understanding of the RadCaTS spatial uniformity as a function of pixel size will also benefit the RadCalNet work. RSG has recently acquired a commercially-available small unmanned airborne system (sUAS) system, with which preliminary spatial homogeneity measurements of the 1-km2 RadCaTS area were made. This work describes an initial assessment of the airborne platform and integrated camera for spatial studies of RadCaTS using data that were collected in 2016 and 2017.

  19. Changes in the Radiometric Sensitivity of SeaWiFS

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Barnes, Robert A.; Eplee, Robert E., Jr.; Patt, Frederick S.

    1998-01-01

    We report on the lunar and solar measurements used to determine the changes in the radiometric sensitivity of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Radiometric sensitivity is defined as the output from the instrument (or from one of the instrument bands) per unit spectral radiance at the instrument's input aperture. Knowledge of the long-term repeatability of the SeaWiFS measurements is crucial to maintaining the quality of the ocean scenes derived from measurements by the instrument. For SeaWiFS bands 1 through 6 (412 nm through 670 rim), the change in radiometric sensitivity is less than 0.2% for the period from November 1997 through November 1998. For band 7 (765 nm), the change is about 1.5%, and for band 8 (865 nm) about 5%. The rates of change of bands 7 and 8, which were linear with time for the first eight months of lunar measurements, are now slowing. The scatter in the data points about the trend lines in this analysis is less than 0.3% for all eight SeaWiFS bands. These results are based on monthly measurements of the moon. Daily solar measurements using an onboard diffuser show that the radiometric sensitivities of the SeaWiFS bands have changed smoothly during the time intervals between lunar measurements. Since SeaWiFS measurements have continued past November 1998, the results presented here are considered as a snapshot of the instrument performance as of that date.

  20. A novel method for destriping of OCM-2 data and radiometric performance analysis for improved ocean color data products

    NASA Astrophysics Data System (ADS)

    Singh, Rakesh Kumar; Shanmugam, Palanisamy

    2018-06-01

    Despite the capability of Ocean Color Monitor aboard Oceansat-2 satellite to provide frequent, high-spatial resolution, visible and near-infrared images for scientific research on coastal zones and climate data records over the global ocean, the generation of science quality ocean color products from OCM-2 data has been hampered by serious vertical striping artifacts and poor calibration of detectors. These along-track stripes are the results of variations in the relative response of the individual detectors of the OCM-2 CCD array. The random unsystematic stripes and bandings on the scene edges affect both visual interpretation and radiometric integrity of remotely sensed data, contribute to confusion in the aerosol correction process, and multiply and propagate into higher level ocean color products generated by atmospheric correction and bio-optical algorithms. Despite a number of destriping algorithms reported in the literature, complete removal of stripes without residual effects and signal distortion in both low- and high-level products is still challenging. Here, a new operational algorithm has been developed that employs an inverted gaussian function to estimate error fraction parameters, which are uncorrelated and vary in spatial, spectral and temporal domains. The algorithm is tested on a large number of OCM-2 scenes from Arabian Sea and Bay of Bengal waters contaminated with severe stripes. The destriping effectiveness of this approach is then evaluated by means of various qualitative and quantitative analyses, and by comparison with the results of the previously reported method. Clearly, the present method is more effective in terms of removing the stripe noise while preserving the radiometric integrity of the destriped OCM-2 data. Furthermore, a preliminary time-dependent calibration of the OCM-2 sensor is performed with several match-up in-situ data to evaluate its radiometric performance for ocean color applications. OCM-2 derived water-leaving radiance products obtained after calibration show a good consistency with in-situ and MODIS-Aqua observations, with errors less than the validated uncertainties of ±5% and ±35% endorsed for the remote-sensing measurements of water-leaving radiance and retrieval of chlorophyll concentrations respectively. The calibration results show a declining trend in detector sensitivity of the OCM-2 sensor, with a maximum effect in the shortwave spectrum, which provides evidence of sensor degradation and its profound effect on the striping artifacts in the OCM-2 data products.

  1. Profiling of Atmospheric Water Vapor from the SSM/T-2 Radiometric Measurements

    NASA Technical Reports Server (NTRS)

    Wang, J. R.

    2000-01-01

    An advantage of using the millimeter-wave measurements for water vapor profiling is the ability to probe beyond a moderate cloud cover. Such a capability has been demonstrated from an airborne MIR (Millimeter-wave Imaging Radiometer) flight over the Pacific Ocean during an intense observation period of TOGA/COARE (Tropical Ocean Global Atmosphere/ Couple Ocean Atmospheric Response Experiment) in early 1993. A Cloud Lidar System (CLS) and MODIS Airborne Simulator (MAS) were on board the same aircraft to identify the presence of clouds and cloud type. The retrieval algorithm not only provides output of a water vapor profile, but also the cloud liquid water and approximate cloud altitude required to satisfy convergence of the retrieval. The validity of these cloud parameters has not been verified previously. In this document, these cloud parameters are compared with those derived from concurrent measurements from the CLS and AMPR (Advanced Microwave Precipitation Radiometer).

  2. Optimization of light quality from color mixing light-emitting diode systems for general lighting

    NASA Astrophysics Data System (ADS)

    Thorseth, Anders

    2012-03-01

    Given the problem of metamerisms inherent in color mixing in light-emitting diode (LED) systems with more than three distinct colors, a method for optimizing the spectral output of multicolor LED system with regards to standardized light quality parameters has been developed. The composite spectral power distribution from the LEDs are simulated using spectral radiometric measurements of single commercially available LEDs for varying input power, to account for the efficiency droop and other non-linear effects in electrical power vs. light output. The method uses electrical input powers as input parameters in a randomized steepest decent optimization. The resulting spectral power distributions are evaluated with regard to the light quality using the standard characteristics: CIE color rendering index, correlated color temperature and chromaticity distance. The results indicate Pareto optimal boundaries for each system, mapping the capabilities of the simulated lighting systems with regard to the light quality characteristics.

  3. Sensitivity analysis of observed reflectivity to ice particle surface roughness using MISR satellite observations

    NASA Astrophysics Data System (ADS)

    Bell, A.; Hioki, S.; Wang, Y.; Yang, P.; Di Girolamo, L.

    2016-12-01

    Previous studies found that including ice particle surface roughness in forward light scattering calculations significantly reduces the differences between observed and simulated polarimetric and radiometric observations. While it is suggested that some degree of roughness is desirable, the appropriate degree of surface roughness to be assumed in operational cloud property retrievals and the sensitivity of retrieval products to this assumption remains uncertain. In an effort to extricate this ambiguity, we will present a sensitivity analysis of space-borne multi-angle observations of reflectivity, to varying degrees of surface roughness. This process is two fold. First, sampling information and statistics of Multi-angle Imaging SpectroRadiometer (MISR) sensor data aboard the Terra platform, will be used to define the most coming viewing observation geometries. Using these defined geometries, reflectivity will be simulated for multiple degrees of roughness using results from adding-doubling radiative transfer simulations. Sensitivity of simulated reflectivity to surface roughness can then be quantified, thus yielding a more robust retrieval system. Secondly, sensitivity of the inverse problem will be analyzed. Spherical albedo values will be computed by feeding blocks of MISR data comprising cloudy pixels over ocean into the retrieval system, with assumed values of surface roughness. The sensitivity of spherical albedo to the inclusion of surface roughness can then be quantified, and the accuracy of retrieved parameters can be determined.

  4. Aerial thermography for energy efficiency of buildings: the ChoT project

    NASA Astrophysics Data System (ADS)

    Mandanici, Emanuele; Conte, Paolo

    2016-10-01

    The ChoT project aims at analysing the potential of aerial thermal imagery to produce large scale datasets for energetic efficiency analyses and policies in urban environments. It is funded by the Italian Ministry of Education, University and Research (MIUR) in the framework of the SIR 2014 (Scientific Independence of young Researchers) programme. The city of Bologna (Italy) was chosen as the case study. The acquisition of thermal infrared images at different times by multiple aerial flights is one of the main tasks of the project. The present paper provides an overview of the ChoT project, but it delves into some specific aspects of the data processing chain: the computing of the radiometric quantities of the atmosphere, the estimation of surface emissivity (through an object-oriented classification applied on a very high resolution multispectral image, to distinguish among the major roofing materials) and sky-view factor (by means of a digital surface model). To collect ground truth data, the surface temperature of roofs and road pavings was measured at several locations at the same time as the aircraft acquired the thermal images. Furthermore, the emissivity of some roofing materials was estimated by means of a thermal camera and a contact probe. All the surveys were georeferenced by GPS. The results of the first surveying campaign demonstrate the high sensitivity of the model to the variability of the surface emissivity and the atmospheric parameters.

  5. Remote-sensing reflectance determinations in the coastal ocean environment: impact of instrumental characteristics and environmental variability.

    PubMed

    Toole, D A; Siegel, D A; Menzies, D W; Neumann, M J; Smith, R C

    2000-01-20

    Three independent ocean color sampling methodologies are compared to assess the potential impact of instrumental characteristics and environmental variability on shipboard remote-sensing reflectance observations from the Santa Barbara Channel, California. Results indicate that under typical field conditions, simultaneous determinations of incident irradiance can vary by 9-18%, upwelling radiance just above the sea surface by 8-18%, and remote-sensing reflectance by 12-24%. Variations in radiometric determinations can be attributed to a variety of environmental factors such as Sun angle, cloud cover, wind speed, and viewing geometry; however, wind speed is isolated as the major source of uncertainty. The above-water approach to estimating water-leaving radiance and remote-sensing reflectance is highly influenced by environmental factors. A model of the role of wind on the reflected sky radiance measured by an above-water sensor illustrates that, for clear-sky conditions and wind speeds greater than 5 m/s, determinations of water-leaving radiance at 490 nm are undercorrected by as much as 60%. A data merging procedure is presented to provide sky radiance correction parameters for above-water remote-sensing reflectance estimates. The merging results are consistent with statistical and model findings and highlight the importance of multiple field measurements in developing quality coastal oceanographic data sets for satellite ocean color algorithm development and validation.

  6. Regional Changes in Earths Color and Texture as Observed From Space Over a 15-Year Period

    NASA Technical Reports Server (NTRS)

    Zhao, Guangyu; Di Girolamo, Larry; Diner, David J.; Bruegge, Carol J.; Mueller, Kevin J.; Wu, Dong L.

    2016-01-01

    Earth-observing satellites provide global observations of many geophysical variables. As these variables are derived from measured radiances, the underlying radiance data are the most reliable sources of information for change detection. Here, we identify statistically significant trends in the color and spatial texture of the Earth as viewed from multiple directions from the Multi-angle Imaging SpectroRadiometer (MISR), which has been sampling the angular distribution of scattered sunlight since 2000. Globally, our results show that the Earth has been appearing relatively bluer (up to 1.6 % per decade from both nadir and oblique views) and smoother (up to 1.5 % per decade only from oblique views) over the past 15 years. The magnitude of the global blueing trends is comparable to that of uncertainties in radiometric calibration stability. Regional shifts in color and texture, which are significantly larger than global means, are observed, particularly over polar regions, along the boundaries of the subtropical highs, the tropical western Pacific, Southwestern Asia, and Australia. We demonstrate that the large regional trends cannot be explained either by uncertainties in radiometric calibration or variability in total or spectral solar irradiance; hence, they reflect changes internal to the Earths climate system. The 15-year-mean true color composites and texture images of the Earth at both nadir and oblique views are also presented for the first time.

  7. Effects of integration time on in-water radiometric profiles.

    PubMed

    D'Alimonte, Davide; Zibordi, Giuseppe; Kajiyama, Tamito

    2018-03-05

    This work investigates the effects of integration time on in-water downward irradiance E d , upward irradiance E u and upwelling radiance L u profile data acquired with free-fall hyperspectral systems. Analyzed quantities are the subsurface value and the diffuse attenuation coefficient derived by applying linear and non-linear regression schemes. Case studies include oligotrophic waters (Case-1), as well as waters dominated by Colored Dissolved Organic Matter (CDOM) and Non-Algal Particles (NAP). Assuming a 24-bit digitization, measurements resulting from the accumulation of photons over integration times varying between 8 and 2048ms are evaluated at depths corresponding to: 1) the beginning of each integration interval (Fst); 2) the end of each integration interval (Lst); 3) the averages of Fst and Lst values (Avg); and finally 4) the values weighted accounting for the diffuse attenuation coefficient of water (Wgt). Statistical figures show that the effects of integration time can bias results well above 5% as a function of the depth definition. Results indicate the validity of the Wgt depth definition and the fair applicability of the Avg one. Instead, both the Fst and Lst depths should not be adopted since they may introduce pronounced biases in E u and L u regression products for highly absorbing waters. Finally, the study reconfirms the relevance of combining multiple radiometric casts into a single profile to increase precision of regression products.

  8. Below the Disappearing Marshes of an Urban Estuary ...

    EPA Pesticide Factsheets

    Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wastewater nutrients are suspected to be an important contributing cause of marsh deterioration. We used census data, radiometric dating, stable nitrogen isotopes, and soil surveys to examine the temporal relationships between human population growth and soil nitrogen; and we evaluated soil structure with computer-aided tomography, surface elevation and sediment accretion trends, carbon dioxide emissions, and soil shear strength to examine differences among disappearing (Black Bank and Big Egg) and stable marshes (JoCo). Radiometric dating and nitrogen isotope analyses suggested a rapid increase in human wastewater nutrients beginning in the late 1840s, and a tapering off beginning in the 1930s when wastewater treatment plants (WWTPs) were first installed. Current WWTPs nutrient loads to Jamaica Bay are approximately 13 995 kg N/d and 2767 kg P/d. At Black Bank, the biomass and abundance of roots and rhizomes and percentage of organic matter on soil were significantly lower, rhizomes larger in diameter, carbon dioxide emission rates and peat particle density significantly greater, and soil strength significantly lower compared to the stable JoCo Marsh, suggesting Black Bank has elevated d

  9. ASD FieldSpec Calibration Setup and Techniques

    NASA Technical Reports Server (NTRS)

    Olive, Dan

    2001-01-01

    This paper describes the Analytical Spectral Devices (ASD) Fieldspec Calibration Setup and Techniques. The topics include: 1) ASD Fieldspec FR Spectroradiometer; 2) Components of Calibration; 3) Equipment list; 4) Spectral Setup; 5) Spectral Calibration; 6) Radiometric and Linearity Setup; 7) Radiometric setup; 8) Datadets Required; 9) Data files; and 10) Field of View Measurement. This paper is in viewgraph form.

  10. Radiometric calibration of an ultra-compact microbolometer thermal imaging module

    NASA Astrophysics Data System (ADS)

    Riesland, David W.; Nugent, Paul W.; Laurie, Seth; Shaw, Joseph A.

    2017-05-01

    As microbolometer focal plane array formats are steadily decreasing, new challenges arise in correcting for thermal drift in the calibration coefficients. As the thermal mass of the cameras decrease the focal plane becomes more sensitive to external thermal inputs. This paper shows results from a temperature compensation algorithm for characterizing and radiometrically calibrating a FLIR Lepton camera.

  11. Revised radiometric calibration technique for LANDSAT-4 Thematic Mapper data by the Canada Centre for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Murphy, J.; Butlin, T.; Duff, P.; Fitzgerald, A.

    1984-01-01

    Observations of raw image data, raw radiometric calibration data, and background measurements extracted from the raw data streams on high density tape reveal major shortcomings in a technique proposed by the Canadian Center for Remote Sensing in 1982 for the radiometric correction of TM data. Results are presented which correlate measurements of the DC background with variations in both image data background and calibration samples. The effect on both raw data and data corrected using the earlier proposed technique is explained and the correction required for these factors as a function of individual scan line number for each detector is described. How the revised technique can be incorporated into an operational environment is demonstrated.

  12. Characterization of radiometric calibration of LANDSAT-4 TM reflective bands

    NASA Technical Reports Server (NTRS)

    Barker, J. L.; Abrams, R. B.; Ball, D. L.; Leung, K. C.

    1984-01-01

    Prelaunch and postlaunch internal calibrator, image, and background data is to characterize the radiometric performance of the LANDSAT-4 TM and to recommend improved procedures for radiometric calibration. All but two channels (band 2, channel 4; band 5, channel 3) behave normally. Gain changes relative to a postlaunch reference for channels within a band vary within 0.5 percent as a group. Instrument gain for channels in the cold focal plane oscillates. Noise in background and image data ranges from 0.5 to 1.7 counts. Average differences in forward and reverse image data indicate a need for separate calibration processing of forward and reverse scans. Precision is improved by increasing the pulse integration width from 31 to 41 minor frames, depending on the band.

  13. Mississippi exploration field trials using microbial, radiometrics, free soil gas, and other techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, J.S.; Brown, L.R.; Thieling, S.C.

    1995-12-31

    The Mississippi Office of Geology has conducted field trials using the surface exploration techniques of geomicrobial, radiometrics, and free soil gas. The objective of these trials is to determine if Mississippi oil and gas fields have surface hydrocarbon expression resulting from vertical microseepage migration. Six fields have been surveyed ranging in depth from 3,330 ft to 18,500 ft. The fields differ in trapping styles and hydrocarbon type. The results so far indicate that these fields do have a surface expression and that geomicrobial analysis as well as radiometrics and free soil gas can detect hydrocarbon microseepage from pressurized reservoirs. Allmore » three exploration techniques located the reservoirs independent of depth, hydrocarbon type, or trapping style.« less

  14. Registration and Fusion of Multiple Source Remotely Sensed Image Data

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline

    2004-01-01

    Earth and Space Science often involve the comparison, fusion, and integration of multiple types of remotely sensed data at various temporal, radiometric, and spatial resolutions. Results of this integration may be utilized for global change analysis, global coverage of an area at multiple resolutions, map updating or validation of new instruments, as well as integration of data provided by multiple instruments carried on multiple platforms, e.g. in spacecraft constellations or fleets of planetary rovers. Our focus is on developing methods to perform fast, accurate and automatic image registration and fusion. General methods for automatic image registration are being reviewed and evaluated. Various choices for feature extraction, feature matching and similarity measurements are being compared, including wavelet-based algorithms, mutual information and statistically robust techniques. Our work also involves studies related to image fusion and investigates dimension reduction and co-kriging for application-dependent fusion. All methods are being tested using several multi-sensor datasets, acquired at EOS Core Sites, and including multiple sensors such as IKONOS, Landsat-7/ETM+, EO1/ALI and Hyperion, MODIS, and SeaWIFS instruments. Issues related to the coregistration of data from the same platform (i.e., AIRS and MODIS from Aqua) or from several platforms of the A-train (i.e., MLS, HIRDLS, OMI from Aura with AIRS and MODIS from Terra and Aqua) will also be considered.

  15. 1D-Var multilayer assimilation of X-band SAR data into a detailed snowpack model

    NASA Astrophysics Data System (ADS)

    Phan, X. V.; Ferro-Famil, L.; Gay, M.; Durand, Y.; Dumont, M.; Morin, S.; Allain, S.; D'Urso, G.; Girard, A.

    2014-10-01

    The structure and physical properties of a snowpack and their temporal evolution may be simulated using meteorological data and a snow metamorphism model. Such an approach may meet limitations related to potential divergences and accumulated errors, to a limited spatial resolution, to wind or topography-induced local modulations of the physical properties of a snow cover, etc. Exogenous data are then required in order to constrain the simulator and improve its performance over time. Synthetic-aperture radars (SARs) and, in particular, recent sensors provide reflectivity maps of snow-covered environments with high temporal and spatial resolutions. The radiometric properties of a snowpack measured at sufficiently high carrier frequencies are known to be tightly related to some of its main physical parameters, like its depth, snow grain size and density. SAR acquisitions may then be used, together with an electromagnetic backscattering model (EBM) able to simulate the reflectivity of a snowpack from a set of physical descriptors, in order to constrain a physical snowpack model. In this study, we introduce a variational data assimilation scheme coupling TerraSAR-X radiometric data into the snowpack evolution model Crocus. The physical properties of a snowpack, such as snow density and optical diameter of each layer, are simulated by Crocus, fed by the local reanalysis of meteorological data (SAFRAN) at a French Alpine location. These snowpack properties are used as inputs of an EBM based on dense media radiative transfer (DMRT) theory, which simulates the total backscattering coefficient of a dry snow medium at X and higher frequency bands. After evaluating the sensitivity of the EBM to snowpack parameters, a 1D-Var data assimilation scheme is implemented in order to minimize the discrepancies between EBM simulations and observations obtained from TerraSAR-X acquisitions by modifying the physical parameters of the Crocus-simulated snowpack. The algorithm then re-initializes Crocus with the modified snowpack physical parameters, allowing it to continue the simulation of snowpack evolution, with adjustments based on remote sensing information. This method is evaluated using multi-temporal TerraSAR-X images acquired over the specific site of the Argentière glacier (Mont-Blanc massif, French Alps) to constrain the evolution of Crocus. Results indicate that X-band SAR data can be taken into account to modify the evolution of snowpack simulated by Crocus.

  16. The IOSMOS (IOnian Sea water quality MOnitoring by Satellite data) project: integration of satellite data and in-situ measurements

    NASA Astrophysics Data System (ADS)

    Lacava, Teodosio; Bernini, Guido; Ciancia, Emanuele; Coviello, Irina; Di Polito, Carmine; Madonia, Alice; Marcelli, Marco; Pascucci, Simone; Paciello, Rossana; Palombo, Angelo; Pergola, Nicola; Piermattei, Viviana; Pignatti, Stefano; Santini, Federico; Satriano, Valeria; Tournaviti, Paraskevi; Tramutoli, Valerio; Vallianatos, Filippos

    2014-05-01

    Coastal zones are complex and dynamic ecosystems representing one of the most productive areas of the marine environment. These areas deserve the development and the implementation of a monitoring system able to guarantee their continuous and reliable control for a timely and accurate identification of any possible sign of degradation. Remote sensing data can give a relevant contribution in this framework, offering the capability to provide the information about the spatial distribution of water constituents over large areas with high temporal rates and at relatively low costs. In this context, the main objective of the IOSMOS (IOnian Sea water quality MOnitoring by Satellite data) Project - a European Transnational Cooperation action co-funded by the ERDF Operational Programme Basilicata 2007-2013 is the development of advanced satellite products and techniques for the study and the monitoring of the Ionian sea water quality along Basilicata (Italy) and Crete Island (Greece) coasts. In particular, the RST (Robust Satellite Technique) approach has been applied to more than 10 years of MODIS-Ocean Colour products in order to identify the areas at highest level of degradation and/or at greatest potential risk. Following RST approach anomalous space-time variations of optical variables (e.g. upwelling normalized water-leaving radiances) and bio-optical parameters such as chlorophyll-a concentration, Cromophormic Dissolved Organic Matter (CDOM), diffuse attenuation coefficient at 490 nm (Kd490), etc. have been identified taking into account the site history (in terms of expected values and normal variability of each selected parameter) as obtained from long-term, multi-temporal time series analysis. Such an approach allowed to generate similar products both for shallow and deep water. Specific measurements campaigns have been carried out with the collection of in-situ (radiometric and chemical/physical measurements) and airborne (radiometric measurements) data, in order to define and calibrate new algorithms for quantitative estimation of the above mentioned parameters even in the more critical situation (e.g. shallow waters). In this paper, the results achieved so far will be presented and discussed.

  17. A definitive calibration record for the Landsat-5 thematic mapper anchored to the Landsat-7 radiometric scale

    USGS Publications Warehouse

    Teillet, P.M.; Helder, D.L.; Ruggles, T.A.; Landry, R.; Ahern, F.J.; Higgs, N.J.; Barsi, J.; Chander, G.; Markham, B.L.; Barker, J.L.; Thome, K.J.; Schott, J.R.; Palluconi, Frank Don

    2004-01-01

    A coordinated effort on the part of several agencies has led to the specification of a definitive radiometric calibration record for the Landsat-5 thematic mapper (TM) for its lifetime since launch in 1984. The time-dependent calibration record for Landsat-5 TM has been placed on the same radiometric scale as the Landsat-7 enhanced thematic mapper plus (ETM+). It has been implemented in the National Landsat Archive Production Systems (NLAPS) in use in North America. This paper documents the results of this collaborative effort and the specifications for the related calibration processing algorithms. The specifications include (i) anchoring of the Landsat-5 TM calibration record to the Landsat-7 ETM+ absolute radiometric calibration, (ii) new time-dependent calibration processing equations and procedures applicable to raw Landsat-5 TM data, and (iii) algorithms for recalibration computations applicable to some of the existing processed datasets in the North American context. The cross-calibration between Landsat-5 TM and Landsat-7 ETM+ was achieved using image pairs from the tandem-orbit configuration period that was programmed early in the Laridsat-7 mission. The time-dependent calibration for Landsat-5 TM is based on a detailed trend analysis of data from the on-board internal calibrator. The new lifetime radiometric calibration record for Landsat-5 will overcome problems with earlier product generation owing to inadequate maintenance and documentation of the calibration over time and will facilitate the quantitative examination of a continuous, near-global dataset at 30-m scale that spans almost two decades.

  18. Monitoring the VIIRS ocean color band calibration using the Rayleigh scattering method

    NASA Astrophysics Data System (ADS)

    Wang, Wenhui; Cao, Changyong

    2014-11-01

    Post-launch monitoring of radiometric accuracy and stability of VIIRS (Visible Infrared Imaging Radiometer Suite) Solar Reflective Bands (RSB) at high gain stage (HGS) is essential for ocean color applications. This study investigates the absolute radiometric calibration accuracy of VIIRS bands M1-M5 at HGS using selected clear-sky dark ocean surfaces where top of atmosphere (TOA) signal is dominated by Rayleigh scattering. Vicarious gains were estimated using ratios between satellite observed and radiative transfer model simulated TOA reflectance. VIIRS TOA reflectance was simulated using 6SV (Second Simulation of a Satellite Signal in the Solar Spectrum - Vector, version 1.1). Input parameters required by the 6SV, including atmospheric profiles, wind speed and direction, aerosol optical thickness, and chlorophyll-a concentration, were obtained from the NASA Modern-Era Retrospective Analysis for Research and Applications reanalysis products, VIIRS aerosol optical thickness product, and previous studies. The Rayleigh scattering method developed in this study was applied to June to August 2014 VIIRS observations over six oceanic sites. Preliminary results indicated that the 3-month averaged vicarious gain for bands M1, M2, and M5 are close to 1. Relatively larger vicarious gains were observed in the other two bands, especially in band M4. The Rayleigh scattering calibration results generally agree with results from the VIIRS deep convective clouds time series analysis.

  19. Generalized Calibration of the Polarimetric Albedo Scale of Asteroids

    NASA Astrophysics Data System (ADS)

    Lupishko, D. F.

    2018-03-01

    Six different calibrations of the polarimetric albedo scale of asteroids have been published so far. Each of them contains its particular random and systematic errors and yields its values of geometric albedo. On the one hand, this complicates their analysis and comparison; on the other hand, it becomes more and more difficult to decide which of the proposed calibrations should be used. Moreover, in recent years, new databases on the albedo of asteroids obtained from the radiometric surveys of the sky with the orbital space facilities (the InfraRed Astronomical Satellite (IRAS), the Japanese astronomical satellite AKARI (which means "light"), the Wide-field Infrared Survey Explorer (WISE), and the Near-Earth Object Wide-field Survey Explorer (NEOWISE)) have appeared; and the database on the diameters and albedos of asteroids obtained from their occultations of stars has substantially increased. Here, we critically review the currently available calibrations and propose a new generalized calibration derived from the interrelations between the slope h and the albedo and between P min and the albedo. This calibration is based on all of the available series of the asteroid albedos and the most complete data on the polarization parameters of asteroids. The generalized calibration yields the values of the polarimetric albedo of asteroids in the system unified with the radiometric albedos and the albedos obtained from occultations of stars by asteroids. This, in turn, removes the difficulties in their comparison, joint analysis, etc.

  20. Radiometric Cross-calibration of KOMPSAT-3A with Landsat-8

    NASA Astrophysics Data System (ADS)

    Shin, D. Y.; Ahn, H. Y.; Lee, S. G.; Choi, C. U.; Kim, J. S.

    2016-06-01

    In this study, Cross calibration was conducted at the Libya 4 PICS site on 2015 using Landsat-8 and KOMPSAT-3A. Ideally a cross calibration should be calculated for each individual scene pair because on any given date the TOA spectral profile is influenced by sun and satellite view geometry and the atmospheric conditions. However, using the near-simultaneous images minimizes this effect because the sensors are viewing the same atmosphere. For the cross calibration, the calibration coefficient was calculated by comparing the at sensor spectral radiance for the same location calculated using the Landsat-8 calibration parameters in metadata and the DN of KOMPSAT-3A for the regions of interest (ROI). Cross calibration can be conducted because the satellite sensors used for overpass have a similar bandwidth. However, not all satellites have the same color filter transmittance and sensor reactivity, even though the purpose is to observe the visible bands. Therefore, the differences in the RSR should be corrected. For the cross-calibration, a calibration coefficient was calculated using the TOA radiance and KOMPSAT-3 DN of the Landsat-8 OLI overpassed at the Libya 4 Site, As a result, the accuracy of the calibration coefficient at the site was assumed to be ± 1.0%. In terms of the results, the radiometric calibration coefficients suggested here are thought to be useful for maintaining the optical quality of the KOMPSAT-3A.

  1. Automatic Hotspot and Sun Glint Detection in UAV Multispectral Images

    PubMed Central

    Ortega-Terol, Damian; Ballesteros, Rocio

    2017-01-01

    Last advances in sensors, photogrammetry and computer vision have led to high-automation levels of 3D reconstruction processes for generating dense models and multispectral orthoimages from Unmanned Aerial Vehicle (UAV) images. However, these cartographic products are sometimes blurred and degraded due to sun reflection effects which reduce the image contrast and colour fidelity in photogrammetry and the quality of radiometric values in remote sensing applications. This paper proposes an automatic approach for detecting sun reflections problems (hotspot and sun glint) in multispectral images acquired with an Unmanned Aerial Vehicle (UAV), based on a photogrammetric strategy included in a flight planning and control software developed by the authors. In particular, two main consequences are derived from the approach developed: (i) different areas of the images can be excluded since they contain sun reflection problems; (ii) the cartographic products obtained (e.g., digital terrain model, orthoimages) and the agronomical parameters computed (e.g., normalized vegetation index-NVDI) are improved since radiometric defects in pixels are not considered. Finally, an accuracy assessment was performed in order to analyse the error in the detection process, getting errors around 10 pixels for a ground sample distance (GSD) of 5 cm which is perfectly valid for agricultural applications. This error confirms that the precision in the detection of sun reflections can be guaranteed using this approach and the current low-cost UAV technology. PMID:29036930

  2. Automatic Hotspot and Sun Glint Detection in UAV Multispectral Images.

    PubMed

    Ortega-Terol, Damian; Hernandez-Lopez, David; Ballesteros, Rocio; Gonzalez-Aguilera, Diego

    2017-10-15

    Last advances in sensors, photogrammetry and computer vision have led to high-automation levels of 3D reconstruction processes for generating dense models and multispectral orthoimages from Unmanned Aerial Vehicle (UAV) images. However, these cartographic products are sometimes blurred and degraded due to sun reflection effects which reduce the image contrast and colour fidelity in photogrammetry and the quality of radiometric values in remote sensing applications. This paper proposes an automatic approach for detecting sun reflections problems (hotspot and sun glint) in multispectral images acquired with an Unmanned Aerial Vehicle (UAV), based on a photogrammetric strategy included in a flight planning and control software developed by the authors. In particular, two main consequences are derived from the approach developed: (i) different areas of the images can be excluded since they contain sun reflection problems; (ii) the cartographic products obtained (e.g., digital terrain model, orthoimages) and the agronomical parameters computed (e.g., normalized vegetation index-NVDI) are improved since radiometric defects in pixels are not considered. Finally, an accuracy assessment was performed in order to analyse the error in the detection process, getting errors around 10 pixels for a ground sample distance (GSD) of 5 cm which is perfectly valid for agricultural applications. This error confirms that the precision in the detection of sun reflections can be guaranteed using this approach and the current low-cost UAV technology.

  3. Radiometric Calibration of the NASA Advanced X-Ray Astrophysics Facility

    NASA Technical Reports Server (NTRS)

    Kellogg, Edwin M.

    1999-01-01

    We present the results of absolute calibration of the quantum efficiency of soft x-ray detectors performed at the PTB/BESSY beam lines. The accuracy goal is 1%. We discuss the implementation of that goal. These detectors were used as transfer standards to provide the radiometric calibration of the AXAF X-ray observatory, to be launched in April 1999.

  4. Spectral and radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Vane, Gregg; Chrien, Thomas G.; Miller, Edward A.; Reimer, John H.

    1987-01-01

    The laboratory spectral and radiometric calibration of the AVIRIS science data collected since 1987 is described. The instrumentation and procedures used in the calibration are discussed and the accuracy achieved in the laboratory as determined by measurement and calculation is compared with the requirements. Instrument performance factors affecting radiometry are described. The paper concludes with a discussion of future plans.

  5. The Relationship between Balancing Reactions and Reaction Lifetimes: A Consideration of the Potassium-Argon Radiometric Method for Dating Minerals

    ERIC Educational Resources Information Center

    Howard, William A.

    2005-01-01

    A detailed examination of a commonly accepted practice in geology offers an example of how to stimulate critical thinking, teaches students how to read reactions, and challenges students to formulate better experiments for determining mineral ages more accurately. A demonstration of a Potassium-Argon radiometric method for dating minerals is…

  6. A preliminary study of a very large space radiometric antenna

    NASA Technical Reports Server (NTRS)

    Agrawal, P. K.

    1979-01-01

    An approach used to compute the size of a special radiometric reflector antenna is presented. Operating at 1 GHz, this reflector is required to produce 200 simultaneous contiguous beams, each with a 3 dB footprint of 1 km from an assumed satellite height of 650 km. The overall beam efficiency for each beam is required to be more than 90%.

  7. Precise orbit determination of the Lunar Reconnaissance Orbiter and first gravity field results

    NASA Astrophysics Data System (ADS)

    Maier, Andrea; Baur, Oliver

    2014-05-01

    The Lunar Reconnaissance Orbiter (LRO) was launched in 2009 and is expected to orbit the Moon until the end of 2014. Among other instruments, LRO has a highly precise altimeter on board demanding an orbit accuracy of one meter in the radial component. Precise orbit determination (POD) is achieved with radiometric observations (Doppler range rates, ranges) on the one hand, and optical laser ranges on the other hand. LRO is the first satellite at a distance of approximately 360 000 to 400 000 km from the Earth that is routinely tracked with optical laser ranges. This measurement type was introduced to achieve orbits of higher precision than it would be possible with radiometric observations only. In this contribution we investigate the strength of each measurement type (radiometric range rates, radiometric ranges, optical laser ranges) based on single-technique orbit estimation. In a next step all measurement types are combined in a joined analysis. In addition to POD results, preliminary gravity field coefficients are presented being a subsequent product of the orbit determination process. POD and gravity field estimation was accomplished with the NASA/GSFC software packages GEODYN and SOLVE.

  8. Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar.

    PubMed

    Li, Zhan; Jupp, David L B; Strahler, Alan H; Schaaf, Crystal B; Howe, Glenn; Hewawasam, Kuravi; Douglas, Ewan S; Chakrabarti, Supriya; Cook, Timothy A; Paynter, Ian; Saenz, Edward J; Schaefer, Michael

    2016-03-02

    Radiometric calibration of the Dual-Wavelength Echidna(®) Lidar (DWEL), a full-waveform terrestrial laser scanner with two simultaneously-pulsing infrared lasers at 1064 nm and 1548 nm, provides accurate dual-wavelength apparent reflectance (ρ(app)), a physically-defined value that is related to the radiative and structural characteristics of scanned targets and independent of range and instrument optics and electronics. The errors of ρ(app) are 8.1% for 1064 nm and 6.4% for 1548 nm. A sensitivity analysis shows that ρ(app) error is dominated by range errors at near ranges, but by lidar intensity errors at far ranges. Our semi-empirical model for radiometric calibration combines a generalized logistic function to explicitly model telescopic effects due to defocusing of return signals at near range with a negative exponential function to model the fall-off of return intensity with range. Accurate values of ρ(app) from the radiometric calibration improve the quantification of vegetation structure, facilitate the comparison and coupling of lidar datasets from different instruments, campaigns or wavelengths and advance the utilization of bi- and multi-spectral information added to 3D scans by novel spectral lidars.

  9. Method of radiometric quality assessment of NIR images acquired with a custom sensor mounted on an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Wierzbicki, Damian; Fryskowska, Anna; Kedzierski, Michal; Wojtkowska, Michalina; Delis, Paulina

    2018-01-01

    Unmanned aerial vehicles are suited to various photogrammetry and remote sensing missions. Such platforms are equipped with various optoelectronic sensors imaging in the visible and infrared spectral ranges and also thermal sensors. Nowadays, near-infrared (NIR) images acquired from low altitudes are often used for producing orthophoto maps for precision agriculture among other things. One major problem results from the application of low-cost custom and compact NIR cameras with wide-angle lenses introducing vignetting. In numerous cases, such cameras acquire low radiometric quality images depending on the lighting conditions. The paper presents a method of radiometric quality assessment of low-altitude NIR imagery data from a custom sensor. The method utilizes statistical analysis of NIR images. The data used for the analyses were acquired from various altitudes in various weather and lighting conditions. An objective NIR imagery quality index was determined as a result of the research. The results obtained using this index enabled the classification of images into three categories: good, medium, and low radiometric quality. The classification makes it possible to determine the a priori error of the acquired images and assess whether a rerun of the photogrammetric flight is necessary.

  10. Application of radiometric force to microactuation and energy transformation

    NASA Astrophysics Data System (ADS)

    Selden, Nathaniel; Gimelshein, Natalia; Gimelshein, Sergey; Ketsdever, Andrew

    2012-11-01

    The force that acts on a thin vane immersed in rarefied gas when a temperature gradient is imposed along or across the vane has historically been known as the Radiometric force. First observed by Fresnel in 1825, the radiometric force has regained its former popularity in recent decades due to the advent of micro-machines, where a transitional flow regime can occur at atmospheric pressures. Whether used for its force potential or simply viewed as a nuisance, this force cannot be ignored in micro-devices where thermal gradients exist. Potential applications of radiometric force now span from atomic force microscopy to astrophysics to high altitude flight. This paper describes an application of these forces to a conceptual micro-scale energy harvester, where two possible geometries of operation are described. It is shown that one configuration is significantly simpler to fabricate while the other geometry is more efficient at producing larger forces. The effect of pressure, feature separation, and feature-to-ring gap are analyzed. For consistency and the accurate treatment of the relevant flow conditions, an implementation of the SMOKE code that solves the ES BGK equation was used in all computations.

  11. Characterizing the natural radiation levels throughout the main geological units of Sabkhat al Jabboul area, northern Syria.

    PubMed

    Al-Hilal, Mohamed; Aissa, Mosa

    2015-02-01

    The concentrations of equivalent eU, eTh, and K% were determined together with soil gas radon values and carborne gamma-ray survey in order to define the natural radioactivity levels throughout main geological units of Sabkhat al Jabboul region. Forty five soil and rock samples were collected from various lithofacies in each geological unit, and analyzed by γ-ray spectrometric technique for determining the concentration values of major radioelements. Such radiometric data could be used to differentiate between various lithologies of the investigated rocks. Although no distinct radioactive anomalies were found in the area, the radiometric profiles showed some minor variations with slightly higher values than the normal level. Despite the low radioactivity and the lack of rocks diversity in the surveyed area, it was possible to classify some certain rock types based on their radiometric response. The relationships between eU, eTh and their ratios were discussed for the Quaternary, Neogene and Paleogene formations, in order to evaluate the degree of uranium distribution and remobilization. The overall results of this radiometric survey were generally low, and lying within the range of the normal background levels in Syrian. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Radiometric stability of the Multi-angle Imaging SpectroRadiometer (MISR) following 15 years on-orbit

    NASA Astrophysics Data System (ADS)

    Bruegge, Carol J.; Val, Sebastian; Diner, David J.; Jovanovic, Veljko; Gray, Ellyn; Di Girolamo, Larry; Zhao, Guangyu

    2014-09-01

    The Multi-angle Imaging SpectroRadiometer (MISR) has successfully operated on the EOS/ Terra spacecraft since 1999. It consists of nine cameras pointing from nadir to 70.5° view angle with four spectral channels per camera. Specifications call for a radiometric uncertainty of 3% absolute and 1% relative to the other cameras. To accomplish this, MISR utilizes an on-board calibrator (OBC) to measure camera response changes. Once every two months the two Spectralon panels are deployed to direct solar-light into the cameras. Six photodiode sets measure the illumination level that are compared to MISR raw digital numbers, thus determining the radiometric gain coefficients used in Level 1 data processing. Although panel stability is not required, there has been little detectable change in panel reflectance, attributed to careful preflight handling techniques. The cameras themselves have degraded in radiometric response by 10% since launch, but calibration updates using the detector-based scheme has compensated for these drifts and allowed the radiance products to meet accuracy requirements. Validation using Sahara desert observations show that there has been a drift of ~1% in the reported nadir-view radiance over a decade, common to all spectral bands.

  13. Radiometric Correction of Multitemporal Hyperspectral Uas Image Mosaics of Seedling Stands

    NASA Astrophysics Data System (ADS)

    Markelin, L.; Honkavaara, E.; Näsi, R.; Viljanen, N.; Rosnell, T.; Hakala, T.; Vastaranta, M.; Koivisto, T.; Holopainen, M.

    2017-10-01

    Novel miniaturized multi- and hyperspectral imaging sensors on board of unmanned aerial vehicles have recently shown great potential in various environmental monitoring and measuring tasks such as precision agriculture and forest management. These systems can be used to collect dense 3D point clouds and spectral information over small areas such as single forest stands or sample plots. Accurate radiometric processing and atmospheric correction is required when data sets from different dates and sensors, collected in varying illumination conditions, are combined. Performance of novel radiometric block adjustment method, developed at Finnish Geospatial Research Institute, is evaluated with multitemporal hyperspectral data set of seedling stands collected during spring and summer 2016. Illumination conditions during campaigns varied from bright to overcast. We use two different methods to produce homogenous image mosaics and hyperspectral point clouds: image-wise relative correction and image-wise relative correction with BRDF. Radiometric datasets are converted to reflectance using reference panels and changes in reflectance spectra is analysed. Tested methods improved image mosaic homogeneity by 5 % to 25 %. Results show that the evaluated method can produce consistent reflectance mosaics and reflectance spectra shape between different areas and dates.

  14. Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar

    PubMed Central

    Li, Zhan; Jupp, David L. B.; Strahler, Alan H.; Schaaf, Crystal B.; Howe, Glenn; Hewawasam, Kuravi; Douglas, Ewan S.; Chakrabarti, Supriya; Cook, Timothy A.; Paynter, Ian; Saenz, Edward J.; Schaefer, Michael

    2016-01-01

    Radiometric calibration of the Dual-Wavelength Echidna® Lidar (DWEL), a full-waveform terrestrial laser scanner with two simultaneously-pulsing infrared lasers at 1064 nm and 1548 nm, provides accurate dual-wavelength apparent reflectance (ρapp), a physically-defined value that is related to the radiative and structural characteristics of scanned targets and independent of range and instrument optics and electronics. The errors of ρapp are 8.1% for 1064 nm and 6.4% for 1548 nm. A sensitivity analysis shows that ρapp error is dominated by range errors at near ranges, but by lidar intensity errors at far ranges. Our semi-empirical model for radiometric calibration combines a generalized logistic function to explicitly model telescopic effects due to defocusing of return signals at near range with a negative exponential function to model the fall-off of return intensity with range. Accurate values of ρapp from the radiometric calibration improve the quantification of vegetation structure, facilitate the comparison and coupling of lidar datasets from different instruments, campaigns or wavelengths and advance the utilization of bi- and multi-spectral information added to 3D scans by novel spectral lidars. PMID:26950126

  15. Temporal dynamics of sand dune bidirectional reflectance characteristics for absolute radiometric calibration of optical remote sensing data

    NASA Astrophysics Data System (ADS)

    Coburn, Craig A.; Logie, Gordon S. J.

    2018-01-01

    Attempts to use pseudoinvariant calibration sites (PICS) for establishing absolute radiometric calibration of Earth observation (EO) satellites requires high-quality information about the nature of the bidirectional reflectance distribution function (BRDF) of the surfaces used for these calibrations. Past studies have shown that the PICS method is useful for evaluating the trend of sensors over time or for the intercalibration of sensors. The PICS method was not considered until recently for deriving absolute radiometric calibration. This paper presents BRDF data collected by a high-performance portable goniometer system to develop a temporal BRDF model for the Algodones Dunes in California. By sampling the BRDF of the sand surface at similar solar zenith angles to those normally encountered by EO satellites, additional information on the changing nature of the surface can improve models used to provide absolute radiometric correction. The results demonstrated that the BRDF of a reasonably simple sand surface was complex with changes in anisotropy taking place in response to changing solar zenith angles. For the majority of observation and illumination angles, the spectral reflectance anisotropy observed varied between 1% and 5% in patterns that repeat around solar noon.

  16. Development of response models for the Earth Radiation Budget Experiment (ERBE) sensors. Part 1: Dynamic models and computer simulations for the ERBE nonscanner, scanner and solar monitor sensors

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Choi, Sang H.; Chrisman, Dan A., Jr.; Samms, Richard W.

    1987-01-01

    Dynamic models and computer simulations were developed for the radiometric sensors utilized in the Earth Radiation Budget Experiment (ERBE). The models were developed to understand performance, improve measurement accuracy by updating model parameters and provide the constants needed for the count conversion algorithms. Model simulations were compared with the sensor's actual responses demonstrated in the ground and inflight calibrations. The models consider thermal and radiative exchange effects, surface specularity, spectral dependence of a filter, radiative interactions among an enclosure's nodes, partial specular and diffuse enclosure surface characteristics and steady-state and transient sensor responses. Relatively few sensor nodes were chosen for the models since there is an accuracy tradeoff between increasing the number of nodes and approximating parameters such as the sensor's size, material properties, geometry, and enclosure surface characteristics. Given that the temperature gradients within a node and between nodes are small enough, approximating with only a few nodes does not jeopardize the accuracy required to perform the parameter estimates and error analyses.

  17. Non-invasive hyperthermia apparatus including coaxial applicator having a non-invasive radiometric receiving antenna incorporated therein and method of use thereof

    DOEpatents

    Ross, Michael P.

    1996-01-01

    A coaxial hyperthermia applicator for applying non-invasively electromagnetic energy to a body against which it is placed. The coaxial applicator antenna has formed integrally within it a non-invasive radiometric antenna for receiving thermoelectromagnetic emissions. The coaxial-configured applicator produces a bell-shaped radiation pattern symmetric about the axis of symmetry of the coaxial applicator. Integrating the radiometric antenna within the coaxial applicator produces a single device that performs dual functions. The first function is to transmit non-invasively energy for heating a subcutaneous tumor. The second function is to receive non-invasively thermal electromagnetic radiation from the tumor by which temperature is sensed and fed back to control the output of the coaxial applicator.

  18. Non-invasive hyperthermia apparatus including coaxial applicator having a non-invasive radiometric receiving antenna incorporated therein and method of use thereof

    DOEpatents

    Ross, M.P.

    1996-08-27

    A coaxial hyperthermia applicator is disclosed for applying non-invasively electromagnetic energy to a body against which it is placed. The coaxial applicator antenna has formed integrally within it a non-invasive radiometric antenna for receiving thermoelectromagnetic emissions. The coaxial-configured applicator produces a bell-shaped radiation pattern symmetric about the axis of symmetry of the coaxial applicator. Integrating the radiometric antenna within the coaxial applicator produces a single device that performs dual functions. The first function is to transmit non-invasively energy for heating a subcutaneous tumor. The second function is to receive non-invasively thermal electromagnetic radiation from the tumor by which temperature is sensed and fed back to control the output of the coaxial applicator. 11 figs.

  19. Radiometric and Spatial Characterization of High-Spatial Resolution Sensors

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; Zanoni, Vicki (Technical Monitor)

    2002-01-01

    The development and improvement of commercial hyperspatial sensors in recent years has increased the breadth of information that can be retrieved from spaceborne and airborne imagery. NASA, through it's Scientific Data Purchases, has successfully provided such data sets to its user community. A key element to the usefulness of these data are an understanding of the radiometric and spatial response quality of the imagery. This proposal seeks funding to examine the absolute radiometric calibration of the Ikonos sensor operated by Space Imaging and the recently-launched Quickbird sensor from DigitalGlobe. In addition, we propose to evaluate the spatial response of the two sensors. The proposed methods rely on well-understood, ground-based targets that have been used by the University of Arizona for more than a decade.

  20. A Microwave Radiometric Method to Obtain the Average Path Profile of Atmospheric Temperature and Humidity Structure Parameters and Its Application to Optical Propagation System Assessment

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.; Vyhnalek, Brian E.

    2015-01-01

    The values of the key atmospheric propagation parameters Ct2, Cq2, and Ctq are highly dependent upon the vertical height within the atmosphere thus making it necessary to specify profiles of these values along the atmospheric propagation path. The remote sensing method suggested and described in this work makes use of a rapidly integrating microwave profiling radiometer to capture profiles of temperature and humidity through the atmosphere. The integration times of currently available profiling radiometers are such that they are approaching the temporal intervals over which one can possibly make meaningful assessments of these key atmospheric parameters. Since these parameters are fundamental to all propagation conditions, they can be used to obtain Cn2 profiles for any frequency, including those for an optical propagation path. In this case the important performance parameters of the prevailing isoplanatic angle and Greenwood frequency can be obtained. The integration times are such that Kolmogorov turbulence theory and the Taylor frozen-flow hypothesis must be transcended. Appropriate modifications to these classical approaches are derived from first principles and an expression for the structure functions are obtained. The theory is then applied to an experimental scenario and shows very good results.

  1. Geometrical dart infrared polarization signatures

    NASA Astrophysics Data System (ADS)

    Lewis, Gareth D.; Jordan, David L.

    1996-06-01

    The 8 - 12 micrometer polarization signatures of diffuse and specular aluminum geometrical darts were analyzed outdoors using a polarization sensitive thermal imager. Results of the degree and plane of polarization are presented for different thermal imager gain bands and weather conditions during a two week period. The 0 degree, 45 degree, 90 degree and 135 degree polarizer orientations were thermally calibrated and the S1 and S2 Stokes parameters shown as radiometric temperature differences. The effect on the polarization signatures of range is considered for these targets at 100 m and 370 m. A comparison of the degree of polarization to changes in the emission/reflection balance and to variations in the dart's complex refractive index is made.

  2. A scale space feature based registration technique for fusion of satellite imagery

    NASA Technical Reports Server (NTRS)

    Raghavan, Srini; Cromp, Robert F.; Campbell, William C.

    1997-01-01

    Feature based registration is one of the most reliable methods to register multi-sensor images (both active and passive imagery) since features are often more reliable than intensity or radiometric values. The only situation where a feature based approach will fail is when the scene is completely homogenous or densely textural in which case a combination of feature and intensity based methods may yield better results. In this paper, we present some preliminary results of testing our scale space feature based registration technique, a modified version of feature based method developed earlier for classification of multi-sensor imagery. The proposed approach removes the sensitivity in parameter selection experienced in the earlier version as explained later.

  3. A 130,000-year-old archaeological site in southern California, USA.

    PubMed

    Holen, Steven R; Deméré, Thomas A; Fisher, Daniel C; Fullagar, Richard; Paces, James B; Jefferson, George T; Beeton, Jared M; Cerutti, Richard A; Rountrey, Adam N; Vescera, Lawrence; Holen, Kathleen A

    2017-04-26

    The earliest dispersal of humans into North America is a contentious subject, and proposed early sites are required to meet the following criteria for acceptance: (1) archaeological evidence is found in a clearly defined and undisturbed geologic context; (2) age is determined by reliable radiometric dating; (3) multiple lines of evidence from interdisciplinary studies provide consistent results; and (4) unquestionable artefacts are found in primary context. Here we describe the Cerutti Mastodon (CM) site, an archaeological site from the early late Pleistocene epoch, where in situ hammerstones and stone anvils occur in spatio-temporal association with fragmentary remains of a single mastodon (Mammut americanum). The CM site contains spiral-fractured bone and molar fragments, indicating that breakage occured while fresh. Several of these fragments also preserve evidence of percussion. The occurrence and distribution of bone, molar and stone refits suggest that breakage occurred at the site of burial. Five large cobbles (hammerstones and anvils) in the CM bone bed display use-wear and impact marks, and are hydraulically anomalous relative to the low-energy context of the enclosing sandy silt stratum. 230 Th/U radiometric analysis of multiple bone specimens using diffusion-adsorption-decay dating models indicates a burial date of 130.7 ± 9.4 thousand years ago. These findings confirm the presence of an unidentified species of Homo at the CM site during the last interglacial period (MIS 5e; early late Pleistocene), indicating that humans with manual dexterity and the experiential knowledge to use hammerstones and anvils processed mastodon limb bones for marrow extraction and/or raw material for tool production. Systematic proboscidean bone reduction, evident at the CM site, fits within a broader pattern of Palaeolithic bone percussion technology in Africa, Eurasia and North America. The CM site is, to our knowledge, the oldest in situ, well-documented archaeological site in North America and, as such, substantially revises the timing of arrival of Homo into the Americas.

  4. LANDSAT-4 multispectral scanner (MSS) subsystem radiometric characterization

    NASA Technical Reports Server (NTRS)

    Alford, W. (Editor); Barker, J. (Editor); Clark, B. P.; Dasgupta, R.

    1983-01-01

    The multispectral band scanner (mass) and its spectral characteristics are described and methods are given for relating video digital levels on computer compatible tapes to radiance into the sensor. Topics covered include prelaunch calibration procedures and postlaunch radiometric processng. Examples of current data resident on the MSS image processing system are included. The MSS on LANDSAT 4 is compared with the scanners on earlier LANDSAT satellites.

  5. Initial Radiometric Calibration of the AWiFS using Vicarious Calibration Techniques

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Thome, Kurtis; Aaron, David; Leigh, Larry

    2006-01-01

    NASA SSC maintains four ASD FieldSpec FR spectroradiometers: 1) Laboratory transfer radiometers; 2) Ground surface reflectance for V&V field collection activities. Radiometric Calibration consists of a NIST-calibrated integrating sphere which serves as a source with known spectral radiance. Spectral Calibration consists of a laser and pen lamp illumination of integrating sphere. Environmental Testing includes temperature stability tests performed in environmental chamber.

  6. VIIRS ZEMAX and FORTRAN Polarization Models

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Meister, Gerhard; Voss, Kenneth; Moyer, David

    2007-01-01

    The Visible/Infrared Imager/Radiometer Suite (VIIRS) collects visible/infrared imagery and radiometric data. The radiometric requirements are such that the instrument's polarization sensitivity must be very well understood. This paper presents the ZEMAX and FORTRAN polarization ray trace models of the instrument's visible light path. This will include the measured optical surface reflectance data, the bandpass shapes and a comparison of the results of the two models.

  7. LANDSAT 4 band 6 data evaluation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The objectives of this investigation are to evaluate and monitor the radiometric integrity of the LANDSAT-D Thematic Mapper (TM) thermal infrared channel (Band 6) data to develop improved radiometric preprocessing calibration techniques for removal of atmospheric effects. Efforts this period have concentrated on underflight data collection. Two successful flights were made on September 18 and October 6. The radiosonde data for these flights have been obtained.

  8. Development of radiometric assays for quantification of enzyme activities of the key enzymes of thyroid hormones metabolism.

    PubMed

    Pavelka, S

    2014-01-01

    We newly elaborated and adapted several radiometric enzyme assays for the determination of activities of the key enzymes engaged in the biosynthesis (thyroid peroxidase, TPO) and metabolic transformations (conjugating enzymes and iodothyronine deiodinases, IDs) of thyroid hormones (THs) in the thyroid gland and in peripheral tissues, especially in white adipose tissue (WAT). We also elaborated novel, reliable radiometric methods for extremely sensitive determination of enzyme activities of IDs of types 1, 2 and 3 in microsomal fractions of different rat and human tissues, as well as in homogenates of cultured mammalian cells. The use of optimized TLC separation of radioactive products from the unconsumed substrates and film-less autoradiography of radiochromatograms, taking advantage of storage phosphor screens, enabled us to determine IDs enzyme activities as low as 10(-18) katals. In studies of the interaction of fluoxetine (Fluox) with the metabolism of THs, we applied adapted radiometric enzyme assays for iodothyronine sulfotransferases (ST) and uridine 5'-diphospho-glucuronyltransferase (UDP-GT). Fluox is the most frequently used representative of a new group of non-tricyclic antidepressant drugs--selective serotonin re-uptake inhibitors. We used the elaborated assays for quantification the effects of Fluox and for the assessment of the degree of potential induction of rat liver ST and/or UDP-GT enzyme activities by Fluox alone or in combination with T(3). Furthermore, we studied possible changes in IDs activities in murine adipose tissue under the conditions that promoted either tissue hypertrophy (obesogenic treatment) or involution (caloric restriction), and in response to leptin, using our newly developed radiometric enzyme assays for IDs. Our results suggest that deiodinase D1 has a functional role in WAT, with D1 possibly being involved in the control of adipose tissue metabolism and/or accumulation of the tissue. Significant positive correlation between specific enzyme activity of D1 in WAT and plasma leptin levels was found. The newly developed and adapted radiometric enzyme assays proved to be very useful tools for studies of factors modulating THs metabolism, not only in model animals but also in clinical studies of human obesity.

  9. Ground-based radiometric calibration of the Landsat 8 Operational Land Imager (OLI) using in situ techniques

    NASA Astrophysics Data System (ADS)

    Czapla-Myers, J.

    2013-12-01

    Landsat 8 was successfully launched from Vandenberg Air Force Base in California on 11 February 2013, and was placed into the orbit previously occupied by Landsat 5. Landsat 8 is the latest platform in the 40-year history of the Landsat series of satellites, and it contains two instruments that operate in the solar-reflective and the thermal infrared regimes. The Operational Land Imager (OLI) is a pushbroom sensor that contains eight multispectral bands ranging from 400-2300 nm, and one panchromatic band. The spatial resolution of the multispectral bands is 30 m, which is similar to previous Landsat sensors, and the panchromatic band has a 15-m spatial resolution, which is also similar to previous Landsat sensors. The 12-bit radiometric resolution of OLI improves upon the 8-bit resolution of the Enhanced Thematic Mapper Plus (ETM+) onboard Landsat 7. An important requirement for the Landsat program is the long-term radiometric continuity of its sensors. Ground-based vicarious techniques have been used for over 20 years to determine the absolute radiometric calibration of sensors that encompass a wide variety of spectral and spatial characteristics. This work presents the early radiometric calibration results of Landsat 8 OLI that were obtained using the traditional reflectance-based approach. University of Arizona personnel used five sites in Arizona, California, and Nevada to collect ground-based data. In addition, a unique set of in situ data were collected in March 2013, when Landsat 7 and Landsat 8 were observing the same site within minutes of each other. The tandem overfly schedule occurred while Landsat 8 was shifting to the WRS-2 orbital grid, and lasted only a few days. The ground-based data also include results obtained using the University of Arizona's Radiometric Calibration Test Site (RadCaTS), which is an automated suite of instruments located at Railroad Valley, Nevada. The results presented in this work include a comparison to the L1T at-sensor spectral radiance and the top-of-atmosphere reflectance, both of which are standard products available from the US Geological Survey.

  10. Magnetic anomaly study and geologic implications for Gilbert and Tokelau seamounts, Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Sager, W. W.; Koppers, A. A.; Staudigel, H.

    2006-12-01

    The Gilbert and Tokelau seamounts are linear chains in the central Pacific with trends similar to the Emperor seamounts, implying the two poorly-known chains were formed by the same mechanism, widely regarded as hotspot volcanism. Multibeam bathymetry and magnetic data were collected over many Gilbert and Tokelau seamounts and have been used to make magnetic models to help understand the geologic evolution of the two chains. Magnetic models were done for 10 Gilbert and 10 Tokelau seamounts. Gilbert seamounts gave about equal number of reversed and normal polarity models and several have complex magnetizations that may indicate a mixture of opposing polarity rocks. Both observations imply formation during a time that included multiple geomagnetic reversals, consistent with radiometric dates from dredged rocks (65-72 Ma) [Koppers, A., and H. Staudigel, Science, 307, p. 905, 2005]. In the Tokelau chain, large volcanic edifices with summit islands (Howland, Baker, Fakaofu) also appear to have complex anomalies, making interpretation difficult. These volcanoes may also have formed over periods of time including magnetic reversals. The rest of the modeled central Tokelau seamounts have simpler magnetic anomalies and all but one is reversely polarized (6 reversed, 1 normal). Although this bias seems unusual if the geomagnetic field spent equal time in both polarities, it is consistent with radiometric ages of 59-66 Ma [Koppers and Staudigel, 2005], a period of dominantly reversed polarity. Paleomagnetic poles calculated from both seamount groups fall along the N-S trend of the Late Cretaceous to Cenozoic Pacific apparent polar wander path, consistent with Latest Cretaceous or early Cenozoic radiometric ages. More than half of the poles lie >30° east of the accepted polar wander path, perhaps indicating that the early Cenozoic polar wander path should be farther east. Ten (55%) of the paleomagnetic poles have lower latitudes than expected for Late Cretaceous or Cenozoic seamounts and all but one of these seamounts is reversely polarized. This situation implies a present-field overprint that steepens the calculated magnetization vectors for these seamounts and also renders the calculated seamount paleolatitudes unsuitable for interpretation.

  11. Applications of the similarity relations in radiative transfer to remote sensing implementation and flux simulation

    NASA Astrophysics Data System (ADS)

    Yang, P.; Ding, J.; Tang, G.; King, M. D.; Platnick, S. E.; Meyer, K.; Mlawer, E. J.

    2017-12-01

    Van de Hulst (1974) showed several quasi-invariant quantities in radiative transfer concerning multiple scattering. Recently, we illustrated that the aforesaid quasi-invariant quantities are useful in remote sensing of ice cloud properties from spaceborne radiometric observations (Ding et al. 2017). Specifically, the overall performance of an ice cloud optical property model can be estimated without carrying out detailed retrieval implementation. In this presentation, we will review the radiative transfer similarity relations and some recent results including the study by Ding et al. (2017). Furthermore, we will illustrate an application of the similarity relations to improvement of broadband radiative flux computation. For example, the Rapid Radiative Transfer Model (RRTM, Mlawer et al, 1999) does not consider multiple scattering in the longwave spectral regime (RRTMG-LW) ("G" indicates a version suitable for GCM applications). We show that the similarity relations can be used to effectively improve the accuracy of RRTMG-LW without increasing computational effort.

  12. Rare earth mineral potential in the southeastern U.S. Coastal Plain from integrated geophysical, geochemical, and geological approaches

    USGS Publications Warehouse

    Shah, Anjana K.; Bern, Carleton R.; Van Gosen, Bradley S.; Daniels, David L.; Benzel, William M.; Budahn, James R.; Ellefsen, Karl J.; Karst, Adam; Davis, Richard

    2017-01-01

    We combined geophysical, geochemical, mineralogical, and geological data to evaluate the regional presence of rare earth element (REE)−bearing minerals in heavy mineral sand deposits of the southeastern U.S. Coastal Plain. We also analyzed regional differences in these data to determine probable sedimentary provenance. Analyses of heavy mineral separates covering the region show strong correlations between thorium, monazite, and xenotime, suggesting that radiometric equivalent thorium (eTh) can be used as a geophysical proxy for those REE-bearing minerals. Airborne radiometric data collected during the National Uranium Resource Evaluation (NURE) program cover the southeastern United States with line spacing varying from ∼2 to 10 km. These data show eTh highs over Cretaceous and Tertiary Coastal Plain sediments from the Cape Fear arch in North Carolina to eastern Alabama; these highs decrease with distance from the Piedmont. Quaternary sediments along the modern coasts show weaker eTh anomalies, except near coast-parallel ridges from South Carolina to northern Florida. Prominent eTh anomalies are also observed over large riverbeds and their floodplains, even north of the Cape Fear arch where surrounding areas are relatively low. These variations were verified using ground geophysical measurements and sample analyses, indicating that radiometric methods are a useful exploration tool at varying scales. Further analyses of heavy mineral separates showed regional differences, not only in concentrations of monazite, but also of rutile and staurolite, and in magnetic susceptibility. The combined properties suggest the presence of subregions where heavy mineral sediments are primarily sourced from high-grade metamorphic, low-grade metamorphic, or igneous terrains, or where they represent a mixing of these sources. Comparisons between interpreted sources of heavy mineral sands near the Fall Line and igneous and metamorphic Piedmont and Blue Ridge units showed a strong correspondence with rocks closest to the Fall Line and poor correspondence with rocks farther inland. This strongly suggests that the primary source of those heavy minerals, especially monazite, is the rocks that formed the rocky coast that was present during opening of the Atlantic Ocean, which in turn indicates the importance of coastal processes in forming heavy mineral sand concentrations. Furthermore, narrow radiometric eTh and K anomalies are associated with major rivers, indicating limited spatial influence of fluvial processes. Later coastal plain sediment deposition appears to have involved reworking of sediments, providing an “inheritance” of the rocky coast composition that persists for some distance from the Fall Line. However, this inheritance is reduced with distance, and sediments within ∼100 km of the coast in Georgia and Florida exhibit properties indicative of mixing from multiple sources.

  13. High speed radiometric measurements of IED detonation fireballs

    NASA Astrophysics Data System (ADS)

    Spidell, Matthew T.; Gordon, J. Motos; Pitz, Jeremey; Gross, Kevin C.; Perram, Glen P.

    2010-04-01

    Continuum emission is predominant in fireball spectral phenomena and in some demonstrated cases, fine detail in the temporal evolution of infrared spectral emissions can be used to estimate size and chemical composition of the device. Recent work indicates that a few narrow radiometric bands may reveal forensic information needed for the explosive discrimination and classification problem, representing an essential step in moving from "laboratory" measurements to a rugged, fieldable system. To explore phenomena not observable in previous experiments, a high speed (10μs resolution) radiometer with four channels spanning the infrared spectrum observed the detonation of nine home made explosive (HME) devices in the < 100lb class. Radiometric measurements indicate that the detonation fireball is well approximated as a single temperature blackbody at early time (0 < t <~ 3ms). The effective radius obtained from absolute intensity indicates fireball growth at supersonic velocity during this time. Peak fireball temperatures during this initial detonation range between 3000.3500K. The initial temperature decay with time (t <~ 10ms) can be described by a simple phenomenological model based on radiative cooling. After this rapid decay, temperature exhibits a small, steady increase with time (10 <~ t <~ 50ms) and peaking somewhere between 1000.1500K-likely the result of post-detonation combustion-before subsequent cooling back to ambient conditions . Radius derived from radiometric measurements can be described well (R2 > 0.98) using blast model functional forms, suggesting that energy release could be estimated from single-pixel radiometric detectors. Comparison of radiometer-derived fireball size with FLIR infrared imagery indicate the Planckian intensity size estimates are about a factor of two smaller than the physical extent of the fireball.

  14. Uncertainty Evaluations of the CRCS In-orbit Field Radiometric Calibration Methods for Thermal Infrared Channels of FENGYUN Meteorological Satellites

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Rong, Z.; Min, M.; Hao, X.; Yang, H.

    2017-12-01

    Meteorological satellites have become an irreplaceable weather and ocean-observing tool in China. These satellites are used to monitor natural disasters and improve the efficiency of many sectors of Chinese national economy. It is impossible to ignore the space-derived data in the fields of meteorology, hydrology, and agriculture, as well as disaster monitoring in China, a large agricultural country. For this reason, China is making a sustained effort to build and enhance its meteorological observing system and application system. The first Chinese polar-orbiting weather satellite was launched in 1988. Since then China has launched 14 meteorological satellites, 7 of which are sun synchronous and 7 of which are geostationary satellites; China will continue its two types of meteorological satellite programs. In order to achieve the in-orbit absolute radiometric calibration of the operational meteorological satellites' thermal infrared channels, China radiometric calibration sites (CRCS) established a set of in-orbit field absolute radiometric calibration methods (FCM) for thermal infrared channels (TIR) and the uncertainty of this method was evaluated and analyzed based on TERRA/AQUA MODIS observations. Comparisons between the MODIS at pupil brightness temperatures (BTs) and the simulated BTs at the top of atmosphere using radiative transfer model (RTM) based on field measurements showed that the accuracy of the current in-orbit field absolute radiometric calibration methods was better than 1.00K (@300K, K=1) in thermal infrared channels. Therefore, the current CRCS field calibration method for TIR channels applied to Chinese metrological satellites was with favorable calibration accuracy: for 10.5-11.5µm channel was better than 0.75K (@300K, K=1) and for 11.5-12.5µm channel was better than 0.85K (@300K, K=1).

  15. Airborne gamma-ray spectrometer and magnetometer survey, Durango A, B, C, and D, Colorado. Volume I. Detail area. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    An airborne combined radiometric and magnetic survey was performed for the Department of Energy (DOE) over the Durango A, Durango B, Durango C, and Durango D Detail Areas of southwestern Colorado. The Durango A Detail Area is within the coverage of the Needle Mountains and Silverton 15' map sheets, and the Pole Creek Mountain, Rio Grande Pyramid, Emerald Lake, Granite Peak, Vallecito Reservoir, and Lemon Reservoir 7.5' map sheets of the National Topographic Map Series (NTMS). The Durango B Detail Area is within the coverage of the Silverton 15' map sheet and the Wetterhorn Peak, Uncompahgre Peak, Lake City, Redcloudmore » Peak, Lake San Cristobal, Pole Creek Mountain, and Finger Mesa 7.5' map sheets of the NTMS. The Durango C Detail Area is within the coverage of the Platoro and Wolf Creek Pass 15' map sheets of the NTMS. The Durango D Detail Area is within the coverage of the Granite Lake, Cimarrona Peak, Bear Mountain, and Oakbrush Ridge 7.5' map sheets of the NTMS. Radiometric data were corrected for live time, aircraft and equipment background, cosmic background, atmospheric radon, Compton scatter, and altitude dependence. The corrected data were statistically evaluated, gridded, and contoured to produce maps of the radiometric variables, uranium, potassium, and thorium; their ratios; and the residual magnetic field. These maps have been analyzed in order to produce a multi-variant analysis contour map based on the radiometric response of the individual geological units. A geochemical analysis has been performed, using the radiometric and magnetic contour maps, the multi-variant analysis map, and factor analysis techniques, to produce a geochemical analysis map for the area.« less

  16. BOREAS TE-18, 60-m, Radiometrically Rectified Landsat TM Imagery

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Knapp, David

    2000-01-01

    The BOREAS TE-18 team used a radiometric rectification process to produce standardized DN values for a series of Landsat TM images of the BOREAS SSA and NSA in order to compare images that were collected under different atmospheric conditions. The images for each study area were referenced to an image that had very clear atmospheric qualities. The reference image for the SSA was collected on 02-Sep-1994, while the reference image for the NSA was collected on 2 1 Jun-1995. The 23 rectified images cover the period of 07-Jul-1985 to 18-Sep-1994 in the SSA and 22-Jun-1984 to 09-Jun-1994 in the NSA. Each of the reference scenes had coincident atmospheric optical thickness measurements made by RSS-11. The radiometric rectification process is described in more detail by Hall et al. (1991). The original Landsat TM data were received from CCRS for use in the BOREAS project. Due to the nature of the radiometric rectification process and copyright issues, the full-resolution (30-m) images may not be publicly distributed. However, this spatially degraded 60-m resolution version of the images may be openly distributed and is available on the BOREAS CD-ROM series. After the radiometric rectification processing, the original data were degraded to a 60-m pixel size from the original 30-m pixel size by averaging the data over a 2- by 2-pixel window. The data are stored in binary image-format files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).

  17. Validation of EO-1 Hyperion and Advanced Land Imager Using the Radiometric Calibration Test Site at Railroad Valley, Nevada

    NASA Technical Reports Server (NTRS)

    Czapla-Myers, Jeffrey; Ong, Lawrence; Thome, Kurtis; McCorkel, Joel

    2015-01-01

    The Earth-Observing One (EO-1) satellite was launched in 2000. Radiometric calibration of Hyperion and the Advanced Land Imager (ALI) has been performed throughout the mission lifetime using various techniques that include ground-based vicarious calibration, pseudo-invariant calibration sites, and also the moon. The EO-1 mission is nearing its useful lifetime, and this work seeks to validate the radiometric calibration of Hyperion and ALI from 2013 until the satellite is decommissioned. Hyperion and ALI have been routinely collecting data at the automated Radiometric Calibration Test Site [RadCaTS/Railroad Valley (RRV)] since launch. In support of this study, the frequency of the acquisitions at RadCaTS has been significantly increased since 2013, which provides an opportunity to analyze the radiometric stability and accuracy during the final stages of the EO-1 mission. The analysis of Hyperion and ALI is performed using a suite of ground instrumentation that measures the atmosphere and surface throughout the day. The final product is an estimate of the top-of-atmosphere (TOA) spectral radiance, which is compared to Hyperion and ALI radiances. The results show that Hyperion agrees with the RadCaTS predictions to within 5% in the visible and near-infrared (VNIR) and to within 10% in the shortwave infrared (SWIR). The 2013-2014 ALI results show agreement to within 6% in the VNIR and 7.5% in the SWIR bands. A cross comparison between ALI and the Operational Land Imager (OLI) using RadCaTS as a transfer source shows agreement of 3%-6% during the period of 2013-2014.

  18. Sentinel-2 radiometric image quality commissioning: first results

    NASA Astrophysics Data System (ADS)

    Lachérade, S.; Lonjou, V.; Farges, M.; Gamet, P.; Marcq, S.; Raynaud, J.-L.; Trémas, T.

    2015-10-01

    In partnership with the European Commission and in the frame of the Copernicus program, the European Space Agency (ESA) is developing the Sentinel-2 optical imaging mission devoted to the operational monitoring of land and coastal areas. The Sentinel-2 mission is based on a satellites constellation deployed in polar sun-synchronous orbit. Sentinel-2 offers a unique combination of global coverage with a wide field of view (290km), a high revisit (5 days with two satellites), a high spatial resolution (10m, 20m and 60m) and multi-spectral imagery (13 spectral bands in visible and shortwave infrared domains). The first satellite, Sentinel-2A, has been launched in June 2015. The Sentinel-2A Commissioning Phase starts immediately after the Launch and Early Orbit Phase and continues until the In-Orbit Commissioning Review which is planned three months after the launch. The Centre National d'Etudes Spatiales (CNES) supports ESA/ESTEC to insure the Calibration/Validation commissioning phase during the first three months in flight. This paper provides first an overview of the Sentinel-2 system and a description of the products delivered by the ground segment associated to the main radiometric specifications to achieve. Then the paper focuses on the preliminary radiometric results obtained during the in-flight commissioning phase. The radiometric methods and calibration sites used in the CNES image quality center to reach the specifications of the sensor are described. A status of the Sentinel-2A radiometric performances at the end of the first three months after the launch is presented. We will particularly address in this paper the results in term of absolute calibration, pixel to pixel relative sensitivity and MTF estimation.

  19. Geometric Calibration and Radiometric Correction of the Maia Multispectral Camera

    NASA Astrophysics Data System (ADS)

    Nocerino, E.; Dubbini, M.; Menna, F.; Remondino, F.; Gattelli, M.; Covi, D.

    2017-10-01

    Multispectral imaging is a widely used remote sensing technique, whose applications range from agriculture to environmental monitoring, from food quality check to cultural heritage diagnostic. A variety of multispectral imaging sensors are available on the market, many of them designed to be mounted on different platform, especially small drones. This work focuses on the geometric and radiometric characterization of a brand-new, lightweight, low-cost multispectral camera, called MAIA. The MAIA camera is equipped with nine sensors, allowing for the acquisition of images in the visible and near infrared parts of the electromagnetic spectrum. Two versions are available, characterised by different set of band-pass filters, inspired by the sensors mounted on the WorlView-2 and Sentinel2 satellites, respectively. The camera details and the developed procedures for the geometric calibrations and radiometric correction are presented in the paper.

  20. Radiometrically accurate scene-based nonuniformity correction for array sensors.

    PubMed

    Ratliff, Bradley M; Hayat, Majeed M; Tyo, J Scott

    2003-10-01

    A novel radiometrically accurate scene-based nonuniformity correction (NUC) algorithm is described. The technique combines absolute calibration with a recently reported algebraic scene-based NUC algorithm. The technique is based on the following principle: First, detectors that are along the perimeter of the focal-plane array are absolutely calibrated; then the calibration is transported to the remaining uncalibrated interior detectors through the application of the algebraic scene-based algorithm, which utilizes pairs of image frames exhibiting arbitrary global motion. The key advantage of this technique is that it can obtain radiometric accuracy during NUC without disrupting camera operation. Accurate estimates of the bias nonuniformity can be achieved with relatively few frames, which can be fewer than ten frame pairs. Advantages of this technique are discussed, and a thorough performance analysis is presented with use of simulated and real infrared imagery.

  1. The effects of vegetation cover on the radar and radiometric sensitivity to soil moisture

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Dobson, M. C.; Brunfeldt, D. R.; Razani, M.

    1982-01-01

    The measured effects of vegetation canopies on radar and radiometric sensitivity to soil moisture are compared to emission and scattering models. The models are found to predict accurately the measured emission and backscattering for various crop canopies at frequencies between 1.4 and 5.0 GHz, especially at theta equal to or less than 30 deg. Vegetation loss factors, L(theta), increase with frequency and are found to be dependent upon canopy type and water content. In addition, the radiometric power absorption coefficient of a mature corn canopy is 1.75 times that calculated for the radar. Comparison of an L-band radiometer with a C-band radar shows the two systems to be complementary in terms of accurate soil moisture sensing over the extreme range of naturally occurring soil moisture conditions.

  2. Experimental tests and radiometric calculations for the feasibility of fluorescence LIDAR-based discrimination of oil spills from UAV

    NASA Astrophysics Data System (ADS)

    Raimondi, Valentina; Palombi, Lorenzo; Lognoli, David; Masini, Andrea; Simeone, Emilio

    2017-09-01

    This paper presents experimental tests and radiometric calculations for the feasibility of an ultra-compact fluorescence LIDAR from an Unmanned Air Vehicle (UAV) for the characterisation of oil spills in natural waters. The first step of this study was to define the experimental conditions for a LIDAR and its budget constraints on the basis of the specifications of small UAVs already available on the market. The second step consisted of a set of fluorescence LIDAR measurements on oil spills in the laboratory in order to propose a simplified discrimination method and to calculate the oil fluorescence conversion efficiency. Lastly, the main technical specifications of the payload were defined and radiometric calculations carried out to evaluate the performances of both the payload and the proposed discrimination method.

  3. The 90 GHz radiometric imaging. [for terrain analysis

    NASA Technical Reports Server (NTRS)

    King, H. E.; White, J. D.; Wilson, W. J.; Mori, T. T.; Hollinger, J. P.; Troy, B. E.; Kenney, J. E.; Mcgoogan, J. T.

    1976-01-01

    A 90-GHz (3 mm wavelength) radiometer with a noise output fluctuation of 0.22 K (RMS), with a scanning antenna beam mirror, and the data processing system are described. Real-time radiometric imaging of terrain and man-made objects are shown. Flying at an altitude of 1500 ft a radiometer antenna with a 2 degrees halfpower beamwidth can distinguish landforms, waterways, roads, runways, bridges, ships at sea and their wakes, aircraft on runways, and athletic fields. A flight taken at an altitude of 3000 ft with approximately 2000 ft of clouds below the radiometer demonstrates the ability to distinguish bridges, rivers, marshland and other landforms even though the clouds are optically opaque. The radiometric images of a few representative scenes along with photographs of the corresponding scenes are presented to demonstrate the resolution of the imager system.

  4. False no-growth blood cultures in pneumococcal pneumonia.

    PubMed Central

    Adeniyi-Jones, C C; Stevens, D L; Rasquinha, E S

    1980-01-01

    The growth of Streptococcus pneumoniae in commercial media containing 14C-labeled substrates was studied experimentally; the results of blood cultures that were positive for S. pneumoniae over a 14-month period were analyzed to explain no-growth but radiometrically positive blood cultures from four patients with clinically diagnosed pneumococcal pneumonia. The growth of S. pneumonoiae in aerobic blood culture vials resulted in a chocolate color in the medium. S. pneumoniae grew rapidly in both aerobic and anaerobic media, but 14CO2 evolved from the metabolism of the labeled substrates was detected only in the aerobic culture vials. Radiometric detection lagged behind growth of the organisms and was accompanied by visual changes in the media. By 24 h, the viability of the culture was on the decline; radiometric readings remained positive even when the culture had died. PMID:7419708

  5. Radiometric Cross-Calibration of the HJ-1B IRS in the Thermal Infrared Spectral Band

    NASA Astrophysics Data System (ADS)

    Sun, K.

    2012-12-01

    The natural calamities occur continually, environment pollution and destruction in a severe position on the earth presently, which restricts societal and economic development. The satellite remote sensing technology has an important effect on improving surveillance ability of environment pollution and natural calamities. The radiometric calibration is precondition of quantitative remote sensing; which accuracy decides quality of the retrieval parameters. Since the China Environment Satellite (HJ-1A/B) has been launched successfully on September 6th, 2008, it has made an important role in the economic development of China. The satellite has four infrared bands; and one of it is thermal infrared. With application fields of quantitative remote sensing in china, finding appropriate calibration method becomes more and more important. Many kinds of independent methods can be used to do the absolute radiometric calibration. In this paper, according to the characteristic of thermal infrared channel of HJ-1B thermal infrared multi-spectral camera, the thermal infrared spectral band of HJ-1B IRS was calibrated using cross-calibration methods based on MODIS data. Firstly, the corresponding bands of the two sensors were obtained. Secondly, the MONDTRAN was run to analyze the influences of different spectral response, satellite view zenith angle, atmosphere condition and temperature on the match factor. In the end, their band match factor was calculated in different temperature, considering the dissimilar band response of the match bands. Seven images of Lake Qinghai in different time were chosen as the calibration data. On the basis of radiance of MODIS and match factor, the IRS radiance was calculated. And then the calibration coefficients were obtained by linearly regressing the radiance and the DN value. We compared the result of this cross-calibration with that of the onboard blackbody calibration, which consistency was good.The maximum difference of brightness temperature between HJ-1B IRS band4 and MODIS band 31 is less than 1 K. Therefore cross-calibration is a rapid and financial way to get calibration coefficients of HJ-1B, however, the matched factor calculation method need further research in order to further improve cross-calibration precision.

  6. A case study on bio-optical and radiometric quantities in northwest European shelf seas

    NASA Astrophysics Data System (ADS)

    Garaba, Shungu; Zielinski, Oliver

    2013-04-01

    Colour of seawater has become an integral tool in understanding surface marine ecosystems and processes. Additionally, operational oceanographic observatories are becoming more prominent these days while at the same time hyperspectral radiometric sensors are becoming increasingly affordable. This has driven a wide spread use of these hyperspectral sensors to measure reflectance above the water surface from stationary and mobile platforms alike. As enormous amounts of data are produced and favourably processed in real-time, effective quality control procedures become more than just supporting tools, but a crucial prerequisite for trustworthy and manageable information. Here, we use bio-geophysical and hyperspectral radiometric measurements from German Bight (GB), North Sea (NS), Inner Seas (ISS), Irish Sea (IS) and Celtic Sea (CS) to identify and establish relationships between colour producing agents (CPAs) and perceived colour of seawater. In order to obtain valid optical measurements, meteorological and sunglint contamination were mitigated using state-of-the-art quality control protocols. The remote sensing reflectance measured is transformed into discrete Forel-Ule numerical indices (FUI), 1 (indigo-blue, oligotrophic) to 21 (cola brown, hyper-eutrophic). We present a novel approach of estimating which of the three main CPAs of seawater control perceived colour of seawater. Our bio-optical models for estimating FUI for measured CPAs; chlorophyll (Chl-a), coloured dissolved organic material (CDOM) and suspended particulate material (SPM) had correlation coefficients, R² (GB = 0.98, NS = 0.23, ISS=0.99, IS=0.63, CS = 0.16). It was also observed that salinity can be estimated from coloured dissolved organic matter with good accuracy, R² (GB = 0.94, NS = 0.44, ISS=0.90, IS=0.85, CS = 0.51). We show that ocean colour products i.e. reflectance and perceived colour of seawater can be used to infer, with good accuracy, environmental parameters e.g. Chl-a, CDOM, SPM, salinity and Secchi depth of the investigated waters providing an effective and affordable tool for operational marine observations. Improved and extensive field investigations are required to further enhance the sensitivity/accuracy of such region specific bio-optical models.

  7. Landsat-7 ETM+ radiometric stability and absolute calibration

    USGS Publications Warehouse

    Markham, B.L.; Barker, J.L.; Barsi, J.A.; Kaita, E.; Thome, K.J.; Helder, D.L.; Palluconi, Frank Don; Schott, J.R.; Scaramuzza, Pat; ,

    2002-01-01

    Launched in April 1999, the Landsat-7 ETM+ instrument is in its fourth year of operation. The quality of the acquired calibrated imagery continues to be high, especially with respect to its three most important radiometric performance parameters: reflective band instrument stability to better than ??1%, reflective band absolute calibration to better than ??5%, and thermal band absolute calibration to better than ??0.6 K. The ETM+ instrument has been the most stable of any of the Landsat instruments, in both the reflective and thermal channels. To date, the best on-board calibration source for the reflective bands has been the Full Aperture Solar Calibrator, which has indicated changes of at most -1.8% to -2.0% (95% C.I.) change per year in the ETM+ gain (band 4). However, this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on ground observations, which bound the changes in gain in band 4 at -0.7% to +1.5%. Also, ETM+ stability is indicated by the monitoring of desert targets. These image-based results for four Saharan and Arabian sites, for a collection of 35 scenes over the three years since launch, bound the gain change at -0.7% to +0.5% in band 4. Thermal calibration from ground observations revealed an offset error of +0.31 W/m 2 sr um soon after launch. This offset was corrected within the U. S. ground processing system at EROS Data Center on 21-Dec-00, and since then, the band 6 on-board calibration has indicated changes of at most +0.02% to +0.04% (95% C.I.) per year. The latest ground observations have detected no remaining offset error with an RMS error of ??0.6 K. The stability and absolute calibration of the Landsat-7 ETM+ sensor make it an ideal candidate to be used as a reference source for radiometric cross-calibrating to other land remote sensing satellite systems.

  8. Estrogens, Microtubules and Aneuploidy: Mechanisms of Mammary Gland Tumorigenesis.

    DTIC Science & Technology

    1999-07-01

    Endocrinology 136: 1718-1730. STATEMENT OF WORK Aim 1. Task 1. Establish radiometric HPLC assay for estradiol (E2) metabolism Task 2. Establish radiometric... HPLC assay for 7,12- dimethylbenz[a]anthracene (DMBA) metabolism Task 3. Characterize E2 metabolism in ACI and Sprague-Dawley (SD) rat liver...epigallocatechin gallate (EGCG) are flavonoids which have potent chemopreventive activity in a vari- ety of animal models of cancer. One proposed

  9. Evaluation of VICAR software capability for land information support system needs. [Elk River quadrangle, Idaho

    NASA Technical Reports Server (NTRS)

    Yao, S. S. (Principal Investigator)

    1981-01-01

    A preliminary evaluation of the processing capability of the VICAR software for land information support system needs is presented. The geometric and radiometric properties of four sets of LANDSAT data taken over the Elk River, Idaho quadrangle were compared. Storage of data sets, the means of location, pixel resolution, and radiometric and geometric characteristics are described. Recommended modifications of VICAR programs are presented.

  10. The Focusing of Light Scattered from Diffuse Reflectors Using Phase Modulation

    DTIC Science & Technology

    2012-03-22

    was recently demonstrated for imaging otherwise hidden scene information through the collection and radiometric modeling of light reflecting off of...effectively reducing the radiometric model to that of the previously demonstrated dual photography, and leading to much-simplified results. This...angle. The fundamental geometric descriptor of reflectance is given by the bidirectional reflectance distribution function ( BRDF ) fr (θi, φi; θs, φs

  11. Thematic mapper flight model preshipment review data package. Volume 3, part B: System data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Procedures and results are presented for performance and systems integration tests of flight model-1 thematic mapper. Aspects considered cover electronic module integration, radiometric calibration, spectral matching, spatial coverage, radiometric calibration of the calibrator, coherent noise, dynamic square wave response, band to band registration, geometric accuracy, and self induced vibration. Thermal vacuum tests, EMI/EMS, and mass properties are included. Liens are summarized.

  12. User's guide to the Radiometric Age Data Bank (RADB)

    USGS Publications Warehouse

    Zartman, Robert Eugene; Cole, James C.; Marvin, Richard F.

    1976-01-01

    The Radiometric Age Data Bank (RADB) has been established by the U.S. Geological Survey, as a means for collecting and organizing the estimated 100,000 radiometric ages presently published for the United States. RADB has been constructed such that a complete sample description (location, rock type, etc.), literature citation, and extensive analytical data are linked to form an independent record for each sample reported in a published work. Analytical data pertinent to the potassium-argon, rubidium-strontium, uranium-thorium-lead, lead-alpha, and fission-track methods can be accommodated, singly or in combinations, for each record. Data processing is achieved using the GIPSY program (University of Oklahoma) which maintains the data file and builds, updates, searches, and prints the records using simple yet versatile command statements. Searching and selecting records is accomplished by specifying the presence, absence, or (numeric or alphabetic) value of any element of information in the data bank, and these specifications can be logically linked to develop sophisticated searching strategies. Output is available in the form of complete data records, abbreviated tests, or columnar tabulations. Samples of data-reporting forms, GIPSY command statements, output formats, and data records are presented to illustrate the comprehensive nature and versatility of the Radiometric Age Data Bank.

  13. Model of an optical system's influence on sensitivity of microbolometric focal plane array

    NASA Astrophysics Data System (ADS)

    Gogler, Sławomir; Bieszczad, Grzegorz; Zarzycka, Alicja; Szymańska, Magdalena; Sosnowski, Tomasz

    2012-10-01

    Thermal imagers and used therein infrared array sensors are subject to calibration procedure and evaluation of their voltage sensitivity on incident radiation during manufacturing process. The calibration procedure is especially important in so-called radiometric cameras, where accurate radiometric quantities, given in physical units, are of concern. Even though non-radiometric cameras are not expected to stand up to such elevated standards, it is still important, that the image faithfully represents temperature variations across the scene. The detectors used in thermal camera are illuminated by infrared radiation transmitted through a specialized optical system. Each optical system used influences irradiation distribution across an sensor array. In the article a model describing irradiation distribution across an array sensor working with an optical system used in the calibration set-up has been proposed. In the said method optical and geometrical considerations of the array set-up have been taken into account. By means of Monte-Carlo simulation, large number of rays has been traced to the sensor plane, what allowed to determine the irradiation distribution across the image plane for different aperture limiting configurations. Simulated results have been confronted with proposed analytical expression. Presented radiometric model allows fast and accurate non-uniformity correction to be carried out.

  14. High-fidelity real-time maritime scene rendering

    NASA Astrophysics Data System (ADS)

    Shyu, Hawjye; Taczak, Thomas M.; Cox, Kevin; Gover, Robert; Maraviglia, Carlos; Cahill, Colin

    2011-06-01

    The ability to simulate authentic engagements using real-world hardware is an increasingly important tool. For rendering maritime environments, scene generators must be capable of rendering radiometrically accurate scenes with correct temporal and spatial characteristics. When the simulation is used as input to real-world hardware or human observers, the scene generator must operate in real-time. This paper introduces a novel, real-time scene generation capability for rendering radiometrically accurate scenes of backgrounds and targets in maritime environments. The new model is an optimized and parallelized version of the US Navy CRUISE_Missiles rendering engine. It was designed to accept environmental descriptions and engagement geometry data from external sources, render a scene, transform the radiometric scene using the electro-optical response functions of a sensor under test, and output the resulting signal to real-world hardware. This paper reviews components of the scene rendering algorithm, and details the modifications required to run this code in real-time. A description of the simulation architecture and interfaces to external hardware and models is presented. Performance assessments of the frame rate and radiometric accuracy of the new code are summarized. This work was completed in FY10 under Office of Secretary of Defense (OSD) Central Test and Evaluation Investment Program (CTEIP) funding and will undergo a validation process in FY11.

  15. Calibrating Late Quaternary terrestrial climate signals: radiometrically dated pollen evidence from the southern Sierra Nevada, USA

    USGS Publications Warehouse

    Litwin, Ronald J.; Smoot, Joseph P.; Durika, Nancy J.; Smith, George I.

    1999-01-01

    We constructed a radiometrically calibrated proxy record of Late Pleistocene and Holocene climate change exceeding 230,000 yr duration, using pollen profiles from two cores taken through age-equivalent dry lakes - one core having greater age control (via 230Th alpha mass-spectrometry) and the other having greater stratigraphic completeness. The better dated of these two serial pollen records (Searles Lake) served as a reference section for improving the effective radiometric age control in a nearby and more complete pollen record (Owens Lake) because they: (1) are situated ~90 km apart in the same drainage system (on, and immediately leeward of, the eastern flank of the Sierra Nevada), and (2) preserved strikingly similar pollen profiles and concordant sequences of sedimentological changes. Pollen assemblages from both lakes are well preserved and diverse, and document serial changes in Late Pleistocene and Holocene plant zone distribution and composition in the westernmost Great Basin; they consist of taxa now inhabiting montane forest, woodland, steppe, and desert-scrub environments. The studied core intervals are interpreted here to be the terrestrial equivalent of marine δ18O stages 1 through 9; these pollen profiles now appear to be among the best radiometrically dated Late Pleistocene records of terrestrial climate change known.

  16. Geometric and Radiometric Evaluation of Rasat Images

    NASA Astrophysics Data System (ADS)

    Cam, Ali; Topan, Hüseyin; Oruç, Murat; Özendi, Mustafa; Bayık, Çağlar

    2016-06-01

    RASAT, the second remote sensing satellite of Turkey, was designed and assembled, and also is being operated by TÜBİTAK Uzay (Space) Technologies Research Institute (Ankara). RASAT images in various levels are available free-of-charge via Gezgin portal for Turkish citizens. In this paper, the images in panchromatic (7.5 m GSD) and RGB (15 m GSD) bands in various levels were investigated with respect to its geometric and radiometric characteristics. The first geometric analysis is the estimation of the effective GSD as less than 1 pixel for radiometrically processed level (L1R) of both panchromatic and RGB images. Secondly, 2D georeferencing accuracy is estimated by various non-physical transformation models (similarity, 2D affine, polynomial, affine projection, projective, DLT and GCP based RFM) reaching sub-pixel accuracy using minimum 39 and maximum 52 GCPs. The radiometric characteristics are also investigated for 8 bits, estimating SNR between 21.8-42.2, and noise 0.0-3.5 for panchromatic and MS images for L1R when the sea is masked to obtain the results for land areas. The analysis show that RASAT images satisfies requirements for various applications. The research is carried out in Zonguldak test site which is mountainous and partly covered by dense forest and urban areas.

  17. The Second SIMBIOS Radiometric Intercomparison (SIMRIC-2), March-November 2002. Volume 2

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard; Abel, Peter; Carder, Kendall; Chapin, Albert; Clark, Dennis; Cooper, John; Davis, Curtis; English, David; Fargion, Giulietta; Feinholz, Michael; hide

    2003-01-01

    The second SIMBIOS (Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies) Radiometric Intercomparison (SIMRIC-2) was carried out in 2002. The purpose of the SIMRIC's was to ensure a common radiometric scale among the calibration facilities that are engaged in calibrating in-situ radiometrics used for ocean color-related research and to document the calibration procedures and protocols. The SeaWIFS Transfer Radiometer (SXR-II) measured the calibration radiances at six wavelengths from 411nm to 777nm in the ten laboratories participating in the SIMRIC-2. The measured radiances were compared with the radiances expected by the laboratories. The agreement was within the combined uncertainties for all but two laboratories. Likely error sources were identified in these laboratories and corrective measures were implemented. NIST calibrations in December 2001 and January 2003 showed changes ranging from -0.6% to +0.7% for the six SXR-II channels. Two independent light sources were used to monitor changes in the SXR-II responsivity between the NIST calibrations. A 2% variation of the responsivity of channel 1 of the SXR-II was detected, and the SXR-II responsivity was corrected using the monitoring data. This report also compared directional reflectance calibrations of a Spectralon plaque by different calibration facilities

  18. Comment on 'Aerosol and Rayleigh radiance contributions to Coastal Zone Colour Scanner images' by Eckstein and Simpson

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.; Evans, R. H.

    1993-01-01

    In a recent paper Eckstein and Simpson describe what they believe to be serious difficulties and/or errors with the CZCS (Coastal Zone Color Scanner) processing algorithms based on their analysis of seven images. Here we point out that portions of their analysis, particularly those dealing with multiple scattered Rayleigh radiance, are incorrect. We also argue that other problems they discuss have already been addressed in the literature. Finally, we suggest that many apparent artifacts in CZCS-derived pigment fields are likely to be due to inadequacies in the sensor band set or to poor radiometric stability, both of which will be remedied with the next generation of ocean color sensors.

  19. An object-based approach for detecting small brain lesions: application to Virchow-Robin spaces.

    PubMed

    Descombes, Xavier; Kruggel, Frithjof; Wollny, Gert; Gertz, Hermann Josef

    2004-02-01

    This paper is concerned with the detection of multiple small brain lesions from magnetic resonance imaging (MRI) data. A model based on the marked point process framework is designed to detect Virchow-Robin spaces (VRSs). These tubular shaped spaces are due to retraction of the brain parenchyma from its supplying arteries. VRS are described by simple geometrical objects that are introduced as small tubular structures. Their radiometric properties are embedded in a data term. A prior model includes interactions describing the clustering property of VRS. A Reversible Jump Markov Chain Monte Carlo algorithm (RJMCMC) optimizes the proposed model, obtained by multiplying the prior and the data model. Example results are shown on T1-weighted MRI datasets of elderly subjects.

  20. Radiometric and Polarimetric Accuracy Assessment and Calibration of the Hyper-Angular Rainbow Polarimeter (HARP) Instrument

    NASA Astrophysics Data System (ADS)

    McBride, B.; Martins, J. V.; Fernandez Borda, R. A.; Barbosa, H. M.

    2017-12-01

    The Laboratory for Aerosols, Clouds, and Optics (LACO) at the University of Maryland, Baltimore County (UMBC) present a novel, wide FOV, hyper-angular imaging polarimeter for the microphysical sampling of clouds and aerosols from aircraft and space. The instrument, the Hyper-Angular Rainbow Polarimeter (HARP), is a precursor to the multi-angle imaging polarimeter solicited by the upcoming NASA Aerosols, Clouds, and Ecosystems (ACE) mission. HARP currently operates in two forms: a spaceborne CubeSat slated for a January 2018 launch to the ISS orbit, and an identical aircraft platform that participated in the Lake Michigan Ozone Study (LMOS) and Aerosol Characterization from Polarimeter and Lidar (ACEPOL) NASA campaigns in 2017. To ensure and validate the instrument's ability to produce high quality Level 2 cloud and aerosol microphysical products, a comprehensive calibration scheme that accounts for flatfielding, radiometry, and all optical interference processes that contribute to the retrieval of Stokes parameters I, Q, and U, is applied across the entirety of HARP's 114° FOV. We present an innovative calibration algorithm that convolves incident polarization from a linear polarization state generator with intensity information observed at three distinct linear polarizations. The retrieved results are pixel-level, modified Mueller matrices that characterize the entire HARP optical assembly, without the need to characterize every individual element or perform ellipsometric studies. Here we show results from several pre- and post- LMOS campaign radiometric calibrations at NASA GSFC and polarimetric calibration using a "polarization dome" that allows for full-FOV characterization of Stokes parameters I, Q, and U. The polarization calibration is verified by passing unpolarized light through partially-polarized, tilted glass plates with well-characterized degree of linear polarization (DoLP). We apply this calibration to a stratocumulous cloud deck case observed during the LMOS campaign on June 19 2017, and assess the polarized cloudbow for cloud droplet effective radius and variance information at 0.67µm.

  1. Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System

    PubMed Central

    Lu, Yu; Wang, Keyi; Fan, Gongshu

    2016-01-01

    A new compact large field of view (FOV) multi-camera system is introduced. The camera is based on seven tiny complementary metal-oxide-semiconductor sensor modules covering over 160° × 160° FOV. Although image stitching has been studied extensively, sensor and lens differences have not been considered in previous multi-camera devices. In this study, we have calibrated the photometric characteristics of the multi-camera device. Lenses were not mounted on the sensor in the process of radiometric response calibration to eliminate the influence of the focusing effect of uniform light from an integrating sphere. Linearity range of the radiometric response, non-linearity response characteristics, sensitivity, and dark current of the camera response function are presented. The R, G, and B channels have different responses for the same illuminance. Vignetting artifact patterns have been tested. The actual luminance of the object is retrieved by sensor calibration results, and is used to blend images to make panoramas reflect the objective luminance more objectively. This compensates for the limitation of stitching images that are more realistic only through the smoothing method. The dynamic range limitation of can be resolved by using multiple cameras that cover a large field of view instead of a single image sensor with a wide-angle lens. The dynamic range is expanded by 48-fold in this system. We can obtain seven images in one shot with this multi-camera system, at 13 frames per second. PMID:27077857

  2. Assessment of uncertainty in ROLO lunar irradiance for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; Barnes, W.L.; Butler, J.J.

    2004-01-01

    A system to provide radiometric calibration of remote sensing imaging instruments on-orbit using the Moon has been developed by the US Geological Survey RObotic Lunar Observatory (ROLO) project. ROLO has developed a model for lunar irradiance which treats the primary geometric variables of phase and libration explicitly. The model fits hundreds of data points in each of 23 VNIR and 9 SWIR bands; input data are derived from lunar radiance images acquired by the project's on-site telescopes, calibrated to exoatmospheric radiance and converted to disk-equivalent reflectance. Experimental uncertainties are tracked through all stages of the data processing and modeling. Model fit residuals are ???1% in each band over the full range of observed phase and libration angles. Application of ROLO lunar calibration to SeaWiFS has demonstrated the capability for long-term instrument response trending with precision approaching 0.1% per year. Current work involves assessing the error in absolute responsivity and relative spectral response of the ROLO imaging systems, and propagation of error through the data reduction and modeling software systems with the goal of reducing the uncertainty in the absolute scale, now estimated at 5-10%. This level is similar to the scatter seen in ROLO lunar irradiance comparisons of multiple spacecraft instruments that have viewed the Moon. A field calibration campaign involving NASA and NIST has been initiated that ties the ROLO lunar measurements to the NIST (SI) radiometric scale.

  3. Forty-Year Calibrated Record of Earth-Surface Reflected Radiance from Landsat: A Review

    NASA Technical Reports Server (NTRS)

    Markham, Brian; Helder, Dennis

    2011-01-01

    Sensors on Landsat satellites have been collecting images of the Earth's surface for nearly 40 years. These images have been invaluable for characterizing and detecting changes in the land cover and land use of the world. Although initially conceived as primarily picture generating sensors, even the early sensors were radiometrically calibrated and spectrally characterized prior to launch and incorporated some capabilities to monitor their radiometric calibration once on orbit. Recently, as the focus of studies has shifted to monitoring Earth surface parameters over significant periods of time, serious attention has been focused toward bringing the data from all these sensors onto a common radiometric scale over this 40-year period. This effort started with the most recent systems and then was extended back in time. Landsat-7 ETM+, the best-characterized sensor of the series prior to launch and once on orbit, and the most stable system to date, was chosen to serve as the reference. The Landsat-7 project was the first of the series to build an image assessment system into its ground system, allowing systematic characterization of its sensors and data. Second, the Landsat-5 TM (still operating at the time of the Landsat-7 launch and continues to operate) calibration history was reconstructed based on its internal calibrator, vicarious calibrations, pseudo-invariant sites and a tie to Landsat-7 ETM+ at the time of the commissioning of Landsat-7. This process was performed in two iterations: the earlier one relied primarily on the TM internal calibrator. When this was found to have some deficiencies, a revised calibration was based more on pseudo-invariant sites, though the internal calibrator was still used to establish the short-term variations in response due to icing build up on the cold focal plane. As time progressed, a capability to monitor the Landsat-5 TM was added to the image assessment system. The Landsat-4 TM, which operated from 1982-1992, was the third system to which the radiometric scale was extended. The limited and broken use of the Landsat-4 TM made this analysis more difficult. Eight-day separated image pairs from Landsat-5 combined with analysis of pseudo invariant sites established this history. The fourth and most challenging effort was making the Landsat-1 to -5 MSS sensors' data internally radiometrically consistent. This effort was particularly complicated by the age of the MSS data, varying formats and processing levels in the archive, limited datasets, and limited documentation available. Ultimately, pseudo-invariant sites were identified in North America and used for this effort. Note that most of the Landsat-MSS archived data had already been calibrated using the MSS internal calibrators, so this processing was imbedded in the result. The final effort was developing an absolute scale for Landsat MSS similar to what was already established for the "TM" sensors. This was accomplished by using simultaneous data from Landsat-5 MSS and Landsat-5 TM, accounting for spectral differences between the sensors using EO-1 Hyperion data. The recalibrated history of the Landsat data and implications to users are discussed. The key result from this work is a consistently calibrated Landsat data archive that spans nearly 40 years with total uncertainties on the order of 10% or less for most sensors and bands.

  4. Ultraspectral sounding retrieval error budget and estimation

    NASA Astrophysics Data System (ADS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, Larrabee L.; Yang, Ping

    2011-11-01

    The ultraspectral infrared radiances obtained from satellite observations provide atmospheric, surface, and/or cloud information. The intent of the measurement of the thermodynamic state is the initialization of weather and climate models. Great effort has been given to retrieving and validating these atmospheric, surface, and/or cloud properties. Error Consistency Analysis Scheme (ECAS), through fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of absolute and standard deviation of differences in both spectral radiance and retrieved geophysical parameter domains. The retrieval error is assessed through ECAS without assistance of other independent measurements such as radiosonde data. ECAS re-evaluates instrument random noise, and establishes the link between radiometric accuracy and retrieved geophysical parameter accuracy. ECAS can be applied to measurements of any ultraspectral instrument and any retrieval scheme with associated RTM. In this paper, ECAS is described and demonstration is made with the measurements of the METOP-A satellite Infrared Atmospheric Sounding Interferometer (IASI).

  5. Ultraspectral Sounding Retrieval Error Budget and Estimation

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping

    2011-01-01

    The ultraspectral infrared radiances obtained from satellite observations provide atmospheric, surface, and/or cloud information. The intent of the measurement of the thermodynamic state is the initialization of weather and climate models. Great effort has been given to retrieving and validating these atmospheric, surface, and/or cloud properties. Error Consistency Analysis Scheme (ECAS), through fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of absolute and standard deviation of differences in both spectral radiance and retrieved geophysical parameter domains. The retrieval error is assessed through ECAS without assistance of other independent measurements such as radiosonde data. ECAS re-evaluates instrument random noise, and establishes the link between radiometric accuracy and retrieved geophysical parameter accuracy. ECAS can be applied to measurements of any ultraspectral instrument and any retrieval scheme with associated RTM. In this paper, ECAS is described and demonstration is made with the measurements of the METOP-A satellite Infrared Atmospheric Sounding Interferometer (IASI)..

  6. Preliminary assessment of soil moisture over vegetation

    NASA Technical Reports Server (NTRS)

    Carlson, T. N.

    1986-01-01

    Modeling of surface energy fluxes was combined with in-situ measurement of surface parameters, specifically the surface sensible heat flux and the substrate soil moisture. A vegetation component was incorporated in the atmospheric/substrate model and subsequently showed that fluxes over vegetation can be very much different than those over bare soil for a given surface-air temperature difference. The temperature signatures measured by a satellite or airborne radiometer should be interpreted in conjunction with surface measurements of modeled parameters. Paradoxically, analyses of the large-scale distribution of soil moisture availability shows that there is a very high correlation between antecedent precipitation and inferred surface moisture availability, even when no specific vegetation parameterization is used in the boundary layer model. Preparatory work was begun in streamlining the present boundary layer model, developing better algorithms for relating surface temperatures to substrate moisture, preparing for participation in the French HAPEX experiment, and analyzing aircraft microwave and radiometric surface temperature data for the 1983 French Beauce experiments.

  7. Examination of Chemical Adsorption and Marine Biofouling on Metal Surfaces Using Raman Scattering Techniques and Electrochemical Impedance Spectroscopy

    DTIC Science & Technology

    1991-03-14

    analyses of labeled model compounds, such as the protein, RuBisCO (Ribulose Bisphosphate CarboxylaselOxygenase). (3) Examine adsorption of...coverages were determined radiometrically using tritiated RuBisCO . Although natural thin films were detectable using Raman scattering techniques...optical, electrochemical, and radiometric techniques and the protein RuBisCO as a model adsorbate on titanium, copper, and iron, we have been able to

  8. The absolute radiometric calibration of the advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Teillet, P. M.; Ding, Y.

    1988-01-01

    The need for independent, redundant absolute radiometric calibration methods is discussed with reference to the Thematic Mapper. Uncertainty requirements for absolute calibration of between 0.5 and 4 percent are defined based on the accuracy of reflectance retrievals at an agricultural site. It is shown that even very approximate atmospheric corrections can reduce the error in reflectance retrieval to 0.02 over the reflectance range 0 to 0.4.

  9. Thermal-Polarimetric and Visible Data Collection for Face Recognition

    DTIC Science & Technology

    2016-09-01

    pixels • Spectral range: 7.5–13 μm • Analog image output: NTSC analog video • Digital image output: Firewire radiometric, 14-bit digital video to...PC The analog video was not used for this study. The radiometric, 14-bit digital data provided temperature measurement information for comparison...distribution unlimited. 18 9. References 1. Choi J, Hu S, Young SS, Davis LS. Thermal to visible face recognition. Proc. SPIE 8371, Sensing

  10. Hyperspectral imaging spectro radiometer improves radiometric accuracy

    NASA Astrophysics Data System (ADS)

    Prel, Florent; Moreau, Louis; Bouchard, Robert; Bullis, Ritchie D.; Roy, Claude; Vallières, Christian; Levesque, Luc

    2013-06-01

    Reliable and accurate infrared characterization is necessary to measure the specific spectral signatures of aircrafts and associated infrared counter-measures protections (i.e. flares). Infrared characterization is essential to improve counter measures efficiency, improve friend-foe identification and reduce the risk of friendly fire. Typical infrared characterization measurement setups include a variety of panchromatic cameras and spectroradiometers. Each instrument brings essential information; cameras measure the spatial distribution of targets and spectroradiometers provide the spectral distribution of the emitted energy. However, the combination of separate instruments brings out possible radiometric errors and uncertainties that can be reduced with Hyperspectral imagers. These instruments combine both spectral and spatial information into the same data. These instruments measure both the spectral and spatial distribution of the energy at the same time ensuring the temporal and spatial cohesion of collected information. This paper presents a quantitative analysis of the main contributors of radiometric uncertainties and shows how a hyperspectral imager can reduce these uncertainties.

  11. HYDICE postflight data processing

    NASA Astrophysics Data System (ADS)

    Aldrich, William S.; Kappus, Mary E.; Resmini, Ronald G.; Mitchell, Peter A.

    1996-06-01

    The hyperspectral digital imagery collection experiment (HYDICE) sensor records instrument counts for scene data, in-flight spectral and radiometric calibration sequences, and dark current levels onto an AMPEX DCRsi data tape. Following flight, the HYDICE ground data processing subsystem (GDPS) transforms selected scene data from digital numbers (DN) to calibrated radiance levels at the sensor aperture. This processing includes: dark current correction, spectral and radiometric calibration, conversion to radiance, and replacement of bad detector elements. A description of the algorithms for post-flight data processing is presented. A brief analysis of the original radiometric calibration procedure is given, along with a description of the development of the modified procedure currently used. Example data collected during the 1995 flight season, but uncorrected and processed, are shown to demonstrate the removal of apparent sensor artifacts (e.g., non-uniformities in detector response over the array) as a result of this transformation.

  12. Reconstruction of Sky Illumination Domes from Ground-Based Panoramas

    NASA Astrophysics Data System (ADS)

    Coubard, F.; Lelégard, L.; Brédif, M.; Paparoditis, N.; Briottet, X.

    2012-07-01

    The knowledge of the sky illumination is important for radiometric corrections and for computer graphics applications such as relighting or augmented reality. We propose an approach to compute environment maps, representing the sky radiance, from a set of ground-based images acquired by a panoramic acquisition system, for instance a mobile-mapping system. These images can be affected by important radiometric artifacts, such as bloom or overexposure. A Perez radiance model is estimated with the blue sky pixels of the images, and used to compute additive corrections in order to reduce these radiometric artifacts. The sky pixels are then aggregated in an environment map, which still suffers from discontinuities on stitching edges. The influence of the quality of estimated sky radiance on the simulated light signal is measured quantitatively on a simple synthetic urban scene; in our case, the maximal error for the total sensor radiance is about 10%.

  13. Hot and cold body reference noise generators from 0 to 40 GHz

    NASA Technical Reports Server (NTRS)

    Hornbostel, D. H.

    1974-01-01

    This article describes the design, development, and analysis of exceptionally accurate radiometric noise generators from 0-40 GHz to serve as standard references. Size, weight, power, and reliability are optimized to meet the requirements of NASA air- and space-borne radiometers. The radiometric noise temperature of these noise generators is, unavoidably, calculated from measured values rather than measured directly. The absolute accuracy and stability are equal to or better than those of reliable standards available for comparison. A noise generator has been developed whose measurable properties (VSWR, line loss, thermometric temperatures) have been optimized in order to minimize the effects of the uncertainty in the calculated radiometric noise temperatures. Each measurable property is evaluated and analyzed to determine the effects of the uncertainty of the measured value. Unmeasurable properties (primarily temperature gradients) are analyzed, and reasonable precautions are designed into the noise generator to guarantee that the uncertainty of the value remains within tolerable limits.

  14. Initial On-Orbit Radiometric Calibration of the Suomi NPP VIIRS Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Lei, Ning; Wang, Zhipeng; Fulbright, Jon; Lee, Shihyan; McIntire, Jeff; Chiang, Vincent; Xiong, Jack

    2012-01-01

    The on-orbit radiometric response calibration of the VISible/Near InfraRed (VISNIR) and the Short-Wave InfraRed (SWIR) bands of the Visible/Infrared Imager/Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (NPP) satellite is carried out through a Solar Diffuser (SD). The transmittance of the SD screen and the SD's Bidirectional Reflectance Distribution Function (BRDF) are measured before launch and tabulated, allowing the VIIRS sensor aperture spectral radiance to be accurately determined. The radiometric response of a detector is described by a quadratic polynomial of the detector?s digital number (dn). The coefficients were determined before launch. Once on orbit, the coefficients are assumed to change by a common factor: the F-factor. The radiance scattered from the SD allows the determination of the F-factor. In this Proceeding, we describe the methodology and the associated algorithms in the determination of the F-factors and discuss the results.

  15. Application of a scattered-light radiometric power meter.

    PubMed

    Caron, James N; DiComo, Gregory P; Ting, Antonio C; Fischer, Richard P

    2011-04-01

    The power measurement of high-power continuous-wave laser beams typically calls for the use of water-cooled thermopile power meters. Large thermopile meters have slow response times that can prove insufficient to conduct certain tests, such as determining the influence of atmospheric turbulence on transmitted beam power. To achieve faster response times, we calibrated a digital camera to measure the power level as the optical beam is projected onto a white surface. This scattered-light radiometric power meter saves the expense of purchasing a large area power meter and the required water cooling. In addition, the system can report the power distribution, changes in the position, and the spot size of the beam. This paper presents the theory of the scattered-light radiometric power meter and demonstrates its use during a field test at a 2.2 km optical range. © 2011 American Institute of Physics

  16. SLC-off Landsat-7 ETM+ reflective band radiometric calibration

    USGS Publications Warehouse

    Markham, B.L.; Barsi, J.A.; Thome, K.J.; Barker, J.L.; Scaramuzza, P.L.; Helder, D.L.; ,

    2005-01-01

    Since May 31, 2003, when the scan line corrector (SLC) on the Landsat-7 ETM+ failed, the primary foci of Landsat-7 ETM+ analyses have been on understanding and attempting to fix the problem and later on developing composited products to mitigate the problem. In the meantime, the Image Assessment System personnel and vicarious calibration teams have continued to monitor the radiometric performance of the ETM+ reflective bands. The SLC failure produced no measurable change in the radiometric calibration of the ETM+ bands. No trends in the calibration are definitively present over the mission lifetime, and, if present, are less than 0.5% per year. Detector 12 in Band 7 dropped about 0.5% in response relative to the rest of the detectors in the band in May 2004 and recovered back to within 0.1% of its initial relative gain in October 2004.

  17. The Candela and Photometric and Radiometric Measurements

    PubMed Central

    Parr, Albert C.

    2001-01-01

    The national measurement system for photometric and radiometric quantities is presently based upon techniques that make these quantities traceable to a high-accuracy cryogenic radiometer. The redefinition of the candela in 1979 provided the opportunity for national measurement laboratories to base their photometric measurements on optical detector technology rather than on the emission from high-temperature blackbody optical sources. The ensuing technical developments of the past 20 years, including the significant improvements in cryogenic radiometer performance, have provided the opportunity to place the fundamental maintenance of photometric quantities upon absolute detector based technology as was allowed by the 1979 redefinition. Additionally, the development of improved photodetectors has had a significant impact on the methodology in most of the radiometric measurement areas. This paper will review the status of the NIST implementation of the technical changes mandated by the 1979 redefinition of the candela and its effect upon the maintenance and dissemination of optical radiation measurements. PMID:27500020

  18. Sea surface temperature of the coastal zones of France. Heat Capacity Mapping Mission (HCMM)

    NASA Technical Reports Server (NTRS)

    Deschamps, P. Y.; Frouin, R.; Cassanet, G.; Verger, F. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. HCMM data analysis shows some mesoscale features which were previously expected to occur: summer coastal upwellings in the Gulf of Lions, tidal fronts bordering the English Channel, and cooler surface waters at the continental shelf break. The analysis of the spectral variance density spectra show that the interpretation of the data usually is limited by the HCMM radiometric performance (noise levels) at wavenumbers below 5 km in the oceanic areas; from this analysis it may also be concluded that a decrease of the radiometric noise level down to 0.1 k against an increase of the ground resolution up to 2 km would give a better optimum of the radiometric performances in the oceanic areas. HCMM data appear to be useful for analysis of the sea surface temperature field, particularly in the very coastal area by profiting from the ground resolution of 500 m.

  19. Impacts of the Angular Dependence of the Solar Diffuser BRDF Degradation Factor on the SNPP VIIRS Reflective Solar Band On-Orbit Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Lei, Ning; Xiong, Xiaoxiong

    2016-01-01

    Using an onboard sunlit solar diffuser (SD) as the primary radiance source, the visible infrared imaging radiometer suite (VIIRS) on the Suomi National Polar-orbiting Partnership satellite regularly performs radiometric calibration of its reflective solar bands (RSBs). The SD bidirectional reflectance distribution function (BRDF) value decreases over time. A numerical degradation factor is used to quantify the degradation and is determined by an onboard SD stability monitor (SDSM), which observes the sun and the sunlit SD at almost the same time. We had shown previously that the BRDF degradation factor was angle-dependent. Consequently, due to that the SDSM and the RSB view the SD at very different angles relative to both the solar and the SD surface normal vectors, directly applying the BRDF degradation factor determined by the SDSM to the VIIRS RSB calibration can result in large systematic errors. We develop a phenomenological model to calculate the BRDF degradation factor for the RSB SD view from the degradation factor for the SDSM SD view. Using the yearly undulations observed in the VIIRS detector gains for the M1-M4 bands calculated with the SD BRDF degradation factor for the SDSM SD view and the difference between the VIIRS detector gains calculated from the SD and the lunar observations, we obtain the model parameter values and thus establish the relation between the BRDF degradation factors for the RSB and the SDSM SD view directions.

  20. Assessment of S-NPP VIIRS On-Orbit Radiometric Calibration and Performance

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Butler, James; Chiang, Kwofu; Efremova, Boryana; Fullbright, Jon; Lei, Ning; McIntire, Jeff; Oudrari, Hassan; Wang, Zhipeng; Wu, Aisheng

    2016-01-01

    The VIIRS instrument on board the S-NPP spacecraft has successfully operated for more than four years since its launch in October, 2011. Many VIIRS environmental data records (EDR) have been continuously generated from its sensor data records (SDR) with improved quality, enabling a wide range of applications in support of users in both the operational and research communities. This paper provides a brief review of sensor on-orbit calibration methodologies for both the reflective solar bands (RSB) and the thermal emissive bands (TEB) and an overall assessment of their on-orbit radiometric performance using measurements from instrument on-board calibrators (OBC) as well as regularly scheduled lunar observations. It describes and illustrates changes made and to be made for calibration and data quality improvements. Throughout the mission, all of the OBC have continued to operate and function normally, allowing critical calibration parameters used in the data production systems to be derived and updated. The temperatures of the on-board blackbody (BB) and the cold focal plane assemblies are controlled with excellent stability. Despite large optical throughput degradation discovered shortly after launch in several near and short-wave infrared spectral bands and strong wavelength dependent solar diffuser degradation, the VIIRS overall performance has continued to meet its design requirements. Also discussed in this paper are challenging issues identified and efforts to be made to further enhance the sensor calibration and characterization, thereby maintaining or improving data quality.

  1. Thermal microwave emission from vegetated fields - A comparison between theory and experiment

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Shiue, J. C.; Dombrowski, M.; Chuang, S. L.; Shin, R. T.

    1984-01-01

    The radiometric measurements over bare field and fields covered with grass, soybean, corn, and alfalfa were made with 1.4- and 5-GHz microwave radiometers during August-October 1978. The measured results are compared with radiative transfer theory treating the vegetated fields as a two-layer random medium. It is found that the presence of a vegetation cover generally gives a higher brightness temperature T sub B than that expected from a bare soil. The amount of this T sub B excess increases with increase in the vegetation biomass and in the frequency of the observed radiation. The results of radiative transfer calculations, which include a parameter characterizing ground surface roughness, generally match well with the experimental data.

  2. Topics in the two-dimensional sampling and reconstruction of images. [in remote sensing

    NASA Technical Reports Server (NTRS)

    Schowengerdt, R.; Gray, S.; Park, S. K.

    1984-01-01

    Mathematical analysis of image sampling and interpolative reconstruction is summarized and extended to two dimensions for application to data acquired from satellite sensors such as the Thematic mapper and SPOT. It is shown that sample-scene phase influences the reconstruction of sampled images, adds a considerable blur to the average system point spread function, and decreases the average system modulation transfer function. It is also determined that the parametric bicubic interpolator with alpha = -0.5 is more radiometrically accurate than the conventional bicubic interpolator with alpha = -1, and this at no additional cost. Finally, the parametric bicubic interpolator is found to be suitable for adaptive implementation by relating the alpha parameter to the local frequency content of an image.

  3. Remote sensing of the earth's surface with an airborne polarized laser

    NASA Technical Reports Server (NTRS)

    Kalshoven, James E.; Dabney, Philip W.

    1993-01-01

    Attention is given to the Airborne Laser Polarization Sensor (ALPS), which makes multispectral radiometric and polarization measurements of the earth's surface using a polarized laser light source. Results from data flights taken over boreal forests in Maine at two wavelengths (1060 and 532 nm) using an Nd:YAG laser source show distinct depolarization signatures for three broadleaf and five coniferous tree species. A statistically significant increase in depolarization is found to correlate with increasing leaf surface roughness for the broadleaf species in the near-IR. The ALPS system 3 employs 12 photomultiplier tube detectors configurable to measure desired parameters such as the total backscatter and the polarization state, including the azimuthal angle and ellipticity, at different UV to near-IR wavelengths simultaneously.

  4. Lock-on range estimation in an air-to-air engagement situation

    NASA Astrophysics Data System (ADS)

    Cetin, Birkan; Kandemir, Kutlu D.

    2017-05-01

    In air-to-air missile applications, it is important to estimate the lock-on distance between the missile and the target by the help of correct radiometric approaches. However, in an air-to-air engagement, due to the dome heating after launch, signal to noise ratio (SNR) decreases and possibility of losing target becomes as a significant issue. Simulations showed that the selection of cut-on and cut-off wavelengths of midwave band pass filters which can be implemented in the optical path of the seeker is very important in order to maintain lock-on during the mission. In this aspect, the critical electro-optical parameters of an air-to-air seeker are investigated before and after the launch.

  5. A Method for Eliminating Beam Steering Error for the Modulated Absorption-Emission Thermometry Technique

    DTIC Science & Technology

    2014-01-01

    broadened and merged. It is also suitable for environments where broadband emitters such as soot are present. Radiometric measurements in general can be...emitters such as soot are present. Radiometric measurements in general can be made with very high accuracy. The international temperature scale (ITS...by a fitting to a model. In the case of sooting flames, the emissivity is a result of the nearly black absorption and emission features of soot

  6. Assessment of the first radiances received from the VSSR Atmospheric Sounder (VAS) instrument

    NASA Technical Reports Server (NTRS)

    Chesters, D.; Uccellini, L. W.; Montgomery, H.; Mostek, A.; Robinson, W.

    1981-01-01

    The first orderly, calibrated radiances from the VAS-D instrument on the GOES-4 satellite are examined for: image quality, radiometric precision, radiation transfer verification at clear air radiosonde sites, regression retrieval accuracy, and mesoscale analysis features. Postlaunch problems involving calibration and data processing irregularities of scientific or operational significance are included. The radiances provide good visual and relative radiometric data for empirically conditioned retrievals of mesoscale temperature and moisture fields in clear air.

  7. Rain attenuation studies from radiometric and rain DSD measurements at two tropical locations

    NASA Astrophysics Data System (ADS)

    Halder, Tuhina; Adhikari, Arpita; Maitra, Animesh

    2018-05-01

    Efficient use of satellite communication in tropical regions demands proper characterization of rain attenuation, particularly, in view of the available popular propagation models which are mostly based on temperate climatic data. Thus rain attenuations at frequencies 22.234, 23.834 and 31.4/30 GHz over two tropical locations Kolkata (22.57°N, 88.36°E, India) and Belem (1.45°S, 48.49° W, Brazil), have been estimated for the year 2010 and 2011, respectively. The estimation has been done utilizing ground-based disdrometer observations and radiometric measurements over Earth-space path. The results show that rain attenuation estimations from radiometric data are reliable only at low rain rates (<30 mm/h). However, the rain attenuation estimations from disdrometer measurements show good agreement with the ITU-R model, even at high rain rates (upto100 mm/h). Despite having significant variability in terms of drop size distribution (DSD), the attenuation values calculated from DSD data (disdrometer measurements) at Kolkata and Belem differ a little for the rain rates below 30 mm/h. However, the attenuation values, obtained from radiometric measurements at the two places, show significant deviations ranging from 0.54 dB to 3.2 dB up to a rain rate of 30 mm/h, on account of different rain heights, mean atmospheric temperatures and climatology of the two locations.

  8. The structure and temperature of Pluto's Sputnik Planum using 4.2 cm radiometry

    NASA Astrophysics Data System (ADS)

    Linscott, Ivan; Protopapa, Silvia; Hinson, David P.; Bird, Mike; Tyler, G. Leonard; Grundy, William M.; McKinnon, William B.; Olkin, Catherine B.; Stern, S. Alan; Stansberry, John A.; Weaver, Harold A.; Pluto Composition Team, Pluto Geophysics and Geology Team, Pluto Atmospheres Team

    2016-10-01

    New Horizons measured the radiometric brightness temperature of Pluto at 4.2 cm, during the encounter with two scans of the spacecraft's high gain antenna shortly after closest approach. The Pluto mid-section scan included the region informally known as Sputnik Planum, now understood to be filled with nitrogen ice. The mean radiometric brightness temperature at 4.2 cm, obtained in this region is 25 K, for both Right Circular Polarization (RCP) and Left Circular Polarization (LCP), well below the sublimation temperature for nitrogen ice. Sputnik Planum was near the limb and the termination of the radiometric scan. Consequently, the thermal emission was measured obliquely over a wide range of emission angles. This geometry affords detailed modeling of the angular dependence of the thermal radiation, incorporating surface and subsurface electromagnetic scattering models as well as emissivity models of the nitrogen ice. In addition, a bistatic radar measurement detected the scattering of a 4.2 cm uplink transmitted from Earth. The bistatic specular point was within Sputnik Planum and the measurements are useful for constraining the dielectric constant as well as the surface and subsurface scattering functions of the nitrogen ice. The combination of the thermal emission's angular dependence, RCP and LCP polarization dependence, and the bistatic scattering, yields estimates of the radiometric thermal emissivity, nitrogen ice temperature and spatial correlation scales.This work is supported by the NASA New Horizons Mission.

  9. Methods for LWIR Radiometric Calibration and Characterization

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Harrington, Gary; Howell, Dane; Pagnutti, Mary; Zanoni, Vicki

    2002-01-01

    The utility of a remote sensing system increases with its ability to retrieve surface temperature or radiance accurately. Research applications, such as sea temperature and power plant discharge, require a 0.2 C resolution or better for absolute temperature retrievals. Other applications, including agriculture water stress detection, require at least a 1 C resolution. To achieve these levels of accuracy routinely, scientists must perform laboratory and onboard calibration, as well as in-flight vicarious radiometric characterization. A common approach used for in-flight radiometric characterization incorporates a well-calibrated infrared radiometer that is mounted on a bouy and placed on a uniform water body. The radiometer monitors radiant temperature along with pressure, humidity, and temperature measurements of an associated column of atmosphere. On very still waters, however, a buoy can significantly distrub these measurements. Researchers at NASA's Stennis Space Center (SSC) have developed a novel approach of using an uncooled infrared camera mounted on a boom to quantify buoy effects. Another critical aspect of using buoy-mounted infrared radiometers is the need for extensive laboratory characterization of the instruments' radiometric sensitivity, field of view, and spectral response. Proper surface temperature retrieval also requires detailed knowledge of both the upward emission and the reflected sky emission. Recent work at SSC has demonstrated that the use of a polarization-based radiometer operating at the Brewster angle can greatly simplify temperature retrieval as well as improve overall accuracy.

  10. Radiometric 81Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica

    PubMed Central

    Buizert, Christo; Baggenstos, Daniel; Jiang, Wei; Purtschert, Roland; Petrenko, Vasilii V.; Lu, Zheng-Tian; Müller, Peter; Kuhl, Tanner; Lee, James; Severinghaus, Jeffrey P.; Brook, Edward J.

    2014-01-01

    We present successful 81Kr-Kr radiometric dating of ancient polar ice. Krypton was extracted from the air bubbles in four ∼350-kg polar ice samples from Taylor Glacier in the McMurdo Dry Valleys, Antarctica, and dated using Atom Trap Trace Analysis (ATTA). The 81Kr radiometric ages agree with independent age estimates obtained from stratigraphic dating techniques with a mean absolute age offset of 6 ± 2.5 ka. Our experimental methods and sampling strategy are validated by (i) 85Kr and 39Ar analyses that show the samples to be free of modern air contamination and (ii) air content measurements that show the ice did not experience gas loss. We estimate the error in the 81Kr ages due to past geomagnetic variability to be below 3 ka. We show that ice from the previous interglacial period (Marine Isotope Stage 5e, 130–115 ka before present) can be found in abundance near the surface of Taylor Glacier. Our study paves the way for reliable radiometric dating of ancient ice in blue ice areas and margin sites where large samples are available, greatly enhancing their scientific value as archives of old ice and meteorites. At present, ATTA 81Kr analysis requires a 40–80-kg ice sample; as sample requirements continue to decrease, 81Kr dating of ice cores is a future possibility. PMID:24753606

  11. Radiometric 81Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica.

    PubMed

    Buizert, Christo; Baggenstos, Daniel; Jiang, Wei; Purtschert, Roland; Petrenko, Vasilii V; Lu, Zheng-Tian; Müller, Peter; Kuhl, Tanner; Lee, James; Severinghaus, Jeffrey P; Brook, Edward J

    2014-05-13

    We present successful (81)Kr-Kr radiometric dating of ancient polar ice. Krypton was extracted from the air bubbles in four ∼350-kg polar ice samples from Taylor Glacier in the McMurdo Dry Valleys, Antarctica, and dated using Atom Trap Trace Analysis (ATTA). The (81)Kr radiometric ages agree with independent age estimates obtained from stratigraphic dating techniques with a mean absolute age offset of 6 ± 2.5 ka. Our experimental methods and sampling strategy are validated by (i) (85)Kr and (39)Ar analyses that show the samples to be free of modern air contamination and (ii) air content measurements that show the ice did not experience gas loss. We estimate the error in the (81)Kr ages due to past geomagnetic variability to be below 3 ka. We show that ice from the previous interglacial period (Marine Isotope Stage 5e, 130-115 ka before present) can be found in abundance near the surface of Taylor Glacier. Our study paves the way for reliable radiometric dating of ancient ice in blue ice areas and margin sites where large samples are available, greatly enhancing their scientific value as archives of old ice and meteorites. At present, ATTA (81)Kr analysis requires a 40-80-kg ice sample; as sample requirements continue to decrease, (81)Kr dating of ice cores is a future possibility.

  12. Vesicoureteral reflux in young children: a study of radiometric thermometry as detection modality using an ex vivo porcine model

    NASA Astrophysics Data System (ADS)

    Jacobsen, Svein; Klemetsen, Øystein; Birkelund, Yngve

    2012-09-01

    Microwave radiometry is evaluated for renal thermometry tailored to detect the pediatric condition of vesicoureteral urine reflux (VUR) from the bladder through the ureter into the kidney. Prior to a potential reflux event, the urine is heated within the bladder by an external body contacting a hyperthermia applicator to generate a fluidic contrast temperature relative to normal body temperature. A single band, miniaturized radiometer (operating at 3.5 GHz) is connected to an electromagnetic-interference-shielded and suction-coupled elliptical antenna to receive thermal radiation from an ex vivo porcine phantom model. Brightness (radiometric) and fiberoptic temperature data are recorded for varying urine phantom reflux volumes (20-40 mL) and contrast temperatures ranging from 2 to 10 °C within the kidney phantom. The kidney phantom itself is located at 40 mm depth (skin-to-kidney center distance) and surrounded by the porcine phantom. Radiometric step responses to injection of urine simulant by a syringe are shown to be highly correlated with in situ kidney temperatures measured by fiberoptic probes. Statistically, the performance of the VUR detecting scheme is evaluated by error probabilities of making a wrong decision. Laboratory testing of the radiometric system supports the feasibility of passive non-invasive kidney thermometry for the detection of VUR classified within the two highest grades

  13. Comparison of Local Scale Measured and Modeled Brightness Temperatures and Snow Parameters from the CLPX 2003 by Means of a Dense Medium Radiative Transfer Theory Model

    NASA Technical Reports Server (NTRS)

    Tedescol, Marco; Kim, Edward J.; Cline, Don; Graf, Tobias; Koike, Toshio; Armstrong, Richard; Brodzik, Mary J.; Hardy, Janet

    2004-01-01

    Microwave remote sensing offers distinct advantages for observing the cryosphere. Solar illumination is not required, and spatial and temporal coverage are excellent from polar-orbiting satellites. Passive microwave measurements are sensitive to the two most useful physical quantities for many hydrological applications: physical temperature and water content/state. Sensitivity to the latter is a direct result of the microwave sensitivity to the dielectric properties of natural media, including snow, ice, soil (frozen or thawed), and vegetation. These considerations are factors motivating the development of future cryospheric satellite remote sensing missions, continuing and improving on a 26-year microwave measurement legacy. Perhaps the biggest issues regarding the use of such satellite measurements involve how to relate parameter values at spatial scales as small as a hectare to observations with sensor footprints that may be up to 25 x 25 km. The NASA Cold-land Processes Field Experiment (CLPX) generated a dataset designed to enhance understanding of such scaling issues. CLPX observations were made in February (dry snow) and March (wet snow), 2003 in Colorado, USA, at scales ranging from plot scale to 25 x 25 km satellite footprints. Of interest here are passive microwave observations from ground-based, airborne, and satellite sensors, as well as meteorological and snowpack measurements that will enable studies of the effects of spatial heterogeneity of surface conditions on the observations. Prior to performing such scaling studies, an evaluation of snowpack forward modelling at the plot scale (least heterogeneous scale) is in order. This is the focus of this paper. Many forward models of snow signatures (brightness temperatures) have been developed over the years. It is now recognized that a dense medium radiative transfer (DMRT) treatment represents a high degree of physical fidelity for snow modeling, yet dense medium models are particularly sensitive to snowpack structural parameters such as grain size, density, and depth---parameters that may vary substantially within a snowpack. Microwave radiometric data and snow pit measurements collected at the Local-Scale Observation Site (LSOS) during the third Intensive Observation Period (IOP3) of the CLPX have been used to test the capabilities of a DMRT model using the Quasi Crystalline Approximation with Coherent Potential (QCA-CP). The radiometric measurements were made by the University of Tokyo s Ground Based Microwave Radiometer-7 (GBMR-7) system. We evaluate the degree to which a DMRT-based model can accurately reproduce the GBMR-7 brightness temperatures at different frequencies and incidence angles.

  14. Development of a simulation environment to support intercalibration studies over the Algodones Dunes system

    NASA Astrophysics Data System (ADS)

    Eon, Rehman S.; Gerace, Aaron D.; Montanaro, Matthew; Ambeau, Brittany L.; McCorkel, Joel T.

    2018-01-01

    The ability of sensors to detect changes in the Earth's environment is dependent on retrieving radiometrically consistent and calibrated measurements from its surface. Intercalibration provides consistency among satellite instruments and ensures fidelity of scientific information. Intercalibration is especially important for spaceborne satellites without any on-board calibration, as accuracy of instruments is significantly affected by changes that occur postlaunch. To better understand the key parameters that impact the intercalibration process, this paper describes a simulation environment that was developed to support the primary mission of the Algodones Dunes campaign. Specifically, measurements obtained from the campaign were utilized to create a synthetic landscape to assess the feasibility of using the Algodones Dunes system as an intercalibration site for spaceborne instruments. The impact of two key parameters (differing view-angles and temporal offsets between instruments) on the intercalibration process was assessed. Results of these studies indicate that although the accuracy of intercalibration is sensitive to these parameters, proper knowledge of their impact leads to situations that minimize their effect. This paper concludes with a case study that addresses the feasibility of performing intercalibration on the International Space Station's platform to support NASA's CLARREO, the climate absolute radiance and refractivity observatory, mission.

  15. Use of EO-1 Advanced Land Imager (ALI) multispectral image data and real-time field sampling for water quality mapping in the Hirfanlı Dam Lake, Turkey.

    PubMed

    Kavurmacı, Murat; Ekercin, Semih; Altaş, Levent; Kurmaç, Yakup

    2013-08-01

    This paper focuses on the evaluation of water quality variations in Hirfanlı Water Reservoir, which is one of the most important water resources in Turkey, through EO-1 (Earth Observing-1) Advanced Land Imager (ALI) multispectral data and real-time field sampling. The study was materialized in 20 different sampling points during the overpass of the EO-1 ALI sensor over the study area. A multi-linear regression technique was used to explore the relationships between radiometrically corrected EO-1 ALI image data and water quality parameters: chlorophyll a, turbidity, and suspended solids. The retrieved and verified results show that the measured and estimated values of water quality parameters are in good agreement (R (2) >0.93). The resulting thematic maps derived from EO-1 multispectral data for chlorophyll a, turbidity, and suspended solids show the spatial distribution of the water quality parameters. The results indicate that the reservoir has average nutrient values. Furthermore, chlorophyll a, turbidity, and suspended solids values increased at the upstream reservoir and shallow coast of the Hirfanlı Water Reservoir.

  16. Evaluation of sensor, environment and operational factors impacting the use of multiple sensor constellations for long term resource monitoring

    NASA Astrophysics Data System (ADS)

    Rengarajan, Rajagopalan

    Moderate resolution remote sensing data offers the potential to monitor the long and short term trends in the condition of the Earth's resources at finer spatial scales and over longer time periods. While improved calibration (radiometric and geometric), free access (Landsat, Sentinel, CBERS), and higher level products in reflectance units have made it easier for the science community to derive the biophysical parameters from these remotely sensed data, a number of issues still affect the analysis of multi-temporal datasets. These are primarily due to sources that are inherent in the process of imaging from single or multiple sensors. Some of these undesired or uncompensated sources of variation include variation in the view angles, illumination angles, atmospheric effects, and sensor effects such as Relative Spectral Response (RSR) variation between different sensors. The complex interaction of these sources of variation would make their study extremely difficult if not impossible with real data, and therefore, a simulated analysis approach is used in this study. A synthetic forest canopy is produced using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model and its measured BRDFs are modeled using the RossLi canopy BRDF model. The simulated BRDF matches the real data to within 2% of the reflectance in the red and the NIR spectral bands studied. The BRDF modeling process is extended to model and characterize the defoliation of a forest, which is used in factor sensitivity studies to estimate the effect of each factor for varying environment and sensor conditions. Finally, a factorial experiment is designed to understand the significance of the sources of variation, and regression based analysis are performed to understand the relative importance of the factors. The design of experiment and the sensitivity analysis conclude that the atmospheric attenuation and variations due to the illumination angles are the dominant sources impacting the at-sensor radiance.

  17. Compact Micromachined Infrared Bandpass Filters for Planetary Spectroscopy

    NASA Technical Reports Server (NTRS)

    Merrell, Willie C., II; Aslam, Shahid; Brown, Ari D.; Chervenak, James A.; Huang, Wei-Chung; Quijada, Manuel; Wollack, Edward

    2011-01-01

    The future needs of space based observational planetary and astronomy missions include low mass and small volume radiometric instruments that can operate in high radiation and low temperature environments. Here we focus on a central spectroscopic component, the bandpass filter. We model the bandpass response of the filters to target the wavelength of the resonance peaks at 20, 40, and 60 micrometers and report good agreement between the modeled and measured response. We present a technique of using common micromachining processes for semiconductor fabrication to make compact, free standing resonant metal mesh filter arrays with silicon support frames. The process can accommodate multiple detector array architectures and the silicon frame provides lightweight mechanical support with low form factor. We also present a conceptual hybridization of the filters with a detector array.

  18. Baseline antenna design for space exploration initiative

    NASA Technical Reports Server (NTRS)

    Chen, Y. L.; Nasir, M. A.; Lee, S. W.; Zaman, Afroz

    1993-01-01

    A key element of the future NASA Space Exploration Initiative (SEI) mission is the lunar and Mars telecommunication system. This system will provide voice, image, and data transmission to monitor unmanned missions to conduct experiments, and to provide radiometric data for navigation. In the later half of 1991, a study was conducted on antennas for the Mars Exploration Communication. Six antenna configurations were examined: three reflector and three phased array. The conclusion was that due to wide-angle scan requirement, and multiple simultaneous tracking beams, phased arrays are more suitable. For most part, this report studies phased array antenna designs for two different applications for Space Exploration Initiative. It also studies one design for a tri-reflector type antenna. These antennas will be based on a Mars orbiting satellite.

  19. Graphics processing unit (GPU) real-time infrared scene generation

    NASA Astrophysics Data System (ADS)

    Christie, Chad L.; Gouthas, Efthimios (Themie); Williams, Owen M.

    2007-04-01

    VIRSuite, the GPU-based suite of software tools developed at DSTO for real-time infrared scene generation, is described. The tools include the painting of scene objects with radiometrically-associated colours, translucent object generation, polar plot validation and versatile scene generation. Special features include radiometric scaling within the GPU and the presence of zoom anti-aliasing at the core of VIRSuite. Extension of the zoom anti-aliasing construct to cover target embedding and the treatment of translucent objects is described.

  20. Remote measurement of salinity: Repeated measurements over a single flight line near the Mississippi Sound

    NASA Technical Reports Server (NTRS)

    Thomann, G. C.

    1973-01-01

    Experiments to remotely determine sea water salinity from measurements of the sea surface radiometric temperature over the Mississippi Sound were conducted. The line was flown six times at an altitude of 244 meters. The radiometric temperature of the sea surface was measured in two spectral intervals. The specifications of the equipment and the conditions under which the tests were conducted are described. Results of the tests are presented in the form of graphs.

  1. Using Onboard Telemetry for MAVEN Orbit Determination

    NASA Technical Reports Server (NTRS)

    Lam, Try; Trawny, Nikolas; Lee, Clifford

    2013-01-01

    Determination of the spacecraft state has been traditional done using radiometric tracking data before and after the atmosphere drag pass. This paper describes our approach and results to include onboard telemetry measurements in addition to radiometric observables to refine the reconstructed trajectory estimate for the Mars Atmosphere and Volatile Evolution Mission (MAVEN). Uncertainties in the Mars atmosphere models, combined with non-continuous tracking degrade navigation accuracy, making MAVEN a key candidate for using onboard telemetry data to help complement its orbit determination process.

  2. Analyzing RCD30 Oblique Performance in a Production Environment

    NASA Astrophysics Data System (ADS)

    Soler, M. E.; Kornus, W.; Magariños, A.; Pla, M.

    2016-06-01

    In 2014 the Institut Cartogràfic i Geològic de Catalunya (ICGC) decided to incorporate digital oblique imagery in its portfolio in response to the growing demand for this product. The reason can be attributed to its useful applications in a wide variety of fields and, most recently, to an increasing interest in 3d modeling. The selection phase for a digital oblique camera led to the purchase of the Leica RCD30 Oblique system, an 80MPixel multispectral medium-format camera which consists of one Nadir camera and four oblique viewing cameras acquiring images at an off-Nadir angle of 35º. The system also has a multi-directional motion compensation on-board system to deliver the highest image quality. The emergence of airborne oblique cameras has run in parallel to the inclusion of computer vision algorithms into the traditional photogrammetric workflows. Such algorithms rely on having multiple views of the same area of interest and take advantage of the image redundancy for automatic feature extraction. The multiview capability is highly fostered by the use of oblique systems which capture simultaneously different points of view for each camera shot. Different companies and NMAs have started pilot projects to assess the capabilities of the 3D mesh that can be obtained using correlation techniques. Beyond a software prototyping phase, and taking into account the currently immature state of several components of the oblique imagery workflow, the ICGC has focused on deploying a real production environment with special interest on matching the performance and quality of the existing production lines based on classical Nadir images. This paper introduces different test scenarios and layouts to analyze the impact of different variables on the geometric and radiometric performance. Different variables such as flight altitude, side and forward overlap and ground control point measurements and location have been considered for the evaluation of aerial triangulation and stereo plotting. Furthermore, two different flight configurations have been designed to measure the quality of the absolute radiometric calibration and the resolving power of the system. To quantify the effective resolution power of RCD30 Oblique images, a tool based on the computation of the Line Spread Function has been developed. The tool processes a region of interest that contains a single contour in order to extract a numerical measure of edge smoothness for a same flight session. The ICGC is highly devoted to derive information from satellite and airborne multispectral remote sensing imagery. A seamless Normalized Difference Vegetation Index (NDVI) retrieved from Digital Metric Camera (DMC) reflectance imagery is one of the products of ICGC's portfolio. As an evolution of this well-defined product, this paper presents an evaluation of the absolute radiometric calibration of the RCD30 Oblique sensor. To assess the quality of the measure, the ICGC has developed a procedure based on simultaneous acquisition of RCD30 Oblique imagery and radiometric calibrated AISA (Airborne Hyperspectral Imaging System) imagery.

  3. High resolution multispectral photogrammetric imagery: enhancement, interpretation and evaluations

    NASA Astrophysics Data System (ADS)

    Roberts, Arthur; Haefele, Martin; Bostater, Charles; Becker, Thomas

    2007-10-01

    A variety of aerial mapping cameras were adapted and developed into simulated multiband digital photogrammetric mapping systems. Direct digital multispectral, two multiband cameras (IIS 4 band and Itek 9 band) and paired mapping and reconnaissance cameras were evaluated for digital spectral performance and photogrammetric mapping accuracy in an aquatic environment. Aerial films (24cm X 24cm format) tested were: Agfa color negative and extended red (visible and near infrared) panchromatic, and; Kodak color infrared and B&W (visible and near infrared) infrared. All films were negative processed to published standards and digitally converted at either 16 (color) or 10 (B&W) microns. Excellent precision in the digital conversions was obtained with scanning errors of less than one micron. Radiometric data conversion was undertaken using linear density conversion and centered 8 bit histogram exposure. This resulted in multiple 8 bit spectral image bands that were unaltered (not radiometrically enhanced) "optical count" conversions of film density. This provided the best film density conversion to a digital product while retaining the original film density characteristics. Data covering water depth, water quality, surface roughness, and bottom substrate were acquired using different measurement techniques as well as different techniques to locate sampling points on the imagery. Despite extensive efforts to obtain accurate ground truth data location errors, measurement errors, and variations in the correlation between water depth and remotely sensed signal persisted. These errors must be considered endemic and may not be removed through even the most elaborate sampling set up. Results indicate that multispectral photogrammetric systems offer improved feature mapping capability.

  4. Radiometric and geometric assessment of data from the RapidEye constellation of satellites

    USGS Publications Warehouse

    Chander, Gyanesh; Haque, Md. Obaidul; Sampath, Aparajithan; Brunn, A.; Trosset, G.; Hoffmann, D.; Roloff, S.; Thiele, M.; Anderson, C.

    2013-01-01

    To monitor land surface processes over a wide range of temporal and spatial scales, it is critical to have coordinated observations of the Earth's surface using imagery acquired from multiple spaceborne imaging sensors. The RapidEye (RE) satellite constellation acquires high-resolution satellite images covering the entire globe within a very short period of time by sensors identical in construction and cross-calibrated to each other. To evaluate the RE high-resolution Multi-spectral Imager (MSI) sensor capabilities, a cross-comparison between the RE constellation of sensors was performed first using image statistics based on large common areas observed over pseudo-invariant calibration sites (PICS) by the sensors and, second, by comparing the on-orbit radiometric calibration temporal trending over a large number of calibration sites. For any spectral band, the individual responses measured by the five satellites of the RE constellation were found to differ <2–3% from the average constellation response depending on the method used for evaluation. Geometric assessment was also performed to study the positional accuracy and relative band-to-band (B2B) alignment of the image data sets. The position accuracy was assessed by comparing the RE imagery against high-resolution aerial imagery, while the B2B characterization was performed by registering each band against every other band to ensure that the proper band alignment is provided for an image product. The B2B results indicate that the internal alignments of these five RE bands are in agreement, with bands typically registered to within 0.25 pixels of each other or better.

  5. Low-Profile, Dual-Wavelength, Dual-Polarized Antenna

    NASA Technical Reports Server (NTRS)

    Carswell, James R.

    2010-01-01

    A single-aperture, low-profile antenna design has been developed that supports dual-polarization and simultaneous operation at two wavelengths. It realizes multiple beams in the elevation plane, and supports radiometric, radar, and conical scanning applications. This antenna consists of multiple azimuth sticks, with each stick being a multilayer, hybrid design. Each stick forms the h-plane pattern of the C and Ku-band vertically and horizontally polarized antenna beams. By combining several azimuth sticks together, the elevation beam is formed. With a separate transceiver for each stick, the transmit phase and amplitude of each stick can be controlled to synthesize a beam at a specific incidence angle and to realize a particular side-lobe pattern. By changing the transmit phase distribution through the transceivers, the transmit antenna beam can be steered to different incidence angles. By controlling the amplitude distribution, different side lobe patterns and efficiencies can be realized. The receive beams are formed using digital beam synthesis techniques, resulting in very little loss in the receive path, thus enabling a very-low loss receive antenna to support passive measurements.

  6. Comparison of Data Quality of NOAA's ISIS and SURFRAD Networks to NREL's SRRL-BMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderberg, M.; Sengupta, M.

    2014-11-01

    This report provides analyses of broadband solar radiometric data quality for the National Oceanic and Atmospheric Administration's Integrated Surface Irradiance Study and Surface Radiation Budget Network (SURFRAD) solar measurement networks. The data quality of these networks is compared to that of the National Renewable Energy Laboratory's Solar Radiation Research Laboratory Baseline Measurement System (SRRL-BMS) native data resolutions and hourly averages of the data from the years 2002 through 2013. This report describes the solar radiometric data quality testing and flagging procedures and the method used to determine and tabulate data quality statistics. Monthly data quality statistics for each network weremore » plotted by year against the statistics for the SRRL-BMS. Some of the plots are presented in the body of the report, but most are in the appendix. These plots indicate that the overall solar radiometric data quality of the SURFRAD network is superior to that of the Integrated Surface Irradiance Study network and can be comparable to SRRL-BMS.« less

  7. Reconnaissance geologic map of part of the San Isidro Quadrangle, Baja California Sur, Mexico

    USGS Publications Warehouse

    McLean, Hugh; Hausback, B.P.; Knapp, J.H.

    1985-01-01

    Mapping was done on aerial photographs and transferred, where possible, to 1:50,000-scale topographic base maps. Areas with roads were field checked; however, in the northeast part of the map area, lack of roads prevented field checks. Previous geologic surveys of parts of the map area were made by horseback in the early 1920's; reports were published by Darton (1921), Heim (1922), and Beal (1948). Subsurface data from petroleum exploration and a geologic map were incorporated in a regional study by Mina (1957). The first radiometric ages of rocks from the map area were published by Gastil and others (1979). Recently determined radiometric ages and chemical analysis of volcanic rocks were reported by Hausback (1984) and by Sawlan and Smith (1984). Our study incorporates geologic mapping with age control based on new radiometric ages as well as paleontology, Flows and tuffs were dated by the K-Ar method. Fossil ages are based on diatom and mollusk assemblages.

  8. A multi-frequency radiometric measurement of soil moisture content over bare and vegetated fields

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Schmugge, T. J.; Mcmurtrey, J. E., III; Gould, W. I.; Glazar, W. S.; Fuchs, J. E. (Principal Investigator)

    1981-01-01

    A USDA Beltsville Agricultural Research Center site was used for an experiment in which soil moisture remote sensing over bare, grass, and alfalfa fields was conducted over a three-month period using 0.6 GHz, 1.4 GHz, and 10.6 GHz Dicke-type microwave radiometers mounted on mobile towers. Ground truth soil moisture content and ambient air and sil temperatures were obtained concurrently with the radiometric measurements. Biomass of the vegetation cover was sampled about once a week. Soil density for each of the three fields was measured several times during the course of the experiment. Results of the radiometric masurements confirm the frequency dependence of moisture sensing sensitivity reduction reported earlier. Observations over the bare, wet field show that the measured brightness temperature is lowest at 5.0 GHz and highest of 0.6 GHz frequency, a result contrary to expectation based on the estimated dielectric permittivity of soil water mixtures and current radiative transfer model in that frequency range.

  9. Radiometric and spectral stray light correction for the portable remote imaging spectrometer (PRISM) coastal ocean sensor

    NASA Astrophysics Data System (ADS)

    Haag, Justin M.; Van Gorp, Byron E.; Mouroulis, Pantazis; Thompson, David R.

    2017-09-01

    The airborne Portable Remote Imaging Spectrometer (PRISM) instrument is based on a fast (F/1.8) Dyson spectrometer operating at 350-1050 nm and a two-mirror telescope combined with a Teledyne HyViSI 6604A detector array. Raw PRISM data contain electronic and optical artifacts that must be removed prior to radiometric calibration. We provide an overview of the process transforming raw digital numbers to calibrated radiance values. Electronic panel artifacts are first corrected using empirical relationships developed from laboratory data. The instrument spectral response functions (SRF) are reconstructed using a measurement-based optimization technique. Removal of SRF effects from the data improves retrieval of true spectra, particularly in the typically low-signal near-ultraviolet and near-infrared regions. As a final step, radiometric calibration is performed using corrected measurements of an object of known radiance. Implementation of the complete calibration procedure maximizes data quality in preparation for subsequent processing steps, such as atmospheric removal and spectral signature classification.

  10. Radiometric calibration of hyper-spectral imaging spectrometer based on optimizing multi-spectral band selection

    NASA Astrophysics Data System (ADS)

    Sun, Li-wei; Ye, Xin; Fang, Wei; He, Zhen-lei; Yi, Xiao-long; Wang, Yu-peng

    2017-11-01

    Hyper-spectral imaging spectrometer has high spatial and spectral resolution. Its radiometric calibration needs the knowledge of the sources used with high spectral resolution. In order to satisfy the requirement of source, an on-orbit radiometric calibration method is designed in this paper. This chain is based on the spectral inversion accuracy of the calibration light source. We compile the genetic algorithm progress which is used to optimize the channel design of the transfer radiometer and consider the degradation of the halogen lamp, thus realizing the high accuracy inversion of spectral curve in the whole working time. The experimental results show the average root mean squared error is 0.396%, the maximum root mean squared error is 0.448%, and the relative errors at all wavelengths are within 1% in the spectral range from 500 nm to 900 nm during 100 h operating time. The design lays a foundation for the high accuracy calibration of imaging spectrometer.

  11. Radiometric infrared focal plane array imaging system for thermographic applications

    NASA Technical Reports Server (NTRS)

    Esposito, B. J.; Mccafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.

    1992-01-01

    This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).

  12. Radiometric responsivity determination for Feature Identification and Location Experiment (FILE) flown on space shuttle mission

    NASA Technical Reports Server (NTRS)

    Wilson, R. G.; Davis, R. E.; Wright, R. E., Jr.; Sivertson, W. E., Jr.; Bullock, G. F.

    1986-01-01

    A procedure was developed to obtain the radiometric (radiance) responsivity of the Feature Identification and Local Experiment (FILE) instrument in preparation for its flight on Space Shuttle Mission 41-G (November 1984). This instrument was designed to obtain Earth feature radiance data in spectral bands centered at 0.65 and 0.85 microns, along with corroborative color and color-infrared photographs, and to collect data to evaluate a technique for in-orbit autonomous classification of the Earth's primary features. The calibration process incorporated both solar radiance measurements and radiative transfer model predictions in estimating expected radiance inputs to the FILE on the Shuttle. The measured data are compared with the model predictions, and the differences observed are discussed. Application of the calibration procedure to the FILE over an 18-month period indicated a constant responsivity characteristic. This report documents the calibration procedure and the associated radiometric measurements and predictions that were part of the instrument preparation for flight.

  13. Radiometric infrared focal plane array imaging system for thermographic applications

    NASA Astrophysics Data System (ADS)

    Esposito, B. J.; McCafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.

    1992-11-01

    This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).

  14. A Preliminary Analysis of LANDSAT-4 Thematic Mapper Radiometric Performance

    NASA Technical Reports Server (NTRS)

    Justice, C.; Fusco, L.; Mehl, W.

    1984-01-01

    Analysis was performed to characterize the radiometry of three Thematic Mapper (TM) digital products of a scene of Arkansas. The three digital products examined were the NASA raw (BT) product, the radiometrically corrected (AT) product and the radiometrically and geometrically corrected (PT) product. The frequency distribution of the digital data; the statistical correlation between the bands; and the variability between the detectors within a band were examined on a series of image subsets from the full scene. The results are presented from one 1024 x 1024 pixel subset of Realfoot Lake, Tennessee which displayed a representative range of ground conditions and cover types occurring within the full frame image. Bands 1, 2 and 5 of the sample area are presented. The subsets were extracted from the three digital data products to cover the same geographic area. This analysis provides the first step towards a full appraisal of the TM radiometry being performed as part of the ESA/CEC contribution to the NASA/LIDQA program.

  15. A radiometric Bode's Law: Predictions for Uranus

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Kaiser, M. L.

    1984-01-01

    The magnetospheres of three planets, Earth, Jupiter, and Saturn, are known to be sources of intense, nonthermal radio bursts. The emissions from these sources undergo pronounced long term intensity fluctuations that are caused by the solar wind interaction with the magnetosphere of each planet. Determinations by spacecraft of the low frequency radio spectra and radiation beam geometry now permit a reliable assessment of the overall efficiency of the solar wind in stimulating these emissions. Earlier estimates of how magnetospheric radio output scales with the solar wind energy input must be revised greatly, with the result that, while the efficiency is much lower than previously thought, it is remarkably uniform from planet to planet. The formulation of a radiometric Bode's Law from which a planet's magnetic moment is estimated from its radio emission output is presented. Applying the radiometric scaling law to Uranus, the low-frequency radio power is likely to be measured by the Voyager 2 spacecraft as it approaches this planet.

  16. A New Paradigm for Satellite Retrieval of Hydrologic Variables: The CDRD Methodology

    NASA Astrophysics Data System (ADS)

    Smith, E. A.; Mugnai, A.; Tripoli, G. J.

    2009-09-01

    Historically, retrieval of thermodynamically active geophysical variables in the atmosphere (e.g., temperature, moisture, precipitation) involved some time of inversion scheme - embedded within the retrieval algorithm - to transform radiometric observations (a vector) to the desired geophysical parameter(s) (either a scalar or a vector). Inversion is fundamentally a mathematical operation involving some type of integral-differential radiative transfer equation - often resisting a straightforward algebraic solution - in which the integral side of the equation (typically the right-hand side) contains the desired geophysical vector, while the left-hand side contains the radiative measurement vector often free of operators. Inversion was considered more desirable than forward modeling because the forward model solution had to be selected from a generally unmanageable set of parameter-observation relationships. However, in the classical inversion problem for retrieval of temperature using multiple radiative frequencies along the wing of an absorption band (or line) of a well-mixed radiatively active gas, in either the infrared or microwave spectrums, the inversion equation to be solved consists of a Fredholm integral equation of the 2nd kind - a specific type of transform problem in which there are an infinite number of solutions. This meant that special treatment of the transform process was required in order to obtain a single solution. Inversion had become the method of choice for retrieval in the 1950s because it appealed to the use of mathematical elegance, and because the numerical approaches used to solve the problems (typically some type of relaxation or perturbation scheme) were computationally fast in an age when computers speeds were slow. Like many solution schemes, inversion has lingered on regardless of the fact that computer speeds have increased many orders of magnitude and forward modeling itself has become far more elegant in combination with Bayesian averaging procedures given that the a priori probabilities of occurrence in the true environment of the parameter(s) in question can be approximated (or are actually known). In this presentation, the theory of the more modern retrieval approach using a combination of cloud, radiation and other specialized forward models in conjunction with Bayesian weighted averaging will be reviewed in light of a brief history of inversion. The application of the theory will be cast in the framework of what we call the Cloud-Dynamics-Radiation-Database (CDRD) methodology - which we now use for the retrieval of precipitation from spaceborne passive microwave radiometers. In a companion presentation, we will specifically describe the CDRD methodology and present results for its application within the Mediterranean basin.

  17. Assessment of SNPP VIIRS VIS NIR Radiometric Calibration Stability Using Aqua MODIS and Invariant Surface Targets

    NASA Technical Reports Server (NTRS)

    Wu, Aisheng; Xiong, Xiaoxiong; Cao, Changyong; Chiang, Kwo-Fu

    2016-01-01

    The first Visible Infrared Imaging Radiometer Suite (VIIRS) is onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite. As a primary sensor, it collects imagery and radiometric measurements of the land, atmosphere, cryosphere, and oceans in the spectral regions from visible (VIS) to long-wave infrared. NASA's National Polar-orbiting Partnership (NPP) VIIRS Characterization Support Team has been actively involved in the VIIRS radiometric and geometric calibration to support its Science Team Principal Investigators for their independent quality assessment of VIIRS Environmental Data Records. This paper presents the performance assessment of the radiometric calibration stability of the VIIRS VIS and NIR spectral bands using measurements from SNPP VIIRS and Aqua MODIS simultaneous nadir overpasses and over the invariant surface targets at the Libya-4 desert and Antarctic Dome Concordia snow sites. The VIIRS sensor data records (SDRs) used in this paper are reprocessed by the NASA SNPP Land Product Evaluation and Analysis Tool Element. This paper shows that the reprocessed VIIRS SDRs have been consistently calibrated from the beginning of the mission, and the calibration stability is similar to or better than MODIS. Results from different approaches indicate that the calibrations of the VIIRS VIS and NIR spectral bands are maintained to be stable to within 1% over the first three-year mission. The absolute calibration differences between VIIRS and MODIS are within 2%, with an exception for the 0.865-m band, after correction of their spectral response differences.

  18. PCA determination of the radiometric noise of high spectral resolution infrared observations from spectral residuals: Application to IASI

    NASA Astrophysics Data System (ADS)

    Serio, C.; Masiello, G.; Camy-Peyret, C.; Jacquette, E.; Vandermarcq, O.; Bermudo, F.; Coppens, D.; Tobin, D.

    2018-02-01

    The problem of characterizing and estimating the instrumental or radiometric noise of satellite high spectral resolution infrared spectrometers directly from Earth observations is addressed in this paper. An approach has been developed, which relies on the Principal Component Analysis (PCA) with a suitable criterion to select the optimal number of PC scores. Different selection criteria have been set up and analysed, which is based on the estimation theory of Least Squares and/or Maximum Likelihood Principle. The approach is independent of any forward model and/or radiative transfer calculations. The PCA is used to define an orthogonal basis, which, in turn, is used to derive an optimal linear reconstruction of the observations. The residual vector that is the observation vector minus the calculated or reconstructed one is then used to estimate the instrumental noise. It will be shown that the use of the spectral residuals to assess the radiometric instrumental noise leads to efficient estimators, which are largely independent of possible departures of the true noise from that assumed a priori to model the observational covariance matrix. Application to the Infrared Atmospheric Sounder Interferometer (IASI) has been considered. A series of case studies has been set up, which make use of IASI observations. As a major result, the analysis confirms the high stability and radiometric performance of IASI. The approach also proved to be efficient in characterizing noise features due to mechanical micro-vibrations of the beam splitter of the IASI instrument.

  19. Measuring inhibition of monoamine reuptake transporters by new psychoactive substances (NPS) in real-time using a high-throughput, fluorescence-based assay.

    PubMed

    Zwartsen, Anne; Verboven, Anouk H A; van Kleef, Regina G D M; Wijnolts, Fiona M J; Westerink, Remco H S; Hondebrink, Laura

    2017-12-01

    The prevalence and use of new psychoactive substances (NPS) is increasing and currently over 600 NPS exist. Many illicit drugs and NPS increase brain monoamine levels by inhibition and/or reversal of monoamine reuptake transporters (DAT, NET and SERT). This is often investigated using labor-intensive, radiometric endpoint measurements. We investigated the applicability of a novel and innovative assay that is based on a fluorescent monoamine mimicking substrate. DAT, NET or SERT-expressing human embryonic kidney (HEK293) cells were exposed to common drugs (cocaine, dl-amphetamine or MDMA), NPS (4-fluoroamphetamine, PMMA, α-PVP, 5-APB, 2C-B, 25B-NBOMe, 25I-NBOMe or methoxetamine) or the antidepressant fluoxetine. We demonstrate that this fluorescent microplate reader-based assay detects inhibition of different transporters by various drugs and discriminates between drugs. Most IC 50 values were in line with previous results from radiometric assays and within estimated human brain concentrations. However, phenethylamines showed higher IC 50 values on hSERT, possibly due to experimental differences. Compared to radiometric assays, this high-throughput fluorescent assay is uncomplicated, can measure at physiological conditions, requires no specific facilities and allows for kinetic measurements, enabling detection of transient effects. This assay is therefore a good alternative for radiometric assays to investigate effects of illicit drugs and NPS on monoamine reuptake transporters. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. A 130,000-year-old archaeological site in southern California, USA

    USGS Publications Warehouse

    Holen, Steven R.; Deméré, Thomas A.; Fisher, Daniel C.; Fullagar, Richard; Paces, James B.; Jefferson, George T.; Beeton, Jared M.; Cerutti, Richard A.; Rountrey, Adam N.; Vescera, Lawrence; Holen, Kathleen A.

    2017-01-01

    The earliest dispersal of humans into North America is a contentious subject, and proposed early sites are required to meet the following criteria for acceptance: (1) archaeological evidence is found in a clearly defined and undisturbed geologic context; (2) age is determined by reliable radiometric dating; (3) multiple lines of evidence from interdisciplinary studies provide consistent results; and (4) unquestionable artefacts are found in primary context1,2. Here we describe the Cerutti Mastodon (CM) site, an archaeological site from the early late Pleistocene epoch, where in situ hammerstones and stone anvils occur in spatio-temporal association with fragmentary remains of a single mastodon (Mammut americanum). The CM site contains spiral-fractured bone and molar fragments, indicating that breakage occured while fresh. Several of these fragments also preserve evidence of percussion. The occurrence and distribution of bone, molar and stone refits suggest that breakage occurred at the site of burial. Five large cobbles (hammerstones and anvils) in the CM bone bed display use-wear and impact marks, and are hydraulically anomalous relative to the low-energy context of the enclosing sandy silt stratum. 230Th/U radiometric analysis of multiple bone specimens using diffusion–adsorption–decay dating models indicates a burial date of 130.7 ± 9.4 thousand years ago. These findings confirm the presence of an unidentified species of Homo at the CM site during the last interglacial period (MIS 5e; early late Pleistocene), indicating that humans with manual dexterity and the experiential knowledge to use hammerstones and anvils processed mastodon limb bones for marrow extraction and/or raw material for tool production. Systematic proboscidean bone reduction, evident at the CM site, fits within a broader pattern of Palaeolithic bone percussion technology in Africa3,4,5,6, Eurasia7,8,9 and North America10,11,12. The CM site is, to our knowledge, the oldest in situ, well-documented archaeological site in North America and, as such, substantially revises the timing of arrival of Homo into the Americas.

  1. Atmospheric effects in multispectral remote sensor data

    NASA Technical Reports Server (NTRS)

    Turner, R. E.

    1975-01-01

    The problem of radiometric variations in multispectral remote sensing data which occur as a result of a change in geometric and environmental factors is studied. The case of spatially varying atmospheres is considered and the effect of atmospheric scattering is analyzed for realistic conditions. Emphasis is placed upon a simulation of LANDSAT spectral data for agricultural investigations over the United States. The effect of the target-background interaction is thoroughly analyzed in terms of various atmospheric states, geometric parameters, and target-background materials. Results clearly demonstrate that variable atmospheres can alter the classification accuracy and that the presence of various backgrounds can change the effective target radiance by a significant amount. A failure to include these effects in multispectral data analysis will result in a decrease in the classification accuracy.

  2. Taxonomy of asteroids. [according to polarimetric, spectrophotometric, radiometric, and UBV photometric data

    NASA Technical Reports Server (NTRS)

    Bowell, E.; Chapman, C. R.; Gradie, J. C.; Zellner, B.; Morrison, D.

    1978-01-01

    A taxonomic system for asteroids is discussed which is based on seven directly observable parameters from polarimetry, spectrophotometry, radiometry, and UBV photometry. The classification scheme is entirely empirical and independent of specific mineralogical interpretations. Five broad classes (designated C, S, M, E, and R), as well as an 'unclassifiable' designation, are defined on the basis of observational data for 523 asteroids. Computer-generated type classifications and derived diameters are given for the 523 asteroids, and the application of the classification procedure is illustrated. Of the 523 asteroids classified, 190 are identified as C objects, 141 as S type, 13 as type M, three as type E, three as type R, 55 as unclassifiable, and 118 as ambiguous. The present taxonomic system is compared with several other asteroid classification systems.

  3. Landsat TM memory effect characterization and correction

    USGS Publications Warehouse

    Helder, D.; Boncyk, W.; Morfitt, R.

    1997-01-01

    Before radiometric calibration of Landsat Thematic Mapper (TM) data can be done accurately, it is necessary to minimize the effects of artifacts present in the data that originate in the instrument's signal processing path. These artifacts have been observed in downlinked image data since shortly after launch of Landsat 4 and 5. However, no comprehensive work has been done to characterize all the artifacts and develop methods for their correction. In this paper, the most problematic artifact is discussed: memory effect (ME). Characterization of this artifact is presented, including the parameters necessary for its correction. In addition, a correction algorithm is described that removes the artifact from TM imagery. It will be shown that this artifact causes significant radiometry errors, but the effect can be removed in a straightforward manner.

  4. Suitability aero-geophysical methods for generating conceptual soil maps and their use in the modeling of process-related susceptibility maps

    NASA Astrophysics Data System (ADS)

    Tilch, Nils; Römer, Alexander; Jochum, Birgit; Schattauer, Ingrid

    2014-05-01

    In the past years, several times large-scale disasters occurred in Austria, which were characterized not only by flooding, but also by numerous shallow landslides and debris flows. Therefore, for the purpose of risk prevention, national and regional authorities also require more objective and realistic maps with information about spatially variable susceptibility of the geosphere for hazard-relevant gravitational mass movements. There are many and various proven methods and models (e.g. neural networks, logistic regression, heuristic methods) available to create such process-related (e.g. flat gravitational mass movements in soil) suszeptibility maps. But numerous national and international studies show a dependence of the suitability of a method on the quality of process data and parameter maps (f.e. Tilch & Schwarz 2011, Schwarz & Tilch 2011). In this case, it is important that also maps with detailed and process-oriented information on the process-relevant geosphere will be considered. One major disadvantage is that only occasionally area-wide process-relevant information exists. Similarly, in Austria often only soil maps for treeless areas are available. However, in almost all previous studies, randomly existing geological and geotechnical maps were used, which often have been specially adapted to the issues and objectives. This is one reason why very often conceptual soil maps must be derived from geological maps with only hard rock information, which often have a rather low quality. Based on these maps, for example, adjacent areas of different geological composition and process-relevant physical properties are razor sharp delineated, which in nature appears quite rarly. In order to obtain more realistic information about the spatial variability of the process-relevant geosphere (soil cover) and its physical properties, aerogeophysical measurements (electromagnetic, radiometric), carried out by helicopter, from different regions of Austria were interpreted. Previous studies show that, especially with radiometric measurements, the two-dimensional spatial variability of the nature of the process-relevant soil, close to the surface can be determined. In addition, the electromagnetic measurements are more important to obtain three-dimensional information of the deeper geological conditions and to improve the area-specific geological knowledge and understanding. The validation of these measurements is done with terrestrial geoelectrical measurements. So both aspects, radiometric and electromagnetic measurements, are important and subsequently, interpretation of the geophysical results can be used as the parameter maps in the modeling of more realistic susceptibility maps with respect to various processes. Within this presentation, results of geophysical measurements, the outcome and the derived parameter maps, as well as first process-oriented susceptibility maps in terms of gravitational soil mass movements will be presented. As an example results which were obtained with a heuristic method in an area in Vorarlberg (Western Austria) will be shown. References: Schwarz, L. & Tilch, N. (2011): Why are good process data so important for the modelling of landslide susceptibility maps?- EGU-Postersession "Landslide hazard and risk assessment, and landslide management" (NH 3.6), Vienna. [http://www.geologie.ac.at/fileadmin/user_upload/dokumente/pdf/poster/poster_2011_egu_schwarz_tilch_1.pdf] Tilch, N. & Schwarz, L. (2011): Spatial and scale-dependent variability in data quality and their influence on susceptibility maps for gravitational mass movements in soil, modelled by heuristic method.- EGU-Postersession "Landslide hazard and risk assessment, and landslide management" (NH 3.6); Vienna. [http://www.geologie.ac.at/fileadmin/user_upload/dokumente/pdf/poster/poster_2011_egu_tilch_schwarz.pdf

  5. Microphytobenthos primary production estimated by hyperspectral reflectance

    PubMed Central

    Jesus, Bruno; Barnett, Alexandre; Barillé, Laurent; Lavaud, Johann

    2018-01-01

    The use of remote sensing techniques allows monitoring of photosynthesis at the ecosystem level and improves our knowledge of plant primary productivity. The main objective of the current study was to develop a remote sensing based method to measure microphytobenthos (MPB) primary production from intertidal mudflats. This was achieved by coupling hyperspectral radiometry (reflectance, ρ and second derivative, δδ) and PAM-fluorometry (non-sequential light curves, NSLC) measurements. The latter allowed the estimation of primary production using a light use efficiency parameter (LUE) and electron transport rates (ETR) whereas ρ allowed to estimate pigment composition and optical absorption cross-section (a*). Five MPB species representative of the main growth forms: epipelic (benthic motile), epipsammic (benthic motile and non motile) and tychoplanktonic (temporarily resuspended in the water column) were submitted to increasing light intensities from dark to 1950 μmol photons.m-2.s-1. Different fluorescence patterns were observed for the three growth-forms and were linked to their xanthophyll cycle (de-epoxydation state). After spectral reflectance measurements, a* was retrieved using a radiative transfer model and several radiometric indices were tested for their capacity to predict LUE and ETR measured by PAM-fluorometry. Only one radiometric index was not species or growth-form specific, i.e. δδ496/508. This index was named MPBLUE and could be used to predict LUE and ETR. The applicability of this index was tested with simulated bands of a wide variety of hyperspectral sensors at spectral resolutions between 3 and 15 nm of Full Width at Half Maximum (FWHM). PMID:29758047

  6. Conjugate Cassegrain telescopes for thermal source FTIR spectral radiometric calibration

    NASA Astrophysics Data System (ADS)

    Wolk, Martin; McGillicuddy, Robert J.; Zurlinden, Joseph E.

    1998-08-01

    Two Cassegrain telescopes were constructed to function as sender and receiver for an FTIR spectrometer primarily for the purpose of obtaining spectral data for analysis of military night vision emission targets, and spectral calibration of external variable temperature thermal radiation sources, utilizing freezing-point type blackbodies for primary radiation temperature standards. The sender and receiver telescopes, F/7 and F/5, respectively, each employ 0.30 m (12 in) diameter primary and 0.15 m (6 in) diameter secondary, protected Ag coated Zerodur mirrors. In operation, a thermal target image formed by the sender, whose optical axis is aligned with that of the receiver and spectrometer, is transmitted to and brought to a focus at the spectrometer entrance aperture by the receiver telescope. With (lambda) /8 p-v optical surface accuracy at 633 nm, telescope system tests indicate near diffraction- limited performance in the visible, and 2.81 mrad (full) FOV with further reduction achieved with field stops. Wavelength range capability of the commercially available FTIR instrument employed is approximately 0.22 micrometers (55000 cm-1) to 22 micrometers (450 cm-1) with wavenumber resolution of about 0.013 cm-1 in the IR to 0.769 micrometers (13000 cm-1). In this paper, the techniques and tests employed for the telescope mirror construction are described. An innovative technique for secondary alignment for Hindle's tests of a Cassegrain utilizing a He-Ne laser is presented. Telescope mountings for positioning and alignment with the FTIR are briefly discussed, as well as radiometric and calibration parameters for the integrated system.

  7. Sixteen Years of Terra MODIS On-Orbit Operation, Calibration, and Performance

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Angal, A.; Wu, A.; Link, D.; Geng, X.; Barnes, W.; Solomonson, V.

    2016-01-01

    Terra MODIS has successfully operated for more than 16 years since its launch in December 1999. From its observations, many science data products have been generated in support of a broad range of research activities and remote sensing applications. Terra MODIS has operated in a number of configurations and experienced a few anomalies, including spacecraft and instrument related events. MODIS collects data in 36 spectral bands that are calibrated regularly by a set of on-board calibrators for their radiometric, spectral, and spatial performance. Periodic lunar observations and long-term radiometric trending over well-characterized ground targets are also used to support sensor on-orbit calibration. Dedicated efforts made by the MODIS Characterization Support Team (MCST) and continuing support from the MODIS Science Team have contributed to the mission success, enabling well-calibrated data products to be continuously generated and routinely delivered to users worldwide. This paper presents an overview of Terra MODIS mission operations, calibration activities, and instrument performance of the past 16 years. It illustrates and describes the results of key sensor performance parameters derived from on-orbit calibration and characterization, such as signal-to-noise ratio (SNR), noise equivalent temperature difference (NEdT), solar diffuser (SD) degradation, changes in sensor responses, center wavelengths, and band-to-band registration (BBR). Also discussed in this paper are the calibration approaches and strategies developed and implemented in support of MODIS Level 1B data production and re-processing, major challenging issues, and lessons learned. (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  8. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  9. Absolute Radiometric Calibration of Narrow-Swath Imaging Sensors with Reference to Non-Coincident Wide-Swath Sensors

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Thome, Kurtis; Lockwood, Ronald

    2012-01-01

    An inter-calibration method is developed to provide absolute radiometric calibration of narrow-swath imaging sensors with reference to non-coincident wide-swath sensors. The method predicts at-sensor radiance using non-coincident imagery from the reference sensor and knowledge of spectral reflectance of the test site. The imagery of the reference sensor is restricted to acquisitions that provide similar view and solar illumination geometry to reduce uncertainties due to directional reflectance effects. Spectral reflectance of the test site is found with a simple iterative radiative transfer method using radiance values of a well-understood wide-swath sensor and spectral shape information based on historical ground-based measurements. At-sensor radiance is calculated for the narrow-swath sensor using this spectral reflectance and atmospheric parameters that are also based on historical in situ measurements. Results of the inter-calibration method show agreement on the 2 5 percent level in most spectral regions with the vicarious calibration technique relying on coincident ground-based measurements referred to as the reflectance-based approach. While the variability of the inter-calibration method based on non-coincident image pairs is significantly larger, results are consistent with techniques relying on in situ measurements. The method is also insensitive to spectral differences between the sensors by transferring to surface spectral reflectance prior to prediction of at-sensor radiance. The utility of this inter-calibration method is made clear by its flexibility to utilize image pairings with acquisition dates differing in excess of 30 days allowing frequent absolute calibration comparisons between wide- and narrow-swath sensors.

  10. S-NPP ATMS Instrument Prelaunch and On-Orbit Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Lyu, Cheng-Hsuan; Anderson, Kent; Leslie, Vincent R.; Blackwell, William J.

    2014-01-01

    The first of a new generation of microwave sounders was launched aboard the Suomi-National Polar-Orbiting Partnership satellite in October 2011. The Advanced Technology Microwave Sounder (ATMS) combines the capabilities and channel sets of three predecessor sounders into a single package to provide information on the atmospheric vertical temperature and moisture profiles that are the most critical observations needed for numerical weather forecast models. Enhancements include size/mass/power approximately one third of the previous total, three new sounding channels, the first space-based, Nyquist-sampled cross-track microwave temperature soundings for improved fusion with infrared soundings, plus improved temperature control and reliability. This paper describes the ATMS characteristics versus its predecessor, the advanced microwave sounding unit (AMSU), and presents the first comprehensive evaluation of key prelaunch and on-orbit performance parameters. Two-year on-orbit performance shows that the ATMS has maintained very stable radiometric sensitivity, in agreement with prelaunch data, meeting requirements for all channels (with margins of 40% for channels 1-15), and improvements over AMSU-A when processed for equivalent spatial resolution. The radiometric accuracy, determined by analysis from ground test measurements, and using on-orbit instrument temperatures, also shows large margins relative to requirements (specified as <1.0K for channels 1, 2, and 16-22 and <0.75 K for channels 3-15). A thorough evaluation of the performance of ATMS is especially important for this first proto-flight model unit of what will eventually be a series of ATMS sensors providing operational sounding capability for the U.S. and its international partners well into the next decade.

  11. Virtual and remote experiments for radiometric and photometric measurements

    NASA Astrophysics Data System (ADS)

    Thoms, L.-J.; Girwidz, R.

    2017-09-01

    The analysis of spectra is fundamental to our modern understanding of wave optics and colour perception. Since spectrometers are expensive, and accurate calibration is necessary to achieve high quality spectra, we developed a remote lab on optical spectrometry. With this tool, students can carry out real experiments over the Internet. In this article the pros and cons of remote labs, the physical background of optical spectrometry, and the development and use of a radiometric remote lab for higher education are discussed. The remote lab is freely accessible to everyone at http://virtualremotelab.net.

  12. Radiometric calibration of SPOT 2 HRV - A comparison of three methods

    NASA Technical Reports Server (NTRS)

    Biggar, Stuart F.; Dinguirard, Magdeleine C.; Gellman, David I.; Henry, Patrice; Jackson, Ray D.; Moran, M. S.; Slater, Philip N.

    1991-01-01

    Three methods for determining an absolute radiometric calibration of a spacecraft optical sensor are compared. They are the well-known reflectance-based and radiance-based methods and a new method based on measurements of the ratio of diffuse-to-global irradiance at the ground. The latter will be described in detail and the comparison of the three approaches will be made with reference to the SPOT-2 HRV cameras for a field campaign 1990-06-19 through 1990-06-24 at the White Sands Missile Range in New Mexico.

  13. Radiometric analysis of photographic data by the effective exposure method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantine, B J

    1972-04-01

    The effective exposure method provides for radiometric analysis of photographic data. A three-dimensional model, where density is a function of energy and wavelength, is postulated to represent the film response function. Calibration exposures serve to eliminate the other factors which affect image density. The effective exposure causing an image can be determined by comparing the image density with that of a calibration exposure. If the relative spectral distribution of the source is known, irradiance and/or radiance can be unfolded from the effective exposure expression.

  14. Impact of vane size and separation on radiometric forces for microactuation

    NASA Astrophysics Data System (ADS)

    Gimelshein, Natalia; Gimelshein, Sergey; Ketsdever, Andrew; Selden, Nathaniel

    2011-04-01

    A kinetic approach is used to study the feasibility of increasing the efficiency of microactuators that use radiometric force through etching holes in a single radiometer vane. It has been shown that a radiometer that consists of small vanes is capable of producing at least an order of magnitude larger force than a single-vane radiometer that takes up the same area. The optimum gap between the vanes is found to be slightly smaller than the vane size, with the optimum Knudsen number of about 0.05 based on the vane height.

  15. Apparatus description and data analysis of a radiometric technique for measurements of spectral and total normal emittance

    NASA Technical Reports Server (NTRS)

    Edwards, S. F.; Kantsios, A. G.; Voros, J. P.; Stewart, W. F.

    1975-01-01

    The development of a radiometric technique for determining the spectral and total normal emittance of materials heated to temperatures of 800, 1100, and 1300 K by direct comparison with National Bureau of Standards (NBS) reference specimens is discussed. Emittances are measured over the spectral range of 1 to 15 microns and are statistically compared with NBS reference specimens. Results are included for NBS reference specimens, Rene 41, alundum, zirconia, AISI type 321 stainless steel, nickel 201, and a space-shuttle reusable surface insulation.

  16. Scale - dependent effects on the surface energy fluxes modelling in Iberian oak-savanna (dehesa) using the Two-Source Energy Balance (TSEB)

    NASA Astrophysics Data System (ADS)

    Andreu, Ana; Nieto, Hector; Gómez-Giráldez, Pedro; González-Dugo, Maria P.

    2017-04-01

    Iberian semi-arid oak-savannas (dehesas) are complex ecosystems where bare soil and different layers of vegetation (grass/scrubs/trees) are distributed following heterogeneous patterns. An assumption of the two source energy balance models is that the effective source/sink for turbulent flux exchange at the surface(canopy/soil) is described by a bulk radiometric surface temperature (TRAD) and resistance. Therefore, the agreement of the TRAD used as an input to these models, with the "bulk" concept (determined by the spatial resolution), will influence the final energy fluxes estimations. The representativeness of the field-ground measurements, the spatial resolution of sensors, the averaging and the up-scaling of TRAD and the ecosystem vegetation parameters, will be crucial for the precision of the results, more than in homogeneous landscapes. The aim of this study is to analyze the scale-effects derived from TSEB application, comparing the observed energy fluxes and the estimated ones obtained from multiple TRAD data sources of different nature: tree/grass/soil ground-based observations, tower footprint, hyperspectral reflectance imagery acquired with an airborne platform, medium (Landsat) and low spatial resolution satellite data (Sentinel 3, MODIS), and how the up-scaling of the vegetation structural characteristics contribute to the discrepancies. The study area selected for this purpose is a dehesa site (Santa Clotilde, Cordoba), which present canopy mosaics (oak, annual grasses and bushes) differing in phenology, physiology and functioning, and bare soil, all of them influencing the turbulent and radiative exchanges.

  17. Characterizing riverbed sediment using high-frequency acoustics 1: spectral properties of scattering

    USGS Publications Warehouse

    Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.

    2014-01-01

    Bed-sediment classification using high-frequency hydro-acoustic instruments is challenging when sediments are spatially heterogeneous, which is often the case in rivers. The use of acoustic backscatter to classify sediments is an attractive alternative to analysis of topography because it is potentially sensitive to grain-scale roughness. Here, a new method is presented which uses high-frequency acoustic backscatter from multibeam sonar to classify heterogeneous riverbed sediments by type (sand, gravel,rock) continuously in space and at small spatial resolution. In this, the first of a pair of papers that examine the scattering signatures from a heterogeneous riverbed, methods are presented to construct spatially explicit maps of spectral properties from geo-referenced point clouds of geometrically and radiometrically corrected echoes. Backscatter power spectra are computed to produce scale and amplitude metrics that collectively characterize the length scales of stochastic measures of riverbed scattering, termed ‘stochastic geometries’. Backscatter aggregated over small spatial scales have spectra that obey a power-law. This apparently self-affine behavior could instead arise from morphological- and grain-scale roughnesses over multiple overlapping scales, or riverbed scattering being transitional between Rayleigh and geometric regimes. Relationships exist between stochastic geometries of backscatter and areas of rough and smooth sediments. However, no one parameter can uniquely characterize a particular substrate, nor definitively separate the relative contributions of roughness and acoustic impedance (hardness). Combinations of spectral quantities do, however, have the potential to delineate riverbed sediment patchiness, in a data-driven approach comparing backscatter with bed-sediment observations (which is the subject of part two of this manuscript).

  18. Model-based quantification of image quality

    NASA Technical Reports Server (NTRS)

    Hazra, Rajeeb; Miller, Keith W.; Park, Stephen K.

    1989-01-01

    In 1982, Park and Schowengerdt published an end-to-end analysis of a digital imaging system quantifying three principal degradation components: (1) image blur - blurring caused by the acquisition system, (2) aliasing - caused by insufficient sampling, and (3) reconstruction blur - blurring caused by the imperfect interpolative reconstruction. This analysis, which measures degradation as the square of the radiometric error, includes the sample-scene phase as an explicit random parameter and characterizes the image degradation caused by imperfect acquisition and reconstruction together with the effects of undersampling and random sample-scene phases. In a recent paper Mitchell and Netravelli displayed the visual effects of the above mentioned degradations and presented subjective analysis about their relative importance in determining image quality. The primary aim of the research is to use the analysis of Park and Schowengerdt to correlate their mathematical criteria for measuring image degradations with subjective visual criteria. Insight gained from this research can be exploited in the end-to-end design of optical systems, so that system parameters (transfer functions of the acquisition and display systems) can be designed relative to each other, to obtain the best possible results using quantitative measurements.

  19. Optical and microphysical parameters of dense stratocumulus clouds during mission 206 of EUCREX '94 as retrieved from measurements made with the airborne lidar LEANDRE 1

    NASA Astrophysics Data System (ADS)

    Pelon, J.; Flamant, C.; Trouillet, V.; Flamant, P. H.

    Cloud parameters derived from measurements performed with the airborne backscatter lidar LEANDRE 1 during mission 206 of the EUCREX '94 campaign are reported. A new method has been developed to retrieve the extinction coefficient at the top of the dense stratocumulus deck under scrutiny during this mission. The largest extinction values are found to be related to the highest cloud top altitude revealing the small-scale structure of vertical motions within the stratocumulus field. Cloud optical depth (COD) is estimated from extinction retrievals, as well as cloud top and cloud base altitude using nadir and zenith lidar observations, respectively. Lidar-derived CODs are compared with CODs deduced from radiometric measurements made onboard the French research aircraft Avion de Recherche Atmosphérique et de Télédétection (ARAT/F27). A fair agreement is obtained (within 20%) for COD's larger than 10. Our results show the potential of lidar measurements to analyze cloud properties at optical depths larger than 5.

  20. Remote sensing of wetland parameters related to carbon cycling

    NASA Technical Reports Server (NTRS)

    Bartlett, David S.; Johnson, Robert W.

    1985-01-01

    Measurement of the rates of important biogeochemical fluxes on regional or global scales is vital to understanding the geochemical and climatic consequences of natural biospheric processes and of human intervention in those processes. Remote data gathering and interpretation techniques were used to examine important cycling processes taking place in wetlands over large geographic expanses. Large area estimation of vegetative biomass and productivity depends upon accurate, consistent measurements of canopy spectral reflectance and upon wide applicability of algorithms relating reflectance to biometric parameters. Results of the use of airborne multispectral scanner data to map above-ground biomass in a Delaware salt marsh are shown. The mapping uses an effective algorithm linking biomass to measured spectral reflectance and a means to correct the scanner data for large variations in the angle of observation of the canopy. The consistency of radiometric biomass algorithms for marsh grass when they are applied over large latitudinal and tidal range gradients were also examined. Results of a 1 year study of methane emissions from tidal wetlands along a salinity gradient show marked effects of temperature, season, and pore-water chemistry in mediating flux to the atmosphere.

  1. Numerical and Experimental Thermal Responses of Single-cell and Differential Calorimeters: from Out-of-Pile Calibration to Irradiation Campaigns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brun, J.; Reynard-Carette, C.; Carette, M.

    2015-07-01

    The nuclear radiation energy deposition rate (usually expressed in W.g{sup -1}) is a key parameter for the thermal design of experiments, on materials and nuclear fuel, carried out in experimental channels of irradiation reactors such as the French OSIRIS reactor in Saclay or inside the Polish MARIA reactor. In particular the quantification of the nuclear heating allows to predicting the heat and thermal conditions induced in the irradiation devices or/and structural materials. Various sensors are used to quantify this parameter, in particular radiometric calorimeters also called in-pile calorimeters. Two main kinds of in-pile calorimeter exist with in particular specific designs:more » single-cell calorimeter and differential calorimeter. The present work focuses on these two calorimeter kinds from their out-of-pile calibration step (transient and steady experiments respectively) to comparison between numerical and experimental results obtained from two irradiation campaigns (MARIA reactor and OSIRIS reactor respectively). The main aim of this paper is to propose a steady numerical approach to estimate the single-cell calorimeter response under irradiation conditions. (authors)« less

  2. Near-surface Thermal Infrared Imaging of a Mixed Forest

    NASA Astrophysics Data System (ADS)

    Aubrecht, D. M.; Helliker, B. R.; Richardson, A. D.

    2014-12-01

    Measurement of an organism's temperature is of basic physiological importance and therefore necessary for ecosystem modeling, yet most models derive leaf temperature from energy balance arguments or assume it is equal to air temperature. This is because continuous, direct measurement of leaf temperature outside of a controlled environment is difficult and rarely done. Of even greater challenge is measuring leaf temperature with the resolution required to understand the underlying energy balance and regulation of plant processes. To measure leaf temperature through the year, we have mounted a high-resolution, thermal infrared camera overlooking the canopy of a temperate deciduous forest. The camera is co-located with an eddy covariance system and a suite of radiometric sensors. Our camera measures longwave thermal infrared (λ = 7.5-14 microns) using a microbolometer array. Suspended in the canopy within the camera FOV is a matte black copper plate instrumented with fine wire thermocouples that acts as a thermal reference for each image. In this presentation, I will discuss the challenges of continuous, long-term field operation of the camera, as well as measurement sensitivity to physical and environmental parameters. Based on this analysis, I will show that the uncertainties in converting radiometric signal to leaf temperature are well constrained. The key parameter for minimizing uncertainty is the emissivity of the objects being imaged: measuring the emissivity to within 0.01 enables leaf temperature to be calculated to within 0.5°C. Finally, I will present differences in leaf temperature observed amongst species. From our two-year record, we characterize high frequency, daily, and seasonal thermal signatures of leaves and crowns, in relation to environmental conditions. Our images are taken with sufficient spatial and temporal resolution to quantify the preferential heating of sunlit portions of the canopy and the cooling effect of wind gusts. Future work will be focused on correlations between hyperspectral vegetation indices, fluxes, and thermal signatures to characterize vegetation stress. As water stress increases, causing photosynthesis and transpiration to shutdown, heat fluxes, leaf temperature, and narrow band vegetation indices should report signatures of the affected processes.

  3. Simultaneous inversion of multiple land surface parameters from MODIS optical-thermal observations

    NASA Astrophysics Data System (ADS)

    Ma, Han; Liang, Shunlin; Xiao, Zhiqiang; Shi, Hanyu

    2017-06-01

    Land surface parameters from remote sensing observations are critical in monitoring and modeling of global climate change and biogeochemical cycles. Current methods for estimating land surface variables usually focus on individual parameters separately even from the same satellite observations, resulting in inconsistent products. Moreover, no efforts have been made to generate global products from integrated observations from the optical to Thermal InfraRed (TIR) spectrum. Particularly, Middle InfraRed (MIR) observations have received little attention due to the complexity of the radiometric signal, which contains both reflected and emitted radiation. In this paper, we propose a unified algorithm for simultaneously retrieving six land surface parameters - Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), land surface albedo, Land Surface Emissivity (LSE), Land Surface Temperature (LST), and Upwelling Longwave radiation (LWUP) by exploiting MODIS visible-to-TIR observations. We incorporate a unified physical radiative transfer model into a data assimilation framework. The MODIS visible-to-TIR time series datasets include the daily surface reflectance product and MIR-to-TIR surface radiance, which are atmospherically corrected from the MODIS data using the Moderate Resolution Transmittance program (MODTRAN, ver. 5.0). LAI was first estimated using a data assimilation method that combines MODIS daily reflectance data and a LAI phenology model, and then the LAI was input to the unified radiative transfer model to simulate spectral surface reflectance and surface emissivity for calculating surface broadband albedo and emissivity, and FAPAR. LST was estimated from the MIR-TIR surface radiance data and the simulated emissivity, using an iterative optimization procedure. Lastly, LWUP was estimated using the LST and surface emissivity. The retrieved six parameters were extensively validated across six representative sites with different biome types, and compared with MODIS, GLASS, and GlobAlbedo land surface products. The results demonstrate that the unified inversion algorithm can retrieve temporally complete and physically consistent land surface parameters, and provides more accurate estimates of surface albedo, LST, and LWUP than existing products, with R2 values of 0.93 and 0.62, RMSE of 0.029 and 0.037, and BIAS values of 0.016 and 0.012 for the retrieved and MODIS albedo products, respectively, compared with field albedo measurements; R2 values of 0.95 and 0.93, RMSE of 2.7 and 4.2 K, and BIAS values of -0.6 and -2.7 K for the retrieved and MODIS LST products, respectively, compared with field LST measurements; and R2 values of 0.93 and 0.94, RMSE of 18.2 and 22.8 W/m2, and BIAS values of -2.7 and -14.6 W/m2 for the retrieved and MODIS LWUP products, respectively, compared with field LWUP measurements.

  4. Diurnal remote sensing of coastal/oceanic waters: a radiometric analysis for Geostationary Coastal and Air Pollution Events.

    PubMed

    Pahlevan, Nima; Lee, Zhongping; Hu, Chuanmin; Schott, John R

    2014-02-01

    Optical remote sensing systems aboard geostationary platforms can provide high-frequency observations of bio-optical properties in dynamical coastal/oceanic waters. From the end-user standpoint, it is recognized that the fidelity of daily science products relies heavily on the radiometric sensitivity/performance of the imaging system. This study aims to determine the theoretical detection limits for bio-optical properties observed diurnally from a geostationary orbit. The analysis is based upon coupled radiative transfer simulations and the minimum radiometric requirements defined for the GEOstationary Coastal and Air Pollution Events (GEO-CAPE) mission. The diurnal detection limits are found for the optically active constituents of water, including near-surface concentrations of chlorophyll-a (CHL) and total suspended solids (TSS), and the absorption of colored dissolved organic matter (aCDOM). The diurnal top-of-atmosphere radiance (Lt) is modeled for several locations across the field of regard (FOR) to investigate the radiometric sensitivity at different imaging geometries. It is found that, in oceanic waters (CHL=0.07  mg/m3), detecting changes smaller than 0.01  mg/m3 in CHL is feasible for all locations and hours except for late afternoon observations on the edge of the FOR. For more trophic/turbid waters (0.6

  5. Absolute Radiometric Calibration of the GÖKTÜRK-2 Satellite Sensor Using Tuz GÖLÜ (landnet Site) from Ndvi Perspective

    NASA Astrophysics Data System (ADS)

    Sakarya, Ufuk; Hakkı Demirhan, İsmail; Seda Deveci, Hüsne; Teke, Mustafa; Demirkesen, Can; Küpçü, Ramazan; Feray Öztoprak, A.; Efendioğlu, Mehmet; Fehmi Şimşek, F.; Berke, Erdinç; Zübeyde Gürbüz, Sevgi

    2016-06-01

    TÜBİTAK UZAY has conducted a research study on the use of space-based satellite resources for several aspects of agriculture. Especially, there are two precision agriculture related projects: HASSAS (Widespread application of sustainable precision agriculture practices in Southeastern Anatolia Project Region (GAP) Project) and AKTAR (Smart Agriculture Feasibility Project). The HASSAS project aims to study development of precision agriculture practice in GAP region. Multi-spectral satellite imagery and aerial hyperspectral data along with ground measurements was collected to analyze data in an information system. AKTAR aims to develop models for irrigation, fertilization and spectral signatures of crops in Inner Anatolia. By the end of the project precision agriculture practices to control irrigation, fertilization, pesticide and estimation of crop yield will be developed. Analyzing the phenology of crops using NDVI is critical for the projects. For this reason, absolute radiometric calibration of the Red and NIR bands in space-based satellite sensors is an important issue. The Göktürk-2 satellite is an earth observation satellite which was designed and built in Turkey and was launched in 2012. The Göktürk-2 satellite sensor has a resolution 2.5 meters in panchromatic and 5 meters in R/G/B/NIR bands. The absolute radiometric calibration of the Göktürk-2 satellite sensor was performed via the ground-based measurements - spectra-radiometer, sun photometer, and meteorological station- in Tuz Gölü cal/val site in 2015. In this paper, the first ground-based absolute radiometric calibration results of the Göktürk-2 satellite sensor using Tuz Gölü is demonstrated. The absolute radiometric calibration results of this paper are compared with the published cross-calibration results of the Göktürk-2 satellite sensor utilizing Landsat 8 imagery. According to the experimental comparison results, the Göktürk-2 satellite sensor coefficients for red and NIR bands estimated in this work sustained to agree within 2% of calibration coefficients estimated in the cross-calibration results.

  6. Dating human skeletal remains using 90Sr and 210Pb: case studies.

    PubMed

    Schrag, Bettina; Uldin, Tanya; Mangin, Patrice; Bochud, François; Froidevaux, Pascal

    2014-01-01

    In legal medicine, the post mortem interval (PMI) of interest covers the last 50 years. When only human skeletal remains are found, determining the PMI currently relies mostly on the experience of the forensic anthropologist, with few techniques available to help. Recently, several radiometric methods have been proposed to reveal PMI. For instance, (14)C and (90)Sr bomb pulse dating covers the last 60 years and give reliable PMI when teeth or bones are available. (232)Th series dating has also been proposed but requires a large amount of bones. In addition, (210)Pb dating is promising but is submitted to diagenesis and individual habits like smoking that must be handled carefully. Here we determine PMI on 29 cases of forensic interest using (90)Sr bomb pulse. In 12 cases, (210)Pb dating was added to narrow the PMI interval. In addition, anthropological investigations were carried out on 15 cases to confront anthropological expertise to the radiometric method. Results show that 10 of the 29 cases can be discarded as having no forensic interest (PMI>50 years) based only on the (90)Sr bomb pulse dating. For 10 other cases, the additional (210)Pb dating restricts the PMI uncertainty to a few years. In 15 cases, anthropological investigations corroborate the radiometric PMI. This study also shows that diagenesis and inter-individual difference in radionuclide uptake represent the main sources of uncertainty in the PMI determination using radiometric methods. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  7. BOREAS TE-18, 30-m, Radiometrically Rectified Landsat TM Imagery

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Knapp, David

    2000-01-01

    The BOREAS TE-18 team used a radiometric rectification process to produce standardized DN values for a series of Landsat TM images of the BOREAS SSA and NSA in order to compare images that were collected under different atmospheric conditions. The images for each study area were referenced to an image that had very clear atmospheric qualities. The reference image for the SSA was collected on 02-Sep-1994, while the reference image for the NSA was collected on 21-Jun-1995. the 23 rectified images cover the period of 07-Jul-1985 to 18 Sep-1994 in the SSA and from 22-Jun-1984 to 09-Jun-1994 in the NSA. Each of the reference scenes had coincident atmospheric optical thickness measurements made by RSS-11. The radiometric rectification process is described in more detail by Hall et al. (199 1). The original Landsat TM data were received from CCRS for use in the BOREAS project. The data are stored in binary image-format files. Due to the nature of the radiometric rectification process and copyright issues, these full-resolution images may not be publicly distributed. However, a spatially degraded 60-m resolution version of the images is available on the BOREAS CD-ROM series. See Sections 15 and 16 for information about how to possibly acquire the full resolution data. Information about the full-resolution images is provided in an inventory listing on the CD-ROMs. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).

  8. Radiometric calibration of the Landsat MSS sensor series

    USGS Publications Warehouse

    Helder, Dennis L.; Karki, Sadhana; Bhatt, Rajendra; Micijevik, Esad; Aaron, David; Jasinski, Benjamin

    2012-01-01

    Multispectral remote sensing of the Earth using Landsat sensors was ushered on July 23, 1972, with the launch of Landsat-1. Following that success, four more Landsat satellites were launched, and each of these carried the Multispectral Scanner System (MSS). These five sensors provided the only consistent multispectral space-based imagery of the Earth's surface from 1972 to 1982. This work focuses on developing both a consistent and absolute radiometric calibration of this sensor system. Cross-calibration of the MSS was performed through the use of pseudoinvariant calibration sites (PICSs). Since these sites have been shown to be stable for long periods of time, changes in MSS observations of these sites were attributed to changes in the sensors themselves. In addition, simultaneous data collections were available for some MSS sensor pairs, and these were also used for cross-calibration. Results indicated substantial differences existed between instruments, up to 16%, and these were reduced to 5% or less across all MSS sensors and bands. Lastly, this paper takes the calibration through the final step and places the MSS sensors on an absolute radiometric scale. The methodology used to achieve this was based on simultaneous data collections by the Landsat-5 MSS and Thematic Mapper (TM) instruments. Through analysis of image data from a PICS location and through compensating for the spectral differences between the two instruments, the Landsat-5 MSS sensor was placed on an absolute radiometric scale based on the Landsat-5 TM sensor. Uncertainties associated with this calibration are considered to be less than 5%.

  9. Inter-laboratory comparison of radiometric culture for Mycobacterium avium subsp. paratuberculosis using raw milk from known infected herds and individual dairy cattle in Victoria.

    PubMed

    Ridge, S E; Andreata, S; Jones, K; Cantlon, K; Francis, B; Florisson, N; Gwozdz, J

    2010-07-01

    To compare the results of radiometric culture conducted in three Australian laboratories for Mycobacterium avium subsp. paratuberculosis (Mptb) using bulk vat and individual animal milk samples. Milk samples were collected from 15 cows exhibiting clinical signs of Johne's disease, and subsequently confirmed as infected with Mptb, and from the bulk milk vats on 91 farms running herds known to be infected with Mptb. Each milk sample was divided into three equivalent samples and one of each of the replicates was forwarded to the three participating laboratories. The identity and nature of the samples was protected from the study collaborators. The laboratories processed the samples and undertook radiometric culture for Mptb using their standard method. Results of testing were provided to the principal investigator for collation and analysis. In total, 2 (2.2%) of 91 vat-milk samples and 8 (53.3%) of 15 individual cows' milk samples returned positive radiometric milk culture results. Only one sample, from a clinical case of Johne's disease, was identified as positive by more than one laboratory. There were differences in the absolute frequency with which Mptb was identified in the milk samples by the collaborating laboratories. Mptb was cultured from a very small percentage of Australian raw bulk milk samples sourced from known infected herds. By contrast, Mptb was successfully cultured from half of the milk samples collected from clinically affected cows. There was no statistical difference between laboratories in the proportion of vat samples or individual animal milk samples in which Mptb was detected.

  10. The influence of tissue layering on microwave thermographic measurements.

    PubMed

    Hawley, M S; Conway, J; Anderson, A P; Cudd, P A

    1988-01-01

    Non-invasive thermal imaging and temperature measurement by microwave radiometry has been investigated for medical diagnostic applications and monitoring hyperthermia treatment of cancer, in the context of heterogeneous body structure. The temperature measured by a radiometer is a function of the emission and propagation of microwaves in tissue and the receiving characteristics of the radiometric probe. Propagation of microwaves in lossy media was analysed by a spectral diffraction approach. Extension of this technique via a cascade transmission line model provides an efficient algorithm for predicting the field patterns of aperture antennas contacting multi-layered tissue. A coherent radiative transfer analysis was used to relate the field pattern of a radiating antenna to its receiving characteristics when used as a radiometer probe, leading to a method for simulating radiometric data. Measurements and simulations were used to assess the effect of overlying fat layers upon radiometer response to temperature hot spots in muscle-type media. Results suggest that dielectric layering in tissue greatly influences measured temperatures and should be accounted for in the interpretation of radiometric data.

  11. Photometric stability of the lunar surface

    USGS Publications Warehouse

    Kieffer, H.H.

    1997-01-01

    The rate at which cratering events currently occur on the Moon is considered in light of their influence on the use of the Moon as a radiometric standard. The radiometric effect of small impact events is determined empirically from the study of Clementine images. Events that would change the integral brightness of the moon by 1% are expected once per 1.4 Gyr. Events that cause a 1% shift in one pixel for low Earth-orbiting instruments with a 1-km nadir field of view are expected approximately once each 43 Myr. Events discernible at 1% radiometric resolution with a 5 arc-sec telescope resolution correspond to crater diameters of approximately 210 m and are expected once every 200 years. These rates are uncertain by a factor of two. For a fixed illumination and observation geometry, the Moon can be considered photometrically stable to 1 ?? 10-8per annum for irradiance, and 1 ?? 10-7per annum for radiance at a resolution common for spacecraft imaging instruments, exceeding reasonable instrument goals by six orders of magnitude. ?? 1997 Academic Press.

  12. Imager-to-Radiometer In-flight Cross Calibration: RSP Radiometric Comparison with Airborne and Satellite Sensors

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Cairns, Brian; Wasilewski, Andrzej

    2016-01-01

    This work develops a method to compare the radiometric calibration between a radiometer and imagers hosted on aircraft and satellites. The radiometer is the airborne Research Scanning Polarimeter (RSP), which takes multi-angle, photo-polarimetric measurements in several spectral channels. The RSP measurements used in this work were coincident with measurements made by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), which was on the same aircraft. These airborne measurements were also coincident with an overpass of the Landsat 8 Operational Land Imager (OLI). First we compare the RSP and OLI radiance measurements to AVIRIS since the spectral response of the multispectral instruments can be used to synthesize a spectrally equivalent signal from the imaging spectrometer data. We then explore a method that uses AVIRIS as a transfer between RSP and OLI to show that radiometric traceability of a satellite-based imager can be used to calibrate a radiometer despite differences in spectral channel sensitivities. This calibration transfer shows agreement within the uncertainty of both the various instruments for most spectral channels.

  13. Empirical Corrections for MISR Calibration Temporal Trends, Point-Spread Function, Flat-Fielding, and Ghosting

    NASA Astrophysics Data System (ADS)

    Limbacher, J.; Kahn, R. A.

    2015-12-01

    MISR aerosol optical depth retrievals are fairly robust to small radiometric calibration artifacts, due to the multi-angle observations. However, even small errors in the MISR calibration, especially structured artifacts in the imagery, have a disproportionate effect on the retrieval of aerosol properties from these data. Using MODIS, POLDER-3, AERONET, MAN, and MISR lunar images, we diagnose and correct various calibration and radiometric artifacts found in the MISR radiance (Level 1) data, using empirical image analysis. The calibration artifacts include temporal trends in MISR top-of-atmosphere reflectance at relatively stable desert sites and flat-fielding artifacts detected by comparison to MODIS over bright, low-contrast scenes. The radiometric artifacts include ghosting (as compared to MODIS, POLDER-3, and forward model results) and point-spread function mischaracterization (using the MISR lunar data and MODIS). We minimize the artifacts to the extent possible by parametrically modeling the artifacts and then removing them from the radiance (reflectance) data. Validation is performed using non-training scenes (reflectance comparison), and also by using the MISR Research Aerosol retrieval algorithm results compared to MAN and AERONET.

  14. A Method to Estimate Uncertainty in Radiometric Measurement Using the Guide to the Expression of Uncertainty in Measurement (GUM) Method; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, A.; Sengupta, M.; Reda, I.

    Radiometric data with known and traceable uncertainty is essential for climate change studies to better understand cloud radiation interactions and the earth radiation budget. Further, adopting a known and traceable method of estimating uncertainty with respect to SI ensures that the uncertainty quoted for radiometric measurements can be compared based on documented methods of derivation.Therefore, statements about the overall measurement uncertainty can only be made on an individual basis, taking all relevant factors into account. This poster provides guidelines and recommended procedures for estimating the uncertainty in calibrations and measurements from radiometers. The approach follows the Guide to the Expressionmore » of Uncertainty in Measurement (GUM). derivation.Therefore, statements about the overall measurement uncertainty can only be made on an individual basis, taking all relevant factors into account. This poster provides guidelines and recommended procedures for estimating the uncertainty in calibrations and measurements from radiometers. The approach follows the Guide to the Expression of Uncertainty in Measurement (GUM).« less

  15. The moon as a radiometric reference source for on-orbit sensor stability calibration

    USGS Publications Warehouse

    Stone, T.C.

    2009-01-01

    The wealth of data generated by the world's Earth-observing satellites, now spanning decades, allows the construction of long-term climate records. A key consideration for detecting climate trends is precise quantification of temporal changes in sensor calibration on-orbit. For radiometer instruments in the solar reflectance wavelength range (near-UV to shortwave-IR), the Moon can be viewed as a solar diffuser with exceptional stability properties. A model for the lunar spectral irradiance that predicts the geometric variations in the Moon's brightness with ???1% precision has been developed at the U.S. Geological Survey in Flagstaff, AZ. Lunar model results corresponding to a series of Moon observations taken by an instrument can be used to stabilize sensor calibration with sub-percent per year precision, as demonstrated by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). The inherent stability of the Moon and the operational model to utilize the lunar irradiance quantity provide the Moon as a reference source for monitoring radiometric calibration in orbit. This represents an important capability for detecting terrestrial climate change from space-based radiometric measurements.

  16. RADIOACTIVE DISEQUILIBRIUM AND DYNAMIC OF NATURAL RADIONUCLIDES IN SOILS IN THE STATE OF PERNAMBUCO-BRAZIL.

    PubMed

    Dos Santos Júnior, José Araújo; Dos Santos Amaral, Romilton; do Nascimento Santos, Josineide Marques; da Silva, Arykerne Nascimento Casado; Rojas, Lino Angel Valcárcel; Milan, Marvic Ortueta; de Almeida Maciel Neto, José; Bezerra, Jairo Dias; Araújo, Eduardo Eudes Nóbrega de

    2018-06-15

    Environmental radioactivity studies have been allowed establishing radiometric patterns in several area of the earth's crust. The work was conducted through radiometric analyses of regions with high levels of radionuclides and others with no history of anomalies. The research allowed establishing the radiometric profile of soils in the state of Pernambuco, Brazil, using a gamma spectrometry system. The specific activities ranged from 16.5 to 287.5 Bq kg-1 for 238U, 2.0 to 191.7 Bq kg-1 for 226Ra, 1.3 to 281.4 Bq kg-1 for 232Th and from 5.0 to 2600.9 Bq kg-1 for 40K. The results showed areas with low levels of ionizing radiation. However, for 40K some points presented high values, although non-representative of the number of samples investigated. The 226Ra/238U and 232Th/238U ratios allowed to determine the radioactive imbalance condition and to obtain information about aspects of soil availability providing an assessment of the dynamics of these radionuclides.

  17. Novel image encryption algorithm based on multiple-parameter discrete fractional random transform

    NASA Astrophysics Data System (ADS)

    Zhou, Nanrun; Dong, Taiji; Wu, Jianhua

    2010-08-01

    A new method of digital image encryption is presented by utilizing a new multiple-parameter discrete fractional random transform. Image encryption and decryption are performed based on the index additivity and multiple parameters of the multiple-parameter fractional random transform. The plaintext and ciphertext are respectively in the spatial domain and in the fractional domain determined by the encryption keys. The proposed algorithm can resist statistic analyses effectively. The computer simulation results show that the proposed encryption algorithm is sensitive to the multiple keys, and that it has considerable robustness, noise immunity and security.

  18. Identifying and Characterizing Impact Melt Outcrops in the Nectaris Basin

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Lawerence, S. J.; Petro, N. E.; Bart, G. D.; Clegg-Watkins, R. N.; Denevi, B. W.; Ghent, R. R.; Klima, R. L.; Morgan, G. A.; Spudis, P. D.; hide

    2016-01-01

    The Nectaris Basin is an 820-km diameter, multi-ring impact basin located on the near side of the Moon. Nectaris is a defining stratigraphic horizon based on relationships between ejecta units, giving its name to the Nectarian epoch of lunar history. Lunar basin chronology based on higher resolution LRO imagery and topography, while assigning some important basins like Serenitatis to pre-Nectarian time, were generally consistent with those previously derived. Based on this stratigraphy, at least 11 large basins formed in the time between Nectaris and Imbrium. The absolute age of Nectaris, therefore, is a crucial marker in the lunar time-stratigraphic sequence for understanding the impact flux on the Moon, and by extension, the entire inner solar system. For several decades, workers have attempted to constrain the age of the Nectaris basin through radiometric dating of lunar samples. However, there is little agreement on which samples in our collection represent Nectaris, if any, and what the correct radiometric age of such samples is. The importance of the age of Nectaris goes far beyond assigning a stratigraphic marker to lunar chronology. Several dynamical models use Nectaris as their pin date, so that this date becomes crucial in understanding the time-correlated effects in the rest of the solar system. The importance of the Nectaris basin age, coupled with its nearside, mid-latitude location, make remnants of the impact-melt sheet an attractive target for a future mission, either for in-situ dating or for sample return. We have started exploring this possibility. We have begun a consortium data-analysis effort bringing multiple datasets and analysis methods to bear on these putative impact-melt deposits to characterize their extent, elemental composition and mineralogy, maturity and geologic setting, and to identify potential landing sites that meet both operational safety and science requirements.

  19. A Consistent EPIC Visible Channel Calibration Using VIIRS and MODIS as a Reference.

    NASA Astrophysics Data System (ADS)

    Haney, C.; Doelling, D. R.; Minnis, P.; Bhatt, R.; Scarino, B. R.; Gopalan, A.

    2017-12-01

    The Earth Polychromatic Imaging Camera (EPIC) aboard the Deep Space Climate Observatory (DSCOVR) satellite constantly images the sunlit disk of Earth from the Lagrange-1 (L1) point in 10 spectral channels spanning the UV, VIS, and NIR spectrums. Recently, the DSCOVR EPIC team has publicly released version 2 dataset, which has implemented improved navigation, stray-light correction, and flat-fielding of the CCD array. The EPIC 2-year data record must be well-calibrated for consistent cloud, aerosol, trace gas, land use and other retrievals. Because EPIC lacks onboard calibrators, the observations made by EPIC channels must be calibrated vicariously using the coincident measurements from radiometrically stable instruments that have onboard calibration systems. MODIS and VIIRS are best-suited instruments for this task as they contain similar spectral bands that are well-calibrated onboard using solar diffusers and lunar tracking. We have previously calibrated the EPIC version 1 dataset by using EPIC and VIIRS angularly matched radiance pairs over both all-sky ocean and deep convective clouds (DCC). We noted that the EPIC image required navigations adjustments, and that the EPIC stray-light correction provided an offset term closer to zero based on the linear regression of the EPIC and VIIRS ray-matched radiance pairs. We will evaluate the EPIC version 2 navigation and stray-light improvements using the same techniques. In addition, we will monitor the EPIC channel calibration over the two years for any temporal degradation or anomalous behavior. These two calibration methods will be further validated using desert and DCC invariant Earth targets. The radiometric characterization of the selected invariant targets is performed using multiple years of MODIS and VIIRS measurements. Results of these studies will be shown at the conference.

  20. Molluscan shell communities: a window into the ecological history of the northern Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Gallmetzer, Ivo; Haselmair, Alexandra; Tomasovych, Adam; Stachowitsch, Michael; Zuschin, Martin

    2015-04-01

    The historical ecology approach used in the present study sheds light on the younger ecological history of the northern Adriatic Sea, targeting the period of the last 500 to 1500 years. We focus on down-core changes in molluscan death assemblages, where differences between community structures serve as a proxy for ecological shifts over time. The northern Adriatic Sea, with its densely populated shoreline, is among the most degraded marine ecosystems worldwide and is therefore particularly suited to study ecosystem modification under human pressure. Multiple cores of 1.5 m length and diameters of 90 and 160 mm were taken at seven sampling stations throughout the northern Adriatic Sea, covering different sediment types, nutrient conditions and degrees of exploitation. For the mollusc analyses, the cores were sliced into smaller subsamples and analysed for species composition, abundance, taxonomic similarity, evidence for ecological interactions (i.e., frequencies of drilling predation) and taphonomic condition of shells. Sediment analyses include granulometry and radiometric sediment dating using Pb 210. Sediment age analysis revealed one-order-of-magnitude differences in sedimentation rates between stations (34 mm/yr at the Po delta, Italy, 1.5 mm/yr at Brijuni islands, Croatia). In total, 114 bivalve and 112 gastropod species were recorded. Bivalve assemblages showed significant interregional differences that are strongly correlated with sedimentation rates and sediment composition. Down-core changes in molluscan communities are conspicuous in all cores, particularly in the uppermost core sections. This information, together with radiometric shell dating for selected species, helps to specify the timing of major ecological changes in the past and define pristine benthic communities as references for future conservation and management efforts.

  1. A Consistent EPIC Visible Channel Calibration using VIIRS and MODIS as a Reference

    NASA Technical Reports Server (NTRS)

    Haney, C. O.; Doelling, D. R.; Minnis, P.; Bhatt, R.; Scarino, B. R.; Gopalan, A.

    2017-01-01

    The Earth Polychromatic Imaging Camera (EPIC) aboard the Deep Space Climate Observatory (DSCOVR) satellite constantly images the sunlit disk of Earth from the Lagrange-1 (L1) point in 10 spectral channels spanning the UV, VIS, and NIR spectrums. Recently, the DSCOVR EPIC team has publicly released version 2 dataset, which has implemented improved navigation, stray-light correction, and flat-fielding of the CCD array. The EPIC 2-year data record must be well-calibrated for consistent cloud, aerosol, trace gas, land use and other retrievals. Because EPIC lacks onboard calibrators, the observations made by EPIC channels must be calibrated vicariously using the coincident measurements from radiometrically stable instruments that have onboard calibration systems. MODIS and VIIRS are best-suited instruments for this task as they contain similar spectral bands that are well-calibrated onboard using solar diffusers and lunar tracking. We have previously calibrated the EPIC version 1 dataset by using EPIC and VIIRS angularly matched radiance pairs over both all-sky ocean and deep convective clouds (DCC). We noted that the EPIC image required navigations adjustments, and that the EPIC stray-light correction provided an offset term closer to zero based on the linear regression of the EPIC and VIIRS ray-matched radiance pairs. We will evaluate the EPIC version 2 navigation and stray-light improvements using the same techniques. In addition, we will monitor the EPIC channel calibration over the two years for any temporal degradation or anomalous behavior. These two calibration methods will be further validated using desert and DCC invariant Earth targets. The radiometric characterization of the selected invariant targets is performed using multiple years of MODIS and VIIRS measurements. Results of these studies will be shown at the conference.

  2. Radiometric liquid level gauge with linear-detection (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glaeser, M.; Emmelmann, K.P.

    1973-09-01

    A description is given of a radiometric liquid level gauge with linear detection. It consists of a set of radioactive sources (e.g., /sup 137/Cs) with quadratic graduation in their activities, of a scintillation counter with electronic back-up unit and of a slender tube. The tube, sources and scintillation counter form a compact snd easily transportsble liquid level gauge. It is-especially adapted for liquid level measurements in slender, difficulty accessible and opaque containers. The device supplements the different methods for liquid level measurement with a new variant which is adopted for many cases in practice. (auth)

  3. Radiometric calibration of Landsat Thematic Mapper multispectral images

    USGS Publications Warehouse

    Chavez, P.S.

    1989-01-01

    A main problem encountered in radiometric calibration of satellite image data is correcting for atmospheric effects. Without this correction, an image digital number (DN) cannot be converted to a surface reflectance value. In this paper the accuracy of a calibration procedure, which includes a correction for atmospheric scattering, is tested. Two simple methods, a stand-alone and an in situ sky radiance measurement technique, were used to derive the HAZE DN values for each of the six reflectance Thematic Mapper (TM) bands. The DNs of two Landsat TM images of Phoenix, Arizona were converted to surface reflectances. -from Author

  4. Radiometers Optimize Local Weather Prediction

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Radiometrics Corporation, headquartered in Boulder, Colorado, engaged in Small Business Innovation Research (SBIR) agreements with Glenn Research Center that resulted in a pencil-beam radiometer designed to detect supercooled liquid along flight paths -- a prime indicator of dangerous icing conditions. The company has brought to market a modular radiometer that resulted from the SBIR work. Radiometrics' radiometers are used around the world as key tools for detecting icing conditions near airports and for the prediction of weather conditions like fog and convective storms, which are known to produce hail, strong winds, flash floods, and tornadoes. They are also employed for oceanographic research and soil moisture studies.

  5. Analysis of radiometric signal in sedimentating suspension flow in open channel

    NASA Astrophysics Data System (ADS)

    Zych, Marcin; Hanus, Robert; Petryka, Leszek; Świsulski, Dariusz; Doktor, Marek; Mastej, Wojciech

    2015-05-01

    The article discusses issues related to the estimation of the sedimentating solid particles average flow velocity in an open channel using radiometric methods. Due to the composition of the compound, which formed water and diatomite, received data have a very weak signal to noise ratio. In the process analysis the known determining of the solid phase transportation time delay the classical cross-correlation function is the most reliable method. The use of advanced frequency analysis based on mutual spectral density function and wavelet transform of recorded signals allows a reduction of the noise contribution.

  6. Spectrally and Radiometrically Stable, Wideband, Onboard Calibration Source

    NASA Technical Reports Server (NTRS)

    Coles, James B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Porter, Michael D.; Green, Robert O.; Nolte, Scott H.; Hernandez, Marco A.; Knoll, Linley A.

    2013-01-01

    The Onboard Calibration (OBC) source incorporates a medical/scientific-grade halogen source with a precisely designed fiber coupling system, and a fiber-based intensity-monitoring feedback loop that results in radiometric and spectral stabilities to within less than 0.3 percent over a 15-hour period. The airborne imaging spectrometer systems developed at the Jet Propulsion Laboratory incorporate OBC sources to provide auxiliary in-use system calibration data. The use of the OBC source will provide a significant increase in the quantitative accuracy, reliability, and resulting utility of the spectral data collected from current and future imaging spectrometer instruments.

  7. Evaluation of spatial, radiometric and spectral Thematic Mapper performance for coastal studies

    NASA Technical Reports Server (NTRS)

    Klemas, V.; Ackleson, S. G.; Hardisky, M. A.

    1985-01-01

    On 31 March 1983, the University of Delaware's Center for Remote Sensing initiated a study to evaluate the spatial, radiometric and spectral performance of the LANDSAT Thematic Mapper for coastal and estuarine studies. The investigation was supported by Contract NAS5-27580 from the NASA Goddard Space Flight Center. The research was divided into three major subprojects: (1) a comparison of LANDSAT TM to MSS imagery for detecting submerged aquatic vegetation in Chesapeake Bay; (2) remote sensing of submerged aquatic vegetation - a radiative transfer approach; and (3) remote sensing of coastal wetland biomass using Thematic Mapper wavebands.

  8. Cropland measurement using Thematic Mapper data and radiometric model

    NASA Technical Reports Server (NTRS)

    Lyon, John G.; Khuwaiter, I. H. S.

    1989-01-01

    To halt erosion and desertification, it is necessary to quantify resources that are affected. Necessary information includes inventory of croplands and desert areas as they change over time. Several studies indicate the value of remote sensor data as input to inventories. In this study, the radiometric modeling of spectral characteristics of soil and vegetation provides the theoretical basis for the remote sensing approach. Use of Landsat Thematic Mapper images allows measurement of croplands in Saudi Arabia, demonstrating the capability of the approach. The inventory techniques and remote sensing approach presented are potentially useful in developing countries.

  9. Titan Density Reconstruction Using Radiometric and Cassini Attitude Control Flight Data

    NASA Technical Reports Server (NTRS)

    Andrade, Luis G., Jr.; Burk, Thomas A.

    2015-01-01

    This paper compares three different methods of Titan atmospheric density reconstruction for the Titan 87 Cassini flyby. T87 was a unique flyby that provided independent Doppler radiometric measurements on the ground throughout the flyby including at Titan closest approach. At the same time, the onboard accelerometer provided an independent estimate of atmospheric drag force and density during the flyby. These results are compared with the normal method of reconstructing atmospheric density using thruster on-time and angular momentum accumulation. Differences between the estimates are analyzed and a possible explanation for the differences is evaluated.

  10. A simple and effective radiometric correction method to improve landscape change detection across sensors and across time

    USGS Publications Warehouse

    Chen, X.; Vierling, Lee; Deering, D.

    2005-01-01

    Satellite data offer unrivaled utility in monitoring and quantifying large scale land cover change over time. Radiometric consistency among collocated multi-temporal imagery is difficult to maintain, however, due to variations in sensor characteristics, atmospheric conditions, solar angle, and sensor view angle that can obscure surface change detection. To detect accurate landscape change using multi-temporal images, we developed a variation of the pseudoinvariant feature (PIF) normalization scheme: the temporally invariant cluster (TIC) method. Image data were acquired on June 9, 1990 (Landsat 4), June 20, 2000 (Landsat 7), and August 26, 2001 (Landsat 7) to analyze boreal forests near the Siberian city of Krasnoyarsk using the normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and reduced simple ratio (RSR). The temporally invariant cluster (TIC) centers were identified via a point density map of collocated pixel VIs from the base image and the target image, and a normalization regression line was created to intersect all TIC centers. Target image VI values were then recalculated using the regression function so that these two images could be compared using the resulting common radiometric scale. We found that EVI was very indicative of vegetation structure because of its sensitivity to shadowing effects and could thus be used to separate conifer forests from deciduous forests and grass/crop lands. Conversely, because NDVI reduced the radiometric influence of shadow, it did not allow for distinctions among these vegetation types. After normalization, correlations of NDVI and EVI with forest leaf area index (LAI) field measurements combined for 2000 and 2001 were significantly improved; the r 2 values in these regressions rose from 0.49 to 0.69 and from 0.46 to 0.61, respectively. An EVI "cancellation effect" where EVI was positively related to understory greenness but negatively related to forest canopy coverage was evident across a post fire chronosequence with normalized data. These findings indicate that the TIC method provides a simple, effective and repeatable method to create radiometrically comparable data sets for remote detection of landscape change. Compared to some previous relative radiometric normalization methods, this new method does not require high level programming and statistical skills, yet remains sensitive to landscape changes occurring over seasonal and inter-annual time scales. In addition, the TIC method maintains sensitivity to subtle changes in vegetation phenology and enables normalization even when invariant features are rare. While this normalization method allowed detection of a range of land use, land cover, and phenological/biophysical changes in the Siberian boreal forest region studied here, it is necessary to further examine images representing a wide variety of ecoregions to thoroughly evaluate the TIC method against other normalization schemes. ?? 2005 Elsevier Inc. All rights reserved.

  11. Infrared fiber optic sensor for measurements of nonuniform temperature distributions

    NASA Astrophysics Data System (ADS)

    Belotserkovsky, Edward; Drizlikh, S.; Zur, Albert; Bar-Or, O.; Katzir, Abraham

    1992-04-01

    Infrared (IR) fiber optic radiometry of thermal surfaces offers several advantages over refractive optics radiometry. It does not need a direct line of sight to the measured thermal surface and combines high capability of monitoring small areas with high efficiency. These advantages of IR fibers are important in the control of nonuniform temperature distributions, in which the temperature of closely situated points differs considerably and a high spatial resolution is necessary. The theoretical and experimental transforming functions of the sensor during scanning of an area with a nonuniform temperature distribution were obtained and their dependence on the spacial location of the fiber and type of temperature distribution were analyzed. Parameters such as accuracy and precision were determined. The results suggest that IR fiber radiometric thermometry may be useful in medical applications such as laser surgery, hyperthermia, and hypothermia.

  12. Interdisciplinary research in global biogeochemical cycling Nitrous oxide in terrestrial ecosystems

    NASA Technical Reports Server (NTRS)

    Norman, S. D.; Peterson, D. L.

    1984-01-01

    NASA has begun an interdisciplinary research program to investigate various aspects of Global Biology and Global Habitability. An important element selected for the study of global phenomena is related to biogeochemical cycling. The studies involve a collaboration with recognized scientists in the areas of plant physiology, microbiology, nutrient cycling theory, and related areas. Selected subjects of study include nitrogen cycling dynamics in terrestrial ecosystems with special attention to biosphere/atmosphere interactions, and an identification of sensitive response variables which can be used in ecosystem models based on parameters derived from remotely sensed variables. A description is provided of the progress and findings over the past two years. Attention is given to the characteristics of nitrous oxide emissions, the approach followed in the investigations, the selection of study sites, radiometric measurements, and research in Sequoia.

  13. Performance and applications of a hypertemporal hyperspectral Fourier-transform infrared spectroradiometer

    NASA Astrophysics Data System (ADS)

    King, Bruce H.; Ellis, Thomas; Old, Tom E.

    2009-05-01

    A fast-scanning, high-resolution FTIR spectroradiometer has been designed and built for use in remote sensing, stand-off detection, and spectral-temporal characterization of fast, energetic infrared events. The instrument design uses a Michelson-type interferometer with a rotary modulator which is capable of continuous measurement of infrared spectra at a rate of 1000 scans per second with 4 cm-1 resolution in the 2 - 25 micron spectral range. Sensitivity, spectral accuracy, and radiometric precision are discussed along with specific design parameters. This instrument can be used for passive sensing as a stand-alone sensor, or for active sensing as a receiver when used in conjunction with a highenergy excitation source such as a laser. Applications include muzzle flash signature measurement, ordnance detonation characterization, missile plume identification, and rocket motor combustion diagnostics.

  14. A new radiometric unit of measure to characterize SWIR illumination

    NASA Astrophysics Data System (ADS)

    Richards, A.; Hübner, M.

    2017-05-01

    We propose a new radiometric unit of measure we call the `swux' to unambiguously characterize scene illumination in the SWIR spectral band between 0.8μm-1.8μm, where most of the ever-increasing numbers of deployed SWIR cameras (based on standard InGaAs focal plane arrays) are sensitive. Both military and surveillance applications in the SWIR currently suffer from a lack of a standardized SWIR radiometric unit of measure that can be used to definitively compare or predict SWIR camera performance with respect to SNR and range metrics. We propose a unit comparable to the photometric illuminance lux unit; see Ref. [1]. The lack of a SWIR radiometric unit becomes even more critical if one uses lux levels to describe SWIR sensor performance at twilight or even low light condition, since in clear, no-moon conditions in rural areas, the naturally-occurring SWIR radiation from nightglow produces a much higher irradiance than visible starlight. Thus, even well-intentioned efforts to characterize a test site's ambient illumination levels in the SWIR band may fail based on photometric instruments that only measure visible light. A study of this by one of the authors in Ref. [2] showed that the correspondence between lux values and total SWIR irradiance in typical illumination conditions can vary by more than two orders of magnitude, depending on the spectrum of the ambient background. In analogy to the photometric lux definition, we propose the SWIR irradiance equivalent `swux' level, derived by integration over the scene SWIR spectral irradiance weighted by a spectral sensitivity function S(λ), a SWIR analog of the V(λ) photopic response function.

  15. Spatial and radiometric characterization of multi-spectrum satellite images through multi-fractal analysis

    NASA Astrophysics Data System (ADS)

    Alonso, Carmelo; Tarquis, Ana M.; Zúñiga, Ignacio; Benito, Rosa M.

    2017-03-01

    Several studies have shown that vegetation indexes can be used to estimate root zone soil moisture. Earth surface images, obtained by high-resolution satellites, presently give a lot of information on these indexes, based on the data of several wavelengths. Because of the potential capacity for systematic observations at various scales, remote sensing technology extends the possible data archives from the present time to several decades back. Because of this advantage, enormous efforts have been made by researchers and application specialists to delineate vegetation indexes from local scale to global scale by applying remote sensing imagery. In this work, four band images have been considered, which are involved in these vegetation indexes, and were taken by satellites Ikonos-2 and Landsat-7 of the same geographic location, to study the effect of both spatial (pixel size) and radiometric (number of bits coding the image) resolution on these wavelength bands as well as two vegetation indexes: the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI). In order to do so, a multi-fractal analysis of these multi-spectral images was applied in each of these bands and the two indexes derived. The results showed that spatial resolution has a similar scaling effect in the four bands, but radiometric resolution has a larger influence in blue and green bands than in red and near-infrared bands. The NDVI showed a higher sensitivity to the radiometric resolution than EVI. Both were equally affected by the spatial resolution. From both factors, the spatial resolution has a major impact in the multi-fractal spectrum for all the bands and the vegetation indexes. This information should be taken in to account when vegetation indexes based on different satellite sensors are obtained.

  16. Radiometric sounding system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteman, C.D.; Anderson, G.A.; Alzheimer, J.M.

    1995-04-01

    Vertical profiles of solar and terrestrial radiative fluxes are key research needs for global climate change research. These fluxes are expected to change as radiatively active trace gases are emitted to the earth`s atmosphere as a consequence of energy production and industrial and other human activities. Models suggest that changes in the concentration of such gases will lead to radiative flux divergences that will produce global warming of the earth`s atmosphere. Direct measurements of the vertical variation of solar and terrestrial radiative fluxes that lead to these flux divergences have been largely unavailable because of the expense of making suchmore » measurements from airplanes. These measurements are needed to improve existing atmospheric radiative transfer models, especially under the cloudy conditions where the models have not been adequately tested. A tethered-balloon-borne Radiometric Sounding System has been developed at Pacific Northwest Laboratory to provide an inexpensive means of making routine vertical soundings of radiative fluxes in the earth`s atmospheric boundary layer to altitudes up to 1500 m above ground level. Such vertical soundings would supplement measurements being made from aircraft and towers. The key technical challenge in the design of the Radiometric Sounding System is to develop a means of keeping the radiometers horizontal while the balloon ascends and descends in a turbulent atmospheric environment. This problem has been addressed by stabilizing a triangular radiometer-carrying platform that is carried on the tetherline of a balloon sounding system. The platform, carried 30 m or more below the balloon to reduce the balloon`s effect on the radiometric measurements, is leveled by two automatic control loops that activate motors, gears and pulleys when the platform is off-level. The sensitivity of the automatic control loops to oscillatory motions of various frequencies and amplitudes can be adjusted using filters.« less

  17. Imaging Spectroscopy Enables Novel Applications and Continuity with the Landsat Record to Sustain Legacy Applications: An Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Landsat 8 OLI Case Study

    NASA Astrophysics Data System (ADS)

    Stavros, E. N.; Seidel, F.; Cable, M. L.; Green, R. O.; Freeman, A.

    2017-12-01

    While, imaging spectrometers offer additional information that provide value added products for applications that are otherwise underserved, there is need to demonstrate their ability to augment the multi-spectral (e.g., Landsat) optical record by both providing more frequent temporal revisit and lengthening the existing record. Here we test the hypothesis that imaging spectroscopic optical data is compatible with multi-spectral data to within ±5% radiometric accuracy, as desirable to continue the long-term Landsat data record. We use a coincident Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) flight with over-passing Operational Land Imager (OLI) data on Landsat 8 to document a procedure for simulating OLI multi-spectral bands from AVIRIS, evaluate influencing factors on the observed radiance, and assess AVIRIS radiometric accuracy compared to OLI. The procedure for simulating OLI data includes spectral convolution, accounting for atmospheric effects introduced by different sensor altitude and viewing geometries, and spatial resampling. After accounting for these influences, we expect the remaining differences between the simulated and the real OLI data result from differences in sensor calibration, surface bi-directional reflectance, from the different viewing geometries, and spatial sampling. The median radiometric percent difference for each band in the data used range from 0.6% to 8.3%. After bias-correction to minimize potential calibration discrepancies, we find no more than 1.2% radiometric percent difference for any OLI band. This analysis therefore successfully demonstrates that imaging spectrometer data can not only address novel applications, but also contribute to the Landsat-type or other multi-spectral data records to sustain legacy applications.

  18. A novel solution for car traffic control based on radiometric microwave devices

    NASA Astrophysics Data System (ADS)

    Soldovieri, Francesco; Denisov, Alexander; Speziale, Victor

    2014-05-01

    The significant problem of traffic in big cities, connected with huge and building up quantity of automobile cars, demands for novel strategies, based on nonconventional solutions, in order to improve system traffic control, especially at crossroads. As well known, the usual solution is based on the time relay, which requires the installation of a fixed traffic interval (signal light switching) at a crossroad; this solution is low cost, but does not account for the actual traffic conditions. Therefore, in the recent years, attention is towards to new designs, where the monitoring of the and control of traffic is carried out by using various methods including, optical, the infrared, magnetic, radar tracking, acoustical ones. In this work, we discuss the deployment of high sensitivity radiometric systems and radiometers(sensor) in the microwave range [1, 2]. In fact, the radiometer as "sensor" can provide an always updated information about the car traffic in any weather condition and in absence or low visibility conditions. In fact, the radiometric sensor detects the cars thanks to the different behavior of the car roofs which reflect the cold sky whereas the road asphalt is visible as warm object (at around outside temperature). [1] A. G. Denisov, V. P. Gorishnyak, S. E. Kuzmin et al., "Some experiments concerning resolution of 32 sensors passive 8mm wave imaging system," in Proceedings of the International Symposium on Space Terahertz Technology (ISSTT '09), Charlottesville, Va, USA, April 2009. [2] F. Soldovieri, A. Natale, V. Gorishnyak, A. Pavluchenko, A. Denisov, and L. Chen, "Radiometric Imaging for Monitoring and Surveillance Issues," International Journal of Antennas and Propagation, vol. 2013, Article ID 272561, 8 pages, 2013. doi:10.1155/2013/272561.

  19. L5 TM radiometric recalibration procedure using the internal calibration trends from the NLAPS trending database

    USGS Publications Warehouse

    Chander, G.; Haque, Md. O.; Micijevic, E.; Barsi, J.A.

    2008-01-01

    From the Landsat program's inception in 1972 to the present, the earth science user community has benefited from a historical record of remotely sensed data. The multispectral data from the Landsat 5 (L5) Thematic Mapper (TM) sensor provide the backbone for this extensive archive. Historically, the radiometric calibration procedure for this imagery used the instrument's response to the Internal Calibrator (IC) on a scene-by-scene basis to determine the gain and offset for each detector. The IC system degraded with time causing radiometric calibration errors up to 20 percent. In May 2003 the National Landsat Archive Production System (NLAPS) was updated to use a gain model rather than the scene acquisition specific IC gains to calibrate TM data processed in the United States. Further modification of the gain model was performed in 2007. L5 TM data that were processed using IC prior to the calibration update do not benefit from the recent calibration revisions. A procedure has been developed to give users the ability to recalibrate their existing Level-1 products. The best recalibration results are obtained if the work order report that was originally included in the standard data product delivery is available. However, many users may not have the original work order report. In such cases, the IC gain look-up table that was generated using the radiometric gain trends recorded in the NLAPS database can be used for recalibration. This paper discusses the procedure to recalibrate L5 TM data when the work order report originally used in processing is not available. A companion paper discusses the generation of the NLAPS IC gain and bias look-up tables required to perform the recalibration.

  20. Ground-based microwave radiometric remote sensing of the tropical atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yong.

    1992-01-01

    A partially developed 9-channel ground-based microwave radiometer for the Department of Meteorology at Penn State was completed and tested. Complementary units were added, corrections to both hardware and software were made, and system software was corrected and upgraded. Measurements from this radiometer were used to infer tropospheric temperature, water vapor and cloud liquid water. The various weighting functions at each of the 9 channels were calculated and analyzed to estimate the sensitivities of the brightness temperature to the desired atmospheric variables. The mathematical inversion problem, in a linear form, was viewed in terms of the theory of linear algebra. Severalmore » methods for solving the inversion problem were reviewed. Radiometric observations were conducted during the 1990 Tropical Cyclone Motion Experiment. The radiometer was installed on the island of Saipan in a tropical region. The radiometer was calibrated using tipping curve and radiosonde data as well as measurements of the radiation from a blackbody absorber. A linear statistical method was applied for the data inversion. The inversion coefficients in the equation were obtained using a large number of radiosonde profiles from Guam and a radiative transfer model. Retrievals were compared with those from local, Saipan, radiosonde measurements. Water vapor profiles, integrated water vapor, and integrated liquid water were retrieved successfully. For temperature profile retrievals, however, the radiometric measurements with experimental noises added no more profile information to the inversion than that they were determined mainly by the surface pressure measurements. A method was developed to derive the integrated water vapor and liquid water from combined radiometer and ceilometer measurements. Significant improvement on radiometric measurements of the integrated liquid water can be gained with this method.« less

  1. On-ground calibration of the BEPICOLOMBO/SIMBIO-SYS at instrument level

    NASA Astrophysics Data System (ADS)

    Rodriguez-Ferreira, J.; Poulet, F.; Eng, P.; Longval, Y.; Dassas, K.; Arondel, A.; Langevin, Y.; Capaccioni, F.; Filacchione, G.; Palumbo, P.; Cremonese, G.; Dami, M.

    2012-04-01

    The Mercury Planetary Orbiter/BepiColombo carries an integrated suite of instruments, the Spectrometer and Imagers for MPO BepiColombo-Integrated Observatory SYStem (SIMBIO-SYS). SIMBIO-SYS has 3 channels: a stereo imaging system (STC), a high-resolution imager (HRIC) and a visible-near-infrared imaging spectrometer (VIHI). SIMBIO-SYS will scan the surface of Mercury with these three channels and determine the physical, morphological and compositional properties of the entire planet. Before integration on the S/C, an on-ground calibration at the channels and at the instrument levels will be performed so as to describe the instrumental responses as a function of various parameters that might evolve while the instruments will be operating [1]. The Institut d'Astrophysique Spatiale (IAS) is responsible for the on-ground instrument calibration at the instrument level. During the 4 weeks of calibration campaign planned for June 2012, the instrument will be maintained in a mechanical and thermal environment simulating the space conditions. Four Optical stimuli (QTH lamp, Integrating Sphere, BlackBody with variable temperature from 50 to 1200°C and Monochromator), are placed over an optical bench to illuminate the four channels so as to make the radiometric calibration, straylight monitoring, as well as spectral proofing based on laboratory mineral samples. The instrument will be mounted on a hexapod placed inside a thermal vacuum chamber during the calibration campaign. The hexapod will move the channels within the well-characterized incoming beam. We will present the key activities of the preparation of this calibration: the derivation of the instrument radiometric model, the implementation of the optical, mechanical and software interfaces of the calibration assembly, the characterization of the optical bench and the definition of the calibration procedures.

  2. Aerosol analysis with the Coastal Zone Color Scanner: a simple method for including multiple scattering effects.

    PubMed

    Gordon, H R; Castaño, D J

    1989-04-01

    For measurement of aerosols over the ocean, the total radiance L(t) backscattered from the top of a stratified atmosphere which contains both stratospheric and tropospheric aerosols of various types has been computed. A similar computation is carried out for an aerosol-free atmosphere yielding the Rayleigh scattered radiance L(r). The difference L(t) - L(r) is shown to be linearly related to the radiance L(as), which the aerosol would produce in the single scattering approximation. This greatly simplifies the application of aerosol models to aerosol analysis by satellite since adding to, or in some way changing, the aerosol model requires no additional multiple scattering computations. In fact, the only multiple computations required for aerosol analysis are those for determining L(r), which can be performed once and for all. The computations are explicitly applied to Band 4 of the CZCS, which, because of its high radiometric sensitivity and excellent calibration, is ideal for studying aerosols over the ocean. Specifically, the constant A in the relationship L(as) = A(-1)(L(t) - L(r)) is given as a function of position along the scan for four typical orbital-solar position scenarios. The computations show that L(as) can be retrieved from L(t) - L(r) with an average error of no more than 5-7% except at the very edges of the scan.

  3. Terrestrial reference standard sites for postlaunch sensor calibration

    USGS Publications Warehouse

    Teillet, P.M.; Chander, G.

    2010-01-01

    In an era when the number of Earth observation satellites is rapidly growing and measurements from satellite sensors are used to address increasingly urgent global issues, often through synergistic and operational combinations of data from multiple sources, it is imperative that scientists and decision-makers are able to rely on the accuracy of Earth observation data products. The characterization and calibration of these sensors, particularly their relative biases, are vital to the success of the developing integrated Global Earth Observation System of Systems (GEOSS) for coordinated and sustained observations of the Earth. This can only reliably be achieved in the postlaunch environment through the careful use of observations by multiple sensor systems over common, well-characterized terrestrial targets (i.e., on or near the Earth's surface). Through greater access to and understanding of these vital reference standard sites and their use, the validity and utility of information gained from Earth remote sensing will continue to improve. This paper provides a brief overview of the use of reference standard sites for postlaunch sensor radiometric calibration from historical, current, and future perspectives. Emphasis is placed on optical sensors operating in the visible, near-infrared, and shortwave infrared spectral regions.

  4. Common Calibration Source for Monitoring Long-term Ozone Trends

    NASA Technical Reports Server (NTRS)

    Kowalewski, Matthew

    2004-01-01

    Accurate long-term satellite measurements are crucial for monitoring the recovery of the ozone layer. The slow pace of the recovery and limited lifetimes of satellite monitoring instruments demands that datasets from multiple observation systems be combined to provide the long-term accuracy needed. A fundamental component of accurately monitoring long-term trends is the calibration of these various instruments. NASA s Radiometric Calibration and Development Facility at the Goddard Space Flight Center has provided resources to minimize calibration biases between multiple instruments through the use of a common calibration source and standardized procedures traceable to national standards. The Facility s 50 cm barium sulfate integrating sphere has been used as a common calibration source for both US and international satellite instruments, including the Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter Ultraviolet 2 (SBUV/2) instruments, Shuttle SBUV (SSBUV), Ozone Mapping Instrument (OMI), Global Ozone Monitoring Experiment (GOME) (ESA), Scanning Imaging SpectroMeter for Atmospheric ChartographY (SCIAMACHY) (ESA), and others. We will discuss the advantages of using a common calibration source and its effects on long-term ozone data sets. In addition, sphere calibration results from various instruments will be presented to demonstrate the accuracy of the long-term characterization of the source itself.

  5. Hazard Detection Analysis for a Forward-Looking Interferometer

    NASA Technical Reports Server (NTRS)

    West, Leanne; Gimmestad, Gary; Herkert, Ralph; Smith, William L.; Kireev, Stanislav; Schaffner, Philip R.; Daniels, Taumi S.; Cornman, Larry B.; Sharman, Robert; Weekley, Andrew; hide

    2010-01-01

    The Forward-Looking Interferometer (FLI) is a new instrument concept for obtaining the measurements required to alert flight crews to potential weather hazards to safe flight. To meet the needs of the commercial fleet, such a sensor should address multiple hazards to warrant the costs of development, certification, installation, training, and maintenance. The FLI concept is based on high-resolution Infrared Fourier Transform Spectrometry (FTS) technologies that have been developed for satellite remote sensing. These technologies have also been applied to the detection of aerosols and gases for other purposes. The FLI concept is being evaluated for its potential to address multiple hazards including clear air turbulence (CAT), volcanic ash, wake vortices, low slant range visibility, dry wind shear, and icing during all phases of flight (takeoff, cruise, and landing). The research accomplished in this second phase of the FLI project was in three major areas: further sensitivity studies to better understand the potential capabilities and requirements for an airborne FLI instrument, field measurements that were conducted in an effort to provide empirical demonstrations of radiometric hazard detection, and theoretical work to support the development of algorithms to determine the severity of detected hazards

  6. Continued Development of in Situ Geochronology for Planetary Using KArLE (Potassium-Argon Laser Experiment)

    NASA Technical Reports Server (NTRS)

    Devismes, D.; Cohen, B. A.

    2016-01-01

    Geochronology is a fundamental measurement for planetary samples, providing the ability to establish an absolute chronology for geological events, including crystallization history, magmatic evolution, and alteration events, and providing global and solar system context for such events. The capability for in situ geochronology will open up the ability for geochronology to be accomplished as part of lander or rover complement, on multiple samples rather than just those returned. An in situ geochronology package can also complement sample return missions by identifying the most interesting rocks to cache or return to Earth. The K-Ar radiometric dating approach to in situ dating has been validated by the Curiosity rover on Mars as well as several laboratories on Earth. Several independent projects developing in situ rock dating for planetary samples, based on the K-Ar method, are giving promising results. Among them, the Potassium (K)-Argon Laser Experiment (KArLE) at MSFC is based on techniques already in use for in planetary exploration, specifically, Laser-induced Breakdown Spectroscopy (LIBS, used on the Curiosity Chemcam), mass spectroscopy (used on multiple planetary missions, including Curiosity, ExoMars, and Rosetta), and optical imaging (used on most missions).

  7. An Analytical Calibration Approach for the Polarimetric Airborne C Band Radiometer

    NASA Technical Reports Server (NTRS)

    Pham, Hanh; Kim, Edward J.

    2004-01-01

    Passive microwave remote sensing is sensitive to the quantity and distribution of water in soil and vegetation. During summer 2000, the Microwave Geophysics Group a t the University of Michigan conducted the seventh Radiobrighness Energy Balance Experiment (REBEX-7) over a corn canopy in Michigan. Long time series of brightness temperatures, soil moisture and micrometeorology on the plot were taken. This paper addresses the calibration of the NASA GSFC polarimetric airborne C band microwave radiometer (ACMR) that participated in REBEX-7. These passive polarimeters are typically calibrated using an end-to-end approach based upon a standard artificial target or a well-known geophysical target. Analyzing the major internal functional subsystems offers a different perspective. The primary goal of this approach is to provide a transfer function that not only describes the system in its entire5 but also accounts for the contributions of each subsystem toward the final modified Stokes parameters. This approach does not assume that the radiometric system is linear as it does not take polarization isolation for granted, and it also serves as a realistic instrument simulator, a useful tool for future designs. The ACMR architecture can be partitioned into functional subsystems. The characteristics of each subsystem was extensively measured and the estimated parameters were imported into the overall dosed form system model. Inversion of the model yields a calibration for the modeled Stokes parameters with uncertainties of 0.2 K for the V and H polarizations and 2.4 K for the 3rd and 4th parameters. Application to the full Stokes parameters over a senescent cornfield is presented.

  8. Constraints on the Mass and Location of Planet 9 set by Range and VLBI Observations of Spacecraft at Saturn

    NASA Astrophysics Data System (ADS)

    Jacobson, Robert A.; Folkner, William M.; Park, Ryan S.; Williams, James G.

    2017-06-01

    Batygin and Brown, 2016 AJ, found that all Kuiper belt objects (KBOs) with well determined orbits having periods greater than 4000 years share nearly the same orbital plane and are apsidally aligned. They attribute this orbital clustering to the existence of a distant planet, Planet 9, well beyond Neptune, with a mass roughly ten times that of Earth. If such a planet exists, it would affect the motion of the known solar system planets, in particular Saturn, which is well observed with radiometric ranging from the Voyager and Cassini spacecraft and VLBI observations of Cassini. The current planetary ephemerides do not account for the postulated Planet 9, yet their fit to the observational data shows no obvious effect that could be attributed to neglecting that planet. However, it is possible that the effect could be absorbed by the estimated parameters used to determine the ephemerides. Those parameters include the planetary orbital elements, mass of the Sun, and the masses of the asteroids that perturb the Martian orbit. We recently updated the Voyager and Cassini data sets and extended the latter through 2017 March. We analyze the sensitivity of these data to the tidal perturbations caused by Planet 9 for a range of positions on the sky and tidal parameters (the ratio of the mass of Planet 9 to the cube of its distance from Saturn). We determine an upper bound on the tidal parameter and the most probable directions consistent with the observational data.

  9. Using Simplistic Shape/Surface Models to Predict Brightness in Estimation Filters

    NASA Astrophysics Data System (ADS)

    Wetterer, C.; Sheppard, D.; Hunt, B.

    The prerequisite for using brightness (radiometric flux intensity) measurements in an estimation filter is to have a measurement function that accurately predicts a space objects brightness for variations in the parameters of interest. These parameters include changes in attitude and articulations of particular components (e.g. solar panel east-west offsets to direct sun-tracking). Typically, shape models and bidirectional reflectance distribution functions are combined to provide this forward light curve modeling capability. To achieve precise orbit predictions with the inclusion of shape/surface dependent forces such as radiation pressure, relatively complex and sophisticated modeling is required. Unfortunately, increasing the complexity of the models makes it difficult to estimate all those parameters simultaneously because changes in light curve features can now be explained by variations in a number of different properties. The classic example of this is the connection between the albedo and the area of a surface. If, however, the desire is to extract information about a single and specific parameter or feature from the light curve, a simple shape/surface model could be used. This paper details an example of this where a complex model is used to create simulated light curves, and then a simple model is used in an estimation filter to extract out a particular feature of interest. In order for this to be successful, however, the simple model must be first constructed using training data where the feature of interest is known or at least known to be constant.

  10. Constraints on the Mass and Location of Planet 9 set by Range and VLBI Observations of Cassini

    NASA Astrophysics Data System (ADS)

    Jacobson, Robert Arthur; Folkner, William; Park, Ryan; Williams, James

    2018-04-01

    Batygin and Brown, 2016 AJ, found that Kuiper belt objects (KBOs) with well determined orbits having periods greater than 4000 years are apsidally aligned. They attribute this orbital clustering to the existence of a distant planet, Planet 9, well beyond Neptune, with a mass roughly ten times that of Earth. If such a planet exists, it would affect the motion of the known solar system planets, in particular Saturn, which is well observed with radiometric ranging from the Cassini spacecraft and VLBI observations of Cassini. The current planetary ephemerides do not account for the postulated Planet 9, yet their fit to the observational data shows no obvious effect that could be attributed to neglecting that planet. However, it is possible that the effect could be absorbed by the estimated parameters used to determine the ephemerides. Those parameters include the planetary orbital elements, mass of the Sun, and the masses of the asteroids that perturb the Martian orbit. We recently updated the Cassini data set and extended it through the end of the mssion in 2017 September. We analyze the sensitivity of these data to the tidal perturbations caused by the postulated Planet 9 for a range of positions on the sky and tidal parameters (the ratio of the mass of Planet 9 to the cube of its distance from Saturn). We determine an upper bound on the tidal parameter and the most probable directions consistent with the observational data.

  11. Multi-frequency and polarimetric radar backscatter signatures for discrimination between agricultural crops at the Flevoland experimental test site

    NASA Technical Reports Server (NTRS)

    Freeman, A.; Villasenor, J.; Klein, J. D.

    1991-01-01

    We describe the calibration and analysis of multi-frequency, multi-polarization radar backscatter signatures over an agriculture test site in the Netherlands. The calibration procedure involved two stages: in the first stage, polarimetric and radiometric calibrations (ignoring noise) were carried out using square-base trihedral corner reflector signatures and some properties of the clutter background. In the second stage, a novel algorithm was used to estimate the noise level in the polarimetric data channels by using the measured signature of an idealized rough surface with Bragg scattering (the ocean in this case). This estimated noise level was then used to correct the measured backscatter signatures from the agriculture fields. We examine the significance of several key parameters extracted from the calibrated and noise-corrected backscatter signatures. The significance is assessed in terms of the ability to uniquely separate among classes from 13 different backscatter types selected from the test site data, including eleven different crops, one forest and one ocean area. Using the parameters with the highest separation for a given class, we use a hierarchical algorithm to classify the entire image. We find that many classes, including ocean, forest, potato, and beet, can be identified with high reliability, while the classes for which no single parameter exhibits sufficient separation have higher rates of misclassification. We expect that modified decision criteria involving simultaneous consideration of several parameters increase performance for these classes.

  12. Adjoint Methods for Adjusting Three-Dimensional Atmosphere and Surface Properties to Fit Multi-Angle Multi-Pixel Polarimetric Measurements

    NASA Technical Reports Server (NTRS)

    Martin, William G.; Cairns, Brian; Bal, Guillaume

    2014-01-01

    This paper derives an efficient procedure for using the three-dimensional (3D) vector radiative transfer equation (VRTE) to adjust atmosphere and surface properties and improve their fit with multi-angle/multi-pixel radiometric and polarimetric measurements of scattered sunlight. The proposed adjoint method uses the 3D VRTE to compute the measurement misfit function and the adjoint 3D VRTE to compute its gradient with respect to all unknown parameters. In the remote sensing problems of interest, the scalar-valued misfit function quantifies agreement with data as a function of atmosphere and surface properties, and its gradient guides the search through this parameter space. Remote sensing of the atmosphere and surface in a three-dimensional region may require thousands of unknown parameters and millions of data points. Many approaches would require calls to the 3D VRTE solver in proportion to the number of unknown parameters or measurements. To avoid this issue of scale, we focus on computing the gradient of the misfit function as an alternative to the Jacobian of the measurement operator. The resulting adjoint method provides a way to adjust 3D atmosphere and surface properties with only two calls to the 3D VRTE solver for each spectral channel, regardless of the number of retrieval parameters, measurement view angles or pixels. This gives a procedure for adjusting atmosphere and surface parameters that will scale to the large problems of 3D remote sensing. For certain types of multi-angle/multi-pixel polarimetric measurements, this encourages the development of a new class of three-dimensional retrieval algorithms with more flexible parametrizations of spatial heterogeneity, less reliance on data screening procedures, and improved coverage in terms of the resolved physical processes in the Earth?s atmosphere.

  13. The Deep Space Atomic Clock Mission

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.; Koch, Timothy; Kuang, Da; Lee, Karen; Murphy, David; Prestage, John; Tjoelker, Robert; Seubert, Jill

    2012-01-01

    The Deep Space Atomic Clock (DSAC) mission will demonstrate the space flight performance of a small, low-mass, high-stability mercury-ion atomic clock with long term stability and accuracy on par with that of the Deep Space Network. The timing stability introduced by DSAC allows for a 1-Way radiometric tracking paradigm for deep space navigation, with benefits including increased tracking via utilization of the DSN's Multiple Spacecraft Per Aperture (MSPA) capability and full ground station-spacecraft view periods, more accurate radio occultation signals, decreased single-frequency measurement noise, and the possibility for fully autonomous on-board navigation. Specific examples of navigation and radio science benefits to deep space missions are highlighted through simulations of Mars orbiter and Europa flyby missions. Additionally, this paper provides an overview of the mercury-ion trap technology behind DSAC, details of and options for the upcoming 2015/2016 space demonstration, and expected on-orbit clock performance.

  14. Complex Building Detection Through Integrating LIDAR and Aerial Photos

    NASA Astrophysics Data System (ADS)

    Zhai, R.

    2015-02-01

    This paper proposes a new approach on digital building detection through the integration of LiDAR data and aerial imagery. It is known that most building rooftops are represented by different regions from different seed pixels. Considering the principals of image segmentation, this paper employs a new region based technique to segment images, combining both the advantages of LiDAR and aerial images together. First, multiple seed points are selected by taking several constraints into consideration in an automated way. Then, the region growing procedures proceed by combining the elevation attribute from LiDAR data, visibility attribute from DEM (Digital Elevation Model), and radiometric attribute from warped images in the segmentation. Through this combination, the pixels with similar height, visibility, and spectral attributes are merged into one region, which are believed to represent the whole building area. The proposed methodology was implemented on real data and competitive results were achieved.

  15. Experimental validation of the MODTRAN 5.3 sea surface radiance model using MIRAMER campaign measurements.

    PubMed

    Ross, Vincent; Dion, Denis; St-Germain, Daniel

    2012-05-01

    Radiometric images taken in mid-wave and long-wave infrared bands are used as a basis for validating a sea surface bidirectional reflectance distribution function (BRDF) being implemented into MODTRAN 5 (Berk et al. [Proc. SPIE5806, 662 (2005)]). The images were obtained during the MIRAMER campaign that took place in May 2008 in the Mediterranean Sea near Toulon, France. When atmosphere radiances are matched at the horizon to remove possible calibration offsets, the implementation of the BRDF in MODTRAN produces good sea surface radiance agreement, usually within 2% and at worst 4% from off-glint azimuthally averaged measurements. Simulations also compare quite favorably to glint measurements. The observed sea radiance deviations between model and measurements are not systematic, and are well within expected experimental uncertainties. This is largely attributed to proper radiative coupling between the surface and the atmosphere implemented using the DISORT multiple scattering algorithm.

  16. Orbit Determination and Navigation Software Testing for the Mars Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Pini, Alex

    2011-01-01

    During the extended science phase of the Mars Reconnaissance Orbiter's lifecycle, the operational duties pertaining to navigation primarily involve orbit determination. The orbit determination process utilizes radiometric tracking data and is used for the prediction and reconstruction of MRO's trajectories. Predictions are done twice per week for ephemeris updates on-board the spacecraft and for planning purposes. Orbit Trim Maneuvers (OTM-s) are also designed using the predicted trajectory. Reconstructions, which incorporate a batch estimator, provide precise information about the spacecraft state to be synchronized with scientific measurements. These tasks were conducted regularly to validate the results obtained by the MRO Navigation Team. Additionally, the team is in the process of converting to newer versions of the navigation software and operating system. The capability to model multiple densities in the Martian atmosphere is also being implemented. However, testing outputs among these different configurations was necessary to ensure compliance to a satisfactory degree.

  17. Determination of surface reflectance and estimates of atmospheric optical depth and single scattering albedo from Landsat Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Conel, James E.

    1990-01-01

    Groound-reflectance data on selected targets for calbiration of a Landsat TM image of Wind River Basin, Wyoming, acquired November 21, 1982 were examined. Field-derived calibration relationships together with Landsat radiometric calibration data are used to convert scanner DN values to spectral radiance for the TM bands and (together with a simplified homogeneous atmospheric model) to obtain estimates of single-scattering albedo and optical depth consistent with the derived path radiance and transmission properties of the atmosphere. These estimates are used to study the problems of evaluation of the magnitude of adjacency effects for reference targets, the assumption of isotropic properties, and the aggregate magnitude of multiple reflections between sky and ground. The radiance calibration equations are also used together with preflight measured signal/noise properties of the TM-4 system to estimate the noise-equivalent reflectance recoverable in practice from the system.

  18. Sensor modeling and demonstration of a multi-object spectrometer for performance-driven sensing

    NASA Astrophysics Data System (ADS)

    Kerekes, John P.; Presnar, Michael D.; Fourspring, Kenneth D.; Ninkov, Zoran; Pogorzala, David R.; Raisanen, Alan D.; Rice, Andrew C.; Vasquez, Juan R.; Patel, Jeffrey P.; MacIntyre, Robert T.; Brown, Scott D.

    2009-05-01

    A novel multi-object spectrometer (MOS) is being explored for use as an adaptive performance-driven sensor that tracks moving targets. Developed originally for astronomical applications, the instrument utilizes an array of micromirrors to reflect light to a panchromatic imaging array. When an object of interest is detected the individual micromirrors imaging the object are tilted to reflect the light to a spectrometer to collect a full spectrum. This paper will present example sensor performance from empirical data collected in laboratory experiments, as well as our approach in designing optical and radiometric models of the MOS channels and the micromirror array. Simulation of moving vehicles in a highfidelity, hyperspectral scene is used to generate a dynamic video input for the adaptive sensor. Performance-driven algorithms for feature-aided target tracking and modality selection exploit multiple electromagnetic observables to track moving vehicle targets.

  19. Evaluation of active and passive near-millimeter-wave radiometric imaging techniques for detection of concealed objects

    NASA Astrophysics Data System (ADS)

    Reber, E. E.; Foote, F. B.; Schellenbaum, R. L.; Bradley, R. G.

    1981-07-01

    The potential of radiometric imaging technique to detect shielded nuclear materials and explosives carried covertly by personnel was investigated. This method of detecting contraband depends upon the differences in emissivity and reflectivity of the contraband relative to human tissue. Explosives, unlike metals and metal composites, generally have high emissivities and low reflectivities that closely approximate those of human tissue making explosives difficult to detect. Samples of several common types of explosives (TNT, Detasheet, C4, and several types of water gels) were examined at the 1.4- and 3-mm wavelengths using active and passive radiometeric techniques.

  20. Ar-39-Ar-40 Ages of Two Nakhlites, MIL03346 and Y000593: A Detailed Analysis

    NASA Technical Reports Server (NTRS)

    Park, Jisun; Garrison, Daniel; Bogard, Donald

    2007-01-01

    Radiometric dating of martian nakhlites by several techniques have given similar ages of approx.1.2-1.4 Ga [e.g. 1, 2]. Unlike the case with shergottites, where the presence of martian atmosphere and inherited radiogenic Ar-40 produce apparent Ar-39-Ar-40 ages older than other radiometric ages, Ar-Ar ages of nakhlites are similar to ages derived by other techniques. However, even in some nakhlites the presence of trapped martian Ar produces some uncertainty in the Ar-Ar age. We present here an analysis of such Ar-Ar ages from the MIL03346 and Y000593 nakhlites.

  1. Optical radiation measurements II; Proceedings of the Meeting, Orlando, FL, Mar. 27, 28, 1989

    NASA Astrophysics Data System (ADS)

    Palmer, James M.

    1989-09-01

    The present conference discusses topics in the characterization of imaging radiometers, laboratory instrumentation, field and spacecraft instrumentation, and quantum and thermal standard detectors. Attention is given to UV radiometric imaging, dual-color radiometer imagery, a novel diode-array radiometer, a novel reference spectrophotometer, radiance calibration of spherical integrators, instrumentation for measurement of spectral goniometric reflectance, and a real-time IR background discrimination radiometer. Also discussed are a multichannel radiometer for atmosphere optical property measurements, the UV spectroradiometric output of a turbojet, characterizations of the Earth Radiation Budget Experiment scanning radiometers, total-radiation thermometry, future directions in Si photodiode self-calibration, and radiometric quality Ge photodiodes.

  2. Local effects of partly-cloudy skies on solar and emitted radiations

    NASA Technical Reports Server (NTRS)

    Whitney, D. A.; Griffin, T. J.

    1983-01-01

    Atmospheric aerosol and turbidity measurements were analyzed and the results are presented. The correlation of global insolation with cloud cover fractions for the first complete year's data set was completed. A theoretical model was developed to parameterize the effects of local aerosols upon insolation received at the ground using satellite radiometric data and insolation measurements under clear sky conditions. A February data set, composed of one minute integrated global insolation and direct solar irradiances, cloud cover fractions, meteorological data from nearby weather stations, and GOES East satellite radiometric data was collected to test the model and used to calculate the effects of local aerosols.

  3. Interpretation of detailed aerial gamma-ray survey, Jabal Ashirah area, southeastern Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Duval, J.S.

    1987-01-01

    A detailed aerial gamma-ray spectrometric survey of the Jabal Ashirah area in the southeastern Arabian Shield has been analyzed using computer-classification algorithms. The analysis resulted in maps that show radiometric map units and gamma-ray anomalies indicating the presence of possible concentrations of potassium and uranium. The radiometric-unit map was interpreted to 'produce a simplified radiolithic map that was correlated with the mapped geology. The gamma-ray data show uranium anomalies that coincide with a tin-bearing granite, but known gold and nickel mineralization do not have any associated gamma-ray signatures.

  4. Activities of NIST (National Inst. of Standards and Technology)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Radiometric Physics Division of the NIST is responsible for the national standards in radiation thermometry, spectroradiometry, photometry, and spectrophotometry; dissemination of these standards by providing measurement services to customers requiring calibrations of the highest accuracy; and conducting fundamental and applied research to develop the scientific basis for future measurement services. Its relevance to EOS/TIR calibration includes calibrating unknown blackbody for radiance using a well-characterized NIST blackbody source by matching the radiant fluxes with an IR radiometer. The TIR Round Robin is used to verify the calibration of the sources that are used for the absolute radiometric calibration of the individual EOS sensors.

  5. Earth Observing-1 Advanced Land Imager: Radiometric Response Calibration

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.; Lencioni, D. E.; Evans, J. B.

    2000-01-01

    The Advanced Land Imager (ALI) is one of three instruments to be flown on the first Earth Observing mission (EO-1) under NASA's New Millennium Program (NMP). ALI contains a number of innovative features, including a wide field of view optical design, compact multispectral focal plane arrays, non-cryogenic HgCdTe detectors for the short wave infrared bands, and silicon carbide optics. This document outlines the techniques adopted during ground calibration of the radiometric response of the Advanced Land Imager. Results from system level measurements of the instrument response, signal-to-noise ratio, saturation radiance, and dynamic range for all detectors of every spectral band are also presented.

  6. A preliminary evaluation of LANDSAT-4 thematic mapper data for their geometric and radiometric accuracies

    NASA Technical Reports Server (NTRS)

    Podwysocki, M. H.; Bender, L. U.; Falcone, N.; Jones, O. D.

    1983-01-01

    Some LANDSAT thematic mapper data collected over the eastern United States were analyzed for their whole scene geometric accuracy, band to band registration and radiometric accuracy. Band ratio images were created for a part of one scene in order to assess the capability of mapping geologic units with contrasting spectral properties. Systematic errors were found in the geometric accuracy of whole scenes, part of which were attributable to the film writing device used to record the images to film. Band to band registration showed that bands 1 through 4 were registered to within one pixel. Likewise, bands 5 and 7 also were registered to within one pixel. However, bands 5 and 7 were misregistered with bands 1 through 4 by 1 to 2 pixels. Band 6 was misregistered by 4 pixels to bands 1 through 4. Radiometric analysis indicated two kinds of banding, a modulo-16 stripping and an alternate light dark group of 16 scanlines. A color ratio composite image consisting of TM band ratios 3/4, 5/2, and 5/7 showed limonitic clay rich soils, limonitic clay poor soils, and nonlimonitic materials as distinctly different colors on the image.

  7. Thermal return reflection method for resolving emissivity and temperature in radiometric measurements

    NASA Astrophysics Data System (ADS)

    Woskov, P. P.; Sundaram, S. K.

    2002-11-01

    A radiometric method for resolving emissivity epsilon and temperature T in thermal emission measurements is presented. Thermal radiation from a viewed source is split by a beamsplitter between a radiometer and a mirror aligned to return a part of the thermal radiation back to the source. The ratio of the thermal signal with and without a return reflection provides a measurement of the emissivity without need of any other probing sources. The analytical expressions that establish this relationship are derived taking into account waveguide/optic losses and sources between the radiometer and viewed sample. The method is then applied to thermal measurements of several refractory materials at temperatures up to 1150 degC. A 137 GHz radiometer is used to measure the emissivity and temperature of an alumina brick, an Inconel 690 plate, and two grades of silicon carbide. Reasonable temperature agreement is achieved with an independent thermocouple measurement. However, when the emissivity approaches zero, as in the case of the Inconel plate, radiometric temperature determinations are inaccurate, though an emissivity near zero is correctly measured. This method is expected to be of considerable value to noncontact thermal analysis applications of materials.

  8. Relative radiometric calibration for multispectral remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Ren, Hsuan

    2006-10-01

    Our environment has been changed continuously by nature causes or human activities. In order to identify what has been changed during certain time period, we need to spend enormous resources to collect all kinds of data and analyze them. With remote sensing images, change detection has become one efficient and inexpensive technique. It has wide applications including disaster management, agriculture analysis, environmental monitoring and military reconnaissance. To detect the changes between two remote sensing images collected at different time, radiometric calibration is one of the most important processes. Under the different weather and atmosphere conditions, even the same material might be resulting distinct radiance spectrum in two images. In this case, they will be misclassified as changes and false alarm rate will also increase. To achieve absolute calibration, i.e., to convert the radiance to reflectance spectrum, the information about the atmosphere condition or ground reference materials with known reflectance spectrum is needed but rarely available. In this paper, we present relative radiometric calibration methods which transform image pair into similar atmospheric effect instead of remove it in absolutely calibration, so that the information of atmosphere condition is not required. A SPOT image pair will be used for experiment to demonstrate the performance.

  9. PTB’s radiometric scales for UV and VUV source calibration based on synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Klein, Roman; Kroth, Simone; Paustian, Wolfgang; Richter, Mathias; Thornagel, Reiner

    2018-06-01

    The radiant intensity of synchrotron radiation can be accurately calculated with classical electrodynamics. This primary realization of the spectral radiant intensity has been used by PTB at several electron storage rings which have been optimized to be operated as primary source standards for the calibration of transfer sources in the spectral range of UV and VUV for almost 30 years. The transfer sources are compared to the primary source standard by means of suitable wavelength-dispersive transfer stations. The spectral range covered by deuterium lamps, which represent transfer sources that are easy to handle, is of particular relevance in practice. Here, we report on developments in the realization and preservation of the radiometric scales for spectral radiant intensity and spectral radiance in the wavelength region from 116 nm to 400 nm, based on a set of deuterium reference lamps, over the last few decades. An inside view and recommendations on the operation of the D2 lamps used for the realization of the radiometric scale are presented. The data has been recently compiled to illustrate the chronological behaviour at various wavelengths. Moreover, an overview of the internal and external validation measurements and intercomparisons is given.

  10. Multipurpose Spectroradiometer for Satellite Instrument Calibration and Zenith Sky Remote Sensing Measurements

    NASA Technical Reports Server (NTRS)

    Heath, Donald F.; Ahmad, Zia

    2001-01-01

    In the early 1990s a series of surface-based direct sun and zenith sky measurements of total column ozone were made with SBUV/2 flight models and the SSBUV Space Shuttle instrument in Boulder, Colorado which were compared with NOAA Dobson Instrument direct sun observations and TOMS instrument overpass observations of column ozone. These early measurements led to the investigation of the accuracy of derived total column ozone amounts and aerosol optical depths from zenith sky observations. Following the development and availability of radiometrically stable IAD narrow band interference filter and nitrided silicon photodiodes a simple compact multifilter spectroradiometer was developed which can be used as a calibration transfer standard spectroradiometer (CTSS) or as a surface based instrument remote sensing instruments for measurements of total column ozone and aerosol optical depths. The total column ozone derived from zenith sky observations agrees with Dobson direct sun AD double wavelength pair measurements and with TOMS overpass ozone amounts within uncertainties of about 1%. When used as a calibration transfer standard spectroradiometer the multifilter spectroradiometer appears to be capable of establishing instrument radiometric calibration uncertainties of the order of 1% or less relative to national standards laboratory radiometric standards.

  11. Geochronological correlation of the main coal interval in Brazilian Lower Permian: Radiometric dating of tonstein and calibration of biostratigraphic framework

    NASA Astrophysics Data System (ADS)

    Simas, Margarete Wagner; Guerra-Sommer, Margot; Cazzulo-Klepzig, Miriam; Menegat, Rualdo; Schneider Santos, João Orestes; Fonseca Ferreira, José Alcides; Degani-Schmidt, Isabela

    2012-11-01

    The radiometric age of 291 ± 1.2 Ma obtained through single-crystal zircon U-Pb ages (Sensitive High Resolution Ion MicroProbe - SHRIMP II) of tonsteins from the Leão-Butiá Coalfield, southern Paraná Basin (Rio Grande do Sul state), associated with previous SHRIMP II radiometric data obtained from tonsteins from the western (Candiota Coalfield) and eastern (Faxinal and Leão-Butiá coalfields) borders of the basin indicate that the mean age of the main peat-forming interval is 291.0 ± 1.3 Ma. In a regional context, the mean age represents a consistent geochronological correlation for the uppermost and more important coal seams in southern Brazilian coalfields, but this assumption does not establish an ash fall origin from a single volcanic event. According to the International Stratigraphic Chart, the interval is dated as middle Sakmarian. The coal palynofloras are included in the Protohaploxypinus goraiensis Subzone within the palynostratigraphic framework for the Brazilian Paraná Basin. Formal relationships are also established with the Glossopteris-Rhodeopteridium Zone within the phytostratigraphic chart for the Lower Permian of southern Brazilian Paraná Basin.

  12. Radiometric calibration method for large aperture infrared system with broad dynamic range.

    PubMed

    Sun, Zhiyuan; Chang, Songtao; Zhu, Wei

    2015-05-20

    Infrared radiometric measurements can acquire important data for missile defense systems. When observation is carried out by ground-based infrared systems, a missile is characterized by long distance, small size, and large variation of radiance. Therefore, the infrared systems should be manufactured with a larger aperture to enhance detection ability and calibrated at a broader dynamic range to extend measurable radiance. Nevertheless, the frequently used calibration methods demand an extended-area blackbody with broad dynamic range or a huge collimator for filling the system's field stop, which would greatly increase manufacturing costs and difficulties. To overcome this restriction, a calibration method based on amendment of inner and outer calibration is proposed. First, the principles and procedures of this method are introduced. Then, a shifting strategy of infrared systems for measuring targets with large fluctuations of infrared radiance is put forward. Finally, several experiments are performed on a shortwave infrared system with Φ400  mm aperture. The results indicate that the proposed method cannot only ensure accuracy of calibration but have the advantage of low cost, low power, and high motility. Hence, it is an effective radiometric calibration method in the outfield.

  13. Multivariate analysis of subsurface radiometric data in Rongsohkham area, East Khasi Hills district, Meghalaya (India): implication on uranium exploration.

    PubMed

    Kukreti, B M; Pandey, Pradeep; Singh, R V

    2012-08-01

    Non-coring based exploratory drilling was under taken in the sedimentary environment of Rangsohkham block, East Khasi Hills district to examine the eastern extension of existing uranium resources located at Domiasiat and Wakhyn in the Mahadek basin of Meghalaya (India). Although radiometric survey and radiometric analysis of surface grab/channel samples in the block indicate high uranium content but the gamma ray logging results of exploratory boreholes in the block, did not obtain the expected results. To understand this abrupt discontinuity between the two sets of data (surface and subsurface) multivariate statistical analysis of primordial radioactive elements (K(40), U(238) and Th(232)) was performed using the concept of representative subsurface samples, drawn from the randomly selected 11 boreholes of this block. The study was performed to a high confidence level (99%), and results are discussed for assessing the U and Th behavior in the block. Results not only confirm the continuation of three distinct geological formations in the area but also the uranium bearing potential in the Mahadek sandstone of the eastern part of Mahadek Basin. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Projection technologies for imaging sensor calibration, characterization, and HWIL testing at AEDC

    NASA Astrophysics Data System (ADS)

    Lowry, H. S.; Breeden, M. F.; Crider, D. H.; Steely, S. L.; Nicholson, R. A.; Labello, J. M.

    2010-04-01

    The characterization, calibration, and mission simulation testing of imaging sensors require continual involvement in the development and evaluation of radiometric projection technologies. Arnold Engineering Development Center (AEDC) uses these technologies to perform hardware-in-the-loop (HWIL) testing with high-fidelity complex scene projection technologies that involve sophisticated radiometric source calibration systems to validate sensor mission performance. Testing with the National Institute of Standards and Technology (NIST) Ballistic Missile Defense Organization (BMDO) transfer radiometer (BXR) and Missile Defense Agency (MDA) transfer radiometer (MDXR) offers improved radiometric and temporal fidelity in this cold-background environment. The development of hardware and test methodologies to accommodate wide field of view (WFOV), polarimetric, and multi/hyperspectral imaging systems is being pursued to support a variety of program needs such as space situational awareness (SSA). Test techniques for the acquisition of data needed for scene generation models (solar/lunar exclusion, radiation effects, etc.) are also needed and are being sought. The extension of HWIL testing to the 7V Chamber requires the upgrade of the current satellite emulation scene generation system. This paper provides an overview of pertinent technologies being investigated and implemented at AEDC.

  15. Landsat-7 ETM+ Radiometric Calibration Status

    NASA Technical Reports Server (NTRS)

    Barsi, Julia A.; Markham, Brian L.; Czapla-Myers, Jeffrey S.; Helder, Dennis L.; Hook, Simon J.; Schott, John R; Haque, Md. Obaidul

    2016-01-01

    Now in its 17th year of operation, the Enhanced Thematic Mapper + (ETM+), on board the Landsat-7 satellite, continues to systematically acquire imagery of the Earth to add to the 40+ year archive of Landsat data. Characterization of the ETM+ on-orbit radiometric performance has been on-going since its launch in 1999. The radiometric calibration of the reflective bands is still monitored using on-board calibration devices, though the Pseudo-Invariant Calibration Sites (PICS) method has proven to be an effect tool as well. The calibration gains were updated in April 2013 based primarily on PICS results, which corrected for a change of as much as -0.2%/year degradation in the worst case bands. A new comparison with the SADE database of PICS results indicates no additional degradation in the updated calibration. PICS data are still being tracked though the recent trends are not well understood. The thermal band calibration was updated last in October 2013 based on a continued calibration effort by NASA/Jet Propulsion Lab and Rochester Institute of Technology. The update accounted for a 0.31 W/sq m/ sr/micron bias error. The updated lifetime trend is now stable to within + 0.4K.

  16. Assessment of the short-term radiometric stability between Terra MODIS and Landsat 7 ETM+ sensors

    USGS Publications Warehouse

    Choi, Taeyoung; Xiong, Xiaoxiong; Chander, Gyanesh; Angal, A.

    2009-01-01

    Short-term radiometric stability was evaluated using continuous ETM+ scenes within a single orbit (contact period) and the corresponding MODIS scenes for the four matching solar reflective visible and near-infrared (VNIR) band pairs between the two sensors. The near-simultaneous earth observations were limited by the smaller swath size of ETM+ (183 km) compared to MODIS (2330 km). Two sets of continuous granules for Terra MODIS and Landsat 7 ETM+ were selected and mosaicked based on pixel geolocation information for noncloudy pixels over the African continent. The matching pixel pairs were resampled from a fine to a coarse pixel resolution, and the at-sensor spectral radiance values for a wide dynamic range of the sensors were compared and analyzed, covering various surface types. The following study focuses on radiometric stability analysis from the VNIR band-pairs of ETM+ and MODIS. The Libya-4 desert target was included in the path of this continuous orbit, which served as a verification point between the short-term and the long-term trending results from previous studies. MODTRAN at-sensor spectral radiance simulation is included for a representative desert surface type to evaluate the consistency of the results.

  17. Branching Ratios for The Radiometric Calibration of EUNIS-2012

    NASA Technical Reports Server (NTRS)

    Daw, Adrian N.; Bhatia, A. K.; Rabin, Douglas M.

    2012-01-01

    The Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS) sounding rocket instrument is a two-channel imaging spectrograph that observes the solar corona and transition region with high spectral resolution and a rapid cadence made possible by unprecedented sensitivity. The upcoming flight will incorporate a new wavelength channel covering the range 524-630 Angstroms, the previously-flown 300-370 Angstroms channel, and the first flight demonstration of cooled active pixel sensor (APS) arrays. The new 524-630 Angstrom channel incorporates a Toroidal Varied Line Space (TVLS) grating coated with B4C/Ir, providing broad spectral coverage and a wide temperature range of 0.025 to 10 MK. Absolute radiometric calibration of the two channels is being performed using a hollow cathode discharge lamp and NIST-calibrated AXUV-100G photodiode. Laboratory observations of He I 584 Angstroms and He II 304 Angstroms provide absolute radiometric calibrations of the two channels at those two respective wavelengths by using the AXUV photodiode as a transfer standard. The spectral responsivity is being determined by observing line pairs with a common upper state in the spectra of Ne I-III and Ar II-III. Calculations of A-values for the observed branching ratios are in progress.

  18. Thermal evolution of a partially differentiated H chondrite parent body

    NASA Astrophysics Data System (ADS)

    Abrahams, J. N. H.; Bryson, J. F. J.; Weiss, B. P.; Nimmo, F.

    2016-12-01

    It has traditionally been assumed that planetesimals either melted entirely or remained completely undifferentiated as they accreted. The unmelted textures and cooling histories of chondrites have been used to argue that these meteorites originated from bodies that never differentiated. However, paleomagnetic measurements indicate that some chondrites (e.g., the H chondrite Portales Valley and several CV chondrites) were magnetized by a core dynamo magnetic field, implying that their parent bodies were partially differentiated. It has been unclear, however, whether planetesimal histories consistent with dynamo production can also be consistent with the diversity of chondrite cooling rates and ages. To address this, we modeled the thermal evolution of the H chondrite parent body, considering a variety of accretion histories and parent body radii. We considered partial differentiation using two-stage accretion involving the initial formation and differentiation of a small body, followed by the later addition of low thermal conductivity chondritic material that remains mostly unmelted. We were able to reproduce the measured thermal evolution of multiple H chondrites for a range of parent body parameters, including initial radii from 70-150 km, chondritic layer thicknesses from 50 km to over 100 km, and second stage accretion times of 2.5-3 Myr after solar system formation. Our predicted rates of core cooling and crystallization are consistent with dynamo generation by compositional convection beginning 60-200 Myr after solar system formation and lasting for at least tens of millions of years. This is consistent with magnetic studies of Portales Valley [Bryson et al., this meeting]. In summary, we find that thermal models of partial differentiation are consistent the radiometric ages, magnetization, and cooling rates of a diversity H chondrites.

  19. Surface roughness estimation by inversion of the Hapke photometric model on optical data simulated using a ray tracing code

    NASA Astrophysics Data System (ADS)

    Champion, J.; Ristorcelli, T.; Ferrari, C. C.; Briottet, X.; Jacquemoud, S.

    2013-12-01

    Surface roughness is a key physical parameter that governs various processes (incident radiation distribution, temperature, erosion,...) on Earth and other Solar System objects. Its impact on the scattering function of incident electromagnetic waves is difficult to model. In the 80's, Hapke provided an approximate analytic solution for the bidirectional reflectance distribution function (BRDF) of a particulate medium and, later on, included the effect of surface roughness as a correction factor for the BRDF of a smooth surface. This analytical radiative transfer model is widely used in solar system science whereas its ability to remotely determine surface roughness is still a question at issue. The validation of the Hapke model has been only occasionally undertaken due to the lack of radiometric data associated with field measurement of surface roughness. We propose to validate it on Earth, on several volcanic terrains for which very high resolution digital elevation models are available at small scale. We simulate the BRDF of these DEMs thanks to a ray-tracing code and fit them with the Hapke model to retrieve surface roughness. The mean slope angle of the facets, which quantifies surface roughness, can be fairly well retrieved when most conditions are met, i.e. a random-like surface and little multiple scattering between the facets. A directional sensitivity analysis of the Hapke model confirms that both surface intrinsic optical properties (facet's reflectance or single scattering albedo) and roughness are the most influential variables on ground BRDFs. Their interactions in some directions explain why their separation may be difficult, unless some constraints are introduced in the inversion process. Simulation of soil surface BRDF at different illumination and viewing angles

  20. Development of a regional bio-optical model for water quality assessment in the US Virgin Islands

    NASA Astrophysics Data System (ADS)

    Kerrigan, Kristi Lisa

    Previous research in the US Virgin Islands (USVI) has demonstrated that land-based sources of pollution associated with watershed development and climate change are local and global factors causing coral reef degradation. A good indicator that can be used to assess stress on these environments is the water quality. Conventional assessment methods based on in situ measurements are timely and costly. Satellite remote sensing techniques offer better spatial coverage and temporal resolution to accurately characterize the dynamic nature of water quality parameters by applying bio-optical models. Chlorophyll-a, suspended sediments (TSM), and colored-dissolved organic matter are color-producing agents (CPAs) that define the water quality and can be measured remotely. However, the interference of multiple optically active constituents that characterize the water column as well as reflectance from the bottom poses a challenge in shallow coastal environments in USVI. In this study, field and laboratory based data were collected from sites on St. Thomas and St. John to characterize the CPAs and bottom reflectance of substrates. Results indicate that the optical properties of these waters are a function of multiple CPAs with chlorophyll-a values ranging from 0.10 to 2.35 microg/L and TSM values from 8.97 to 15.7 mg/L. These data were combined with in situ hyperspectral radiometric and Landsat OLI satellite data to develop a regionally tiered model that can predict CPA concentrations using traditional band ratio and multivariate approaches. Band ratio models for the hyperspectral dataset (R2 = 0.35; RMSE = 0.10 microg/L) and Landsat OLI dataset (R2 = 0.35; RMSE = 0.12 microg/L) indicated promising accuracy. However, a stronger model was developed using a multivariate, partial least squares regression to identify wavelengths that are more sensitive to chlorophyll-a (R2 = 0.62, RMSE = 0.08 microg/L) and TSM (R2 = 0.55). This approach takes advantage of the full spectrum of hyperspectral data, thus providing a more robust predictive model. Models developed in this study will significantly improve near-real time and long-term water quality monitoring in USVI and will provide insight to factors contributing to coral reef decline.

Top