Sample records for radionuclide ischemic perfusion

  1. Evaluation of asymmetries of blood flow rate and of circulation time by intravenous radionuclide cerebral angiography in patients with ischemic completed stroke.

    PubMed

    Bartolini, A; Primavera, A; Gasparetto, B

    1984-12-01

    155 patients with ischemic completed stroke of varying severity and outcome have been evaluated by radionuclide cerebral angiography with analysis of regional time-activity curves. Two parameters have been evaluated: area under the upslope of the curve (Aup) reflecting regional blood flow rate and moment of the whole curve reflecting tracer circulation time (rABCT) Combination of these two methods ensured increased detection of perfusion asymmetries.

  2. ANTONIA perfusion and stroke. A software tool for the multi-purpose analysis of MR perfusion-weighted datasets and quantitative ischemic stroke assessment.

    PubMed

    Forkert, N D; Cheng, B; Kemmling, A; Thomalla, G; Fiehler, J

    2014-01-01

    The objective of this work is to present the software tool ANTONIA, which has been developed to facilitate a quantitative analysis of perfusion-weighted MRI (PWI) datasets in general as well as the subsequent multi-parametric analysis of additional datasets for the specific purpose of acute ischemic stroke patient dataset evaluation. Three different methods for the analysis of DSC or DCE PWI datasets are currently implemented in ANTONIA, which can be case-specifically selected based on the study protocol. These methods comprise a curve fitting method as well as a deconvolution-based and deconvolution-free method integrating a previously defined arterial input function. The perfusion analysis is extended for the purpose of acute ischemic stroke analysis by additional methods that enable an automatic atlas-based selection of the arterial input function, an analysis of the perfusion-diffusion and DWI-FLAIR mismatch as well as segmentation-based volumetric analyses. For reliability evaluation, the described software tool was used by two observers for quantitative analysis of 15 datasets from acute ischemic stroke patients to extract the acute lesion core volume, FLAIR ratio, perfusion-diffusion mismatch volume with manually as well as automatically selected arterial input functions, and follow-up lesion volume. The results of this evaluation revealed that the described software tool leads to highly reproducible results for all parameters if the automatic arterial input function selection method is used. Due to the broad selection of processing methods that are available in the software tool, ANTONIA is especially helpful to support image-based perfusion and acute ischemic stroke research projects.

  3. Differential physiologic effects of perfusion of scala tympani versus scala vestibuli in the ischemic cochlea.

    PubMed

    Kobayashi, T; Rokugo, M; Takasaka, T; Thalmann, R

    1993-07-01

    The effectiveness of perilymphatic perfusion with oxygenated artificial media upon the endocochlear potential (EP) was measured during systemic ischemia in the guinea pig. Differences in the effects of perfusion of the two perilymphatic scalae were determined. Perfusion of scala vestibuli with oxygenated artificial perilymph at a high flow rate resulted in complete recovery of the EP to the pre-ischemic level, whereas perfusion of scala tympani with the same medium was unable to effect complete recovery. The recovery obtained by perfusion of scala tympani was about half that obtained of scala vestibuli. The pO2 in scala media was measured during perfusion by means of oxygen-sensitive microelectrodes. perfusion of scala vestibuli led to an approximately two-fold higher pO2 in scala media than perfusion of scala tympani. During perfusion, the pO2 in scala media varied dependent upon depth of electrode insertion, with a gradient decreasing toward the stria vascularis, a direction opposite to that seen under normal metabolic conditions. These findings suggest that, in the ischemic cochlea, oxygen enters scala media more easily from scala vestibuli across Reissner's membrane than from scala tympani via the basilar membrane/organ of Corti complex.

  4. Optimized retrograde cerebral perfusion reduces ischemic energy depletion.

    PubMed

    Oda, Teiji; Kimura, Tetsuhiro; Ogata, Yoshitaka; Fujise, Yutaka

    2004-01-01

    It has been reported that retrograde cerebral perfusion (RCP) provides minimal capillary flow; however, the extent to which RCP can provide aerobic metabolic support is unknown. We evaluated whether perfusate composition optimization for RCP would preserve brain energy metabolism during hypothermic circulatory arrest (HCA) at 20 degrees C in rats. Three types of perfusates were prepared: hemoglobin-free saline, rat red blood cells, and artificial blood substitute (liposome-encapsulated hemoglobin); perfusates were made hypertonic, cooled to 20 degrees C, and oxygenated and CO(2) was administered (pH-stat management). Circulatory arrest was induced in 24 pH-stat-ventilated Wistar rats that had been surface cooled to 20 degrees C; 18 were assigned to the RCP group in which one of the three ( n = 6 each) perfusates was administered via the maxillary vein, and 6 received no perfusion. In two similarly surface-cooled rats (controls), brains were excised when the temperature reached 20 degrees C. After 20 min of RCP or HCA, brains were excised and immediately frozen; brain high-energy phosphates, adenosine, and water content were measured. The liposome-encapsulated hemoglobin perfusate preserved levels of brain tissue adenosine triphosphates and energy charge, but not significantly better than rat red blood cells. Both maintained significantly higher levels than perfusion with oxygenated saline or hypothermic circulatory arrest alone ( P = 0.0419-0.0001), under which regimes high-energy phosphates and energy charge declined to similar low values. RCP with hypertonic solution prevented brain edema. RCP with optimized composition perfusate (pH-stat, hypertonic rat red blood cells or liposome-encapsulated hemoglobin) reduced ischemic energy depletion during 20 min of HCA at 20 degrees C in rats.

  5. Low dose CT perfusion in acute ischemic stroke.

    PubMed

    Murphy, Amanda; So, Aaron; Lee, Ting-Yim; Symons, Sean; Jakubovic, Raphael; Zhang, Liying; Aviv, Richard I

    2014-12-01

    The purpose of this investigation is to determine if CT perfusion (CTP) measurements at low doses (LD = 20 or 50 mAs) are similar to those obtained at regular doses (RD = 100 mAs), with and without the addition of adaptive statistical iterative reconstruction (ASIR). A single-center, prospective study was performed in patients with acute ischemic stroke (n = 37; 54% male; age = 74 ± 15 years). Two CTP scans were performed on each subject: one at 100 mAs (RD) and one at either 50 or 20 mAs (LD). CTP parameters were compared between the RD and LD scans in regions of ischemia, infarction, and normal tissue. Differences were determined using a within-subjects ANOVA (p < 0.05) followed by a paired t test post hoc analysis (p < 0.01). At 50 mAs, there was no significant difference between cerebral blood flow (CBF), cerebral blood volume (CBV), or time to maximum enhancement (Tmax) values for the RD and LD scans in the ischemic, infarcted, or normal contralateral regions (p < 0.05). At 20 mAs, there were significant differences between the RD and LD scans for all parameters in the ischemic and normal tissue regions (p > 0.05). CTP-derived CBF and CBV are not different at 50 mAs compared to 100 mAs, even without the addition of ASIR. Current CTP protocols can be modified to reduce the effective dose by 50 % without altering CTP measurements.

  6. Tissue-Negative Transient Ischemic Attack: Is There a Role for Perfusion MRI?

    PubMed

    Grams, Raymond W; Kidwell, Chelsea S; Doshi, Amish H; Drake, Kendra; Becker, Jennifer; Coull, Bruce M; Nael, Kambiz

    2016-07-01

    Approximately 60% of patients with a clinical transient ischemic attack (TIA) do not have DWI evidence of cerebral ischemia. The purpose of this study was to assess the added diagnostic value of perfusion MRI in the evaluation of patients with TIA who have normal DWI findings. The inclusion criteria for this retrospective study were clinical presentation of TIA at admission with a discharge diagnosis of TIA confirmed by a stroke neurologist, MRI including both DWI and perfusion-weighted imaging within 48 hours of symptom onset, and no DWI lesion. Cerebral blood flow (CBF) and time to maximum of the residue function (Tmax) maps were evaluated independently by two observers. Multivariate analysis was used to assess perfusion findings; clinical variables; age, blood pressure, clinical symptoms, diabetes (ABCD2) score; duration of TIA; and time between MRI and onset and resolution of symptoms. Fifty-two patients (33 women, 19 men; age range, 20-95 years) met the inclusion criteria. A regional perfusion abnormality was identified on either Tmax or CBF maps of 12 of 52 (23%) patients. Seven (58%) of the patients with perfusion abnormalities had hypoperfused lesions best detected on Tmax maps; the other five had hyperperfusion best detected on CBF maps. In 11 of 12 (92%) patients with abnormal perfusion MRI findings, the regional perfusion deficit correlated with the initial neurologic deficits. Multivariable analysis revealed no significant difference in demographics, ABCD2 scores, or presentation characteristics between patients with and those without perfusion abnormalities. Perfusion MRI that includes Tmax and CBF parametric maps adds diagnostic value by depicting regions with delayed perfusion or postischemic hyperperfusion in approximately one-fourth of TIA patients who have normal DWI findings.

  7. Compromised regulation of tissue perfusion and arteriogenesis limit, in an AT1R-independent fashion, recovery of ischemic tissue in Cx40−/− mice

    PubMed Central

    Fang, Jennifer S.; Angelov, Stoyan N.; Simon, Alexander M.

    2013-01-01

    Recently, we reported that recovery of tissue perfusion in the ischemic hindlimb was reduced, inflammatory response increased, and survival of distal limb tissue compromised in connexin 40 (Cx40)-deficient (Cx40−/−) mice. Here we evaluate whether genotype-specific differences in tissue perfusion, native vascular density, arteriogenesis, blood pressure, and chronic ANG II type 1 receptor (AT1R) activation contribute to poor recovery of ischemic hindlimb tissue in Cx40−/− mice. Hindlimb ischemia was induced in wild-type (WT), Cx40−/−, and losartan-treated Cx40−/− mice by using surgical procedures that either maintained (mild surgery) or compromised (severe surgery) perfusion of major collateral vessels supplying the distal limb. Pre- and postsurgical hindlimb perfusion was evaluated, and tissue survival, microvascular density, and macrophage infiltration were documented during recovery. Hindlimb perfusion was compromised in presurgical Cx40−/− versus WT mice despite comparable native microvascular density. Hindlimb perfusion 24 h postsurgery in Cx40−/− and WT mice was comparable after mild surgery (collateral vessels maintained), but compromised arteriogenesis in Cx40−/− animals nevertheless limited subsequent recovery of tissue perfusion and compromised tissue survival. Prolonged pre- and postsurgical treatment of Cx40−/− mice with losartan (an AT1R antagonist) normalized blood pressure but did not improve tissue perfusion or survival, despite reduced macrophage infiltration. Thus it appears Cx40 is necessary for normal tissue perfusion and for recovery of perfusion, arteriogenesis, and tissue survival in the ischemic hindlimb. Our data suggest that Cx40−/− mice are at significantly greater risk for poor recovery from ischemic insult due to compromised regulation of tissue perfusion, vascular remodeling, and prolonged inflammatory response. PMID:23292716

  8. The Five Ps of Acute Ischemic Stroke Treatment: Parenchyma, Pipes, Perfusion, Penumbra, and Prevention of Complications

    PubMed Central

    Felberg, Robert A.; Naidech, Andrew

    2003-01-01

    Stroke is a treatable disease. Despite the therapeutic nihilism of the past, the advent of thrombolysis has changed the way stroke treatment is approached. Acute ischemic stroke is a challenging and heterogeneous disease, and treatment must be based on an understanding of the underlying pathophysiology of ischemia. Interventions are designed to improve neuronal salvage and outcome. The underlying tenets of stroke therapy focus on the brain parenchyma, arterial flow (pipes), perfusion, the ischemic milieu or penumbra, and prevention of complications. This article focuses on the practical issues of ischemic stroke care with a brief review of supporting literature. PMID:22470250

  9. Ischemic Volume and Neurological Deficit: Correlation of Computed Tomography Perfusion with the National Institutes of Health Stroke Scale Score in Acute Ischemic Stroke.

    PubMed

    Furlanis, Giovanni; Ajčević, Miloš; Stragapede, Lara; Lugnan, Carlo; Ridolfi, Mariana; Caruso, Paola; Naccarato, Marcello; Ukmar, Maja; Manganotti, Paolo

    2018-04-30

    The National Institutes of Health Stroke Scale (NIHSS) is the most adopted stroke patients' evaluation tool in emergency settings to assess the severity of stroke and to determine the patients' eligibility for specific treatments. Computed tomography perfusion (CTP) is crucial to identify salvageable tissue that can benefit from the reperfusion treatment. The aim of this study is to identify the relation between the NIHSS scores and the hypoperfused volumes evaluated by CTP in patients with hyperacute ischemic stroke. This retrospective study was conducted on 105 patients with ischemic stroke who underwent NIHSS assessment and CTP in the hyperacute phase. Hypoperfused volume was evaluated by CTP maps processed with semi-automatic algorithm. An analysis was conducted to determine the degree of correlation between the NIHSS scores and the ischemic lesion volumes and to investigate the relation between the anterior and the posterior circulation strokes, as well as between the right and the left hemispheric strokes. A significant correlation was found between ischemic volume and NIHSS score at baseline (r = .82; P < .0001) in the entire cohort. A high NIHSS-volume correlation was identified in the anterior circulation stroke (r = .76; P < .0001); whereas, it was nonsignificant in the posterior circulation stroke. NIHSS score and volume correlated for the left and the right hemispheric strokes (r = .83 and .81; P < .0001), showing a slightly higher slope in the left. This study showed a strong correlation between the baseline NIHSS score and the ischemic volume estimated by CTP. We confirmed that NIHSS is a reliable predictor of perfusion deficits in acute ischemic stroke. CTP allows fast imaging assessment in the hyperacute phase. The results highlight the importance of these diagnostic tools in the assessment of stroke severity and in acute decision-making. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights

  10. Effect of non-invasive remote ischemic preconditioning on intra-renal perfusion in volunteers.

    PubMed

    Robert, René; Vinet, Mathieu; Jamet, Angéline; Coudroy, Rémi

    2017-06-01

    Remote ischemic preconditioning may attenuate renal injury and protect the kidney during subsequent inflammatory or ischemic stress. However, the mechanism of such a protection is not well understood. The aim of this study was to investigate the impact of remote ischemic preconditioning on renal resistivity index (RRI) in nine healthy volunteers. In six volunteers, four cycles of 4-min inflation of a blood pressure cuff were applied to one upper arm, followed by 4-min reperfusion with the cuff deflated. RRI was determined using Doppler echography during each cuff deflated period. Measures were also performed in three volunteers without preconditioning. The median value of RRI significantly decreased progressively from 0.59 [0.53-0.62] before the remote conditioning (baseline) to 0.49 [0.46-0.53] at the end of the experiment (p < 0.001) whereas there was no change in controls. In this study, for the first time, we have clearly shown in a small group of subjects that remote ischemic preconditioning can induce a significantly decrease in RRI through increased intra-renal perfusion.

  11. Magnetic resonance diffusion-perfusion mismatch in acute ischemic stroke: An update

    PubMed Central

    Chen, Feng; Ni, Yi-Cheng

    2012-01-01

    The concept of magnetic resonance perfusion-diffusion mismatch (PDM) provides a practical and approximate measure of the tissue at risk and has been increasingly applied for the evaluation of hyperacute and acute stroke in animals and patients. Recent studies demonstrated that PDM does not optimally define the ischemic penumbra; because early abnormality on diffusion-weighted imaging overestimates the infarct core by including part of the penumbra, and the abnormality on perfusion weighted imaging overestimates the penumbra by including regions of benign oligemia. To overcome these limitations, many efforts have been made to optimize conventional PDM. Various alternatives beyond the PDM concept are under investigation in order to better define the penumbra. The PDM theory has been applied in ischemic stroke for at least three purposes: to be used as a practical selection tool for stroke treatment; to test the hypothesis that patients with PDM pattern will benefit from treatment, while those without mismatch pattern will not; to be a surrogate measure for stroke outcome. The main patterns of PDM and its relation with clinical outcomes were also briefly reviewed. The conclusion was that patients with PDM documented more reperfusion, reduced infarct growth and better clinical outcomes compared to patients without PDM, but it was not yet clear that thrombolytic therapy is beneficial when patients were selected on PDM. Studies based on a larger cohort are currently under investigation to further validate the PDM hypothesis. PMID:22468186

  12. Ventilation and perfusion imaging by electrical impedance tomography: a comparison with radionuclide scanning.

    PubMed

    Kunst, P W; Vonk Noordegraaf, A; Hoekstra, O S; Postmus, P E; de Vries, P M

    1998-11-01

    Electrical impedance tomography (EIT) is a technique that makes it possible to measure ventilation and pulmonary perfusion in a volume that approximates to a 2D plane. The possibility of using EIT for measuring the left-right division of ventilation and perfusion was compared with that of radionuclide imaging. Following routine ventilation (81mKr) and perfusion scanning (99mTc-MAA), EIT measurements were performed at the third and the sixth intercostal level in 14 patients with lung cancer. A correlation (r = 0.98, p < 0.005) between the left-right division for the ventilation measured with EIT and that with 81mKr was found. For the left-right division of pulmonary perfusion a correlation of 0.95 (p < 0.005) was found between the two methods. The reliability coefficient (RC) was calculated for estimating the left-right division with EIT. The RC for the ventilation measurements was 94% and 96% for the perfusion measurements. The correlation analysis for reproducibility of the EIT measurements was 0.95 (p < 0.001) for the ventilation and 0.93 (p < 0.001) for the perfusion measurements. In conclusion, EIT can be regarded as a promising technique to estimate the left-right division of pulmonary perfusion and ventilation.

  13. Clinical Use of CT Perfusion For Diagnosis and Prediction of Lesion Growth in Acute Ischemic Stroke

    PubMed Central

    Huisa, Branko N; Neil, William P; Schrader, Ronald; Maya, Marcel; Pereira, Benedict; Bruce, Nhu T; Lyden, Patrick D

    2012-01-01

    Background and Purpose CT perfusion (CTP) mapping in research centers correlates well with diffusion weighted imaging (DWI) lesions and may accurately differentiate the infarct core from ischemic penumbra. The value of CTP in real-world clinical practice has not been fully established. We investigated the yield of CTP– derived cerebral blood volume (CBV) and mean transient time (MTT) for the detection of cerebral ischemia and ischemic penumbra in a sample of acute ischemic stroke (AIS) patients. Methods We studied 165 patients with initial clinical symptoms suggestive of AIS. All patients had an initial non-contrast head CT, CT Perfusion (CTP), CT angiogram (CTA) and follow up brain MRI. The obtained perfusion images were used for image processing. CBV, MTT and DWI lesion volumes were visually estimated and manually traced. Statistical analysis was done using R-2.14.and SAS 9.1. Results All normal DWI sequences had normal CBV and MTT studies (N=89). Seventy-three patients had acute DWI lesions. CBV was abnormal in 23.3% and MTT was abnormal in 42.5% of these patients. There was a high specificity (91.8%)but poor sensitivity (40.0%) for MTT maps predicting positive DWI. Spearman correlation was significant between MTT and DWI lesions (ρ=0.66, p>0.0001) only for abnormal MTT and DWI lesions>0cc. CBV lesions did not correlate with final DWI. Conclusions In real-world use, acute imaging with CTP did not predict stroke or DWI lesions with sufficient accuracy. Our findings argue against the use of CTP for screening AIS patients until real-world implementations match the accuracy reported from specialized research centers. PMID:23253533

  14. Renal perfusion scintiscan

    MedlinePlus

    ... Radionuclide renal perfusion scan; Perfusion scintiscan - renal; Scintiscan - renal perfusion Images Kidney anatomy Kidney - blood and urine flow Intravenous pyelogram References Rottenberg G, Andi AC. Renal ...

  15. Myocardial Perfusion Pattern for Stratification of Ischemic Mitral Regurgitation Response to Percutaneous Coronary Intervention

    PubMed Central

    Goyal, Parag; Kim, Jiwon; Feher, Attila; Ma, Claudia L.; Gurevich, Sergey; Veal, David R.; Szulc, Massimiliano; Wong, Franklin J.; Ratcliffe, Mark B.; Levine, Robert A.; Devereux, Richard B.; Weinsaft, Jonathan W.

    2015-01-01

    Objective Ischemic mitral regurgitation (MR) is common, but its response to percutaneous coronary intervention (PCI) is poorly understood. This study tested utility of myocardial perfusion imaging (MPI) for stratification of MR response to PCI. Methods MPI and echo were performed among patients undergoing PCI. MPI was used to assess stress/rest myocardial perfusion. MR was assessed via echo (performed pre- and post-PCI). Results 317 patients with abnormal myocardial perfusion on MPI underwent echo 25±39 days prior to PCI. MR was present in 52%, among whom 24% had advanced (≥moderate) MR. MR was associated with LV chamber dilation on MPI and echo (both p<0.001). Magnitude of global LV perfusion deficits increased in relation to MR severity (p<0.01). Perfusion differences were greatest for global summed rest scores, which were 1.6-fold higher among patients with advanced MR vs. those with mild MR (p=0.004), and 2.4-fold higher vs. those without MR (p<0.001). In multivariate analysis, advanced MR was associated with fixed perfusion defect size on MPI (OR 1.16 per segment [CI 1.002–1.34], p=0.046) independent of LV volume (OR 1.10 per 10ml [CI 1.04–1.17], p=0.002). Follow-up via echo (1.0±0.6 years) demonstrated MR to decrease (≥1 grade) in 31% of patients, and increase in 12%. Patients with increased MR after PCI had more severe inferior perfusion defects on baseline MPI (p=0.028), whereas defects in other distributions and LV volumes were similar (p=NS). Conclusions Extent and distribution of SPECT-evidenced myocardial perfusion defects impacts MR response to revascularization. Increased magnitude of inferior fixed perfusion defects predicts post-PCI progression of MR. PMID:26049923

  16. Unilateral nephrectomy diminishes ischemic acute kidney injury through enhanced perfusion and reduced pro-inflammatory and pro-fibrotic responses

    PubMed Central

    Qi, Haiyun; Damgaard, Mads; Laustsen, Christoffer; Pedersen, Michael; Krag, Søren; Birn, Henrik; Nørregaard, Rikke; Jespersen, Bente

    2017-01-01

    While unilateral nephrectomy (UNx) is suggested to protect against ischemia-reperfusion injury (IRI) in the remaining kidney, the mechanisms underlying this protection remain to be elucidated. In this study, functional MRI was employed in a renal IRI rat model to reveal global and regional changes in renal filtration, perfusion, oxygenation and sodium handling, and microarray and pathway analyses were conducted to identify protective molecular mechanisms. Wistar rats were randomized to either UNx or sham UNx immediately prior to 37 minutes of unilateral renal artery clamping or sham operation under sevoflurane anesthesia. MRI was performed 24 hours after reperfusion. Blood and renal tissue were harvested. RNA was isolated for microarray analysis and QPCR validation of gene expression results. The perfusion (T1 value) was significantly enhanced in the medulla of the post-ischemic kidney following UNx. UNx decreased the expression of fibrogenic genes, i.a. Col1a1, Fn1 and Tgfb1 in the post-ischemic kidney. This was associated with a marked decrease in markers of activated myofibroblasts (Acta2/α-Sma and Cdh11) and macrophages (Ccr2). This was most likely facilitated by down-regulation of Pdgfra, thus inhibiting pericyte-myofibroblast differentiation, chemokine production (Ccl2/Mcp1) and macrophage infiltration. UNx reduced ischemic histopathologic injury. UNx may exert renoprotective effects against IRI through increased perfusion in the renal medulla and alleviation of the acute pro-inflammatory and pro-fibrotic responses possibly through decreased myofibroblast activation. The identified pathways involved may serve as potential therapeutic targets and should be taken into account in experimental models of IRI. PMID:29267404

  17. Value of Computed Tomographic Perfusion-Based Patient Selection for Intra-Arterial Acute Ischemic Stroke Treatment.

    PubMed

    Borst, Jordi; Berkhemer, Olvert A; Roos, Yvo B W E M; van Bavel, Ed; van Zwam, Wim H; van Oostenbrugge, Robert J; van Walderveen, Marianne A A; Lingsma, Hester F; van der Lugt, Aad; Dippel, Diederik W J; Yoo, Albert J; Marquering, Henk A; Majoie, Charles B L M

    2015-12-01

    The utility of computed tomographic perfusion (CTP)-based patient selection for intra-arterial treatment of acute ischemic stroke has not been proven in randomized trials and requires further study in a cohort that was not selected based on CTP. Our objective was to study the relationship between CTP-derived parameters and outcome and treatment effect in patients with acute ischemic stroke because of a proximal intracranial arterial occlusion. We included 175 patients who underwent CTP in the Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in The Netherlands (MR CLEAN). Association of CTP-derived parameters (ischemic-core volume, penumbra volume, and percentage ischemic core) with outcome was estimated with multivariable ordinal logistic regression as an adjusted odds ratio for a shift in the direction of a better outcome on the modified Rankin Scale. Interaction between CTP-derived parameters and treatment effect was determined using multivariable ordinal logistic regression. Interaction with treatment effect was also tested for mismatch (core <70 mL; penumbra core >1.2; penumbra core >10 mL). The adjusted odds ratio for improved functional outcome for ischemic core, percentage ischemic core, and penumbra were 0.79 per 10 mL (95% confidence interval: 0.71-0.89; P<0.001), 0.82 per 10% (95% confidence interval: 0.66-0.90; P=0.002), and 0.97 per 10 mL (96% confidence interval: 0.92-1.01; P=0.15), respectively. No significant interaction between any of the CTP-derived parameters and treatment effect was observed. We observed no significant interaction between mismatch and treatment effect. CTP seems useful for predicting functional outcome, but cannot reliably identify patients who will not benefit from intra-arterial therapy. © 2015 American Heart Association, Inc.

  18. Intravenous thrombolysis in ischemic stroke with unknown onset using CT perfusion.

    PubMed

    Cortijo, E; García-Bermejo, P; Calleja, A I; Pérez-Fernández, S; Gómez, R; del Monte, J M; Reyes, J; Arenillas, J F

    2014-03-01

    Acute ischemic stroke patients with unclear onset time presenting >4.5 h from last-seen-normal (LSN) time are considered late patients and excluded from i.v. thrombolysis. We aimed to evaluate whether this subgroup of patients is different from patients presenting >4.5 h from a witnessed onset, in terms of eligibility and response to computed tomography perfusion (CTP)-guided i.v. thrombolysis. We prospectively studied consecutive acute non-lacunar middle cerebral artery (MCA) ischemic stroke patients presenting >4.5 h from LSN. All patients underwent multimodal CT and were considered eligible for i.v. thrombolysis according to CTP criteria. Two patient groups were established based on the knowledge of the stroke onset time. We compared the proportion of candidates suitable for intravenous thrombolysis between both groups, and their outcome after thrombolytic therapy. Among 147 MCA ischemic stroke patients presenting >4.5 h from LSN, stroke onset was witnessed in 74 and unknown in 73. Thirty-seven (50%) patients in the first group and 32 (44%) in the second met CTP criteria for thrombolysis (P = 0.7). Baseline variables were comparable between both groups with the exception of age, which was higher in the unclear onset group. The rates of early neurological improvement (54.1% vs 46.9%), 2-h MCA recanalization (43.5% vs 37%), symptomatic hemorrhagic transformation (3% vs 0%) and good 3-month functional outcome (62.2% vs 56.3%) did not differ significantly between both groups. Delayed stroke patients with unknown onset time were no different than patients >4.5 h regarding eligibility and response to CTP-based i.v. thrombolysis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Prognostic Value of Quantitative Stress Perfusion Cardiac Magnetic Resonance.

    PubMed

    Sammut, Eva C; Villa, Adriana D M; Di Giovine, Gabriella; Dancy, Luke; Bosio, Filippo; Gibbs, Thomas; Jeyabraba, Swarna; Schwenke, Susanne; Williams, Steven E; Marber, Michael; Alfakih, Khaled; Ismail, Tevfik F; Razavi, Reza; Chiribiri, Amedeo

    2018-05-01

    This study sought to evaluate the prognostic usefulness of visual and quantitative perfusion cardiac magnetic resonance (CMR) ischemic burden in an unselected group of patients and to assess the validity of consensus-based ischemic burden thresholds extrapolated from nuclear studies. There are limited data on the prognostic value of assessing myocardial ischemic burden by CMR, and there are none using quantitative perfusion analysis. Patients with suspected coronary artery disease referred for adenosine-stress perfusion CMR were included (n = 395; 70% male; age 58 ± 13 years). The primary endpoint was a composite of cardiovascular death, nonfatal myocardial infarction, aborted sudden death, and revascularization after 90 days. Perfusion scans were assessed visually and with quantitative analysis. Cross-validated Cox regression analysis and net reclassification improvement were used to assess the incremental prognostic value of visual or quantitative perfusion analysis over a baseline clinical model, initially as continuous covariates, then using accepted thresholds of ≥2 segments or ≥10% myocardium. After a median 460 days (interquartile range: 190 to 869 days) follow-up, 52 patients reached the primary endpoint. At 2 years, the addition of ischemic burden was found to increase prognostic value over a baseline model of age, sex, and late gadolinium enhancement (baseline model area under the curve [AUC]: 0.75; visual AUC: 0.84; quantitative AUC: 0.85). Dichotomized quantitative ischemic burden performed better than visual assessment (net reclassification improvement 0.043 vs. 0.003 against baseline model). This study was the first to address the prognostic benefit of quantitative analysis of perfusion CMR and to support the use of consensus-based ischemic burden thresholds by perfusion CMR for prognostic evaluation of patients with suspected coronary artery disease. Quantitative analysis provided incremental prognostic value to visual assessment and

  20. New Trends in Radionuclide Myocardial Perfusion Imaging

    PubMed Central

    Hung, Guang-Uei; Wang, Yuh-Feng; Su, Hung-Yi; Hsieh, Te-Chun; Ko, Chi-Lun; Yen, Ruoh-Fang

    2016-01-01

    Radionuclide myocardial perfusion imaging (MPI) with single photon emission computed tomography (SPECT) has been widely used clinically as one of the major functional imaging modalities for patients with coronary artery disease (CAD) for decades. Ample evidence has supported the use of MPI as a useful and important tool in the diagnosis, risk stratification and treatment planning for CAD. Although popular in the United States, MPI has become the most frequently used imaging modality among all nuclear medicine tests in Taiwan. However, it should be acknowledged that MPI SPECT does have its limitations. These include false-positive results due to certain artifacts, false-negative due to balanced ischemia, complexity and adverse reaction arising from current pharmacological stressors, time consuming nature of the imaging procedure, no blood flow quantitation and relatively high radiation exposure. The purpose of this article was to review the recent trends in nuclear cardiology, including the utilization of positron emission tomography (PET) for MPI, new stressor, new SPECT camera with higher resolution and higher sensitivity, dynamic SPECT protocol for blood flow quantitation, new software of phase analysis for evaluation of LV dyssynchrony, and measures utilized for reducing radiation exposure of MPI. PMID:27122946

  1. Fractal analysis of the ischemic transition region in chronic ischemic heart disease using magnetic resonance imaging.

    PubMed

    Michallek, Florian; Dewey, Marc

    2017-04-01

    To introduce a novel hypothesis and method to characterise pathomechanisms underlying myocardial ischemia in chronic ischemic heart disease by local fractal analysis (FA) of the ischemic myocardial transition region in perfusion imaging. Vascular mechanisms to compensate ischemia are regulated at various vascular scales with their superimposed perfusion pattern being hypothetically self-similar. Dedicated FA software ("FraktalWandler") has been developed. Fractal dimensions during first-pass (FD first-pass ) and recirculation (FD recirculation ) are hypothesised to indicate the predominating pathomechanism and ischemic severity, respectively. Twenty-six patients with evidence of myocardial ischemia in 108 ischemic myocardial segments on magnetic resonance imaging (MRI) were analysed. The 40th and 60th percentiles of FD first-pass were used for pathomechanical classification, assigning lesions with FD first-pass  ≤ 2.335 to predominating coronary microvascular dysfunction (CMD) and ≥2.387 to predominating coronary artery disease (CAD). Optimal classification point in ROC analysis was FD first-pass  = 2.358. FD recirculation correlated moderately with per cent diameter stenosis in invasive coronary angiography in lesions classified CAD (r = 0.472, p = 0.001) but not CMD (r = 0.082, p = 0.600). The ischemic transition region may provide information on pathomechanical composition and severity of myocardial ischemia. FA of this region is feasible and may improve diagnosis compared to traditional noninvasive myocardial perfusion analysis. • A novel hypothesis and method is introduced to pathophysiologically characterise myocardial ischemia. • The ischemic transition region appears a meaningful diagnostic target in perfusion imaging. • Fractal analysis may characterise pathomechanical composition and severity of myocardial ischemia.

  2. High frequency QRS ECG predicts ischemic defects during myocardial perfusion imaging

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Changes in high frequency QRS components of the electrocardiogram (HF QRS ECG) (150-250 Hz) are more sensitive than changes in conventional ST segments for detecting myocardial ischemia. We investigated the accuracy of 12-lead HF QRS ECG in detecting ischemia during adenosine tetrofosmin myocardial perfusion imaging (MPI). 12-lead HF QRS ECG recordings were obtained from 45 patients before and during adenosine technetium-99 tetrofosmin MPI tests. Before the adenosine infusions, recordings of HF QRS were analyzed according to a morphological score that incorporated the number, type and location of reduced amplitude zones (RAZs) present in the 12 leads. During the adenosine infusions, recordings of HF QRS were analyzed according to the maximum percentage changes (in both the positive and negative directions) that occurred in root mean square (RMS) voltage amplitudes within the 12 leads. The best set of prospective HF QRS criteria had a sensitivity of 94% and a specificity of 83% for correctly identifying the MPI result. The sensitivity of simultaneous ST segment changes (18%) was significantly lower than that of any individual HF QRS criterion (P less than 0.00l). Analysis of 12-lead HF QRS ECG is highly sensitive and specific for detecting ischemic perfusion defects during adenosine MPI stress tests and significantly more sensitive than analysis of conventional ST segments.

  3. High frequency QRS ECG predicts ischemic defects during myocardial perfusion imaging

    NASA Technical Reports Server (NTRS)

    Rahman, Atiar

    2006-01-01

    Background: Changes in high frequency QRS components of the electrocardiogram (HF QRS ECG) (150-250 Hz) are more sensitive than changes in conventional ST segments for detecting myocardial ischemia. We investigated the accuracy of 12-lead HF QRS ECG in detecting ischemia during adenosine tetrofosmin myocardial perfusion imaging (MPI). Methods and Results: 12-lead HF QRS ECG recordings were obtained from 45 patients before and during adenosine technetium-99 tetrofosmin MPI tests. Before the adenosine infusions, recordings of HF QRS were analyzed according to a morphological score that incorporated the number, type and location of reduced amplitude zones (RAZs) present in the 12 leads. During the adenosine infusions, recordings of HF QRS were analyzed according to the maximum percentage changes (in both the positive and negative directions) that occurred in root mean square (RMS) voltage amplitudes within the 12 leads. The best set of prospective HF QRS criteria had a sensitivity of 94% and a specificity of 83% for correctly identifying the MPI result. The sensitivity of simultaneous ST segment changes (18%) was significantly lower than that of any individual HF QRS criterion (P<0.001). Conclusions: Analysis of 12-lead HF QRS ECG is highly sensitive and specific for detecting ischemic perfusion defects during adenosine MPI stress tests and significantly more sensitive than analysis of conventional ST segments.

  4. Neurovascular regulation in the ischemic brain.

    PubMed

    Jackman, Katherine; Iadecola, Costantino

    2015-01-10

    The brain has high energetic requirements and is therefore highly dependent on adequate cerebral blood supply. To compensate for dangerous fluctuations in cerebral perfusion, the circulation of the brain has evolved intrinsic safeguarding measures. The vascular network of the brain incorporates a high degree of redundancy, allowing the redirection and redistribution of blood flow in the event of vascular occlusion. Furthermore, active responses such as cerebral autoregulation, which acts to maintain constant cerebral blood flow in response to changing blood pressure, and functional hyperemia, which couples blood supply with synaptic activity, allow the brain to maintain adequate cerebral perfusion in the face of varying supply or demand. In the presence of stroke risk factors, such as hypertension and diabetes, these protective processes are impaired and the susceptibility of the brain to ischemic injury is increased. One potential mechanism for the increased injury is that collateral flow arising from the normally perfused brain and supplying blood flow to the ischemic region is suppressed, resulting in more severe ischemia. Approaches to support collateral flow may ameliorate the outcome of focal cerebral ischemia by rescuing cerebral perfusion in potentially viable regions of the ischemic territory.

  5. Toward fully automated processing of dynamic susceptibility contrast perfusion MRI for acute ischemic cerebral stroke.

    PubMed

    Kim, Jinsuh; Leira, Enrique C; Callison, Richard C; Ludwig, Bryan; Moritani, Toshio; Magnotta, Vincent A; Madsen, Mark T

    2010-05-01

    We developed fully automated software for dynamic susceptibility contrast (DSC) MR perfusion-weighted imaging (PWI) to efficiently and reliably derive critical hemodynamic information for acute stroke treatment decisions. Brain MR PWI was performed in 80 consecutive patients with acute nonlacunar ischemic stroke within 24h after onset of symptom from January 2008 to August 2009. These studies were automatically processed to generate hemodynamic parameters that included cerebral blood flow and cerebral blood volume, and the mean transit time (MTT). To develop reliable software for PWI analysis, we used computationally robust algorithms including the piecewise continuous regression method to determine bolus arrival time (BAT), log-linear curve fitting, arrival time independent deconvolution method and sophisticated motion correction methods. An optimal arterial input function (AIF) search algorithm using a new artery-likelihood metric was also developed. Anatomical locations of the automatically determined AIF were reviewed and validated. The automatically computed BAT values were statistically compared with estimated BAT by a single observer. In addition, gamma-variate curve-fitting errors of AIF and inter-subject variability of AIFs were analyzed. Lastly, two observes independently assessed the quality and area of hypoperfusion mismatched with restricted diffusion area from motion corrected MTT maps and compared that with time-to-peak (TTP) maps using the standard approach. The AIF was identified within an arterial branch and enhanced areas of perfusion deficit were visualized in all evaluated cases. Total processing time was 10.9+/-2.5s (mean+/-s.d.) without motion correction and 267+/-80s (mean+/-s.d.) with motion correction on a standard personal computer. The MTT map produced with our software adequately estimated brain areas with perfusion deficit and was significantly less affected by random noise of the PWI when compared with the TTP map. Results of image

  6. Neurovascular Regulation in the Ischemic Brain

    PubMed Central

    Jackman, Katherine

    2015-01-01

    Abstract Significance: The brain has high energetic requirements and is therefore highly dependent on adequate cerebral blood supply. To compensate for dangerous fluctuations in cerebral perfusion, the circulation of the brain has evolved intrinsic safeguarding measures. Recent Advances and Critical Issues: The vascular network of the brain incorporates a high degree of redundancy, allowing the redirection and redistribution of blood flow in the event of vascular occlusion. Furthermore, active responses such as cerebral autoregulation, which acts to maintain constant cerebral blood flow in response to changing blood pressure, and functional hyperemia, which couples blood supply with synaptic activity, allow the brain to maintain adequate cerebral perfusion in the face of varying supply or demand. In the presence of stroke risk factors, such as hypertension and diabetes, these protective processes are impaired and the susceptibility of the brain to ischemic injury is increased. One potential mechanism for the increased injury is that collateral flow arising from the normally perfused brain and supplying blood flow to the ischemic region is suppressed, resulting in more severe ischemia. Future Directions: Approaches to support collateral flow may ameliorate the outcome of focal cerebral ischemia by rescuing cerebral perfusion in potentially viable regions of the ischemic territory. Antioxid. Redox Signal. 22, 149–160. PMID:24328757

  7. Automated prediction of tissue outcome after acute ischemic stroke in computed tomography perfusion images

    NASA Astrophysics Data System (ADS)

    Vos, Pieter C.; Bennink, Edwin; de Jong, Hugo; Velthuis, Birgitta K.; Viergever, Max A.; Dankbaar, Jan Willem

    2015-03-01

    Assessment of the extent of cerebral damage on admission in patients with acute ischemic stroke could play an important role in treatment decision making. Computed tomography perfusion (CTP) imaging can be used to determine the extent of damage. However, clinical application is hindered by differences among vendors and used methodology. As a result, threshold based methods and visual assessment of CTP images has not yet shown to be useful in treatment decision making and predicting clinical outcome. Preliminary results in MR studies have shown the benefit of using supervised classifiers for predicting tissue outcome, but this has not been demonstrated for CTP. We present a novel method for the automatic prediction of tissue outcome by combining multi-parametric CTP images into a tissue outcome probability map. A supervised classification scheme was developed to extract absolute and relative perfusion values from processed CTP images that are summarized by a trained classifier into a likelihood of infarction. Training was performed using follow-up CT scans of 20 acute stroke patients with complete recanalization of the vessel that was occluded on admission. Infarcted regions were annotated by expert neuroradiologists. Multiple classifiers were evaluated in a leave-one-patient-out strategy for their discriminating performance using receiver operating characteristic (ROC) statistics. Results showed that a RandomForest classifier performed optimally with an area under the ROC of 0.90 for discriminating infarct tissue. The obtained results are an improvement over existing thresholding methods and are in line with results found in literature where MR perfusion was used.

  8. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision.

    PubMed

    Verberne, Hein J; Acampa, Wanda; Anagnostopoulos, Constantinos; Ballinger, Jim; Bengel, Frank; De Bondt, Pieter; Buechel, Ronny R; Cuocolo, Alberto; van Eck-Smit, Berthe L F; Flotats, Albert; Hacker, Marcus; Hindorf, Cecilia; Kaufmann, Philip A; Lindner, Oliver; Ljungberg, Michael; Lonsdale, Markus; Manrique, Alain; Minarik, David; Scholte, Arthur J H A; Slart, Riemer H J A; Trägårdh, Elin; de Wit, Tim C; Hesse, Birger

    2015-11-01

    Since the publication of the European Association of Nuclear Medicine (EANM) procedural guidelines for radionuclide myocardial perfusion imaging (MPI) in 2005, many small and some larger steps of progress have been made, improving MPI procedures. In this paper, the major changes from the updated 2015 procedural guidelines are highlighted, focusing on the important changes related to new instrumentation with improved image information and the possibility to reduce radiation exposure, which is further discussed in relation to the recent developments of new International Commission on Radiological Protection (ICRP) models. Introduction of the selective coronary vasodilator regadenoson and the use of coronary CT-contrast agents for hybrid imaging with SPECT/CT angiography are other important areas for nuclear cardiology that were not included in the previous guidelines. A large number of minor changes have been described in more detail in the fully revised version available at the EANM home page: http://eanm.org/publications/guidelines/2015_07_EANM_FINAL_myocardial_perfusion_guideline.pdf .

  9. Is there more valuable information in PWI datasets for a voxel-wise acute ischemic stroke tissue outcome prediction than what is represented by typical perfusion maps?

    NASA Astrophysics Data System (ADS)

    Forkert, Nils Daniel; Siemonsen, Susanne; Dalski, Michael; Verleger, Tobias; Kemmling, Andre; Fiehler, Jens

    2014-03-01

    The acute ischemic stroke is a leading cause for death and disability in the industry nations. In case of a present acute ischemic stroke, the prediction of the future tissue outcome is of high interest for the clinicians as it can be used to support therapy decision making. Within this context, it has already been shown that the voxel-wise multi-parametric tissue outcome prediction leads to more promising results compared to single channel perfusion map thresholding. Most previously published multi-parametric predictions employ information from perfusion maps derived from perfusion-weighted MRI together with other image sequences such as diffusion-weighted MRI. However, it remains unclear if the typically calculated perfusion maps used for this purpose really include all valuable information from the PWI dataset for an optimal tissue outcome prediction. To investigate this problem in more detail, two different methods to predict tissue outcome using a k-nearest-neighbor approach were developed in this work and evaluated based on 18 datasets of acute stroke patients with known tissue outcome. The first method integrates apparent diffusion coefficient and perfusion parameter (Tmax, MTT, CBV, CBF) information for the voxel-wise prediction, while the second method employs also apparent diffusion coefficient information but the complete perfusion information in terms of the voxel-wise residue functions instead of the perfusion parameter maps for the voxel-wise prediction. Overall, the comparison of the results of the two prediction methods for the 18 patients using a leave-one-out cross validation revealed no considerable differences. Quantitatively, the parameter-based prediction of tissue outcome led to a mean Dice coefficient of 0.474, while the prediction using the residue functions led to a mean Dice coefficient of 0.461. Thus, it may be concluded from the results of this study that the perfusion parameter maps typically derived from PWI datasets include all

  10. Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke

    NASA Astrophysics Data System (ADS)

    Steinkellner, Oliver; Gruber, Clemens; Wabnitz, Heidrun; Jelzow, Alexander; Steinbrink, Jens; Fiebach, Jochen B.; MacDonald, Rainer; Obrig, Hellmuth

    2010-11-01

    We present results of a clinical study on bedside perfusion monitoring of the human brain by optical bolus tracking. We measure the kinetics of the contrast agent indocyanine green using time-domain near-IR spectroscopy (tdNIRS) in 10 patients suffering from acute unilateral ischemic stroke. In all patients, a delay of the bolus over the affected when compared to the unaffected hemisphere is found (mean: 1.5 s, range: 0.2 s to 5.2 s). A portable time-domain near-IR reflectometer is optimized and approved for clinical studies. Data analysis based on statistical moments of time-of-flight distributions of diffusely reflected photons enables high sensitivity to intracerebral changes in bolus kinetics. Since the second centralized moment, variance, is preferentially sensitive to deep absorption changes, it provides a suitable representation of the cerebral signals relevant for perfusion monitoring in stroke. We show that variance-based bolus tracking is also less susceptible to motion artifacts, which often occur in severely affected patients. We present data that clearly manifest the applicability of the tdNIRS approach to assess cerebral perfusion in acute stroke patients at the bedside. This may be of high relevance to its introduction as a monitoring tool on stroke units.

  11. Temporal similarity perfusion mapping: A standardized and model-free method for detecting perfusion deficits in stroke

    PubMed Central

    Song, Sunbin; Luby, Marie; Edwardson, Matthew A.; Brown, Tyler; Shah, Shreyansh; Cox, Robert W.; Saad, Ziad S.; Reynolds, Richard C.; Glen, Daniel R.; Cohen, Leonardo G.; Latour, Lawrence L.

    2017-01-01

    Introduction Interpretation of the extent of perfusion deficits in stroke MRI is highly dependent on the method used for analyzing the perfusion-weighted signal intensity time-series after gadolinium injection. In this study, we introduce a new model-free standardized method of temporal similarity perfusion (TSP) mapping for perfusion deficit detection and test its ability and reliability in acute ischemia. Materials and methods Forty patients with an ischemic stroke or transient ischemic attack were included. Two blinded readers compared real-time generated interactive maps and automatically generated TSP maps to traditional TTP/MTT maps for presence of perfusion deficits. Lesion volumes were compared for volumetric inter-rater reliability, spatial concordance between perfusion deficits and healthy tissue and contrast-to-noise ratio (CNR). Results Perfusion deficits were correctly detected in all patients with acute ischemia. Inter-rater reliability was higher for TSP when compared to TTP/MTT maps and there was a high similarity between the lesion volumes depicted on TSP and TTP/MTT (r(18) = 0.73). The Pearson's correlation between lesions calculated on TSP and traditional maps was high (r(18) = 0.73, p<0.0003), however the effective CNR was greater for TSP compared to TTP (352.3 vs 283.5, t(19) = 2.6, p<0.03.) and MTT (228.3, t(19) = 2.8, p<0.03). Discussion TSP maps provide a reliable and robust model-free method for accurate perfusion deficit detection and improve lesion delineation compared to traditional methods. This simple method is also computationally faster and more easily automated than model-based methods. This method can potentially improve the speed and accuracy in perfusion deficit detection for acute stroke treatment and clinical trial inclusion decision-making. PMID:28973000

  12. A hypertensive response to exercise is associated with transient ischemic dilation on myocardial perfusion SPECT imaging.

    PubMed

    Smelley, Matthew P; Virnich, Daniel E; Williams, Kim A; Ward, R Parker

    2007-07-01

    A hypertensive response to exercise (HRE) is associated with false-positive stress echocardiograms and myocardial perfusion single photon emission computed tomography (myocardial perfusion imaging [MPI]) defects even in the absence of coronary artery disease (CAD). Transient ischemic dilation (TID) of the left ventricle on stress MPI is a marker of severe CAD and future cardiac events. This study evaluated the association between an HRE and TID. Blinded quantitative TID assessment was performed in 125 patients who had an HRE and a summed stress score (SSS) of less than 4, as well as 125 control patients with an SSS of less than 4 and without an HRE matched for age, gender, and resting systolic blood pressure. Cardiac comorbidities, pretest Framingham risk, and exercise results were recorded. TID was defined as a stress-to-rest volume ratio of 1.22 or greater. An HRE was associated with a high prevalence of TID and significantly more TID than no HRE (25.6% vs 11.2%; odds ratio, 3.00 [95% confidence interval, 1.41-6.38]). TID was more prevalent even in subgroups with a low pretest probability CAD, including those without diabetes mellitus or angina. On conditional logistic regression analysis, an HRE was found to be independently associated with TID after consideration of other clinical and exercise MPI variables (odds ratio, 2.72 [95% confidence interval, 1.01-7.31]). An HRE is associated with a high prevalence of TID in patients without other significant perfusion defects, possibly as a result of global subendocardial ischemia induced by the HRE.

  13. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis?

    PubMed

    Gaberel, Thomas; Gakuba, Clement; Goulay, Romain; Martinez De Lizarrondo, Sara; Hanouz, Jean-Luc; Emery, Evelyne; Touze, Emmanuel; Vivien, Denis; Gauberti, Maxime

    2014-10-01

    The aim of the present study was to investigate the impact of different stroke subtypes on the glymphatic system using MRI. We first improved and characterized an in vivo protocol to measure the perfusion of the glymphatic system using MRI after minimally invasive injection of a gadolinium chelate within the cisterna magna. Then, the integrity of the glymphatic system was evaluated in 4 stroke models in mice including subarachnoid hemorrhage (SAH), intracerebral hemorrhage, carotid ligature, and embolic ischemic stroke. We were able to reliably evaluate the glymphatic system function using MRI. Moreover, we provided evidence that the glymphatic system was severely impaired after SAH and in the acute phase of ischemic stroke, but was not altered after carotid ligature or in case of intracerebral hemorrhage. Notably, this alteration in glymphatic perfusion reduced brain clearance rate of low-molecular-weight compounds. Interestingly, glymphatic perfusion after SAH can be improved by intracerebroventricular injection of tissue-type plasminogen activator. Moreover, spontaneous arterial recanalization was associated with restoration of the glymphatic function after embolic ischemic stroke. SAH and acute ischemic stroke significantly impair the glymphatic system perfusion. In these contexts, injection of tissue-type plasminogen activator either intracerebroventricularly to clear perivascular spaces (for SAH) or intravenously to restore arterial patency (for ischemic stroke) may improve glymphatic function. © 2014 American Heart Association, Inc.

  14. Near-infrared spectroscopy versus magnetic resonance imaging to study brain perfusion in newborns with hypoxic-ischemic encephalopathy treated with hypothermia.

    PubMed

    Wintermark, P; Hansen, A; Warfield, S K; Dukhovny, D; Soul, J S

    2014-01-15

    The measurement of brain perfusion may provide valuable information for assessment and treatment of newborns with hypoxic-ischemic encephalopathy (HIE). While arterial spin labeled perfusion (ASL) magnetic resonance imaging (MRI) provides noninvasive and direct measurements of regional cerebral blood flow (CBF) values, it is logistically challenging to obtain. Near-infrared spectroscopy (NIRS) might be an alternative, as it permits noninvasive and continuous monitoring of cerebral hemodynamics and oxygenation at the bedside. The purpose of this study is to determine the correlation between measurements of brain perfusion by NIRS and by MRI in term newborns with HIE treated with hypothermia. In this prospective cohort study, ASL-MRI and NIRS performed during hypothermia were used to assess brain perfusion in these newborns. Regional cerebral blood flow (CBF) values, measured from 1-2 MRI scans for each patient, were compared to mixed venous saturation values (SctO2) recorded by NIRS just before and after each MRI. Analysis included groupings into moderate versus severe HIE based on their initial background pattern of amplitude-integrated electroencephalogram. Twelve concomitant recordings were obtained of seven neonates. Strong correlation was found between SctO2 and CBF in asphyxiated newborns with severe HIE (r=0.88; p value=0.0085). Moreover, newborns with severe HIE had lower CBF (likely lower oxygen supply) and extracted less oxygen (likely lower oxygen demand or utilization) when comparing SctO2 and CBF to those with moderate HIE. NIRS is an effective bedside tool to monitor and understand brain perfusion changes in term asphyxiated newborns, which in conjunction with precise measurements of CBF obtained by MRI at particular times, may help tailor neuroprotective strategies in term newborns with HIE. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Near-Infrared Spectroscopy versus Magnetic Resonance Imaging To Study Brain Perfusion in Newborns with Hypoxic-Ischemic Encephalopathy Treated with Hypothermia

    PubMed Central

    Wintermark, P.; Hansen, A.; Warfield, SK.; Dukhovny, D.; Soul, JS.

    2014-01-01

    Background The measurement of brain perfusion may provide valuable information for assessment and treatment of newborns with hypoxic-ischemic encephalopathy (HIE). While arterial spin labeled perfusion (ASL) magnetic resonance imaging (MRI) provides noninvasive and direct measurements of regional cerebral blood flow (CBF) values, it is logistically challenging to obtain. Near-infrared spectroscopy (NIRS) might be an alternative, as it permits noninvasive and continuous monitoring of cerebral hemodynamics and oxygenation at the bedside. Objective The purpose of this study is to determine the correlation between measurements of brain perfusion by NIRS and by MRI in term newborns with HIE treated with hypothermia. Design/Methods In this prospective cohort study, ASL-MRI and NIRS performed during hypothermia were used to assess brain perfusion in these newborns. Regional cerebral blood flow values (CBF), measured from 1–2 MRI scans for each patient, were compared to mixed venous saturation values (SctO2) recorded by NIRS just before and after each MRI. Analysis included groupings into moderate versus severe HIE based on their initial background pattern of amplitude-integrated electroencephalogram. Results Twelve concomitant recordings were obtained of seven neonates. Strong correlation was found between SctO2 and CBF in asphyxiated newborns with severe HIE (r = 0.88; p value = 0.0085). Moreover, newborns with severe HIE had lower CBF (likely lower oxygen supply) and extracted less oxygen (likely lower oxygen demand or utilization) when comparing SctO2 and CBF to those with moderate HIE. Conclusions NIRS is an effective bedside tool to monitor and understand brain perfusion changes in term asphyxiated newborns, which in conjunction with precise measurements of CBF obtained by MRI at particular times, may help tailor neuroprotective strategies in term newborns with HIE. PMID:23631990

  16. Ex-vivo machine perfusion for kidney preservation.

    PubMed

    Hamar, Matyas; Selzner, Markus

    2018-06-01

    Machine perfusion is a novel strategy to decrease preservation injury, improve graft assessment, and increase organ acceptance for transplantation. This review summarizes the current advances in ex-vivo machine-based kidney preservation technologies over the last year. Ex-vivo perfusion technologies, such as hypothermic and normothermic machine perfusion and controlled oxygenated rewarming, have gained high interest in the field of organ preservation. Keeping kidney grafts functionally and metabolically active during the preservation period offers a unique chance for viability assessment, reconditioning, and organ repair. Normothermic ex-vivo kidney perfusion has been recently translated into clinical practice. Preclinical results suggest that prolonged warm perfusion appears superior than a brief end-ischemic reconditioning in terms of renal function and injury. An established standardized protocol for continuous warm perfusion is still not available for human grafts. Ex-vivo machine perfusion represents a superior organ preservation method over static cold storage. There is still an urgent need for the optimization of the perfusion fluid and machine technology and to identify the optimal indication in kidney transplantation. Recent research is focusing on graft assessment and therapeutic strategies.

  17. Time-Dependent Computed Tomographic Perfusion Thresholds for Patients With Acute Ischemic Stroke.

    PubMed

    d'Esterre, Christopher D; Boesen, Mari E; Ahn, Seong Hwan; Pordeli, Pooneh; Najm, Mohamed; Minhas, Priyanka; Davari, Paniz; Fainardi, Enrico; Rubiera, Marta; Khaw, Alexander V; Zini, Andrea; Frayne, Richard; Hill, Michael D; Demchuk, Andrew M; Sajobi, Tolulope T; Forkert, Nils D; Goyal, Mayank; Lee, Ting Y; Menon, Bijoy K

    2015-12-01

    Among patients with acute ischemic stroke, we determine computed tomographic perfusion (CTP) thresholds associated with follow-up infarction at different stroke onset-to-CTP and CTP-to-reperfusion times. Acute ischemic stroke patients with occlusion on computed tomographic angiography were acutely imaged with CTP. Noncontrast computed tomography and magnectic resonance diffusion-weighted imaging between 24 and 48 hours were used to delineate follow-up infarction. Reperfusion was assessed on conventional angiogram or 4-hour repeat computed tomographic angiography. Tmax, cerebral blood flow, and cerebral blood volume derived from delay-insensitive CTP postprocessing were analyzed using receiver-operator characteristic curves to derive optimal thresholds for combined patient data (pooled analysis) and individual patients (patient-level analysis) based on time from stroke onset-to-CTP and CTP-to-reperfusion. One-way ANOVA and locally weighted scatterplot smoothing regression was used to test whether the derived optimal CTP thresholds were different by time. One hundred and thirty-two patients were included. Tmax thresholds of >16.2 and >15.8 s and absolute cerebral blood flow thresholds of <8.9 and <7.4 mL·min(-1)·100 g(-1) were associated with infarct if reperfused <90 min from CTP with onset <180 min. The discriminative ability of cerebral blood volume was modest. No statistically significant relationship was noted between stroke onset-to-CTP time and the optimal CTP thresholds for all parameters based on discrete or continuous time analysis (P>0.05). A statistically significant relationship existed between CTP-to-reperfusion time and the optimal thresholds for cerebral blood flow (P<0.001; r=0.59 and 0.77 for gray and white matter, respectively) and Tmax (P<0.001; r=-0.68 and -0.60 for gray and white matter, respectively) parameters. Optimal CTP thresholds associated with follow-up infarction depend on time from imaging to reperfusion. © 2015 American Heart

  18. Magnetic Particle Imaging for Real-Time Perfusion Imaging in Acute Stroke.

    PubMed

    Ludewig, Peter; Gdaniec, Nadine; Sedlacik, Jan; Forkert, Nils D; Szwargulski, Patryk; Graeser, Matthias; Adam, Gerhard; Kaul, Michael G; Krishnan, Kannan M; Ferguson, R Matthew; Khandhar, Amit P; Walczak, Piotr; Fiehler, Jens; Thomalla, Götz; Gerloff, Christian; Knopp, Tobias; Magnus, Tim

    2017-10-24

    The fast and accurate assessment of cerebral perfusion is fundamental for the diagnosis and successful treatment of stroke patients. Magnetic particle imaging (MPI) is a new radiation-free tomographic imaging method with a superior temporal resolution, compared to other conventional imaging methods. In addition, MPI scanners can be built as prehospital mobile devices, which require less complex infrastructure than computed tomography (CT) and magnetic resonance imaging (MRI). With these advantages, MPI could accelerate the stroke diagnosis and treatment, thereby improving outcomes. Our objective was to investigate the capabilities of MPI to detect perfusion deficits in a murine model of ischemic stroke. Cerebral ischemia was induced by inserting of a microfilament in the internal carotid artery in C57BL/6 mice, thereby blocking the blood flow into the medial cerebral artery. After the injection of a contrast agent (superparamagnetic iron oxide nanoparticles) specifically tailored for MPI, cerebral perfusion and vascular anatomy were assessed by the MPI scanner within seconds. To validate and compare our MPI data, we performed perfusion imaging with a small animal MRI scanner. MPI detected the perfusion deficits in the ischemic brain, which were comparable to those with MRI but in real-time. For the first time, we showed that MPI could be used as a diagnostic tool for relevant diseases in vivo, such as an ischemic stroke. Due to its shorter image acquisition times and increased temporal resolution compared to that of MRI or CT, we expect that MPI offers the potential to improve stroke imaging and treatment.

  19. Myocardial function and perfusion in the CREST syndrome variant of progressive systemic sclerosis. Exercise radionuclide evaluation and comparison with diffuse scleroderma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follansbee, W.P.; Curtiss, E.I.; Medsger, T.A. Jr.

    1984-09-01

    Myocardial function and perfusion were evaluated in 22 patients with progressive systemic sclerosis with the CREST syndrome using exercise and radionuclide techniques, pulmonary function testing, and chest roentgenography. The results were compared with a similar study of 26 patients with progressive systemic sclerosis with diffuse scleroderma. The prevalence of thallium perfusion abnormalities was similar in the groups with CREST syndrome and diffuse scleroderma, (64 percent versus 77 percent), but the defects were significantly smaller in the CREST syndrome (p less than 0.01). Reperfusion thallium defects in the absence of extramural coronary artery disease were seen in 38 percent of patientsmore » with diffuse scleroderma. This finding was not seen in any of the patients with the CREST syndrome. In diffuse scleroderma, abnormalities of both right and left ventricular function were related to larger thallium perfusion defects. In the CREST syndrome, abnormalities of left ventricular function were minor, were seen only during exercise, and were unrelated to thallium perfusion defects. Abnormal resting right ventricular function was seen in 36 percent of the patients with the CREST syndrome and was associated with an isolated decrease in diffusing capacity of carbon monoxide. It is concluded that the cardiac manifestations of the CREST syndrome are distinct from those found in diffuse scleroderma. Unlike diffuse scleroderma, abnormalities of left ventricular function in the CREST syndrome are minor and are unrelated to abnormalities of coronary perfusion. Right ventricular dysfunction in the CREST syndrome appears to be primarily related to pulmonary vascular disease.« less

  20. Whole-brain perfusion CT using a toggling table technique to predict final infarct volume in acute ischemic stroke.

    PubMed

    Schrader, I; Wilk, D; Jansen, O; Riedel, C

    2013-09-01

    To evaluate how accurately final infarct volume in acute ischemic stroke can be predicted with perfusion CT (PCT) using a 64-MDCT unit and the toggling table technique. Retrospective analysis of 89 patients with acute ischemic stroke who underwent CCT, CT angiography (CTA) and PCT using the "toggling table" technique within the first three hours after symptom onset. In patients with successful thrombolytic therapy (n = 48) and in those without effective thrombolytic therapy (n = 41), the infarct volume and the volume of the penumbra on PCT were compared to the infarct size on follow-up images (CT or MRI) performed within 8 days. The feasibility of complete infarct volume prediction by 8 cm cranio-caudal coverage was evaluated. The correlation between the volume of hypoperfusion on PCT defined by cerebral blood volume reduction and final infarct volume was strongest in patients with successful thrombolytic therapy with underestimation of the definite infarct volume by 8.5 ml on average. The CBV map had the greatest prognostic value. In patients without successful thrombolytic therapy, the final infarct volume was overestimated by 12.1 ml compared to the MTT map on PCT. All infarcts were detected completely. There were no false-positive or false-negative results. Using PCT and the "toggling table" technique in acute stroke patients is helpful for the rapid and accurate quantification of the minimal final infarct and is therefore a prognostic parameter which has to be evaluated in further studies to assess its impact on therapeutic decision. ▶ Using PCT and the “toggling table technique” allows accurate quantification of the infarct core and penumbra. ▶ It is possible to record dynamic perfusion parameters quickly and easily of almost the entire supratentorial brain volume on a 64-slice MDCT unit. ▶ The technique allows identification of those patients who could profit from thrombolytic therapy outside the established time intervals. © Georg Thieme Verlag

  1. Comparison of LDPI to SPECT perfusion imaging using (99m)Tc-sestamibi and (99m)Tc-pyrophosphate in a murine ischemic hind limb model of neovascularization.

    PubMed

    Hendrikx, Geert; Vries, Mark H; Bauwens, Matthias; De Saint-Hubert, Marijke; Wagenaar, Allard; Guillaume, Joël; Boonen, Levinia; Post, Mark J; Mottaghy, Felix M

    2016-12-01

    We aimed to determine the accuracy of laser Doppler perfusion imaging (LDPI) in an animal model for hind limb ischemia. We used a murine (C57Bl/6 mice) ischemic hind limb model in which we compared LDPI with the clinically used (99m)Tc-sestamibi SPECT perfusion imaging (n = 7). In addition, we used the SPECT tracer (99m)Tc-pyrophosphate ((99m)Tc-PyP) to image muscular damage (n = 6). LDPI indicated a quick and prominent decrease in perfusion immediately after ligation, subsequently recovering to 21.9 and 25.2 % 14 days later in the (99m)Tc-sestamibi and (99m)Tc-PyP group, respectively. (99m)Tc-sestamibi SPECT scans also showed a quick decrease in perfusion. However, nearly full recovery was reached 7 days post ligation. Muscular damage, indicated by the uptake of (99m)Tc-PyP, was highest at day 3 and recovered to baseline levels at day 14 post ligation. Postmortem histology supported these findings, as a significantly increased collateral diameter was found 7 and 14 days after ligation and peak macrophage infiltration and TUNEL positivity was found on day 3 after ligation. Here, we indicate that LDPI strongly underestimates perfusion recovery in a hind limb model for profound ischemia.

  2. Computed tomography perfusion imaging may predict cognitive impairment in patients with first-time anterior circulation transient ischemic attack.

    PubMed

    Wang, Jun; Li, Yunming; Zheng, Bo; Wang, Jian; Wang, Zhiqiang; Duan, Dan; Li, Yuxia; Wang, Qingsong

    2016-04-01

    To determine whether computed tomography perfusion imaging (CTPI)-derived parameters are associated with vascular cognitive impairment (VCI) in patients with transient ischemic attack (TIA). Patients with first-time anterior circulation TIA (diagnosed within 24 h of onset) and normal cognition, treated between August 2009 and August 2014 at the Department of Neurology of Chengdu Military General Hospital, China, were analyzed retrospectively. Patients underwent whole-brain CTPI within 1 week of TIA to detect cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT) and time to peak (TTP) in the ischemic region. Based on cognitive function assessment 4 weeks after TIA, using the Montreal cognitive assessment (MoCA) and mini mental state examination, the patients were divided into control and VCI groups. CTPI parameters and other clinical data were compared between groups, and Spearman's correlation analysis used to identify associations between cognitive scores and CTPI parameters in the VCI group. 50 patients (25 per group; aged 55-72 years) were included. Patient age, gender, smoking status, alcohol consumption, educational level, time from TIA onset to admission, time from TIA onset to CTPI, and prevalence of hypertension, diabetes mellitus, hyperlipidemia, atrial fibrillation and hyperhomocysteinemia did not differ between groups. Both groups showed TTP and MTT prolongation, CBF reduction, but no change in CBV in the ischemic region; these changes were significantly larger in the VCI group (P < 0.05). MTT correlated negatively with MoCA score (r = -0.51, P = 0.009). CTPI could facilitate early diagnosis of VCI in patients with anterior circulation TIA.

  3. Does stress perfusion imaging improve the diagnostic accuracy of late gadolinium enhanced cardiac magnetic resonance for establishing the etiology of heart failure?

    PubMed

    Gulsin, Gaurav S; Shetye, Abishek; Khoo, Jeffrey; Swarbrick, Daniel J; Levelt, Eylem; Lai, Florence Y; Squire, Iain B; Arnold, Jayanth R; McCann, Gerry P

    2017-04-08

    Late gadolinium enhanced cardiovascular magnetic resonance (LGE-CMR) has excellent specificity, sensitivity and diagnostic accuracy for differentiating between ischemic cardiomyopathy (ICM) and non-ischemic dilated cardiomyopathy (NICM). CMR first-pass myocardial perfusion imaging (perfusion-CMR) may also play role in distinguishing heart failure of ischemic and non-ischemic origins, although the utility of additional of stress perfusion imaging in such patients is unclear. The aim of this retrospective study was to assess whether the addition of adenosine stress perfusion imaging to LGE-CMR is of incremental value for differentiating ICM and NICM in patients with severe left ventricular systolic dysfunction (LVSD) of uncertain etiology. We retrospectively identified 100 consecutive adult patients (median age 69 years (IQR 59-73)) with severe LVSD (mean LV EF 26.6 ± 7.0%) referred for perfusion-CMR to establish the underlying etiology of heart failure. The cause of heart failure was first determined on examination of CMR cine and LGE images in isolation. Subsequent examination of complete adenosine stress perfusion-CMR studies (cine, LGE and perfusion images) was performed to identify whether this altered the initial diagnosis. On LGE-CMR, 38 patients were diagnosed with ICM, 46 with NICM and 16 with dual pathology. With perfusion-CMR, there were 39 ICM, 44 NICM and 17 dual pathology diagnoses. There was excellent agreement in diagnoses between LGE-CMR and perfusion-CMR (κ 0.968, p<0.001). The addition of adenosine stress perfusion images to LGE-CMR altered the diagnosis in only two of the 100 patients. The addition of adenosine stress perfusion-CMR to cine and LGE-CMR provides minimal incremental diagnostic yield for determining the etiology of heart failure in patients with severe LVSD.

  4. Detecting Myocardial Ischemia With 99mTechnetium-Tetrofosmin Myocardial Perfusion Imaging in Ischemic Stroke.

    PubMed

    Giannopoulos, Sotirios; Markoula, Sofia; Sioka, Chrissa; Zouroudi, Sofia; Spiliotopoulou, Maria; Naka, Katerina K; Michalis, Lampros K; Fotopoulos, Andreas; Kyritsis, Athanassios P

    2017-10-01

    To assess the myocardial status in patients with stroke, employing myocardial perfusion imaging (MPI) with 99m Technetium-tetrofosmin ( 99m Tc-TF)-single-photon emission computed tomography (SPECT). Fifty-two patients with ischemic stroke were subjected to 99m Tc-TF-SPECT MPI within 1 month after stroke occurrence. None of the patients had any history or symptoms of coronary artery disease or other heart disease. Myocardial perfusion imaging was evaluated visually using a 17-segment polar map. Myocardial ischemia (MIS) was defined as present when the summed stress score (SSS) was >4; MIS was defined as mild when SSS was 4 to 8, and moderate/severe with SSS ≥9. Patients with SSS >4 were compared to patients with SSS <4. Parameters such as age, body mass index, waist perimeter, smoking habits, and medical history (diabetes mellitus, dyslipidemia, etc) were evaluated according to MPI results. Myocardial ischemia was present in 32 (62%) of 52 patients with stroke. Among them, 20 (62%) of 32 patients had mild abnormalities and 12 (38%) of 32 had moderate/severe. The age and waist perimeter showed a tendency to relate to severe MIS when patients with SSS >9 were compared to patients with SSS <4. In MPI-positive patients, an age was to be association with SSS, with the oldest age exhibiting the highest SSS ( P = .01). The association of age with SSS remained statistically significant in the multivariate analysis ( P = .04). The study suggested that more than half of patients with stroke without a history of cardiac disease have MIS. Although most of them have mild MIS, we suggest a thorough cardiological evaluation in this group of patients for future prevention of severe myocardial outcome.

  5. Comprehensive CT Evaluation in Acute Ischemic Stroke: Impact on Diagnosis and Treatment Decisions

    PubMed Central

    Löve, Askell; Siemund, Roger; Andsberg, Gunnar; Cronqvist, Mats; Holtås, Stig; Björkman-Burtscher, Isabella

    2011-01-01

    Background. With modern CT imaging a comprehensive overview of cerebral macro- and microcirculation can be obtained within minutes in acute ischemic stroke. This opens for patient stratification and individualized treatment. Methods. Four patients with acute ischemic stroke of different aetiologies and/or treatments were chosen for illustration of the comprehensive CT protocol and its value in subsequent treatment decisions. The patients were clinically evaluated according to the NIHSS-scale, examined with the comprehensive CT protocol including both CT angiography and CT perfusion, and followed up by MRI. Results. The comprehensive CT examination protocol increased the examination time but did not delay treatment initiation. In some cases CT angiography revealed the cause of stroke while CT perfusion located and graded the perfusion defect with reasonable accuracy, confirmed by follow-up MR-diffusion. In the presented cases findings of the comprehensive CT examination influenced the treatment strategy. Conclusions. The comprehensive CT examination is a fast and safe method allowing accurate diagnosis and making way for individualized treatment in acute ischemic stroke. PMID:21603175

  6. Agonist of inward rectifier K+ channels enhances the protection of ischemic postconditioning in isolated rat hearts.

    PubMed

    Liao, Z; Feng, Z; Long, C

    2014-07-01

    Selective inhibition of inward rectifier K + channels could abolish the protection mediated by ischemic preconditioning, but the roles of these channels in ischemic postconditioning have not been well characterized. Our study aims to evaluate the effect of inward rectifier K + channels on the protection induced by ischemic postconditioning. Langendorff-perfused rat hearts (n=8 per group) were split into four groups: postconditioning hearts (IPO group); ischemic postconditioning with BaCl 2 hearts (PB group); ischemic postconditioning with zacopride hearts (PZ group); and without ischemic postconditioning (CON group). After suffering 30 minutes of global ischemia, groups IPO, PB and PZ went through 10 seconds of ischemic postconditioning with three different perfusates: respectively, Krebs-Henseleit buffer (IPO group); 20 μmol/L BaCl 2 (antagonist of the channel, PB group); 1 μmol/L zacopride (agonist of the channel, PZ group). At the end of reperfusion, the myocardial performance was better preserved in the PZ group than the other three groups. The PB group showed no significant differences from the CON group. Our study has shown that the I K1 channel agonist zacopride is associated with the enhancement of ischemic postconditioning. © The Author(s) 2014.

  7. Time-Resolved C-Arm Computed Tomographic Angiography Derived From Computed Tomographic Perfusion Acquisition: New Capability for One-Stop-Shop Acute Ischemic Stroke Treatment in the Angiosuite.

    PubMed

    Yang, Pengfei; Niu, Kai; Wu, Yijing; Struffert, Tobias; Dorfler, Arnd; Schafer, Sebastian; Royalty, Kevin; Strother, Charles; Chen, Guang-Hong

    2015-12-01

    Multimodal imaging using cone beam C-arm computed tomography (CT) may shorten the delay from ictus to revascularization for acute ischemic stroke patients with a large vessel occlusion. Largely because of limited temporal resolution, reconstruction of time-resolved CT angiography (CTA) from these systems has not yielded satisfactory results. We evaluated the image quality and diagnostic value of time-resolved C-arm CTA reconstructed using novel image processing algorithms. Studies were done under an Institutional Review Board approved protocol. Postprocessing of data from 21 C-arm CT dynamic perfusion acquisitions from 17 patients with acute ischemic stroke were done to derive time-resolved C-arm CTA images. Two observers independently evaluated image quality and diagnostic content for each case. ICC and receiver-operating characteristic analysis were performed to evaluate interobserver agreement and diagnostic value of this novel imaging modality. Time-resolved C-arm CTA images were successfully generated from 20 data sets (95.2%, 20/21). Two observers agreed well that the image quality for large cerebral arteries was good but was more limited for small cerebral arteries (distal to M1, A1, and P1). receiver-operating characteristic curves demonstrated excellent diagnostic value for detecting large vessel occlusions (area under the curve=0.987-1). Time-resolved CTAs derived from C-arm CT perfusion acquisitions provide high quality images that allowed accurate diagnosis of large vessel occlusions. Although image quality of smaller arteries in this study was not optimal ongoing modifications of the postprocessing algorithm will likely remove this limitation. Adding time-resolved C-arm CTAs to the capabilities of the angiography suite further enhances its suitability as a one-stop shop for care for patients with acute ischemic stroke. © 2015 American Heart Association, Inc.

  8. Video instrumentation for radionuclide angiocardiography.

    NASA Technical Reports Server (NTRS)

    Kriss, J. P.

    1973-01-01

    Two types of videoscintiscopes for performing radioisotopic angiocardiography with a scintillation camera are described, and use of these instruments in performing clinical studies is illustrated. Radionuclide angiocardiography is a simple, quick and accurate procedure recommended as a screening test for patients with a variety of congenital and acquired cardiovascular lesions. When performed in conjunction with coronary arterial catheterization, dynamic radionuclide angiography may provide useful information about regional myocardial perfusion. Quantitative capabilities greatly enhance the potential of this diagnostic tool.

  9. Computed Tomography Perfusion Improves Diagnostic Accuracy in Acute Posterior Circulation Stroke.

    PubMed

    Sporns, Peter; Schmidt, Rene; Minnerup, Jens; Dziewas, Rainer; Kemmling, André; Dittrich, Ralf; Zoubi, Tarek; Heermann, Philipp; Cnyrim, Christian; Schwindt, Wolfram; Heindel, Walter; Niederstadt, Thomas; Hanning, Uta

    2016-01-01

    Computed tomography perfusion (CTP) has a high diagnostic value in the detection of acute ischemic stroke in the anterior circulation. However, the diagnostic value in suspected posterior circulation (PC) stroke is uncertain, and whole brain volume perfusion is not yet in widespread use. We therefore studied the additional value of whole brain volume perfusion to non-contrast CT (NCCT) and CT angiography source images (CTA-SI) for infarct detection in patients with suspected acute ischemic PC stroke. This is a retrospective review of patients with suspected stroke in the PC in a database of our stroke center (n = 3,011) who underwent NCCT, CTA and CTP within 9 h after stroke onset and CT or MRI on follow-up. Images were evaluated for signs and pc-ASPECTS locations of ischemia. Three imaging models - A (NCCT), B (NCCT + CTA-SI) and C (NCCT + CTA-SI + CTP) - were compared with regard to the misclassification rate relative to gold standard (infarction in follow-up imaging) using the McNemar's test. Of 3,011 stroke patients, 267 patients had a suspected stroke in the PC and 188 patients (70.4%) evidenced a PC infarct on follow-up imaging. The sensitivity of Model C (76.6%) was higher compared with that of Model A (21.3%) and Model B (43.6%). CTP detected significantly more ischemic lesions, especially in the cerebellum, posterior cerebral artery territory and thalami. Our findings in a large cohort of consecutive patients show that CTP detects significantly more ischemic strokes in the PC than CTA and NCCT alone. © 2016 S. Karger AG, Basel.

  10. Structural, functional and blood perfusion changes in the rat retina associated with elevated intraocular pressure, measured simultaneously with a combined OCT+ERG system

    PubMed Central

    Tan, Bingyao; MacLellan, Benjamin; Mason, Erik

    2018-01-01

    Acute elevation of intraocular pressure (IOP) to ischemic and non-ischemic levels can cause temporary or permanent changes in the retinal morphology, function and blood flow/blood perfusion. Previously, such changes in the retina were assessed separately with different methods in clinical studies and animal models. In this study, we used a combined OCT+ ERG system in combination with Doppler OCT and OCT angiography (OCTA) imaging protocols, in order to evaluate simultaneously and correlate changes in the retinal morphology, the retinal functional response to visual stimulation, and the retinal blood flow/blood perfusion, associated with IOP elevation to ischemic and non-ischemic levels in rats. Results from this study suggest that the inner retina responds faster to IOP elevation to levels greater than 30 mmHg with significant reduction of the total retinal blood flow (TRBF), decrease of the capillaries’ perfusion and reduction of the ON bipolar cells contribution to the ERG traces. Furthermore, this study showed that ischemic levels of IOP elevation cause an additional significant decrease in the ERG photoreceptor response in the posterior retina. Thirty minutes after IOP normalization, retinal morphology, blood flow and blood perfusion recovered to baseline values, while retinal function did not recover completely. PMID:29509807

  11. Progressive Cortical Neuronal Damage and Extracranial-Intracranial Bypass Surgery in Patients with Misery Perfusion.

    PubMed

    Yamauchi, H; Kagawa, S; Kishibe, Y; Takahashi, M; Higashi, T

    2017-05-01

    Misery perfusion may cause selective neuronal damage in atherosclerotic ICA or MCA disease. Bypass surgery can improve misery perfusion and may prevent neuronal damage. On the other hand, surgery conveys a risk for neuronal damage. The purpose of this retrospective study was to determine whether progression of cortical neuronal damage in surgically treated patients with misery perfusion is larger than that in surgically treated patients without misery perfusion or medically treated patients with misery perfusion. We evaluated the distribution of benzodiazepine receptors twice by using PET and 11 C-labeled flumazenil in 18 surgically treated patients with atherosclerotic ICA or MCA disease (9 with misery perfusion and 9 without) and no perioperative stroke before and after bypass surgery; in 8 medically treated patients with misery perfusion and no intervening ischemic event; and in 7 healthy controls. We quantified abnormal decreases in the benzodiazepine receptors of the cerebral cortex within the MCA distribution and compared changes in the benzodiazepine receptor index among the 3 groups. The change in the benzodiazepine receptor index in surgically treated patients with misery perfusion (27.5 ± 15.6) during 7 ± 5 months was significantly larger than that in surgically treated patients without misery perfusion (-5.2 ± 9.4) during 6 ± 4 months ( P < .001) and in medically treated patients with misery perfusion (3.2 ± 15.4) during 16 ± 6 months ( P < .01). Progression of cortical neuronal damage in surgically treated patients with misery perfusion and no perioperative stroke may occur and may be larger than that in medically treated patients with misery perfusion and no intervening ischemic event. © 2017 by American Journal of Neuroradiology.

  12. Comparison of Perfusion CT Software to Predict the Final Infarct Volume After Thrombectomy.

    PubMed

    Austein, Friederike; Riedel, Christian; Kerby, Tina; Meyne, Johannes; Binder, Andreas; Lindner, Thomas; Huhndorf, Monika; Wodarg, Fritz; Jansen, Olav

    2016-09-01

    Computed tomographic perfusion represents an interesting physiological imaging modality to select patients for reperfusion therapy in acute ischemic stroke. The purpose of our study was to determine the accuracy of different commercial perfusion CT software packages (Philips (A), Siemens (B), and RAPID (C)) to predict the final infarct volume (FIV) after mechanical thrombectomy. Single-institutional computed tomographic perfusion data from 147 mechanically recanalized acute ischemic stroke patients were postprocessed. Ischemic core and FIV were compared about thrombolysis in cerebral infarction (TICI) score and time interval to reperfusion. FIV was measured at follow-up imaging between days 1 and 8 after stroke. In 118 successfully recanalized patients (TICI 2b/3), a moderately to strongly positive correlation was observed between ischemic core and FIV. The highest accuracy and best correlation are shown in early and fully recanalized patients (Pearson r for A=0.42, B=0.64, and C=0.83; P<0.001). Bland-Altman plots and boxplots demonstrate smaller ranges in package C than in A and B. Significant differences were found between the packages about over- and underestimation of the ischemic core. Package A, compared with B and C, estimated more than twice as many patients with a malignant stroke profile (P<0.001). Package C best predicted hypoperfusion volume in nonsuccessfully recanalized patients. Our study demonstrates best accuracy and approximation between the results of a fully automated software (RAPID) and FIV, especially in early and fully recanalized patients. Furthermore, this software package overestimated the FIV to a significantly lower degree and estimated a malignant mismatch profile less often than other software. © 2016 American Heart Association, Inc.

  13. Is ultrasound perfusion imaging capable of detecting mismatch? A proof-of-concept study in acute stroke patients.

    PubMed

    Reitmeir, Raluca; Eyding, Jens; Oertel, Markus F; Wiest, Roland; Gralla, Jan; Fischer, Urs; Giquel, Pierre-Yves; Weber, Stefan; Raabe, Andreas; Mattle, Heinrich P; Z'Graggen, Werner J; Beck, Jürgen

    2017-04-01

    In this study, we compared contrast-enhanced ultrasound perfusion imaging with magnetic resonance perfusion-weighted imaging or perfusion computed tomography for detecting normo-, hypo-, and nonperfused brain areas in acute middle cerebral artery stroke. We performed high mechanical index contrast-enhanced ultrasound perfusion imaging in 30 patients. Time-to-peak intensity of 10 ischemic regions of interests was compared to four standardized nonischemic regions of interests of the same patient. A time-to-peak >3 s (ultrasound perfusion imaging) or >4 s (perfusion computed tomography and magnetic resonance perfusion) defined hypoperfusion. In 16 patients, 98 of 160 ultrasound perfusion imaging regions of interests of the ischemic hemisphere were classified as normal, and 52 as hypoperfused or nonperfused. Ten regions of interests were excluded due to artifacts. There was a significant correlation of the ultrasound perfusion imaging and magnetic resonance perfusion or perfusion computed tomography (Pearson's chi-squared test 79.119, p < 0.001) (OR 0.1065, 95% CI 0.06-0.18). No perfusion in ultrasound perfusion imaging (18 regions of interests) correlated highly with diffusion restriction on magnetic resonance imaging (Pearson's chi-squared test 42.307, p < 0.001). Analysis of receiver operating characteristics proved a high sensitivity of ultrasound perfusion imaging in the diagnosis of hypoperfused area under the curve, (AUC = 0.917; p < 0.001) and nonperfused (AUC = 0.830; p < 0.001) tissue in comparison with perfusion computed tomography and magnetic resonance perfusion. We present a proof of concept in determining normo-, hypo-, and nonperfused tissue in acute stroke by advanced contrast-enhanced ultrasound perfusion imaging.

  14. Intravascular perfusion of carbon black ink allows reliable visualization of cerebral vessels.

    PubMed

    Hasan, Mohammad R; Herz, Josephine; Hermann, Dirk M; Doeppner, Thorsten R

    2013-01-04

    The anatomical structure of cerebral vessels is a key determinant for brain hemodynamics as well as the severity of injury following ischemic insults. The cerebral vasculature dynamically responds to various pathophysiological states and it exhibits considerable differences between strains and under conditions of genetic manipulations. Essentially, a reliable technique for intracranial vessel staining is essential in order to study the pathogenesis of ischemic stroke. Until recently, a set of different techniques has been employed to visualize the cerebral vasculature including injection of low viscosity resin, araldite F, gelatin mixed with various dyes (i.e. carmine red, India ink) or latex with or without carbon black. Perfusion of white latex compound through the ascending aorta has been first reported by Coyle and Jokelainen. Maeda et al. have modified the protocol by adding carbon black ink to the latex compound for improved contrast visualization of the vessels after saline perfusion of the brain. However, inefficient perfusion and inadequate filling of the vessels are frequently experienced due to high viscosity of the latex compound. Therefore, we have described a simple and cost-effective technique using a mixture of two commercially available carbon black inks (CB1 and CB2) to visualize the cerebral vasculature in a reproducible manner. We have shown that perfusion with CB1+CB2 in mice results in staining of significantly smaller cerebral vessels at a higher density in comparison to latex perfusion. Here, we describe our protocol to identify the anastomotic points between the anterior (ACA) and middle cerebral arteries (MCA) to study vessel variations in mice with different genetic backgrounds. Finally, we demonstrate the feasibility of our technique in a transient focal cerebral ischemia model in mice by combining CB1+CB2-mediated vessel staining with TTC staining in various degrees of ischemic injuries.

  15. Nuclear cardiology. I - Radionuclide angiographic assessment of left ventricular contraction: uses, limitations and future directions. II - The role of myocardial perfusion imaging using thallium-201 in diagnosis of coronary heart disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodenheimer, M.M.; Banka, V.S.; Helfant, R.H.

    1980-01-01

    The current status of radionuclide angiography is reviewed. First pass and gated equilibrium methods for determining left ventricular contraction are compared. Some clinical applications of radionuclide angiography are then examined, including the detection of discrete versus diffuse asynergy and the assessment of myocardial infarction. The second part of this work reviews the uses and limitations of thallium-201 perfusion imaging in the diagnosis of the acute and chronic manifestations of coronary heart disease. Theoretical and technical considerations of thallium-201 imaging are reviewed along with the clinical implications of the technique.

  16. Towards robust deconvolution of low-dose perfusion CT: sparse perfusion deconvolution using online dictionary learning.

    PubMed

    Fang, Ruogu; Chen, Tsuhan; Sanelli, Pina C

    2013-05-01

    Computed tomography perfusion (CTP) is an important functional imaging modality in the evaluation of cerebrovascular diseases, particularly in acute stroke and vasospasm. However, the post-processed parametric maps of blood flow tend to be noisy, especially in low-dose CTP, due to the noisy contrast enhancement profile and the oscillatory nature of the results generated by the current computational methods. In this paper, we propose a robust sparse perfusion deconvolution method (SPD) to estimate cerebral blood flow in CTP performed at low radiation dose. We first build a dictionary from high-dose perfusion maps using online dictionary learning and then perform deconvolution-based hemodynamic parameters estimation on the low-dose CTP data. Our method is validated on clinical data of patients with normal and pathological CBF maps. The results show that we achieve superior performance than existing methods, and potentially improve the differentiation between normal and ischemic tissue in the brain. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Towards robust deconvolution of low-dose perfusion CT: Sparse perfusion deconvolution using online dictionary learning

    PubMed Central

    Fang, Ruogu; Chen, Tsuhan; Sanelli, Pina C.

    2014-01-01

    Computed tomography perfusion (CTP) is an important functional imaging modality in the evaluation of cerebrovascular diseases, particularly in acute stroke and vasospasm. However, the post-processed parametric maps of blood flow tend to be noisy, especially in low-dose CTP, due to the noisy contrast enhancement profile and the oscillatory nature of the results generated by the current computational methods. In this paper, we propose a robust sparse perfusion deconvolution method (SPD) to estimate cerebral blood flow in CTP performed at low radiation dose. We first build a dictionary from high-dose perfusion maps using online dictionary learning and then perform deconvolution-based hemodynamic parameters estimation on the low-dose CTP data. Our method is validated on clinical data of patients with normal and pathological CBF maps. The results show that we achieve superior performance than existing methods, and potentially improve the differentiation between normal and ischemic tissue in the brain. PMID:23542422

  18. Scanning Electron Microscopy Findings of Machine Perfused Liver Graft After Warm Ischemia Between Hypothermic and Rewarming Machine Perfusion in Pigs.

    PubMed

    Meng, L; Matsuno, N; Watanabe, K; Furukori, M; Obara, H; Bochimoto, H; Watanabe, T; Fukukawa, H

    2016-09-01

    The shortage of organ donors is a universal problem. Use of grafts from donors after cardiac death would greatly contribute to the expansion of the donor organ pool. The two major methods of preservation are cold storage and machine perfusion (MP) preservation, and each has its own advantages. Several studies have reported the relative merits of MP for the preservation for grafts from donors after cardiac death. In this study, we used scanning electron microscopy (SEM) to assess the damage to the liver between hypothermic and rewarming preservation conditions. Porcine livers were perfused with a newly developed MP system. The livers were perfused for 4 hours with a modified University of Wisconsin solution-gluconate solution. In group 1, grafts were preserved with warm ischemic time for 60 minutes and hypothermic machine perfusion (HMP) for 4 hours. In group 2, grafts were preserved with warn ischemic time for 60 minutes and had rewarming up to 22°C by MP (RMP) for 4 hours. A significant enlargement of the mitochondria were observed in both the HMP and RMP groups under higher magnification, Additionally, vacuoles appeared occasionally in hepatocytes in the RMP for 4 hours group, but not in the HMP for 4 hours group. An analysis by scanning electron microscope appears to be useful to evaluate the levels of damage of hepatocytes compared with transmission electron microscopy, and further study is needed to analyze the significance of the appearance of swelling of mitochondria and vacuolization during preservation. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Radionuclide Myocardial Perfusion Imaging for the Evaluation of Patients With Known or Suspected Coronary Artery Disease in the Era of Multimodality Cardiovascular Imaging

    PubMed Central

    Taqueti, Viviany R.; Di Carli, Marcelo F.

    2018-01-01

    Over the last several decades, radionuclide myocardial perfusion imaging (MPI) with single photon emission tomography and positron emission tomography has been a mainstay for the evaluation of patients with known or suspected coronary artery disease (CAD). More recently, technical advances in separate and complementary imaging modalities including coronary computed tomography angiography, computed tomography perfusion, cardiac magnetic resonance imaging, and contrast stress echocardiography have expanded the toolbox of diagnostic testing for cardiac patients. While the growth of available technologies has heralded an exciting era of multimodality cardiovascular imaging, coordinated and dispassionate utilization of these techniques is needed to implement the right test for the right patient at the right time, a promise of “precision medicine.” In this article, we review the maturing role of MPI in the current era of multimodality cardiovascular imaging, particularly in the context of recent advances in myocardial blood flow quantitation, and as applied to the evaluation of patients with known or suspected CAD. PMID:25770849

  20. Comparison of characteristics and healing course of diabetic foot ulcers by etiological classification: neuropathic, ischemic, and neuro-ischemic type.

    PubMed

    Yotsu, Rie Roselyne; Pham, Ngoc Minh; Oe, Makoto; Nagase, Takeshi; Sanada, Hiromi; Hara, Hisao; Fukuda, Shoji; Fujitani, Junko; Yamamoto-Honda, Ritsuko; Kajio, Hiroshi; Noda, Mitsuhiko; Tamaki, Takeshi

    2014-01-01

    To identify differences in the characteristics of patients with diabetic foot ulcers (DFUs) according to their etiological classification and to compare their healing time. Over a 4.5-year period, 73 patients with DFUs were recruited. DFUs were etiologically classified as being of neuropathic, ischemic, or neuro-ischemic origin. Descriptive analyses were performed to characterize study subjects, foot-related factors, and healing outcome and time. Duration of healing was assessed using the Kaplan-Meier method. Healing time among the three types was compared using the log rank test. The number of patients manifesting neuropathic, ischemic, and neuro-ischemic ulcers was 30, 20, and 14, respectively. Differences were identified for age, diabetes duration, body mass index, hypertension, and estimated glomerular filtration rate. Patients with neuro-ischemic ulcers had better ankle-brachial index, skin perfusion pressure (SPP), and transcutaneous oxygen pressure values compared to those with ischemic ulcers. The average time in which 50% of patients had healed wounds was 70, 113, and 233 days for neuropathic, neuro-ischemic, and ischemic ulcers, respectively. Main factors associated with healing were age and SPP values. Based on the etiological ulcer type, DFU healing course and several patient factors differed. Failure to consider the differences in DFU etiology may have led to heterogeneity of results in previous studies on DFUs. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Energy demand of cardioplegically perfused human hearts.

    PubMed

    Preusse, C J; Winter, J; Schulte, H D; Bircks, W

    1985-01-01

    Human adult hearts with aortic valve disease (n = 20) and hypertrophic obstructive cardiomyopathy (n = 1) were perfused intraoperatively with cold histidine buffered Bretschneider solution. During a seven minute cardioplegic perfusion the temperature level, the electrolyte level, the resistance of the left (LCA) and right coronary artery (RCA), and myocardial O2 consumption were analysed. Equilibration of K+ was terminated shortly after the start of the perfusion while Na+ equilibration lasted for about 5 minutes. Resistance of RCA did not change significantly, but that of the LCA was diminished significantly (p less than 0.025) within the perfusion period indicating a delayed washout of calcium from the extracellular space. Myocardial O2 consumption was reduced from 2.71 ml/min (1. minute) to 1.51 ml/min (4. minute) to 0.93 ml/min (7. minute) although the temperature had reached a low level after 3 minutes. The difference between 4. to 7. minutes is significant (p less than 0.001). By our results it is concluded that in adult hearts high-volume cardioplegic perfusion at a flow rate of 1 ml/min X gm at a perfusion pressure of 40 to 50 mmHg should be performed for at least 6 to 7 minutes to achieve a sufficient intra-ischemic myocardial protection.

  2. [Effect of anti-ischemic protection on biochemical indices of the isolated perfused liver].

    PubMed

    Kozlov, S A; Kiselev, E N; Zinov'ev, Iu V

    1987-01-01

    alpha-Tocopherol and prednisolone exhibited the highest antiischemic activity, while lidocaine and sodium glutamate were less active after administration into isolated perfused rabbit liver tissue subjected to 60-min thermic ischemia. Chlorpromazine.HCl did not affect the biochemical patterns studied in isolated perfused liver tissue.

  3. SPECT and PET in ischemic heart failure.

    PubMed

    Angelidis, George; Giamouzis, Gregory; Karagiannis, Georgios; Butler, Javed; Tsougos, Ioannis; Valotassiou, Varvara; Giannakoulas, George; Dimakopoulos, Nikolaos; Xanthopoulos, Andrew; Skoularigis, John; Triposkiadis, Filippos; Georgoulias, Panagiotis

    2017-03-01

    Heart failure is a common clinical syndrome associated with significant morbidity and mortality worldwide. Ischemic heart disease is the leading cause of heart failure, at least in the industrialized countries. Proper diagnosis of the syndrome and management of patients with heart failure require anatomical and functional information obtained through various imaging modalities. Nuclear cardiology techniques play a main role in the evaluation of heart failure. Myocardial single photon emission computed tomography (SPECT) with thallium-201 or technetium-99 m labelled tracers offer valuable data regarding ventricular function, myocardial perfusion, viability, and intraventricular synchronism. Moreover, positron emission tomography (PET) permits accurate evaluation of myocardial perfusion, metabolism, and viability, providing high-quality images and the ability of quantitative analysis. As these imaging techniques assess different parameters of cardiac structure and function, variations of sensitivity and specificity have been reported among them. In addition, the role of SPECT and PET guided therapy remains controversial. In this comprehensive review, we address these controversies and report the advances in patient's investigation with SPECT and PET in ischemic heart failure. Furthermore, we present the innovations in technology that are expected to strengthen the role of nuclear cardiology modalities in the investigation of heart failure.

  4. Small vessel hematocrit in ischemic myocardium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gumm, D.C.; Cooper, S.M.; Marcus, M.L.

    1986-03-01

    As blood enters the microvasculature of normally perfused myocardium, there is a progressive decrease in small vessel hematocrit (SV Hct) due to RBC streaming in smaller branching vessels and the Fahraeus-Lindqvist effect. We hypothesized that if the coronary collateral circulation was composed of very small vessels branching from large parent vessels, plasma streaming would result in a further decrease of SV Hct in ischemic myocardium. Six open chest anesthetized dogs were studied. Plasma was labelled with /sup 59/FeCl siderophilin and RBC's with /sup 99/mTc to estimate SV Hct from myocardial biopsies. The LAD was occluded and cannulated for measurement ofmore » retrograde flow (arising presumably from proximal collaterals). The ischemic region was identified using the microsphere shadow technique. Collateral flow after LAD occlusion was 30 +- 12 ml/min 100g (x +- SE). Systemic Hct was 40 +- 1%. The Hct of blood from retrograde flow was 39 +- 1% (p = NS). Activity of /sup 59/FeCl and /sup 99/mTc in known quantities of blood were compared to myocardial biopsies to estimate SV Hct. Ischemic SV Hct was 23 +- 2% and non-ischemic SV Hct was 21 +- 1% (p = NS). We conclude that the size and branching pattern of coronary collaterals is such that plasma streaming in collaterals does not result in an additional decrease in SV Hct in ischemic myocardium.« less

  5. Whole brain CT perfusion deficits using 320-detector-row CT scanner in TIA patients are associated with ABCD2 score.

    PubMed

    Mehta, Bijal K; Mustafa, Ghulam; McMurtray, Aaron; Masud, Mohammed W; Gunukula, Sameer K; Kamal, Haris; Kandel, Amit; Beltagy, Abdelrahman; Li, Ping

    2014-01-01

    Transient ischemic attacks (TIA) are cerebral ischemic events without infarction. The uses of CT perfusion (CTP) techniques such as cerebral blood volume (CBV), time to peak (TTP), mean transit time (MTT) and cerebral blood flow (CBF) provide real time data about ischemia. It has been shown that CTP changes occur in less sensitive CTP scanners in patients with TIA. Larger detector row CTP (whole brain perfusion studies) may show that CTP abnormalities are more prevalent than previously noted. It is also unclear if these changes are associated with TIA severity. To demonstrate that TIA patients are associated with perfusion deficits using whole brain 320-detector-row CT perfusion, and to determine an association between ABCD2 score and perfusion deficit using whole brain perfusion. We retrospectively reviewed all TIA patients for CTP deficits from 2008-2010. Perfusion imaging was reviewed at admission; and it was determined if a perfusion deficit was present along with vascular territory involved. Of 364 TIA patients, 62 patients had CTP deficits. The largest group of patients had MCA territory involved with 48 of 62 patients (77.42%). The most common perfusion abnormality was increased TTP with 46 patients (74.19%). The ABCD2 score was reviewed in association with perfusion deficit. Increased age >60, severe hypertension (>180/100 mmHg), patients with speech abnormalities, and duration of symptoms >10 min were associated with a perfusion deficit but history of diabetes or minimal/moderate hypertension (140/90-179/99 mmHg) was not. There was no association between motor deficit and perfusion abnormality. Perfusion deficits are found in TIA patients using whole brain CTP and associated with components of the ABCD2 score.

  6. Cardiac Magnetic Resonance Imaging in Ischemic Heart Disease

    PubMed Central

    Florian, A.; Jurcut, R.; Ginghina, C.; Bogaert, J.

    2011-01-01

    Cardiac magnetic resonance imaging (MRI) has emerged as a prime player in the clinical and preclinical detection of ischemic heart disease (IHD) as well in the prognosis assessment by offering a comprehensive approach for all spectrums of coronary artery disease (CAD) patients. The aim of this review is to provide the reader a state–of–the art on how the newest cardiac MRI techniques can be used to study IHD patients. In patients with suspected/stable CAD, functional and perfusion imaging both at rest and during vasodilatatory stress (adenosine, dypiridamole)/dobutamine stress can accurately depict ischemic myocardium secondary to significant coronary artery stenosis. In patients with acute MI, MRI is a robust tool for differentiating and sizing the jeopardized and the infarcted myocardium by using a combination of functional, edema, perfusion and Gd contrast imaging. Moreover, important prognostic factors like myocardial salvage, the presence of microvascular obstruction (MVO), post reperfusion myocardial hemorrhage, RV involvement and infarct related complications can be assessed in the same examination. In patients with chronic ischemic cardiomyopathy, the role of the MRI extends from diagnosis by means of Gadolinium contrast scar imaging to therapy and prognosis by functional assessment and viability testing with rest and dobutamine stress imaging. In all the circumstances mentioned, MRI derived information has been proven valuable in every day clinical decision making and prognosis assessment. Thus, MRI is becoming more and more an accepted alternative to other imaging modalities both in the acute and chronic setting. PMID:22514564

  7. Automatic assessment of dynamic contrast-enhanced MRI in an ischemic rat hindlimb model: an exploratory study of transplanted multipotent progenitor cells.

    PubMed

    Hsu, Li-Yueh; Wragg, Andrew; Anderson, Stasia A; Balaban, Robert S; Boehm, Manfred; Arai, Andrew E

    2008-02-01

    This study presents computerized automatic image analysis for quantitatively evaluating dynamic contrast-enhanced MRI in an ischemic rat hindlimb model. MRI at 7 T was performed on animals in a blinded placebo-controlled experiment comparing multipotent adult progenitor cell-derived progenitor cell (MDPC)-treated, phosphate buffered saline (PBS)-injected, and sham-operated rats. Ischemic and non-ischemic limb regions of interest were automatically segmented from time-series images for detecting changes in perfusion and late enhancement. In correlation analysis of the time-signal intensity histograms, the MDPC-treated limbs correlated well with their corresponding non-ischemic limbs. However, the correlation coefficient of the PBS control group was significantly lower than that of the MDPC-treated and sham-operated groups. In semi-quantitative parametric maps of contrast enhancement, there was no significant difference in hypo-enhanced area between the MDPC and PBS groups at early perfusion-dependent time frames. However, the late-enhancement area was significantly larger in the PBS than the MDPC group. The results of this exploratory study show that MDPC-treated rats could be objectively distinguished from PBS controls. The differences were primarily determined by late contrast enhancement of PBS-treated limbs. These computerized methods appear promising for assessing perfusion and late enhancement in dynamic contrast-enhanced MRI.

  8. Pilocarpine-Induced Status Epilepticus in Rats Involves Ischemic and Excitotoxic Mechanisms

    PubMed Central

    Fabene, Paolo Francesco; Merigo, Flavia; Galiè, Mirco; Benati, Donatella; Bernardi, Paolo; Farace, Paolo; Nicolato, Elena; Marzola, Pasquina; Sbarbati, Andrea

    2007-01-01

    The neuron loss characteristic of hippocampal sclerosis in temporal lobe epilepsy patients is thought to be the result of excitotoxic, rather than ischemic, injury. In this study, we assessed changes in vascular structure, gene expression, and the time course of neuronal degeneration in the cerebral cortex during the acute period after onset of pilocarpine-induced status epilepticus (SE). Immediately after 2 hr SE, the subgranular layers of somatosensory cortex exhibited a reduced vascular perfusion indicative of ischemia, whereas the immediately adjacent supragranular layers exhibited increased perfusion. Subgranular layers exhibited necrotic pathology, whereas the supergranular layers were characterized by a delayed (24 h after SE) degeneration apparently via programmed cell death. These results indicate that both excitotoxic and ischemic injuries occur during pilocarpine-induced SE. Both of these degenerative pathways, as well as the widespread and severe brain damage observed, should be considered when animal model-based data are compared to human pathology. PMID:17971868

  9. Normothermic perfusion: a new paradigm for organ preservation.

    PubMed

    Brockmann, Jens; Reddy, Srikanth; Coussios, Constantin; Pigott, David; Guirriero, Dino; Hughes, David; Morovat, Alireza; Roy, Debabrata; Winter, Lucy; Friend, Peter J

    2009-07-01

    Transplantation of organs retrieved after cardiac arrest could increase the donor organ supply. However, the combination of warm ischemia and cold preservation is highly detrimental to the reperfused organ. Our objective was to maintain physiological temperature and organ function during preservation and thereby alleviate this injury and allow successful transplantation. We have developed a liver perfusion device that maintains physiological temperature with provision of oxygen and nutrition. Reperfusion experiments suggested that this allows recovery of ischemic damage. In a pig liver transplant model, we compared the outcome following either conventional cold preservation or warm preservation. Preservation periods of 5 and 20 hours and durations of warm ischemia of 40 and 60 minutes were tested. After 20 hours preservation without warm ischemia, post-transplant survival was improved (27%-86%, P = 0.026), with corresponding differences in transaminase levels and histological analysis. With the addition of 40 minutes warm ischemia, the differences were even more marked (cold vs. warm groups 0% vs. 83%, P = 0.001). However, with 60 minutes warm ischemia and 20 hours preservation, there were no survivors. Analysis of hemodynamic and liver function data during perfusion showed several factors to be predictive of posttransplant survival, including bile production, base excess, portal vein flow, and hepatocellular enzymes. Organ preservation by warm perfusion, maintaining physiological pressure and flow parameters, has enabled prolonged preservation and successful transplantation of both normal livers and those with substantial ischemic damage. This technique has the potential to address the shortage of organs for transplantation.

  10. Retrograde and antegrade cerebral perfusion: results in short elective arch reconstructive times.

    PubMed

    Milewski, Rita Karianna; Pacini, Davide; Moser, G William; Moeller, Patrick; Cowie, Doreen; Szeto, Wilson Y; Woo, Y Joseph; Desai, Nimesh; Di Marco, Luca; Pochettino, Alberto; Di Bartolomeo, Roberto; Bavaria, Joseph E

    2010-05-01

    Debate remains regarding optimal cerebral circulatory management during relatively noncomplex, short arch reconstructive times. Both retrograde cerebral perfusion with deep hypothermic circulatory arrest (RCP/DHCA) and antegrade cerebral perfusion with moderate hypothermic circulatory arrest (ACP/MHCA) have emerged as established techniques. The aim of the study was to evaluate perioperative outcomes between antegrade and retrograde cerebral perfusion techniques for elective arch reconstruction times less than 45 minutes. Between 1997 and September 2008, 776 cases from two institutions were reviewed to compare RCP/DHCA and ACP/MHCA perfusion techniques. At the University of Pennsylvania, 682 were treated utilizing RCP/DHCA cerebral protection. At the University of Bologna, 94 were treated with ACP/MHCA and bilateral cerebral perfusion. Mean cerebral ischemic time and visceral ischemic time differed between RCP/DHCA and ACP/MHCA (p < 0.001). Multivariate analysis showed age more than 65 years, atherosclerotic aneurysm, and cross-clamp time as predictors of the composite endpoint of mortality, neurologic event, and acute myocardial infarction. There was no significant difference in permanent neurologic deficit, temporary neurologic dysfunction, or renal failure, between RCP/DHCA and ACP/MHCA. Mortality was comparable across both techniques. Both RCP/DHCA and ACP/MHCA have emerged as effective techniques for selected aortic arch operations with low morbidity and mortality. Univariate analysis revealed no statistically significant differences in primary or secondary outcomes between techniques for aortic reconstruction times less than 45 minutes. Data from this study demonstrate that selective use of either RCP/DHCA or ACP/MHCA provides excellent cerebral and visceral outcomes for elective open aortic surgery with short arch reconstructive times. Copyright (c) 2010 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Special considerations in the pediatric use of radionuclides for kidney studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ash, J.M.; Antico, V.F.; Gilday, D.L.

    1982-10-01

    Radionuclide renal studies are particularly well suited to pediatrics as renal problems in children usually are part of a dynamic process which requires serial assessment. The absence of side-effects and the low radiation dose has added to their popularity in pediatrics. A number of different renal parameters can be evaluated using the appropriate radiopharmaceutical and method of analysis. The renal study is of value to assess patients with hydronephrosis both pre-operatively and for serial follow-up post-operatively, as well as to distinguish obstructive from non-obstructive uropathy. Perfusion to the kidney may be assessed and ischemic areas detected in children with hypertensionmore » or trauma. The renal scan commonly is used in patients with congenital anomalies such as ectopic and duplex kidneys, nonvisualized kidney on IVP and in children with oliguria or anuria secondary to diseases such as acute tubular necrosis, hemolytic uremic syndrome, and renal vein thrombosis. It frequently is done as an emergency procedure in neonates. In conjunction with the IVP and ultrasound, the renal study is useful in some cases of abdominal mass to distinguish between hydronephrosis, cystic kidneys and tumors.« less

  12. Arterial Cannulation and Cerebral Perfusion Strategies for Aortic Arch Operations.

    PubMed

    Foley, Lisa S; Yamanaka, Katsuhiro; Reece, T Brett

    2016-12-01

    Neurologic injuries following aortic arch operations can be devastating, with stroke occurring in up to 12% of elective operations and significant cerebral dysfunction occurring in up to 25% of cases. The primary challenge unique to aortic arch operations involves interruption of direct perfusion of the brachiocephalic vessels during arch reconstruction. For this reason, neuroprotection is paramount. The 2 main modes of protection are (1) reducing metabolic demand through hypothermia and (2) limiting, or even eliminating, the ischemic period. Preoperative selection of the cerebral perfusion plan for each operation is imperative to maintain maximal diffuse cerebral protection and prevent focal neurologic events. © The Author(s) 2016.

  13. Hyperintense Vessels on T2-PROPELLER-FLAIR in Patients with Acute MCA Stroke: Prediction of Arterial Stenosis and Perfusion Abnormality.

    PubMed

    Ahn, S J; Suh, S H; Lee, K-Y; Kim, J H; Seo, K-D; Lee, S

    2015-11-01

    Fluid-attenuated inversion recovery hyperintense vessels in stroke represent leptomeningeal collateral flow. We presumed that FLAIR hyperintense vessels would be more closely associated with arterial stenosis and perfusion abnormality in ischemic stroke on T2-PROPELLER-FLAIR than on T2-FLAIR. We retrospectively reviewed 35 patients with middle cerebral territorial infarction who underwent MR imaging. FLAIR hyperintense vessel scores were graded according to the number of segments with FLAIR hyperintense vessels in the MCA ASPECTS areas. We compared the predictability of FLAIR hyperintense vessels between T2-PROPELLER-FLAIR and T2-FLAIR for large-artery stenosis. The interagreement between perfusion abnormality and FLAIR hyperintense vessels was assessed. In subgroup analysis (9 patients with MCA horizontal segment occlusion), the association of FLAIR hyperintense vessels with ischemic lesion volume and perfusion abnormality volume was evaluated. FLAIR hyperintense vessel scores were significantly higher on T2-PROPELLER-FLAIR than on T2-FLAIR (3.50 ± 2.79 versus 1.21 ± 1.47, P < .01), and the sensitivity for large-artery stenosis was significantly improved on T2-PROPELLER-FLAIR (93% versus 68%, P = .03). FLAIR hyperintense vessels on T2-PROPELLER-FLAIR were more closely associated with perfusion abnormalities than they were on T2-FLAIR (κ = 0.64 and κ = 0.27, respectively). In subgroup analysis, FLAIR hyperintense vessels were positively correlated with ischemic lesion volume on T2-FLAIR, while the mismatch of FLAIR hyperintense vessels between the 2 sequences was negatively correlated with ischemic lesion volume (P = .01). In MCA stroke, FLAIR hyperintense vessels were more prominent on T2-PROPELLER-FLAIR compared with T2-FLAIR. In addition, FLAIR hyperintense vessels on T2-PROPELLER-FLAIR have a significantly higher sensitivity for predicting large-artery stenosis than they do on T2-FLAIR. Moreover, the areas showing FLAIR hyperintense vessels on T2-PROPELLER

  14. Simultaneous dual-radionuclide myocardial perfusion imaging with a solid-state dedicated cardiac camera.

    PubMed

    Ben-Haim, Simona; Kacperski, Krzysztof; Hain, Sharon; Van Gramberg, Dean; Hutton, Brian F; Erlandsson, Kjell; Sharir, Tali; Roth, Nathaniel; Waddington, Wendy A; Berman, Daniel S; Ell, Peter J

    2010-08-01

    We compared simultaneous dual-radionuclide (DR) stress and rest myocardial perfusion imaging (MPI) with a novel solid-state cardiac camera and a conventional SPECT camera with separate stress and rest acquisitions. Of 27 consecutive patients recruited, 24 (64.5+/-11.8 years of age, 16 men) were injected with 74 MBq of (201)Tl (rest) and 250 MBq (99m)Tc-MIBI (stress). Conventional MPI acquisition times for stress and rest are 21 min and 16 min, respectively. Rest (201)Tl for 6 min and simultaneous DR 15-min list mode gated scans were performed on a D-SPECT cardiac scanner. In 11 patients DR D-SPECT was performed first and in 13 patients conventional stress (99m)Tc-MIBI SPECT imaging was performed followed by DR D-SPECT. The DR D-SPECT data were processed using a spill-over and scatter correction method. DR D-SPECT images were compared with rest (201)Tl D-SPECT and with conventional SPECT images by visual analysis employing the 17-segment model and a five-point scale (0 normal, 4 absent) to calculate the summed stress and rest scores. Image quality was assessed on a four-point scale (1 poor, 4 very good) and gut activity was assessed on a four-point scale (0 none, 3 high). Conventional MPI studies were abnormal at stress in 17 patients and at rest in 9 patients. In the 17 abnormal stress studies DR D-SPECT MPI showed 113 abnormal segments and conventional MPI showed 93 abnormal segments. In the nine abnormal rest studies DR D-SPECT showed 45 abnormal segments and conventional MPI showed 48 abnormal segments. The summed stress and rest scores on conventional SPECT and DR D-SPECT were highly correlated (r=0.9790 and 0.9694, respectively). The summed scores of rest (201)Tl D-SPECT and DR-DSPECT were also highly correlated (r=0.9968, p<0.0001 for all). In six patients stress perfusion defects were significantly larger on stress DR D-SPECT images, and five of these patients were imaged earlier by D-SPECT than by conventional SPECT. Fast and high-quality simultaneous DR

  15. Improving neurovascular outcomes with bilateral forepaw stimulation in a rat photothrombotic ischemic stroke model

    PubMed Central

    Liao, Lun-De; Bandla, Aishwarya; Ling, Ji Min; Liu, Yu-Hang; Kuo, Li-Wei; Chen, You-Yin; King, Nicolas KK; Lai, Hsin-Yi; Lin, Yan-Ren; Thakor, Nitish V.

    2014-01-01

    Abstract. Restoring perfusion to the penumbra during the hyperacute phase of ischemic stroke is a key goal of neuroprotection. Thrombolysis is currently the only approved treatment for ischemic stroke. However, its use is limited by the narrow therapeutic window and side effect of bleeding. Therefore, other interventions are desired that could potentially increase the perfusion of the penumbra. Here, we hypothesized that bilateral peripheral electrical stimulation will improve cerebral perfusion and restore cortical neurovascular response. We assess the outcomes of bilateral forepaw electrical stimulation at intensities of 2 and 4 mA, administered either unilaterally or bilaterally. We developed a combined electrocorticogram (ECoG)-functional photoacoustic microscopy (fPAM) system to evaluate the relative changes in cerebral hemodynamic function and electrophysiologic response to acute, focal stroke. The fPAM system is used for cerebral blood volume (CBV) and hemoglobin oxygen saturation (SO2) and the ECoG for neural activity, namely somatosensory-evoked potential (SSEP), interhemispheric coherence, and alpha-delta ratio (ADR) in response to forepaw stimulation. Our results confirmed the neuroprotective effect of bilateral forepaw stimulation at 2 mA as indicated by the 82% recovery of ADR and 95% improvement in perfusion into the region of penumbra. This experimental model can be used to study other potential interventions such as therapeutic hypertension and hypercarbia. PMID:26157965

  16. Drug Delivery to the Ischemic Brain

    PubMed Central

    Thompson, Brandon J.; Ronaldson, Patrick T.

    2014-01-01

    Cerebral ischemia occurs when blood flow to the brain is insufficient to meet metabolic demand. This can result from cerebral artery occlusion that interrupts blood flow, limits CNS supply of oxygen and glucose, and causes an infarction/ischemic stroke. Ischemia initiates a cascade of molecular events inneurons and cerebrovascular endothelial cells including energy depletion, dissipation of ion gradients, calcium overload, excitotoxicity, oxidative stress, and accumulation of ions and fluid. Blood-brain barrier (BBB) disruption is associated with cerebral ischemia and leads to vasogenic edema, a primary cause of stroke-associated mortality. To date, only a single drug has received US Food and Drug Administration (FDA) approval for acute ischemic stroke treatment, recombinant tissue plasminogen activator (rt-PA). While rt-PA therapy restores perfusion to ischemic brain, considerable tissue damage occurs when cerebral blood flow is re-established. Therefore, there is a critical need for novel therapeutic approaches that can “rescue” salvageable brain tissue and/or protect BBB integrity during ischemic stroke. One class of drugs that may enable neural cell rescue following cerebral ischemia/reperfusion injury is the HMG-CoA reductase inhibitors (i.e., statins). Understanding potential CNS drug delivery pathways for statins is critical to their utility in ischemic stroke. Here, we review molecular pathways associated with cerebral ischemia and novel approaches for delivering drugs to treat ischemic disease. Specifically, we discuss utility of endogenous BBB drug uptake transporters such as organic anion transporting polypeptides (OATPs/Oatps) and nanotechnology-based carriers for optimization of CNS drug delivery. Overall, this chapter highlights state-of-the-art technologies that may improve pharmacotherapy of cerebral ischemia. PMID:25307217

  17. Vasoactive mediators and splanchnic perfusion.

    PubMed

    Reilly, P M; Bulkley, G B

    1993-02-01

    To provide an overview of the splanchnic hemodynamic response to circulatory shock. Previous studies performed in our own laboratory, as well as a computer-assisted search of the English language literature (MEDLINE, 1966 to 1991), followed by a selective review of pertinent articles. Studies were selected that demonstrated relevance to the splanchnic hemodynamic response to circulatory shock, either by investigating the pathophysiology or documenting the sequelae. Article selection included clinical studies as well as studies in appropriate animal models. Pertinent data were abstracted from the cited articles. The splanchnic hemodynamic response to circulatory shock is characterized by a selective vasoconstriction of the mesenteric vasculature mediated largely by the renin-angiotensin axis. This vasospasm, while providing a natural selective advantage to the organism in mild-to-moderate shock (preserving relative perfusion of the heart, kidneys, and brain), may, in more severe shock, cause consequent loss of the gut epithelial barrier, or even hemorrhagic gastritis, ischemic colitis, or ischemic hepatitis. From a physiologic standpoint, nonpulsatile cardiopulmonary bypass, a controlled form of circulatory shock, has been found experimentally to significantly increase circulating levels of angiotensin II, the hormone responsible for this selective splanchnic vasoconstriction. While angiotensin II has been viewed primarily as the mediator responsible for the increased total vascular resistance seen during (and after) cardiopulmonary bypass, it may also cause the disproportionate decrease in mesenteric perfusion, as measured in human subjects by intraluminal gastric tonometry and galactose clearance by the liver, as well as the consequent development of the multiple organ failure syndrome seen in 1% to 5% of patients after cardiac surgery.

  18. Effects of noninvasive facial nerve stimulation in the dog middle cerebral artery occlusion model of ischemic stroke.

    PubMed

    Borsody, Mark K; Yamada, Chisa; Bielawski, Dawn; Heaton, Tamara; Castro Prado, Fernando; Garcia, Andrea; Azpiroz, Joaquín; Sacristan, Emilio

    2014-04-01

    Facial nerve stimulation has been proposed as a new treatment of ischemic stroke because autonomic components of the nerve dilate cerebral arteries and increase cerebral blood flow when activated. A noninvasive facial nerve stimulator device based on pulsed magnetic stimulation was tested in a dog middle cerebral artery occlusion model. We used an ischemic stroke dog model involving injection of autologous blood clot into the internal carotid artery that reliably embolizes to the middle cerebral artery. Thirty minutes after middle cerebral artery occlusion, the geniculate ganglion region of the facial nerve was stimulated for 5 minutes. Brain perfusion was measured using gadolinium-enhanced contrast MRI, and ATP and total phosphate levels were measured using 31P spectroscopy. Separately, a dog model of brain hemorrhage involving puncture of the intracranial internal carotid artery served as an initial examination of facial nerve stimulation safety. Facial nerve stimulation caused a significant improvement in perfusion in the hemisphere affected by ischemic stroke and a reduction in ischemic core volume in comparison to sham stimulation control. The ATP/total phosphate ratio showed a large decrease poststroke in the control group versus a normal level in the stimulation group. The same stimulation administered to dogs with brain hemorrhage did not cause hematoma enlargement. These results support the development and evaluation of a noninvasive facial nerve stimulator device as a treatment of ischemic stroke.

  19. Revascularization of ischemic limbs after transplantation of human bone marrow cells with high aldehyde dehydrogenase activity

    PubMed Central

    Capoccia, Benjamin J.; Robson, Debra L.; Levac, Krysta D.; Maxwell, Dustin J.; Hohm, Sarah A.; Neelamkavil, Marian J.; Bell, Gillian I.; Xenocostas, Anargyros; Link, Daniel C.; Piwnica-Worms, David; Nolta, Jan A.

    2009-01-01

    The development of cell therapies to treat peripheral vascular disease has proven difficult because of the contribution of multiple cell types that coordinate revascularization. We characterized the vascular regenerative potential of transplanted human bone marrow (BM) cells purified by high aldehyde dehydrogenase (ALDHhi) activity, a progenitor cell function conserved between several lineages. BM ALDHhi cells were enriched for myelo-erythroid progenitors that produced multipotent hematopoietic reconstitution after transplantation and contained nonhematopoietic precursors that established colonies in mesenchymal-stromal and endothelial culture conditions. The regenerative capacity of human ALDHhi cells was assessed by intravenous transplantation into immune-deficient mice with limb ischemia induced by femoral artery ligation/transection. Compared with recipients injected with unpurified nucleated cells containing the equivalent of 2- to 4-fold more ALDHhi cells, mice transplanted with purified ALDHhi cells showed augmented recovery of perfusion and increased blood vessel density in ischemic limbs. ALDHhi cells transiently recruited to ischemic regions but did not significantly integrate into ischemic tissue, suggesting that transient ALDHhi cell engraftment stimulated endogenous revascularization. Thus, human BM ALDHhi cells represent a progenitor-enriched population of several cell lineages that improves perfusion in ischemic limbs after transplantation. These clinically relevant cells may prove useful in the treatment of critical ischemia in humans. PMID:19324906

  20. Prevention of the collapse of pial collaterals by remote ischemic perconditioning during acute ischemic stroke.

    PubMed

    Ma, Junqiang; Ma, Yonglie; Dong, Bin; Bandet, Mischa V; Shuaib, Ashfaq; Winship, Ian R

    2017-08-01

    Collateral circulation is a key variable determining prognosis and response to recanalization therapy during acute ischemic stroke. Remote ischemic perconditioning (RIPerC) involves inducing peripheral ischemia (typically in the limbs) during stroke and may reduce perfusion deficits and brain damage due to cerebral ischemia. In this study, we directly investigated pial collateral flow augmentation due to RIPerC during distal middle cerebral artery occlusion (MCAo) in rats. Blood flow through pial collaterals between the anterior cerebral artery (ACA) and the MCA was assessed in male Sprague Dawley rats using in vivo laser speckle contrast imaging (LSCI) and two photon laser scanning microscopy (TPLSM) during distal MCAo. LSCI and TPLSM revealed that RIPerC augmented collateral flow into distal MCA segments. Notably, while control rats exhibited an initial dilation followed by a progressive narrowing of pial arterioles 60 to 150-min post-MCAo (constricting to 80-90% of post-MCAo peak diameter), this constriction was prevented or reversed by RIPerC (such that vessel diameters increased to 105-110% of post-MCAo, pre-RIPerC diameter). RIPerC significantly reduced early ischemic damage measured 6 h after stroke onset. Thus, prevention of collateral collapse via RIPerC is neuroprotective and may facilitate other protective or recanalization therapies by improving blood flow in penumbral tissue.

  1. Multi-center prediction of hemorrhagic transformation in acute ischemic stroke using permeability imaging features.

    PubMed

    Scalzo, Fabien; Alger, Jeffry R; Hu, Xiao; Saver, Jeffrey L; Dani, Krishna A; Muir, Keith W; Demchuk, Andrew M; Coutts, Shelagh B; Luby, Marie; Warach, Steven; Liebeskind, David S

    2013-07-01

    Permeability images derived from magnetic resonance (MR) perfusion images are sensitive to blood-brain barrier derangement of the brain tissue and have been shown to correlate with subsequent development of hemorrhagic transformation (HT) in acute ischemic stroke. This paper presents a multi-center retrospective study that evaluates the predictive power in terms of HT of six permeability MRI measures including contrast slope (CS), final contrast (FC), maximum peak bolus concentration (MPB), peak bolus area (PB), relative recirculation (rR), and percentage recovery (%R). Dynamic T2*-weighted perfusion MR images were collected from 263 acute ischemic stroke patients from four medical centers. An essential aspect of this study is to exploit a classifier-based framework to automatically identify predictive patterns in the overall intensity distribution of the permeability maps. The model is based on normalized intensity histograms that are used as input features to the predictive model. Linear and nonlinear predictive models are evaluated using a cross-validation to measure generalization power on new patients and a comparative analysis is provided for the different types of parameters. Results demonstrate that perfusion imaging in acute ischemic stroke can predict HT with an average accuracy of more than 85% using a predictive model based on a nonlinear regression model. Results also indicate that the permeability feature based on the percentage of recovery performs significantly better than the other features. This novel model may be used to refine treatment decisions in acute stroke. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Cerebral perfusion imaging with bolus harmonic imaging (Honorable Mention Poster Award)

    NASA Astrophysics Data System (ADS)

    Kier, Christian; Toth, Daniel; Meyer-Wiethe, Karsten; Schindler, Angela; Cangur, Hakan; Seidel, Gunter; Aach, Til

    2005-04-01

    Fast visualisation of cerebral microcirculation supports diagnosis of acute stroke. However, the commonly used CT/MRI-based methods are time consuming, costly and not applicable to every patient. The bolus perfusion harmonic imaging (BHI) method is an ultrasound imaging technique which makes use of the fact, that ultrasound contrast agents unlike biological tissues resonate at harmonic frequencies. Exploiting this effect, the contrast between perfused and non-perfused areas can be improved. Thus, BHI overcomes the low signal-to-noise ratio of transcranial ultrasound and the high impedance of the skull. By analysing image sequences, visualising the qualitative characteristics of an US contrast agent bolus injection becomes possible. The analysis consists of calculating four perfusion-related parameters, Local Peak Intensity, Time To Peak, Area Under Curve, and Average Rising, from the time/intensity curve and providing them as colour-coded images. For calculating these parameters the fundamental assumption is that image intensity corresponds to contrast agent concentration which in turn shows the perfusion of the corresponding brain region. In a clinical study on patients suffering from acute ischemic stroke it is shown that some of the parameters correlate significantly to the infarction area. Thus, BHI becomes a less time-consuming and inexpensive bedside method for diagnosis of cerebral perfusion deficits.

  3. Time and diffusion lesion size in major anterior circulation ischemic strokes.

    PubMed

    Hakimelahi, Reza; Vachha, Behroze A; Copen, William A; Papini, Giacomo D E; He, Julian; Higazi, Mahmoud M; Lev, Michael H; Schaefer, Pamela W; Yoo, Albert J; Schwamm, Lee H; González, R Gilberto

    2014-10-01

    Major anterior circulation ischemic strokes caused by occlusion of the distal internal carotid artery or proximal middle cerebral artery or both account for about one third of ischemic strokes with mostly poor outcomes. These strokes are treatable by intravenous tissue-type plasminogen activator and endovascular methods. However, dynamics of infarct growth in these strokes are poorly documented. The purpose was to help understand infarct growth dynamics by measuring acute infarct size with diffusion-weighted imaging (DWI) at known times after stroke onset in patients with documented internal carotid artery/middle cerebral artery occlusions. Retrospectively, we included 47 consecutive patients with documented internal carotid artery/middle cerebral artery occlusions who underwent DWI within 30 hours of stroke onset. Prospectively, 139 patients were identified using the same inclusion criteria. DWI lesion volumes were measured and correlated to time since stroke onset. Perfusion data were reviewed in those who underwent perfusion imaging. Acute infarct volumes ranged from 0.41 to 318.3 mL. Infarct size and time did not correlate (R2=0.001). The majority of patients had DWI lesions that were <25% the territory at risk (<70 mL) whether they were imaged <8 or >8 hours after stroke onset. DWI lesions corresponded to areas of greatly reduced perfusion. Poor correlation between infarct volume and time after stroke onset suggests that there are factors more powerful than time in determining infarct size within the first 30 hours. The observations suggest that highly variable cerebral perfusion via the collateral circulation may primarily determine infarct growth dynamics. If verified, clinical implications include the possibility of treating many patients outside traditional time windows. © 2014 American Heart Association, Inc.

  4. A non-linear regression method for CT brain perfusion analysis

    NASA Astrophysics Data System (ADS)

    Bennink, E.; Oosterbroek, J.; Viergever, M. A.; Velthuis, B. K.; de Jong, H. W. A. M.

    2015-03-01

    CT perfusion (CTP) imaging allows for rapid diagnosis of ischemic stroke. Generation of perfusion maps from CTP data usually involves deconvolution algorithms providing estimates for the impulse response function in the tissue. We propose the use of a fast non-linear regression (NLR) method that we postulate has similar performance to the current academic state-of-art method (bSVD), but that has some important advantages, including the estimation of vascular permeability, improved robustness to tracer-delay, and very few tuning parameters, that are all important in stroke assessment. The aim of this study is to evaluate the fast NLR method against bSVD and a commercial clinical state-of-art method. The three methods were tested against a published digital perfusion phantom earlier used to illustrate the superiority of bSVD. In addition, the NLR and clinical methods were also tested against bSVD on 20 clinical scans. Pearson correlation coefficients were calculated for each of the tested methods. All three methods showed high correlation coefficients (>0.9) with the ground truth in the phantom. With respect to the clinical scans, the NLR perfusion maps showed higher correlation with bSVD than the perfusion maps from the clinical method. Furthermore, the perfusion maps showed that the fast NLR estimates are robust to tracer-delay. In conclusion, the proposed fast NLR method provides a simple and flexible way of estimating perfusion parameters from CT perfusion scans, with high correlation coefficients. This suggests that it could be a better alternative to the current clinical and academic state-of-art methods.

  5. Radiologic evaluation of acute chest pain--suspected myocardial ischemia.

    PubMed

    Stanford, William

    2007-08-15

    The American College of Radiology has developed appropriateness criteria for a number of clinical conditions and procedures. Criteria are available on imaging tests used in the evaluation of acute chest pain--suspected myocardial ischemia. Imaging tests for a suspected cardiac etiology include transthoracic echocardiography, transesophageal echocardiography, radionuclide perfusion imaging, radionuclide ventriculography, radionuclide infarct avid imaging, and positron emission tomography. If the cardiac ischemic work-up is negative or indeterminate, applicable tests include chest radiography; conventional, multidetector, and electron beam computed tomography; and magnetic resonance imaging. A summary of the criteria, with the advantages and limitations of each test, is presented in this article.

  6. Cardiac Radionuclide Imaging in Rodents: A Review of Methods, Results, and Factors at Play

    PubMed Central

    Cicone, Francesco; Viertl, David; Quintela Pousa, Ana Maria; Denoël, Thibaut; Gnesin, Silvano; Scopinaro, Francesco; Vozenin, Marie-Catherine; Prior, John O.

    2017-01-01

    The interest around small-animal cardiac radionuclide imaging is growing as rodent models can be manipulated to allow the simulation of human diseases. In addition to new radiopharmaceuticals testing, often researchers apply well-established probes to animal models, to follow the evolution of the target disease. This reverse translation of standard radiopharmaceuticals to rodent models is complicated by technical shortcomings and by obvious differences between human and rodent cardiac physiology. In addition, radionuclide studies involving small animals are affected by several extrinsic variables, such as the choice of anesthetic. In this paper, we review the major cardiac features that can be studied with classical single-photon and positron-emitting radiopharmaceuticals, namely, cardiac function, perfusion and metabolism, as well as the results and pitfalls of small-animal radionuclide imaging techniques. In addition, we provide a concise guide to the understanding of the most frequently used anesthetics such as ketamine/xylazine, isoflurane, and pentobarbital. We address in particular their mechanisms of action and the potential effects on radionuclide imaging. Indeed, cardiac function, perfusion, and metabolism can all be significantly affected by varying anesthetics and animal handling conditions. PMID:28424774

  7. How to Perfuse: Concepts of Cerebral Protection during Arch Replacement

    PubMed Central

    Habertheuer, Andreas; Wiedemann, Dominik; Kocher, Alfred; Laufer, Guenther; Vallabhajosyula, Prashanth

    2015-01-01

    Arch surgery remains undoubtedly among the most technically and strategically challenging endeavors in cardiovascular surgery. Surgical interventions of thoracic aneurysms involving the aortic arch require complete circulatory arrest in deep hypothermia (DHCA) or elaborate cerebral perfusion strategies with varying degrees of hypothermia to achieve satisfactory protection of the brain from ischemic insults, that is, unilateral/bilateral antegrade cerebral perfusion (ACP) and retrograde cerebral perfusion (RCP). Despite sophisticated and increasingly individualized surgical approaches for complex aortic pathologies, there remains a lack of consensus regarding the optimal method of cerebral protection and circulatory management during the time of arch exclusion. Many recent studies argue in favor of ACP with various degrees of hypothermic arrest during arch reconstruction and its advantages have been widely demonstrated. In fact ACP with more moderate degrees of hypothermia represents a paradigm shift in the cardiac surgery community and is widely adopted as an emergent strategy; however, many centers continue to report good results using other perfusion strategies. Amidst this important discussion we review currently available surgical strategies of cerebral protection management and compare the results of recent European multicenter and single-center data. PMID:26713319

  8. Simple retrograde cerebral perfusion is as good as complex antegrade cerebral perfusion for hemiarch replacement.

    PubMed

    Tanaka, Akiko; Estrera, Anthony L

    2018-01-01

    Cerebral complication is a major concern after aortic arch surgery, which may lead to death. Thus, cerebral protection strategy plays the key role to obtain respectable results in aortic arch repair. Deep hypothermic circulatory arrest was introduced in 1970s to decrease the ischemic insults to the brain. However, safe duration of circulatory arrest time was limited to 30 minutes. The 1990s was the decade of evolution for cerebral protection, in which two adjuncts for deep hypothermic circulatory arrest were introduced: retrograde and antegrade cerebral perfusion (ACP) techniques. These two cerebral perfusion techniques significantly decreased incidence of postoperative neurological dysfunction and mortality after aortic arch surgery. Although there are no large prospective studies that demonstrate which perfusion technique provide better outcomes, multiple retrospective studies implicate that ACP may decrease cerebral complications compared to retrograde cerebral perfusion (RCP) when a long circulatory arrest time is required during aortic arch reconstructions. To date, many surgeons favor ACP over RCP during a complex aortic arch repair, such as total arch replacement and hybrid arch replacement. However, the question is whether the use of ACP is necessary during a short, limited circulatory arrest time, such as hemiarch replacement? There is a paucity of data that proves the advantages of a complex ACP over a simple RCP for a short circulatory arrest time. RCP with deep hypothermic circulatory arrest is the simple, efficient cerebral protection technique with minimal interference to the surgical field-and it potentially allows to flush atheromatous debris out from the arch vessels. Thus, it is the preferred adjunct to deep hypothermic circulatory arrest during hemiarch replacement in our institution.

  9. Simple retrograde cerebral perfusion is as good as complex antegrade cerebral perfusion for hemiarch replacement

    PubMed Central

    Tanaka, Akiko

    2018-01-01

    Cerebral complication is a major concern after aortic arch surgery, which may lead to death. Thus, cerebral protection strategy plays the key role to obtain respectable results in aortic arch repair. Deep hypothermic circulatory arrest was introduced in 1970s to decrease the ischemic insults to the brain. However, safe duration of circulatory arrest time was limited to 30 minutes. The 1990s was the decade of evolution for cerebral protection, in which two adjuncts for deep hypothermic circulatory arrest were introduced: retrograde and antegrade cerebral perfusion (ACP) techniques. These two cerebral perfusion techniques significantly decreased incidence of postoperative neurological dysfunction and mortality after aortic arch surgery. Although there are no large prospective studies that demonstrate which perfusion technique provide better outcomes, multiple retrospective studies implicate that ACP may decrease cerebral complications compared to retrograde cerebral perfusion (RCP) when a long circulatory arrest time is required during aortic arch reconstructions. To date, many surgeons favor ACP over RCP during a complex aortic arch repair, such as total arch replacement and hybrid arch replacement. However, the question is whether the use of ACP is necessary during a short, limited circulatory arrest time, such as hemiarch replacement? There is a paucity of data that proves the advantages of a complex ACP over a simple RCP for a short circulatory arrest time. RCP with deep hypothermic circulatory arrest is the simple, efficient cerebral protection technique with minimal interference to the surgical field—and it potentially allows to flush atheromatous debris out from the arch vessels. Thus, it is the preferred adjunct to deep hypothermic circulatory arrest during hemiarch replacement in our institution. PMID:29682460

  10. Dependence of quantitative accuracy of CT perfusion imaging on system parameters

    NASA Astrophysics Data System (ADS)

    Li, Ke; Chen, Guang-Hong

    2017-03-01

    Deconvolution is a popular method to calculate parametric perfusion parameters from four dimensional CT perfusion (CTP) source images. During the deconvolution process, the four dimensional space is squeezed into three-dimensional space by removing the temporal dimension, and a prior knowledge is often used to suppress noise associated with the process. These additional complexities confound the understanding about deconvolution-based CTP imaging system and how its quantitative accuracy depends on parameters and sub-operations involved in the image formation process. Meanwhile, there has been a strong clinical need in answering this question, as physicians often rely heavily on the quantitative values of perfusion parameters to make diagnostic decisions, particularly during an emergent clinical situation (e.g. diagnosis of acute ischemic stroke). The purpose of this work was to develop a theoretical framework that quantitatively relates the quantification accuracy of parametric perfusion parameters with CTP acquisition and post-processing parameters. This goal was achieved with the help of a cascaded systems analysis for deconvolution-based CTP imaging systems. Based on the cascaded systems analysis, the quantitative relationship between regularization strength, source image noise, arterial input function, and the quantification accuracy of perfusion parameters was established. The theory could potentially be used to guide developments of CTP imaging technology for better quantification accuracy and lower radiation dose.

  11. Radionuclide evaluation of lung trauma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lull, R.J.; Tatum, J.L.; Sugerman, H.J.

    1983-07-01

    Nuclear medicine imaging procedures can play a significant role in evaluating the pulmonary complications that are seen in trauma patients. A quantitative method for measuring increased pulmonary capillary permeability that uses Tc-99m HSA allows early diagnosis of acute respiratory distress syndrome (ARDS) and accurately differentiates this condition from pneumonia or cardiogenic pulmonary edema. This technique may be of great value in following the response to therapy. The use of 133Xe to diagnose inhalation injury remains an important diagnostic tool, particularly at hospitals with specialized burn units. Regional decreases in ventilation-perfusion images reliably localize aspirated foreign bodies. Radionuclide techniques that aremore » used to demonstrate gastropulmonary aspiration remain controversial and require further clinical evaluation. Pulmonary perfusion imaging, although nonspecific, may provide the earliest clue for correct diagnosis of fat embolism, air embolism, contusion, or laceration. Furthermore, the possibility of perfusion abnormality due to these uncommon conditions must be remembered whenever trauma patients are evaluated for pulmonary thromboembolism with scintigraphy. Occasionally, liver or spleen scintigraphy may be the most appropriate procedure when penetrating chest trauma also involves these subdiaphragmatic organs.« less

  12. Ischemic necrosis of the tongue in surgical patients with septic shock: a case report.

    PubMed

    Cho, Jinbeom; Sung, Kiyoung; Lee, Dosang

    2016-07-19

    As the tongue is a well-vascularized organ, ischemic necrosis of the tongue is a rare disease entity. Critically ill patients with profound shock may experience end-organ hypoperfusion, which might result in tongue necrosis. However, to our best knowledge, there are no reports regarding ischemic necrosis of the tongue in surgical patients with septic shock. Two patients recently developed ischemic necrosis of the tongue in our surgical intensive care unit. Both patients had undergone emergent surgery for ischemic enteritis and developed postoperative septic shock. The first patient responded to critical treatment with a short period of circulatory shock, and the delivered dose of the vasopressor seemed to be acceptable. In contrast, the second patient developed postoperative refractory shock, and high-dose vasopressor treatment was required to maintain adequate tissue perfusion. Both patients developed ischemic necrosis of the tongue and died shortly after its emergence, despite vigorous resuscitation. We suggest that ischemic necrosis of the tongue is an under-reported manifestation of any type of circulatory shock, which may have a complex pathogenic mechanism. Clinicians should be aware of the possibility of ischemic necrosis of the tongue in patients with circulatory shock, even if the patient exhibits clinical improvement, as this awareness may facilitate estimation of their prognosis and preparation for clinical deterioration.

  13. Equivalent cardioprotection induced by ischemic and hypoxic preconditioning.

    PubMed

    Xiang, Xujin; Lin, Haixia; Liu, Jin; Duan, Zeyan

    2013-04-01

    We aimed to compare cardioprotection induced by various hypoxic preconditioning (HPC) and ischemic preconditioning (IPC) protocols. Isolated rat hearts were randomly divided into 7 groups (n = 7 per group) and received 3 or 5 cycles of 3-minute ischemia or hypoxia followed by 3-minute reperfusion (IPC33 or HPC33 or IPC53 or HPC53 group), 3 cycles of 5-minute ischemia or hypoxia followed by 5-minute reperfusion (IPC35 group or HPC35 group), or 30-minute perfusion (ischemic/reperfusion group), respectively. Then all the hearts were subjected to 50-minute ischemia and 120-minute reperfusion. Cardiac function, infarct size, and coronary flow rate (CFR) were evaluated. Recovery of cardiac function and CFR in IPC35, HPC35, and HPC53 groups was significantly improved as compared with I/R group (p < 0.01). There were no significant differences in cardiac function parameters between IPC35 and HPC35 groups. Consistently, infarct size was significantly reduced in IPC35, HPC35, and HPC53 groups compared with ischemic/reperfusion group. Multiple-cycle short duration HPC exerted cardioprotection, which was as powerful as that of IPC. Georg Thieme Verlag KG Stuttgart · New York.

  14. Amelioration of myocardial ischemic reperfusion injury with Calendula officinalis.

    PubMed

    Ray, Diptarka; Mukherjee, Subhendu; Falchi, Mario; Bertelli, Aldo; Das, Dipak K

    2010-12-01

    Calendula officinalis of family Asteraceae, also known as marigold, has been widely used from time immemorial in Indian and Arabic cultures as an anti-inflammatory agent to treat minor skin wound and infections, burns, bee stings, sunburn and cancer. At a relatively high dose, calendula can lower blood pressure and cholesterol. Since inflammatory responses are behind many cardiac diseases, we sought to evaluate if calendula could be cardioprotective against ischemic heart disease Two groups of hearts were used: the treated rat hearts were perfused with calendula solution at 50 mM in KHB buffer (in mM: sodium chloride 118, potassium chloride 4.7, calcium chloride 1.7, sodium bicarbonate 25, potassium biphosphate 0.36, magnesium sulfate 1.2, and glucose 10) for 15 min prior to subjecting the heart to ischemia, while the control group was perfused with the buffer only. Calendula achieved cardioprotection by stimulating left ventricular developed pressure and aortic flow as well as by reducing myocardial infarct size and cardiomyocyte apoptosis. Cardioprotection appears to be achieved by changing ischemia reperfusion-mediated death signal into a survival signal by modulating antioxidant and anti-inflammatory pathways as evidenced by the activation of Akt and Bcl2 and depression of TNFα. The results further strengthen the concept of using natural products in degeneration diseases like ischemic heart disease.

  15. Perfusion computed tomography-guided intravenous thrombolysis for acute ischemic stroke beyond 4.5 hours: a case-control study.

    PubMed

    García-Bermejo, Pablo; Calleja, Ana I; Pérez-Fernández, Santiago; Cortijo, Elisa; del Monte, José M; García-Porrero, Miguel; Fe Muñoz, M; Fernández-Herranz, Rosario; Arenillas, Juan F

    2012-01-01

    Extending the therapeutic window of intravenous thrombolysis for acute ischemic stroke beyond the established 4.5-hour limit is of critical importance in order to increase the proportion of thrombolysed stroke patients. In this setting, the capacity of MRI to select acute stroke patients for reperfusion therapies in delayed time windows has been and is being tested in clinical trials. However, whether the more available and cost-effective perfusion computed tomography (PCT) may be useful to select candidates for delayed intravenous thrombolysis remains largely unexplored. We aimed to evaluate the safety and efficacy of PCT-guided intravenous thrombolysis beyond 4.5 h after stroke onset. We prospectively studied all consecutive acute ischemic stroke patients treated with intravenous tissue plasminogen activator (tPA) in our stroke unit between January 2008 and December 2010. Patients treated within 0- 4.5 h were treated according to non-contrast CT (NCCT) criteria. Beyond 4.5 h, patients received intravenous tPA according to PCT criteria, i.e. an infarct core on cerebral blood volume (CBV) maps not exceeding one third of the middle cerebral artery (MCA) territory and tissue at risk as defined by mean transit time-CBV mismatch greater than 20%. Predetermined primary endpoints were symptomatic hemorrhagic transformation and favorable long-term outcome, while early neurological improvement and MCA recanalization were considered secondary endpoints. Statistical analysis included bivariate comparisons between the two groups for each endpoint and logistic regression models when significance was found in bivariate analyses. This study was approved by our local ethics committee. A total of 245 patients received intravenous thrombolysis. After the groups were matched by baseline National Institutes of Health Stroke Scale score, 172 patients treated at <4.5 h and 43 patients treated at >4.5 h were finally included. Early and late groups were comparable regarding baseline

  16. A prosurvival and proangiogenic stem cell delivery system to promote ischemic limb regeneration.

    PubMed

    Xu, Yanyi; Fu, Minghuan; Li, Zhihong; Fan, Zhaobo; Li, Xiaofei; Liu, Ying; Anderson, Peter M; Xie, Xiaoyun; Liu, Zhenguo; Guan, Jianjun

    2016-02-01

    Stem cell therapy is one of the most promising strategies to restore blood perfusion and promote muscle regeneration in ischemic limbs. Yet its therapeutic efficacy remains low owing to the inferior cell survival under the low oxygen and nutrient environment of the injured limbs. To increase therapeutic efficacy, high rates of both short- and long-term cell survival are essential, which current approaches do not support. In this work, we hypothesized that a high rate of short-term cell survival can be achieved by introducing a prosurvival environment into the stem cell delivery system to enhance cell survival before vascularization is established; and that a high rate of long-term cell survival can be attained by building a proangiogenic environment in the system to quickly vascularize the limbs. The system was based on a biodegradable and thermosensitive poly(N-Isopropylacrylamide)-based hydrogel, a prosurvival and proangiogenic growth factor bFGF, and bone marrow-derived mesenchymal stem cells (MSCs). bFGF can be continuously released from the system for 4weeks. The released bFGF significantly improved MSC survival and paracrine effects under low nutrient and oxygen conditions (0% FBS and 1% O2) in vitro. The prosurvival effect of the bFGF on MSCs was resulted from activating cell Kruppel-like factor 4 (KLF4) pathway. When transplanted into the ischemic limbs, the system dramatically improved MSC survival. Some of the engrafted cells were differentiated into skeletal muscle and endothelial cells, respectively. The system also promoted the proliferation of host cells. After only 2weeks of implantation, tissue blood perfusion was completely recovered; and after 4weeks, the muscle fiber diameter was restored similarly to that of the normal limbs. These pronounced results demonstrate that the developed stem cell delivery system has a potential for ischemic limb regeneration. Stem cell therapy is a promising strategy to restore blood perfusion and promote muscle

  17. Myocardial perfusion MRI with sliding-window conjugate-gradient HYPR.

    PubMed

    Ge, Lan; Kino, Aya; Griswold, Mark; Mistretta, Charles; Carr, James C; Li, Debiao

    2009-10-01

    First-pass perfusion MRI is a promising technique for detecting ischemic heart disease. However, the diagnostic value of the method is limited by the low spatial coverage, resolution, signal-to-noise ratio (SNR), and cardiac motion-related image artifacts. In this study we investigated the feasibility of using a method that combines sliding window and CG-HYPR methods (SW-CG-HYPR) to reduce the acquisition window for each slice while maintaining the temporal resolution of one frame per heartbeat in myocardial perfusion MRI. This method allows an increased number of slices, reduced motion artifacts, and preserves the relatively high SNR and spatial resolution of the "composite images." Results from eight volunteers demonstrate the feasibility of SW-CG-HYPR for accelerated myocardial perfusion imaging with accurate signal intensity changes of left ventricle blood pool and myocardium. Using this method the acquisition time per cardiac cycle was reduced by a factor of 4 and the number of slices was increased from 3 to 8 as compared to the conventional technique. The SNR of the myocardium at peak enhancement with SW-CG-HYPR (13.83 +/- 2.60) was significantly higher (P < 0.05) than the conventional turbo-FLASH protocol (8.40 +/- 1.62). Also, the spatial resolution of the myocardial perfection images was significantly improved. SW-CG-HYPR is a promising technique for myocardial perfusion MRI. (c) 2009 Wiley-Liss, Inc.

  18. Rethinking the Role of Nitroglycerin Ointment in Ischemic Vascular Filler Complications: An Animal Model With ICG Imaging.

    PubMed

    Hwang, Catherine J; Morgan, Payam V; Pimentel, Aline; Sayre, James W; Goldberg, Robert A; Duckwiler, Gary

    2016-01-01

    Soft tissue dermal fillers, both temporary and permanent, are used frequently in facial rejuvenation. As the use of fillers increases, ischemic complications including skin necrosis are becoming more prevalent. In the literature, topical nitroglycerin paste has been recommended in the early treatment of patients presenting with ischemia. The purpose of this study was to evaluate the vascular perfusion effects of topical nitroglycerin paste in an animal model using indocyanine green (ICG) imaging. After Animal Research Committee approval, a rabbit ear model was used to create filler-associated skin ischemia. Ischemia was confirmed to occur after intra-arterial occlusion. Four commonly used soft tissue fillers were injected intra-arterially: Radiesse (Merz USA, Greensboro NC), Restylane (Galderma, Ft. Worth, TX), Juvederm Ultra (Allergan, Irvine CA), Belotero (Merz USA, Greensboro NC) (0.1 ml). A total of 15 ears were used, 1 control and 4 experimental per product. Thirty minutes after occlusion, nitroglycerin ointment USP, 2%(Nitro-Bid) was applied topically to the experimental ears. Vascular perfusion was evaluated with the SPY System (Novadaq Inc.) using ICG imaging. Perfusion images were obtained at baseline, immediately after, and 30 minutes after intra-arterial filler injection, and at 30, 60, 90, and 120 minutes after application of topical nitroglycerin ointment. In this rabbit ear model, no statistically significant improvement in perfusion was noted after topical application of nitroglycerin paste with ICG imaging. In addition, the skin of the rabbit ear post-nitroglycerin ointment appeared to have more of a congested appearance than the controls. Ischemic filler complications are becoming increasingly prevalent. Practitioners often treat these complications with topical nitroglycerin paste based on the knowledge that topical nitroglycerin causes vasodilation. In filler-induced tissue ischemia, however, filler product is present within arterioles

  19. [Assessment of myocardial perfusion and left ventricular function with 99mTc-PPN 1011].

    PubMed

    Kumita, S; Mizumura, S; Oishi, T; Kumazaki, T; Sano, J; Yamazaki, Y; Munakata, K

    1993-04-01

    First-pass radionuclide angiography (FPRNA) was performed with the new myocardial perfusion agent 99mTc-1,2,bis[bis(2-ethoxyethyl)phosphino] ethane (99mTc-PPN 1011) on stress and at rest. One hour after that, myocardial perfusion was counted by 99mTc-PPN 1011 SPECT. Left ventricular ejection fraction (LVEF) obtained by FPRNA correlated with that by multigated image with 99mTc-HSAD (r = 0.94, n = 11). The reduction of left ventricular function under the exercise (delta LVEF) and the increase of severity score (delta Severity score) have a good relation (r = 0.88) in 7 patients with prior myocardial infarction. Thus 99mTc-PPN 1011 appears to be an ideal radiopharmaceutical for evaluation of ventricular function and myocardial perfusion.

  20. Blood Pressure May Be Associated with Arterial Collateralization in Anterior Circulation Ischemic Stroke before Acute Reperfusion Therapy.

    PubMed

    Jiang, Beisi; Churilov, Leonid; Kanesan, Lasheta; Dowling, Richard; Mitchell, Peter; Dong, Qiang; Davis, Stephen; Yan, Bernard

    2017-05-01

    Leptomeningeal collaterals maintain arterial perfusion in acute arterial occlusion but may fluctuate subject to arterial blood pressure (ABP). We aim to investigate the relationship between ABP and collaterals as assessed by computer tomography (CT) perfusion in acute ischemic stroke. We retrospectively analyzed acute anterior circulation ischemic stroke patients with CT perfusion from 2009 to 2014. Collateral status using relative filling time delay (rFTD) determined by time delay of collateral-derived contrast opacification within the Sylvian fissure, from 0 seconds to unlimited count. The data were analyzed by zero-inflated negative binomial regression model including an appropriate interaction examining in the model in terms of occlusion location and onset-to-CT time (OCT). Two hundred and seventy patients were included. We found that increment of 10 mm Hg in BP, the odds that a patient would have rFTD equal to 0 seconds increased by 27.9% in systolic BP (SBP) ( p =0.001), by 73.9% in diastolic BP (DBP) ( p <0.001) and by 68.5% in mean BP (MBP) ( p <0.001). For patients with rFTD not necessarily equal to 0 seconds, every 10 mm Hg increase in BP, there was a 7% decrease in expected count of seconds for rFTD in SBP ( p =0.002), 10% decrease for rFTD in DBP and 11% decrease for rFTD in MBP. The arterial occlusion location and OCT showed no significant interaction in the BP-rFTD relationship ( p >0.05). In acute ischemic stroke, higher ABP is possibly associated with improved leptomeningeal collaterals as identified by decreased rFTD.

  1. Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population.

    PubMed

    Arsanjani, Reza; Dey, Damini; Khachatryan, Tigran; Shalev, Aryeh; Hayes, Sean W; Fish, Mathews; Nakanishi, Rine; Germano, Guido; Berman, Daniel S; Slomka, Piotr

    2015-10-01

    We aimed to investigate if early revascularization in patients with suspected coronary artery disease can be effectively predicted by integrating clinical data and quantitative image features derived from perfusion SPECT (MPS) by machine learning (ML) approach. 713 rest (201)Thallium/stress (99m)Technetium MPS studies with correlating invasive angiography with 372 revascularization events (275 PCI/97 CABG) within 90 days after MPS (91% within 30 days) were considered. Transient ischemic dilation, stress combined supine/prone total perfusion deficit (TPD), supine rest and stress TPD, exercise ejection fraction, and end-systolic volume, along with clinical parameters including patient gender, history of hypertension and diabetes mellitus, ST-depression on baseline ECG, ECG and clinical response during stress, and post-ECG probability by boosted ensemble ML algorithm (LogitBoost) to predict revascularization events. These features were selected using an automated feature selection algorithm from all available clinical and quantitative data (33 parameters). Tenfold cross-validation was utilized to train and test the prediction model. The prediction of revascularization by ML algorithm was compared to standalone measures of perfusion and visual analysis by two experienced readers utilizing all imaging, quantitative, and clinical data. The sensitivity of machine learning (ML) (73.6% ± 4.3%) for prediction of revascularization was similar to one reader (73.9% ± 4.6%) and standalone measures of perfusion (75.5% ± 4.5%). The specificity of ML (74.7% ± 4.2%) was also better than both expert readers (67.2% ± 4.9% and 66.0% ± 5.0%, P < .05), but was similar to ischemic TPD (68.3% ± 4.9%, P < .05). The receiver operator characteristics areas under curve for ML (0.81 ± 0.02) was similar to reader 1 (0.81 ± 0.02) but superior to reader 2 (0.72 ± 0.02, P < .01) and standalone measure of perfusion (0.77 ± 0.02, P < .01). ML approach is comparable or better than

  2. Development and Evaluation of Heartbeat: A Machine Perfusion Heart Preservation System.

    PubMed

    Li, Yongnan; Zeng, Qingdong; Liu, Gang; Du, Junzhe; Gao, Bingren; Wang, Wei; Zheng, Zhe; Hu, Shengshou; Ji, Bingyang

    2017-11-01

    Static cold storage is accompanied with a partial safe ischemic interval for donor hearts. In this current study, a machine perfusion system was built to provide a better preservation for the donor heart and assessment for myocardial function. Chinese mini-swine (weight 30-35 kg, n = 16) were randomly divided into HTK, Celsior, and Heartbeat groups. All donor hearts were respectively preserved for 8 hours under static cold storage or machine perfusion. The perfusion solution is aimed to maintain its homeostasis based on monitoring the Heartbeat group. The ultrastructure of myocardium suggests better myocardial protection in the Heartbeat group compared with HTK or Celsior-preserved hearts. The myocardial and coronary artery structural and functional integrity was evaluated by immunofluorescence and Western blots in the Heartbeat. In the Heartbeat group, donor hearts maintained a high adenosine triphosphate level. Bcl-2 and Beclin-1 protein demonstrates high expression in the Celsior group. The Heartbeat system can be used to preserve donor hearts, and it could guarantee the myocardial and endothelial function of hearts during machine perfusion. Translating Heartbeat into clinical practice, it is such as to impact on donor heart preservation for cardiac transplantation. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  3. Risk stratification for large artery or chronic coronary artery disease-related ischemic stroke in octogenarians undergoing exercise stress myocardial perfusion imaging: A cohort study.

    PubMed

    Katsikis, Athanasios; Theodorakos, Athanasios; Drosatos, Alexandros; Konstantinou, Konstantinos; Papaioannou, Spyridon; Koutelou, Maria

    2017-04-01

    To test, if in octogenarians, treadmill exercise with myocardial perfusion imaging (exercise-MPI) can risk stratify for large artery or chronic CAD-related ischemic stroke (LACCIS). Exercise-MPI-related data of 237 octogenarians (55% prior MI or revascularization) without previous stroke were registered and prospective follow-up was performed to document LACCIS. LACCIS was defined as acute onset of neurological symptoms with CT/MRI findings of non-lacunar-type infarcts in the absence of atrial fibrillation or intracardiac embolic sources. After 7.3 years, 10 LACCIS were documented. SSS [HR 1.08 (1.02-1.13 95% CIs), SDS [HR 1.1 (1.04-1.16 95% CIs)], and non-sustained VT or transient AV block during exercise [HR 3.9 (1.7-9.0 95% CIs)] were predictors of LACCIS (P < .01 for all). A SSS threshold of 16 had 81% specificity for identification of future LACCIS and risk groups formed according to this cut-off had significantly different LACCIS-free survival (P = .015). Exercise-MPI in octogenarians can provide risk stratification markers for LACCIS.

  4. Organotypic lung culture: A new model for studying ischemia and ex vivo perfusion in lung transplantation.

    PubMed

    Baste, Jean-Marc; Gay, Arnaud; Smail, Hassiba; Noël, Romain; Bubenheim, Michael; Begueret, Hugues; Morin, Jean-Paul; Litzler, Pierre-Yves

    2015-01-01

    Donors after cardiac death (DCD) in lung transplantation is considered as a solution for organ shortage. However, it is characterized by warm ischemic period, which could be involved in severe Ischemia-Reperfusion lesion (IR) with early graft dysfunction. We describe a new hybrid model combining in vivo ischemia followed by in vitro reoxygenation using organ-specific culture. A hybrid model using in vivo ischemic period followed by in vitro lung slice reoxygenation was set up in rat to mimic DCD in lung transplantation with in vitro perfusion. Different markers (bioenergetics, oxidant stress assays, and histology) were measured to evaluate the viability of lung tissue after different ischemic times (I-0, I-1, I-2, I-4, I-15 hours) and reoxygenation times (R-0, R-1, R-4, R-24 hours). No differences were found in cell viability, ATP concentrations, extracellular LDH assays or histology, demonstrating extensive viability of up to 4 hours in lung tissue warm ischemia. We found oxidative stress mainly during the ischemic period with no burst at reoxygenation. Cytosolic anti-oxidant system was involved first (I-0,I-1,I-2) followed by mitochondrial anti-oxidant system for extensive ischemia (I-4). Histological features showed differences in this model of ischemia-reoxygenation between bronchial epithelium and lung parenchymal cells, with epithelium regeneration after 2 hours of warm ischemia and 24 hours of perfusion. The results of our hybrid model experiment suggest extensive lung viability of up to 4 hours ischemia. Our model could be an interesting tool to evaluate ex vivo reconditioning techniques after different in vivo lung insults.

  5. DRAG REDUCING POLYMER ENCHANCES MICROVASCULAR PERFUSION IN THE TRAUMATIZED BRAIN WITH INTRACRANIAL HYPERTENSION

    PubMed Central

    Bragin, Denis E.; Thomson, Susan; Bragina, Olga; Statom, Gloria; Kameneva, Marina V.; Nemoto, Edwin M.

    2016-01-01

    SUMMARY Current treatments for traumatic brain injury (TBI) have not focused on improving microvascular perfusion. Drag-reducing polymers (DRP), linear, long-chain, blood soluble non-toxic macromolecules, may offer a new approach to improving cerebral perfusion by primary alteration of the fluid dynamic properties of blood. Nanomolar concentrations of DRP have been shown to improve hemodynamics in animal models of ischemic myocardium and limb, but have not yet been studied in the brain. Recently, we demonstrated that that DRP improved microvascular perfusion and tissue oxygenation in a normal rat brain. We hypothesized that DRP could restore microvascular perfusion in hypertensive brain after TBI. Using the in-vivo 2-photon laser scanning microscopy we examined the effect of DRP on microvascular blood flow and tissue oxygenation in hypertensive rat brains with and without TBI. DRP enhanced and restored capillary flow, decreased microvascular shunt flow and, as a result, reduced tissue hypoxia in both un-traumatized and traumatized rat brains at high ICP. Our study suggests that DRP could be an effective treatment for improving microvascular flow in brain ischemia caused by high ICP after TBI. PMID:27165871

  6. Recanalization Therapies in Acute Ischemic Stroke: Pharmacological Agents, Devices, and Combinations

    PubMed Central

    Sharma, Vijay K.; Teoh, Hock Luen; Wong, Lily Y. H.; Su, Jie; Ong, Benjamin K. C.; Chan, Bernard P. L.

    2010-01-01

    The primary aim of thrombolysis in acute ischemic stroke is recanalization of an occluded intracranial artery. Recanalization is an important predictor of stroke outcome as timely restoration of regional cerebral perfusion helps salvage threatened ischemic tissue. At present, intravenously administered tissue plasminogen activator (IV-TPA) remains the only FDA-approved therapeutic agent for the treatment of ischemic stroke within 3 hours of symptom onset. Recent studies have demonstrated safety as well as efficacy of IV-TPA even in an extended therapeutic window. However, the short therapeutic window, low rates of recanalization, and only modest benefits with IV-TPA have prompted a quest for alternative approaches to restore blood flow in an occluded artery in acute ischemic stroke. Although intra-arterial delivery of the thrombolytic agent seems effective, various logistic constraints limit its routine use and as yet no lytic agent have not received full regulatory approval for intra-arterial therapy. Mechanical devices and approaches can achieve higher rates of recanalization but their safety and efficacy still need to be established in larger clinical trials. The field of acute revascularization is rapidly evolving, and various combinations of pharmacologic agents, mechanical devices, and novel microbubble/ultrasound technologies are being tested in multiple clinical trials. PMID:20798838

  7. Change in skin perfusion pressure after the creation of upper limb arteriovenous fistula for maintenance hemodialysis access.

    PubMed

    Sueki, Shina; Sakurada, Tsutomu; Miyamoto, Masahito; Tsuruoka, Kayori; Matsui, Katsuomi; Sato, Yuichi; Shibagaki, Yugo; Kimura, Kenjiro

    2014-10-01

    Arteriovenous fistula (AVF) is the most important vascular access method for hemodialysis (HD). However, ischemic steal syndrome occasionally develops. This study evaluated the change in skin perfusion pressure (SPP) after the creation of upper limb AVF and analyzed the relationship between blood flow measurements and the change in SPP. The subjects included 21 patients who underwent radiocephalic AVF creation for the first time between November 2012 and September 2013. We measured SPP on the palm side of the third finger of both hands and assessed blood flow measurements using ultrasound examination before and after the creation of AVF. The subjects consisted of 15 men and 6 women (average age: 65.3 ± 12.7 years, including 12 diabetic patients). Observational period between before and after surgery was 4.9 ± 5.2 days. None of the patients had ischemic steal syndrome after the creation of AVF. Skin perfusion pressure tended to decrease after creation of AVF on the finger of AVF side (100.0 ± 20.9 vs. 87.9 ± 26.5 mmHg, P = 0.063). In contrast, SPP did not change in the limb without AVF (97.9 ± 20.7 vs. 101.0 ± 19.4 mmHg, P = 0.615). The rate of change in SPP was significantly decreased on the finger of AVF side compared with that of limb without AVF (0.055% vs. -0.112%, P = 0.014). There was no correlation between the change in SPP and blood flow measurements. Skin perfusion pressure is possible to detect ischemic steal syndrome after the creation of upper limb AVF. © 2014 International Society for Hemodialysis.

  8. Brain perfusion imaging using a Reconstruction-of-Difference (RoD) approach for cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Mow, M.; Zbijewski, W.; Sisniega, A.; Xu, J.; Dang, H.; Stayman, J. W.; Wang, X.; Foos, D. H.; Koliatsos, V.; Aygun, N.; Siewerdsen, J. H.

    2017-03-01

    Purpose: To improve the timely detection and treatment of intracranial hemorrhage or ischemic stroke, recent efforts include the development of cone-beam CT (CBCT) systems for perfusion imaging and new approaches to estimate perfusion parameters despite slow rotation speeds compared to multi-detector CT (MDCT) systems. This work describes development of a brain perfusion CBCT method using a reconstruction of difference (RoD) approach to enable perfusion imaging on a newly developed CBCT head scanner prototype. Methods: A new reconstruction approach using RoD with a penalized-likelihood framework was developed to image the temporal dynamics of vascular enhancement. A digital perfusion simulation was developed to give a realistic representation of brain anatomy, artifacts, noise, scanner characteristics, and hemo-dynamic properties. This simulation includes a digital brain phantom, time-attenuation curves and noise parameters, a novel forward projection method for improved computational efficiency, and perfusion parameter calculation. Results: Our results show the feasibility of estimating perfusion parameters from a set of images reconstructed from slow scans, sparse data sets, and arc length scans as short as 60 degrees. The RoD framework significantly reduces noise and time-varying artifacts from inconsistent projections. Proper regularization and the use of overlapping reconstructed arcs can potentially further decrease bias and increase temporal resolution, respectively. Conclusions: A digital brain perfusion simulation with RoD imaging approach has been developed and supports the feasibility of using a CBCT head scanner for perfusion imaging. Future work will include testing with data acquired using a 3D-printed perfusion phantom currently and translation to preclinical and clinical studies.

  9. Mitochondrial complex I and NAD(P)H oxidase are major sources of exacerbated oxidative stress in pressure-overloaded ischemic-reperfused hearts.

    PubMed

    Mozaffari, Mahmood S; Baban, Babak; Liu, Jun Yao; Abebe, Worku; Sullivan, Jennifer C; El-Marakby, Ahmed

    2011-03-01

    We tested the hypothesis that pressure overload exacerbates oxidative stress associated with augmented mitochondrial permeability transition (MPT) pore opening and cell death in ischemic-reperfused hearts. Pressure overload decreased the level of reduced glutathione but increased nitrotyrosine and 8-hydroxydeoxyguanosine levels in ischemic-reperfused hearts. The activity of catalase, but not superoxide dismutase (SOD), was lower in ischemic-reperfused hearts perfused at higher pressure. Mitochondria from ischemic-reperfused hearts subjected to higher perfusion pressure displayed significantly greater [³H]-2-deoxyglucose-6-P entrapment suggestive of greater MPT pore opening and consistent with greater necrosis and apoptosis. Tempol (SOD mimetic) reduced infarct size in both groups but it remained greater in the higher pressure group. By contrast, uric acid (peroxynitrite scavenger) markedly reduced infarct size at higher pressure, effectively eliminating the differential between the two groups. Inhibition of xanthine oxidase, with allopurinol, reduced infarct size but did not eliminate the differential between the two groups. However, amobarbital (inhibitor of mitochondrial complex I) or apocynin [inhibitor of NAD(P)H oxidase] reduced infarct size at both pressures and also abrogated the differential between the two groups. Consistent with the effect of apocynin, pressure-overloaded hearts displayed significantly higher NAD(P)H oxidase activity. Furthermore, pressure-overloaded hearts displayed increased nitric oxide synthase activity which, along with increased propensity to superoxide generation, may underlie uric acid-induced cardioprotection. In conclusion, increased oxidative and nitrosative stress, coupled with lack of augmented SOD and catalase activities, contributes importantly to the exacerbating impact of pressure overload on MPT pore opening and cell death in ischemic-reperfused hearts.

  10. Biomarkers and perfusion – training-induced changes after stroke (BAPTISe): protocol of an observational study accompanying a randomized controlled trial

    PubMed Central

    2013-01-01

    Background Physical activity is believed to exert a beneficial effect on functional and cognitive rehabilitation of patients with stroke. Although studies have addressed the impact of physical exercise in cerebrovascular prevention and rehabilitation, the underlying mechanisms leading to improvement are poorly understood. Training-induced increase of cerebral perfusion is a possible mediating mechanism. Our exploratory study aims to investigate training-induced changes in blood biomarker levels and magnetic resonance imaging in patients with subacute ischemic stroke. Methods/design This biomarker-driven study uses an observational design to examine a subgroup of patients in the randomized, controlled PHYS-STROKE trial. In PHYS-STROKE, 215 patients with subacute stroke (hemorrhagic and ischemic) receive either 4 weeks of physical training (aerobic training, 5 times a week, for 50 minutes) or 4 weeks of relaxation sessions (5 times a week, for 50 minutes). A convenience sample of 100 of these patients with ischemic stroke will be included in BAPTISe and will receive magnetic resonance imaging (MRI) scans and an additional blood draw before and after the PHYS-STROKE intervention. Imaging scans will address parameters of cerebral perfusion, vessel size imaging, and microvessel density (the Q factor) to estimate the degree of neovascularization in the brain. Blood tests will determine several parameters of immunity, inflammation, endothelial function, and lipometabolism. Primary objective of this study is to evaluate differential changes in MRI and blood-derived biomarkers between groups. Other endpoints are next cerebrovascular events and functional status of the patient after the intervention and after 3 months assessed by functional scores, in particular walking speed and Barthel index (co-primary endpoints of PHYS-STROKE). Additionally, we will assess the association between functional outcomes and biomarkers including imaging results. For all endpoints we will

  11. Blockade of the swelling-induced chloride current attenuates the mouse neonatal hypoxic-ischemic brain injury in vivo.

    PubMed

    Wong, Raymond; Abussaud, Ahmed; Leung, Joseph Wh; Xu, Bao-Feng; Li, Fei-Ya; Huang, Sammen; Chen, Nai-Hong; Wang, Guan-Lei; Feng, Zhong-Ping; Sun, Hong-Shuo

    2018-05-01

    Activation of swelling-induced Cl - current (I Cl,swell ) during neonatal hypoxia-ischemia (HI) may induce brain damage. Hypoxic-ischemic brain injury causes chronic neurological morbidity in neonates as well as acute mortality. In this study, we investigated the role of I Cl,swell in hypoxic-ischemic brain injury using a selective blocker, 4-(2-butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl) oxybutyric acid (DCPIB). In primary cultured cortical neurons perfusion of a 30% hypotonic solution activated I Cl,swell , which was completely blocked by the application of DCPIB (10 μmol/L). The role of I Cl,swell in neonatal hypoxic-ischemic brain injury in vivo was evaluated in a modified neonatal hypoxic-ischemic brain injury model. Before receiving the ischemic insult, the mouse pups were injected with DCPIB (10 mg/kg, ip). We found that pretreatment with DCPIB significantly reduced the brain damage assessed using TTC staining, Nissl staining and whole brain imaging, and improved the sensorimotor and vestibular recovery outcomes evaluated in neurobehavioural tests (i.e. geotaxis reflex, and cliff avoidance reflex). These results show that DCPIB has neuroprotective effects on neonatal hypoxic-ischemic brain injury, and that the I Cl,swell may serve as a therapeutic target for treatment of hypoxic-ischemic encephalopathy.

  12. Assessment of cardiac function using myocardial perfusion imaging technique on SPECT with 99mTc sestamibi

    NASA Astrophysics Data System (ADS)

    Gani, M. R. A.; Nazir, F.; Pawiro, S. A.; Soejoko, D. S.

    2016-03-01

    Suspicion on coronary heart disease can be confirmed by observing the function of left ventricle cardiac muscle with Myocardial Perfusion Imaging techniques. The function perfusion itself is indicated by the uptake of radiopharmaceutical tracer. The 31 patients were studied undergoing the MPI examination on Gatot Soebroto Hospital using 99mTc-sestamibi radiopharmaceutical with stress and rest conditions. Stress was stimulated by physical exercise or pharmacological agent. After two hours, the patient did rest condition on the same day. The difference of uptake percentage between stress and rest conditions will be used to determine the malfunction of perfusion due to ischemic or infarct. Degradation of cardiac function was determined based on the image-based assessment of five segments of left ventricle cardiac. As a result, 8 (25.8%) patients had normal myocardial perfusion and 11 (35.5%) patients suspected for having partial ischemia. Total ischemia occurred to 8 (25.8%) patients with reversible and irreversible ischemia and the remaining 4 (12.9%) patients for partial infarct with characteristic the percentage of perfusion ≤50%. It is concluded that MPI technique of image-based assessment on uptake percentage difference between stress and rest conditions can be employed to predict abnormal perfusion as complementary information to diagnose the cardiac function.

  13. AUGMENTATION OF LIMB PERFUSION AND REVERSAL OF TISSUE ISCHEMIA PRODUCED BY ULTRASOUND-MEDIATED MICROBUBBLE CAVITATION

    PubMed Central

    Belcik, J. Todd; Mott, Brian H.; Xie, Aris; Zhao, Yan; Kim, Sajeevani; Lindner, Nathan J.; Ammi, Azzdine; Linden, Joel M.; Lindner, Jonathan R.

    2015-01-01

    Background Ultrasound can increase tissue blood flow in part through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation, and sought to characterize the biologic mediators. Methods and Results Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in non-ischemic mice after unilateral 10 min exposure to intermittent ultrasound alone (mechanical index [MI] 0.6 or 1.3) or ultrasound with lipid microbubbles (2×108 I.V.). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (p<0.05) in muscle perfusion regardless of ultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3-fold and 10-fold higher than control for MI 0.6 and 1.3, respectively; p<0.05), as was femoral artery dilation. Inhibition of endothelial nitric oxide synthase (eNOS) attenuated flow augmentation produced by ultrasound and microbubbles by 70% (p<0.01), whereas inhibition of adenosine-A2a receptors and epoxyeicosatrienoic acids had minimal effect. Limb nitric oxide (NO) production and muscle phospho-eNOS increased in a stepwise fashion by ultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40–50% reduction in flow), ultrasound (MI 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control non-ischemic limb. Conclusions Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of eNOS. PMID:25834183

  14. Sensitivity of mechanical and metabolic functions to changes in coronary perfusion: A metabolic basis of perfusion-contraction coupling.

    PubMed

    Askenasy, N

    2000-05-01

    Experimental evidence indicates a metabolic basis of contraction-perfusion coupling during an increase in cardiac work load. This study aims to characterize adjustment of myocardial energy metabolism in response to acute low flow ischemia (LFI), and to determine its involvement in perfusion-contraction coupling. Intracellular parameters were measured in isolated rat hearts by NMR spectroscopy and biochemical methods during 30 min of graded LFI and reperfusion as compared to continuous perfusion (control). Oxygen pressure was set to reach maximal oxygen extraction at 70% coronary flow rate (CFR), therefore oxygen limitation was proportional to coronary underperfusion. At 69, 38 and 10% CFR left ventricular pressures decreased to 71, 43 and 25% of pre-ischemic values respectively (P<0.005 v 97% in control) without an increase in diastolic tone, and recovered to 92+/-3% after 30 min of reperfusion. Despite hydrolysis of high energy phosphates and cellular acidification, ADP concentrations were stable in underperfused hearts. At 69, 38 and 10% CFR, cytosolic phosphorylation potentials (PP) decreased from 74+/-10 m M(-1)during pre-ischemia to 40+/-6, 25+/-4 and 14+/-4 m M(-1)respectively (P<0.05 v 63+/-9 m M(-1)in control), and lactate efflux increased to 256+/-18, 386+/-22 and 490+/-43 micromol /gdw respectively (P<0.005 v 186+/-22 micromol/gdw in control). Glycogen contents decreased (P<0.005 v control) and accounted for 27-30% of lactate efflux. These results indicate: (a) proportionate depression of contraction force and glycogen contents, and increased glucose uptake and anaerobic energy production in the underperfused myocardium. Coordinated modulation of these parameters attributes cytosolic PP a regulatory function; (b) resetting of cytosolic PP to lower levels mediates perfusion-contraction coupling during graded LFI. The data are consistent with the concept that glycolytic energy production improves myocardial tolerance to ischemia. Copyright 2000 Academic

  15. MicroRNAs in vascular tissue engineering and post-ischemic neovascularization☆

    PubMed Central

    Caputo, Massimo; Saif, Jaimy; Rajakaruna, Cha; Brooks, Marcus; Angelini, Gianni D.; Emanueli, Costanza

    2015-01-01

    Increasing numbers of paediatric patients with congenital heart defects are surviving to adulthood, albeit with continuing clinical needs. Hence, there is still scope for revolutionary new strategies to correct vascular anatomical defects. Adult patients are also surviving longer with the adverse consequences of ischemic vascular disease, especially after acute coronary syndromes brought on by plaque erosion and rupture. Vascular tissue engineering and therapeutic angiogenesis provide new hope for these patients. Both approaches have shown promise in laboratory studies, but have not yet been able to deliver clear evidence of clinical success. More research into biomaterials, molecular medicine and cell and molecular therapies is necessary. This review article focuses on the new opportunities offered by targeting microRNAs for the improved production and greater empowerment of vascular cells for use in vascular tissue engineering or for increasing blood perfusion of ischemic tissues by amplifying the resident microvascular network. PMID:25980937

  16. Comparison of parathyroid hormone and G-CSF treatment after myocardial infarction on perfusion and stem cell homing.

    PubMed

    Huber, Bruno C; Fischer, Rebekka; Brunner, Stefan; Groebner, Michael; Rischpler, Christoph; Segeth, Alexander; Zaruba, Marc M; Wollenweber, Tim; Hacker, Marcus; Franz, Wolfgang-Michael

    2010-05-01

    Mobilization of stem cells by granulocyte colony-stimulating factor (G-CSF) was shown to have protective effects after myocardial infarction (MI); however, clinical trials failed to be effective. In search for alternative cytokines, parathyroid hormone (PTH) was recently shown to promote cardiac repair by enhanced neovascularization and cell survival. To compare the impact of the two cytokines G-CSF and PTH on myocardial perfusion, mice were noninvasively and repetitively investigated by pinhole single-photon emission computed tomography (SPECT) after MI. Mobilization and homing of bone marrow-derived stem cells (BMCs) was analyzed by fluorescence-activated cell sorter (FACS) analysis. Mice (C57BL/6J) were infarcted by left anterior descending artery ligation. PTH (80 mug/kg) and G-CSF (100 mug/kg) were injected for 5 days. Perfusion defects were determined by (99m)Tc-sestamibi SPECT at days 6 and 30 after MI. The number of BMCs characterized by Lin(-)/Sca-1(+)/c-kit(+) cells in peripheral blood and heart was analyzed by FACS. Both G-CSF and PTH treatment resulted in an augmented mobilization of BMCs in the peripheral blood. Contrary to G-CSF and controls, PTH and the combination showed significant migration of BMCs in ischemic myocardium associated with a significant reduction of perfusion defects from day 6 to day 30. A combination of both cytokines had no additional effects on migration and perfusion. In our preclinical model, SPECT analyses revealed the functional potential of PTH reducing size of infarction together with an enhanced homing of BMCs to the myocardium in contrast to G-CSF. A combination of both cytokines did not improve the functional outcome, suggesting clinical applications of PTH in ischemic heart diseases.

  17. Preserved Collateral Blood Flow in the Endovascular M2CAO Model Allows for Clinically Relevant Profiling of Injury Progression in Acute Ischemic Stroke.

    PubMed

    Little, Philip; Kvist, Ola; Grankvist, Rikard; Jonsson, Stefan; Damberg, Peter; Söderman, Michael; Arnberg, Fabian; Holmin, Staffan

    2017-01-01

    Interventional treatment regimens have increased the demand for accurate understanding of the progression of injury in acute ischemic stroke. However, conventional animal models severely inhibit collateral blood flow and mimic the malignant infarction profile not suitable for treatment. The aim of this study was to provide a clinically relevant profile of the emergence and course of ischemic injury in cases suitable for acute intervention, and was achieved by employing a M2 occlusion model (M2CAO) that more accurately simulates middle cerebral artery (MCA) occlusion in humans. Twenty-five Sprague-Dawley rats were subjected to Short (90 min), Intermediate (180 min) or Extended (600 min) transient M2CAO and examined longitudinally with interleaved diffusion-, T2- and arterial spin labeling perfusion-weighted magnetic resonance imaging before and after reperfusion. We identified a rapid emergence of cytotoxic edema within tissue regions undergoing infarction, progressing in several distinct phases in the form of subsequent moderation and then reversal at 230 min (p < 0.0001). We identified also the early emergence of vasogenic edema, which increased consistently before and after reperfusion (p < 0.0001). The perfusion of the penumbra correlated more strongly to the perfusion of adjacent tissue regions than did the perfusion of regions undergoing infarction (p = 0.0088). This was interpreted as an effect of preserved collateral blood flow during M2CAO. Accordingly, we observed only limited recruitment of penumbra regions to the infarction core. However, a gradual increase in infarction size was still occurring as late as 10 hours after M2CAO. Our results indicate that patients suffering MCA branch occlusion stand to benefit from interventional therapy for an extended time period after the emergence of ischemic injury.

  18. Effect of beam hardening on transmural myocardial perfusion quantification in myocardial CT imaging

    NASA Astrophysics Data System (ADS)

    Fahmi, Rachid; Eck, Brendan L.; Levi, Jacob; Fares, Anas; Wu, Hao; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    The detection of subendocardial ischemia exhibiting an abnormal transmural perfusion gradient (TPG) may help identify ischemic conditions due to micro-vascular dysfunction. We evaluated the effect of beam hardening (BH) artifacts on TPG quantification using myocardial CT perfusion (CTP). We used a prototype spectral detector CT scanner (Philips Healthcare) to acquire dynamic myocardial CTP scans in a porcine ischemia model with partial occlusion of the left anterior descending (LAD) coronary artery guided by pressure wire-derived fractional flow reserve (FFR) measurements. Conventional 120 kVp and 70 keV projection-based mono-energetic images were reconstructed from the same projection data and used to compute myocardial blood flow (MBF) using the Johnson-Wilson model. Under moderate LAD occlusion (FFR~0.7), we used three 5 mm short axis slices and divided the myocardium into three LAD segments and three remote segments. For each slice and each segment, we characterized TPG as the mean "endo-to-epi" transmural flow ratio (TFR). BH-induced hypoenhancement on the ischemic anterior wall at 120 kVp resulted in significantly lower mean TFR value as compared to the 70 keV TFR value (0.29+/-0.01 vs. 0.55+/-0.01 p<1e-05). No significant difference was measured between 120 kVp and 70 keV mean TFR values on segments moderately affected or unaffected by BH. In the entire ischemic LAD territory, 120 kVp mean endocardial flow was significantly reduced as compared to mean epicardial flow (15.80+/-10.98 vs. 40.85+/-23.44 ml/min/100g; p<1e-04). At 70 keV, BH was effectively minimized resulting in mean endocardial MBF of 40.85+/-15.3407 ml/min/100g vs. 74.09+/-5.07 ml/min/100g (p=0.0054) in the epicardium. We also found that BH artifact in the conventional 120 kVp images resulted in falsely reduced MBF measurements even under non-ischemic conditions.

  19. Normal myocardial perfusion scan portends a benign prognosis independent from the pretest probability of coronary artery disease. Sub-analysis of the J-ACCESS study.

    PubMed

    Imamura, Yosihiro; Fukuyama, Takaya; Nishimura, Sigeyuki; Nishimura, Tsunehiko

    2009-08-01

    We assessed the usefulness of gated stress/rest 99mTc-tetrofosmin myocardial perfusion single photon emission computed tomography (SPECT) to predict ischemic cardiac events in Japanese patients with various estimated pretest probabilities of coronary artery disease (CAD). Of the 4031 consecutively registered patients for a J-ACCESS (Japanese Assessment of Cardiac Events and Survival Study by Quantitative Gated SPECT) study, 1904 patients without prior cardiac events were selected. Gated stress/rest myocardial perfusion SPECT was performed and segmental perfusion scores and quantitative gated SPECT results were derived. The pretest probability for having CAD was estimated using the American College of Cardiology/American Heart Association/American College of Physicians-American Society of Internal Medicine guideline data for the management of patients with chronic stable angina, which includes age, gender, and type of chest discomfort. The patients were followed up for three years. During the three-year follow-up period, 96 developed ischemic cardiac events: 17 cardiac deaths, 8 nonfatal myocardial infarction, and 71 clinically driven revascularization. The summed stress score (SSS) was the most powerful independent predictor of all ischemic cardiac events (hazard ratio 1.077, CI 1.045-1.110). Abnormal SSS (> 3) was associated with a significantly higher cardiac event rate in patients with an intermediate to high pretest probability of CAD. Normal SSS (< or = 3) was associated with a low event rate in patients with any pretest probability of CAD. Myocardial perfusion SPECT is useful for further risk-stratification of patients with suspected CAD. The abnormal scan result (SSS > 3) is discriminative for subsequent cardiac events only in the groups with an intermediate to high pretest probability of CAD. The salient result is that normal scan results portend a benign prognosis independent from the pretest probability of CAD.

  20. Shortened Mean Transit Time in CT Perfusion With Singular Value Decomposition Analysis in Acute Cerebral Infarction: Quantitative Evaluation and Comparison With Various CT Perfusion Parameters.

    PubMed

    Murayama, Kazuhiro; Katada, Kazuhiro; Hayakawa, Motoharu; Toyama, Hiroshi

    We aimed to clarify the cause of shortened mean transit time (MTT) in acute ischemic cerebrovascular disease and examined its relationship with reperfusion. Twenty-three patients with acute ischemic cerebrovascular disease underwent whole-brain computed tomography perfusion (CTP). The maximum MTT (MTTmax), minimum MTT (MTTmin), ratio of maximum and minimum MTT (MTTmin/max), and minimum cerebral blood volume (CBV) (CBVmin) were measured by automatic region of interest analysis. Diffusion weighted image was performed to calculate infarction volume. We compared these CTP parameters between reperfusion and nonreperfusion groups and calculated correlation coefficients between the infarction core volume and CTP parameters. Significant differences were observed between reperfusion and nonreperfusion groups (MTTmin/max: P = 0.014; CBVmin ratio: P = 0.038). Regression analysis of CTP and high-intensity volume on diffusion weighted image showed negative correlation (CBVmin ratio: r = -0.41; MTTmin/max: r = -0.30; MTTmin ratio: r = -0.27). A region of shortened MTT indicated obstructed blood flow, which was attributed to the singular value decomposition method error.

  1. Cortical myoclonus during IV thrombolysis for ischemic stroke

    PubMed Central

    Bentes, Carla; Peralta, Rita; Viana, Pedro; Morgado, Carlos; Melo, Teresa P.; Ferro, José M.

    2014-01-01

    We describe a patient with an acute middle cerebral artery ischemic stroke developing subtle involuntary movements of the paretic upper limb with cortical origin during rt-PA perfusion. Despite the multiple potential pathophysiological mechanisms for the relationship between thrombolysis and epileptic activity, seizures during this procedure are scarcely reported. Our hypothesis is that subtle and transient clinical seizures, like those described in our patient, may not be detected or are misdiagnosed as nonepileptic involuntary movements. We aimed to draw attention to the recognition challenge of this paroxysmal motor behavior, highlighting this clinical and neurophysiological identification using video recording and back-average analysis of the EEG. PMID:25667903

  2. Effects of red wine and vodka on collateral-dependent perfusion and cardiovascular function in hypercholesterolemic swine

    PubMed Central

    Chu, Louis M.; Lassaletta, Antonio D.; Robich, Michael P.; Liu, Yuhong; Burgess, Thomas; Laham, Roger J.; Sweeney, Joseph D.; Shen, Tun-li; Sellke, Frank W.

    2012-01-01

    Background Moderate consumption of alcohol, particularly red wine, has been shown to decrease cardiac risk. We used a hypercholesterolemic swine model of chronic ischemia to examine the effects of two alcoholic beverages on the heart. Methods and Results Yorkshire swine fed a high-cholesterol diet underwent left circumflex ameroid constrictor placement to induce chronic ischemia at 8 weeks of age. One group (HCC, n=9) continued on the diet alone, the second (HCW, n=8) was supplemented with red wine (pinot noir, 12.5% alcohol, 375 mL daily), and the third (HCV, n=9) was supplemented with vodka (40% alcohol, 112 mL daily). After 7 weeks, cardiac function was measured, and ischemic myocardium was harvested for analysis of perfusion, myocardial fibrosis, vessel function, protein expression, oxidative stress, and capillary density. Platelet function was measured by aggregometry. Perfusion to the ischemic territory as measured by microsphere injection was significantly increased in both HCW and HCV compared to HCC at rest, but in only the HCW group under ventricular pacing. Microvessel relaxation response to adenosine 5’-diphosphate was improved in the HCW group alone, as was regional contractility in the ischemic territory, though myocardial fibrosis was decreased in both HCW and HCV. Expression of pro-angiogenic proteins phospho-eNOS and VEGF was increased in both HCW and HCV, while phospho-mTOR was increased only in the HCV group. Expression of Sirt-1 and downstream antioxidant phospho-FoxO1 was increased only in the HCW group. Protein oxidative stress was decreased in the HCW group alone, while capillary density was increased only in the HCV group. There was no significant difference in platelet function between groups. Conclusion Moderate consumption of red wine and vodka may reduce cardiovascular risk by improving collateral-dependent perfusion via different mechanisms. Red wine may offer increased cardioprotection related to its antioxidant properties. PMID

  3. Stress perfusion magnetic resonance imaging to detect coronary artery lesions in children.

    PubMed

    Vijarnsorn, Chodchanok; Noga, Michelle; Schantz, Daryl; Pepelassis, Dion; Tham, Edythe B

    2017-05-01

    Stress perfusion cardiovascular magnetic resonance (CMR) is used widely in adult ischemic heart disease, but data in children is limited. We sought to evaluate feasibility, accuracy and prognostic value of stress CMR in children with suspected coronary artery disease (CAD). Stress CMR was reviewed from two pediatric centers over 5 years using a standard pharmacologic protocol. Wall motion abnormalities, perfusion deficits and late enhancement were correlated with coronary angiogram (CAG) when available, and clinical status at 1 year follow-up for major adverse cardiovascular events (MACE; coronary revascularization, non-fatal myocardial infarction and death due to CAD) was recorded. Sixty-four stress perfusion CMR studies in 48 children (10.9 ± 4.8 years) using adenosine; 59 (92%) and dipyridamole; 5 (8%), were reviewed. Indications were Kawasaki disease (39%), post arterial switch operation (12.5%), post heart transplantation (12.5%), post anomalous coronary artery repair (11%), chest pain (11%), suspected myocarditis or CAD (3%), post coronary revascularization (3%), and others (8%). Twenty-six studies were performed under sedation. Of all studies performed, 66% showed no evidence of ischemia or infarction, 28% had perfusion deficits and 6% had late gadolinium enhancement (LGE) without perfusion deficit. Compared to CAG, the positive predictive value (PPV) of stress CMR was 80% with negative predictive value (NPV) of 88%. At 1 year clinical follow-up, the PPV and NPV of stress CMR to predict MACE were 78 and 98%. Stress-perfusion CMR, in combination with LGE and wall motion-analysis is a feasible and an accurate method of diagnosing CAD in children. In difficult cases, it also helps guide clinical intervention by complementing conventional CAG with functional information.

  4. Radionuclide evaluation of left-ventricular function in chronic Chagas' cardiomyopathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arreaza, N.; Puigbo, J.J.; Acquatella, H. Casal, H.

    1983-07-01

    Left-ventricular ejection fraction (LVEF) and abnormalities of regional wall motion (WMA) were studied by means of radionuclide ventriculography in 41 patients prospectively diagnosed as having chronic Chagas' disease. Thirteen patients were asymptomatic (ASY), 16 were arrhythmic (ARR), and 12 had congestive heart failure (CHF). Mean LVEF was normal in ASY but markedly depressed in CHF. Regional WMAs were minimal in ASY and their severity increased in ARR. Most CHFs (75%) had diffuse hypokinesia of the left ventricle. Seven patients had a distinct apical aneurysm. Correlation between radionuclide and contrast ventriculography data was good in 17 patients. Selective coronary arteriography showedmore » normal arteries in all patients. Therefore, chronic Chagas' heart disease joins ischemic heart disease as a cause of regional WMA.« less

  5. Laser speckle contrast imaging identifies ischemic areas on gastric tube reconstructions following esophagectomy

    PubMed Central

    Milstein, Dan M.J.; Ince, Can; Gisbertz, Suzanne S.; Boateng, Kofi B.; Geerts, Bart F.; Hollmann, Markus W.; van Berge Henegouwen, Mark I.; Veelo, Denise P.

    2016-01-01

    Abstract Gastric tube reconstruction (GTR) is a high-risk surgical procedure with substantial perioperative morbidity. Compromised arterial blood supply and venous congestion are believed to be the main etiologic factors associated with early and late anastomotic complications. Identifying low blood perfusion areas may provide information on the risks of future anastomotic leakage and could be essential for improving surgical techniques. The aim of this study was to generate a method for gastric microvascular perfusion analysis using laser speckle contrast imaging (LSCI) and to test the hypothesis that LSCI is able to identify ischemic regions on GTRs. Patients requiring elective laparoscopy-assisted GTR participated in this single-center observational investigation. A method for intraoperative evaluation of blood perfusion and postoperative analysis was generated and validated for reproducibility. Laser speckle measurements were performed at 3 different time pointes, baseline (devascularized) stomach (T0), after GTR (T1), and GTR at 20° reverse Trendelenburg (T2). Blood perfusion analysis inter-rater reliability was high, with intraclass correlation coefficients for each time point approximating 1 (P < 0.0001). Baseline (T0) and GTR (T1) mean blood perfusion profiles were highest at the base of the stomach and then progressively declined towards significant ischemia at the most cranial point or anastomotic tip (P < 0.01). After GTR, a statistically significant improvement in mean blood perfusion was observed in the cranial gastric regions of interest (P < 0.05). A generalized significant decrease in mean blood perfusion was observed across all GTR regions of interest during 20° reverse Trendelenburg (P < 0.05). It was feasible to implement LSCI intraoperatively to produce blood perfusion assessments on intact and reconstructed whole stomachs. The analytical design presented in this study resulted in good reproducibility of gastric perfusion

  6. Laser speckle contrast imaging identifies ischemic areas on gastric tube reconstructions following esophagectomy.

    PubMed

    Milstein, Dan M J; Ince, Can; Gisbertz, Suzanne S; Boateng, Kofi B; Geerts, Bart F; Hollmann, Markus W; van Berge Henegouwen, Mark I; Veelo, Denise P

    2016-06-01

    Gastric tube reconstruction (GTR) is a high-risk surgical procedure with substantial perioperative morbidity. Compromised arterial blood supply and venous congestion are believed to be the main etiologic factors associated with early and late anastomotic complications. Identifying low blood perfusion areas may provide information on the risks of future anastomotic leakage and could be essential for improving surgical techniques. The aim of this study was to generate a method for gastric microvascular perfusion analysis using laser speckle contrast imaging (LSCI) and to test the hypothesis that LSCI is able to identify ischemic regions on GTRs.Patients requiring elective laparoscopy-assisted GTR participated in this single-center observational investigation. A method for intraoperative evaluation of blood perfusion and postoperative analysis was generated and validated for reproducibility. Laser speckle measurements were performed at 3 different time pointes, baseline (devascularized) stomach (T0), after GTR (T1), and GTR at 20° reverse Trendelenburg (T2).Blood perfusion analysis inter-rater reliability was high, with intraclass correlation coefficients for each time point approximating 1 (P < 0.0001). Baseline (T0) and GTR (T1) mean blood perfusion profiles were highest at the base of the stomach and then progressively declined towards significant ischemia at the most cranial point or anastomotic tip (P < 0.01). After GTR, a statistically significant improvement in mean blood perfusion was observed in the cranial gastric regions of interest (P < 0.05). A generalized significant decrease in mean blood perfusion was observed across all GTR regions of interest during 20° reverse Trendelenburg (P < 0.05).It was feasible to implement LSCI intraoperatively to produce blood perfusion assessments on intact and reconstructed whole stomachs. The analytical design presented in this study resulted in good reproducibility of gastric perfusion measurements

  7. Myocardial perfusion characteristics during machine perfusion for heart transplantation.

    PubMed

    Peltz, Matthias; Cobert, Michael L; Rosenbaum, David H; West, LaShondra M; Jessen, Michael E

    2008-08-01

    Optimal parameters for machine perfusion preservation of hearts prior to transplantation have not been determined. We sought to define regional myocardial perfusion characteristics of a machine perfusion device over a range of conditions in a large animal model. Dog hearts were connected to a perfusion device (LifeCradle, Organ Transport Systems, Inc, Frisco, TX) and cold perfused at differing flow rates (1) at initial device startup and (2) over the storage interval. Myocardial perfusion was determined by entrapment of colored microspheres. Myocardial oxygen consumption (MVO(2)) was estimated from inflow and outflow oxygen differences. Intra-myocardial lactate was determined by (1)H magnetic resonance spectroscopy. MVO(2) and tissue perfusion increased up to flows of 15 mL/100 g/min, and the ratio of epicardial:endocardial perfusion remained near 1:1. Perfusion at lower flow rates and when low rates were applied during startup resulted in decreased capillary flow and greater non-nutrient flow. Increased tissue perfusion correlated with lower myocardial lactate accumulation but greater edema. Myocardial perfusion is influenced by flow rates during device startup and during the preservation interval. Relative declines in nutrient flow at low flow rates may reflect greater aortic insufficiency. These factors may need to be considered in clinical transplant protocols using machine perfusion.

  8. NIR fluorescent image-based evaluation of gastric tube perfusion after esophagectomy in preclinical model (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Minji; Quan, Yuhua; Han, Kook Nam; Choi, Byeong Hyun; Choi, Yeonho; Kim, Hyun Koo; Kim, Beop-Min

    2016-03-01

    This study was to evaluate the feasibility of near infrared (NIR) fluorescent images as a tool for evaluating the perfusion of the gastric tube after esophagectomy. In addition, we investigated the time required to acquire enough signal to confirm the presence of ischemia in gastric tube after injection of indocyanine green (ICG) through peripheral versus and central venous route. 4 porcine underwent esophagogastrostomy and their right gastric arteries were ligated to mimic ischemic condition of gastric tube. ICG (0.6mg/kg) was intravenously injected and the fluorescence signal-to-background ratios (SBR) were measured by using the custom-built intraoperative color and fluorescence imaging system (ICFIS). We evaluated perfusion of gastric tubes by comparing their SBR with esophageal SBR. In ischemic models, SBR of esophagus was higher than that of gastric tube (2.8+/-0.54 vs. 1.7+/-0.37, p<0.05). It showed high esophagus-stomach signal to signal ratio. (SSR, 1.8+/-0.76). We also could observe recovery of blood perfusion in few minutes after releasing the ligation of right gastric artery. In addition, in comparison study according to the injection route of ICG, The time to acquire signal stabilization was faster in central than in peripheral route (119 +/- 65.1 seconds in central route vs. 295+/-130.4 in peripheral route, p<0.05). NIR fluorescent images could provide the real-time information if there was ischemia or not in gastric tube during operation. And, central injection of ICG might give that information faster than peripheral route.

  9. Budget impact of applying appropriateness criteria for myocardial perfusion scintigraphy: The perspective of a developing country.

    PubMed

    Dos Santos, Mauro Augusto; Santos, Marisa Silva; Tura, Bernardo Rangel; Félix, Renata; Brito, Adriana Soares X; De Lorenzo, Andrea

    2016-10-01

    Myocardial perfusion imaging is widely used for the risk stratification of coronary artery disease. In view of its cost, besides radiation issues, judicious evaluation of the appropriateness of its indications is essential to prevent an unnecessary economic burden on the health system. We evaluated, at a tertiary-care, public Brazilian hospital, the appropriateness of myocardial perfusion scintigraphy indications, and estimated the budget impact of applying appropriateness criteria. An observational, cross-sectional study of 190 patients with suspected or known coronary artery disease referred for myocardial perfusion imaging was conducted. The appropriateness of myocardial perfusion imaging indications was evaluated with the Appropriate Use Criteria for Cardiac Radionuclide Imaging published in 2009. Budget impact analysis was performed with a deterministic model. The prevalence of appropriate requests was 78%; of inappropriate indications, 12%; and of uncertain indications, 10%. Budget impact analysis showed that the use of appropriateness criteria, applied to the population referred to myocardial perfusion scintigraphy within 1 year, could generate savings of $ 64,252.04 dollars. The 12% inappropriate requests for myocardial perfusion scintigraphy at a tertiary-care hospital suggest that a reappraisal of MPI indications is needed. Budget impact analysis estimated resource savings of 18.6% with the establishment of appropriateness criteria for MPI.

  10. The perfused swine uterus model: long-term perfusion

    PubMed Central

    2012-01-01

    Background It has previously been shown that the viability of swine uteri can be maintained within the physiological range in an open perfusion model for up to 8 hours. The aim of this study was to assess medium- to long-term perfusion of swine uteri using a modified Krebs–Ringer bicarbonate buffer solution (KRBB) in the established open perfusion model. Methods In an experimental study at an infertility institute, 30 swine uteri were perfused: group 1: n = 11, KRBB; group 2: n = 8, modified KRBB with drainage of perfusate supernatant; group 3: n = 11, modified KRBB with drainage of perfusate every 2 h and substitution with fresh medium. Modified and conventional KRBB were compared with regard to survival and contraction parameters: intrauterine pressure (IUP), area under the curve (AUC), and frequency of contractions (F). Results Modified KRBB showed significantly higher IUP, AUC, and F values than perfusion with conventional KRBB. In group 3, the organ survival time of up to 17 h, with a 98% rate of effective contraction time, differed significantly from group 1 (P < 0.001). Conclusions Using modified KRBB in combination with perfusate substitution improves the open model for perfusion of swine uteri with regard to survival time and quality of contraction parameters. This model can be used for medium- to long-term perfusion of swine uteri, allowing further metabolic ex vivo studies in a cost-effective way and with little logistic effort. PMID:23241226

  11. Hypothermic in situ perfusion of the porcine liver using Celsior or Ringer-lactate solution.

    PubMed

    Dinant, S; Roseboom, H J; Levi, M; van Vliet, A K; van Gulik, T M

    2009-01-01

    Hypothermic perfusion (HP) of the liver is applied during total vascular exclusion (TVE) to reduce ischemic injury during liver resection. No studies have been performed comparing different perfusion solutions for HP. The aim of this experimental study was to compare Ringer-lactate solution (RL) with Celsior solution (Cs) for HP in a pig model of 60-min TVE. Twenty pigs underwent 60-min TVE of the liver. Groups were TVE without HP (no-HP, n = 9), TVE with HP using RL (n = 6), and TVE with HP using Cs (n = 5). Blood and liver tissue samples were taken before TVE and during 24-h reperfusion. In the no-HP group, plasma aspartate aminotransferase values were significantly increased during reperfusion (p < 0.05), while liver tissue pO(2) levels (p < 0.01) were decreased when compared to the HP groups. After 24-h reperfusion, bile production and liver tissue glutathione content were significantly higher (p < 0.05) in the Cs group (42.0 +/- 1.7 mL/h and 44.9 +/- 2.2 nmol/mg, respectively) as compared to the RL group (31.5 +/- 3.5 mL/h and 19.6 +/- 1.8 nmol/mg, respectively). The protective effect of HP during TVE was confirmed in this study. HP with Cs was more effective in reducing ischemic injury as compared to HP with RL.

  12. A MicroRNA93-IRF9-IRG1-Itaconic Acid Pathway Modulates M2-like-Macrophage Polarization to Revascularize Ischemic Muscle

    PubMed Central

    Ganta, Vijay Chaitanya; Choi, Min Hyub; Kutateladze, Anna; Fox, Todd E.; Farber, Charles R.; Annex, Brian H.

    2017-01-01

    Background Currently no therapies exist for treating, and improving outcomes in patients with severe peripheral arterial disease (PAD). MicroRNA93 (miR93) has been shown to favorably modulate angiogenesis and reduce tissue loss in genetic PAD models. However, the cell specific function, downstream mechanisms or signaling involved in miR93 mediated ischemic muscle neovascularization is not clear. Macrophages were best known to modulate arteriogenic response in PAD and the extent of arteriogenic response induced by macrophages is dependent on greater M2 to M1-activation/polarization state. In the current study, we identified a novel mechanism by which miR93 regulates macrophage-polarization to promote angiogenesis and arteriogenesis to revascularize ischemic muscle in experimental-PAD. Methods In vitro (macrophages, endothelial cells, skeletal muscle cells under normal and hypoxia serum starvation (HSS) conditions) and in vivo experiments in preclinical-PAD models (unilateral femoral artery ligation and resection)) were conducted to examine the role of miR93-interferon regulatory factor-9 (IRF9)-immune responsive gene-1 (IRG1)-itaconic acid pathway in macrophage-polarization, angiogenesis, arteriogenesis and perfusion recovery. Results In vivo, compared to wild type (WT) controls, miR106b-93-25 cluster deficient mice (miR106b-93-25−/−) showed decreased angiogenesis and arteriogenesis correlating with increased M1-like-macrophages following experimental-PAD. Intra-muscular delivery of miR93 in miR106b-93-25−/− PAD mice increased angiogenesis, arteriogenesis, the extent of perfusion which correlated with more M2-like-macrophages in the proximal and distal hind-limb muscles. In vitro, miR93 promotes and sustains M2-like-polarization even under M1-like-polarizing conditions (HSS). Delivery of bone marrow derived macrophages from miR106b-93-25−/− to WT ischemic-muscle decreased angiogenesis, arteriogenesis and perfusion, while transfer of wild-type macrophages

  13. Comparative clinical study between retrograde cerebral perfusion and selective cerebral perfusion in surgery for acute type A aortic dissection.

    PubMed

    Usui, A; Yasuura, K; Watanabe, T; Maseki, T

    1999-05-01

    Selection of a brain protection method is a primary concern for aortic arch surgery. We performed a retrospective study to compare the respective advantages and disadvantages of retrograde cerebral perfusion (RCP) and selective cerebral perfusion (SCP) in patients who underwent surgery for acute type A aortic dissection. The study reviewed 166 patients who underwent surgery at Nagoya University or its eight branch hospitals between January 1990 and August 1996. There were 91 patients who received SCP and 75 patients who underwent RCP. Results for these two groups were compared. There were no significant differences in age, gender, Marfan syndrome rate, DeBakey classification, or emergency operation rate. Rates of various preoperative complications were similar except for aortic valve regurgitation. Arch replacement was performed more often in SCP than in RCP patients (49% vs. 27%, P = 0.0028). There were no significant differences between groups in cardiac ischemic time or visceral organ ischemic time. However, RCP group showed shorter cardio-pulmonary bypass time (297+/-99 vs. 269+/-112 min, P = 0.013) and lower the lowest core temperature (21.6+/-3.1 degrees C vs. 18.7+/-2.1 degrees C, P = 0.0001). SCP duration was longer than RCP duration (103+/-56 vs. 54+/-24 min, P < 0.0001). Despite these differences, RCP patients were not significantly different from SCP patients with regard to any postoperative complication, neurological dysfunction (16 vs. 19%), or operative mortality (all deaths within the hospitalization; 24 vs. 21%). Regarding neurologic dysfunction, there were six cases of coma, six of motor paralysis, two of paraplegia and one of visual loss among SCP patients, and eight cases of coma, three of motor paralysis, and three of convulsion in the RCP group. The incidence of motor paralysis was higher in the SCP group, while the incidence of coma was higher in the RCP group. RCP can be performed without clamping or cannulation of the cervical arteries

  14. Protective effect of active perfusion in porcine models of acute myocardial ischemia

    PubMed Central

    Feng, Zanxiang; Mao, Zhifu; Dong, Shengjun; Liu, Baohui

    2016-01-01

    ischemic injury when compared with traditional shunt perfusion. PMID:27573177

  15. Prevalence and pattern of abnormal myocardial perfusion in patients with isolated coronary artery ectasia: study by 99mTc-sestamibi radionuclide scintigraphy.

    PubMed

    Ismail, Ahmed M; Rayan, Mona; Adel, Amr; Demerdash, Salah; Atef, Mohamed; Abdallah, Mohamed; Nammas, Wail

    2014-02-01

    We explored the prevalence and pattern of abnormal myocardial perfusion in patients with isolated coronary artery ectasia (CAE), as demonstrated by (99m)Tc-sestamibi scintigraphy. Prospectively, we enrolled 35 patients with angiographically documented CAE and no significant coronary obstruction, who underwent elective coronary angiography. Patients underwent Stress-rest (99m)Tc-sestamibi scintigraphy within 4 days of coronary angiography. They were divided into 2 groups: group I: with normal perfusion scan; and group II: with reversible perfusion defects. The mean age was 49.6 ± 6.9 years; 34 (97.1 %) were males. Seventy-nine (75.2 %) arteries were affected by CAE. Among 79 arteries affected by CAE, affection was diffuse in 37 (46.8 %). Thirteen (37.1 %) patients had normal perfusion scan (group I), whereas 22 (62.9 %) had reversible perfusion defects (group II). Among 22 patients with reversible perfusion defects, 20 (90.9 %) had mild and 2 (9.1 %) had moderate ischemia. Among 49 myocardial segments with reversible perfusion defects, 22 (44.9 %) were basal, 18 (36.7 %) mid-, and 9 (18.4 %) apical segments. Diffuse CAE was significantly more prevalent in group II versus group I, in all 3 major coronary arteries (p < 0.05 for all). In patients with isolated CAE who underwent elective coronary angiography, reversible perfusion defects demonstrated by (99m)Tc-sestamibi scintigraphy were rather prevalent, mostly mild, more likely to affect the basal and mid-segments of the myocardium, and more frequently associated with diffuse ectasia.

  16. The 24-hour normothermic machine perfusion of discarded human liver grafts.

    PubMed

    Vogel, Thomas; Brockmann, Jens G; Quaglia, Alberto; Morovat, Alireza; Jassem, Wayel; Heaton, Nigel D; Coussios, Constantin C; Friend, Peter J

    2017-02-01

    Donor organ shortage necessitates use of less than optimal donor allografts for transplantation. The current cold storage preservation technique fails to preserve marginal donor grafts sufficiently. Evidence from large animal experiments suggests superiority of normothermic machine preservation (NMP) of liver allografts. In this study, we analyze discarded human liver grafts that underwent NMP for the extended period of 24 hours. Thirteen human liver grafts which had been discarded for transplantation were entered into this study. Perfusion was performed with an automated device using an oxygenated, sanguineous perfusion solution at normothermia. Automated control was incorporated for temperature-, flow-, and pressure-regulation as well as oxygenation. All livers were perfused for 24 hours; parameters of biochemical and synthetic liver function as well as histological parameters of liver damage were analyzed. Livers were stratified for expected viability according to the donor's medical history, procurement data, and their macroscopic appearance. Normothermic perfusion preservation of human livers for 24 hours was shown to be technically feasible. Human liver grafts, all of which had been discarded for transplantation, showed levels suggesting organ viability with respect to metabolic and synthetic liver function (to varying degrees). There was positive correlation between instantly available perfusion parameters and generally accepted predictors of posttransplant graft survival. In conclusion, NMP is feasible reliably for periods of at least 24 hours, even in highly suboptimal donor organs. Potential benefits include not only viability testing (as suggested in recent clinical implementations), but also removal of the time constraints associated with the utilization of high-risk livers, and recovery of ischemic and other preretrieval injuries (possibly by enabling therapeutic strategies during NMP). Liver Transplantation 23 207-220 2017 AASLD. © 2016 by the

  17. Perfusion-induced changes in cardiac contractility depend on capillary perfusion.

    PubMed

    Dijkman, M A; Heslinga, J W; Sipkema, P; Westerhof, N

    1998-02-01

    The perfusion-induced increase in cardiac contractility (Gregg phenomenon) is especially found in heart preparations that lack adequate coronary autoregulation and thus protection of changes in capillary pressure. We determined in the isolated perfused papillary muscle of the rat whether cardiac muscle contractility is related to capillary perfusion. Oxygen availability of this muscle is independent of internal perfusion, and perfusion may be varied or even stopped without loss of function. Muscles contracted isometrically at 27 degrees C (n = 7). During the control state stepwise increases in perfusion pressure resulted in all muscles in a significant increase in active tension. Muscle diameter always increased with increased perfusion pressure, but muscle segment length was unaffected. Capillary perfusion was then obstructed by plastic microspheres (15 microns). Flow, at a perfusion pressure of 66.6 +/- 26.2 cmH2O, reduced from 17.6 +/- 5.4 microliters/min in the control state to 3.2 +/- 1.3 microliters/min after microspheres. Active tension developed by the muscle in the unperfused condition before microspheres and after microspheres did not differ significantly (-12.8 +/- 29.4% change). After microspheres similar perfusion pressure steps as in control never resulted in an increase in active tension. Even at the two highest perfusion pressures (89.1 +/- 28.4 and 106.5 +/- 31.7 cmH2O) that were applied a significant decrease in active tension was found. We conclude that the Gregg phenomenon is related to capillary perfusion.

  18. SU-C-201-04: Quantification of Perfusion Heterogeneity Based On Texture Analysis for Fully Automatic Detection of Ischemic Deficits From Myocardial Perfusion Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Y; Huang, H; Su, T

    Purpose: Texture-based quantification of image heterogeneity has been a popular topic for imaging studies in recent years. As previous studies mainly focus on oncological applications, we report our recent efforts of applying such techniques on cardiac perfusion imaging. A fully automated procedure has been developed to perform texture analysis for measuring the image heterogeneity. Clinical data were used to evaluate the preliminary performance of such methods. Methods: Myocardial perfusion images of Thallium-201 scans were collected from 293 patients with suspected coronary artery disease. Each subject underwent a Tl-201 scan and a percutaneous coronary intervention (PCI) within three months. The PCImore » Result was used as the gold standard of coronary ischemia of more than 70% stenosis. Each Tl-201 scan was spatially normalized to an image template for fully automatic segmentation of the LV. The segmented voxel intensities were then carried into the texture analysis with our open-source software Chang Gung Image Texture Analysis toolbox (CGITA). To evaluate the clinical performance of the image heterogeneity for detecting the coronary stenosis, receiver operating characteristic (ROC) analysis was used to compute the overall accuracy, sensitivity and specificity as well as the area under curve (AUC). Those indices were compared to those obtained from the commercially available semi-automatic software QPS. Results: With the fully automatic procedure to quantify heterogeneity from Tl-201 scans, we were able to achieve a good discrimination with good accuracy (74%), sensitivity (73%), specificity (77%) and AUC of 0.82. Such performance is similar to those obtained from the semi-automatic QPS software that gives a sensitivity of 71% and specificity of 77%. Conclusion: Based on fully automatic procedures of data processing, our preliminary data indicate that the image heterogeneity of myocardial perfusion imaging can provide useful information for automatic

  19. Newer concepts in the pathophysiology of ischemic heart disease.

    PubMed

    Kirk, E S; Factor, S; Sonnenblick, E H

    1984-11-01

    Thus the thrust of these studies suggests that blood flow is the overwhelming factor in determining the consequences of the imbalance of oxygen supply and demand. Moreover, the factors that determine the requirements for tissue survival in the presence of deep ischemia are not the same as those shown for the normal myocardium in figure 1. In deep ischemia, contraction ceases, and metabolism shifts from aerobic to anaerobic pathways. Survival rather than contractile function then becomes the agenda. Not only does supply tend to overshadow demand in determining extent of transmural necrosis, but the anatomical pattern of supply precisely delineates the region at risk following a coronary occlusion as well as the ultimate extent of infarction. These views are summarized in the model presented in figures 12 and 13. The anatomic distribution of the ligated artery determines the lateral limits of the ischemic region (Fig. 12) and thus the lateral extension of necrosis (Fig. 13). The extension of the necrosis across the heart wall depends largely on the status of perfusion within the ischemic region. Extension of an infarct, should it occur, has to be explained by other mechanisms. These might include: (i) vascular obstruction in adjacent vascular systems that were not involved in the first occlusion, (ii) relative ischemia in the normal tissue surrounding the ischemic tissue due to an increased wall stress at the demarcation between contracting and noncontracting tissue, or (9) interruption of vessels supplying large interdigitations of normal tissue within the originally ischemic tissue due to changes associated with the process of infarction of ischemia. Alternatively, much that is called extension of infarction may involve more of the wall transmurally without lateral extension. Additional features of the development of myocardial infarction in figures 12 and 13 include: (i) the development of collateral vessel function resulting in an increased capacity to supply the

  20. Perfluorocarbons enhance a T2*-based MRI technique for identifying the penumbra in a rat model of acute ischemic stroke

    PubMed Central

    Deuchar, Graeme A; Brennan, David; Griffiths, Hugh; Macrae, I  Mhairi; Santosh, Celestine

    2013-01-01

    Accurate imaging of ischemic penumbra is crucial for improving the management of acute stroke patients. T2* magnetic resonance imaging (MRI) combined with a T2*oxygen challenge (T2*OC) is being developed to detect penumbra based on changes in blood deoxyhemoglobin. Using 100% O2, T2*OC-defined penumbra exhibits ongoing glucose metabolism and tissue recovery on reperfusion. However, potential limitations in translating this technique include a sinus artefact in human scans with delivery of 100% OC and relatively small signal changes. Here we investigate whether an oxygen-carrying perfluorocarbon (PFC) emulsion can enhance the sensitivity of the technique, enabling penumbra detection with lower levels of inspired oxygen. Stroke was induced in male Sprague-Dawley rats (n=17) with ischemic injury and perfusion deficit determined by diffusion and perfusion MRI, respectively. T2* signal change was measured in regions of interest (ROIs) located within ischemic core, T2*OC-defined penumbra and equivalent contralateral areas during 40% O2±prior PFC injection. Region of interest analyses between groups showed that PFC significantly enhanced the T2* response to 40% O2 in T2*-defined penumbra (mean increase of 10.6±2.3% compared to 5.6±1.5% with 40% O2, P<0.001). This enhancement was specific to the penumbra ROI. Perfluorocarbon emulsions therefore enhances the translational potential of the T2*OC technique for identifying penumbra in acute stroke patients. PMID:23801243

  1. Microfluidic perfusion culture.

    PubMed

    Hattori, Koji; Sugiura, Shinji; Kanamori, Toshiyuki

    2014-01-01

    Microfluidic perfusion culture is a novel technique to culture animal cells in a small-scale microchamber with medium perfusion. Polydimethylsiloxane (PDMS) is the most popular material to fabricate a microfluidic perfusion culture chip. Photolithography and replica molding techniques are generally used for fabrication of a microfluidic perfusion culture chip. Pressure-driven perfusion culture system is convenient technique to carry out the perfusion culture of animal cells in a microfluidic device. Here, we describe a general theory on microfluid network design, microfabrication technique, and experimental technique for pressure-driven perfusion culture in an 8 × 8 microchamber array on a glass slide-sized microchip made out of PDMS.

  2. Cerebrovascular Events During Pregnancy and Puerperium Resulting from Preexisting Moyamoya Disease: Determining the Risk of Ischemic Events Based on Hemodynamic Status Assessment Using Brain Perfusion Single-Photon Emission Computed Tomography.

    PubMed

    Lee, Si Un; Chung, Young Seob; Oh, Chang Wan; Kwon, O-Ki; Bang, Jae Seung; Hwang, Gyojun; Kim, Tackeun; Ahn, Seong Yeol

    2016-06-01

    The purposes of this study were to review the cerebrovascular events (CVE) during pregnancy and puerperium in adults with moyamoya disease (MMD) and to evaluate its risk factors. We reviewed electronic medical records on 141 pregnancies in 71 women diagnosed with MMD and this study included only 27 pregnancies (23 patients) diagnosed with MMD before pregnancy. Basal and acetazolamide-stress brain perfusion single-photon emission computed tomography (SPECT) was conducted for 40 hemispheres in 21 pregnancies within 1 year of the gestational period, ranging from 22 months before delivery to 12 months after delivery for evaluation of the hemodynamic status of the patients to devise the MMD treatment strategy. Twelve pregnancies (44.4%) showed CVE during pregnancy or puerperium in the group diagnosed with MMD before pregnancy. All the 12 CVE were ischemic, without any hemorrhagic events. A decreased cerebral vascular reserve capacity (CVRC) on stress SPECT was observed in 25 (62.5%) of the 40 hemispheres, and 18 of these 25 hemispheres showed TIA. In contrast, only 2 of 15 hemispheres which revealed normal CVRC on stress SPECT showed TIA. Overall, a decreased CVRC on stress SPECT imaging was statistically associated with development of CVE (P < 0.001). Furthermore, the clinical type of MMD was also regarded as predictive factor for CVE in this study. Especially, ischemic type MMD revealed a statistical association with the development of CVE (P = 0.014, odds ratio = 16.50). Assessment of cerebral hemodynamic status with stress SPECT may predict CVE during pregnancy and puerperium. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Initial testing of a 3D printed perfusion phantom using digital subtraction angiography

    NASA Astrophysics Data System (ADS)

    Wood, Rachel P.; Khobragade, Parag; Ying, Leslie; Snyder, Kenneth; Wack, David; Bednarek, Daniel R.; Rudin, Stephen; Ionita, Ciprian N.

    2015-03-01

    Perfusion imaging is the most applied modality for the assessment of acute stroke. Parameters such as Cerebral Blood Flow (CBF), Cerebral Blood volume (CBV) and Mean Transit Time (MTT) are used to distinguish the tissue infarct core and ischemic penumbra. Due to lack of standardization these parameters vary significantly between vendors and software even when provided with the same data set. There is a critical need to standardize the systems and make them more reliable. We have designed a uniform phantom to test and verify the perfusion systems. We implemented a flow loop with different flow rates (250, 300, 350 ml/min) and injected the same amount of contrast. The images of the phantom were acquired using a Digital Angiographic system. Since this phantom is uniform, projection images obtained using DSA is sufficient for initial validation. To validate the phantom we measured the contrast concentration at three regions of interest (arterial input, venous output, perfused area) and derived time density curves (TDC). We then calculated the maximum slope, area under the TDCs and flow. The maximum slope calculations were linearly increasing with increase in flow rate, the area under the curve decreases with increase in flow rate. There was 25% error between the calculated flow and measured flow. The derived TDCs were clinically relevant and the calculated flow, maximum slope and areas under the curve were sensitive to the measured flow. We have created a systematic way to calibrate existing perfusion systems and assess their reliability.

  4. Applications and interpretation of krypton 81m ventilation/technetium 99m macroaggregate perfusion lung scanning in childhood

    NASA Astrophysics Data System (ADS)

    Davies, Hugh Trevor Frimston

    Radionuclide ventilation perfusion lung scans now play an important part in the investigation of paediatric lung disease, providing a safe, noninvasive assessment of regional lung function in children with suspected pulmonary disease. In paediatric practice the most suitable radionuclides are Krypton 81m (Kr81m) and Technetium 99m (Tc99m), which are jointly used in the Kr81m ventilation/Tc99m macroaggregate perfusion lung scan (V/Q lung scan). The Kr81m ventilation scan involves a low radiation dose, requires little or no subject cooperation and because of the very short half life of Kr81m (13 seconds) the steady state image acquired during continuous inhalation of the radionuclide is considered to reflect regional distribution of ventilation. It is now the most important noninvasive method available for the investigation of the regional abnormalities of ventilation characteristic of many congenital and acquired paediatric respiratory diseases, such as diaphragmatic hernia, pulmonary sequestration, bronchopulmonary dysplasia, foreign body inhalation and bronchiectasis. It improves diagnostic accuracy, aids clinical decision making and is used to monitor the progress of disease and response to therapy. Theoretical analysis of the steady state Kr81m ventilation image suggests that it may only reflect regional ventilation when specific ventilation (ventilation per unit volume of lung) is within or below the normal adult range (1-3 L/L/min). At higher values such as those seen in neonates and infants (8-15 L/L/min) Kr81m activity may reflect regional lung volume rather than ventilation, a conclusion supported by the studies of Ciofetta et al. There is some controversy on this issue as animal studies have demonstrated that the Kr81m image reflects ventilation over a much wider range of specific ventilation (up to 13 L/L/min). A clinical study of sick infants and very young children is in agreement with this animal work and suggests that the steady state Kr81m image

  5. TU-EF-204-02: Hiigh Quality and Sub-MSv Cerebral CT Perfusion Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ke; Niu, Kai; Wu, Yijing

    2015-06-15

    Purpose: CT Perfusion (CTP) imaging is of great importance in acute ischemic stroke management due to its potential to detect hypoperfused yet salvageable tissue and distinguish it from definitely unsalvageable tissue. However, current CTP imaging suffers from poor image quality and high radiation dose (up to 5 mSv). The purpose of this work was to demonstrate that technical innovations such as Prior Image Constrained Compressed Sensing (PICCS) have the potential to address these challenges and achieve high quality and sub-mSv CTP imaging. Methods: (1) A spatial-temporal 4D cascaded system model was developed to indentify the bottlenecks in the current CTPmore » technology; (2) A task-based framework was developed to optimize the CTP system parameters; (3) Guided by (1) and (2), PICCS was customized for the reconstruction of CTP source images. Digital anthropomorphic perfusion phantoms, animal studies, and preliminary human subject studies were used to validate and evaluate the potentials of using these innovations to advance the CTP technology. Results: The 4D cascaded model was validated in both phantom and canine stroke models. Based upon this cascaded model, it has been discovered that, as long as the spatial resolution and noise properties of the 4D source CT images are given, the 3D MTF and NPS of the final CTP maps can be analytically derived for a given set of processing methods and parameters. The cascaded model analysis also identified that the most critical technical factor in CTP is how to acquire and reconstruct high quality source images; it has very little to do with the denoising techniques often used after parametric perfusion calculations. This explained why PICCS resulted in a five-fold dose reduction or substantial improvement in image quality. Conclusion: Technical innovations generated promising results towards achieving high quality and sub-mSv CTP imaging for reliable and safe assessment of acute ischemic strokes. K. Li, K. Niu, Y. Wu

  6. Arterial Spin Labeling - Fast Imaging with Steady-State Free Precession (ASL-FISP): A Rapid and Quantitative Perfusion Technique for High Field MRI

    PubMed Central

    Gao, Ying; Goodnough, Candida L.; Erokwu, Bernadette O.; Farr, George W.; Darrah, Rebecca; Lu, Lan; Dell, Katherine M.; Yu, Xin; Flask, Chris A.

    2014-01-01

    Arterial Spin Labeling (ASL) is a valuable non-contrast perfusion MRI technique with numerous clinical applications. Many previous ASL MRI studies have utilized either Echo-Planar Imaging (EPI) or True Fast Imaging with Steady-State Free Precession (True FISP) readouts that are prone to off-resonance artifacts on high field MRI scanners. We have developed a rapid ASL-FISP MRI acquisition for high field preclinical MRI scanners providing perfusion-weighted images with little or no artifacts in less than 2 seconds. In this initial implementation, a FAIR (Flow-Sensitive Alternating Inversion Recovery) ASL preparation was combined with a rapid, centrically-encoded FISP readout. Validation studies on healthy C57/BL6 mice provided consistent estimation of in vivo mouse brain perfusion at 7 T and 9.4 T (249±38 ml/min/100g and 241±17 ml/min/100g, respectively). The utility of this method was further demonstrated in detecting significant perfusion deficits in a C57/BL6 mouse model of ischemic stroke. Reasonable kidney perfusion estimates were also obtained for a healthy C57/BL6 mouse exhibiting differential perfusion in the renal cortex and medulla. Overall, the ASL-FISP technique provides a rapid and quantitative in vivo assessment of tissue perfusion for high field MRI scanners with minimal image artifacts. PMID:24891124

  7. Extracorporeal shock wave therapy for ischemic cardiovascular disorders.

    PubMed

    Ito, Kenta; Fukumoto, Yoshihiro; Shimokawa, Hiroaki

    2011-10-01

    Ischemic heart disease is the leading cause of death and a major cause of hospital admissions, with the number of affected patients increasing worldwide. The current management of ischemic heart disease has three major therapeutic options: medication, percutaneous coronary intervention (PCI), and coronary artery bypass grafting (CABG). However, the prognosis for patients with severe ischemic heart disease without indications for PCI or CABG still remains poor due to the lack of effective treatments. It is therefore crucial to develop alternative therapeutic strategies for severe ischemic heart disease. Extracorporeal shock wave (SW) therapy was introduced clinically more than 20 years ago to fragment kidney stones, which has markedly improved the treatment of urolithiasis. We found that a low-energy SW (about 10% of the energy density used for urolithiasis) effectively increases the expression of vascular endothelial growth factor (VEGF) in cultured endothelial cells. Based on this in vitro study, we initiated in vivo studies and have demonstrated that extracorporeal cardiac SW therapy with a low-energy SW up-regulates the expression of VEGF, induces neovascularization, and improves myocardial ischemia in a porcine model of chronic myocardial ischemia, without any adverse effects in vivo. On the basis of promising results in animal studies, we performed a series of clinical studies in patients with severe coronary artery disease without indication for PCI or CABG, including, firstly, an open trial followed by a placebo-controlled, double-blind study. In both studies, our extracorporeal cardiac SW therapy improved symptoms, exercise capacity, and myocardial perfusion in patients with severe coronary artery disease. Importantly, no procedural complications or adverse effects were noted. The SW therapy was also effective in ameliorating left ventricular remodeling after acute myocardial infarction (MI) in pigs and in enhancing angiogenesis in hind-limb ischemia in

  8. Effect of nutritional status on oxidative stress in an ex vivo perfused rat liver.

    PubMed

    Stadler, Michaela; Nuyens, Vincent; Seidel, Laurence; Albert, Adelin; Boogaerts, Jean G

    2005-11-01

    Normothermic ischemia-reperfusion is a determinant in liver injury occurring during surgical procedures, ischemic state, and multiple organ failure. The preexisting nutritional status of the liver might contribute to the extent of tissue injury and primary nonfunction. The aim of this study was to determine the role of starvation on hepatic ischemia-reperfusion injury in normal rat livers. Rats were randomly divided into two groups: one had free access to food, the other was fasted for 16 h. The portal vein was cannulated, and the liver was removed and perfused in a closed ex vivo system. Two modes of perfusion were applied in each series of rats, fed and fasting. In the ischemia-reperfusion mode, the experiment consisted of perfusion for 15 min, warm ischemia for 60 min, and reperfusion during 60 min. In the nonischemia mode, perfusion was maintained during the 135-min study period. Five rats were included in each experimental condition, yielding a total of 20 rats. Liver enzymes, potassium, glucose, lactate, free radicals, i.e., dienes and trienes, and cytochrome c were analyzed in perfusate samples. The proportion of glycogen in hepatocytes was determined in tissue biopsies. Transaminases, lactate dehydrogenase, potassium, and free radical concentrations were systematically higher in fasting rats in both conditions, with and without ischemia. Cytochrome c was higher after reperfusion in the fasting rats. Glucose and lactate concentrations were greater in the fed group. The glycogen content decreased in both groups during the experiment but was markedly lower in the fasting rats. In fed rats, liver injury was moderate, whereas hepatocytes integrity was notably impaired both after continuous perfusion and warm ischemia in fasting animals. Reduced glycogen store in hepatocytes may explain reduced tolerance.

  9. Noise characteristics of CT perfusion imaging: how does noise propagate from source images to final perfusion maps?

    NASA Astrophysics Data System (ADS)

    Li, Ke; Chen, Guang-Hong

    2016-03-01

    Cerebral CT perfusion (CTP) imaging is playing an important role in the diagnosis and treatment of acute ischemic strokes. Meanwhile, the reliability of CTP-based ischemic lesion detection has been challenged due to the noisy appearance and low signal-to-noise ratio of CTP maps. To reduce noise and improve image quality, a rigorous study on the noise transfer properties of CTP systems is highly desirable to provide the needed scientific guidance. This paper concerns how noise in the CTP source images propagates to the final CTP maps. Both theoretical deviations and subsequent validation experiments demonstrated that, the noise level of background frames plays a dominant role in the noise of the cerebral blood volume (CBV) maps. This is in direct contradiction with the general belief that noise of non-background image frames is of greater importance in CTP imaging. The study found that when radiation doses delivered to the background frames and to all non-background frames are equal, lowest noise variance is achieved in the final CBV maps. This novel equality condition provides a practical means to optimize radiation dose delivery in CTP data acquisition: radiation exposures should be modulated between background frames and non-background frames so that the above equality condition is satisïnAed. For several typical CTP acquisition protocols, numerical simulations and in vivo canine experiment demonstrated that noise of CBV can be effectively reduced using the proposed exposure modulation method.

  10. Usefulness of cardiac MRI in the prognosis and follow-up of ischemic heart disease.

    PubMed

    Hidalgo, A; Pons-Lladó, G

    2015-01-01

    Cardiac magnetic resonance imaging (MRI) is an important tool that makes it possible to evaluate patients with cardiovascular disease; in addition to infarction and alterations in myocardial perfusion, cardiac MRI is useful for evaluating other phenomena such as microvascular obstruction and ischemia. The main prognostic factors in cardiac MRI are ventricular dysfunction, necrosis in late enhancement sequences, and ischemia in stress sequences. In acute myocardial infarction, cardiac MRI can evaluate the peri-infarct zone and quantify the size of the infarct. Furthermore, cardiac MRI's ability to detect and evaluate microvascular obstruction makes it a fundamental tool for establishing the prognosis of ischemic heart disease. In patients with chronic ischemic heart disease, cardiac MRI can detect ischemia induced by pharmacological stress and can diagnose infarcts that can be missed on other techniques. Copyright © 2014 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  11. Brain Perfusion In Asphyxiated Newborns Treated with Therapeutic Hypothermia

    PubMed Central

    Wintermark, Pia; Hansen, Anne; Gregas, Matthew C.; Soul, Janet; Labrecque, Michelle; Robertson, Richard L.; Warfield, Simon K.

    2012-01-01

    Background and Purpose Induced hypothermia is thought to work partly by mitigating reperfusion injury in asphyxiated term newborns. The purpose of this study is to assess brain perfusion in the first week of life in these newborns. Patients and Methods In this prospective cohort study, magnetic resonance imaging (MRI) and perfusion imaging by arterial spin labeling (ASL-PI) was used to assess brain perfusion in these newborns. We measured regional cerebral blood flow values on 1–2 MRIs obtained during the first week of life and compared them to values obtained in control term newborns. The same or later MRI scans were obtained to define the extent of brain injury. Results Eighteen asphyxiated and four control term newborns were enrolled; eleven asphyxiated newborns were treated with hypothermia. Those developing brain injury despite being treated with induced hypothermia usually displayed hypoperfusion on day of life (DOL) 1, and then hyperperfusion on DOL 2–3 in brain areas subsequently exhibiting injury. Asphyxiated newborns not treated with hypothermia who developed brain injury also displayed hyperperfusion on DOL 1–6 in brain areas displaying injury. Conclusions Our data show that ASL-PI may be useful for identifying asphyxiated newborns at risk of developing brain injury, whether or not hypothermia is administered. Since hypothermia for 72 hours may not prevent brain injury when hyperperfusion is found early in the course of neonatal hypoxic-ischemic encephalopathy, such newborns may be candidates for adjustments in their hypothermia therapy or for adjunctive neuroprotective therapies. PMID:21979494

  12. Diffusion and Perfusion Characteristics of MELAS (Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis, and Stroke-Like Episode) in Thirteen Patients

    PubMed Central

    Kim, Ji Hye; Jeon, Tae Yeon; Rha, Jung Ho; Eo, Hong; Yoo, So-Young; Shu, Chang Hae

    2011-01-01

    Objective We analyzed the diffusion and perfusion characteristics of acute MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode) lesions in a large series to investigate the controversial changes of the apparent diffusion coefficient (ADC) that were reported in prior studies. Materials and Methods We analyzed 44 newly appearing lesions during 28 stroke-like episodes in 13 patients with MELAS. We performed a visual assessment of the MR images including the ADC and perfusion maps, comparison of the ADC between the normal and abnormal areas, comparison of % ADC between the 44 MELAS lesions and the 30 acute ischemic infarcts. In addition, the patterns of evolution on follow-up MR images were analyzed. Results Decreased, increased, and normal ADCs were noted in 16 (36%), 16 (36%), and 12 (27%) lesions, respectively. The mean % ADC was 102 ± 40.9% in the MELAS and 64 ± 17.8% in the acute vascular infarcts (p < 0.001), while perfusion imaging demonstrated hyper-perfusion in six acute MELAS lesions. On follow-up images, resolution, progression, and tissue loss were noted in 10, 4, and 17 lesions, respectively. Conclusion The cytotoxic edema gradually evolves following an acute stroke-like episode in patients with MELAS, and this may overlap with hyper-perfusion and vasogenic edema. The edematous swelling may be reversible or it may evolve to encephalomalacia, suggesting irreversible damage. PMID:21228936

  13. Botox therapy for ischemic digits.

    PubMed

    Neumeister, Michael W; Chambers, Christopher B; Herron, Margo S; Webb, Kelli; Wietfeldt, Joel; Gillespie, Jessica N; Bueno, Rueben A; Cooney, Carisa M

    2009-07-01

    Treating patients with Raynaud's phenomenon who have chronic pain and ulcerations is extremely challenging. Unrelenting pain can lead to dysfunction and disuse, rendering the patient debilitated and/or chronically depressed. Pharmacologic vasodilators and surgical sympathectomies offer variable benefits. Outcomes of symptomatic patients treated with botulinum toxin type A (Botox) injections for Raynaud's phenomenon are presented. A retrospective study focused on patient outcomes was performed on 19 patients diagnosed with Raynaud's phenomenon. Patients suffered from chronic ischemic hand pain. All patients had vascular studies to rule out occlusive disease. Fifty to 100 units of Botox were injected into the palm around each involved neurovascular bundle. Preinjection and postinjection laser Doppler scanning was performed on most patients to measure blood flow. Sixteen of 19 patients (84 percent) reported pain reduction at rest. Thirteen patients reported immediate relief; three reported more gradual pain reduction over 1 to 2 months. Three patients had no or minimal pain relief. Tissue perfusion results demonstrated a marked change in blood flow (-48.15 percent to 425 percent) to the digits. All patients with chronic finger ulcers healed within 60 days. Most patients [n = 12 (63 percent)] remained pain-free (13 to 59 months) with a single-injection schedule. Four patients (21 percent) required repeated injections because of recurrent pain. Vascular function is abnormal in patients with Raynaud's phenomenon. Although its mechanism is unknown, Botox yielded a distinct improvement in perfusion and reduction in pain in patients failing conservative management. Continued research may lead to more specific and reliable treatment for Raynaud's patients.

  14. Ischemic Strokes (Clots)

    MedlinePlus

    ... Month Infographic Stroke Hero F.A.S.T. Quiz Ischemic Strokes (Clots) Updated:May 21,2018 Ischemic stroke accounts for about 87 percent of all cases. View a detailed animation of ischemic stroke . Ischemic strokes occur as a result of an ...

  15. Quantitative lung perfusion evaluation using Fourier decomposition perfusion MRI.

    PubMed

    Kjørstad, Åsmund; Corteville, Dominique M R; Fischer, Andre; Henzler, Thomas; Schmid-Bindert, Gerald; Zöllner, Frank G; Schad, Lothar R

    2014-08-01

    To quantitatively evaluate lung perfusion using Fourier decomposition perfusion MRI. The Fourier decomposition (FD) method is a noninvasive method for assessing ventilation- and perfusion-related information in the lungs, where the perfusion maps in particular have shown promise for clinical use. However, the perfusion maps are nonquantitative and dimensionless, making follow-ups and direct comparisons between patients difficult. We present an approach to obtain physically meaningful and quantifiable perfusion maps using the FD method. The standard FD perfusion images are quantified by comparing the partially blood-filled pixels in the lung parenchyma with the fully blood-filled pixels in the aorta. The percentage of blood in a pixel is then combined with the temporal information, yielding quantitative blood flow values. The values of 10 healthy volunteers are compared with SEEPAGE measurements which have shown high consistency with dynamic contrast enhanced-MRI. All pulmonary blood flow (PBF) values are within the expected range. The two methods are in good agreement (mean difference = 0.2 mL/min/100 mL, mean absolute difference = 11 mL/min/100 mL, mean PBF-FD = 150 mL/min/100 mL, mean PBF-SEEPAGE = 151 mL/min/100 mL). The Bland-Altman plot shows a good spread of values, indicating no systematic bias between the methods. Quantitative lung perfusion can be obtained using the Fourier Decomposition method combined with a small amount of postprocessing. Copyright © 2013 Wiley Periodicals, Inc.

  16. In vivo perfusion assessment of an anastomosis surgery on porcine intestinal model (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Le, Hanh N. D.; Opferman, Justin; Decker, Ryan; Cheon, Gyeong W.; Kim, Peter C. W.; Kang, Jin U.; Krieger, Axel

    2016-04-01

    Anastomosis, the connection of two structures, is a critical procedure for reconstructive surgery with over 1 million cases/year for visceral indication alone. However, complication rates such as strictures and leakage affect up to 19% of cases for colorectal anastomoses and up to 30% for visceral transplantation anastomoses. Local ischemia plays a critical role in anastomotic complications, making blood perfusion an important indicator for tissue health and predictor for healing following anastomosis. In this work, we apply a real time multispectral imaging technique to monitor impact on tissue perfusion due to varying interrupted suture spacing and suture tensions. Multispectral tissue images at 470, 540, 560, 580, 670 and 760 nm are analyzed in conjunction with an empirical model based on diffuse reflectance process to quantify the hemoglobin oxygen saturation within the suture site. The investigated tissues for anastomoses include porcine small (jejunum and ileum) and large (transverse colon) intestines. Two experiments using interrupted suturing with suture spacing of 1, 2, and 3 mm and tension levels from 0 N to 2.5 N are conducted. Tissue perfusion at 5, 10, 20 and 30 min after suturing are recorded and compared with the initial normal state. The result indicates the contrast between healthy and ischemic tissue areas and assists the determination of suturing spacing and tension. Therefore, the assessment of tissue perfusion will permit the development and intra-surgical monitoring of an optimal suture protocol during anastomosis with less complications and improved functional outcome.

  17. Integrated approach to ischemic heart disease. The one-stop shop.

    PubMed

    Kramer, C M

    1998-05-01

    Magnetic resonance imaging is unique in its variety of applications for imaging the cardiovascular system. A thorough assessment of myocardial structure, function, and perfusion; assessment of coronary artery anatomy and flow; and spectroscopic evaluation of cardiac energetics can be readily performed by magnetic resonance imaging. One key to the advancement of cardiac magnetic resonance imaging as a clinical tool in the evaluation, the so called one stop shop. Improvements in magnetic resonance hardware, software, and imaging speed now permit this integrated examination. Cardiac magnetic resonance is a powerful technique with the potential to replace or complement other commonly used techniques in the diagnostic armamentarium of physicians caring for patients with ischemic heart disease.

  18. Area of ischemia assessed by physicians and software packages from myocardial perfusion scintigrams

    PubMed Central

    2014-01-01

    Background The European Society of Cardiology recommends that patients with >10% area of ischemia should receive revascularization. We investigated inter-observer variability for the extent of ischemic defects reported by different physicians and by different software tools, and if inter-observer variability was reduced when the physicians were provided with a computerized suggestion of the defects. Methods Twenty-five myocardial perfusion single photon emission computed tomography (SPECT) patients who were regarded as ischemic according to the final report were included. Eleven physicians in nuclear medicine delineated the extent of the ischemic defects. After at least two weeks, they delineated the defects again, and were this time provided a suggestion of the defect delineation by EXINI HeartTM (EXINI). Summed difference scores and ischemic extent values were obtained from four software programs. Results The median extent values obtained from the 11 physicians varied between 8% and 34%, and between 9% and 16% for the software programs. For all 25 patients, mean extent obtained from EXINI was 17.0% (± standard deviation (SD) 14.6%). Mean extent for physicians was 22.6% (± 15.6%) for the first delineation and 19.1% (± 14.9%) for the evaluation where they were provided computerized suggestion. Intra-class correlation (ICC) increased from 0.56 (95% confidence interval (CI) 0.41-0.72) to 0.81 (95% CI 0.71-0.90) between the first and the second delineation, and SD between physicians were 7.8 (first) and 5.9 (second delineation). Conclusions There was large variability in the estimated ischemic defect size obtained both from different physicians and from different software packages. When the physicians were provided with a suggested delineation, the inter-observer variability decreased significantly. PMID:24479846

  19. Protective effect of agmatine on a reperfusion model after transient cerebral ischemia: Temporal evolution on perfusion MR imaging and histopathologic findings.

    PubMed

    Kim, D J; Kim, D I; Lee, S K; Suh, S H; Lee, Y J; Kim, J; Chung, T S; Lee, J E

    2006-04-01

    The goal of thrombolytic therapy in patients with acute ischemic stroke is early recanalization, but this may result in delayed reperfusion injury. The purpose of this study was to evaluate the neuroprotective effect of agmatine in a transient ischemic cat model by using MR perfusion imaging and histopathologic analyses. One-hour temporary occlusion of the left middle cerebral artery of cats was performed in the control ischemia group (n = 10), and 100 mg/kg of agmatine was intravenously injected immediately after recanalization in the agmatine-treated group (n = 15). MR imaging was performed at 1, 24, and 48 hours after recanalization, and the perfusion patterns were investigated. Terminal-deoxynucleotidyl transferase mediated nick and end-labeling (TUNEL) and hematoxylin-eosin (H&E) stainings were performed at the corresponding sections. In the control ischemia group, the number of TUNEL-positive cells was significantly increased in the areas with reperfusion hyperemia (P < .05). In the agmatine-treated group, no significant increase in the number of TUNEL-positive cells was noted in the areas of reperfusion hyperemia. The difference in the number of TUNEL-positive cells between the control ischemia and agmatine-treated group in the areas of reperfusion hyperemia was significant (P < .05). The total number of TUNEL-positive cells and the area of severe ischemic neuronal damage on H&E stain were also significantly attenuated in the agmatine-treated cats compared with the control ischemia cats (P < .05). Our results suggest that agmatine has neuroprotective effects against reperfusion injury and ischemia.

  20. CAD system for automatic analysis of CT perfusion maps

    NASA Astrophysics Data System (ADS)

    Hachaj, T.; Ogiela, M. R.

    2011-03-01

    In this article, authors present novel algorithms developed for the computer-assisted diagnosis (CAD) system for analysis of dynamic brain perfusion, computer tomography (CT) maps, cerebral blood flow (CBF), and cerebral blood volume (CBV). Those methods perform both quantitative analysis [detection and measurement and description with brain anatomy atlas (AA) of potential asymmetries/lesions] and qualitative analysis (semantic interpretation of visualized symptoms). The semantic interpretation (decision about type of lesion: ischemic/hemorrhagic, is the brain tissue at risk of infraction or not) of visualized symptoms is done by, so-called, cognitive inference processes allowing for reasoning on character of pathological regions based on specialist image knowledge. The whole system is implemented in.NET platform (C# programming language) and can be used on any standard PC computer with.NET framework installed.

  1. Cerebral perfusion computed tomography deconvolution via structure tensor total variation regularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Dong; Zhang, Xinyu; Bian, Zhaoying, E-mail: zybian@smu.edu.cn, E-mail: jhma@smu.edu.cn

    Purpose: Cerebral perfusion computed tomography (PCT) imaging as an accurate and fast acute ischemic stroke examination has been widely used in clinic. Meanwhile, a major drawback of PCT imaging is the high radiation dose due to its dynamic scan protocol. The purpose of this work is to develop a robust perfusion deconvolution approach via structure tensor total variation (STV) regularization (PD-STV) for estimating an accurate residue function in PCT imaging with the low-milliampere-seconds (low-mAs) data acquisition. Methods: Besides modeling the spatio-temporal structure information of PCT data, the STV regularization of the present PD-STV approach can utilize the higher order derivativesmore » of the residue function to enhance denoising performance. To minimize the objective function, the authors propose an effective iterative algorithm with a shrinkage/thresholding scheme. A simulation study on a digital brain perfusion phantom and a clinical study on an old infarction patient were conducted to validate and evaluate the performance of the present PD-STV approach. Results: In the digital phantom study, visual inspection and quantitative metrics (i.e., the normalized mean square error, the peak signal-to-noise ratio, and the universal quality index) assessments demonstrated that the PD-STV approach outperformed other existing approaches in terms of the performance of noise-induced artifacts reduction and accurate perfusion hemodynamic maps (PHM) estimation. In the patient data study, the present PD-STV approach could yield accurate PHM estimation with several noticeable gains over other existing approaches in terms of visual inspection and correlation analysis. Conclusions: This study demonstrated the feasibility and efficacy of the present PD-STV approach in utilizing STV regularization to improve the accuracy of residue function estimation of cerebral PCT imaging in the case of low-mAs.« less

  2. Clinical significance of noninvasive coronary flow reserve assessment in patients with ischemic heart disease.

    PubMed

    Taqueti, Viviany R; Di Carli, Marcelo F

    2016-11-01

    The importance of physiologic assessments in ischemic heart disease is well recognized. Coronary flow reserve (CFR) is a novel physiologic imaging biomarker that complements both anatomic and semiquantitative perfusion assessments of coronary artery disease (CAD) severity. Beyond this, assessment of CFR may provide clinical insights useful for refining diagnosis, prognosis, and eventually, management of patients along the full range of ischemic heart disease phenotypes, from multivessel obstructive CAD to diffuse coronary microvascular dysfunction. We begin by defining the concept of noninvasive CFR, specifically focusing on quantification of blood flow using PET, for which robust observational data exist. Next, we describe the continuum of cardiovascular risk by CFR values in patients across the anatomic spectrum of CAD, including those with diabetes, chronic kidney disease, and nonobstructive CAD and coronary microvascular dysfunction. Finally, we summarize the impact of CFR on prognosis, with a focus on future directions for management strategies and potential novel therapies, particularly in patients with very low CFR and less obstructive CAD. This latter phenotype may provide a critical link to understanding hidden biological risk of ischemic heart disease in vulnerable populations, including women and patients with heart failure with preserved ejection fraction, metabolic syndrome, cardio-oncologic complications, and inflammatory-related disease.

  3. Targeting Murine Mesenchymal Stem Cells to Kidney Injury Molecule-1 Improves Their Therapeutic Efficacy in Chronic Ischemic Kidney Injury.

    PubMed

    Zou, Xiangyu; Jiang, Kai; Puranik, Amrutesh S; Jordan, Kyra L; Tang, Hui; Zhu, Xiangyang; Lerman, Lilach O

    2018-05-01

    Mesenchymal stem cells (MSC) have been experimentally used for kidney repair, but modest retention limits their efficacy. Cell-surface coating allows modulating MSC homing and interaction with target cells. We coated mouse adipose tissue-derived MSC with antibodies directed against kidney injury molecule-1 (ab-KIM1), which is upregulated in injured kidneys, and tested the hypothesis that this would enhance their therapeutic effects in ischemic kidney injury. Untreated MSC, ab-KIM1-coated MSC (KIM-MSC), or vehicle, were injected systemically into the carotid artery of 2-kidneys, 1-clip mice 2 weeks after surgery. MSC retention in different organs was explored 24 hours, 48 hours, or 2 weeks after injection. Renal volume, perfusion, and oxygenation were studied 2 weeks after injection using magnetic resonance imaging in vivo, and renal inflammation, apoptosis, capillary density, and fibrosis ex vivo. The ab-KIM1 coating had little effect on MSC viability or proliferation. The stenotic kidney showed upregulated KIM1 expression, selective homing, and greater retention of KIM-MSC compared to untreated MSC and compared to other organs. KIM-MSC-injected mice improved renal perfusion and capillary density, and attenuated oxidative damage, apoptosis, and fibrosis compared to mice treated with vehicle or with native MSC. In conclusion, MSC coating with ab-KIM1 increased their retention in the ischemic kidney and enhanced their therapeutic efficacy. This novel method may be useful to selectively target injured kidneys, and supports further development of strategies to enhance cell-based treatment of ischemic kidney injury. Stem Cells Translational Medicine 2018;7:394-403. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  4. Targeting Murine Mesenchymal Stem Cells to Kidney Injury Molecule‐1 Improves Their Therapeutic Efficacy in Chronic Ischemic Kidney Injury

    PubMed Central

    Zou, Xiangyu; Jiang, Kai; Puranik, Amrutesh S.; Jordan, Kyra L.; Tang, Hui

    2018-01-01

    Abstract Mesenchymal stem cells (MSC) have been experimentally used for kidney repair, but modest retention limits their efficacy. Cell‐surface coating allows modulating MSC homing and interaction with target cells. We coated mouse adipose tissue‐derived MSC with antibodies directed against kidney injury molecule‐1 (ab‐KIM1), which is upregulated in injured kidneys, and tested the hypothesis that this would enhance their therapeutic effects in ischemic kidney injury. Untreated MSC, ab‐KIM1‐coated MSC (KIM‐MSC), or vehicle, were injected systemically into the carotid artery of 2‐kidneys, 1‐clip mice 2 weeks after surgery. MSC retention in different organs was explored 24 hours, 48 hours, or 2 weeks after injection. Renal volume, perfusion, and oxygenation were studied 2 weeks after injection using magnetic resonance imaging in vivo, and renal inflammation, apoptosis, capillary density, and fibrosis ex vivo. The ab‐KIM1 coating had little effect on MSC viability or proliferation. The stenotic kidney showed upregulated KIM1 expression, selective homing, and greater retention of KIM‐MSC compared to untreated MSC and compared to other organs. KIM‐MSC‐injected mice improved renal perfusion and capillary density, and attenuated oxidative damage, apoptosis, and fibrosis compared to mice treated with vehicle or with native MSC. In conclusion, MSC coating with ab‐KIM1 increased their retention in the ischemic kidney and enhanced their therapeutic efficacy. This novel method may be useful to selectively target injured kidneys, and supports further development of strategies to enhance cell‐based treatment of ischemic kidney injury. Stem Cells Translational Medicine 2018;7:394–403 PMID:29446551

  5. Improved Recovery of Hepatocytes Isolated From Warm Ischemic Rat Liver by Citrate Phosphate Dextrose (CPD)-Supplemented Euro-Collins Solution

    PubMed Central

    Hsu, Huai-Che; Matsuno, Naoto; Machida, Noboru; Enosawa, Shin

    2013-01-01

    Demand for human primary hepatocytes is increasing, particularly for clinical trials of hepatocyte transplantation. However, due to the severe shortage of organ transplant donors, the source of cells for these endeavors is restricted to untransplantable livers, such as those from non-heart-beating donors and surgically resected liver tissues. To improve cell recovery from such sources after warm ischemia, we evaluated the efficacy of applying perfusion solutions, focusing on improvement of hepatocyte recovery. Warm ischemia was induced by clamping both portal vein and hepatic artery for 10 or 15 min in rats. The liver was perfused with either Euro-Collins (EC) or extracellular-type trehalose-containing Kyoto (ETK) solutions supplemented with an anticoagulant, either heparin or citrate phosphate dextrose solution (CPD), compared to Ca2+, Mg2+-free Hanks solution. While the viability of recovered cells was 81.5 ± 4.2% and cell yield was 2.27 ± 0.53 × 108 in nonwarm ischemia controls (n = 11), these values were only 74.7 ± 2.9% and 0.38 ± 0.17 × 108, respectively, in the 10-min warm ischemia group, using the Hanks as the perfusion solution. Although the addition of heparin increased the live cell number only twofold (0.71 ± 0.40 × 108, n = 4), the best improvement was achieved by adding CPD to EC. This resulted in a recovery of 1.41 ± 0.50 × 108 in the 10-min ischemia group (n = 7) and 1.37 ± 0.28 × 108 in the 15-min group (n = 3). Macroscopic observation showed that blood had been completely flushed out by the solution, suggesting good restoration of the microcirculation in ischemic liver. Using ETK instead of EC resulted in a slight decrease in efficacy. These results demonstrate that CPD, as opposed to heparin, is effective in ensuring liver microcirculation and flushing out the blood and that EC is the best perfusion solution for obtaining hepatocytes from ischemic liver. PMID:26858872

  6. Structural and Perfusion Abnormalities of Brain on MRI and Technetium-99m-ECD SPECT in Children With Cerebral Palsy: A Comparative Study.

    PubMed

    Rana, Kamer Singh; Narwal, Varun; Chauhan, Lokesh; Singh, Giriraj; Sharma, Monica; Chauhan, Suneel

    2016-04-01

    Cerebral palsy has traditionally been associated with hypoxic ischemic brain damage. This study was undertaken to demonstrate structural and perfusion brain abnormalities. Fifty-six children diagnosed clinically as having cerebral palsy were studied between 1 to 14 years of age and were subjected to 3 Tesla magnetic resonance imaging (MRI). Brain and Technetium-99m-ECD brain single-photon emission computed tomography (SPECT) scan. Male to female ratio was 1.8:1 with a mean age of 4.16 ± 2.274 years. Spastic cerebral palsy was the most common type, observed in 91%. Birth asphyxia was the most common etiology (69.6%). White matter changes (73.2%) such as periventricular leukomalacia and corpus callosal thinning were the most common findings on MRI. On SPECT all cases except one revealed perfusion impairments in different regions of brain. MRI is more sensitive in detecting white matter changes, whereas SPECT is better in detecting cortical and subcortical gray matter abnormalities of perfusion. © The Author(s) 2015.

  7. MCNPX CALCULATIONS OF SPECIFIC ABSORBED FRACTIONS IN SOME ORGANS OF THE HUMAN BODY DUE TO APPLICATION OF 133Xe, 99mTc and 81mKr RADIONUCLIDES.

    PubMed

    Jovanovic, Z; Krstic, D; Nikezic, D; Ros, J M Gomez; Ferrari, P

    2018-03-01

    Monte Carlo simulations were performed to evaluate treatment doses with wide spread used radionuclides 133Xe, 99mTc and 81mKr. These different radionuclides are used in perfusion or ventilation examinations in nuclear medicine and as indicators for cardiovascular and pulmonary diseases. The objective of this work was to estimate the specific absorbed fractions in surrounding organs and tissues, when these radionuclides are incorporated in the lungs. For this purpose a voxel thorax model has been developed and compared with the ORNL phantom. All calculations and simulations were performed by means of the MCNP5/X code.

  8. Reperfusion is a more accurate predictor of follow-up infarct volume than recanalization: a proof of concept using CT in acute ischemic stroke patients.

    PubMed

    Soares, Bruno P; Tong, Elizabeth; Hom, Jason; Cheng, Su-Chun; Bredno, Joerg; Boussel, Loic; Smith, Wade S; Wintermark, Max

    2010-01-01

    The purpose of this study was to compare recanalization and reperfusion in terms of their predictive value for imaging outcomes (follow-up infarct volume, infarct growth, salvaged penumbra) and clinical outcome in acute ischemic stroke patients. Twenty-two patients admitted within 6 hours of stroke onset were retrospectively included in this study. These patients underwent a first stroke CT protocol including CT-angiography (CTA) and perfusion-CT (PCT) on admission, and similar imaging after treatment, typically around 24 hours, to assess recanalization and reperfusion. Recanalization was assessed by comparing arterial patency on admission and posttreatment CTAs; reperfusion, by comparing the volumes of CBV, CBF, and MTT abnormality on admission and posttreatment PCTs. Collateral flow was graded on the admission CTA. Follow-up infarct volume was measured on the discharge noncontrast CT. The groups of patients with reperfusion, no reperfusion, recanalization, and no recanalization were compared in terms of imaging and clinical outcomes. Reperfusion (using an MTT reperfusion index >75%) was a more accurate predictor of follow-up infarct volume than recanalization. Collateral flow and recanalization were not accurate predictors of follow-up infarct volume. An interaction term was found between reperfusion and the volume of the admission penumbra >50 mL. Our study provides evidence that reperfusion is a more accurate predictor of follow-up infarct volume in acute ischemic stroke patients than recanalization. We recommend an MTT reperfusion index >75% to assess therapy efficacy in future acute ischemic stroke trials that use perfusion-CT.

  9. Ischemic preconditioning enhances integrity of coronary endothelial tight junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhao; Jin, Zhu-Qiu, E-mail: zhu-qiu.jin@sdstate.edu

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Cardiac tight junctions are present between coronary endothelial cells. Black-Right-Pointing-Pointer Ischemic preconditioning preserves the structural and functional integrity of tight junctions. Black-Right-Pointing-Pointer Myocardial edema is prevented in hearts subjected to ischemic preconditioning. Black-Right-Pointing-Pointer Ischemic preconditioning enhances translocation of ZO-2 from cytosol to cytoskeleton. -- Abstract: Ischemic preconditioning (IPC) is one of the most effective procedures known to protect hearts against ischemia/reperfusion (IR) injury. Tight junction (TJ) barriers occur between coronary endothelial cells. TJs provide barrier function to maintain the homeostasis of the inner environment of tissues. However, the effect of IPC on the structure and function of cardiacmore » TJs remains unknown. We tested the hypothesis that myocardial IR injury ruptures the structure of TJs and impairs endothelial permeability whereas IPC preserves the structural and functional integrity of TJs in the blood-heart barrier. Langendorff hearts from C57BL/6J mice were prepared and perfused with Krebs-Henseleit buffer. Cardiac function, creatine kinase release, and myocardial edema were measured. Cardiac TJ function was evaluated by measuring Evans blue-conjugated albumin (EBA) content in the extravascular compartment of hearts. Expression and translocation of zonula occludens (ZO)-2 in IR and IPC hearts were detected with Western blot. A subset of hearts was processed for the observation of ultra-structure of cardiac TJs with transmission electron microscopy. There were clear TJs between coronary endothelial cells of mouse hearts. IR caused the collapse of TJs whereas IPC sustained the structure of TJs. IR increased extravascular EBA content in the heart and myocardial edema but decreased the expression of ZO-2 in the cytoskeleton. IPC maintained the structure of TJs. Cardiac EBA content and edema were reduced in IPC

  10. Diabetes mellitus and ischemic diseases: molecular mechanisms of vascular repair dysfunction.

    PubMed

    Howangyin, Kiave Yune; Silvestre, Jean-Sébastien

    2014-06-01

    In patients with diabetes mellitus, the ability of ischemic tissue to synchronize the molecular and cellular events leading to restoration of tissue perfusion in response to the atherosclerotic occlusion of a patent artery is markedly impaired. As a consequence, adverse tissue remodeling and the extent of ischemic injury are intensified, leading to increased morbidity and mortality. Growing evidence from preclinical and clinical studies has implicated alterations in hypoxia-inducible factor 1 levels in the abrogation of proangiogenic pathways, including vascular endothelial growth factor A/phosphoinositide 3' kinase/AKT/endothelial nitric oxide synthase and in the activation of antiangiogenic signals characterized by accumulation of advanced glycation end products, reactive oxygen species overproduction, and endoplasmic reticulum stress. In addition, the diabetic milieu shows a switch toward proinflammatory antiregenerative pathways. Finally, the mobilization, subsequent recruitment, and the proangiogenic potential of the different subsets of angiogenesis-promoting bone marrow-derived cells are markedly impaired in the diabetic environment. In this review, we will give an overview of the current understanding on the signaling molecules contributing to the diabetes mellitus-induced impairment of postischemic revascularization mainly in the setting of myocardial infarction or critical limb ischemia. © 2014 American Heart Association, Inc.

  11. A Generator-Produced Gallium-68 Radiopharmaceutical for PET Imaging of Myocardial Perfusion

    PubMed Central

    Sharma, Vijay; Sivapackiam, Jothilingam; Harpstrite, Scott E.; Prior, Julie L.; Gu, Hannah; Rath, Nigam P.; Piwnica-Worms, David

    2014-01-01

    Lipophilic cationic technetium-99m-complexes are widely used for myocardial perfusion imaging (MPI). However, inherent uncertainties in the supply chain of molybdenum-99, the parent isotope required for manufacturing 99Mo/99mTc generators, intensifies the need for discovery of novel MPI agents incorporating alternative radionuclides. Recently, germanium/gallium (Ge/Ga) generators capable of producing high quality 68Ga, an isotope with excellent emission characteristics for clinical PET imaging, have emerged. Herein, we report a novel 68Ga-complex identified through mechanism-based cell screening that holds promise as a generator-produced radiopharmaceutical for PET MPI. PMID:25353349

  12. CT Perfusion of the Head

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z CT Perfusion of the Head Computed tomography (CT) perfusion ... of CT Perfusion of the Head? What is CT Perfusion of the Head? Computed tomography (CT) perfusion ...

  13. B-type natriuretic peptide predicts an ischemic etiology of acute heart failure in patients with stage 4-5 chronic kidney disease.

    PubMed

    Kim, Sung Eun; Park, Sunghoon; Kim, Jwa-Kyung; Kim, Sung Gyun; Kim, Hyung Jik; Song, Young Rim

    2014-04-01

    The non-invasive differentiation of ischemic and non-ischemic acute heart failure (AHF) not resulting from acute myocardial infarction is difficult and has therapeutic and prognostic implications. The aim of this study was to assess whether plasma B-type natriuretic peptide (BNP) can identify ischemic etiology in patients with stage 4-5 chronic kidney disease (CKD) presenting with AHF. We prospectively analyzed 61 patients. The diagnosis of ischemic AHF was confirmed by coronary angiography or stress myocardial perfusion imaging. Plasma levels of BNP were measured at admission (BNP1) and 48 h after admission (BNP2). The mean age of the study patients was 67 years. In these patients, 70.5% had diabetes and 47.5% had dialysis-dependent CKD; 28 of these patients (45.9%) had an ischemic etiology with significantly higher concentrations of BNP1 and BNP2 than did patients without ischemia. The area under the receiver operating characteristic curve was 0.755 (P=0.001) for BNP1 and 0.868 (P<0.001) for BNP2 to detect ischemic etiology of AHF. Plasma BNP1 >2907 ng/L (odds ratio [OR], 10.9; 95% confidence interval [CI] 2.5-48.4; P=0.002) and BNP2 >2322 ng/L (OR 93.1, 95% CI 7.0-1238.7; P=0.001) were independently associated with an ischemic etiology of AHF. Plasma BNP may represent a clinically useful non-invasive tool for identification of ischemic etiology of AHF in patients with stage 4-5 CKD. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  14. Impaired cardiac ischemic tolerance in spontaneously hypertensive rats is attenuated by adaptation to chronic and acute stress.

    PubMed

    Ravingerová, T; Bernátová, I; Matejíková, J; Ledvényiová, V; Nemčeková, M; Pecháňová, O; Tribulová, N; Slezák, J

    2011-01-01

    Chronic hypertension may have a negative impact on the myocardial response to ischemia. On the other hand, intrinsic ischemic tolerance may persist even in the pathologically altered hearts of hypertensive animals, and may be modified by short- or long-term adaptation to different stressful conditions. The effects of long-term limitation of living space (ie, crowding stress [CS]) and brief ischemia-induced stress on cardiac response to ischemia/reperfusion (I/R) injury are not yet fully characterized in hypertensive subjects. The present study was designed to test the influence of chronic and acute stress on the myocardial response to I/R in spontaneously hypertensive rats (SHR) compared with their effects in normotensive counterparts. In both groups, chronic, eight-week CS was induced by caging five rats per cage in cages designed for two rats (200 cm(2)/rat), while controls (C) were housed four to a cage in cages designed for six animals (480 cm(2)/rat). Acute stress was evoked by one cycle of I/R (5 min each, ischemic preconditioning) before sustained I/R in isolated Langendorff-perfused hearts of normotensive and SHR rats. At baseline conditions, the effects of CS were manifested only as a further increase in blood pressure in SHR, and by marked limitation of coronary perfusion in normotensive animals, while no changes in heart mechanical function were observed in any of the groups. Postischemic recovery of contractile function, severity of ventricular arrhythmias and lethal injury (infarction size) were worsened in the hypertrophied hearts of C-SHR compared with normotensive C. However, myo-cardial stunning and reperfusion-induced ventricular arrhythmias were attenuated by CS in SHR, which was different from deterioration of I/R injury in the hearts of normotensive animals. In contrast, ischemic preconditioning conferred an effective protection against I/R in both groups, although the extent of anti-infarct and anti-arrhythmic effects was lower in SHR. Both

  15. Intraarterial Thrombolysis with r-tPA for Treatment of Anterior Circulation Acute Ischemic Stroke

    PubMed Central

    Baltacioğlu, F.; Afşar, N.; Ekinci, G.; Tuncer-Elmaci, N.; Çagatay Çimşit, N; Aktan, S.; Erzen, C.

    2003-01-01

    Summary To investigate factors effecting the safety and recanalization efficacy of local intraarterial (IA) recombinant tissue plasminogen activator (r-tPA) delivery in patients with acute ischemic stroke. Eleven patients with anterior circulation acute ischemic stroke were treated. The neurological status of the patients were graded with the Glasgow Coma Scale (GCS) and National Institute of Health Stroke Scale (NIHSS). All patients underwent a computed tomography (CT) examination at admission. In addition four patients had diffusion-weighted and one patient had a perfusion magnetic resonance (MR) examinations. Patients were treated within six hours from stroke onset. Immediate, six hours, and 24 hours follow-up CT examinations were performed in order to evaluate the haemorrhagic complications and the extent of the ischemic area. The Rankin Scale (RS) was used as an outcome measure. Two of the 11 patients had carotid “T” occlusion (CTO), nine had middle cerebral artery (MCA) main trunk occlusion. Four patients had symptomatic haemorrhage with a large haematoma rupturing into the ventricles and subarachnoid space. Of these, three patients died within 24 hours. The remaining seven patients had asymptomatic haematomas that were smaller compared to symptomatic ones, and showed regression in size and density on follow-up CTs. At third month five patients had a good outcome and three patients had a poor outcome. In acute ischemic stroke, local IA thrombolysis is a feasible treatment when you select the right patient. Haemorrhage rate does not seem to exceed that occuring in the natural history of the disease and in other treatment modalities. PMID:20591253

  16. Distributed Perfusion Educational Model: A Shift in Perfusion Economic Realities

    PubMed Central

    Austin, Jon W.; Evans, Edward L.; Hoerr, Harry R.

    2005-01-01

    Abstract: In recent years, a steady decline in the number of perfusion education programs in the United States has been noted. At the same time, there has been a parallel decline in the number of students graduated from perfusion educational programs in the United States. Also, as noted by several authors, there has been an increase in demand for perfusion graduates. The decline in programs and graduates has also been noted in anesthesia and surgical residency programs. The shift is caused by a combination of economic and clinical factors. First, decreased reimbursement has led to reallocation of hospital resources. Second, the original enthusiasm for beating heart coronary artery bypass surgery was grossly overestimated and has led to further reallocation of hospital resources and denigration of cardiopulmonary bypass. This paper describes two models of perfusion education programs: serial perfusion education model (SPEM) and the distributed perfusion education model (DPEM). Arguments are presented that the SPEM has some serious limitations and challenges for long-term economic survival. The authors feel the DPEM along with dependence on tuition funding can survive the current clinical and economic conditions and allow the profession to adapt to changes in scope of practice. PMID:16524152

  17. Routine Clinical Quantitative Rest Stress Myocardial Perfusion for Managing Coronary Artery Disease: Clinical Relevance of Test-Retest Variability.

    PubMed

    Kitkungvan, Danai; Johnson, Nils P; Roby, Amanda E; Patel, Monika B; Kirkeeide, Richard; Gould, K Lance

    2017-05-01

    Positron emission tomography (PET) quantifies stress myocardial perfusion (in cc/min/g) and coronary flow reserve to guide noninvasively the management of coronary artery disease. This study determined their test-retest precision within minutes and daily biological variability essential for bounding clinical decision-making or risk stratification based on low flow ischemic thresholds or follow-up changes. Randomized trials of fractional flow reserve-guided percutaneous coronary interventions established an objective, quantitative, outcomes-driven standard of physiological stenosis severity. However, pressure-derived fractional flow reserve requires invasive coronary angiogram and was originally validated by comparison to noninvasive PET. The time course and test-retest precision of serial quantitative rest-rest and stress-stress global myocardial perfusion by PET within minutes and days apart in the same patient were compared in 120 volunteers undergoing serial 708 quantitative PET perfusion scans using rubidium 82 (Rb-82) and dipyridamole stress with a 2-dimensional PET-computed tomography scanner (GE DST 16) and University of Texas HeartSee software with our validated perfusion model. Test-retest methodological precision (coefficient of variance) for serial quantitative global myocardial perfusion minutes apart is ±10% (mean ΔSD at rest ±0.09, at stress ±0.23 cc/min/g) and for days apart is ±21% (mean ΔSD at rest ±0.2, at stress ±0.46 cc/min/g) reflecting added biological variability. Global myocardial perfusion at 8 min after 4-min dipyridamole infusion is 10% higher than at standard 4 min after dipyridamole. Test-retest methodological precision of global PET myocardial perfusion by serial rest or stress PET minutes apart is ±10%. Day-to-different-day biological plus methodological variability is ±21%, thereby establishing boundaries of variability on physiological severity to guide or follow coronary artery disease management. Maximum stress

  18. [Results of thrombolyses procedures in acute ischemic cerebral stroke realized in Kraków 2004-2007--Grant Ministry of Science and Information].

    PubMed

    Popiela, Tadeusz J; Urbanik, Andrzej; Słowik, Agnieszka

    2010-01-01

    To lower the number of complications of acute cerebral ischemic stroke and to reduce the time of rehabilitation in these patients it is necessary to induce treatment within the first 3 hours of the onset of the stroke. Early intervention however, is possible only in cases with the confirm localized ischemic focus visualized in one of the diagnostic imaging methods. The most widespread is CT, hovewer the first symptoms of ischemic stroke can be seen not beforel2 hours of the onset. The study evaluated the effectiveness of early diagnostics of ischemic stroke using perfusion CT (pCT) with subsequent intravenous or intra-arterial thrombolysis. The patients with ischemic stroke confirmed by pCT and qualified to thrombolysis in the first 3 hours of the onset of the stroke were randomly selected to intravenous or intra-arterial thrmobolysis. Those, who were 3 to 6 hours of the onset of the stroke were qualified to intra-arterial thrombolysis. A study group consisted of 377 patients hospitalized due to ischemic stroke. Of these pCT was performed in 76 cases, intravenous thrombolysis in 4 and intra-arterial thrombolysis in 2. Clinical condition substantially improved in 3 patients. Obtained results indicate the necessity to introduce pCT to the routine diagnostics of the acute ischemic stroke. A small number of patients eligible for thrombolysis does not allow to compare the effectiveness of intra-arterial and intravenous thrombolysis, however the project allowed to work out the efficient system of diagnostics and treatment of the acute ischemic stroke in the area of Krakow based on the standards used in the European countries.

  19. Added prognostic value of ischaemic threshold in radionuclide myocardial perfusion imaging: a common-sense integration of exercise tolerance and ischaemia severity.

    PubMed

    Marini, Cecilia; Acampa, Wanda; Bauckneht, Matteo; Daniele, Stefania; Capitanio, Selene; Cantoni, Valeria; Fiz, Francesco; Zampella, Emilia; Dib, Bassam; Assante, Roberta; Bruzzi, Paolo; Sambuceti, Gianmario; Cuocolo, Alberto

    2015-04-01

    Reversible ischaemia at radionuclide myocardial perfusion imaging (MPI) accurately predicts risk of cardiac death and nonfatal myocardial infarction (major adverse cardiac events, MACE). This prognostic penetrance might be empowered by accounting for exercise tolerance as an indirect index of ischaemia severity. The present study aimed to verify this hypothesis integrating imaging assessment of ischaemia severity with exercise maximal rate pressure product (RPP) in a large cohort of patients with suspected or known coronary artery disease (CAD). We analysed 1,502 consecutive patients (1,014 men aged 59 ± 10 years) submitted to exercise stress/rest MPI. To account for exercise tolerance, the summed difference score (SDS) was divided by RPP at tracer injection providing a clinical prognostic index (CPI). Reversible ischaemia was documented in 357 patients (24 %) and was classified by SDS as mild (SDS 2-4) in 180, moderate (SDS 5-7) in 118 and severe (SDS >7) in 59. CPI values of ischaemic patients were clustered into tertiles with lowest and highest values indicating low and high risk, respectively. CPI modified SDS risk prediction in 119/357 (33 %) patients. During a 60-month follow-up, MACE occurred in 68 patients. Kaplan-Meier analysis revealed that CPI significantly improved predictive power for MACE incidence with respect to SDS alone. Multivariate Cox analysis confirmed the additive independent value of CPI-derived information. Integration of ischaemic threshold and ischaemia extension and severity can improve accuracy of exercise MPI in predicting long-term outcome in a large cohort of patients with suspected or known CAD.

  20. Inhibition of CD147 (Cluster of Differentiation 147) Ameliorates Acute Ischemic Stroke in Mice by Reducing Thromboinflammation.

    PubMed

    Jin, Rong; Xiao, Adam Y; Chen, Rui; Granger, D Neil; Li, Guohong

    2017-12-01

    Inflammation and thrombosis currently are recognized as critical contributors to the pathogenesis of ischemic stroke. CD147 (cluster of differentiation 147), also known as extracellular matrix metalloproteinase inducer, can function as a key mediator of inflammatory and immune responses. CD147 expression is increased in the brain after cerebral ischemia, but its role in the pathogenesis of ischemic stroke remains unknown. In this study, we show that CD147 acts as a key player in ischemic stroke by driving thrombotic and inflammatory responses. Focal cerebral ischemia was induced in C57BL/6 mice by a 60-minute transient middle cerebral artery occlusion. Animals were treated with anti-CD147 function-blocking antibody (αCD147) or isotype control antibody. Blood-brain barrier permeability, thrombus formation, and microvascular patency were assessed 24 hours after ischemia. Infarct size, neurological deficits, and inflammatory cells invaded in the brain were assessed 72 hours after ischemia. CD147 expression was rapidly increased in ischemic brain endothelium after transient middle cerebral artery occlusion. Inhibition of CD147 reduced infarct size and improved functional outcome on day 3 after transient middle cerebral artery occlusion. The neuroprotective effects were associated with (1) prevented blood-brain barrier damage, (2) decreased intravascular fibrin and platelet deposition, which in turn reduced thrombosis and increased cerebral perfusion, and (3) reduced brain inflammatory cell infiltration. The underlying mechanism may include reduced NF-κB (nuclear factor κB) activation, MMP-9 (matrix metalloproteinase-9) activity, and PAI-1 (plasminogen activator inhibitor-1) expression in brain microvascular endothelial cells. Inhibition of CD147 ameliorates acute ischemic stroke by reducing thromboinflammation. CD147 might represent a novel and promising therapeutic target for ischemic stroke and possibly other thromboinflammatory disorders. © 2017 American Heart

  1. Cerebral flow velocities during daily activities depend on blood pressure in patients with chronic ischemic infarctions

    PubMed Central

    Novak, Vera; Hu, Kun; Desrochers, Laura; Novak, Peter; Caplan, Louis; Lipsitz, Lewis; Selim, Magdy

    2010-01-01

    Background Target blood pressure (BP) values for optimal cerebral perfusion after an ischemic stroke are still debated. We sought to examine the relationship between BP and cerebral blood flow velocities (BFV) during daily activities. Methods We studied 43 patients with chronic large vessel ischemic infarctions in middle cerebral artery (MCA) territory (aged 64.2±8.94 years; at 6.1±4.9 years after stroke), and 67 age-matched controls. BFV in MCAs were measured during supine baseline, sitting, standing and tilt. A regression analysis and a dynamic phase analysis were used to quantify BP-BFV relationship. Results The mean arterial pressure was similar between the groups (89±15 mmHg). Baseline BFV were lower by ~ 30% in the stroke patients compared to the controls (p=0.0001). BFV declined further with postural changes, and remained lower in the stroke group during sitting (p=0.003), standing (p=0.003) and tilt (p=0.002) as compared to the control group. Average BFV on the stroke side were positively correlated with BP during baseline (R=0.54, p=0.0022, the slope 0.46 cm/s/mm Hg) and tilt (R=0.52, p=0.0028, the slope 0.40 cm/s/mm Hg). Regression analysis suggested that BFV may increase ~ 30-50% at mean BP > 100 mmHg. Orthostatic hypotension during the first minute of tilt or standing was independently associated with lower BFV on the stroke side (p=0.0008). Baseline BP-BFV phase shift derived from the phase analysis was smaller on the stroke-side (p=0.0006). Conclusion We found that BFV are lower in stroke patients and daily activities such as standing could induce hypoperfusion. BFV increase with mean arterial pressure > 100 mmHg. Dependency of BFV on arterial pressure may have implications for BP management after stroke. Further prospective investigations are needed to determine the impact of these findings on functional recovery and strategies to improve perfusion pressure during daily activities after ischemic stroke. PMID:19959536

  2. Cerebral flow velocities during daily activities depend on blood pressure in patients with chronic ischemic infarctions.

    PubMed

    Novak, Vera; Hu, Kun; Desrochers, Laura; Novak, Peter; Caplan, Louis; Lipsitz, Lewis; Selim, Magdy

    2010-01-01

    Target blood pressure (BP) values for optimal cerebral perfusion after an ischemic stroke are still debated. We sought to examine the relationship between BP and cerebral blood flow velocities (BFVs) during daily activities. We studied 43 patients with chronic large vessel ischemic infarctions in the middle cerebral artery territory (aged 64.2+/-8.94 years; at 6.1+/-4.9 years after stroke) and 67 age-matched control subjects. BFVs in middle cerebral arteries were measured during supine baseline, sitting, standing, and tilt. A regression analysis and a dynamic phase analysis were used to quantify the BP-BFV relationship. The mean arterial pressure was similar between the groups (89+/-15 mm Hg). Baseline BFVs were lower by approximately 30% in the patients with stroke compared with the control subjects (P=0.0001). BFV declined further with postural changes and remained lower in the stroke group during sitting (P=0.003), standing (P=0.003), and tilt (P=0.002) as compared with the control group. Average BFVs on the stroke side were positively correlated with BP during baseline (R=0.54, P=0.0022, the slope 0.46 cm/s/mm Hg) and tilt (R=0.52, P=0.0028, the slope 0.40 cm/s/mm Hg). Regression analysis suggested that BFV may increase approximately 30% to 50% at mean BP >100 mm Hg. Orthostatic hypotension during the first minute of tilt or standing was independently associated with lower BFV on the stroke side (P=0.0008). Baseline BP-BFV phase shift derived from the phase analysis was smaller on the stroke side (P=0.0006). We found that BFVs are lower in patients with stroke and daily activities such as standing could induce hypoperfusion. BFVs increase with mean arterial pressure >100 mm Hg. Dependency of BFV on arterial pressure may have implications for BP management after stroke. Further prospective investigations are needed to determine the impact of these findings on functional recovery and strategies to improve perfusion pressure during daily activities after ischemic

  3. Postural effects on intraocular pressure and ocular perfusion pressure in patients with non-arteritic anterior ischemic optic neuropathy.

    PubMed

    Yang, Jee Myung; Park, Sang Woo; Ji, Yong Sok; Kim, Jaeryung; Yoo, Chungkwon; Heo, Hwan

    2017-04-20

    To investigate postural effects on intraocular pressure (IOP) and ocular perfusion pressure (OPP) in patients with non-arteritic ischemic optic neuropathy (NAION). IOP and blood pressure (BP) were measured in 20 patients with unilateral NAION 10 min after changing to each of the following positions sequentially: sitting, supine, right lateral decubitus position (LDP), supine, left LDP, and supine. IOP was measured using a rebound tonometer and OPP was calculated using formulas based on mean BP. The dependent LDP (DLDP) was defined as the position when the eye of interest (affected or unaffected eye) was placed on the dependent side in the LDP. IOPs were significantly higher (P = 0.020) and OPPs were significantly lower (P = 0.041) in the affected eye compare with the unaffected eye, with the affected eye in DLDP. Compared with the mean IOP of the unaffected eyes, the mean IOP of the affected eyes increased significantly (+2.9 ± 4.4 versus +0.7 ± 3.1 mmHg, respectively; P = 0.003) and the mean OPP decreased significantly (-6.7 ± 9.4 versus -4.9 ± 8.0 mmHg, respectively; P = 0.022) after changing positions from supine to DLDP. In addition, changing position from supine to DLDP showed significantly larger absolute changes in IOP (4.13 ± 3.19 mmHg versus 2.51 ± 1.92 mmHg, respectively; P = 0.004) and OPP (9.86 ± 5.69 mmHg versus 7.50 ± 5.49 mmHg, respectively; P = 0.009) in the affected eye compared with the unaffected eye. In the affected eye, there was a significant positive correlation between absolute change in IOP and OPP when changing position from supine to DLDP (Rho = 0.512, P = 0.021). A postural change from supine to DLDP caused significant fluctuations in IOP and OPP of the affected eye, and may significantly increase IOP and decrease OPP. Posture-induced IOP changes may be a predisposing factor for NAION development.

  4. Prediction of early neurological deterioration using diffusion- and perfusion-weighted imaging in hyperacute middle cerebral artery ischemic stroke.

    PubMed

    Arenillas, Juan F; Rovira, Alex; Molina, Carlos A; Grivé, Elisenda; Montaner, Joan; Alvarez-Sabín, José

    2002-09-01

    Early neurological deterioration (END) occurs in approximately one third of all ischemic stroke patients and is associated with a poor outcome. Our study sought to assess the value of ultra-early MRI in the prediction of END in stroke patients. Between August 1999 and November 2001, 38 stroke patients with a proven middle cerebral artery (MCA) or intracranial internal carotid artery (ICA) occlusion on MR angiography underwent perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) within 6 hours after onset, and 30 fulfilled all inclusion criteria. Control DWI and MR angiography were performed between days 3 and 5. Cranial CT was performed to rule out hemorrhagic transformation. Vascular risk factors, temperature, blood pressure, glycemia, and blood count were assessed on admission. National Institutes of Health Stroke Scale (NIHSS) scores were obtained at baseline and at 6, 12, 24, and 48 hours. At the same time points, transcranial Doppler (TCD) examinations were conducted to assess arterial recanalization. END was defined as an increase in the NIHSS score >4. A logistic regression model was applied to detect independent predictors of END. The Kruskal-Wallis test was used to evaluate the relationship between infarct growth and duration of vessel occlusion. Initial MR angiography showed an occlusion of intracranial ICA in 7 patients (23.3%), of proximal MCA in 14 (46.6%), and of distal MCA in the remaining 9 (30%). A PWI-DWI mismatch >20% was observed in 28 patients (93.3%). END occurred in 7 patients (23.3%). Baseline NIHSS score (P=0.05), proximal site of occlusion (P=0.002), initial DWI (P=0.002) and PWI (P=0.003) volumes, and reduced PWI-DWI mismatch (P=0.038) were associated with END in the univariate analysis. Only hyperacute DWI volume remained as a predictor of END when a logistic regression model was applied (odds ratio, 11.5; 95% CI, 2.31 to 57.10; P=0.0028). A receiver operator characteristic curve identified a cutoff point of DWI >89 cm(3

  5. Cardioprotective effects of grape seed proanthocyanidin against ischemic reperfusion injury.

    PubMed

    Sato, M; Maulik, G; Ray, P S; Bagchi, D; Das, D K

    1999-06-01

    There is increasing evidence to indicate cardioprotective effects of red wine consumption. Such cardioprotective properties of wine have been attributed to certain polyphenolic constituents of grapes. The purpose of this investigation was to examine whether proanthocyanidins derived from grape seeds possess cardioprotective properties. Rats were randomly divided into two groups: grape-seed proanthocyanidin was administered orally to one group of rats (100 mg/kg/day) for 3 weeks while the other group served as control. After 3 weeks, rats were killed, hearts excised, mounted on the perfusion apparatus and perfused with Krebs-Henseleit bicarbonate (KHB) buffer. After stabilization hearts were perfused in the working mode for baseline measurements of contractile functions. Hearts were then subjected to 30 min of global ischemia followed by 2 h of reperfusion. Coronary perfusates were collected to monitor malonaldehyde formation, a presumptive marker for oxidative stress development. At the end of each experiment, the heart was processed for infarct size determination. Peroxyl radical scavenging activity of proanthocyanidin was determined by examining its ability to remove peroxyl radical generated by 2,2'-azobis (2-amidinopropane) dihydrochloride while hydroxyl radical scavenging activity was tested with its ability to reduce 7-OH.-coumarin-3-carboxylic acid. The results of our study demonstrated that proanthocyanidin-fed animals were resistant to myocardial ischemia reperfusion injury as evidenced by improved recovery of post-ischemic contractile functions. The proanthocyanidin-fed group revealed reduced extent of myocardial infarction compared to the control group. Fluorimetric study demonstrated the antioxidant property of proanthocyanidin as judged by its ability to directly scavenge peroxyl radicals. Taken together, the results of this study showed that grape seed-proanthocyanidins possess a cardioprotective effect against ischemia reperfusion injury. Such

  6. Permeability Surface of Deep Middle Cerebral Artery Territory on Computed Tomographic Perfusion Predicts Hemorrhagic Transformation After Stroke.

    PubMed

    Li, Qiao; Gao, Xinyi; Yao, Zhenwei; Feng, Xiaoyuan; He, Huijin; Xue, Jing; Gao, Peiyi; Yang, Lumeng; Cheng, Xin; Chen, Weijian; Yang, Yunjun

    2017-09-01

    Permeability surface (PS) on computed tomographic perfusion reflects blood-brain barrier permeability and is related to hemorrhagic transformation (HT). HT of deep middle cerebral artery (MCA) territory can occur after recanalization of proximal large-vessel occlusion. We aimed to determine the relationship between HT and PS of deep MCA territory. We retrospectively reviewed 70 consecutive acute ischemic stroke patients presenting with occlusion of the distal internal carotid artery or M1 segment of the MCA. All patients underwent computed tomographic perfusion within 6 hours after symptom onset. Computed tomographic perfusion data were postprocessed to generate maps of different perfusion parameters. Risk factors were identified for increased deep MCA territory PS. Receiver operating characteristic curve analysis was performed to calculate the optimal PS threshold to predict HT of deep MCA territory. Increased PS was associated with HT of deep MCA territory. After adjustments for age, sex, onset time to computed tomographic perfusion, and baseline National Institutes of Health Stroke Scale, poor collateral status (odds ratio, 7.8; 95% confidence interval, 1.67-37.14; P =0.009) and proximal MCA-M1 occlusion (odds ratio, 4.12; 95% confidence interval, 1.03-16.52; P =0.045) were independently associated with increased deep MCA territory PS. Relative PS most accurately predicted HT of deep MCA territory (area under curve, 0.94; optimal threshold, 2.89). Increased PS can predict HT of deep MCA territory after recanalization therapy for cerebral proximal large-vessel occlusion. Proximal MCA-M1 complete occlusion and distal internal carotid artery occlusion in conjunction with poor collaterals elevate deep MCA territory PS. © 2017 American Heart Association, Inc.

  7. Early whole-brain CT perfusion for detection of patients at risk for delayed cerebral ischemia after subarachnoid hemorrhage.

    PubMed

    Malinova, Vesna; Dolatowski, Karoline; Schramm, Peter; Moerer, Onnen; Rohde, Veit; Mielke, Dorothee

    2016-07-01

    OBJECT This prospective study investigated the role of whole-brain CT perfusion (CTP) studies in the identification of patients at risk for delayed ischemic neurological deficits (DIND) and of tissue at risk for delayed cerebral infarction (DCI). METHODS Forty-three patients with aneurysmal subarachnoid hemorrhage (aSAH) were included in this study. A CTP study was routinely performed in the early phase (Day 3). The CTP study was repeated in cases of transcranial Doppler sonography (TCD)-measured blood flow velocity (BFV) increase of > 50 cm/sec within 24 hours and/or on Day 7 in patients who were intubated/sedated. RESULTS Early CTP studies revealed perfusion deficits in 14 patients, of whom 10 patients (72%) developed DIND, and 6 of these 10 patients (60%) had DCI. Three of the 14 patients (21%) with early perfusion deficits developed DCI without having had DIND, and the remaining patient (7%) had neither DIND nor DCI. There was a statistically significant correlation between early perfusion deficits and occurrence of DIND and DCI (p < 0.0001). A repeated CTP was performed in 8 patients with a TCD-measured BFV increase > 50 cm/sec within 24 hours, revealing a perfusion deficit in 3 of them (38%). Two of the 3 patients (67%) developed DCI without preceding DIND and 1 patient (33%) had DIND without DCI. In 4 of the 7 patients (57%) who were sedated and/or comatose, additional CTP studies on Day 7 showed perfusion deficits. All 4 patients developed DCI. CONCLUSIONS Whole-brain CTP on Day 3 after aSAH allows early and reliable identification of patients at risk for DIND and tissue at risk for DCI. Additional CTP investigations, guided by TCD-measured BFV increase or persisting coma, do not contribute to information gain.

  8. Effects of xenon and hypothermia on cerebrovascular pressure reactivity in newborn global hypoxic–ischemic pig model

    PubMed Central

    Chakkarapani, Elavazhagan; Dingley, John; Aquilina, Kristian; Osredkar, Damjan; Liu, Xun; Thoresen, Marianne

    2013-01-01

    Autoregulation of cerebral perfusion is impaired in hypoxic–ischemic encephalopathy. We investigated whether cerebrovascular pressure reactivity (PRx), an element of cerebral autoregulation that is calculated as a moving correlation coefficient between averages of intracranial and mean arterial blood pressure (MABP) with values between −1 and +1, is impaired during and after a hypoxic–ischemic insult (HI) in newborn pigs. Associations between end-tidal CO2, seizures, neuropathology, and PRx were investigated. The effect of hypothermia (HT) and Xenon (Xe) on PRx was studied. Pigs were randomized to Sham, and after HI to normothermia (NT), HT, Xe or xenon hypothermia (XeHT). We defined PRx >0.2 as peak and negative PRx as preserved. Neuropathology scores after 72 hours of survival was grouped as ‘severe' or ‘mild.' Secondary PRx peak during recovery, predictive of severe neuropathology and associated with insult severity (P=0.05), was delayed in HT (11.5 hours) than in NT (6.5 hours) groups. Seizures were associated with impaired PRx in NT pigs (P=0.0002), but not in the HT/XeHT pigs. PRx was preserved during normocapnia and impaired during hypocapnia. Xenon abolished the secondary PRx peak, increased (mean (95% confidence interval (CI)) MABP (6.5 (3.8, 9.4) mm Hg) and cerebral perfusion pressure (5.9 (2.9, 8.9) mm Hg) and preserved the PRx (regression coefficient, −0.098 (95% CI (−0.18, −0.01)), independent of the insult severity. PMID:23899927

  9. Radionuclide Therapy

    NASA Astrophysics Data System (ADS)

    Zalutsky, M. R.

    Radionuclide therapy utilizes unsealed sources of radionuclides as a treatment for cancer or other pathological conditions such as rheumatoid arthritis. Radionuclides that decay by the emission of β and α particles, as well as those that emit Auger electrons, have been used for this purpose. In this chapter, radiochemical aspects of radionuclide therapy, including criteria for radionuclide selection, radionuclide production, radiolabeling chemistry, and radiation dosimetry are discussed.

  10. Reduced Cerebrovascular Reactivity and Increased Resting Cerebral Perfusion in Rats Exposed to a Cafeteria Diet.

    PubMed

    Gomez-Smith, Mariana; Janik, Rafal; Adams, Conner; Lake, Evelyn M; Thomason, Lynsie A M; Jeffers, Matthew S; Stefanovic, Bojana; Corbett, Dale

    2018-02-10

    To better understand the effects of a diet high in fat, sugar, and sodium on cerebrovascular function, Sprague Dawley rats were chronically exposed to a Cafeteria diet. Resting cerebral perfusion and cerebrovascular reactivity was quantified using continuous arterial spin labeling (CASL) magnetic resonance imaging (MRI). In addition, structural changes to the cerebrovasculature and susceptibility to ischemic lesion were examined. Compared to control animals fed standard chow (SD), Cafeteria diet (CAF) rats exhibited increased resting brain perfusion in the hippocampus and reduced cerebrovascular reactivity in response to 10% inspired CO 2 challenges in both the hippocampus and the neocortex. CAF rats switched to chow for one month (SWT) exhibited improved resting perfusion in the hippocampus as well as improved cerebrovascular reactivity in the neocortex. However, the diet switch did not correct cerebrovascular reactivity in the hippocampus. These changes were not accompanied by alterations in the structural integrity of the cerebral microvasculature, examined using rat endothelial cell antigen-1 (RECA-1) and immunoglobulin G (IgG) immunostaining. Also, the extent of tissue damage induced by endothelin-1 injection into sensorimotor cortex was not affected by the Cafeteria diet. These results demonstrate that short-term consumption of an ultra-processed diet reduces cerebrovascular reactivity. This effect persists after dietary normalization despite recovery of peripheral symptomatology. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Ischemic Stroke

    MedlinePlus

    A stroke is a medical emergency. There are two types - ischemic and hemorrhagic. Ischemic stroke is the most common type. It is usually ... are at risk for having a more serious stroke. Symptoms of stroke are Sudden numbness or weakness ...

  12. An Oxygenated and Transportable Machine Perfusion System Fully Rescues Liver Grafts Exposed to Lethal Ischemic Damage in a Pig Model of DCD Liver Transplantation.

    PubMed

    Compagnon, Philippe; Levesque, Eric; Hentati, Hassen; Disabato, Mara; Calderaro, Julien; Feray, Cyrille; Corlu, Anne; Cohen, José Laurent; Ben Mosbah, Ismail; Azoulay, Daniel

    2017-07-01

    Control of warm ischemia (WI) lesions that occur with donation after circulatory death (DCD) would significantly increase the donor pool for liver transplantation. We aimed to determine whether a novel, oxygenated and hypothermic machine perfusion device (HMP Airdrive system) improves the quality of livers derived from DCDs using a large animal model. Cardiac arrest was induced in female large white pigs by intravenous injection of potassium chloride. After 60 minutes of WI, livers were flushed in situ with histidine-tryptophan-ketoglutarate and subsequently preserved either by simple cold storage (WI-SCS group) or HMP (WI-HMP group) using Belzer-MPS solution. Liver grafts procured from heart-beating donors and preserved by SCS served as controls. After 4 hours of preservation, all livers were transplanted. All recipients in WI-SCS group died within 6 hours after transplantation. In contrast, the HMP device fully protected the liver against lethal ischemia/reperfusion injury, allowing 100% survival rate. A postreperfusion syndrome was observed in all animals of the WI-SCS group but none of the control or WI-HMP groups. After reperfusion, HMP-preserved livers functioned better and showed less hepatocellular and endothelial cell injury, in agreement with better-preserved liver histology relative to WI-SCS group. In addition to improved energy metabolism, this protective effect was associated with an attenuation of inflammatory response, oxidative load, endoplasmic reticulum stress, mitochondrial damage, and apoptosis. This study demonstrates for the first time the efficacy of the HMP Airdrive system to protect liver grafts from lethal ischemic damage before transplantation in a clinically relevant DCD model.

  13. Perfusion defects in pulmonary perfusion iodine maps: causes and semiology.

    PubMed

    Bustos Fiore, A; González Vázquez, M; Trinidad López, C; Mera Fernández, D; Costas Álvarez, M

    2017-12-14

    to describe the usefulness of dual-energy CT for obtaining pulmonary perfusion maps to provide morphological and functional information in patients with pulmonary embolisms. To review the semiology of perfusion defects due to pulmonary embolism so they can be differentiated from perfusion defects due to other causes: alterations outside the range used in the iodine map caused by other diseases of the lung parenchyma or artifacts. CT angiography of the pulmonary arteries is the technique of choice for the diagnosis of pulmonary embolisms. New dual-energy CT scanners are useful for detecting perfusion defects secondary to complete or partial obstruction of pulmonary arteries and is most useful for detecting pulmonary embolisms in subsegmental branches. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Robust Low-dose CT Perfusion Deconvolution via Tensor Total-Variation Regularization

    PubMed Central

    Zhang, Shaoting; Chen, Tsuhan; Sanelli, Pina C.

    2016-01-01

    Acute brain diseases such as acute strokes and transit ischemic attacks are the leading causes of mortality and morbidity worldwide, responsible for 9% of total death every year. ‘Time is brain’ is a widely accepted concept in acute cerebrovascular disease treatment. Efficient and accurate computational framework for hemodynamic parameters estimation can save critical time for thrombolytic therapy. Meanwhile the high level of accumulated radiation dosage due to continuous image acquisition in CT perfusion (CTP) raised concerns on patient safety and public health. However, low-radiation leads to increased noise and artifacts which require more sophisticated and time-consuming algorithms for robust estimation. In this paper, we focus on developing a robust and efficient framework to accurately estimate the perfusion parameters at low radiation dosage. Specifically, we present a tensor total-variation (TTV) technique which fuses the spatial correlation of the vascular structure and the temporal continuation of the blood signal flow. An efficient algorithm is proposed to find the solution with fast convergence and reduced computational complexity. Extensive evaluations are carried out in terms of sensitivity to noise levels, estimation accuracy, contrast preservation, and performed on digital perfusion phantom estimation, as well as in-vivo clinical subjects. Our framework reduces the necessary radiation dose to only 8% of the original level and outperforms the state-of-art algorithms with peak signal-to-noise ratio improved by 32%. It reduces the oscillation in the residue functions, corrects over-estimation of cerebral blood flow (CBF) and under-estimation of mean transit time (MTT), and maintains the distinction between the deficit and normal regions. PMID:25706579

  15. Migrainous aura as stroke-mimic: The role of perfusion-computed tomography.

    PubMed

    Ridolfi, Mariana; Granato, Antonio; Polverino, Paola; Furlanis, Giovanni; Ukmar, Maja; Zorzenon, Irene; Manganotti, Paolo

    2018-03-01

    The acute-onset of migrainuos aura (MA) can be erroneously diagnosed in Emergency Department (ED) as acute stroke (AS) and it can be classified as "stroke mimic" (SM). Perfusion computer tomography (PCT) may be useful to improve detection of infarcts. The aim of the study was to investigate the role in ED of PCT in improving diagnosis of migrainous aura. Data were compared with the well-defined perfusion patterns in patients with acute ischemic stroke. A standardized Stroke Protocol was planned. The protocol consisted in centralizing in ED all the patients with acute-onset of neurological symptoms compatible with cerebrovascular disease and in performing a general and neurological examination, hematological tests, brain non-contrast computed tomography (NCCT), CT angiography (CTA) of the supra-aortic and intracranial arteries and cerebral PCT. Patients with diagnosis of definite or probable acute stroke were hospitalized in Stroke Unit (SU). A six-months retrospective analysis of all the patients included in the Stroke Protocol and discharged from ED or from SU with a diagnosis of migraine with aura was performed. 172 patients were included in the Stroke Protocol and 6 patients were enrolled. NCCT, CTA and PCT were performed after 60-90 min from symptoms onset and revealed normal perfusion. Intravenous thrombolysis was performed only in one patient. Patients with acute-onset of neurological symptoms, who have rapid progressive improvement of symptoms, normal neuroimaging, in particular PCT, and preceding episodes of migraine with aura, may be considered as suffering from MA. In these cases, even if thrombolysis is safe, clinicians may defer a prompt aggressive treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Optical Coherence Tomography Angiography of the Peripapillary Retina in Normal-Tension Glaucoma and Chronic Nonarteritic Anterior Ischemic Optic Neuropathy.

    PubMed

    Mastropasqua, Rodolfo; Agnifili, Luca; Borrelli, Enrico; Fasanella, Vincenzo; Brescia, Lorenza; Di Antonio, Luca; Mastropasqua, Leonardo

    2018-06-01

    To analyze the retinal radial peripapillary capillary (RPC) network in normal-tension glaucoma (NTG) and nonarteritic anterior ischemic optic neuropathy (NAION) eyes using optical coherence tomography angiography (OCTA). Twenty-two patients with NTG, 22 patients with unilateral chronic NAION, and 23 age-matched controls were enrolled. Patients underwent OCTA to obtain en face angiograms of the peripapillary region. The main outcome measures were as follows: (1) the whole en face image perfusion density (WPD) and (2) the circumpapillary perfusion density (CPD). Mean ± SD age was 66.3 ± 7.0 years in the NTG group, 68.1 ± 4.3 years in the NAION group, and 63.9 ± 7.0 years in the control group (p > 0.05 for all the comparisons). The visual field mean defect (MD) was worse in patients than in controls (p < 0.0001), but did not differ between NTG and NAION (-9.6 ± 2.6 dB and -8.2 ± 2.6 dB, respectively). The WPD was 0.41 ± 0.04 in the NTG group (p < 0.0001 in comparison with healthy subjects and NAION patients), 0.46 ± 0.04 in the NAION group (p < 0.0001 in comparison with the control group), and 0.56 ± 0.03 in the control group. The CPD was significantly reduced in both NTG (0.48 ± 0.04, p < 0.0001) and NAION eyes (0.52 ± 0.05, p < 0.0001), after comparison to control eyes (0.59 ± 0.03). Moreover, the CPD was significantly lower in NTG than in NAION eyes (p = 0.006). OCTA documented a reduction of the peripapillary perfusion in NTG and unilateral NAION. In presence of similar functional damage, the lower perfusion densities in NTG may indicate greater vascular alterations in chronic compared to acute ischemic optic neuropathies.

  17. Myocardial perfusion magnetic resonance imaging using sliding-window conjugate-gradient HYPR methods in canine with stenotic coronary arteries.

    PubMed

    Ge, Lan; Kino, Aya; Lee, Daniel; Dharmakumar, Rohan; Carr, James C; Li, Debiao

    2010-01-01

    First-pass perfusion magnetic resonance imaging (MRI) is a promising technique for detecting ischemic heart disease. However, the diagnostic value of the method is limited by the low spatial coverage, resolution, signal-to-noise ratio (SNR), and cardiac motion-related image artifacts. A combination of sliding window and conjugate-gradient HighlY constrained back-PRojection reconstruction (SW-CG-HYPR) method has been proposed in healthy volunteer studies to reduce the acquisition window for each slice while maintaining the temporal resolution of 1 frame per heartbeat in myocardial perfusion MRI. This method allows for improved spatial coverage, resolution, and SNR. In this study, we use a controlled animal model to test whether the myocardial territory supplied by a stenotic coronary artery can be detected accurately by SW-CG-HYPR perfusion method under pharmacological stress. Results from 6 mongrel dogs (15-25 kg) studies demonstrate the feasibility of SW-CG-HYPR to detect regional perfusion defects. Using this method, the acquisition time per cardiac cycle was reduced by a factor of 4, and the spatial coverage was increased from 2 to 3 slices to 6 slices as compared with the conventional techniques including both turbo-Fast Low Angle Short (FLASH) and echoplanar imaging (EPI). The SNR of the healthy myocardium at peak enhancement with SW-CG-HYPR (12.68 ± 2.46) is significantly higher (P < 0.01) than the turbo-FLASH (8.65 ± 1.93) and EPI (5.48 ± 1.24). The spatial resolution of SW-CG-HYPR images is 1.2 × 1.2 × 8.0 mm, which is better than the turbo-FLASH (1.8 × 1.8 × 8.0 mm) and EPI (2.0 × 1.8 × 8.0 mm). Sliding-window CG-HYPR is a promising technique for myocardial perfusion MRI. This technique provides higher image quality with respect to significantly improved SNR and spatial resolution of the myocardial perfusion images, which might improve myocardial perfusion imaging in a clinical setting.

  18. Method and apparatus for separating radionuclides from non-radionuclides

    DOEpatents

    Harp, Richard J.

    1990-01-01

    In an apparatus for separating radionuclides from non-radionuclides in a mixture of nuclear waste, a vessel is provided wherein the mixture is heated to a temperature greater than the temperature of vaporization for the non-radionuclides but less than the temperature of vaporization for the radionuclides. Consequently the non-radionuclides are vaporized while the non-radionuclides remain the solid or liquid state. The non-radionuclide vapors are withdrawn from the vessel and condensed to produce a flow of condensate. When this flow decreases the heat is reduced to prevent temperature spikes which might otherwise vaporize the radionuclides. The vessel is removed and capped with the radioactive components of the apparatus and multiple batches of the radionuclide residue disposed therein. Thus the vessel ultimately provides a burial vehicle for all of the radioactive components of the process.

  19. Effect of increased pressure during pulsatile pump perfusion of deceased donor kidneys in transplantation.

    PubMed

    Patel, S K; Pankewycz, O G; Weber-Shrikant, E; Zachariah, M; Kohli, R; Nader, N D; Laftavi, M R

    2012-09-01

    Pulsatile pump perfusion of potential kidneys for transplantation is known to decrease the rate of delayed graft function (DGF) and improve their 1-year survival. Flow and resistance parameters are often used to determine the suitability of kidneys for transplantation. Kidneys with low flow rates are often subjected to higher pressures to improve flow. This study evaluated the effect of higher pump pressures on posttransplant renal function. We performed a retrospective analysis of 73 deceased donor kidneys preserved using pump perfusion (LifePort) at our center between May 2006 and September 2009. We calculated the mean pump pressure (MP) for the duration of perfusion of each kidney, using systolic pressure (SP) and diastolic pressure (DP) readings with the following formula: (MP = DP + 1/3 (SP - DP). The kidneys were divided into a low (LP; n = 49) and a high-pressure group (HP; n = 24) based on a MP cutoff value of 23 mm Hg. The two groups were then compared for differences in perfusion dynamics and primary endpoints including DGF and 1-year graft survival. Statistical analysis was performed using paired Student t test and chi-square analysis. The two groups were comparable for donor age, extended criteria, sensitization, and cold ischemic times. They differed significantly in higher initial (0.65 ± 0.4 versus 0.4 ± 0.2, P = .01), average (0.25 ± 0.08 versus 0.18 ± 0.06, P = .0006), and terminal resistance (0.21 ± 0.07 versus 0.17 ± 0.06, P = .008) of HP versus LP kidneys. Flow rates were comparable between the two groups. DGF was higher in HP kidneys (75% versus 40%, P = .006) with similar 1-year graft survival (87.5% versus 89%, P = .7). Perfusate flow through a kidney can be improved by increasing pressure settings to overcome elevated resistance. This maneuver was not associated with a lower rate of DGF after transplantation. One-year graft survival remained unaffected. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Ischemic Colitis

    PubMed Central

    Montessori, Gino; Liepa, Egils V.

    1970-01-01

    Twenty cases of ischemic colitis are reviewed; 19 were obtained from autopsy files and the diagnosis in one was made from a surgical specimen. The majority of the patients were elderly with generalized arteriosclerosis. In approximately two-thirds of the patients the ischemic colitis was precipitated by preceding trauma, operation or congestive heart failure. Clinically, ischemic colitis is characterized by abdominal pain, distension and bleeding per rectum. Perforation of large bowel may occur. The lesions tend to be localized around the splenic flexure and junction of the descending and sigmoid colon, and in cases following aortic graft surgery the rectum is involved. Microscopically, there is necrosis, hemorrhage and ulceration. In less severe cases the mucosa only is affected. Cases with perforation show necrosis of all layers. It is considered that ischemic colitis is comparatively frequent and should be distinguished from other inflammatory conditions of the colon. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5FIG. 6FIG. 7FIG. 8FIG. 9 PMID:5308923

  1. Therapeutic angiogenesis in ischemic muscles after local injection of fragmented fibers with loaded traditional Chinese medicine

    NASA Astrophysics Data System (ADS)

    Li, Huiyan; Wan, Huiying; Xia, Tian; Chen, Maohua; Zhang, Yun; Luo, Xiaoming; Li, Xiaohong

    2015-07-01

    Therapeutic angiogenesis remains the most effective method to re-establish a proper blood flow in ischemic tissues. There is a great clinical need to identify an injectable format to achieve a well accumulation following local administration and a sustained delivery of biological factors at the ischemic sites. In the current study, fragmented nanofibers with loaded traditional Chinese medicines, astragaloside IV (AT), the main active ingredient of astragalus, and ferulic acid (FA), the main ingredient of angelica, were proposed to promote the microvessel formation after intramuscular injection into ischemic hindlimbs. Fragmented fibers with average lengths of 5 (FF-5), 20 (FF-20) and 80 μm (FF-80) were constructed by the cryocutting of aligned electrospun fibers. Their dispersion in sodium alginate solution (0.2%) indicated good injectability. After injection into the quadriceps muscles of the hindlimbs, FF-20 and FF-80 fiber fragments showed higher tissue retentions than FF-5, and around 90% of the injected doses were determined after 7 days. On a hindlimb ischemia model established by ligating the femoral arteries, intramuscular injection of the mixtures of FA-loaded and AT-loaded FF-20 fiber fragments substantially reduced the muscle degeneration with minimal fibrosis formation, significantly enhanced the neovessel formation and hindlimb perfusion in the ischemic tissues, and efficiently promoted the limb salvage with few limb losses. Along with the easy manipulation and lower invasiveness for in vivo administration, fragmented fibers should become potential drug carriers for disease treatment, wound recovery and tissue repair after local injection.

  2. Transport of benzo[alpha]pyrene in the dually perfused human placenta perfusion model: effect of albumin in the perfusion medium.

    PubMed

    Mathiesen, Line; Rytting, Erik; Mose, Tina; Knudsen, Lisbeth E

    2009-09-01

    Transport of benzo[alpha]pyrene (BaP) across the placenta was examined because it is a ubiquitous and highly carcinogenic substance found in tobacco smoke, polluted air and certain foods. Foetal exposure to this substance is highly relevant but is difficult to estimate. The human placenta is unique compared to other species; since it is available without major ethical obstacles, we have used the human placenta perfusion model to study transport from mother to foetus. Placentas were donated after births at Rigshospitalet in Copenhagen from pregnant mothers who signed an informed consent. BaP is lipophilic and studies using cell culture medium in 6-hr placenta perfusions showed minimal transport through the placenta. To increase the solubility of BaP in perfusion medium and to increase physiological relevance, perfusions were also performed with albumin added to the perfusion medium [2 and 30 mg/ml bovine serum albumin (BSA) and 30 mg/ml human serum albumin (HSA)]. The addition of albumin resulted in increased transfer of BaP from maternal to foetal reservoirs. The transfer was even higher in the presence of an HSA formulation containing acetyltryptophanate and caprylate, resulting in a foetal-maternal concentration (FM) ratio of 0.71 +/- 0.10 after 3 hr and 0.78 +/- 0.11 after 6 hr, whereas the FM ratio in perfusions without albumin was only 0.05 +/- 0.03 after 6 hr of perfusion. Less BaP accumulated in placental tissue in perfusions with added albumin. This shows that transplacental transport of the pro-carcinogenic substance BaP occurs, and emphasizes the importance of adding physiological concentrations of albumin when studying the transport of lipophilic substances.

  3. An Inhibitor of the δPKC Interaction with the d Subunit of F1Fo ATP Synthase Reduces Cardiac Troponin I Release from Ischemic Rat Hearts: Utility of a Novel Ammonium Sulfate Precipitation Technique

    PubMed Central

    Ogbi, Mourad; Obi, Ijeoma; Johnson, John A.

    2013-01-01

    We have previously reported protection against hypoxic injury by a cell-permeable, mitochondrially-targeted δPKC-d subunit of F1Fo ATPase (dF1Fo) interaction inhibitor [NH2-YGRKKRRQRRRMLA TRALSLIGKRAISTSVCAGRKLALKTIDWVSFDYKDDDDK-COOH] in neonatal cardiac myo-cytes. In the present work we demonstrate the partitioning of this peptide to the inner membrane and matrix of mitochondria when it is perfused into isolated rat hearts. We also used ammonium sulfate ((NH4)2SO4) and chloroform/methanol precipitation of heart effluents to demonstrate reduced card-iac troponin I (cTnI) release from ischemic rat hearts perfused with this inhibitor. 50% (NH4)2SO4 saturation of perfusates collected from Langendorff rat heart preparations optimally precipitated cTnI, allowing its detection in Western blots. In hearts receiving 20 min of ischemia followed by 30, or 60 min of reperfusion, the Mean±S.E. (n = 5) percentage of maximal cTnI release was 30±7 and 60±17, respectively, with additional cTnI release occurring after 150 min of reperfusion. Perfusion of hearts with the δPKC-dF1Fo interaction inhibitor, prior to 20 min of ischemia and 60–150 min of reperfusion, reduced cTnI release by 80%. Additionally, we found that when soybean trypsin inhibitor (SBTI), was added to rat heart effluents, it could also be precipitated using (NH4)2SO4 and detected in western blots. This provided a convenient method for normalizing protein recoveries between groups. Our results support the further development of the δPKC-dF1Fo inhibitor as a potential therapeutic for combating cardiac ischemic injury. In addition, we have developed an improved method for the detection of cTnI release from perfused rat hearts. PMID:23936451

  4. Transient ischemic attack

    MedlinePlus

    ... artery surgery - discharge Stroke - discharge Taking warfarin (Coumadin) Images Endarterectomy Transient Ischemic attack (TIA) References Biller J, Ruland S, Schneck MJ. Ischemic cerebrovascular disease. In Daroff ...

  5. Determining post-test risk in a national sample of stress nuclear myocardial perfusion imaging reports: Implications for natural language processing tools.

    PubMed

    Levy, Andrew E; Shah, Nishant R; Matheny, Michael E; Reeves, Ruth M; Gobbel, Glenn T; Bradley, Steven M

    2018-04-25

    Reporting standards promote clarity and consistency of stress myocardial perfusion imaging (MPI) reports, but do not require an assessment of post-test risk. Natural Language Processing (NLP) tools could potentially help estimate this risk, yet it is unknown whether reports contain adequate descriptive data to use NLP. Among VA patients who underwent stress MPI and coronary angiography between January 1, 2009 and December 31, 2011, 99 stress test reports were randomly selected for analysis. Two reviewers independently categorized each report for the presence of critical data elements essential to describing post-test ischemic risk. Few stress MPI reports provided a formal assessment of post-test risk within the impression section (3%) or the entire document (4%). In most cases, risk was determinable by combining critical data elements (74% impression, 98% whole). If ischemic risk was not determinable (25% impression, 2% whole), inadequate description of systolic function (9% impression, 1% whole) and inadequate description of ischemia (5% impression, 1% whole) were most commonly implicated. Post-test ischemic risk was determinable but rarely reported in this sample of stress MPI reports. This supports the potential use of NLP to help clarify risk. Further study of NLP in this context is needed.

  6. Circular tomosynthesis for neuro perfusion imaging on an interventional C-arm

    NASA Astrophysics Data System (ADS)

    Claus, Bernhard E.; Langan, David A.; Al Assad, Omar; Wang, Xin

    2015-03-01

    There is a clinical need to improve cerebral perfusion assessment during the treatment of ischemic stroke in the interventional suite. The clinician is able to determine whether the arterial blockage was successfully opened but is unable to sufficiently assess blood flow through the parenchyma. C-arm spin acquisitions can image the cerebral blood volume (CBV) but are challenged to capture the temporal dynamics of the iodinated contrast bolus, which is required to derive, e.g., cerebral blood flow (CBF) and mean transit time (MTT). Here we propose to utilize a circular tomosynthesis acquisition on the C-arm to achieve the necessary temporal sampling of the volume at the cost of incomplete data. We address the incomplete data problem by using tools from compressed sensing and incorporate temporal interpolation to improve our temporal resolution. A CT neuro perfusion data set is utilized for generating a dynamic (4D) volumetric model from which simulated tomo projections are generated. The 4D model is also used as a ground truth reference for performance evaluation. The performance that may be achieved with the tomo acquisition and 4D reconstruction (under simulation conditions, i.e., without considering data fidelity limitations due to imaging physics and imaging chain) is evaluated. In the considered scenario, good agreement between the ground truth and the tomo reconstruction in the parenchyma was achieved.

  7. Dynamic CT myocardial perfusion imaging: detection of ischemia in a porcine model with FFR verification

    NASA Astrophysics Data System (ADS)

    Fahmi, Rachid; Eck, Brendan L.; Vembar, Mani; Bezerra, Hiram G.; Wilson, David L.

    2014-03-01

    Dynamic cardiac CT perfusion (CTP) is a high resolution, non-invasive technique for assessing myocardial blood ow (MBF), which in concert with coronary CT angiography enable CT to provide a unique, comprehensive, fast analysis of both coronary anatomy and functional ow. We assessed perfusion in a porcine model with and without coronary occlusion. To induce occlusion, each animal underwent left anterior descending (LAD) stent implantation and angioplasty balloon insertion. Normal ow condition was obtained with balloon completely de ated. Partial occlusion was induced by balloon in ation against the stent with FFR used to assess the extent of occlusion. Prospective ECG-triggered partial scan images were acquired at end systole (45% R-R) using a multi-detector CT (MDCT) scanner. Images were reconstructed using FBP and a hybrid iterative reconstruction (iDose4, Philips Healthcare). Processing included: beam hardening (BH) correction, registration of image volumes using 3D cubic B-spline normalized mutual-information, and spatio-temporal bilateral ltering to reduce partial scan artifacts and noise variation. Absolute blood ow was calculated with a deconvolutionbased approach using singular value decomposition (SVD). Arterial input function was estimated from the left ventricle (LV) cavity. Regions of interest (ROIs) were identi ed in healthy and ischemic myocardium and compared in normal and occluded conditions. Under-perfusion was detected in the correct LAD territory and ow reduction agreed well with FFR measurements. Flow was reduced, on average, in LAD territories by 54%.

  8. Transient Ischemic Attack

    MedlinePlus Videos and Cool Tools

    Transient Ischemic Attack TIA , or transient ischemic attack, is a "mini stroke" that occurs when a blood ... The only difference between a stroke and TIA is that with TIA the blockage is transient (temporary). ...

  9. Navigator-gated 3D blood oxygen level-dependent CMR at 3.0-T for detection of stress-induced myocardial ischemic reactions.

    PubMed

    Jahnke, Cosima; Gebker, Rolf; Manka, Robert; Schnackenburg, Bernhard; Fleck, Eckart; Paetsch, Ingo

    2010-04-01

    This study determined the value of navigator-gated 3-dimensional blood oxygen level-dependent (BOLD) cardiac magnetic resonance (CMR) at 3.0-T for the detection of stress-induced myocardial ischemic reactions. Although BOLD CMR has been introduced for characterization of myocardial oxygenation status, previously reported CMR approaches suffered from a low signal-to-noise ratio and motion-related artifacts with impaired image quality and a limited diagnostic value in initial patient studies. Fifty patients with suspected or known coronary artery disease underwent CMR at 3.0-T followed by invasive X-ray angiography within 48 h. Three-dimensional BOLD images were acquired during free breathing with full coverage of the left ventricle in a short-axis orientation. The BOLD imaging was performed at rest and under adenosine stress, followed by stress and rest first-pass perfusion and delayed enhancement imaging. Quantitative coronary X-ray angiography (QCA) was used for coronary stenosis definition (diameter reduction > or =50%). The BOLD and first-pass perfusion images were semiquantitatively evaluated (for BOLD imaging, signal intensity differences between stress and rest [DeltaSI]; for perfusion imaging, myocardial perfusion reserve index [MPRI]). The image quality of BOLD CMR at rest and during adenosine stress was considered good to excellent in 90% and 84% of the patients, respectively. The DeltaSI measurements differed significantly between normal myocardium, myocardium supplied by a stenotic coronary artery, and infarcted myocardium (p < 0.001). The receiver-operator characteristic analysis identified a cutoff value of DeltaSI = 2.7% for the detection of coronary stenosis, resulting in a sensitivity and specificity of 85.0% and 80.5%, respectively. An MPRI cutoff value of 1.35 yielded a sensitivity and specificity of 89.5% and 85.8%, respectively. The DeltaSI significantly correlated with the degree of coronary stenosis (r = -0.65, p < 0.001). Additionally, Delta

  10. Upregulation of Fibronectin and the α5β1 and αvβ3 Integrins on Blood Vessels within the Cerebral Ischemic Penumbra

    PubMed Central

    Li, Longxuan; Liu, Fudong; Welser-Alves, Jennifer V.; McCullough, Louise D.; Milner, Richard

    2012-01-01

    Following focal cerebral ischemia, blood vessels in the ischemic border, or penumbra, launch an angiogenic response. In light of the critical role for fibronectin in angiogenesis, and the observation that fibronectin and its integrin receptors are strongly upregulated on angiogenic vessels in the hypoxic CNS, the aim of this study was to establish whether angiogenic vessels in the ischemic CNS also show this response. Focal cerebral ischemia was established in C57/Bl6 mice by middle cerebral artery occlusion (MCA:O), and brain tissue analyzed seven days following re-perfusion, a time at which angiogenesis is ongoing. Within the ischemic core, immunofluorescent (IF) studies demonstrated vascular expression of MECA-32, a marker of leaky cerebral vessels, and vascular breakdown, defined by loss of staining for the endothelial marker, CD31, and the vascular adhesion molecules, laminin, dystroglycan and α6 integrin. Within the ischemic penumbra, dual-IF with CD31 and Ki67 revealed the presence of proliferating endothelial cells, indicating ongoing angiogenesis. Significantly, vessels in the ischemic penumbra showed strong upregulation of fibronectin and the fibronectin receptors, α5β1 and αvβ3 integrins. Taken together with our recent finding that the α5β1 integrin plays an important role in promoting cerebral angiogenesis in response to hypoxia, these results suggest that stimulation of the fibronectin-α5β1 integrin signalling pathway may provide a novel approach to amplifying the intrinsic angiogenic response to cerebral ischemia. PMID:22056225

  11. Human Umbilical Cord-Derived Mesenchymal Stromal Cells Improve Left Ventricular Function, Perfusion, and Remodeling in a Porcine Model of Chronic Myocardial Ischemia

    PubMed Central

    Liu, Chuan-Bin; Huang, He; Sun, Ping; Ma, Shi-Ze; Liu, An-Heng; Xue, Jian; Fu, Jin-Hui; Liang, Yu-Qian; Liu, Bing; Wu, Dong-Ying

    2016-01-01

    Stem cell therapy has emerged as a new strategy for treatment of ischemic heart disease. Although umbilical cord-derived mesenchymal stromal cells (UC-MSCs) have been used preferentially in the acute ischemia model, data for the chronic ischemia model are lacking. In this study, we investigated the effect of UC-MSCs originated from Wharton’s jelly in the treatment of chronic myocardial ischemia in a porcine model induced by ameroid constrictor. Four weeks after ameroid constrictor placement, the surviving animals were divided randomly into two groups to undergo saline injection (n = 6) or UC-MSC transplantation (n = 6) through the left main coronary artery. Two additional intravenous administrations of UC-MSCs were performed in the following 2 weeks to enhance therapeutic effect. Cardiac function and perfusion were examined just before and at 4 weeks after intracoronary transplantation. The results showed that pigs with UC-MSC transplantation exhibited significantly greater left ventricular ejection fraction compared with control animals (61.3% ± 1.3% vs. 50.3% ± 2.0%, p < .05). The systolic thickening fraction in the infarcted left ventricular wall was also improved (41.2% ± 3.3% vs. 46.2% ± 2.3%, p < .01). Additionally, the administration of UC-MSCs promoted collateral development and myocardial perfusion. The indices of fibrosis and apoptosis were also significantly reduced. Immunofluorescence staining showed clusters of CM-DiI-labeled cells in the border zone, some of which expressed von Willebrand factor. These results suggest that UC-MSC treatment improves left ventricular function, perfusion, and remodeling in a porcine model with chronic myocardial ischemia. Significance Ischemic heart disease is the leading cause of death worldwide. Many patients with chronic myocardial ischemia are not suitable for surgery and have no effective drug treatment; they are called “no-option” patients. This study finds that umbilical cord-derived mesenchymal stromal

  12. Human Umbilical Cord-Derived Mesenchymal Stromal Cells Improve Left Ventricular Function, Perfusion, and Remodeling in a Porcine Model of Chronic Myocardial Ischemia.

    PubMed

    Liu, Chuan-Bin; Huang, He; Sun, Ping; Ma, Shi-Ze; Liu, An-Heng; Xue, Jian; Fu, Jin-Hui; Liang, Yu-Qian; Liu, Bing; Wu, Dong-Ying; Lü, Shuang-Hong; Zhang, Xiao-Zhong

    2016-08-01

    : Stem cell therapy has emerged as a new strategy for treatment of ischemic heart disease. Although umbilical cord-derived mesenchymal stromal cells (UC-MSCs) have been used preferentially in the acute ischemia model, data for the chronic ischemia model are lacking. In this study, we investigated the effect of UC-MSCs originated from Wharton's jelly in the treatment of chronic myocardial ischemia in a porcine model induced by ameroid constrictor. Four weeks after ameroid constrictor placement, the surviving animals were divided randomly into two groups to undergo saline injection (n = 6) or UC-MSC transplantation (n = 6) through the left main coronary artery. Two additional intravenous administrations of UC-MSCs were performed in the following 2 weeks to enhance therapeutic effect. Cardiac function and perfusion were examined just before and at 4 weeks after intracoronary transplantation. The results showed that pigs with UC-MSC transplantation exhibited significantly greater left ventricular ejection fraction compared with control animals (61.3% ± 1.3% vs. 50.3% ± 2.0%, p < .05). The systolic thickening fraction in the infarcted left ventricular wall was also improved (41.2% ± 3.3% vs. 46.2% ± 2.3%, p < .01). Additionally, the administration of UC-MSCs promoted collateral development and myocardial perfusion. The indices of fibrosis and apoptosis were also significantly reduced. Immunofluorescence staining showed clusters of CM-DiI-labeled cells in the border zone, some of which expressed von Willebrand factor. These results suggest that UC-MSC treatment improves left ventricular function, perfusion, and remodeling in a porcine model with chronic myocardial ischemia. Ischemic heart disease is the leading cause of death worldwide. Many patients with chronic myocardial ischemia are not suitable for surgery and have no effective drug treatment; they are called "no-option" patients. This study finds that umbilical cord-derived mesenchymal stromal cells

  13. 3D image fusion of whole-heart dynamic cardiac MR perfusion and late gadolinium enhancement: Intuitive delineation of myocardial hypoperfusion and scar.

    PubMed

    von Spiczak, Jochen; Mannil, Manoj; Kozerke, Sebastian; Alkadhi, Hatem; Manka, Robert

    2018-03-30

    Since patients with myocardial hypoperfusion due to coronary artery disease (CAD) with preserved viability are known to benefit from revascularization, accurate differentiation of hypoperfusion from scar is desirable. To develop a framework for 3D fusion of whole-heart dynamic cardiac MR perfusion and late gadolinium enhancement (LGE) to delineate stress-induced myocardial hypoperfusion and scar. Prospective feasibility study. Sixteen patients (61 ± 14 years, two females) with known/suspected CAD. 1.5T (nine patients); 3.0T (seven patients); whole-heart dynamic 3D cardiac MR perfusion (3D-PERF, under adenosine stress); 3D LGE inversion recovery sequences (3D-SCAR). A software framework was developed for 3D fusion of 3D-PERF and 3D-SCAR. Computation steps included: 1) segmentation of the left ventricle in 3D-PERF and 3D-SCAR; 2) semiautomatic thresholding of perfusion/scar data; 3) automatic calculation of ischemic/scar burden (ie, pathologic relative to total myocardium); 4) projection of perfusion/scar values onto artificial template of the left ventricle; 5) semiautomatic coregistration to an exemplary heart contour easing 3D orientation; and 6) 3D rendering of the combined datasets using automatically defined color tables. All tasks were performed by two independent, blinded readers (J.S. and R.M.). Intraclass correlation coefficients (ICC) for determining interreader agreement. Image acquisition, postprocessing, and 3D fusion were feasible in all cases. In all, 10/16 patients showed stress-induced hypoperfusion in 3D-PERF; 8/16 patients showed LGE in 3D-SCAR. For 3D-PERF, semiautomatic thresholding was possible in all patients. For 3D-SCAR, automatic thresholding was feasible where applicable. Average ischemic burden was 11 ± 7% (J.S.) and 12 ± 7% (R.M.). Average scar burden was 8 ± 5% (J.S.) and 7 ± 4% (R.M.). Interreader agreement was excellent (ICC for 3D-PERF = 0.993, for 3D-SCAR = 0.99). 3D fusion of 3D-PERF and 3D

  14. [Proangiogenic cell-based therapy for treatment of ischemic diseases].

    PubMed

    Silvestre, Jean-Sébastien

    2009-11-01

    The application of endothelial progenitor cells (EPC) cell-based therapy for regenerative medicine constitutes a promising therapeutic avenue for the treatment of cardiovascular diseases. Based on experimental studies demonstrating that bone marrow-, blood- or tissue-derived stem/progenitor cells improve the functional recovery after ischemia, clinical trials were initiated to address this new therapeutic concept. Although autolougous cell therapy was shown to improve perfusion and function of ischemic tissues, a number of issues remain to be adressed. The nature of the mobilizing, migratory and homing signals, and the mechanisms of action need to be identified and further defined. In addition, strategies to enhance homing, survival and therapeutic potential of EPC need to be developped to improve therapeutic effect and counteract EPC dysfunction in aged patients with cardiovascular risk factors. The present review article will discuss the mechanisms of action of different types of adult stem cells and several approaches to improve their therapeutic efficiency.

  15. Abnormal myocardial fluid retention as an early manifestation of ischemic injury.

    PubMed Central

    Willerson, J. T.; Scales, F.; Mukherjee, A.; Platt, M.; Templeton, G. H.; Fink, G. S.; Buja, L. M.

    1977-01-01

    Fifty-seven isolated, blood perfused, continuously weighed canine hearts have been utilized to study the development of abnormal myocardial fluid retention during early myocardial ischemic injury. Inflatable balloon catheters were positioned around the left anterior descending coronary arteries (LAD) of 54 hearts or the proximal left circumflex coronary arteries of three hearts for study of the following intervals of coronary occlusion: a) 10 minutes followed by 20 minutes of reflow, b) 40 minutes followed by either no reflow or by 20 minutes of reflow, and c) 60 minutes without reflow. After 60 minutes of fixed coronary occlusion, histologic and ultrastructural examination revealed mild swelling of many ischemic cardiac muscle cells in the absence of interstitial edema, cardiac weight gain, and obvious structural defects in cell membrane integrity. After 40 minutes of coronary occlusion and 20 minutes of reflow, significant cardiac weight gain occurred in association with characteristic alterations in the ischemic region, including widespread interstitial edema and focal vascular congestion and hemorrhage and swelling of cardiac muscle cells. Focal structural defects in cell membrane integrity were also noted. The development of abnormal myocardial fluid retention after 40 minutes of LAD occlusion occurred in association with a significant reduction in sodium-potassium-ATPase activity in the ischemic area, but with no significant alteration in either creatine phosphokinase or citrate synthase activity in the same region. Despite the abnormal myocardial fluid retention in these hearts, it was possible pharmacologically to vasodilate coronary vessels with adenosine and nitroglycerin infusion to maintain a consistently high coronary flow following release of the coronary occlusion after 40 minutes and to even exceed initial hyperemic flow values following release of the occlusion when adenosine and nitroglycerin infusion was delayed until 15 minutes after reflow

  16. Short fasting does not protect perfused ex vivo rat liver against ischemia-reperfusion. On the importance of a minimal cell energy charge.

    PubMed

    Papegay, Bérengère; Stadler, Michaela; Nuyens, Vincent; Kruys, Véronique; Boogaerts, Jean G; Vamecq, Joseph

    2017-03-01

    Dietary restriction or reduced food intake was supported to protect against renal and hepatic ischemic injury. In this vein, short fasting was recently shown to protect in situ rat liver against ischemia-reperfusion. Here, perfused ex vivo instead of in situ livers were exposed to ischemia-reperfusion to study the impact of disconnecting liver from extrahepatic supply in energetic substrates on the protection given by short-term fasting. Perfused ex vivo livers using short (18 h) fasted compared with fed rats were submitted to ischemia-reperfusion and studied for release of cytolysis markers in the perfusate. Energetic stores are differently available in time and cell energetic charges (ratio of adenosine triphosphate plus half of the adenosine diphosphate concentrations to the sum of adenosine triphosphate + adenosine diphosphate + adenosine monophosphate concentrations), adenosine phosphates, and glycogen, which were further measured at different time points in livers. Short fasting versus feeding failed to protect perfused ex vivo rat livers against ischemia/reperfusion, increasing the release of cytolysis markers (potassium, cytochrome c, aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase) in the perfusate during reoxygenation phase. Toxicity of short fasting versus feeding was associated with lower glycogen and energetic charges in livers and lower lactate levels in the perfusate. High energetic charge, intracellular content in glycogen, and glycolytic activity may protect liver against ischemia/reperfusion injury. This work does not question how much the protective role previously demonstrated in the literature for dietary restriction and short fasting. In fact, it suggests that exceeding the energy charge threshold value of 0.3 might trigger the effectiveness of this protective role. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Efficacy of Stent-Retriever Thrombectomy in Magnetic Resonance Imaging Versus Computed Tomographic Perfusion-Selected Patients in SWIFT PRIME Trial (Solitaire FR With the Intention for Thrombectomy as Primary Endovascular Treatment for Acute Ischemic Stroke).

    PubMed

    Menjot de Champfleur, Nicolas; Saver, Jeffrey L; Goyal, Mayank; Jahan, Reza; Diener, Hans-Christoph; Bonafe, Alain; Levy, Elad I; Pereira, Vitor M; Cognard, Christophe; Yavagal, Dileep R; Albers, Gregory W

    2017-06-01

    The majority of patients enrolled in SWIFT PRIME trial (Solitaire FR With the Intention for Thrombectomy as Primary Endovascular Treatment for Acute Ischemic Stroke) had computed tomographic perfusion (CTP) imaging before randomization; 34 patients were randomized after magnetic resonance imaging (MRI). Patients with middle cerebral artery and distal carotid occlusions were randomized to treatment with tPA (tissue-type plasminogen activator) alone or tPA+stentriever thrombectomy. The primary outcome was the distribution of the modified Rankin Scale score at 90 days. Patients with the target mismatch profile for enrollment were identified on MRI and CTP. MRI selection was performed in 34 patients; CTP in 139 patients. Baseline National Institutes of Health Stroke Scale score was 17 in both groups. Target mismatch profile was present in 95% (MRI) versus 83% (CTP). A higher percentage of the MRI group was transferred from an outside hospital ( P =0.02), and therefore, the time from stroke onset to randomization was longer in the MRI group ( P =0.003). Time from emergency room arrival to randomization did not differ in CTP versus MRI-selected patients. Baseline ischemic core volumes were similar in both groups. Reperfusion rates (>90%/TICI [Thrombolysis in Cerebral Infarction] score 3) did not differ in the stentriever-treated patients in the MRI versus CTP groups. The primary efficacy analysis (90-day mRS score) demonstrated a statistically significant benefit in both subgroups (MRI, P =0.02; CTP, P =0.01). Infarct growth was reduced in the stentriever-treated group in both MRI and CTP groups. Time to randomization was significantly longer in MRI-selected patients; however, site arrival to randomization times were not prolonged, and the benefits of endovascular therapy were similar. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01657461. © 2017 American Heart Association, Inc.

  18. Regulation of Coronary Blood Flow in Health and Ischemic Heart Disease

    PubMed Central

    Duncker, Dirk J.; Koller, Akos; Merkus, Daphne; Canty, John M.

    2018-01-01

    The major factors determining myocardial perfusion and oxygen delivery have been elucidated over the past several decades, and this knowledge has been incorporated into the management of patients with ischemic heart disease (IHD). The basic understanding of the fluid mechanical behavior of coronary stenoses has also been translated to the cardiac catheterization laboratory where measurements of coronary pressure distal to a stenosis and coronary flow are routinely obtained. However, the role of perturbations in coronary microvascular structure and function, due to myocardial hypertrophy or coronary microvascular dysfunction, in IHD is becoming increasingly recognized. Future studies should therefore be aimed at further improving our understanding of the integrated coronary microvascular mechanisms that control coronary blood flow, and of the underlying causes and mechanisms of coronary microvascular dysfunction. This knowledge will be essential to further improve the treatment of patients with IHD. PMID:25475073

  19. TU-AB-204-01: Advances in C-Arm CBCT for Brain Perfusion Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, G.

    This symposium highlights advanced cone-beam CT (CBCT) technologies in four areas of emerging application in diagnostic imaging and image-guided interventions. Each area includes research that extends the spatial, temporal, and/or contrast resolution characteristics of CBCT beyond conventional limits through advances in scanner technology, acquisition protocols, and 3D image reconstruction techniques. Dr. G. Chen (University of Wisconsin) will present on the topic: Advances in C-arm CBCT for Brain Perfusion Imaging. Stroke is a leading cause of death and disability, and a fraction of people having an acute ischemic stroke are suitable candidates for endovascular therapy. Critical factors that affect both themore » likelihood of successful revascularization and good clinical outcome are: 1) the time between stroke onset and revascularization; and 2) the ability to distinguish patients who have a small volume of irreversibly injured brain (ischemic core) and a large volume of ischemic but salvageable brain (penumbra) from patients with a large ischemic core and little or no penumbra. Therefore, “time is brain” in the care of the stroke patients. C-arm CBCT systems widely available in angiography suites have the potential to generate non-contrast-enhanced CBCT images to exclude the presence of hemorrhage, time-resolved CBCT angiography to evaluate the site of occlusion and collaterals, and CBCT perfusion parametric images to assess the extent of the ischemic core and penumbra, thereby fulfilling the imaging requirements of a “one-stop-shop” in the angiography suite to reduce the time between onset and revascularization therapy. The challenges and opportunities to advance CBCT technology to fully enable the one-stop-shop C-arm CBCT platform for brain imaging will be discussed. Dr. R. Fahrig (Stanford University) will present on the topic: Advances in C-arm CBCT for Cardiac Interventions. With the goal of providing functional information during cardiac

  20. The mechanism of protection from 5 (N-ethyl-N-isopropyl)amiloride differs from that of ischemic preconditioning in rabbit heart.

    PubMed

    Sato, H; Miki, T; Vallabhapurapu, R P; Wang, P; Liu, G S; Cohen, M V; Downey, J M

    1997-10-01

    We investigated the effects of 5-(N-ethyl-N-isopropyl)amiloride (EIPA) on infarction in isolated rabbit hearts and cardiomyocytes. Thirty min of regional ischemia caused 29.6 +/- 2.8% of the risk zone to infarct in untreated Krebs buffer-perfused hearts. Treatment with EIPA (1 microM) for 20 min starting either 15 min before ischemia or 15 min after the onset of ischemia significantly reduced infarction to 5.4 +/- 2.0% and 7.0 +/- 1.0%, respectively (p < 0.01 versus untreated hearts). In both cases salvage was very similar to that seen with ischemic preconditioning (PC) (7.1 +/- 1.5% infarction). Unlike the case with ischemic preconditioning, however, protection from EIPA was not blocked by 50 microM polymyxin B, a PKC inhibitor, or 1 microM glibenclamide, a KATP channel blocker. Forty-five min of regional ischemia caused 51.0 +/- 2.9% infarction in untreated hearts. Ischemic preconditioning reduced infarction to 23.4 +/- 3.1% (p < 0.001 versus untreated hearts). In these hearts with longer periods of ischemia pretreatment with EIPA reduced infarction similarly to 28.8 +/- 2.1% (p < 0.01 versus untreated hearts). However, when EIPA was combined with ischemic PC, no further reduction in infarction was seen (23.8 +/- 3.5% infarction). To further elucidate the mechanism of EIPA's cardioprotective effect, this agent was also examined in isolated rabbit cardiomyocytes. Preconditioning caused a delay of about 30 min in the progressive increase in osmotic fragility that occurs during simulated ischemia. In contrast, EIPA had no effect on the time course of ischemia-induced osmotic fragility. Furthermore, EIPA treatment did not alter the salutary effect of ischemic preconditioning when the two were combined in this model. We conclude that Na+/H+ exchange inhibition limits myocardial infarction in the isolated rabbit heart by a mechanism which is quite different from that of ischemic preconditioning. Despite the apparently divergent mechanisms, EIPA's cardioprotective

  1. Endogenous Agmatine Induced by Ischemic Preconditioning Regulates Ischemic Tolerance Following Cerebral Ischemia

    PubMed Central

    Kim, Jae Hwan; Kim, Jae Young; Jung, Jin Young; Lee, Yong Woo; Lee, Won Taek; Huh, Seung Kon

    2017-01-01

    Ischemic preconditioning (IP) is one of the most important endogenous mechanisms that protect the cells against ischemia-reperfusion (I/R) injury. However, the exact molecular mechanisms remain unclear. In this study, we showed that changes in the level of agmatine were correlated with ischemic tolerance. Changes in brain edema, infarct volume, level of agmatine, and expression of arginine decarboxylase (ADC) and nitric oxide synthases (NOS; inducible NOS [iNOS] and neural NOS [nNOS]) were analyzed during I/R injury with or without IP in the rat brain. After cerebral ischemia, brain edema and infarct volume were significantly reduced in the IP group. The level of agmatine was increased before and during ischemic injury and remained elevated in the early reperfusion phase in the IP group compared to the experimental control (EC) group. During IP, the level of plasma agmatine was increased in the early phase of IP, but that of liver agmatine was abruptly decreased. However, the level of agmatine was definitely increased in the ipsilateral and contralateral hemisphere of brain during the IP. IP also increased the expression of ADC—the enzyme responsible for the synthesis of endogenous agmatine—before, during, and after ischemic injury. In addition, ischemic injury increased endogenous ADC expression in the EC group. The expression of nNOS was reduced in the I/R injured brain in the IP group. These results suggest that endogenous increased agmatine may be a component of the ischemic tolerance response that is induced by IP. Agmatine may have a pivotal role in endogenous ischemic tolerance. PMID:29302205

  2. Ion binding compounds, radionuclide complexes, methods of making radionuclide complexes, methods of extracting radionuclides, and methods of delivering radionuclides to target locations

    DOEpatents

    Chen, Xiaoyuan; Wai, Chien M.; Fisher, Darrell R.

    2000-01-01

    The invention pertains to compounds for binding lanthanide ions and actinide ions. The invention further pertains to compounds for binding radionuclides, and to methods of making radionuclide complexes. Also, the invention pertains to methods of extracting radionuclides. Additionally, the invention pertains to methods of delivering radionuclides to target locations. In one aspect, the invention includes a compound comprising: a) a calix[n]arene group, wherein n is an integer greater than 3, the calix[n]arene group comprising an upper rim and a lower rim; b) at least one ionizable group attached to the lower rim; and c) an ion selected from the group consisting of lanthanide and actinide elements bound to the ionizable group. In another aspect, the invention includes a method of extracting a radionuclide, comprising: a) providing a sample comprising a radionuclide; b) providing a calix[n]arene compound in contact with the sample, wherein n is an integer greater than 3; and c) extracting radionuclide from the sample into the calix[n]arene compound. In yet another aspect, the invention includes a method of delivering a radionuclide to a target location, comprising: a) providing a calix[n]arene compound, wherein n is an integer greater than 3, the calix[n]arene compound comprising at least one ionizable group; b) providing a radionuclide bound to the calix[n]arene compound; and c) providing an antibody attached to the calix[n]arene compound, the antibody being specific for a material found at the target location.

  3. All-Systolic Non-ECG-gated Myocardial Perfusion MRI: Feasibility of Multi-Slice Continuous First-Pass Imaging

    PubMed Central

    Sharif, Behzad; Arsanjani, Reza; Dharmakumar, Rohan; Bairey Merz, C. Noel; Berman, Daniel S.; Li, Debiao

    2015-01-01

    Purpose To develop and test the feasibility of a new method for non-ECG-gated first-pass perfusion (FPP) cardiac MR capable of imaging multiple short-axis slices at the same systolic cardiac phase. Methods A magnetization-driven pulse sequence was developed for non-ECG-gated FPP imaging without saturation-recovery preparation using continuous slice-interleaved radial sampling. The image reconstruction method, dubbed TRACE, employed self-gating based on reconstruction of a real-time image-based navigator combined with reference-constrained compressed sensing. Data from ischemic animal studies (n=5) was used in a simulation framework to evaluate temporal fidelity. Healthy subjects (n=5) were studied using both the proposed and conventional method to compare the myocardial contrast-to-noise ratio (CNR). Patients (n=2) underwent adenosine stress studies using the proposed method. Results Temporal fidelity of the developed method was shown to be sufficient at high heart-rates. The healthy volunteers studies demonstrated normal perfusion and no artifacts. Compared to the conventional scheme, myocardial CNR for the proposed method was slightly higher (8.6±0.6 vs. 8.0±0.7). Patient studies showed stress-induced perfusion defects consistent with invasive angiography. Conclusions The presented methods and results demonstrate feasibility of the proposed approach for high-resolution non-ECG-gated FPP imaging and indicate its potential for achieving desirable image quality (high CNR, no dark-rim artifacts) with a 3-slice spatial coverage, all imaged at the same systolic phase. PMID:26052843

  4. External Counterpulsation Increases Beat-to-Beat Heart Rate Variability in Patients with Ischemic Stroke.

    PubMed

    Xiong, Li; Tian, Ge; Wang, Li; Lin, Wenhua; Chen, Xiangyan; Leung, Thomas Wai Hong; Soo, Yannie Oi Yan; Wong, Lawrence Ka Sing

    2017-07-01

    External counterpulsation (ECP) is a noninvasive method used to augment cerebral perfusion in ischemic stroke. However, the response of beat-to-beat heart rate variability (HRV) in patients with ischemic stroke during ECP remains unknown. Forty-eight patients with unilateral ischemic stroke at the subacute stage and 14 healthy controls were recruited. Beat-to-beat heart rate before, during, and after ECP was monitored. The frequency components of HRV were calculated using power spectral analysis. Very low frequency (VLF; <.04 Hz), low frequency (LF; .04-.15 Hz), high frequency (HF; .15-.40 Hz), total power spectral density (TP; <.40 Hz), and LF/HF ratio were calculated. In stroke patients, although there were no statistical differences in all of the HRV components, the HRV at VLF showed a trend of increase during ECP compared with baseline in the left-sided stroke patients (P = .083). After ECP, the HRV at LF and TP remained higher than baseline in the right-sided stroke patients (LF, 209.4 versus 117.9, P = .050; TP, 1275.6 versus 390.2, P = .017, respectively). Besides, the HRV at TP also increased after ECP compared with baseline in the left-sided stroke patients (563.0 versus 298.3, P = .029). Irrespective of the side of the ischemia, patients showed an increased beat-to-beat HRV after ECP. Additionally, sympathetic and parasympathetic cardiac modulations were increased after ECP in patients after right-sided subacute stroke. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  5. Methods of separating short half-life radionuclides from a mixture of radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bray, L.A.; Ryan, J.L.

    1998-09-15

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of {sup 223}Ra and {sup 225}Ac, from a radionuclide ``cow`` of {sup 227}Ac or {sup 229}Th respectively. The method comprises the steps of (a) permitting ingrowth of at least one radionuclide daughter from said radionuclide ``cow`` forming an ingrown mixture; (b) insuring that the ingrown mixture is a nitric acid ingrown mixture; (c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the ``cow`` from at least one radionuclide daughter; (d) insuring that the at leastmore » one radionuclide daughter contains the radionuclide product; (e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and (f) recycling the at least one radionuclide daughter by adding it to the ``cow``. In one embodiment the radionuclide ``cow`` is the {sup 227}Ac, the at least one daughter radionuclide is a {sup 227}Th and the product radionuclide is the {sup 223}Ra and the first nitrate form ion exchange column passes the {sup 227}Ac and retains the {sup 227}Th. In another embodiment the radionuclide ``cow`` is the {sup 229}Th, the at least one daughter radionuclide is a {sup 225}Ra and said product radionuclide is the {sup 225}Ac and the {sup 225}Ac and nitrate form ion exchange column retains the {sup 229}Th and passes the {sup 225}Ra/Ac. 8 figs.« less

  6. Methods of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, Lane A.; Ryan, Jack L.

    1998-01-01

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of .sup.223 Ra and .sup.225 Ac, from a radionuclide "cow" of .sup.227 Ac or .sup.229 Th respectively. The method comprises the steps of a) permitting ingrowth of at least one radionuclide daughter from said radionuclide "cow" forming an ingrown mixture; b) insuring that the ingrown mixture is a nitric acid ingrown mixture; c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the "cow" from at least one radionuclide daughter; d) insuring that the at least one radionuclide daughter contains the radionuclide product; e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and f) recycling the at least one radionuclide daughter by adding it to the "cow". In one embodiment the radionuclide "cow" is the .sup.227 Ac, the at least one daughter radionuclide is a .sup.227 Th and the product radionuclide is the .sup.223 Ra and the first nitrate form ion exchange column passes the .sup.227 Ac and retains the .sup.227 Th. In another embodiment the radionuclide "cow"is the .sup.229 Th, the at least one daughter radionuclide is a .sup.225 Ra and said product radionuclide is the .sup.225 Ac and the .sup.225 Ac and nitrate form ion exchange column retains the .sup.229 Th and passes the .sup.225 Ra/Ac.

  7. Methods of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, L.A.; Ryan, J.L.

    1998-09-15

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of {sup 223}Ra and {sup 225}Ac, from a radionuclide ``cow`` of {sup 227}Ac or {sup 229}Th respectively. The method comprises the steps of (a) permitting ingrowth of at least one radionuclide daughter from said radionuclide ``cow`` forming an ingrown mixture; (b) insuring that the ingrown mixture is a nitric acid ingrown mixture; (c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the ``cow`` from at least one radionuclide daughter; (d) insuring that the at least one radionuclide daughter contains the radionuclide product; (e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and (f) recycling the at least one radionuclide daughter by adding it to the ``cow``. In one embodiment the radionuclide ``cow`` is the {sup 227}Ac, the at least one daughter radionuclide is a {sup 227}Th and the product radionuclide is the {sup 223}Ra and the first nitrate form ion exchange column passes the {sup 227}Ac and retains the {sup 227}Th. In another embodiment the radionuclide ``cow`` is the {sup 229}Th, the at least one daughter radionuclide is a {sup 225}Ra and said product radionuclide is the {sup 225}Ac and the {sup 225}Ac and nitrate form ion exchange column retains the {sup 229}Th and passes the {sup 225}Ra/Ac. 8 figs.

  8. Role of nuclear cardiology in evaluating the total ischemic burden in coronary artery disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beller, G.A.

    1987-03-09

    Goals of exercise radionuclide imaging are to: enhance sensitivity, specificity and predictive value of coronary artery disease (CAD) detection; noninvasively assess extent and severity of functionally significant CAD; determine prognosis so that specific therapeutic strategies can be more rationally implemented; detect silent ischemia in asymptomatic subjects or in patients with known CAD with a higher degree of specificity than can be accomplished by electrocardiogram stress testing alone; evaluate the response to therapeutic interventions aimed at enhancing coronary blood flow. Two major radionuclide techniques are currently used in evaluating the total ischemic burden in patients with CAD. These are myocardial perfusionmore » imaging with either thallium-201 or rubidium-82, and radionuclide angiography performed after administration of technetium-99m. Areas of diminished thallium-201 activity on early postexercise images are abnormal and represent either areas of stress-induced ischemia or myocardial scar. To differentiate between the two, delayed images are obtained to determine if the initial postexercise defect either persists or demonstrates redistribution. Defects demonstrating redistribution represent transient ischemia, whereas areas of previous infarction or scar usually appear as persistent defects. Patients with left main or 3-vessel CAD usually show multiple thallium-201 redistribution defects in more than 1 vascular supply region, a phenomenon often associated with abnormal lung thallium-201 uptake.« less

  9. Correction for Delay and Dispersion Results in More Accurate Cerebral Blood Flow Ischemic Core Measurement in Acute Stroke.

    PubMed

    Lin, Longting; Bivard, Andrew; Kleinig, Timothy; Spratt, Neil J; Levi, Christopher R; Yang, Qing; Parsons, Mark W

    2018-04-01

    This study aimed to assess how the ischemic core measured by perfusion computed tomography (CTP) was affected by the delay and dispersion effect. Ischemic stroke patients having CTP performed within 6 hours of onset were included. The CTP data were processed twice, generating standard cerebral blood flow (sCBF) and delay- and dispersion-corrected CBF (ddCBF), respectively. Ischemic core measured by the sCBF and ddCBF was then compared at the relative threshold <30% of normal tissue. Two references for ischemic core were used: acute diffusion-weighted imaging or 24-hour diffusion-weighted imaging in patients with complete recanalization. Difference of core volume between CTP and diffusion-weighted imaging was estimated by Mann-Whitney U test and limits of agreement. Patients were also classified into favorable and unfavorable CTP patterns. The imaging pattern classification by sCBF and ddCBF was compared by the χ 2 test; their respective ability to predict good clinical outcome (3-month modified Rankin Scale score) was tested in logistic regression. Fifty-five patients were included in this study. Median sCBF ischemic core volume was 38.5 mL (12.4-61.9 mL), much larger than the median core volume of 17.2 mL measured by ddCBF (interquartile range, 5.5-38.8; P <0.001). Moreover, compared with sCBF <30%, ddCBF <30% measured the ischemic core much closer to diffusion-weighted imaging core references, with the mean volume difference of -0.1 mL (95% limits of agreement, -25.4 to 25.2; P =0.97) and 16.7 mL (95% limits of agreement, -21.7 to 55.2; P <0.001), respectively. Imaging patterns defined by sCBF showed a difference to that defined by ddCBF ( P <0.001), with 12 patients classified as favorable imaging patterns by ddCBF but as unfavorable by sCBF. The favorable imaging pattern classified by ddCBF, compared with sCBF classification, had higher predictive power for good clinical outcome (odds ratio, 7.8 [2-30.5] and 3.1 [0.9-11], respectively). Delay and dispersion

  10. Relative cerebral blood volume as a marker of durable tissue-at-risk viability in hyperacute ischemic stroke.

    PubMed

    Cortijo, Elisa; Calleja, Ana Isabel; García-Bermejo, Pablo; Mulero, Patricia; Pérez-Fernández, Santiago; Reyes, Javier; Muñoz, Ma Fe; Martínez-Galdámez, Mario; Arenillas, Juan Francisco

    2014-01-01

    Selection of best responders to reperfusion therapies could be aided by predicting the duration of tissue-at-risk viability, which may be dependant on collateral circulation status. We aimed to identify the best predictor of good collateral circulation among perfusion computed tomography (PCT) parameters in middle cerebral artery (MCA) ischemic stroke and to analyze how early MCA response to intravenous thrombolysis and PCT-derived markers of good collaterals interact to determine stroke outcome. We prospectively studied patients with acute MCA ischemic stroke treated with intravenous thrombolysis who underwent PCT before treatment showing a target mismatch profile. Collateral status was assessed using a PCT source image-based score. PCT maps were quantitatively analyzed. Cerebral blood volume (CBV), cerebral blood flow, and Tmax were calculated within the hypoperfused volume and in the equivalent region of unaffected hemisphere. Occluded MCAs were monitored by transcranial Duplex to assess early recanalization. Main outcome variables were brain hypodensity volume and modified Rankin scale score at day 90. One hundred patients with MCA ischemic stroke imaged by PCT received intravenous thrombolysis, and 68 met all inclusion criteria. A relative CBV (rCBV) >0.93 emerged as the only predictor of good collaterals (odds ratio, 12.6; 95% confidence interval, 2.9-55.9; P=0.001). Early MCA recanalization was associated with better long-term outcome and lower infarct volume in patients with rCBV<0.93, but not in patients with high rCBV. None of the patients with rCBV<0.93 achieved good outcome in absence of early recanalization. High rCBV was the strongest marker of good collaterals and may characterize durable tissue-at-risk viability in hyperacute MCA ischemic stroke.

  11. Distribution of perfusion.

    PubMed

    Glenny, Robb; Robertson, H Thomas

    2011-01-01

    Local driving pressures and resistances within the pulmonary vascular tree determine the distribution of perfusion in the lung. Unlike other organs, these local determinants are significantly influenced by regional hydrostatic and alveolar pressures. Those effects on blood flow distribution are further magnified by the large vertical height of the human lung and the relatively low intravascular pressures in the pulmonary circulation. While the distribution of perfusion is largely due to passive determinants such as vascular geometry and hydrostatic pressures, active mechanisms such as vasoconstriction induced by local hypoxia can also redistribute blood flow. This chapter reviews the determinants of regional lung perfusion with a focus on vascular tree geometry, vertical gradients induced by gravity, the interactions between vascular and surrounding alveolar pressures, and hypoxic pulmonary vasoconstriction. While each of these determinants of perfusion distribution can be examined in isolation, the distribution of blood flow is dynamically determined and each component interacts with the others so that a change in one region of the lung influences the distribution of blood flow in other lung regions. © 2011 American Physiological Society.

  12. Optimization and control of perfusion cultures using a viable cell probe and cell specific perfusion rates.

    PubMed

    Dowd, Jason E; Jubb, Anthea; Kwok, K Ezra; Piret, James M

    2003-05-01

    Consistent perfusion culture production requires reliable cell retention and control of feed rates. An on-line cell probe based on capacitance was used to assay viable biomass concentrations. A constant cell specific perfusion rate controlled medium feed rates with a bioreactor cell concentration of approximately 5 x 10(6) cells mL(-1). Perfusion feeding was automatically adjusted based on the cell concentration signal from the on-line biomass sensor. Cell specific perfusion rates were varied over a range of 0.05 to 0.4 nL cell(-1) day(-1). Pseudo-steady-state bioreactor indices (concentrations, cellular rates and yields) were correlated to cell specific perfusion rates investigated to maximize recombinant protein production from a Chinese hamster ovary cell line. The tissue-type plasminogen activator concentration was maximized ( approximately 40 mg L(-1)) at 0.2 nL cell(-1) day(-1). The volumetric protein productivity ( approximately 60 mg L(-1) day(-1) was maximized above 0.3 nL cell(-1) day(-1). The use of cell specific perfusion rates provided a straightforward basis for controlling, modeling and optimizing perfusion cultures.

  13. Myocardial perfusion assessment with contrast echocardiography

    NASA Astrophysics Data System (ADS)

    Desco, Manuel; Ledesma-Carbayo, Maria J.; Santos, Andres; Garcia-Fernandez, Miguel A.; Marcos-Alberca, Pedro; Malpica, Norberto; Antoranz, Jose C.; Garcia-Barreno, Pedro

    2001-05-01

    Assessment of intramyocardial perfusion by contrast echocardiography is a promising new technique that allows to obtain quantitative parameters for the assessment of ischemic disease. In this work, a new methodology and a software prototype developed for this task are presented. It has been validated with Coherent Contrast Imaging (CCI) images acquired with an Acuson Sequoia scanner. Contrast (Optison microbubbles) is injected continuously during the scan. 150 images are acquired using low mechanical index U/S pulses. A burst of high mechanical index pulses is used to destroy bubbles, thus allowing to detect the contrast wash-in. The stud is performed in two conditions: rest and pharmacologically induced stress. The software developed allows to visualized the study (cine) and to select several ROIs within the heart wall. The position of these ROIs along the cardiac cycle is automatically corrected on the basis of the gradient field, and they can also be manually corrected in case the automatic procedure fails. Time curves are analyzed according to a parametric model that incorporates both contrast inflow rate and cyclic variations. Preliminary clinical results on 80 patients have allowed us to identify normal and pathological patterns and to establish the correlation of quantitative parameters with the real diagnosis.

  14. Use of Noncontrast Computed Tomography and Computed Tomographic Perfusion in Predicting Intracerebral Hemorrhage After Intravenous Alteplase Therapy.

    PubMed

    Batchelor, Connor; Pordeli, Pooneh; d'Esterre, Christopher D; Najm, Mohamed; Al-Ajlan, Fahad S; Boesen, Mari E; McDougall, Connor; Hur, Lisa; Fainardi, Enrico; Shankar, Jai Jai Shiva; Rubiera, Marta; Khaw, Alexander V; Hill, Michael D; Demchuk, Andrew M; Sajobi, Tolulope T; Goyal, Mayank; Lee, Ting-Yim; Aviv, Richard I; Menon, Bijoy K

    2017-06-01

    Intracerebral hemorrhage is a feared complication of intravenous alteplase therapy in patients with acute ischemic stroke. We explore the use of multimodal computed tomography in predicting this complication. All patients were administered intravenous alteplase with/without intra-arterial therapy. An age- and sex-matched case-control design with classic and conditional logistic regression techniques was chosen for analyses. Outcome was parenchymal hemorrhage on 24- to 48-hour imaging. Exposure variables were imaging (noncontrast computed tomography hypoattenuation degree, relative volume of very low cerebral blood volume, relative volume of cerebral blood flow ≤7 mL/min·per 100 g, relative volume of T max ≥16 s with all volumes standardized to z axis coverage, mean permeability surface area product values within T max ≥8 s volume, and mean permeability surface area product values within ipsilesional hemisphere) and clinical variables (NIHSS [National Institutes of Health Stroke Scale], onset to imaging time, baseline systolic blood pressure, blood glucose, serum creatinine, treatment type, and reperfusion status). One-hundred eighteen subjects (22 patients with parenchymal hemorrhage versus 96 without, median baseline NIHSS score of 15) were included in the final analysis. In multivariable regression, noncontrast computed tomography hypoattenuation grade ( P <0.006) and computerized tomography perfusion white matter relative volume of very low cerebral blood volume ( P =0.04) were the only significant variables associated with parenchymal hemorrhage on follow-up imaging (area under the curve, 0.73; 95% confidence interval, 0.63-0.83). Interrater reliability for noncontrast computed tomography hypoattenuation grade was moderate (κ=0.6). Baseline hypoattenuation on noncontrast computed tomography and very low cerebral blood volume on computerized tomography perfusion are associated with development of parenchymal hemorrhage in patients with acute ischemic

  15. AdVEGF-All6A+ Preconditioning of Murine Ischemic Skin Flaps Is Comparable to Surgical Delay.

    PubMed

    Gersch, Robert P; Fourman, Mitchell S; Phillips, Brett T; Nasser, Ahmed; McClain, Steve A; Khan, Sami U; Dagum, Alexander B; Bui, Duc T

    2015-08-01

    Surgical flap delay is commonly used in preconditioning reconstructive flaps to prevent necrosis. However, staged procedures are not ideal. Pharmacologic up-regulation of angiogenic and arteriogenic factors before flap elevation poses a nonsurgical approach to improve flap survival. Male Sprague Dawley rats were divided into control (n = 16), surgical delay (Delay), AdNull, AdEgr-1, and AdVEGF (n ≥ 9/group) groups. Delay rats had a 9 cm × 3 cm cranial based pedicle skin flap incised 10 days prior to elevation. Adenoviral groups received 28 intradermal injections (10(9) pu/animal total) throughout the distal two thirds of the flap 1 week prior to elevation. At postoperative day (POD) 0 flaps were elevated and silicone sheeting was placed between flap and wound bed. Perfusion analysis in arbitrary perfusion units of the ischemic middle third of the flap using laser Doppler imaging was conducted preoperatively and on POD 0, 3, and 7. Clinical and histopathologic assessments of the skin flaps were performed on POD 7. AdVEGF (50.8 ± 10.9 APU) and AdEgr-1 (39.3 ± 10.6 APU) perfusion levels were significantly higher than controls (16.5 ± 4.2 APU) on POD 7. Delay models were equivalent to controls (25.9 ± 6.8 APU). AdVEGF and Delay animals showed significantly more viable surface area on POD 7 (14.4 ± 1.3 cm(2), P < 0.01 and 12.4 ± 1.2 cm(2), P < 0.05, respectively) compared with Controls (8.7 ± 0.7 cm(2)). AdVEGF preconditioning resulted in flap survival comparable to surgical delay. Adenoviral preconditioning maintained perfusion levels postoperatively while surgical delay did not.

  16. AdVEGF-All6A+ Preconditioning of Murine Ischemic Skin Flaps Is Comparable to Surgical Delay

    PubMed Central

    Gersch, Robert P.; Fourman, Mitchell S.; Phillips, Brett T.; Nasser, Ahmed; McClain, Steve A.; Khan, Sami U.; Dagum, Alexander B.

    2015-01-01

    Background: Surgical flap delay is commonly used in preconditioning reconstructive flaps to prevent necrosis. However, staged procedures are not ideal. Pharmacologic up-regulation of angiogenic and arteriogenic factors before flap elevation poses a nonsurgical approach to improve flap survival. Methods: Male Sprague Dawley rats were divided into control (n = 16), surgical delay (Delay), AdNull, AdEgr-1, and AdVEGF (n ≥ 9/group) groups. Delay rats had a 9 cm × 3 cm cranial based pedicle skin flap incised 10 days prior to elevation. Adenoviral groups received 28 intradermal injections (109 pu/animal total) throughout the distal two thirds of the flap 1 week prior to elevation. At postoperative day (POD) 0 flaps were elevated and silicone sheeting was placed between flap and wound bed. Perfusion analysis in arbitrary perfusion units of the ischemic middle third of the flap using laser Doppler imaging was conducted preoperatively and on POD 0, 3, and 7. Clinical and histopathologic assessments of the skin flaps were performed on POD 7. Results: AdVEGF (50.8 ± 10.9 APU) and AdEgr-1 (39.3 ± 10.6 APU) perfusion levels were significantly higher than controls (16.5 ± 4.2 APU) on POD 7. Delay models were equivalent to controls (25.9 ± 6.8 APU). AdVEGF and Delay animals showed significantly more viable surface area on POD 7 (14.4 ± 1.3 cm2, P < 0.01 and 12.4 ± 1.2 cm2, P < 0.05, respectively) compared with Controls (8.7 ± 0.7 cm2). Conclusions: AdVEGF preconditioning resulted in flap survival comparable to surgical delay. Adenoviral preconditioning maintained perfusion levels postoperatively while surgical delay did not. PMID:26495207

  17. A multicenter, randomized trial on neuroprotection with remote ischemic per-conditioning during acute ischemic stroke: the REmote iSchemic Conditioning in acUtE BRAin INfarction study protocol.

    PubMed

    Pico, Fernando; Rosso, Charlotte; Meseguer, Elena; Chadenat, Marie-Laure; Cattenoy, Amina; Aegerter, Philippe; Deltour, Sandrine; Yeung, Jennifer; Hosseini, Hassan; Lambert, Yves; Smadja, Didier; Samson, Yves; Amarenco, Pierre

    2016-10-01

    Rationale Remote ischemic per-conditioning-causing transient limb ischemia to induce ischemic tolerance in other organs-reduces final infarct size in animal stroke models. Aim To evaluate whether remote ischemic per-conditioning during acute ischemic stroke (<6 h) reduces brain infarct size at 24 h. Methods and design This study is being performed in five French hospitals using a prospective randomized open blinded end-point design. Adults with magnetic resonance imaging confirmed ischemic stroke within 6 h of symptom onset and clinical deficit of 5-25 according to National Institutes of Health Stroke Scale will be randomized 1:1 to remote ischemic per-conditioning or control (stratified by center and intravenous fibrinolysis use). Remote ischemic per-conditioning will consist of four cycles of electronic tourniquet inflation (5 min) and deflation (5 min) to a thigh within 6 h of symptom onset. Magnetic resonance imaging is repeated 24 h after stroke onset. Sample size estimates For a difference of 15 cm 3 in brain infarct growth between groups, 200 patients will be included for 5% significance and 80% power. Study outcomes The primary outcome will be the difference in brain infarct growth from baseline to 24 h in the intervention versus control groups (by diffusion-weighted image magnetic resonance imaging). Secondary outcomes include: National Institutes of Health Stroke Scale score absolute difference between baseline and 24 h, three-month modified Rankin score and daily living activities, mortality, and tolerance and side effects of remote ischemic per-conditioning. Discussion The only remote ischemic per-conditioning trial in humans with stroke did not show remote ischemic per-conditioning to be effective. REmote iSchemic Conditioning in acUtE BRAin INfarction, which has important design differences, should provide more information on the use of this intervention in patients with acute ischemic stroke.

  18. Endovascular ischemic stroke models of adult rhesus monkeys: a comparison of two endovascular methods.

    PubMed

    Wu, Di; Chen, Jian; Wang, Bincheng; Zhang, Mo; Shi, Jingfei; Ma, Yanhui; Zhu, Zixin; Yan, Feng; He, Xiaoduo; Li, Shengli; Dornbos Iii, David; Ding, Yuchuan; Ji, Xunming

    2016-08-18

    To further investigate and improve upon current stroke models in nonhuman primates, infarct size, neurologic function and survival were evaluated in two endovascular ischemic models in sixteen rhesus monkeys. The first method utilized a micro-catheter or an inflatable balloon to occlude the M1 segment in six monkeys. In the second model, an autologous clot was injected via a micro-catheter into the M1 segment in ten monkeys. MRI scanning was performed on all monkeys both at baseline and 3 hours after the onset of ischemia. Spetzler neurologic functions were assessed post-operatively, and selective perfusion deficits were confirmed by DSA and MRI in all monkeys. Animals undergoing micro-catheter or balloon occlusion demonstrated more profound hemiparesis, larger infarct sizes, lower Spetzler neurologic scores and increased mortality compared to the thrombus occlusion group. In animals injected with the clot, there was no evidence of dissolution, and the thrombus was either near the injection site (M1) or flushed into the superior division of the MCA (M2). All animals survived the M2 occlusion. M1 occlusion with thrombus generated 50% mortality. This study highlighted clinically important differences in these two models, providing a platform for further study of a translational thromboembolic model of acute ischemic stroke.

  19. Iloprost ameliorates post-ischemic lung reperfusion injury and maintains an appropriate pulmonary ET-1 balance.

    PubMed

    Kawashima, Masahiro; Nakamura, Takayuki; Schneider, Sven; Vollmar, Brigitte; Lausberg, Henning F; Bauer, Michael; Menger, Michael D; Schäfers, Hans-Joachim

    2003-07-01

    Ischemia-reperfusion (I/R) injury of the lung involves increased pulmonary vascular resistance. Prostaglandins are thought to have a beneficial effect in lung transplantation, but their mechanism in I/R injury is unknown. We investigated whether iloprost, a stable prostacyclin analogue, prevents I/R-associated pulmonary vascular dysfunction and whether it affects endothelin-1 (ET-1) balance. In an isolated blood-perfusion model, we subjected lungs of Lewis rats to 45 minutes of ischemia at 37 degrees C and randomly allocated the lungs to 3 groups (n = 6 each): iloprost (33.3 nmol/liter) added to the perfusate before ischemia and reperfusion (ILO+IR), iloprost (33.3 nmol/liter) given only before reperfusion (ILO+R), and controls without iloprost treatment (ILO-). Reperfusion induced marked pulmonary edema in non-treated controls (ILO-), which was attenuated in ILO+R lungs and completely prevented in ILO+IR lungs. At 60 minutes reperfusion, arterial oxygen tension was significantly greater in both ILO+R and ILO+IR lungs compared with ILO- controls. Mean pulmonary artery pressure and pulmonary vascular resistance were slightly decreased in the ILO+R and significantly decreased in the ILO+IR group compared with the ILO- controls. Plasma levels of big ET-1, measured in both afferent and efferent blood, showed that I/R results in increased pulmonary venous levels of big ET-1. Interestingly, the increased venoarterial ET-1 gradient in ILO- lungs decreased significantly in the ILO+IR group. We demonstrated in an isolated lung perfusion model that iloprost ameliorates post-ischemic lung reperfusion injury and maintains an appropriate pulmonary ET-1 balance.

  20. TIA (Transient Ischemic Attack)

    MedlinePlus

    ... a TIA . The symptoms are similar to an ischemic stroke, but TIA symptoms usually last less than five ... treated for a blockage-related stroke (called an ischemic stroke), between 7 and 40% report experiencing a TIA ...

  1. Does dynamic immobilization reduce chondrocyte apoptosis and disturbance to the femoral head perfusion?

    PubMed Central

    Li, Lian-Yong; Zhang, Li-Jun; Jia, Jing-Yu; Zhao, Qun; Wang, En-bo; Li, Qi-Wei

    2013-01-01

    The purpose of this study is to investigate whether the dynamic hip immobilization is more favourable for lessening ischemic injury to the immature femoral head than a static immobilization. 152 Japanese white rabbits were divided into four groups randomly, and the hips were immobilized into “human” position (group A), “frog leg” position (group B) and “dynamic frog leg” position (group C). Group D was used as control. Ten rabbits in each group were killed, and the hip specimens were harvested at 1, 2, and 3 weeks after immobilization. Bcl-2/Bax expression balance and chondrocytes apoptosis were analyzed. The remaining eight rabbits in each group were used to measure the blood supply of capital femoral epiphysis by selective vascular perfusion with Indian ink. The Bcl-2/Bax expression ratio in group C was significantly increased than that in group A and B (p<0.001), while that was not significantly different from control group (p=0.0592). At three weeks after immobilization, the average apoptotic ratio was 36.7%, 45.8%, and 26.7% in group A, B and C, respectively (p<0.01). There was no significant difference between group C and normal control (p=0.0597). The perfusion ratio was 0.03±0.03, 0.03±0.02, and 0.08±0.03 in group A, B and C respectively, and 0.12±0.04 in control group (p<0.05). Thus, the dynamic immobilization model exhibited a relatively less chondrocytes apoptosis and disturbance to the femoral head perfusion than other immobilizations in vivo, which therefore may be useful for reducing avascular necrosis following the treatment of developmental dysplasia of the hip. PMID:23330006

  2. Myocardial perfusion imaging with PET

    PubMed Central

    Nakazato, Ryo; Berman, Daniel S; Alexanderson, Erick; Slomka, Piotr

    2013-01-01

    PET-myocardial perfusion imaging (MPI) allows accurate measurement of myocardial perfusion, absolute myocardial blood flow and function at stress and rest in a single study session performed in approximately 30 min. Various PET tracers are available for MPI, and rubidium-82 or nitrogen-13-ammonia is most commonly used. In addition, a new fluorine-18-based PET-MPI tracer is currently being evaluated. Relative quantification of PET perfusion images shows very high diagnostic accuracy for detection of obstructive coronary artery disease. Dynamic myocardial blood flow analysis has demonstrated additional prognostic value beyond relative perfusion imaging. Patient radiation dose can be reduced and image quality can be improved with latest advances in PET/CT equipment. Simultaneous assessment of both anatomy and perfusion by hybrid PET/CT can result in improved diagnostic accuracy. Compared with SPECT-MPI, PET-MPI provides higher diagnostic accuracy, using lower radiation doses during a shorter examination time period for the detection of coronary artery disease. PMID:23671459

  3. Clinical Correlates, Ethnic Differences, and Prognostic Implications of Perivascular Spaces in Transient Ischemic Attack and Ischemic Stroke.

    PubMed

    Lau, Kui-Kai; Li, Linxin; Lovelock, Caroline E; Zamboni, Giovanna; Chan, Tsz-Tai; Chiang, Man-Fung; Lo, Kin-Ting; Küker, Wilhelm; Mak, Henry Ka-Fung; Rothwell, Peter M

    2017-06-01

    Perivascular spaces (PVSs) are considered markers of small vessel disease. However, their long-term prognostic implications in transient ischemic attack/ischemic stroke patients are unknown. Ethnic differences in PVS prevalence are also unknown. Two independent prospective studies were conducted, 1 comprising predominantly whites with transient ischemic attack/ischemic stroke (OXVASC [Oxford Vascular] study) and 1 comprising predominantly Chinese with ischemic stroke (University of Hong Kong). Clinical and imaging correlates, prognostic implications for stroke and death, and ethnic differences in basal ganglia (BG) and centrum semiovale (CS) PVSs were studied with adjustment for age, sex, vascular risk factors, and scanner strength. Whites with transient ischemic attack/ischemic stroke (n=1028) had a higher prevalence of both BG and CS-PVSs compared with Chinese (n=974; >20 BG-PVSs: 22.4% versus 7.1%; >20 CS-PVSs: 45.8% versus 10.4%; P <0.0001). More than 20 BG or CS-PVSs were both associated with increasing age and white matter hyperintensity, although associations with BG-PVSs were stronger (all P <0.0001). During 6924 patient-years of follow-up, BG-PVSs were also independently associated with an increased risk of recurrent ischemic stroke (adjusted hazard ratio compared with <11 PVSs, 11-20 PVSs: HR, 1.15; 95% confidence interval, 0.78-1.68; >20 PVSs: HR, 1.82; 1.18-2.80; P =0.011) but not intracerebral hemorrhage ( P =0.10) or all-cause mortality ( P =0.16). CS-PVSs were not associated with recurrent stroke ( P =0.57) or mortality ( P =0.072). Prognostic associations were similar in both cohorts. Over and above ethnic differences in frequency of PVSs in transient ischemic attack/ischemic stroke patients, BG and CS-PVSs had similar risk factors, but although >20 BG-PVSs were associated with an increased risk of recurrent ischemic stroke, CS-PVSs were not. © 2017 The Authors.

  4. Monitoring peripheral perfusion and microcirculation.

    PubMed

    Dubin, Arnaldo; Henriquez, Elizabeth; Hernández, Glenn

    2018-06-01

    Microcirculatory alterations play a major role in the pathogenesis of shock. Monitoring tissue perfusion might be a relevant goal for shock resuscitation. The goal of this review was to revise the evidence supporting the monitoring of peripheral perfusion and microcirculation as goals of resuscitation. For this purpose, we mainly focused on skin perfusion and sublingual microcirculation. Although there are controversies about the reproducibility of capillary refill time in monitoring peripheral perfusion, it is a sound physiological variable and suitable for the ICU settings. In addition, observational studies showed its strong ability to predict outcome. Moreover, a preliminary study suggested that it might be a valuable goal for resuscitation. These results should be confirmed by the ongoing ANDROMEDA-SHOCK randomized controlled trial. On the other hand, the monitoring of sublingual microcirculation might also provide relevant physiological and prognostic information. On the contrary, methodological drawbacks mainly related to video assessment hamper its clinical implementation at the present time. Measurements of peripheral perfusion might be useful as goal of resuscitation. The results of the ANDROMEDA-SHOCK will clarify the role of skin perfusion as a guide for the treatment of shock. In contrast, the assessment of sublingual microcirculation mainly remains as a research tool.

  5. Comparison of retrograde cerebral perfusion to antegrade cerebral perfusion and hypothermic circulatory arrest in a chronic porcine model.

    PubMed

    Midulla, P S; Gandsas, A; Sadeghi, A M; Mezrow, C K; Yerlioglu, M E; Wang, W; Wolfe, D; Ergin, M A; Griepp, R B

    1994-09-01

    Retrograde cerebral perfusion (RCP) is a new method of cerebral protection that has been touted as an improvement over hypothermic circulatory arrest (HCA). However, RCP has been used clinically for durations and at temperatures that are "safe" for HCA alone. This study was designed to compare RCP to HCA and antegrade cerebral perfusion (ACP) deliberately exceeding "safe" limits, in order to determine unequivocally whether RCP provides better cerebral protection than HCA. Four groups of six Yorkshire pigs (20 to 30 kg) were randomly assigned to undergo 90 minutes of RCP, ACP, HCA, or HCA with heads packed in ice (HCA-HP) at an esophageal temperature of 20 degrees C. Arterial, mixed venous and cerebral venous oxygen, glucose and lactate contents; quantitative EEG; were monitored at baseline (37 degrees C); at the end of cooling cardiopulmonary bypass (20 degrees C); during rewarming (30 degrees C); and at two and four hours post intervention. Animals were recovered and were evaluated daily using a quantitative behavioral score (0 to 9). Mean behavioral score was lower in the HCA group than in the other three groups at seven days (HCA 5.8 +/- 1.1; RCP 8.5 +/- 0.2; ACP 9.0 +/- 0.0; HCA-HP 8.5 +/- 0.2, p < 0.05). Recovery of QEEG was better in the ACP group than in all others, but the RCP group had faster EEG recovery than HCA alone, although not better than HCA-HP (HCA 15 +/- 4; RCP 27 +/- 3; ACP 78 +/- 5; HCA-HP 19 +/- 3, p < 0.001). However, histopathological evidence of ischemic injury was present in 5 of 6 HCA animals and also in 4 of 6 of the HCP-HP group, but only in 1 of 6 RCP animals and in none of the ACP group. This study demonstrates that ACP affords the best cerebral protection by all outcome measures, but RCP provides clear improvement compared to HCA.

  6. Cochlear perfusion with a viscous fluid.

    PubMed

    Wang, Yi; Olson, Elizabeth S

    2016-07-01

    The flow of viscous fluid in the cochlea induces shear forces, which could provide benefit in clinical practice, for example to guide cochlear implant insertion or produce static pressure to the cochlear partition or wall. From a research standpoint, studying the effects of a viscous fluid in the cochlea provides data for better understanding cochlear fluid mechanics. However, cochlear perfusion with a viscous fluid may damage the cochlea. In this work we studied the physiological and anatomical effects of perfusing the cochlea with a viscous fluid. Gerbil cochleae were perfused at a rate of 2.4 μL/min with artificial perilymph (AP) and sodium hyaluronate (Healon, HA) in four different concentrations (0.0625%, 0.125%, 0.25%, 0.5%). The different HA concentrations were applied either sequentially in the same cochlea or individually in different cochleae. The perfusion fluid entered from the round window and was withdrawn from basal scala vestibuli, in order to perfuse the entire perilymphatic space. Compound action potentials (CAP) were measured after each perfusion. After perfusion with increasing concentrations of HA in the order of increasing viscosity, the CAP thresholds generally increased. The threshold elevation after AP and 0.0625% HA perfusion was small or almost zero, and the 0.125% HA was a borderline case, while the higher concentrations significantly elevated CAP thresholds. Histology of the cochleae perfused with the 0.0625% HA showed an intact Reissner's membrane (RM), while in cochleae perfused with 0.125% and 0.25% HA RM was torn. Thus, the CAP threshold elevation was likely due to the broken RM, likely caused by the shear stress produced by the flow of the viscous fluid. Our results and analysis indicate that the cochlea can sustain, without a significant CAP threshold shift, up to a 1.5 Pa shear stress. Beside these finding, in the 0.125% and 0.25% HA perfusion cases, a temporary CAP threshold shift was observed, perhaps due to the presence and

  7. Cochlear perfusion with a viscous fluid

    PubMed Central

    Wang, Yi; Olson, Elizabeth S.

    2016-01-01

    The flow of viscous fluid in the cochlea induces shear forces, which could provide benefit in clinical practice, for example to guide cochlear implant insertion or produce static pressure to the cochlear partition or wall. From a research standpoint, studying the effects of a viscous fluid in the cochlea provides data for better understanding cochlear fluid mechanics. However, cochlear perfusion with a viscous fluid may damage the cochlea. In this work we studied the physiological and anatomical effects of perfusing the cochlea with a viscous fluid. Gerbil cochleae were perfused at a rate of 2.4 μL/min with artificial perilymph (AP) and sodium hyaluronate (Healon, HA) in four different concentrations (0.0625%, 0.125%, 0.25%, 0.5%). The different HA concentrations were applied either sequentially in the same cochlea or individually in different cochleae. The perfusion fluid entered from the round window and was withdrawnfrom basal scala vestibuli, in order to perfuse the entire perilymphatic space. Compound action potentials (CAP) were measured after each perfusion. After perfusion with increasing concentrations of HA in the order of increasing viscosity, the CAP thresholds generally increased. The threshold elevation after AP and 0.0625% HA perfusion was small or almost zero, and the 0.125% HA was a borderline case, while the higher concentrations significantly elevated CAP thresholds. Histology of the cochleae perfused with the 0.0625% HA showed an intact Reissner’s membrane, while in cochleae perfused with 0.125% and 0.25% HA Reissner’s membrane (RM) was torn. Thus, the CAP threshold elevation was likely due to the broken of RM, which likely caused by the shear stress produced by the flow of the viscous fluid. Our results and analysis indicate that the cochlea can sustain, without a significant CAP threshold shift, up to a 1.5 Pa shear stress. Beside these finding, in the 0.125% and 0.25% HA perfusion cases, a temporary CAP threshold shift was observed

  8. Cerebral collateral therapeutics in acute ischemic stroke: A randomized preclinical trial of four modulation strategies.

    PubMed

    Beretta, Simone; Versace, Alessandro; Carone, Davide; Riva, Matteo; Dell'Era, Valentina; Cuccione, Elisa; Cai, Ruiyao; Monza, Laura; Pirovano, Silvia; Padovano, Giada; Stiro, Fabio; Presotto, Luca; Paternò, Giovanni; Rossi, Emanuela; Giussani, Carlo; Sganzerla, Erik P; Ferrarese, Carlo

    2017-10-01

    Cerebral collaterals are dynamically recruited after arterial occlusion and highly affect tissue outcome in acute ischemic stroke. We investigated the efficacy and safety of four pathophysiologically distinct strategies for acute modulation of collateral flow (collateral therapeutics) in the rat stroke model of transient middle cerebral artery (MCA) occlusion. A composed randomization design was used to assign rats (n = 118) to receive phenylephrine (induced hypertension), polygeline (intravascular volume load), acetazolamide (cerebral arteriolar vasodilation), head down tilt (HDT) 15° (cerebral blood flow diversion), or no treatment, starting 30 min after MCA occlusion. Compared to untreated animals, treatment with collateral therapeutics was associated with lower infarct volumes (62% relative mean difference; 51.57 mm 3 absolute mean difference; p < 0.001) and higher chance of good functional outcome (OR 4.58, p < 0.001). Collateral therapeutics acutely increased cerebral perfusion in the medial (+40.8%; p < 0.001) and lateral (+19.2%; p = 0.016) MCA territory compared to pretreatment during MCA occlusion. Safety indicators were treatment-related mortality and cardiorespiratory effects. The highest efficacy and safety profile was observed for HDT. Our findings suggest that acute modulation of cerebral collaterals is feasible and provides a tissue-saving effect in the hyperacute phase of ischemic stroke prior to recanalization therapy.

  9. Accelerated ischemic vascular retinopathy after intravitreally injected bevacizumab for central retinal vein occlusion in elderly patients

    PubMed Central

    Isola, Vincenzo; Pece, Alfredo; Massironi, Claudio; Reposi, Simone; Dimastrogiovanni, Fabio

    2013-01-01

    Background: Ischemic changes in the retinal circulation are an uncommon but severe adverse vascular reaction to intravitreal bevacizumab (Avastin®, Genentech, San Francisco, CA, USA/Roche, Basel, Switzerland) for central retinal vein occlusion (CRVO). In the two cases reported here, ischemic changes in the retina vasculature following intravitreal bevacizumab for CRVO were observed with the aim of describing the clinical and angiographic features of these changes. Methods: Two elderly patients with recent-onset CRVO received one off-label intravitreal injection of bevacizumab 0.05 mL/1.25 mg. Results: In Case 1, the patient’s pre-treatment visual acuity was 20/400. At 3 weeks post injection, the patient could count fingers at a distance of 1 ft (30 cm) and fluorescein angiography showed reduction in intraretinal hemorrhages and areas of retinal non-perfusion. However, at 6 weeks these were markedly increased compared with those seen in the photograph taken 3 weeks after treatment. In Case 2, the patient’s pre-treatment visual acuity was 20/200. At 1 month post injection, vision had decreased to 20/400 and fluorescein angiography showed severe macular ischemia with a remarkable capillary dropout throughout the macula. Conclusion: Ischemic retinal injury may be an uncommon but severe adverse vascular reaction to intravitreal bevacizumab for CRVO. Although progression of retinal ischemia in CRVO could be observed shortly after intravitreal bevacizumab, whether this is a drug- or procedure-related effect or part of the natural history of the condition remains uncertain. PMID:23467497

  10. AMPA antagonist LY293558 does not affect the severity of hypoxic-ischemic injury in newborn pigs.

    PubMed

    LeBlanc, M H; Li, X Q; Huang, M; Patel, D M; Smith, E E

    1995-10-01

    LY293558 is a systemically active alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) excitatory amino acid antagonist. AMPA antagonists have shown promise in several adult hypoxic-ischemic brain injury models, and we wanted to see if this work could be extended to a newborn animal. Seventy-six (beta error < .10) 0- to 3-day-old piglets under 1.5% isoflurane anesthesia underwent placement of carotid snares and arterial and venous catheters. While paralyzed with succinylcholine under 0.5% isoflurane, 50% nitrous oxide, piglets were randomly assigned to receive either 5 mg/kg or 15 mg/kg of LY293558 or saline at time--10 minutes and again 10 hours later. At time 0, both carotid arteries were clamped, and blood was withdrawn to reduce the blood pressure to two thirds of normal. At time 15 minutes, inspired oxygen was reduced to 6%. At time 30 minutes, the carotid snares were released, the withdrawn blood was reinfused, and the oxygen was switched to 100%. On the third day after the hypoxic-ischemic injury, the animals were killed by perfusion of the brain with 10% formalin. Brain pathology was scored by a blinded observer. There were no significant differences between the drug-treated and control groups. The systemically active AMPA antagonist LY293558, when given at a dose of 5 mg/kg or 15 mg/kg before injury and 10 hours later, does not affect the severity of hypoxic-ischemic brain injury in newborn piglets. Neither AMPA receptor activity nor NMDA receptor activity are important in brain injury in this model.

  11. Lubiprostone induced ischemic colitis.

    PubMed

    Sherid, Muhammed; Sifuentes, Humberto; Samo, Salih; Deepak, Parakkal; Sridhar, Subbaramiah

    2013-01-14

    Ischemic colitis accounts for 6%-18% of the causes of acute lower gastrointestinal bleeding. It is often multifactorial and more commonly encountered in the elderly. Several medications have been implicated in the development of colonic ischemia. We report a case of a 54-year old woman who presented with a two-hour history of nausea, vomiting, abdominal pain, and bloody stool. The patient had recently used lubiprostone with close temporal relationship between the increase in the dose and her symptoms of rectal bleeding. The radiologic, colonoscopic and histopathologic findings were all consistent with ischemic colitis. Her condition improved without any serious complications after the cessation of lubiprostone. This is the first reported case of ischemic colitis with a clear relationship with lubiprostone (Naranjo score of 10). Clinical vigilance for ischemic colitis is recommended for patients receiving lubiprostone who are presenting with abdominal pain and rectal bleeding.

  12. Lubiprostone induced ischemic colitis

    PubMed Central

    Sherid, Muhammed; Sifuentes, Humberto; Samo, Salih; Deepak, Parakkal; Sridhar, Subbaramiah

    2013-01-01

    Ischemic colitis accounts for 6%-18% of the causes of acute lower gastrointestinal bleeding. It is often multifactorial and more commonly encountered in the elderly. Several medications have been implicated in the development of colonic ischemia. We report a case of a 54-year old woman who presented with a two-hour history of nausea, vomiting, abdominal pain, and bloody stool. The patient had recently used lubiprostone with close temporal relationship between the increase in the dose and her symptoms of rectal bleeding. The radiologic, colonoscopic and histopathologic findings were all consistent with ischemic colitis. Her condition improved without any serious complications after the cessation of lubiprostone. This is the first reported case of ischemic colitis with a clear relationship with lubiprostone (Naranjo score of 10). Clinical vigilance for ischemic colitis is recommended for patients receiving lubiprostone who are presenting with abdominal pain and rectal bleeding. PMID:23345954

  13. Intracoronary glucagon-like peptide 1 preferentially augments glucose uptake in ischemic myocardium independent of changes in coronary flow.

    PubMed

    Moberly, Steven P; Berwick, Zachary C; Kohr, Meredith; Svendsen, Mark; Mather, Kieren J; Tune, Johnathan D

    2012-03-01

    We examined the acute dose-dependent effects of intracoronary glucagon-like peptide (GLP)-1 (7-36) on coronary vascular tone, cardiac contractile function and metabolism in normal and ischemic myocardium. Experiments were conducted in open chest, anesthetized dogs at coronary perfusion pressures (CPP) of 100 and 40 mmHg before and during intracoronary GLP-1 (7-36) infusion (10 pmol/L to 1 nmol/L). Isometric tension studies were also conducted in isolated coronary arteries. Cardiac and coronary expression of GLP-1 receptors (GLP-1R) was assessed by Western blot and immunohistochemical analysis. GLP-1R was present in the myocardium and the coronary vasculature. The tension of intact and endothelium-denuded coronary artery rings was unaffected by GLP-1. At normal perfusion pressure (100 mmHg), intracoronary GLP-1 (7-36) (targeting plasma concentration 10 pmol/L to 1 nmol/L) did not affect blood pressure, coronary blood flow or myocardial oxygen consumption (MVO(2)); however, there were modest reductions in cardiac output and stroke volume. In untreated control hearts, reducing CPP to 40 mmHg produced marked reductions in coronary blood flow (0.50 ± 0.10 to 0.17 ± 0.03 mL/min/g; P < 0.001) and MVO(2) (27 ± 2.3 to 15 ± 2.7 μL O(2)/min/g; P < 0.001). At CPP = 40 mmHg, GLP-1 had no effect on coronary blood flow, MVO(2) or regional shortening, but dose-dependently increased myocardial glucose uptake from 0.11 ± 0.02 μmol/min/g at baseline to 0.17 ± 0.04 μmol/min/g at 1 nmol/L GLP-1 (P < 0.001). These data indicate that acute, intracoronary administration of GLP-1 (7-36) preferentially augments glucose metabolism in ischemic myocardium, independent of effects on cardiac contractile function or coronary blood flow.

  14. Limb-shaking transient ischemic attack masquerading as lumbar radiculopathy from pericallosal artery stenosis treated successfully with intracranial angioplasty and stenting.

    PubMed

    Kalia, Junaid; Wolfe, Thomas; Zaidat, Osama O

    2010-03-01

    The pericallosal artery is rarely associated with intracranial atherosclerotic disease and, until recently, was usually not amenable to endovascular therapy with balloon angioplasty and stenting. We present an elderly patient with postural left leg-shaking episodes secondary to pericallosal artery stenosis, which was treated initially with primary intracranial balloon angioplasty, and subsequently, angioplasty and stenting as a result of recurrent stenosis. Both procedures were preformed without complications, and the patient remained free of symptoms on 6-month follow-up. This case demonstrates unique clinical and neuroendovascular aspects; the isolated postural leg-shaking transient ischemic attacks, initially mistaken for radiculopathy and local joint etiology, were found later to be cerebrovascular ischemic in origin. Moreover, the correlation between the findings of computed tomography perfusion and angiography localized the lesion into the medial frontal lobe and pericallosal artery territory. In addition, the technical aspect provides insight into the current state of neuroendovascular techniques, addressing the difficulty of access into very small and distal intracranial arteries affected by stenosis. Copyright 2010 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  15. Assessment of the spatial pattern of colorectal tumour perfusion estimated at perfusion CT using two-dimensional fractal analysis.

    PubMed

    Goh, Vicky; Sanghera, Bal; Wellsted, David M; Sundin, Josefin; Halligan, Steve

    2009-06-01

    The aim was to evaluate the feasibility of fractal analysis for assessing the spatial pattern of colorectal tumour perfusion at dynamic contrast-enhanced CT (perfusion CT). Twenty patients with colorectal adenocarcinoma underwent a 65-s perfusion CT study from which a perfusion parametric map was generated using validated commercial software. The tumour was identified by an experienced radiologist, segmented via thresholding and fractal analysis applied using in-house software: fractal dimension, abundance and lacunarity were assessed for the entire outlined tumour and for selected representative areas within the tumour of low and high perfusion. Comparison was made with ten patients with normal colons, processed in a similar manner, using two-way mixed analysis of variance with statistical significance at the 5% level. Fractal values were higher in cancer than normal colon (p < or = 0.001): mean (SD) 1.71 (0.07) versus 1.61 (0.07) for fractal dimension and 7.82 (0.62) and 6.89 (0.47) for fractal abundance. Fractal values were lower in 'high' than 'low' perfusion areas. Lacunarity curves were shifted to the right for cancer compared with normal colon. In conclusion, colorectal cancer mapped by perfusion CT demonstrates fractal properties. Fractal analysis is feasible, potentially providing a quantitative measure of the spatial pattern of tumour perfusion.

  16. EFFECT ON PERFUSION VALUES OF SAMPLING INTERVAL OF CT PERFUSION ACQUISITIONS IN NEUROENDOCRINE LIVER METASTASES AND NORMAL LIVER

    PubMed Central

    Ng, Chaan S.; Hobbs, Brian P.; Wei, Wei; Anderson, Ella F.; Herron, Delise H.; Yao, James C.; Chandler, Adam G.

    2014-01-01

    Objective To assess the effects of sampling interval (SI) of CT perfusion acquisitions on CT perfusion values in normal liver and liver metastases from neuroendocrine tumors. Methods CT perfusion in 16 patients with neuroendocrine liver metastases were analyzed by distributed parameter modeling to yield tissue blood flow, blood volume, mean transit time, permeability, and hepatic arterial fraction, for tumor and normal liver. CT perfusion values for the reference sampling interval of 0.5s (SI0.5) were compared with those of SI datasets of 1s, 2s, 3s and 4s, using mixed-effects model analyses. Results Increases in SI beyond 1s were associated with significant and increasing departures of CT perfusion parameters from reference values at SI0.5 (p≤0.0009). CT perfusion values deviated from reference with increasing uncertainty with increasing SIs. Findings for normal liver were concordant. Conclusion Increasing SIs beyond 1s yield significantly different CT perfusion parameter values compared to reference values at SI0.5. PMID:25626401

  17. Does machine perfusion decrease ischemia reperfusion injury?

    PubMed

    Bon, D; Delpech, P-O; Chatauret, N; Hauet, T; Badet, L; Barrou, B

    2014-06-01

    In 1990's, use of machine perfusion for organ preservation has been abandoned because of improvement of preservation solutions, efficient without perfusion, easy to use and cheaper. Since the last 15 years, a renewed interest for machine perfusion emerged based on studies performed on preclinical model and seems to make consensus in case of expanded criteria donors or deceased after cardiac death donations. We present relevant studies highlighted the efficiency of preservation with hypothermic machine perfusion compared to static cold storage. Machines for organ preservation being in constant evolution, we also summarized recent developments included direct oxygenation of the perfusat. Machine perfusion technology also enables organ reconditioning during the last hours of preservation through a short period of perfusion on hypothermia, subnormothermia or normothermia. We present significant or low advantages for machine perfusion against ischemia reperfusion injuries regarding at least one primary parameter: risk of DFG, organ function or graft survival. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Clinical Correlates, Ethnic Differences, and Prognostic Implications of Perivascular Spaces in Transient Ischemic Attack and Ischemic Stroke

    PubMed Central

    Lau, Kui-Kai; Li, Linxin; Lovelock, Caroline E.; Zamboni, Giovanna; Chan, Tsz-Tai; Chiang, Man-Fung; Lo, Kin-Ting; Küker, Wilhelm; Mak, Henry Ka-Fung

    2017-01-01

    Background and Purpose— Perivascular spaces (PVSs) are considered markers of small vessel disease. However, their long-term prognostic implications in transient ischemic attack/ischemic stroke patients are unknown. Ethnic differences in PVS prevalence are also unknown. Methods— Two independent prospective studies were conducted, 1 comprising predominantly whites with transient ischemic attack/ischemic stroke (OXVASC [Oxford Vascular] study) and 1 comprising predominantly Chinese with ischemic stroke (University of Hong Kong). Clinical and imaging correlates, prognostic implications for stroke and death, and ethnic differences in basal ganglia (BG) and centrum semiovale (CS) PVSs were studied with adjustment for age, sex, vascular risk factors, and scanner strength. Results— Whites with transient ischemic attack/ischemic stroke (n=1028) had a higher prevalence of both BG and CS-PVSs compared with Chinese (n=974; >20 BG-PVSs: 22.4% versus 7.1%; >20 CS-PVSs: 45.8% versus 10.4%; P<0.0001). More than 20 BG or CS-PVSs were both associated with increasing age and white matter hyperintensity, although associations with BG-PVSs were stronger (all P<0.0001). During 6924 patient-years of follow-up, BG-PVSs were also independently associated with an increased risk of recurrent ischemic stroke (adjusted hazard ratio compared with <11 PVSs, 11–20 PVSs: HR, 1.15; 95% confidence interval, 0.78–1.68; >20 PVSs: HR, 1.82; 1.18–2.80; P=0.011) but not intracerebral hemorrhage (P=0.10) or all-cause mortality (P=0.16). CS-PVSs were not associated with recurrent stroke (P=0.57) or mortality (P=0.072). Prognostic associations were similar in both cohorts. Conclusions— Over and above ethnic differences in frequency of PVSs in transient ischemic attack/ischemic stroke patients, BG and CS-PVSs had similar risk factors, but although >20 BG-PVSs were associated with an increased risk of recurrent ischemic stroke, CS-PVSs were not. PMID:28495831

  19. Developing a Benchmarking Process in Perfusion: A Report of the Perfusion Downunder Collaboration

    PubMed Central

    Baker, Robert A.; Newland, Richard F.; Fenton, Carmel; McDonald, Michael; Willcox, Timothy W.; Merry, Alan F.

    2012-01-01

    Abstract: Improving and understanding clinical practice is an appropriate goal for the perfusion community. The Perfusion Downunder Collaboration has established a multi-center perfusion focused database aimed at achieving these goals through the development of quantitative quality indicators for clinical improvement through benchmarking. Data were collected using the Perfusion Downunder Collaboration database from procedures performed in eight Australian and New Zealand cardiac centers between March 2007 and February 2011. At the Perfusion Downunder Meeting in 2010, it was agreed by consensus, to report quality indicators (QI) for glucose level, arterial outlet temperature, and pCO2 management during cardiopulmonary bypass. The values chosen for each QI were: blood glucose ≥4 mmol/L and ≤10 mmol/L; arterial outlet temperature ≤37°C; and arterial blood gas pCO2 ≥ 35 and ≤45 mmHg. The QI data were used to derive benchmarks using the Achievable Benchmark of Care (ABC™) methodology to identify the incidence of QIs at the best performing centers. Five thousand four hundred and sixty-five procedures were evaluated to derive QI and benchmark data. The incidence of the blood glucose QI ranged from 37–96% of procedures, with a benchmark value of 90%. The arterial outlet temperature QI occurred in 16–98% of procedures with the benchmark of 94%; while the arterial pCO2 QI occurred in 21–91%, with the benchmark value of 80%. We have derived QIs and benchmark calculations for the management of several key aspects of cardiopulmonary bypass to provide a platform for improving the quality of perfusion practice. PMID:22730861

  20. Panic attack triggering myocardial ischemia documented by myocardial perfusion imaging study. A case report

    PubMed Central

    2012-01-01

    Background Chest pain, a key element in the investigation of coronary artery disease is often regarded as a benign prognosis when present in panic attacks. However, panic disorder has been suggested as an independent risk factor for long-term prognosis of cardiovascular diseases and a trigger of acute myocardial infarction. Objective Faced with the extreme importance in differentiate from ischemic to non-ischemic chest pain, we report a case of panic attack induced by inhalation of 35% carbon dioxide triggering myocardial ischemia, documented by myocardial perfusion imaging study. Discussion Panic attack is undoubtedly a strong component of mental stress. Patients with coronary artery disease may present myocardial ischemia in mental stress response by two ways: an increase in coronary vasomotor tone or a sympathetic hyperactivity leading to a rise in myocardial oxygen consumption. Coronary artery spasm was presumed to be present in cases of cardiac ischemia linked to panic disorder. Possibly the carbon dioxide challenge test could trigger myocardial ischemia by the same mechanisms. Conclusion The use of mental stress has been suggested as an alternative method for myocardial ischemia investigation. Based on translational medicine objectives the use of CO2 challenge followed by Sestamibi SPECT could be a useful method to allow improved application of research-based knowledge to the medical field, specifically at the interface of PD and cardiovascular disease. PMID:22999016

  1. Panic attack triggering myocardial ischemia documented by myocardial perfusion imaging study. A case report.

    PubMed

    Soares-Filho, Gastão Luiz Fonseca; Mesquita, Claudio Tinoco; Mesquita, Evandro Tinoco; Arias-Carrión, Oscar; Machado, Sergio; González, Manuel Menéndez; Valença, Alexandre Martins; Nardi, Antonio Egidio

    2012-09-21

    Chest pain, a key element in the investigation of coronary artery disease is often regarded as a benign prognosis when present in panic attacks. However, panic disorder has been suggested as an independent risk factor for long-term prognosis of cardiovascular diseases and a trigger of acute myocardial infarction. Faced with the extreme importance in differentiate from ischemic to non-ischemic chest pain, we report a case of panic attack induced by inhalation of 35% carbon dioxide triggering myocardial ischemia, documented by myocardial perfusion imaging study. Panic attack is undoubtedly a strong component of mental stress. Patients with coronary artery disease may present myocardial ischemia in mental stress response by two ways: an increase in coronary vasomotor tone or a sympathetic hyperactivity leading to a rise in myocardial oxygen consumption. Coronary artery spasm was presumed to be present in cases of cardiac ischemia linked to panic disorder. Possibly the carbon dioxide challenge test could trigger myocardial ischemia by the same mechanisms. The use of mental stress has been suggested as an alternative method for myocardial ischemia investigation. Based on translational medicine objectives the use of CO2 challenge followed by Sestamibi SPECT could be a useful method to allow improved application of research-based knowledge to the medical field, specifically at the interface of PD and cardiovascular disease.

  2. Numerical simulation of blood flow in femoral perfusion: comparison between side-armed femoral artery perfusion and direct femoral artery perfusion.

    PubMed

    Kitamura, Shingo; Shirota, Minori; Fukuda, Wakako; Inamura, Takao; Fukuda, Ikuo

    2016-12-01

    Computational numerical analysis was performed to elucidate the flow dynamics of femoral artery perfusion. Numerical simulation of blood flow was performed from the right femoral artery in an aortic model. An incompressible Navier-Stokes equation and continuity equation were solved using computed flow dynamics software. Three different perfusion models were analyzed: a 4.0-mm cannula (outer diameter 15 French size), a 5.2-mm cannula (18 French size) and an 8-mm prosthetic graft. The cannula was inserted parallel to the femoral artery, while the graft was anastomosed perpendicular to the femoral artery. Shear stress was highest with the 4-mm cannula (172 Pa) followed by the graft (127 Pa) and the 5.2-mm cannula (99 Pa). The cannula exit velocity was high, even when the 5.2-mm cannula was used. Although side-armed perfusion with an 8-mm graft generated a high shear stress area near the point of anastomosis, flow velocity at the external iliac artery was decreased. The jet speed decreased due to the Coanda effect caused by the recirculation behind sudden expansion of diameter, and the flow velocity maintains a constant speed after the reattachment length of the flow. This study showed that iliac artery shear stress was lower with the 5.2-mm cannula than with the 4-mm cannula when used for femoral perfusion. Side-armed graft perfusion generates a high shear stress area around the anastomotic site, but flow velocity in the iliac artery is slower in the graft model than in the 5.2-mm cannula model.

  3. Recombinant antibody production by perfusion cultures of rCHO cells in a depth filter perfusion system.

    PubMed

    Lee, Joon Chul; Chang, Ho Nam; Oh, Duk Jae

    2005-01-01

    Recombinant Chinese hamster ovary cells, producing recombinant antibody against the human platelet, were cultivated in a depth filter perfusion system (DFPS). When perfusion cultures with working volume of 1 L were operated at perfusion rates of 5/d and 6/d, volumetric antibody productivities reached values 28 and 34 times higher than that of batch suspension culture in Erlenmeyer flasks and 43 and 53 times higher than that of batch culture in a controlled stirred tank reactor, respectively. Perfusion cultures in the DFPS showed stable antibody production over the whole culture period of up to 20 days. In the DFPS, inoculated cells in suspension were entrapped in a few hours within the depth filter matrix by medium circulation and retained there until the void space of the filter matrix was saturated by the cultured cells. After cells in the depth filter matrix reached saturation, overgrown viable cells at a perfusion rate of 5/d or 6/d were continuously collected into waste medium at a density of 2-4 x 10(5) cells/mL, which resulted in stable operation at high perfusion rates, maintaining values of process parameters such as glucose/lactate concentration, pH, and dissolved oxygen concentration. Because the DFPS overcomes most drawbacks observed with conventional perfusion systems, it is preferable to be used as a key culture system to produce monoclonal antibody stably for a long culture period.

  4. Microvascular Perfusion Changes following Transarterial Hepatic Tumor Embolization

    PubMed Central

    Johnson, Carmen Gacchina; Sharma, Karun V.; Levy, Elliot B.; Woods, David L.; Morris, Aaron H.; Bacher, John D.; Lewis, Andrew L.; Wood, Bradford J.; Dreher, Matthew R.

    2015-01-01

    Purpose To quantify changes in tumor microvascular (< 1 mm) perfusion relative to commonly used angiographic endpoints. Materials and Methods Rabbit Vx2 liver tumors were embolized with 100–300-µm LC Bead particles to endpoints of substasis or complete stasis (controls were not embolized). Microvascular perfusion was evaluated by delivering two different fluorophore-conjugated perfusion markers (ie, lectins) through the catheter before embolization and 5 min after reaching the desired angiographic endpoint. Tumor microvasculature was labeled with an anti-CD31 antibody and analyzed with fluorescence microscopy for perfusion marker overlap/mismatch. Data were analyzed by analysis of variance and post hoc test (n = 3–5 per group; 18 total). Results Mean microvascular density was 70 vessels/mm2 ± 17 (standard error of the mean), and 81% ± 1 of microvasculature (ie, CD31+ structures) was functionally perfused within viable Vx2 tumor regions. Embolization to the extent of substasis eliminated perfusion in 37% ± 9 of perfused microvessels (P > .05 vs baseline), whereas embolization to the extent of angiographic stasis eliminated perfusion in 56% ± 8 of perfused microvessels. Persistent microvascular perfusion following embolization was predominantly found in the tumor periphery, adjacent to normal tissue. Newly perfused microvasculature was evident following embolization to substasis but not when embolization was performed to complete angiographic stasis. Conclusions Nearly half of tumor microvasculature remained patent despite embolization to complete angiographic stasis. The observed preservation of tumor microvasculature perfusion with angiographic endpoints of substasis and stasis may have implications for tumor response to embolotherapy. PMID:26321051

  5. Visual enhancement of laparoscopic partial nephrectomy with 3-charge coupled device camera: assessing intraoperative tissue perfusion and vascular anatomy by visible hemoglobin spectral response.

    PubMed

    Crane, Nicole J; Gillern, Suzanne M; Tajkarimi, Kambiz; Levin, Ira W; Pinto, Peter A; Elster, Eric A

    2010-10-01

    We report the novel use of 3-charge coupled device camera technology to infer tissue oxygenation. The technique can aid surgeons to reliably differentiate vascular structures and noninvasively assess laparoscopic intraoperative changes in renal tissue perfusion during and after warm ischemia. We analyzed select digital video images from 10 laparoscopic partial nephrectomies for their individual 3-charge coupled device response. We enhanced surgical images by subtracting the red charge coupled device response from the blue response and overlaying the calculated image on the original image. Mean intensity values for regions of interest were compared and used to differentiate arterial and venous vasculature, and ischemic and nonischemic renal parenchyma. The 3-charge coupled device enhanced images clearly delineated the vessels in all cases. Arteries were indicated by an intense red color while veins were shown in blue. Differences in mean region of interest intensity values for arteries and veins were statistically significant (p >0.0001). Three-charge coupled device analysis of pre-clamp and post-clamp renal images revealed visible, dramatic color enhancement for ischemic vs nonischemic kidneys. Differences in the mean region of interest intensity values were also significant (p <0.05). We present a simple use of conventional 3-charge coupled device camera technology in a way that may provide urological surgeons with the ability to reliably distinguish vascular structures during hilar dissection, and detect and monitor changes in renal tissue perfusion during and after warm ischemia. Copyright © 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  6. Future cardiac events in patients with ischemic ECG changes during adenosine infusion as a myocardial stress agent and normal cardiac scan.

    PubMed

    Amer, Hamid; Niaz, Khalid; Hatazawa, Jun; Gasmelseed, Ahmed; Samiri, Hussain Al; Al Othman, Maram; Hammad, Mai Al

    2017-11-01

    We sought to determine the prognostic importance of adenosine-induced ischemic ECG changes in patients with normal single-photon emission computed tomography myocardial perfusion images (MPI). We carried out a retrospective analysis of 765 patients undergoing adenosine MPI between January 2013 and January 2015. Patients with baseline ECG abnormalities and/or abnormal scan were excluded. Overall, 67 (8.7%) patients had ischemic ECG changes during adenosine infusion in the form of ST depression of 1 mm or more. Of these, 29 [43% (3.8% of all patients)] had normal MPI (positive ECG group). An age-matched and sex-matched group of 108 patients with normal MPI without ECG changes served as control participants (negative ECG group). During a mean follow-up duration of 33.3±6.1 months, patients in the positive ECG group did not have significantly more adverse cardiac events than those in the negative ECG group. One (0.9%) patient in the negative ECG group had a nonfatal myocardial infarction (0.7% annual event rate after a negative MPI). Also in this group, two (1.8%) patients admitted with a diagnosis of CAD where they have been ruled out by angiography. A fourth case in this, in the negative ECG group, was admitted because of heart failure that proved to be secondary to a pulmonary cause and not CAD. A case only in the positive ECG group was admitted as a CAD that was ruled out by coronary angiography. Patients with normal myocardial perfusion scintigraphy in whom ST-segment depression develops during adenosine stress test appear to have no increased risk for future cardiac events compared with similar patients without ECG evidence of ischemia.

  7. Prevalence of ECG changes during adenosine stress and its association with perfusion defect on myocardial perfusion scintigraphy.

    PubMed

    Taywade, Sameer K; Ramaiah, Vijayaraghavan L; Basavaraja, Harish; Venkatasubramaniam, Parameswaran R; Selvakumar, Job

    2017-04-01

    Myocardial perfusion scintigraphy (MPS) is a valuable, noninvasive imaging modality in the evaluation of patients with coronary artery disease. Adenosine stress may occasionally be associated with ECG changes. This study evaluated the strength of association between adenosine stress-related ECG changes and perfusion defects on Tc-MPS. 117 (mean age: 61.25±9.27 years; sex: men 87, women 30) patients with known/suspected coronary artery disease underwent adenosine stress MPS. ECG was monitored continuously during adenosine stress for ST-depression. On the basis of the summed difference score, reversible perfusion defects were categorized as follows: normal: less than 4, mild: 4-8, moderate: 9-13, and severe: more than 13. ST-depression was observed in 27/117 (23.1%) and reversible perfusion defects were observed in 18/27 (66.66%) patients. 2/27, 6/27, and 10/27 patients had mild, moderate, and severe ischemia, respectively. 9/27 patients had normal perfusion. ECG changes and perfusion defects showed a moderate strength of association (correlation coefficient r=0.35, P=0.006). The sensitivity, specificity, positive predictive value, and negative predictive value of ECG findings for prediction of ischemia were 35.29, 86.36, 67.67, and 63.33%, respectively. ECG changes during adenosine stress are not uncommon. It shows a moderate strength of association with reversible perfusion defects. ECG changes during adenosine merit critical evaluation of MPS findings.

  8. Radionuclide deposition control

    DOEpatents

    Brehm, William F.; McGuire, Joseph C.

    1980-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

  9. Granulocyte-colony stimulating factor therapy to induce neovascularization in ischemic heart disease.

    PubMed

    Ripa, Rasmus Sejersten

    2012-03-01

    Cell based therapy for ischemic heart disease has the potential to reduce post infarct heart failure and chronic ischemia. Treatment with granulocyte-colony stimulating factor (G-CSF) mobilizes cells from the bone marrow to the peripheral blood. Some of these cells are putative stem or progenitor cells. G-CSF is injected subcutaneously. This therapy is intuitively attractive compared to other cell based techniques since repeated catheterizations and ex vivo cell purification and expansion are avoided. Previous preclinical and early clinical trials have indicated that treatment with G-CSF leads to improved myocardial perfusion and function in acute or chronic ischemic heart disease. The hypothesis of this thesis is that patient with ischemic heart disease will benefit from G-CSF therapy. We examined this hypothesis in two clinical trials with G-CSF treatment to patients with either acute myocardial infarction or severe chronic ischemic heart disease. In addition, we assed a number of factors that could potentially affect the effect of cell based therapy. Finally, we intended to develop a method for in vivo cell tracking in the heart. Our research showed that subcutaneous G-CSF along with gene therapy do not improve myocardial function in patients with chronic ischemia despite a large increase in circulation bone marrow-derived cells. Also, neither angina pectoris nor exercise capacity was improved compared to placebo treatment. We could not identify differences in angiogenic factors or bone marrow-derived cells in the blood that could explain the neutral effect of G-CSF. Next, we examined G-CSF as adjunctive therapy following ST segment elevation myocardial infarction. We did not find any effect of G-CSF neither on the primary endpoint--regional myocardial function--nor on left ventricular ejection fraction (secondary endpoint) compared to placebo treatment. In subsequent analyses, we found significant differences in the types of cells mobilized from the bone marrow

  10. Pancreas transplants: Evaluation using perfusion scintigraphy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuni, C.C.; du Cret, R.P.; Boudreau, R.J.

    1989-07-01

    To determine the value of scintigraphic perfusion studies in evaluating pancreas transplant patients, we reviewed 56 of these studies in 22 patients who had 27 transplants. Seventeen patients underwent two or more studies. The perfusion studies were performed with 20 mCi (740 MBq) of 99mTc-DTPA injected as a bolus followed by eight to 16 serial 2-sec images and a 500,000-count immediate static image. Images were evaluated for (1) the time and intensity of pancreatic peak radioactivity relative to the time and intensity of the iliac arterial peak; (2) relative pancreatic to iliac arterial intensity on the static image; and (3)more » size, homogeneity, and definition of the pancreas. Clinical diagnoses at the time of scintigraphy of normal function (n = 36), rejection (n = 13), pancreatitis (n = 6), or arterial thrombosis (n = 1) were based on insulin requirement, urine amylase, serum glucose, serum amylase, response to therapy, cultures, CT, MR, sonography, scintigraphy with 67Ga or 111In-WBCs, percutaneous drainage results, angiography, surgery, and pathologic examination of resected transplants. Three 99mTc-DTPA perfusion studies showed no pancreatic perfusion, four showed decreasing perfusion on serial studies, and five showed progressive loss of definition of the pancreas on serial studies. Of the three patients with no detectable perfusion, one had a normally functioning transplant, one had arterial thrombosis with transplant infarction, and one had severe rejection with minimal function. Decreasing perfusion was associated with rejection in three patients and pancreatitis in one. Decreasing definition was seen in four patients with rejection and one with pancreatitis. We conclude that perfusion scintigraphy is useful, primarily when performed serially, although nonspecific for evaluating pancreas transplants.« less

  11. Vicarious audiovisual learning in perfusion education.

    PubMed

    Rath, Thomas E; Holt, David W

    2010-12-01

    Perfusion technology is a mechanical and visual science traditionally taught with didactic instruction combined with clinical experience. It is difficult to provide perfusion students the opportunity to experience difficult clinical situations, set up complex perfusion equipment, or observe corrective measures taken during catastrophic events because of patient safety concerns. Although high fidelity simulators offer exciting opportunities for future perfusion training, we explore the use of a less costly low fidelity form of simulation instruction, vicarious audiovisual learning. Two low fidelity modes of instruction; description with text and a vicarious, first person audiovisual production depicting the same content were compared. Students (n = 37) sampled from five North American perfusion schools were prospectively randomized to one of two online learning modules, text or video.These modules described the setup and operation of the MAQUET ROTAFLOW stand-alone centrifugal console and pump. Using a 10 question multiple-choice test, students were assessed immediately after viewing the module (test #1) and then again 2 weeks later (test #2) to determine cognition and recall of the module content. In addition, students completed a questionnaire assessing the learning preferences of today's perfusion student. Mean test scores from test #1 for video learners (n = 18) were significantly higher (88.89%) than for text learners (n = 19) (74.74%), (p < .05). The same was true for test #2 where video learners (n = 10) had an average score of 77% while text learners (n = 9) scored 60% (p < .05). Survey results indicated video learners were more satisfied with their learning module than text learners. Vicarious audiovisual learning modules may be an efficacious, low cost means of delivering perfusion training on subjects such as equipment setup and operation. Video learning appears to improve cognition and retention of learned content and may play an important role in how we

  12. Relationship of brain imaging with radionuclides and with x-ray computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, D.E.

    1981-03-03

    Because of high sensitivity and specificity for altered local cerebral structure, x-ray computed tomography (CT) is the preferred initial diagnostic imaging study under most circumstances when cerebral disease is suspected. CT has no competitor for detecting fresh intracerebral hemorrhage. Radionuclide imaging (RN) scan is preferred when relative perfusion is to be assessed, in patients allergic to contrast media, and when an adequate CT study is not technically possible. (RN) plays an important complementary role to CT, especially for patients suspected of subacute or chronic subdura hematoma, cerebral infarction, arteriovenous malformations, meningitis, encephalitis, normal pressure hydrocephalus, or when CT findings aremore » inconclusive. When CT is not available, RN serves as a good screening study for suspected cerebral tumor, infection, recent infarction, arteriovenous malformation, and chronic subdural hematoma. Future improvement in radionuclide imaging by means of emission composition potential. The compound plating approacl threshold for all the investigated transistors and fast neutron spectra lies within the raal. The value of the potential slightly changes with the coordinate change in this region, i.e. the charge on a collecting electrode is not practically guided up to a certain moment of time during the movement of nonequilibrium carriers.« less

  13. Hypothermic machine perfusion in kidney transplantation.

    PubMed

    De Deken, Julie; Kocabayoglu, Peri; Moers, Cyril

    2016-06-01

    This article summarizes novel developments in hypothermic machine perfusion (HMP) as an organ preservation modality for kidneys recovered from deceased donors. HMP has undergone a renaissance in recent years. This renewed interest has arisen parallel to a shift in paradigms; not only optimal preservation of an often marginal quality graft is required, but also improved graft function and tools to predict the latter are expected from HMP. The focus of attention in this field is currently drawn to the protection of endothelial integrity by means of additives to the perfusion solution, improvement of the HMP solution, choice of temperature, duration of perfusion, and machine settings. HMP may offer the opportunity to assess aspects of graft viability before transplantation, which can potentially aid preselection of grafts based on characteristics such as perfusate biomarkers, as well as measurement of machine perfusion dynamics parameters. HMP has proven to be beneficial as a kidney preservation method for all types of renal grafts, most notably those retrieved from extended criteria donors. Large numbers of variables during HMP, such as duration, machine settings and additives to the perfusion solution are currently being investigated to improve renal function and graft survival. In addition, the search for biomarkers has become a focus of attention to predict graft function posttransplant.

  14. Quantification of in vivo pH-weighted amide proton transfer (APT) MRI in acute ischemic stroke

    NASA Astrophysics Data System (ADS)

    Zhou, Iris Y.; Igarashi, Takahiro; Guo, Yingkun; Sun, Phillip Z.

    2015-03-01

    Amide proton transfer (APT) imaging is a specific form of chemical exchange saturation transfer (CEST) MRI that probes the pH-dependent amide proton exchange.The endogenous APT MRI is sensitive to tissue acidosis, which may complement the commonly used perfusion and diffusion scans for characterizing heterogeneous ischemic tissue damage. Whereas the saturation transfer asymmetry analysis (MTRasym) may reasonably compensate for direct RF saturation, in vivo MTRasym is however, susceptible to an intrinsically asymmetric shift (MTR'asym). Specifically, the reference scan for the endogenous APT MRI is 7 ppm upfield from that of the label scan, and subjects to concomitant RF irradiation effects, including nuclear overhauser effect (NOE)-mediated saturation transfer and semisolid macromolecular magnetization transfer. As such, the commonly used asymmetry analysis could not fully compensate for such slightly asymmetric concomitant RF irradiation effects, and MTRasym has to be delineated in order to properly characterize the pH-weighted APT MRI contrast. Given that there is very little change in relaxation time immediately after ischemia and the concomitant RF irradiation effects only minimally depends on pH, the APT contrast can be obtained as the difference of MTRasym between the normal and ischemic regions. Thereby, the endogenous amide proton concentration and exchange rate can be solved using a dual 2-pool model, and the in vivo MTR'asym can be calculated by subtracting the solved APT contrast from asymmetry analysis (i.e., MTR'asym =MTRasym-APTR). In addition, MTR'asym can be quantified using the classical 2-pool exchange model. In sum, our study delineated the conventional in vivo pH-sensitive MTRasym contrast so that pHspecific contrast can be obtained for imaging ischemic tissue acidosis.

  15. Regional perfusion by extracorporeal membrane oxygenation of abdominal organs from donors after circulatory death: a systematic review.

    PubMed

    Shapey, Iestyn M; Muiesan, Paolo

    2013-12-01

    Organs from donors after circulatory death (DCDs) are particularly susceptible to the effects of warm ischemia injury. Regional perfusion (RP) by extracorporeal membrane oxygenation (ECMO) is increasingly being advocated as a useful remedy to the effects of ischemia/reperfusion injury, and it has been reported to enable the transplantation of organs from donors previously deemed unsuitable. The MEDLINE, Embase, and Cochrane databases were searched, and articles published between 1997 and 2013 were obtained. A systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Two hundred ten articles were identified, and 11 were eligible for inclusion. Four hundred eighty-two kidneys and 79 livers were transplanted from regional perfusion-supported donor after circulatory death (RP-DCD) sources. One-year graft survival was lower with uncontrolled RP-DCD liver transplantation, whereas 1-year patient survival was similar. Primary nonfunction and ischemic cholangiopathy were significantly more frequent with RP-DCDs versus donors after brain death (DBDs), but there was no difference in postoperative mortality between the 2 groups. The 1-year patient and graft survival rates for RP-DCD kidney transplantation were better than the rates with standard DCDs and were comparable to, if not better than, the rates with DBDs. At experienced centers, delayed graft function (DGF) for kidney transplantation from RP-DCDs was much less frequent in comparison with all other donor types. In conclusion, RP aids the recovery of DCD organs from ischemic injury and enables transplantation with acceptable survival. RP may help to increase the donor pool, but its benefits must still be balanced with the recognition of significantly higher rates of complications in liver transplantation. In kidney transplantation, significant reductions in DGF can be obtained with RP, and there are potentially important implications for long

  16. Ex vivo lung perfusion.

    PubMed

    Reeb, Jeremie; Cypel, Marcelo

    2016-03-01

    Lung transplantation is an established life-saving therapy for patients with end-stage lung disease. Unfortunately, greater success in lung transplantation is hindered by a shortage of lung donors and the relatively poor early-, mid-, and long-term outcomes associated with severe primary graft dysfunction. Ex vivo lung perfusion has emerged as a modern preservation technique that allows for a more accurate lung assessment and improvement in lung quality. This review outlines the: (i) rationale behind the method; (ii) techniques and protocols; (iii) Toronto ex vivo lung perfusion method; (iv) devices available; and (v) clinical experience worldwide. We also highlight the potential of ex vivo lung perfusion in leading a new era of lung preservation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Endovascular Thrombectomy for Ischemic Stroke Increases Disability-Free Survival, Quality of Life, and Life Expectancy and Reduces Cost.

    PubMed

    Campbell, Bruce C V; Mitchell, Peter J; Churilov, Leonid; Keshtkaran, Mahsa; Hong, Keun-Sik; Kleinig, Timothy J; Dewey, Helen M; Yassi, Nawaf; Yan, Bernard; Dowling, Richard J; Parsons, Mark W; Wu, Teddy Y; Brooks, Mark; Simpson, Marion A; Miteff, Ferdinand; Levi, Christopher R; Krause, Martin; Harrington, Timothy J; Faulder, Kenneth C; Steinfort, Brendan S; Ang, Timothy; Scroop, Rebecca; Barber, P Alan; McGuinness, Ben; Wijeratne, Tissa; Phan, Thanh G; Chong, Winston; Chandra, Ronil V; Bladin, Christopher F; Rice, Henry; de Villiers, Laetitia; Ma, Henry; Desmond, Patricia M; Meretoja, Atte; Cadilhac, Dominique A; Donnan, Geoffrey A; Davis, Stephen M

    2017-01-01

    Endovascular thrombectomy improves functional outcome in large vessel occlusion ischemic stroke. We examined disability, quality of life, survival and acute care costs in the EXTEND-IA trial, which used CT-perfusion imaging selection. Large vessel ischemic stroke patients with favorable CT-perfusion were randomized to endovascular thrombectomy after alteplase versus alteplase-only. Clinical outcome was prospectively measured using 90-day modified Rankin scale (mRS). Individual patient expected survival and net difference in Disability/Quality-adjusted life years (DALY/QALY) up to 15 years from stroke were modeled using age, sex, 90-day mRS, and utility scores. Level of care within the first 90 days was prospectively measured and used to estimate procedure and inpatient care costs (US$ reference year 2014). There were 70 patients, 35 in each arm, mean age 69, median NIHSS 15 (IQR 12-19). The median (IQR) disability-weighted utility score at 90 days was 0.65 (0.00-0.91) in the alteplase-only versus 0.91 (0.65-1.00) in the endovascular group ( p  = 0.005). Modeled life expectancy was greater in the endovascular versus alteplase-only group (median 15.6 versus 11.2 years, p  = 0.02). The endovascular thrombectomy group had fewer simulated DALYs lost over 15 years [median (IQR) 5.5 (3.2-8.7) versus 8.9 (4.7-13.8), p  = 0.02] and more QALY gained [median (IQR) 9.3 (4.2-13.1) versus 4.9 (0.3-8.5), p  = 0.03]. Endovascular patients spent less time in hospital [median (IQR) 5 (3-11) days versus 8 (5-14) days, p  = 0.04] and rehabilitation [median (IQR) 0 (0-28) versus 27 (0-65) days, p  = 0.03]. The estimated inpatient costs in the first 90 days were less in the thrombectomy group (average US$15,689 versus US$30,569, p  = 0.008) offsetting the costs of interhospital transport and the thrombectomy procedure (average US$10,515). The average saving per patient treated with thrombectomy was US$4,365. Thrombectomy patients with large vessel

  18. Multiparametric evaluation of hindlimb ischemia using time-series indocyanine green fluorescence imaging.

    PubMed

    Guang, Huizhi; Cai, Chuangjian; Zuo, Simin; Cai, Wenjuan; Zhang, Jiulou; Luo, Jianwen

    2017-03-01

    Peripheral arterial disease (PAD) can further cause lower limb ischemia. Quantitative evaluation of the vascular perfusion in the ischemic limb contributes to diagnosis of PAD and preclinical development of new drug. In vivo time-series indocyanine green (ICG) fluorescence imaging can noninvasively monitor blood flow and has a deep tissue penetration. The perfusion rate estimated from the time-series ICG images is not enough for the evaluation of hindlimb ischemia. The information relevant to the vascular density is also important, because angiogenesis is an essential mechanism for post-ischemic recovery. In this paper, a multiparametric evaluation method is proposed for simultaneous estimation of multiple vascular perfusion parameters, including not only the perfusion rate but also the vascular perfusion density and the time-varying ICG concentration in veins. The target method is based on a mathematical model of ICG pharmacokinetics in the mouse hindlimb. The regression analysis performed on the time-series ICG images obtained from a dynamic reflectance fluorescence imaging system. The results demonstrate that the estimated multiple parameters are effective to quantitatively evaluate the vascular perfusion and distinguish hypo-perfused tissues from well-perfused tissues in the mouse hindlimb. The proposed multiparametric evaluation method could be useful for PAD diagnosis. The estimated perfusion rate and vascular perfusion density maps (left) and the time-varying ICG concentration in veins of the ankle region (right) of the normal and ischemic hindlimbs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Retrograde Cerebral Perfusion Results in Better Perfusion to the Striatum Than the Cerebral Cortex During Deep Hypothermic Circulatory Arrest: A Microdialysis Study.

    PubMed

    Liang, Meng-Ya; Chen, Guang-Xian; Tang, Zhi-Xian; Rong, Jian; Yao, Jian-ping; Wu, Zhong-Kai

    2016-03-01

    It remains controversial whether contemporary cerebral perfusion techniques, utilized during deep hypothermic circulatory arrest (DHCA), establish adequate perfusion to deep structures in the brain. This study aimed to investigate whether selective antegrade cerebral perfusion (SACP) or retrograde cerebral perfusion (RCP) can provide perfusion equally to various anatomical positions in the brain using metabolic evidence obtained from microdialysis. Eighteen piglets were randomly assigned to 40 min of circulatory arrest (CA) at 18°C without cerebral perfusion (DHCA group, n = 6) or with SACP (SACP group, n = 6) or RCP (RCP group, n = 6). Microdialysis parameters (glucose, lactate, pyruvate, and glutamate) were measured every 30 min in cortex and striatum. After 3 h of reperfusion, brain tissue was harvested for Western blot measurement of α-spectrin. After 40 min of CA, the DHCA group showed marked elevations of lactate and glycerol and a reduction in glucose in the microdialysis perfusate (all P < 0.05). The changes in glucose, lactate, and glycerol in the perfusate and α-spectrin expression in brain tissue were similar between cortex and striatum in the SACP group (all P > 0.05). In the RCP group, the cortex exhibited lower glucose, higher lactate, and higher glycerol in the perfusate and higher α-spectrin expression in brain tissue compared with the striatum (all P < 0.05). Glutamate showed no difference between cortex and striatum in all groups (all P > 0.05). In summary, SACP provided uniform and continuous cerebral perfusion to most anatomical sites in the brain, whereas RCP resulted in less sufficient perfusion to the cortex but better perfusion to the striatum. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  20. Vascular delay and administration of basic fibroblast growth factor augment latissimus dorsi muscle flap perfusion and function.

    PubMed

    Carroll, S M; Carroll, C M; Stremel, R W; Heilman, S J; Steffen, J M; Tobin, G R; Barker, J H

    2000-03-01

    Ischemia of the distal latissimus dorsi muscle flap occurs when the entire muscle is acutely elevated. Although this level of ischemia may not be critical if the muscle is to be used as a conventional muscle flap, the ischemia causes decreased distal muscle function if it is used for dynamic muscle flap transfer. This experiment was designed to determine whether or not the administration of exogenous basic fibroblast growth factor (bFGF), combined with a sublethal ischemic insult (i.e., vascular delay), would further augment muscle perfusion and function. Both latissimus dorsi muscles of nine canines were subjected to a bipedicle vascular delay procedure immediately followed by thoracodorsal intraarterial injection of 100 microg of bFGF on one side and by intraarterial injection of vehicle on the other. Ten days later, both latissimus dorsi muscles were raised as thoracodorsally based island flaps, with perfusion determined by laser-Doppler fluximetry. The muscles were wrapped around silicone chambers, simulating cardiomyoplasty, and stimulating electrodes were placed around each thoracodorsal nerve. The muscles were then subjected to an experimental protocol to determine muscle contractile function. At the end of the experiment, latissimus dorsi muscle biopsies were obtained for measurement of bFGF expression. The results demonstrated that the administration of 100 microg of bFGF immediately after the vascular delay procedure increases expression of native bFGF. In the distal and middle muscle segments, it also significantly increased muscle perfusion by approximately 20 percent and fatigue resistance by approximately 300 percent. The administration of growth factors may serve as an important adjuvant to surgical procedures using dynamic muscle flap transfers.

  1. Myocardial perfusion and left ventricular function indices assessed by gated myocardial perfusion SPECT in methamphetamine abusers.

    PubMed

    Dadpour, Bita; Dabbagh Kakhki, Vahid R; Afshari, Reza; Dorri-Giv, Masoumeh; Mohajeri, Seyed A R; Ghahremani, Somayeh

    2016-12-01

    Methamphetamine (MA) is associated with alterations of cardiac structure and function, although it is less known. In this study, we assessed possible abnormality in myocardial perfusion and left ventricular function using gated myocardial perfusion SPECT. Fifteen patients with MA abuse, on the basis of Diagnostic and Statistical Manual of Mental Disorders, 4th ed. (DSM-IV) MA dependency determined by Structured Clinical Interview for DSM-IV, underwent 2-day dipyridamole stress/rest Tc-sestamibi gated myocardial perfusion SPECT. An average daily dose of MA use was 0.91±1.1 (0.2-4) g. The duration of MA use was 3.4±2.1 (1-7) years. In visual and semiquantitative analyses, all patients had normal gated myocardial perfusion SPECT, with no perfusion defects. In all gated SPECT images, there was no abnormality in left ventricular wall motion and thickening. All summed stress scores and summed rest scores were below 3. Calculated left ventricular functional indices including the end-diastolic volume, end-systolic volume, and left ventricular ejection fraction were normal. Many cardiac findings because of MA mentioned in previous reports are less likely because of significant epicardial coronary artery stenosis.

  2. Applications of laser in ischemic heart disease in China

    NASA Astrophysics Data System (ADS)

    Chen, Mingzhe; Zhang, Yongzhen

    1999-09-01

    Current data demonstrate that laser coronary angioplasty is most useful in complex lesions not well suited for percutaneous transluminal coronary angioplasty (PTCA). It is not `stand-alone' procedure, and should be considered an adjunct to PTCA or stenting. To date, there are not data supporting reduction of restenosis. Direct myocardial revascularization (DMR), either transmyocardial revascularization (TMR) or percutaneous (catheter-based) myocardial revascularization (PMR), uses laser to create channels between ischemic myocardium and left ventricular cavity. Candidates include patients with chronic, severe, refractory angina and those unable to undergo angioplasty or bypass surgery because conduits or acceptable target vessels are lacking. Although the mechanisms of action of DMR have not yet been clearly elucidated, but several theories have been proposed, including channel patency, angiogenesis, and denervation. TMR, typically requiring open thoracotomy, is effective for improving myocardial perfusion and reducing angina. Pilot studies demonstrate that clinical application of PMR is feasible and safe and effective for decreasing angina. Late sequelae also remain to be determined. An ongoing randomized clinical trial is comparing PMR with conventional medical therapy in patients with severe, refractory angina and disease unamenable to angioplasty or bypass surgery.

  3. The role of radionuclide imaging in the triage of patients with chest pain in the emergency department.

    PubMed

    Abbott, B G; Wackers, F J

    2000-02-01

    The triage of patients presenting to the emergency department with chest pain and a normal or nondiagnostic ECG poses a significant diagnostic challenge to emergency physicians and cardiologists, leading to unnecessary hospital admissions and substantial associated costs. Radionuclide myocardial perfusion imaging can potentially play an important role in this setting, by providing both a safe and efficient means to risk stratify patients with a low-to-moderate likelihood of unstable angina. The proposed algorithm may serve as a strategy to improve utilization of hospital resources while safely identifying the subgroup of patients with acute chest discomfort who do not need to be admitted to the hospital.

  4. GPU-Accelerated Voxelwise Hepatic Perfusion Quantification

    PubMed Central

    Wang, H; Cao, Y

    2012-01-01

    Voxelwise quantification of hepatic perfusion parameters from dynamic contrast enhanced (DCE) imaging greatly contributes to assessment of liver function in response to radiation therapy. However, the efficiency of the estimation of hepatic perfusion parameters voxel-by-voxel in the whole liver using a dual-input single-compartment model requires substantial improvement for routine clinical applications. In this paper, we utilize the parallel computation power of a graphics processing unit (GPU) to accelerate the computation, while maintaining the same accuracy as the conventional method. Using CUDA-GPU, the hepatic perfusion computations over multiple voxels are run across the GPU blocks concurrently but independently. At each voxel, non-linear least squares fitting the time series of the liver DCE data to the compartmental model is distributed to multiple threads in a block, and the computations of different time points are performed simultaneously and synchronically. An efficient fast Fourier transform in a block is also developed for the convolution computation in the model. The GPU computations of the voxel-by-voxel hepatic perfusion images are compared with ones by the CPU using the simulated DCE data and the experimental DCE MR images from patients. The computation speed is improved by 30 times using a NVIDIA Tesla C2050 GPU compared to a 2.67 GHz Intel Xeon CPU processor. To obtain liver perfusion maps with 626400 voxels in a patient’s liver, it takes 0.9 min with the GPU-accelerated voxelwise computation, compared to 110 min with the CPU, while both methods result in perfusion parameters differences less than 10−6. The method will be useful for generating liver perfusion images in clinical settings. PMID:22892645

  5. Effects of laser acupuncture on blood perfusion rate

    NASA Astrophysics Data System (ADS)

    Wang, Xian-ju; Zeng, Chang-chun; Liu, Han-ping; Liu, Song-hao; Liu, Liang-gang

    2006-09-01

    Based on Pennes equation, the influences of the intensity and the impulse frequency of laser acupuncture on the point tissues' blood flow perfusion rate are discussed. We find that the blood perfusion rate of point tissue increases with the intensity of laser acupuncture increasing. After impulse laser acupuncture the point tissue blood perfusion rate increase little, but after continuum laser acupuncture the point tissues blood perfusion rate increase much.

  6. [Coronary artery disease and cardiac ischemic disease: two different pathologies with different diagnostic procedures].

    PubMed

    Vallejo, Enrique

    2009-01-01

    Coronary artery disease (CAD) remains the leading cause of death in the Western world, and early detection of CAD allows optimal therapeutic management. The gold standard has always been invasive coronary angiography, but over the years various non-invasive techniques have been developed to detect CAD, including cardiac SPECT and cardiac computed tomography (Cardiac CT). Cardiac SPECT permitted visualization of myocardial perfusion and have focused on the assessment of the hemodynamic consequences of obstructive coronary lesions as a marker of CAD. Cardiac CT focuses on the detection of atherosclerosis rather than ischemia, and permit detection of CAD at an earlier stage. Objectives of this manuscript are to discuss the clinical experience with both modalities and to provide a critical review of the strengths and limitations of Cardiac SPECT and Cardiac CT for the diagnostic and management of patients with suspected CAD or cardiac ischemic disease.

  7. Perfusion lung imaging in the adult respiratory distress syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pistolesi, M.; Miniati, M.; Di Ricco, G.

    1986-07-01

    In 29 perfusion lung scans (PLS) of 19 patients with ARDS, 20 of which were obtained within six days from the onset of respiratory symptoms, perfusion abnormalities were the rule. These included focal, nonsegmental defects, mostly peripheral and dorsal, and perfusion redistribution away from the dependent lung zones. PLS were scored for the presence and intensity of perfusion abnormalities and the scores of perfusion redistribution were validated against numerical indices of blood flow distribution per unit lung volume. PLS scores were correlated with arterial blood gas values, hemodynamic parameters, and chest radiographic scores of ARDS. Arterial oxygen tension correlated withmore » the scores of both perfusion defects and redistribution. Perfusion defects correlated better with the radiographic score of ARDS, and perfusion redistribution with PAP and vascular resistance. ARDS patients exhibit peculiar patterns of PLS abnormalities not observed in other disorders. Thus, PLS may help considerably in the detection and evaluation of pulmonary vascular injury in ARDS.« less

  8. Inflow-weighted pulmonary perfusion: comparison between dynamic contrast-enhanced MRI versus perfusion scintigraphy in complex pulmonary circulation

    PubMed Central

    2013-01-01

    Background Due to the different properties of the contrast agents, the lung perfusion maps as measured by 99mTc-labeled macroaggregated albumin perfusion scintigraphy (PS) are not uncommonly discrepant from those measured by dynamic contrast-enhanced MRI (DCE-MRI) using indicator-dilution analysis in complex pulmonary circulation. Since PS offers the pre-capillary perfusion of the first-pass transit, we hypothesized that an inflow-weighted perfusion model of DCE-MRI could simulate the result by PS. Methods 22 patients underwent DCE-MRI at 1.5T and also PS. Relative perfusion contributed by the left lung was calculated by PS (PSL%), by DCE-MRI using conventional indicator dilution theory for pulmonary blood volume (PBVL%) and pulmonary blood flow (PBFL%) and using our proposed inflow-weighted pulmonary blood volume (PBViwL%). For PBViwL%, the optimal upper bound of the inflow-weighted integration range was determined by correlation coefficient analysis. Results The time-to-peak of the normal lung parenchyma was the optimal upper bound in the inflow-weighted perfusion model. Using PSL% as a reference, PBVL% showed error of 49.24% to −40.37% (intraclass correlation coefficient RI = 0.55) and PBFL% had error of 34.87% to −27.76% (RI = 0.80). With the inflow-weighted model, PBViwL% had much less error of 12.28% to −11.20% (RI = 0.98) from PSL%. Conclusions The inflow-weighted DCE-MRI provides relative perfusion maps similar to that by PS. The discrepancy between conventional indicator-dilution and inflow-weighted analysis represents a mixed-flow component in which pathological flow such as shunting or collaterals might have participated. PMID:23448679

  9. Distribution of extravascular fluid volumes in isolated perfused lungs measured with H215O.

    PubMed Central

    Jones, T; Jones, H A; Rhodes, C G; Buckingham, P D; Hughes, J M

    1976-01-01

    The distributions per unit volume of extravascular water (EVLW), blood volume, and blood flow were measured in isolated perfused vertical dog lungs. A steady-state tracer technique was employed using oxygen-15, carbon-11, and nitrogen-13 isotopes and external scintillation counting of the 511-KeV annihilation radiation common to all three radionuclides. EVLW, and blood volume and flow increased from apex to base in all preparations, but the gradient of increasing flow exceeded that for blood and EVLW volumes. The regional distributions of EVLW and blood volume were almost identical. With increasing edema, lower-zone EVLW increased slightly relative to that in the upper zone. There was no change in the distribution of blood volume or flow until gross edema (100% wt gain) occurred when lower zone values were reduced. In four lungs the distribution of EVLW was compared with wet-to-dry ratios from lung biopsies taken immediately afterwards. Whereas the isotopically measured EVLW increased from apex to base, the wet-to-dry weight ratios remained essentially uniform. We concluded that isotopic methods measure only an "exchangeable" water pool whose volume is dependent on regional blood flow and capillary recruitment. Second, the isolated perfused lung can accommodate up to 60% wt gain without much change in the regional distribution of EVLW, volume, or flow. PMID:765354

  10. Multivoxel MR Spectroscopy in Acute Ischemic Stroke:Comparison to the Stroke Protocol MRI

    PubMed Central

    Dani, Krishna A.; An, Li; Henning, Erica C.; Shen, Jun; Warach, Steven

    2014-01-01

    Background and Purpose Few patients with stroke have been imaged with MR spectroscopy (MRS) within the first few hours after onset. We compared data from current MRI protocols to MRS in subjects with ischemic stroke. Methods MRS was incorporated into the standard clinical MRI stroke protocol for subjects <24 hours after onset. MRI and clinical correlates for the metabolic data from MRS were sought. Results One hundred thirty-six MRS voxels from 32 subjects were analyzed. Lactate preceded the appearance of the lesion on diffusion-weighted imaging in some voxels but in others lagged behind it. Current protocols may predict up to 41% of the variance of MRS metabolites. Serum glucose concentration and time to maximum partially predicted the concentration of all major metabolites. Conclusion MRS may be helpful in acute stroke, especially for lactate detection when perfusion-weighted imaging is unavailable. Current MRI protocols do provide surrogate markers for some indices of metabolic activity. PMID:23091121

  11. First Comparison of Hypothermic Oxygenated PErfusion Versus Static Cold Storage of Human Donation After Cardiac Death Liver Transplants: An International-matched Case Analysis.

    PubMed

    Dutkowski, Philipp; Polak, Wojciech G; Muiesan, Paolo; Schlegel, Andrea; Verhoeven, Cornelia J; Scalera, Irene; DeOliveira, Michelle L; Kron, Philipp; Clavien, Pierre-Alain

    2015-11-01

    Exposure of donor liver grafts to prolonged periods of warm ischemia before procurement causes injuries including intrahepatic cholangiopathy, which may lead to graft loss. Due to unavoidable prolonged ischemic time before procurement in donation after cardiac death (DCD) donation in 1 participating center, each liver graft of this center was pretreated with the new machine perfusion "Hypothermic Oxygenated PErfusion" (HOPE) in an attempt to improve graft quality before implantation. HOPE-treated DCD livers (n = 25) were matched and compared with normally preserved (static cold preservation) DCD liver grafts (n = 50) from 2 well-established European programs. Criteria for matching included duration of warm ischemia and key confounders summarized in the balance of risk score. In a second step, perfused and unperfused DCD livers were compared with liver grafts from standard brain dead donors (n = 50), also matched to the balance of risk score, serving as baseline controls. HOPE treatment of DCD livers significantly decreased graft injury compared with matched cold-stored DCD livers regarding peak alanine-aminotransferase (1239 vs 2065 U/L, P = 0.02), intrahepatic cholangiopathy (0% vs 22%, P = 0.015), biliary complications (20% vs 46%, P = 0.042), and 1-year graft survival (90% vs 69%, P = 0.035). No graft failure due to intrahepatic cholangiopathy or nonfunction occurred in HOPE-treated livers, whereas 18% of unperfused DCD livers needed retransplantation. In addition, HOPE-perfused DCD livers achieved similar results as control donation after brain death livers in all investigated endpoints. HOPE seems to offer important benefits in preserving higher-risk DCD liver grafts.

  12. Arterial Perfusion Imaging–Defined Subvolume of Intrahepatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hesheng, E-mail: hesheng@umich.edu; Farjam, Reza; Feng, Mary

    2014-05-01

    Purpose: To assess whether an increase in a subvolume of intrahepatic tumor with elevated arterial perfusion during radiation therapy (RT) predicts tumor progression after RT. Methods and Materials: Twenty patients with unresectable intrahepatic cancers undergoing RT were enrolled in a prospective, institutional review board–approved study. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was performed before RT (pre-RT), after delivering ∼60% of the planned dose (mid-RT) and 1 month after completion of RT to quantify hepatic arterial perfusion. The arterial perfusions of the tumors at pre-RT were clustered into low-normal and elevated perfusion by a fuzzy clustering-based method, and the tumor subvolumesmore » with elevated arterial perfusion were extracted from the hepatic arterial perfusion images. The percentage changes in the tumor subvolumes and means of arterial perfusion over the tumors from pre-RT to mid-RT were evaluated for predicting tumor progression post-RT. Results: Of the 24 tumors, 6 tumors in 5 patients progressed 5 to 21 months after RT completion. Neither tumor volumes nor means of tumor arterial perfusion at pre-RT were predictive of treatment outcome. The mean arterial perfusion over the tumors increased significantly at mid-RT in progressive tumors compared with the responsive tumors (P=.006). From pre-RT to mid-RT, the responsive tumors had a decrease in the tumor subvolumes with elevated arterial perfusion (median, −14%; range, −75% to 65%), whereas the progressive tumors had an increase of the subvolumes (median, 57%; range, −7% to 165%) (P=.003). Receiver operating characteristic analysis of the percentage change in the subvolume for predicting tumor progression post-RT had an area under the curve of 0.90. Conclusion: The increase in the subvolume of the intrahepatic tumor with elevated arterial perfusion during RT has the potential to be a predictor for tumor progression post-RT. The tumor subvolume could be a

  13. Population-based case-control study of white matter changes on brain imaging in transient ischemic attack and ischemic stroke.

    PubMed

    Li, Linxin; Simoni, Michela; Küker, Wilhelm; Schulz, Ursula G; Christie, Sharon; Wilcock, Gordon K; Rothwell, Peter M

    2013-11-01

    White matter changes (WMC) are a common finding on brain imaging and are associated with an increased risk of ischemic stroke. They are most frequent in small vessel stroke; however, in the absence of comparisons with normal controls, it is uncertain whether WMC are also more frequent than expected in other stroke subtypes. Therefore, we compared WMC in pathogenic subtypes of ischemic stroke versus controls in a population-based study. We evaluated the presence and severity of WMC on computed tomography and on magnetic resonance brain imaging using modified Blennow/Fazekas scale and age-related white matter changes scale, respectively, in a population-based study of patients with incident transient ischemic attack or ischemic stroke (Oxford Vascular Study) and in a study of local controls (Oxford Project to Investigate Memory and Ageing) without history of transient ischemic attack or ischemic stroke, with stratification by stroke pathogenesis (Trial of Org10172 in Acute Stroke Treatment classification). Among 1601 consecutive eligible patients with first-ever ischemic events, 1453 patients had computed tomography brain imaging, 562 had magnetic resonance imaging, and 414 patients had both. Compared with 313 controls (all with computed tomography and 131 with magnetic resonance imaging) and after adjustment for age, sex, diabetes mellitus, and hypertension, moderate/severe WMC (age-related white matter changes scale) were more frequent in patients with small vessel events (odds ratio, 3.51 [95% confidence interval, 2.13-5.76]; P<0.0001) but not in large artery (odds ratio, 1.03 [95% confidence interval, 0.64-1.67]), cardioembolic (odds ratio, 0.87 [95% confidence interval, 0.56-1.34]), or undetermined (odds ratio, 0.90 [95% confidence interval, 0.62-1.30]) subtypes. Results were consistent for ischemic stroke and transient ischemic attack, for other scales, and for magnetic resonance imaging and computed tomography separately. In contrast to small vessel ischemic

  14. 'Real angiosome' assessment from peripheral tissue perfusion using tissue oxygen saturation foot-mapping in patients with critical limb ischemia.

    PubMed

    Kagaya, Y; Ohura, N; Suga, H; Eto, H; Takushima, A; Harii, K

    2014-04-01

    The "tissue oxygen saturation (StO2) foot-mapping" method was developed using a non-invasive near-infrared tissue oximeter monitor to classify the foot regions as ischemic and non-ischemic areas. The purpose of this study was to evaluate StO2 foot-mapping as a reliable method to detect ischemic areas in the feet of patients with critical limb ischemia (CLI), and to compare the results with assessments from the angiosome model. The foot areas of 20 CLI patients and 20 healthy controls were classified into four regions: (1) 0 ≤ StO2 < 30%, (2) 30 ≤ StO2 < 50%, (3) 50 ≤ StO2 < 70%, and (4) 70 ≤ StO2 ≤ 100% to perform StO2 foot-mapping. Each area occupancy rate was compared between the two groups, and the threshold StO2 value for detecting ischemia was set. Next, the locations of ulcers (in 16 patients) were compared to the predicted ischemic regions by the StO2 foot-mapping and by the angiosome model and angiography. In regions (1) and (2) (StO2 < 50%), the area occupancy rate was significantly higher in the CLI group and almost zero in the control group, so that the threshold StO2 value for detecting ischemia was set at 50%. The locations of ulcers were compatible with StO2 foot-mapping in 87.5% of the cases (14/16), while they were compatible with the assessment from the angiosome model in 68.8% of the cases (11/16). This study suggests that StO2 foot-mapping can successfully and non-invasively detect ischemic areas in the peripheral tissue of the foot, and also more appropriately than the assessment provided by the angiosome model. StO2 foot-mapping can be used to evaluate the real angiosome: the real distribution of the peripheral tissue perfusion in the CLI patient's foot, which is determined by the peripheral microvascular blood flow, rather than the main arterial blood flow. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  15. Repeated Positron Emission Tomography-Computed Tomography and Perfusion-Computed Tomography Imaging in Rectal Cancer: Fluorodeoxyglucose Uptake Corresponds With Tumor Perfusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssen, Marco H.M., E-mail: marco.janssen@maastro.nl; Aerts, Hugo J.W.L.; Buijsen, Jeroen

    2012-02-01

    Purpose: The purpose of this study was to analyze both the intratumoral fluorodeoxyglucose (FDG) uptake and perfusion within rectal tumors before and after hypofractionated radiotherapy. Methods and Materials: Rectal cancer patients, referred for preoperative hypofractionated radiotherapy (RT), underwent FDG-positron emission tomography (PET)-computed tomography (CT) and perfusion-CT (pCT) imaging before the start of hypofractionated RT and at the day of the last RT fraction. The pCT-images were analyzed using the extended Kety model, quantifying tumor perfusion with the pharmacokinetic parameters K{sup trans}, v{sub e}, and v{sub p}. The mean and maximum FDG uptake based on the standardized uptake value (SUV) andmore » transfer constant (K{sup trans}) within the tumor were correlated. Also, the tumor was subdivided into eight subregions and for each subregion the mean and maximum SUVs and K{sup trans} values were assessed and correlated. Furthermore, the mean FDG uptake in voxels presenting with the lowest 25% of perfusion was compared with the FDG uptake in the voxels with the 25% highest perfusion. Results: The mean and maximum K{sup trans} values were positively correlated with the corresponding SUVs ({rho} = 0.596, p = 0.001 and {rho} = 0.779, p < 0.001). Also, positive correlations were found for K{sup trans} values and SUVs within the subregions (mean, {rho} = 0.413, p < 0.001; and max, {rho} = 0.540, p < 0.001). The mean FDG uptake in the 25% highest-perfused tumor regions was significantly higher compared with the 25% lowest-perfused regions (10.6% {+-} 5.1%, p = 0.017). During hypofractionated radiotherapy, stable mean (p = 0.379) and maximum (p = 0.280) FDG uptake levels were found, whereas the mean (p = 0.040) and maximum (p = 0.003) K{sup trans} values were found to significantly increase. Conclusion: Highly perfused rectal tumors presented with higher FDG-uptake levels compared with relatively low perfused tumors. Also, intratumor regions with a

  16. MEG Frequency Analysis Depicts the Impaired Neurophysiological Condition of Ischemic Brain

    PubMed Central

    Ikeda, Hidetoshi; Tsuyuguchi, Naohiro; Uda, Takehiro; Okumura, Eiichi; Asakawa, Takashi; Haruta, Yasuhiro; Nishiyama, Hideki; Okada, Toyoji; Kamada, Hajime; Ohata, Kenji; Miki, Yukio

    2016-01-01

    Purpose Quantitative imaging of neuromagnetic fields based on automated region of interest (ROI) setting was analyzed to determine the characteristics of cerebral neural activity in ischemic areas. Methods Magnetoencephalography (MEG) was used to evaluate spontaneous neuromagnetic fields in the ischemic areas of 37 patients with unilateral internal carotid artery (ICA) occlusive disease. Voxel-based time-averaged intensity of slow waves was obtained in two frequency bands (0.3–4 Hz and 4–8 Hz) using standardized low-resolution brain electromagnetic tomography (sLORETA) modified for a quantifiable method (sLORETA-qm). ROIs were automatically applied to the anterior cerebral artery (ACA), anterior middle cerebral artery (MCAa), posterior middle cerebral artery (MCAp), and posterior cerebral artery (PCA) using statistical parametric mapping (SPM). Positron emission tomography with 15O-gas inhalation (15O-PET) was also performed to evaluate cerebral blood flow (CBF) and oxygen extraction fraction (OEF). Statistical analyses were performed using laterality index of MEG and 15O-PET in each ROI with respect to distribution and intensity. Results MEG revealed statistically significant laterality in affected MCA regions, including 4–8 Hz waves in MCAa, and 0.3–4 Hz and 4–8 Hz waves in MCAp (95% confidence interval: 0.020–0.190, 0.030–0.207, and 0.034–0.213), respectively. We found that 0.3–4 Hz waves in MCAp were highly correlated with CBF in MCAa and MCAp (r = 0.74, r = 0.68, respectively), whereas 4–8 Hz waves were moderately correlated with CBF in both the MCAa and MCAp (r = 0.60, r = 0.63, respectively). We also found that 4–8 Hz waves in MCAp were statistically significant for misery perfusion identified on 15O-PET (p<0.05). Conclusions Quantitatively imaged spontaneous neuromagnetic fields using the automated ROI setting enabled clear depiction of cerebral ischemic areas. Frequency analysis may reveal unique neural activity that is distributed in

  17. Inflow-weighted pulmonary perfusion: comparison between dynamic contrast-enhanced MRI versus perfusion scintigraphy in complex pulmonary circulation.

    PubMed

    Lin, Yi-Ru; Tsai, Shang-Yueh; Huang, Teng-Yi; Chung, Hsiao-Wen; Huang, Yi-Luan; Wu, Fu-Zong; Lin, Chu-Chuan; Peng, Nan-Jing; Wu, Ming-Ting

    2013-02-28

    Due to the different properties of the contrast agents, the lung perfusion maps as measured by 99mTc-labeled macroaggregated albumin perfusion scintigraphy (PS) are not uncommonly discrepant from those measured by dynamic contrast-enhanced MRI (DCE-MRI) using indicator-dilution analysis in complex pulmonary circulation. Since PS offers the pre-capillary perfusion of the first-pass transit, we hypothesized that an inflow-weighted perfusion model of DCE-MRI could simulate the result by PS. 22 patients underwent DCE-MRI at 1.5T and also PS. Relative perfusion contributed by the left lung was calculated by PS (PS(L%)), by DCE-MRI using conventional indicator dilution theory for pulmonary blood volume (PBV(L%)) and pulmonary blood flow (PBFL%) and using our proposed inflow-weighted pulmonary blood volume (PBV(iw)(L%)). For PBViw(L%), the optimal upper bound of the inflow-weighted integration range was determined by correlation coefficient analysis. The time-to-peak of the normal lung parenchyma was the optimal upper bound in the inflow-weighted perfusion model. Using PSL% as a reference, PBV(L%) showed error of 49.24% to -40.37% (intraclass correlation coefficient R(I) = 0.55) and PBF(L%) had error of 34.87% to -27.76% (R(I) = 0.80). With the inflow-weighted model, PBV(iw)(L%) had much less error of 12.28% to -11.20% (R(I) = 0.98) from PS(L%). The inflow-weighted DCE-MRI provides relative perfusion maps similar to that by PS. The discrepancy between conventional indicator-dilution and inflow-weighted analysis represents a mixed-flow component in which pathological flow such as shunting or collaterals might have participated.

  18. Attenuating Ischemic Disruption of K+ Homeostasis in the Cortex of Hypoxic-Ischemic Neonatal Rats: DOR Activation vs. Acupuncture Treatment.

    PubMed

    Chao, Dongman; Wang, Qinyu; Balboni, Gianfranco; Ding, Guanghong; Xia, Ying

    2016-12-01

    Perinatal hypoxic-ischemic (HI) brain injury results in death or profound long-term neurologic disability in both children and adults. However, there is no effective pharmacological therapy due to a poor understanding of HI events, especially the initial triggers for hypoxic-ischemic injury such as disrupted ionic homeostasis and the lack of effective intervention strategy. In the present study, we showed that neonatal brains undergo a developmental increase in the disruption of K + homeostasis during simulated ischemia, oxygen-glucose deprivation (OGD) and neonatal HI cortex has a triple phasic response (earlier attenuation, later enhancement, and then recovery) of disrupted K + homeostasis to OGD. This response partially involves the activity of the δ-opioid receptor (DOR) since the earlier attenuation of ischemic disruption of K + homeostasis could be blocked by DOR antagonism, while the later enhancement was reversed by DOR activation. Similar to DOR activation, acupuncture, a strategy to promote DOR activity, could partially reverse the later enhanced ischemic disruption of K + homeostasis in the neonatal cortex. Since maintaining cellular K + homeostasis and inhibiting excessive K + fluxes in the early phase of hypoxic-ischemic insults may be of therapeutic benefit in the treatment of ischemic brain injury and related neurodegenerative conditions, and since many neurons and other cells can be rescued during the "window of opportunity" after HI insults, our first findings regarding the role of acupuncture and DOR in attenuating ischemic disruption of K + homeostasis in the neonatal HI brain suggest a potential intervention therapy in the treatment of neonatal brain injury, especially hypoxic-ischemic encephalopathy.

  19. Ischemic preconditioning fails to confer additional protection against ischemia-reperfusion injury in the hypothyroid rat heart.

    PubMed

    Mourouzis, I; Dimopoulos, A; Saranteas, T; Tsinarakis, N; Livadarou, E; Spanou, D; Kokkinos, A D; Xinaris, C; Pantos, C; Cokkinos, D V

    2009-01-01

    There is accumulating evidence showing that ischemic preconditioning (PC) may lose its cardioprotective effect in the diseased states. The present study investigated whether PC can be effective in hypothyroidism, a clinical condition which is common and often accompanies cardiac diseases such as heart failure and myocardial infarction. Hypothyroidism was induced in rats by 3-week administration of 6n-propyl-2-thiouracil in water (0.05 %). Normal and hypothyroid hearts (HYPO) were perfused in Langendorff mode and subjected to 20 min of zero-flow global ischemia and 45 min of reperfusion. A preconditioning protocol (PC) was also applied prior to ischemia. HYPO hearts had significantly improved post-ischemic recovery of left ventricular developed pressure, end-diastolic pressure and reduced lactate dehydrogenase release. Furthermore, phospho-JNK and p38 MAPK levels after ischemia and reperfusion were 4.0 and 3.0 fold lower in HYPO as compared to normal hearts (P<0.05). A different response to PC was observed in normal than in HYPO hearts. PC improved the post-ischemic recovery of function and reduced the extent of injury in normal hearts but had no additional effect on the hypothyroid hearts. This response, in the preconditioned normal hearts, resulted in 2.5 and 1.8 fold smaller expression of the phospho-JNK and phospho-p38 MAPK levels at the end of reperfusion, as compared to non-PC hearts (P<0.05), while in HYPO hearts, no additional reduction in the phosphorylation of these kinases was observed after PC. Hypothyroid hearts appear to be tolerant to ischemia-reperfusion injury. This response may be, at least in part, due to the down-regulation of ischemia-reperfusion induced activation of JNKs and p38 MAPK kinases. PC is not associated with further reduction in the activation of these kinases in the hypothyroid hearts and fails to confer added protection in those hearts.

  20. Radionuclide removal by apatite

    DOE PAGES

    Rigali, Mark J.; Brady, Patrick V.; Moore, Robert C.

    2016-12-01

    In this study, a growing body of research supports widespread future reliance on apatite for radioactive waste cleanup. Apatite is a multi-functional radionuclide sorbent that lowers dissolved radionuclide concentrations by surface sorption, ion exchange, surface precipitation, and by providing phosphate to precipitate low-solubility radionuclide-containing minerals. Natural apatites are rich in trace elements, and apatite’s stability in the geologic record suggest that radionuclides incorporated into apatite, whether in a permeable reactive barrier or a waste form, are likely to remain isolated from the biosphere for long periods of time. Here we outline the mineralogic and surface origins of apatite-radionuclide reactivity andmore » show how apatites might be used to environmental advantage in the future.« less

  1. [An automatic system controlled by microcontroller for carotid sinus perfusion].

    PubMed

    Yi, X L; Wang, M Y; Fan, Z Z; He, R R

    2001-08-01

    To establish a new method for controlling automatically the carotid perfusion pressure. A cheap practical automatic perfusion unit based on AT89C2051 micro controller was designed. The unit, LDB-M perfusion pump and the carotid sinus of an animal constituted an automatic perfusion system. This system was able to provide ramp and stepwise updown perfusion pattern and has been used in the research of baroreflex. It can insure the precision and reproducibility of perfusion pressure curve, and improve the technical level in corresponding medical field.

  2. Ischemic brain injury in cerebral amyloid angiopathy

    PubMed Central

    van Veluw, Susanne J; Greenberg, Steven M

    2016-01-01

    Cerebral amyloid angiopathy (CAA) is a common form of cerebral small vessel disease and an important risk factor for intracerebral hemorrhage and cognitive impairment. While the majority of research has focused on the hemorrhagic manifestation of CAA, its ischemic manifestations appear to have substantial clinical relevance as well. Findings from imaging and pathologic studies indicate that ischemic lesions are common in CAA, including white-matter hyperintensities, microinfarcts, and microstructural tissue abnormalities as detected with diffusion tensor imaging. Furthermore, imaging markers of ischemic disease show a robust association with cognition, independent of age, hemorrhagic lesions, and traditional vascular risk factors. Widespread ischemic tissue injury may affect cognition by disrupting white-matter connectivity, thereby hampering communication between brain regions. Challenges are to identify imaging markers that are able to capture widespread microvascular lesion burden in vivo and to further unravel the etiology of ischemic tissue injury by linking structural magnetic resonance imaging (MRI) abnormalities to their underlying pathophysiology and histopathology. A better understanding of the underlying mechanisms of ischemic brain injury in CAA will be a key step toward new interventions to improve long-term cognitive outcomes for patients with CAA. PMID:25944592

  3. Radionuclides in radiation-induced bystander effect; may it share in radionuclide therapy?

    PubMed

    Widel, M

    2017-01-01

    For many years in radiobiology and radiotherapy predominated the conviction that cellular DNA is the main target for ionizing radiation, however, the view has changed in the past 20 years. Nowadays, it is assumed that not only directed (targeted) radiation effect, but also an indirect (non-targeted) effect may contribute to the result of radiation treatment. Non-targeted effect is relatively well recognized after external beam irradiation in vitro and in vivo, and comprises such phenomena like radiation-induced bystander effect (RIBE), genomic instability, adaptive response and abscopal (out of field) effect. These stress-induced and molecular signaling mediated phenomena appear in non-targeted cells as variety responses resembling that observed in directly hit cells. Bystander effects can be both detrimental and beneficial in dependence on dose, dose-rate, cell type, genetic status and experimental condition. Less is known about radionuclide-induced non-targeted effects in radionuclide therapy, although, based on characteristics of the radionuclide radiation, on experiments in vitro utilizing classical and 3-D cell cultures, and preclinical study on animals it seems obvious that exposure to radionuclide is accompanied by various bystander effects, mostly damaging, less often protective. This review summarizes existing data on radionuclide induced bystander effects comprising radionuclides emitting beta- and alpha-particles and Auger electrons used in tumor radiotherapy and diagnostics. So far, separation of the direct effect of radionuclide decay from crossfire and bystander effects in clinical targeted radionuclide therapy is impossible because of the lack of methods to assess whether, and to what extent bystander effect is involved in human organism. Considerations on this topic are also included.

  4. Radionuclide Ventriculography or Radionuclide Angiography (MUGA Scan)

    MedlinePlus

    ... Attack Heart Failure Myocardial Perfusion Imaging (MPI) Single Photon Emission Computed Tomography (SPECT) Positron Emission Tomography (PET) ... stroke. Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Heart Attack Symptoms in ...

  5. Treatment protocol based on assessment of clot quality during endovascular thrombectomy for acute ischemic stroke using the Trevo stent retriever

    PubMed Central

    Ishikawa, Kojiro; Ohshima, Tomotaka; Nishihori, Masahiro; Imai, Tasuku; Goto, Shunsaku; Yamamoto, Taiki; Nishizawa, Toshihisa; Shimato, Shinji; Kato, Kyozo

    2016-01-01

    ABSTRACT The optional endovascular approach for acute ischemic stroke is unclear. The Trevo stent retriever can be used as first-line treatment for fast mechanical recanalization. The authors developed a treatment protocol for acute ischemic stroke based on the assessment of clot quality during clot removal with the Trevo. This prospective single-center study included all patients admitted for acute ischemic stroke between July 2014 and February 2015, who underwent emergency endovascular treatment. According to the protocol, the Trevo was used for first-line treatment. Immediately after the Trevo was deployed, the stent delivery wire was pushed to open the stent by force (ACAPT technique). Clot quality was assessed on the basis of the perfusion status after deployment of the Trevo; continued occlusion or immediate reopening either reoccluded or maintained after the stent retriever had been in place for 5 min. If there was no obvious clot removal after the first pass with the Trevo, according to the quality of the clot, either a second pass was performed or another endovascular device was selected. Twelve consecutive patients with acute major cerebral artery occlusion were analyzed. Thrombolysis in cerebral infarction score 2b and 3 was achieved in 11 patients (91.7%) and 9 (75%) had a good clinical outcome after 90 days based on a modified Rankin scale score ≤ 2. Symptomatic intracranial hemorrhage occurred in 1 patient (8.3%). The overall mortality rate was 8.3%. Endovascular thrombectomy using the Trevo stent retriever for first-line treatment is feasible and effective. PMID:27578909

  6. Pioglitazone after Ischemic Stroke or Transient Ischemic Attack.

    PubMed

    Kernan, Walter N; Viscoli, Catherine M; Furie, Karen L; Young, Lawrence H; Inzucchi, Silvio E; Gorman, Mark; Guarino, Peter D; Lovejoy, Anne M; Peduzzi, Peter N; Conwit, Robin; Brass, Lawrence M; Schwartz, Gregory G; Adams, Harold P; Berger, Leo; Carolei, Antonio; Clark, Wayne; Coull, Bruce; Ford, Gary A; Kleindorfer, Dawn; O'Leary, John R; Parsons, Mark W; Ringleb, Peter; Sen, Souvik; Spence, J David; Tanne, David; Wang, David; Winder, Toni R

    2016-04-07

    Patients with ischemic stroke or transient ischemic attack (TIA) are at increased risk for future cardiovascular events despite current preventive therapies. The identification of insulin resistance as a risk factor for stroke and myocardial infarction raised the possibility that pioglitazone, which improves insulin sensitivity, might benefit patients with cerebrovascular disease. In this multicenter, double-blind trial, we randomly assigned 3876 patients who had had a recent ischemic stroke or TIA to receive either pioglitazone (target dose, 45 mg daily) or placebo. Eligible patients did not have diabetes but were found to have insulin resistance on the basis of a score of more than 3.0 on the homeostasis model assessment of insulin resistance (HOMA-IR) index. The primary outcome was fatal or nonfatal stroke or myocardial infarction. By 4.8 years, a primary outcome had occurred in 175 of 1939 patients (9.0%) in the pioglitazone group and in 228 of 1937 (11.8%) in the placebo group (hazard ratio in the pioglitazone group, 0.76; 95% confidence interval [CI], 0.62 to 0.93; P=0.007). Diabetes developed in 73 patients (3.8%) and 149 patients (7.7%), respectively (hazard ratio, 0.48; 95% CI, 0.33 to 0.69; P<0.001). There was no significant between-group difference in all-cause mortality (hazard ratio, 0.93; 95% CI, 0.73 to 1.17; P=0.52). Pioglitazone was associated with a greater frequency of weight gain exceeding 4.5 kg than was placebo (52.2% vs. 33.7%, P<0.001), edema (35.6% vs. 24.9%, P<0.001), and bone fracture requiring surgery or hospitalization (5.1% vs. 3.2%, P=0.003). In this trial involving patients without diabetes who had insulin resistance along with a recent history of ischemic stroke or TIA, the risk of stroke or myocardial infarction was lower among patients who received pioglitazone than among those who received placebo. Pioglitazone was also associated with a lower risk of diabetes but with higher risks of weight gain, edema, and fracture. (Funded by

  7. Reactor-Produced Medical Radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirzadeh, Saed; Mausner, Leonard; Garland, Marc A

    2011-01-01

    The therapeutic use of radionuclides in nuclear medicine, oncology and cardiology is the most rapidly growing use of medical radionuclides. Since most therapeutic radionuclides are neutron rich and decay by beta emission, they are reactor-produced. This chapter deals mainly with production approaches with neutrons. Neutron interactions with matter, neutron transmission and activation rates, and neutron spectra of nuclear reactors are discussed in some detail. Further, a short discussion of the neutron-energy dependence of cross sections, reaction rates in thermal reactors, cross section measurements and flux monitoring, and general equations governing the reactor production of radionuclides are presented. Finally, the chaptermore » is concluded by providing a number of examples encompassing the various possible reaction routes for production of a number of medical radionuclides in a reactor.« less

  8. A continuous perfusion microplate for cell culture.

    PubMed

    Goral, Vasiliy N; Zhou, Chunfeng; Lai, Fang; Yuen, Po Ki

    2013-03-21

    We describe a 96-well microplate with fluidically connected wells that enables the continuous fluid perfusion between wells without the need for external pumping. A single unit in such a perfusion microplate consists of three wells: a source well, a sample (cell culture) well in the middle and a waste well. Fluid perfusion is achieved using a combination of the hydrostatic pressure generated by different liquid levels in the wells and the fluid wicking through narrow strips of a cellulose membrane connecting the wells. There is an excellent correspondence between the observed perfusion flow dynamics and the flow simulations based on Darcy's Law. Hepatocytes (C3A cells) cultured for 4 days in the perfusion microplate with no media exchange in the cell culture well had the same viability as hepatocytes exposed to a daily exchange of media. EOC 20 cells that require media conditioned by LADMAC cells were shown to be equally viable in the adjacent cell culture well of the perfusion microplate with LADMAC cells cultured in the source well. Tegafur, a prodrug, when added to primary human hepatocytes in the source well, was metabolized into a cytotoxic metabolite that kills colon cancer cells (HCT 116) cultured in the adjacent cell culture well; no toxicity was observed when only medium was in the source well. These results suggest that the perfusion microplate is a useful tool for a variety of cell culture applications with benefits ranging from labor savings to enabling in vivo-like toxicity studies.

  9. Limited reliability of computed tomographic perfusion acute infarct volume measurements compared with diffusion-weighted imaging in anterior circulation stroke.

    PubMed

    Schaefer, Pamela W; Souza, Leticia; Kamalian, Shervin; Hirsch, Joshua A; Yoo, Albert J; Kamalian, Shahmir; Gonzalez, R Gilberto; Lev, Michael H

    2015-02-01

    Diffusion-weighted imaging (DWI) can reliably identify critically ischemic tissue shortly after stroke onset. We tested whether thresholded computed tomographic cerebral blood flow (CT-CBF) and CT-cerebral blood volume (CT-CBV) maps are sufficiently accurate to substitute for DWI for estimating the critically ischemic tissue volume. Ischemic volumes of 55 patients with acute anterior circulation stroke were assessed on DWI by visual segmentation and on CT-CBF and CT-CBV with segmentation using 15% and 30% thresholds, respectively. The contrast:noise ratios of ischemic regions on the DWI and CT perfusion (CTP) images were measured. Correlation and Bland-Altman analyses were used to assess the reliability of CTP. Mean contrast:noise ratios for DWI, CT-CBF, and CT-CBV were 4.3, 0.9, and 0.4, respectively. CTP and DWI lesion volumes were highly correlated (R(2)=0.87 for CT-CBF; R(2)=0.83 for CT-CBV; P<0.001). Bland-Altman analyses revealed little systemic bias (-2.6 mL) but high measurement variability (95% confidence interval, ±56.7 mL) between mean CT-CBF and DWI lesion volumes, and systemic bias (-26 mL) and high measurement variability (95% confidence interval, ±64.0 mL) between mean CT-CBV and DWI lesion volumes. A simulated treatment study demonstrated that using CTP-CBF instead of DWI for detecting a statistically significant effect would require at least twice as many patients. The poor contrast:noise ratios of CT-CBV and CT-CBF compared with those of DWI result in large measurement error, making it problematic to substitute CTP for DWI in selecting individual acute stroke patients for treatment. CTP could be used for treatment studies of patient groups, but the number of patients needed to identify a significant effect is much higher than the number needed if DWI is used. © 2014 American Heart Association, Inc.

  10. A reappraisal of retrograde cerebral perfusion.

    PubMed

    Ueda, Yuichi

    2013-05-01

    Brain protection during aortic arch surgery by perfusing cold oxygenated blood into the superior vena cava was first reported by Lemole et al. In 1990 Ueda and associates first described the routine use of continuous retrograde cerebral perfusion (RCP) in thoracic aortic surgery for the purpose of cerebral protection during the interval of obligatory interruption of anterograde cerebral flow. The beneficial effects of RCP may be its ability to sustain brain hypothermia during hypothermic circulatory arrest (HCA) and removal of embolic material from the arterial circulation of the brain. RCP can offer effective brain protection during HCA for about 40 to 60 minutes. Animal experiments revealed that RCP provided inadequate cerebral perfusion and that neurological recovery was improved with selective antegrade cerebral perfusion (ACP), however, both RCP and ACP provide comparable clinical outcomes regarding both the mortality and stroke rates by risk-adjusted and case-matched comparative study. RCP still remains a valuable adjunct for brain protection during aortic arch repair in particular pathologies and patients.

  11. An alternative method for neonatal cerebro-myocardial perfusion.

    PubMed

    Luciani, Giovanni Battista; De Rita, Fabrizio; Faggian, Giuseppe; Mazzucco, Alessandro

    2012-05-01

    Several techniques have already been described for selective cerebral perfusion during repair of aortic arch pathology in children. One method combining cerebral with myocardial perfusion has also been proposed. A novel technique is reported here for selective and independent cerebro-myocardial perfusion for neonatal and infant arch surgery. Technical aspects and potential advantages are discussed.

  12. In vitro experiments of cerebral blood flow during aspiration thrombectomy: potential effects on cerebral perfusion pressure and collateral flow.

    PubMed

    Lally, Frank; Soorani, Mitra; Woo, Timothy; Nayak, Sanjeev; Jadun, Changez; Yang, Ying; McCrudden, John; Naire, Shailesh; Grunwald, Iris; Roffe, Christine

    2016-09-01

    Mechanical thrombectomy with stent retriever devices is associated with significantly better outcomes than thrombolysis alone in the treatment of acute ischemic stroke. Thrombus aspiration achieves high patency rates, but clinical outcomes are variable. The aim of this study was to examine the effect of different suction conditions on perfusate flow during aspiration thrombectomy. A computational fluid dynamics model of an aspiration device within a patent and occluded blood vessel was used to simulate flow characteristics using fluid flow solver software. A physical particulate flow model of a patent vessel and a vessel occluded by thrombus was then used to visualize flow direction and measure flow rates with the aspiration catheter placed 1-10 mm proximal of the thrombus, and recorded on video. The mathematical model predicted that, in a patent vessel, perfusate is drawn from upstream of the catheter tip while, in an occluded system, perfusate is drawn from the vessel proximal to the device tip with no traction on the occlusion distal of the tip. The in vitro experiments confirmed the predictions of this model. In the occluded vessel aspiration had no effect on the thrombus unless the tip of the catheter was in direct contact with the thrombus. These experiments suggest that aspiration is only effective if the catheter tip is in direct contact with the thrombus. If the catheter tip is not in contact with the thrombus, aspirate is drawn from the vessels proximal of the occlusion. This could affect collateral flow in vivo. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Goal-directed-perfusion in neonatal aortic arch surgery.

    PubMed

    Cesnjevar, Robert Anton; Purbojo, Ariawan; Muench, Frank; Juengert, Joerg; Rueffer, André

    2016-07-01

    Reduction of mortality and morbidity in congenital cardiac surgery has always been and remains a major target for the complete team involved. As operative techniques are more and more standardized and refined, surgical risk and associated complication rates have constantly been reduced to an acceptable level but are both still present. Aortic arch surgery in neonates seems to be of particular interest, because perfusion techniques differ widely among institutions and an ideal form of a so called "total body perfusion (TBP)" is somewhat difficult to achieve. Thus concepts of deep hypothermic circulatory arrest (DHCA), regional cerebral perfusion (RCP/with cardioplegic cardiac arrest or on the perfused beating heart) and TBP exist in parallel and all carry an individual risk for organ damage related to perfusion management, chosen core temperature and time on bypass. Patient safety relies more and more on adequate end organ perfusion on cardiopulmonary bypass, especially sensitive organs like the brain, heart, kidney, liver and the gut, whereby on adequate tissue protection, temperature management and oxygen delivery should be visualized and monitored.

  14. Liver free fatty acid (FFA) accumulation as an indicator of ischemic injury during cold preservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemoto, E.M.; Kang, Y.; DeWolf, A.M.

    1987-05-01

    Reliable assessment of hepatic viability prior to harvest and transplant could improve graft success and aid in evaluating the efficacy of liver preservation techniques. Hepatic tissue metabolites, protein (Pr) synthesis, and ATP have been studied, but none reliably correlate with hepatic viability. Therefore, they studied changes in liver FFA relative to changes in ATP and Pr synthesis during cold ischemic preservation. Rats mechanically ventilated on 0.5% isoflurane/70% N/sub 2/O/30% O/sub 2/ were heparinized and their livers perfused with air-equilibrated Euro-Collins solution (ECS) at 0-4/sup 0/C and kept on ice. A piece of the liver was removed after 0, 2, 6,more » 8, 12, 24, 36 and 48 h of preservation for ATP and FFA analysis. A portion of the liver was sliced (250 ..mu..m thick) and incubated in vitro for /sup 14/C-lysine incorporation in albumin. ATP, FFA and Pr synthesis were unchanged in the first 8 h, but markedly decreased between 8 and 12 h with little change thereafter. In contrast, between 8 and 48 h, arachidonic and stearic acids increased by 5 and 2-fold, respectively. Changes in ATP and Pr synthesis correlate with the empirically derived clinical maximum of 8 to 12 h preservation. FFA accumulation appears to reflect hepatic ischemic injury and may be a means of evaluating the quality of a donor liver.« less

  15. Antiplatelet Treatment After Transient Ischemic Attack and Ischemic Stroke in Patients With Cerebral Microbleeds in 2 Large Cohorts and an Updated Systematic Review.

    PubMed

    Lau, Kui Kai; Lovelock, Caroline E; Li, Linxin; Simoni, Michela; Gutnikov, Sergei; Küker, Wilhelm; Mak, Henry Ka Fung; Rothwell, Peter M

    2018-06-01

    In patients with transient ischemic attack/ischemic stroke, microbleed burden predicts intracerebral hemorrhage (ICH), and ischemic stroke, but implications for antiplatelet treatment are uncertain. Previous cohort studies have had insufficient follow-up to assess the time course of risks, have not stratified risks by antithrombotic use, and have not reported extracranial bleeds or functional outcome of ICH versus ischemic stroke. In 2 independent prospective cohorts with transient ischemic attack/ischemic stroke (Oxford Vascular Study/mainly white; University of Hong Kong/mainly Chinese), antiplatelet treatment was started routinely irrespective of microbleed burden. Risks, time course and outcome of ICH, extracranial bleeds, and recurrent ischemic events were determined and stratified by microbleed burden (0 versus 1, 2-4, and ≥5), adjusting for age, sex, and vascular risk factors. Microbleeds were more frequent in the Chinese cohort (450 of 1003 versus 165 of 1080; P <0.0001), but risk associations were similar during 7433 patient-years of follow-up. Among 1811 patients on antiplatelet drugs, risk of major extracranial bleeds was unrelated to microbleed burden ( P trend =0.87), but the 5-year risk of ICH was steeply related ( P trend <0.0001), with 11 of 15 (73%) of ICH in 140 of 1811 (7.7%) patients with ≥5 microbleeds. However, risk of ischemic stroke also increased with microbleed burden ( P trend =0.013), such that risk of ischemic stroke and coronary events exceeded ICH and major extracranial bleeds during the first year, even among patients with ≥5 microbleeds (11.6% versus 3.9%). However, this ratio changed over time, with risk of hemorrhage (11.2%) matching that of ischemic events (12.0%) after 1 year. Moreover, whereas the association between microbleed burden and risk of ischemic stroke was due mainly to nondisabling events ( P trend =0.007), the association with ICH was accounted for ( P trend <0.0001) by disabling/fatal events (≥5 microbleeds

  16. An alternative method for neonatal cerebro-myocardial perfusion

    PubMed Central

    Luciani, Giovanni Battista; De Rita, Fabrizio; Faggian, Giuseppe; Mazzucco, Alessandro

    2012-01-01

    Several techniques have already been described for selective cerebral perfusion during repair of aortic arch pathology in children. One method combining cerebral with myocardial perfusion has also been proposed. A novel technique is reported here for selective and independent cerebro-myocardial perfusion for neonatal and infant arch surgery. Technical aspects and potential advantages are discussed. PMID:22307393

  17. Genetics of ischemic stroke: future clinical applications.

    PubMed

    Wang, Michael M

    2006-11-01

    Ischemic stroke has long been thought to have a genetic component that is independent of conventional vascular risk factors. It has been estimated that over one half of stroke risk is determined by inherited genes. However, until recently, strong evidence of genetic influence on ischemic stroke has been subject to criticism because the risk factors for stroke are also inherited and because previous studies suffered from limitations imposed by this highly heterogeneous neurological disorder. Recent advances in molecular genetics have led to the identification of specific genetic loci that impart susceptibility to ischemic stroke. We review the studies of these genes and discuss the future potential applications of genetic markers on the management of ischemic stroke patients.

  18. Extravasation into brain and subsequent spread beyond the ischemic core of a magnetic resonance contrast agent following a step-down infusion protocol in acute cerebral ischemia.

    PubMed

    Nagaraja, Tavarekere N; Keenan, Kelly A; Aryal, Madhava P; Ewing, James R; Gopinath, Saarang; Nadig, Varun S; Shashikumar, Sukruth; Knight, Robert A

    2014-01-01

    Limiting expansion of the ischemic core lesion by reinstating blood flow and protecting the penumbral cells is a priority in acute stroke treatment. However, at present, methods are not available for effective drug delivery to the ischemic penumbra. To address these issues this study compared the extravasation and subsequent interstitial spread of a magnetic resonance contrast agent (MRCA) beyond the ischemic core into the surrounding brain in a rat model of ischemia-reperfusion for bolus injection and step-down infusion (SDI) protocols. Male Wistar rats underwent middle cerebral artery (MCA) occlusion for 3 h followed by reperfusion. Perfusion-diffusion mismatched regions indicating the extent of spread were identified by measuring cerebral blood flow (CBF) deficits by arterial spin-labeled magnetic resonance imaging and the extent of the ischemic core by mapping the apparent diffusion coefficient (ADC) of water with diffusion-weighted imaging. Vascular injury was assessed via MRCA, gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) penetration, by Look-Locker T1-weighted MR imaging after either a bolus injection (n = 8) or SDI (n = 6). Spatial and temporal expansion of the MRCA front during a 25 min imaging period was measured from images obtained at 2.5 min intervals. The mean ADC lesion was 20 ± 7% of the hemispheric area whereas the CBF deficit area was 60 ± 16%, with the difference between the areas suggesting the possible presence of a penumbra. The bolus injection led to MRCA enhancement with an area that initially spread into the ischemic core and then diminished over time. The SDI produced a gradual increase in the area of MRCA enhancement that slowly enlarged to occupy the core, eventually expanded beyond it into the surrounding tissue and then plateaued. The integrated area from SDI extravasation was significantly larger than that for the bolus (p = 0.03). The total number of pixels covered by the SDI at its maximum was

  19. Profiling inflammation and tissue injury markers in perfusate and bronchoalveolar lavage fluid during human ex vivo lung perfusion

    PubMed Central

    Andreasson, Anders S.I.; Karamanou, Danai M.; Gillespie, Colin S.; Özalp, Faruk; Butt, Tanveer; Hill, Paul; Jiwa, Kasim; Walden, Hannah R.; Green, Nicola J.; Borthwick, Lee A.; Clark, Stephen C.; Pauli, Henning; Gould, Kate F.; Corris, Paul A.; Ali, Simi; Dark, John H.

    2017-01-01

    Abstract OBJECTIVES: Availability of donor lungs suitable for transplant falls short of current demand and contributes to waiting list mortality. Ex vivo lung perfusion (EVLP) offers the opportunity to objectively assess and recondition organs unsuitable for immediate transplant. Identifying robust biomarkers that can stratify donor lungs during EVLP to use or non-use or for specific interventions could further improve its clinical impact. METHODS: In this pilot study, 16 consecutive donor lungs unsuitable for immediate transplant were assessed by EVLP. Key inflammatory mediators and tissue injury markers were measured in serial perfusate samples collected hourly and in bronchoalveolar lavage fluid (BALF) collected before and after EVLP. Levels were compared between donor lungs that met criteria for transplant and those that did not. RESULTS: Seven of the 16 donor lungs (44%) improved during EVLP and were transplanted with uniformly good outcomes. Tissue and vascular injury markers lactate dehydrogenase, HMGB-1 and Syndecan-1 were significantly lower in perfusate from transplanted lungs. A model combining IL-1β and IL-8 concentrations in perfusate could predict final EVLP outcome after 2 h assessment. In addition, perfusate IL-1β concentrations showed an inverse correlation to recipient oxygenation 24 h post-transplant. CONCLUSIONS: This study confirms the feasibility of using inflammation and tissue injury markers in perfusate and BALF to identify donor lungs most likely to improve for successful transplant during clinical EVLP. These results support examining this issue in a larger study. PMID:28082471

  20. Effects of Constant Flow vs. Constant Pressure Perfusion on Fluid Filtration in Severe Hypothermic Isolated Blood-Perfused Rat Lungs.

    PubMed

    Halsøy, Kathrine; Kondratiev, Timofey; Tveita, Torkjel; Bjertnaes, Lars J

    2016-01-01

    Victims of severe accidental hypothermia are prone to fluid extravasation but rarely develop lung edema. We hypothesize that combined hypothermia-induced increase in pulmonary vascular resistance (PVR) and a concomitant fall in cardiac output protect the lungs against edema development. Our aim was to explore in hypothermic-isolated blood-perfused rat lungs whether perfusion at constant pressure influences fluid filtration differently from perfusion at constant flow. Isolated blood-perfused rat lungs were hanging freely in a weight transducer for measuring weight changes (ΔW). Fluid filtration coefficient (Kfc), was determined by transiently elevating left atrial pressure (Pla) by 5.8 mmHg two times each during normothermia (37°C) and during hypothermia (15°C). The lung preparations were randomized to two groups. One group was perfused with constant flow (Constant flow group) and the other group with constant pulmonary artery pressure (Constant PPA group). Microvascular pressure (Pmv) was determined before and during elevation of Pla (ΔPmv) by means of the double occlusion technique. Kfc was calculated with the formula Kfc = ΔW/ΔPmv/min. All Kfc values were normalized to predicted lung weight (P LW ), which was based on body weight (BW) according to the formula: P LW  = 0.0053 BW - 0.48 and presented as Kfc PLW in mg/min/mmHg/g. At cessation, bronchoalveolar lavage (BAL) fluid/perfusate protein concentration (B/P) ratio was determined photometrically. Data were analyzed with parametric or non-parametric tests as appropriate. p  < 0.05 considered as significant. Perfusate flow remained constant in the Constant flow group, but was more than halved during hypothermia in the Constant PPA group concomitant with a more fold increase in PVR. In the Constant flow group, Kfc PLW and B/P ratio increased significantly by more than 10-fold during hypothermia concerted by visible signs of edema in the trachea. Hemoglobin and hematocrit increased within

  1. Estradiol modulates post-ischemic cerebral vascular remodeling and improves long-term functional outcome in a rat model of stroke

    PubMed Central

    Ardelt, Agnieszka A.; Carpenter, Randall S.; Lobo, Merryl R.; Zeng, Huadong; Solanki, Rajanikant B.; Zhang, An; Kulesza, Piotr; Pike, Martin M.

    2012-01-01

    We previously observed that 17β-estradiol (E2) augments ischemic borderzone vascular density 10 days after focal cerebral ischemia-reperfusion in rats. We now evaluated the effect of E2 on vascular remodeling, lesional characteristics, and motor recovery up to 30 days after injury. Peri-lesional vascular density in tissue sections from rats treated with 0.72 mg E2 pellets was higher compared to 0.18 mg E2 pellets or placebo (P) pellets: vascular density index, 1.9 ± 0.2 (0.72 mg E2) vs. 1.4 ± 0.2 (0.18 mg E2) vs. 1.5 ± 0.4 (P), p=0.01. This was consistent with perfusion magnetic resonance imaging (MRI) measurements of lesional relative cerebral blood flow (rCBF): 1.89 ± 0.32 (0.72 mg E2) vs. 1.32 ± 0.19 (P), p=0.04. Post-ischemic angiogenesis occurred in P-treated as well as E2-treated rats. There was no treatment-related effect on lesional size, but lesional tissue was better preserved in E2-treated rats: cystic component as a % of total lesion, 30 ± 12 (0.72 mg E2) vs. 29 ± 17 (0.18 mg E2) vs. 61 ± 29 (P), p=0.008. Three weeks after right middle cerebral artery territory injury, rats treated with 0.72 mg E2 pellets used the left forelimb more than P-treated or 0.18 mg E2-treated rats: limb use asymmetry score, 0.09 ± 0.43 (0.72 mg E2) vs. 0.54 ± 0.12 (0.18 mg E2) vs. 0.54 ± 0.40 (P), p=0.05. We conclude that treatment with 0.72 mg E2 pellets beginning one week prior to ischemia/reperfusion and continuing through the one-month recovery period results in augmentation of lesional vascularity and perfusion, as well as improved motor recovery. PMID:22572084

  2. 3D ECG- and respiratory-gated non-contrast-enhanced (CE) perfusion MRI for postoperative lung function prediction in non-small-cell lung cancer patients: A comparison with thin-section quantitative computed tomography, dynamic CE-perfusion MRI, and perfusion scan.

    PubMed

    Ohno, Yoshiharu; Seki, Shinichiro; Koyama, Hisanobu; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Takenaka, Daisuke; Kassai, Yoshimori; Yui, Masao; Sugimura, Kazuro

    2015-08-01

    To compare predictive capabilities of non-contrast-enhanced (CE)- and dynamic CE-perfusion MRIs, thin-section multidetector computed tomography (CT) (MDCT), and perfusion scan for postoperative lung function in non-small cell lung cancer (NSCLC) patients. Sixty consecutive pathologically diagnosed NSCLC patients were included and prospectively underwent thin-section MDCT, non-CE-, and dynamic CE-perfusion MRIs and perfusion scan, and had their pre- and postoperative forced expiratory volume in one second (FEV1 ) measured. Postoperative percent FEV1 (po%FEV1 ) was then predicted from the fractional lung volume determined on semiquantitatively assessed non-CE- and dynamic CE-perfusion MRIs, from the functional lung volumes determined on quantitative CT, from the number of segments observed on qualitative CT, and from uptakes detected on perfusion scans within total and resected lungs. Predicted po%FEV1 s were then correlated with actual po%FEV1 s, which were %FEV1 s measured postoperatively. The limits of agreement were also determined. All predicted po%FEV1 s showed significant correlation (0.73 ≤ r ≤ 0.93, P < 0.0001) and limits of agreement with actual po%FEV1 (non-CE-perfusion MRI: 0.3 ± 10.0%, dynamic CE-perfusion MRI: 1.0 ± 10.8%, perfusion scan: 2.2 ± 14.1%, quantitative CT: 1.2 ± 9.0%, qualitative CT: 1.5 ± 10.2%). Non-CE-perfusion MRI may be able to predict postoperative lung function more accurately than qualitatively assessed MDCT and perfusion scan. © 2014 Wiley Periodicals, Inc.

  3. Gated-SPECT myocardial perfusion imaging as a complementary technique to magnetic resonance imaging in chronic myocardial infarction patients.

    PubMed

    Cuberas-Borrós, Gemma; Pineda, Victor; Aguadé-Bruix, Santiago; Romero-Farina, Guillermo; Pizzi, M Nazarena; de León, Gustavo; Castell-Conesa, Joan; García-Dorado, David; Candell-Riera, Jaume

    2013-09-01

    The aim of this study was to compare magnetic resonance and gated-SPECT myocardial perfusion imaging in patients with chronic myocardial infarction. Magnetic resonance imaging and gated-SPECT were performed in 104 patients (mean age, 61 [12] years; 87.5% male) with a previous infarction. Left ventricular volumes and ejection fraction and classic late gadolinium enhancement viability criteria (<75% transmurality) were correlated with those of gated-SPECT (uptake >50%) in the 17 segments of the left ventricle. Motion, thickening, and ischemia on SPECT were analyzed in segments showing nonviable tissue or equivocal enhancement features (50%-75% transmurality). A good correlation was observed between the 2 techniques for volumes, ejection fraction (P<.05), and estimated necrotic mass (P<.01). In total, 82 of 264 segments (31%) with >75% enhancement had >50% single SPECT uptake. Of the 106 equivocal segments on magnetic resonance imaging, 68 (64%) had >50% uptake, 41 (38.7%) had normal motion, 46 (43.4%) had normal thickening, and 17 (16%) had ischemic criteria on SPECT. A third of nonviable segments on magnetic resonance imaging showed >50% uptake on SPECT. Gated-SPECT can be useful in the analysis of motion, thickening, and ischemic criteria in segments with questionable viability on magnetic resonance imaging. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  4. Successful donation after cardiac death liver transplants with prolonged warm ischemia time using normothermic regional perfusion.

    PubMed

    De Carlis, Riccardo; Di Sandro, Stefano; Lauterio, Andrea; Ferla, Fabio; Dell'Acqua, Antonio; Zanierato, Marinella; De Carlis, Luciano

    2017-02-01

    The role of donation after cardiac death (DCD) in expanding the donor pool is mainly limited by the incidence of primary nonfunction (PNF) and ischemia-related complications. Even greater concern exists toward uncontrolled DCD, which represents the largest potential pool of DCD donors. We recently started the first Italian series of DCD liver transplantation, using normothermic regional perfusion (NRP) in 6 uncontrolled donors and in 1 controlled case to deal with the legally required no-touch period of 20 minutes. We examined our first 7 cases for the incidence of PNF, early graft dysfunction, and biliary complications. Acceptance of the graft was based on the trend of serum transaminase and lactate during NRP, the macroscopic appearance, and the liver biopsy. Hypothermic machine perfusion (HMP) was associated in selected cases to improve cold storage. Most notably, no cases of PNF were observed. Median posttransplant transaminase peak was 1014 IU/L (range, 393-3268 IU/L). Patient and graft survival were both 100% after a mean follow-up of 6.1 months (range, 3-9 months). No cases of ischemic cholangiopathy occurred during the follow-up. Only 1 anastomotic stricture completely resolved with endoscopic stenting. In conclusion, DCD liver transplantation is feasible in Italy despite the protracted no-touch period. The use of NRP and HMP seems to earn good graft function and proves safe in these organs. Liver Transplantation 23 166-173 2017 AASLD. © 2016 by the American Association for the Study of Liver Diseases.

  5. Temporal Trends in the Prevalence, Severity, and Localization of Myocardial Ischemia and Necrosis at Myocardial Perfusion Imaging After Myocardial Infarction.

    PubMed

    Nudi, Francesco; Schillaci, Orazio; Di Belardino, Natale; Versaci, Francesco; Tomai, Fabrizio; Pinto, Annamaria; Neri, Giandomenico; Procaccini, Enrica; Nudi, Alessandro; Frati, Giacomo; Biondi-Zoccai, Giuseppe

    2017-10-15

    The definition, presentation, and management of myocardial infarction (MI) have changed substantially in the last decade. Whether these changes have impacted on the presence, severity, and localization of necrosis at myocardial perfusion imaging (MPI) has not been appraised to date. Subjects undergoing MPI and reporting a history of clinical MI were shortlisted. We focused on the presence, severity, and localization of necrosis at MPI with a retrospective single-center analysis. A total of 10,476 patients were included, distinguishing 5 groups according to the period in which myocardial perfusion scintigraphy had been performed (2004 to 2005, 2006 to 2007, 2008 to 2009, 2010 to 2011, 2012 to 2013). Trend analysis showed over time a significant worsening in baseline features (e.g., age, diabetes mellitus, and Q waves at electrocardiogram), whereas medical therapy and revascularization were offered with increasing frequency. Over the years, there was also a lower prevalence of normal MPI (from 16.8% to 13.6%) and ischemic MPI (from 35.6% to 32.8%), and a higher prevalence of ischemic and necrotic MPI (from 12.0% to 12.7%) or solely necrotic MPI (from 35.7% to 40.9%, p <0.001). Yet the prevalence of severe ischemia decreased over time from 11.4% to 2.0%, with a similar trend for moderate ischemia (from 15.9% to 11.8%, p <0.001). Similarly sobering results were wound for the prevalence of severe necrosis (from 19.8% to 8.2%) and moderate necrosis (from 8.5% to 7.8%, p = 0.028). These trends were largely confirmed at regional level and after propensity score matching. In conclusion, the outlook of stable patients with previous MI has substantially improved in the last decade, with a decrease in the severity of residual myocardial ischemia and necrosis, despite an apparent worsening in baseline features. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Radionuclide detection devices and associated methods

    DOEpatents

    Mann, Nicholas R [Rigby, ID; Lister, Tedd E [Idaho Falls, ID; Tranter, Troy J [Idaho Falls, ID

    2011-03-08

    Radionuclide detection devices comprise a fluid cell comprising a flow channel for a fluid stream. A radionuclide collector is positioned within the flow channel and configured to concentrate one or more radionuclides from the fluid stream onto at least a portion of the radionuclide collector. A scintillator for generating scintillation pulses responsive to an occurrence of a decay event is positioned proximate at least a portion of the radionuclide collector and adjacent to a detection system for detecting the scintillation pulses. Methods of selectively detecting a radionuclide are also provided.

  7. Meta-Analysis of Stress Myocardial Perfusion Imaging

    ClinicalTrials.gov

    2017-06-06

    Coronary Disease; Echocardiography; Fractional Flow Reserve, Myocardial; Hemodynamics; Humans; Magnetic Resonance Imaging; Myocardial Perfusion Imaging; Perfusion; Predictive Value of Tests; Single Photon Emission Computed Tomography; Positron Emission Tomography; Multidetector Computed Tomography; Echocardiography, Stress; Coronary Angiography

  8. Protection of retinal function by sulforaphane following retinal ischemic injury.

    PubMed

    Ambrecht, Lindsay A; Perlman, Jay I; McDonnell, James F; Zhai, Yougang; Qiao, Liang; Bu, Ping

    2015-09-01

    Sulforaphane, a precursor of glucosinolate in cruciferous vegetables such as broccoli and cauliflower, has been shown to protect brain ischemic injury. In this study, we examined the effect of systemic administration of sulforaphane on retinal ischemic reperfusion injury. Intraocular pressure was elevated in two groups of C57BL/6 mice (n = 8 per group) for 45 min to induce retinal ischemic reperfusion injury. Following retinal ischemic reperfusion injury, vehicle (1% DMSO saline) or sulforaphane (25 mg/kg/day) was administered intraperitoneally daily for 5 days. Scotopic electroretinography (ERG) was used to quantify retinal function prior to and one-week after retinal ischemic insult. Retinal morphology was examined one week after ischemic insult. Following ischemic reperfusion injury, ERG a- and b-wave amplitudes were significantly reduced in the control mice. Sulforaphane treatment significantly attenuated ischemic-induced loss of retinal function as compared to vehicle treated mice. In vehicle treated mice, ischemic reperfusion injury produced marked thinning of the inner retinal layers, but the thinning of the inner retinal layers appeared significantly less with sulforaphane treatment. Thus, sulforaphane may be beneficial in the treatment of retinal disorders with ischemic reperfusion injury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Australian and New Zealand Perfusion Survey: Management and Procedure

    PubMed Central

    Tuble, Sigrid C.; Willcox, Timothy W.; Baker, Robert A.

    2009-01-01

    Abstract: In this report, we will discuss management and procedural aspects of perfusion practice. This report allows us to compare and contrast recent trends and changes in perfusion with historic practices. A survey comprised of 233 single-answer and 12 open-ended questions was sent by e-mail to senior perfusionists or individuals in charge of perfusion in 40 hospital groups. The survey encompasses a review of the perfusion practices for the calendar year of 2003, and respondents were required to answer the survey based on the predominant practice in their institutions. Standard management of routine adult cardiopulmonary bypass (CPB) in 2003 consisted of perfusion strategies that achieved a target temperature of 32.0°C (range, 28.0–35.0°C), a flow index of 2.4 L/min/m2 (range, 1.6–3.0 L/min/m2) during normothermia and 1.8 L/min/m2 (range, 1.2–3.0 L/min/m2) during hypothermia, and a pressure during CPB between 50 (range, 30–65 mmHg) and 70 mmHg (range, 60–95 mmHg). Myocardial protection with blood cardioplegia was used in 77% of the 20,688 CPB cases, whereas in 53% cases, cardiotomy blood was never processed. Pre-operatively, 76% of perfusion groups assessed their patients (21% directly with the patient), and 85% responded that perfusionists performed or participated in a formal pre-bypass checklist. The majority of the perfusion groups used a handwritten perfusion record (62%), 12% used an electronic perfusion record, and 26% used both, whereas more than one half of the groups were involved in quality assurance (79%), incident reporting (74%), audits (62%), research (53%), participating in interdisciplinary meetings (53%), and morbidity and mortality meetings (65%). Only 26% conducted formal perfusion team meetings. This report outlines the status of clinical management and procedural performance for perfusion practices in Australia and New Zealand in 2003. Awareness of these trends will allow perfusionists to assess both individual practices and

  10. Perfusion Scintigraphy and Patient Selection for Lung Volume Reduction Surgery

    PubMed Central

    Chandra, Divay; Lipson, David A.; Hoffman, Eric A.; Hansen-Flaschen, John; Sciurba, Frank C.; DeCamp, Malcolm M.; Reilly, John J.; Washko, George R.

    2010-01-01

    Rationale: It is unclear if lung perfusion can predict response to lung volume reduction surgery (LVRS). Objectives: To study the role of perfusion scintigraphy in patient selection for LVRS. Methods: We performed an intention-to-treat analysis of 1,045 of 1,218 patients enrolled in the National Emphysema Treatment Trial who were non–high risk for LVRS and had complete perfusion scintigraphy results at baseline. The median follow-up was 6.0 years. Patients were classified as having upper or non–upper lobe–predominant emphysema on visual examination of the chest computed tomography and high or low exercise capacity on cardiopulmonary exercise testing at baseline. Low upper zone perfusion was defined as less than 20% of total lung perfusion distributed to the upper third of both lungs as measured on perfusion scintigraphy. Measurements and Main Results: Among 284 of 1,045 patients with upper lobe–predominant emphysema and low exercise capacity at baseline, the 202 with low upper zone perfusion had lower mortality with LVRS versus medical management (risk ratio [RR], 0.56; P = 0.008) unlike the remaining 82 with high perfusion where mortality was unchanged (RR, 0.97; P = 0.62). Similarly, among 404 of 1,045 patients with upper lobe–predominant emphysema and high exercise capacity, the 278 with low upper zone perfusion had lower mortality with LVRS (RR, 0.70; P = 0.02) unlike the remaining 126 with high perfusion (RR, 1.05; P = 1.00). Among the 357 patients with non–upper lobe–predominant emphysema (75 with low and 282 with high exercise capacity) there was no improvement in survival with LVRS and measurement of upper zone perfusion did not contribute new prognostic information. Conclusions: Compared with optimal medical management, LVRS reduces mortality in patients with upper lobe–predominant emphysema when there is low rather than high perfusion to the upper lung. PMID:20538961

  11. Perfusion scintigraphy and patient selection for lung volume reduction surgery.

    PubMed

    Chandra, Divay; Lipson, David A; Hoffman, Eric A; Hansen-Flaschen, John; Sciurba, Frank C; Decamp, Malcolm M; Reilly, John J; Washko, George R

    2010-10-01

    It is unclear if lung perfusion can predict response to lung volume reduction surgery (LVRS). To study the role of perfusion scintigraphy in patient selection for LVRS. We performed an intention-to-treat analysis of 1,045 of 1,218 patients enrolled in the National Emphysema Treatment Trial who were non-high risk for LVRS and had complete perfusion scintigraphy results at baseline. The median follow-up was 6.0 years. Patients were classified as having upper or non-upper lobe-predominant emphysema on visual examination of the chest computed tomography and high or low exercise capacity on cardiopulmonary exercise testing at baseline. Low upper zone perfusion was defined as less than 20% of total lung perfusion distributed to the upper third of both lungs as measured on perfusion scintigraphy. Among 284 of 1,045 patients with upper lobe-predominant emphysema and low exercise capacity at baseline, the 202 with low upper zone perfusion had lower mortality with LVRS versus medical management (risk ratio [RR], 0.56; P = 0.008) unlike the remaining 82 with high perfusion where mortality was unchanged (RR, 0.97; P = 0.62). Similarly, among 404 of 1,045 patients with upper lobe-predominant emphysema and high exercise capacity, the 278 with low upper zone perfusion had lower mortality with LVRS (RR, 0.70; P = 0.02) unlike the remaining 126 with high perfusion (RR, 1.05; P = 1.00). Among the 357 patients with non-upper lobe-predominant emphysema (75 with low and 282 with high exercise capacity) there was no improvement in survival with LVRS and measurement of upper zone perfusion did not contribute new prognostic information. Compared with optimal medical management, LVRS reduces mortality in patients with upper lobe-predominant emphysema when there is low rather than high perfusion to the upper lung.

  12. Neuroprotective Mechanisms of Taurine against Ischemic Stroke.

    PubMed

    Menzie, Janet; Prentice, Howard; Wu, Jang-Yen

    2013-06-03

    Ischemic stroke exhibits a multiplicity of pathophysiological mechanisms. To address the diverse pathophysiological mechanisms observed in ischemic stroke investigators seek to find therapeutic strategies that are multifaceted in their action by either investigating multipotential compounds or by using a combination of compounds. Taurine, an endogenous amino acid, exhibits a plethora of physiological functions. It exhibits antioxidative properties, stabilizes membrane, functions as an osmoregulator, modulates ionic movements, reduces the level of pro-inflammators, regulates intracellular calcium concentration; all of which contributes to its neuroprotective effect. Data are accumulating that show the neuroprotective mechanisms of taurine against stroke pathophysiology. In this review, we describe the neuroprotective mechanisms employed by taurine against ischemic stroke and its use in clinical trial for ischemic stroke.

  13. Neuroprotective Mechanisms of Taurine against Ischemic Stroke

    PubMed Central

    Menzie, Janet; Prentice, Howard; Wu, Jang-Yen

    2013-01-01

    Ischemic stroke exhibits a multiplicity of pathophysiological mechanisms. To address the diverse pathophysiological mechanisms observed in ischemic stroke investigators seek to find therapeutic strategies that are multifaceted in their action by either investigating multipotential compounds or by using a combination of compounds. Taurine, an endogenous amino acid, exhibits a plethora of physiological functions. It exhibits antioxidative properties, stabilizes membrane, functions as an osmoregulator, modulates ionic movements, reduces the level of pro-inflammators, regulates intracellular calcium concentration; all of which contributes to its neuroprotective effect. Data are accumulating that show the neuroprotective mechanisms of taurine against stroke pathophysiology. In this review, we describe the neuroprotective mechanisms employed by taurine against ischemic stroke and its use in clinical trial for ischemic stroke. PMID:24961429

  14. Usefulness for Predicting Cardiac Events After Orthotopic Liver Transplantation of Myocardial Perfusion Imaging and Dobutamine Stress Echocardiography Preoperatively.

    PubMed

    Snipelisky, David; Ray, Jordan; Vallabhajosyula, Saraschandra; Matcha, Gautam; Squier, Samuel; Lewis, Jacob; Holliday, Rex; Aggarwal, Niti; Askew, J Wells; Shapiro, Brian; Anavekar, Nandan

    2017-04-01

    Patients undergoing orthotopic liver transplantation have high rates of cardiac morbidity and mortality. Although guidelines recommend noninvasive stress testing as part of the preoperative evaluation, little data have evaluated clinical outcomes following orthotopic liver transplantation. A retrospective study at 2 high-volume liver transplantation centers was performed. All patients undergoing noninvasive stress testing (myocardial perfusion imaging [MPI] or dobutamine stress echocardiography [DSE]) over a 5-year period were included. Descriptive analyses, including clinical outcomes and perioperative and postoperative ischemic events, were performed. Comparisons were made between subsets of patients within each stress modality based on abnormal versus normal results. A total of 506 patients were included, of which 343 underwent DSE and 163 MPI. Few patients had abnormal results, with 19 (5.5%) in the DSE group and 13 (8%) in the MPI group. Perioperative and postoperative cardiac complications were low (n = 20, 5.8% and n = 3, 0.9% in DSE group and n = 15, 9.2% and n = 3, 1.8% in MPI group). Comparisons between abnormal versus normal findings showed a trend toward periprocedural cardiac complications in the abnormal DSE group (n = 3, 15.8% vs n = 17, 5.25%; p = 0.09) with no difference in 6-month postprocedural complications (n = 0 vs n = 3, 0.9%; p = 1.0). In the MPI group, a trend toward periprocedural ischemic complications (n = 3, 23.1% vs n = 12, 8%; p = 0.1) was noted with no difference in 6-month postprocedural complications (n = 0 vs n = 3, 2%; p = 1.0). In conclusion, our study found a significantly lower than reported cardiac event rate. In addition, it demonstrated that ischemic cardiac events are uncommon in patients with normal stress testing. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Is the long-term prognosis of transient ischemic attack or minor ischemic stroke affected by the occurrence of nonfocal symptoms?

    PubMed

    Compter, Annette; van der Worp, H Bart; van Gijn, Jan; Kappelle, L Jaap; Koudstaal, Peter J; Algra, Ale

    2014-05-01

    In patients with a transient ischemic attack or ischemic stroke, nonfocal neurological symptoms, such as confusion and nonrotatory dizziness, may be associated with a higher risk of vascular events. We assessed the relationship between nonfocal symptoms and the long-term risk of vascular events or death in patients with a transient ischemic attack or minor ischemic stroke. We related initial symptoms with outcome events in 2409 patients with a transient ischemic attack (n=723) or minor ischemic stroke (n=1686), included in the Life Long After Cerebral ischemia cohort. All patients underwent a standardized interview on the occurrence of focal and nonfocal neurological symptoms during the qualifying event. The primary outcome was the composite of any stroke, myocardial infarction, or vascular death. Secondary outcomes were all-cause death, vascular death, cardiac death, myocardial infarction, and stroke. Hazard ratios were calculated with Cox regression. Focal symptoms were accompanied by nonfocal symptoms in 739 (31%) patients. During a mean follow-up of 10.1 years, the primary outcome occurred in 1313 (55%) patients. There was no difference in the risk of the primary outcome between patients with both focal and nonfocal symptoms and patients with focal symptoms alone (adjusted hazard ratio, 0.97; 95% confidence interval, 0.86-1.09; P=0.60). The risk of each of the secondary outcomes was also similar in both groups. About one third of the patients with a transient ischemic attack or minor ischemic stroke has both focal and nonfocal neurological symptoms. Nonfocal symptoms are not associated with an increased long-term risk of vascular events or death. This trial was not registered because enrollment began before July 1, 2005.

  16. Perfusion-related stimuli for compensatory lung growth following pneumonectomy

    PubMed Central

    Dane, D. Merrill; Yilmaz, Cuneyt; Gyawali, Dipendra; Iyer, Roshni; Ravikumar, Priya; Estrera, Aaron S.

    2016-01-01

    Following pneumonectomy (PNX), two separate mechanical forces act on the remaining lung: parenchymal stress caused by lung expansion, and microvascular distension and shear caused by increased perfusion. We previously showed that parenchymal stress and strain explain approximately one-half of overall compensation; the remainder was presumptively attributed to perfusion-related factors. In this study, we directly tested the hypothesis that perturbation of regional pulmonary perfusion modulates post-PNX lung growth. Adult canines underwent banding of the pulmonary artery (PAB) to the left caudal (LCa) lobe, which caused a reduction in basal perfusion to LCa lobe without preventing the subsequent increase in its perfusion following right PNX while simultaneously exaggerating the post-PNX increase in perfusion to the unbanded lobes, thereby creating differential perfusion changes between banded and unbanded lobes. Control animals underwent sham pulmonary artery banding followed by right PNX. Pulmonary function, regional pulmonary perfusion, and high-resolution computed tomography of the chest were analyzed pre-PNX and 3-mo post-PNX. Terminally, the remaining lobes were fixed for detailed morphometric analysis. Results were compared with corresponding lobes in two control (Sham banding and normal unoperated) groups. PAB impaired the indices of post-PNX extravascular alveolar tissue growth by up to 50% in all remaining lobes. PAB enhanced the expected post-PNX increase in alveolar capillary formation, measured by the prevalence of double-capillary profiles, in both unbanded and banded lobes. We conclude that perfusion distribution provides major stimuli for post-PNX compensatory lung growth independent of the stimuli provided by lung expansion and parenchymal stress and strain. PMID:27150830

  17. Selective Heart, Brain and Body Perfusion in Open Aortic Arch Replacement.

    PubMed

    Maier, Sven; Kari, Fabian; Rylski, Bartosz; Siepe, Matthias; Benk, Christoph; Beyersdorf, Friedhelm

    2016-09-01

    Open aortic arch replacement is a complex and challenging procedure, especially in post dissection aneurysms and in redo procedures after previous surgery of the ascending aorta or aortic root. We report our experience with the simultaneous selective perfusion of heart, brain, and remaining body to ensure optimal perfusion and to minimize perfusion-related risks during these procedures. We used a specially configured heart-lung machine with a centrifugal pump as arterial pump and an additional roller pump for the selective cerebral perfusion. Initial arterial cannulation is achieved via femoral artery or right axillary artery. After lower body circulatory arrest and selective antegrade cerebral perfusion for the distal arch anastomosis, we started selective lower body perfusion simultaneously to the selective antegrade cerebral perfusion and heart perfusion. Eighteen patients were successfully treated with this perfusion strategy from October 2012 to November 2015. No complications related to the heart-lung machine and the cannulation occurred during the procedures. Mean cardiopulmonary bypass time was 239 ± 33 minutes, the simultaneous selective perfusion of brain, heart, and remaining body lasted 55 ± 23 minutes. One patient suffered temporary neurological deficit that resolved completely during intensive care unit stay. No patient experienced a permanent neurological deficit or end-organ dysfunction. These high-risk procedures require a concept with a special setup of the heart-lung machine. Our perfusion strategy for aortic arch replacement ensures a selective perfusion of heart, brain, and lower body during this complex procedure and we observed excellent outcomes in this small series. This perfusion strategy is also applicable for redo procedures.

  18. Abnormalities of capillary microarchitecture in a rat model of coronary ischemic congestive heart failure

    PubMed Central

    Chen, Jiqiu; Yaniz-Galende, Elisa; Kagan, Heather J.; Liang, Lifan; Hekmaty, Saboor; Giannarelli, Chiara

    2015-01-01

    The aim of the present study is to explore the role of capillary disorder in coronary ischemic congestive heart failure (CHF). CHF was induced in rats by aortic banding plus ischemia-reperfusion followed by aortic debanding. Coronary arteries were perfused with plastic polymer containing fluorescent dye. Multiple fluorescent images of casted heart sections and scanning electric microscope of coronary vessels were obtained to characterize changes in the heart. Cardiac function was assessed by echocardiography and in vivo hemodynamics. Stenosis was found in all levels of the coronary arteries in CHF. Coronary vasculature volume and capillary density in remote myocardium were significantly increased in CHF compared with control. This occurred largely in microvessels with a diameter of ≤3 μm. Capillaries in CHF had a tortuous structure, while normal capillaries were linear. Capillaries in CHF had inconsistent diameters, with assortments of narrowed and bulged segments. Their surfaces appeared rough, potentially indicating endothelial dysfunction in CHF. Segments of main capillaries between bifurcations were significantly shorter in length in CHF than in control. Transiently increasing preload by injecting 50 μl of 30% NaCl demonstrated that the CHF heart had lower functional reserve; this may be associated with congestion in coronary microcirculation. Ischemic coronary vascular disorder is not limited to the main coronary arteries, as it occurs in arterioles and capillaries. Capillary disorder in CHF included stenosis, deformed structure, proliferation, and roughened surfaces. This disorder in the coronary artery architecture may contribute to the reduction in myocyte contractility in the setting of heart failure. PMID:25659485

  19. MRI of plaque characteristics and relationship with downstream perfusion and cerebral infarction in patients with symptomatic middle cerebral artery stenosis.

    PubMed

    Lu, Shan-Shan; Ge, Song; Su, Chun-Qiu; Xie, Jun; Mao, Jian; Shi, Hai-Bin; Hong, Xun-Ning

    2017-10-30

    Intracranial plaque characteristics are associated with stroke events. Differences in plaque features may explain the disconnect between stenosis severity and the presence of ischemic stroke. To investigate the relationship between plaque characteristics and downstream perfusion changes, and their contribution to the occurrence of cerebral infarction beyond luminal stenosis. Case control. Forty-six patients with symptomatic middle cerebral artery (MCA) stenosis (with acute cerebral infarction, n = 30; without acute cerebral infarction, n = 16). 3.0T with 3D turbo spin echo sequence (3D-SPACE). Luminal stenosis grade, plaque features including lesion T 2 and T 1 hyperintense components, plaque enhancement grade, and plaque distribution were assessed. Brain perfusion was evaluated on mean transient time maps based on the Alberta Stroke Program Early CT score (MTT-ASPECTS). Plaque features, grade of luminal stenosis, and MTT-ASPECTS were compared between two groups. The association between plaque features and MTT-ASPECTS were assessed using Spearman's correlation analysis. Multivariate logistic regression and receiver operating characteristic (ROC) curves were constructed to assess the effect of significant variables alone and their combination in determining the occurrence of cerebral infarction. Stronger enhanced plaques were associated with downstream lower MTT-ASPECTS (P = 0.010). Plaque enhancement grade (P = 0.039, odds ratio [OR] 5.9, 95% confidence interval [CI] 1.1-32) and MTT-ASPECTS (P = 0.003, OR 2.6, 95% CI 1.4-4.7) were associated with a recent cerebral infarction, whereas luminal stenosis grade was not (P = 0.128). The combination of MTT-ASPECTS and plaque enhancement grade provided incremental information beyond luminal stenosis grade alone. The area under the receiver operating characteristic curve (AUC) improved from 0.535 to 0.921 (P < 0.05). Strongly enhanced plaques are associated with a higher likelihood of downstream

  20. Predictive variables for mortality after acute ischemic stroke.

    PubMed

    Carter, Angela M; Catto, Andrew J; Mansfield, Michael W; Bamford, John M; Grant, Peter J

    2007-06-01

    Stroke is a major healthcare issue worldwide with an incidence comparable to coronary events, highlighting the importance of understanding risk factors for stroke and subsequent mortality. In the present study, we determined long-term (all-cause) mortality in 545 patients with ischemic stroke compared with a cohort of 330 age-matched healthy control subjects followed up for a median of 7.4 years. We assessed the effect of selected demographic, clinical, biochemical, hematologic, and hemostatic factors on mortality in patients with ischemic stroke. Stroke subtype was classified according to the Oxfordshire Community Stroke Project criteria. Patients who died 30 days or less after the acute event (n=32) were excluded from analyses because this outcome is considered to be directly attributable to the acute event. Patients with ischemic stroke were at more than 3-fold increased risk of death compared with the age-matched control cohort. In multivariate analyses, age, stroke subtype, atrial fibrillation, and previous stroke/transient ischemic attack were predictive of mortality in patients with ischemic stroke. Albumin and creatinine and the hemostatic factors von Willebrand factor and beta-thromboglobulin were also predictive of mortality in patients with ischemic stroke after accounting for demographic and clinical variables. The results indicate that subjects with acute ischemic stroke are at increased risk of all-cause mortality. Advancing age, large-vessel stroke, atrial fibrillation, and previous stroke/transient ischemic attack predict mortality; and analysis of albumin, creatinine, von Willebrand factor, and beta-thromboglobulin will aid in the identification of patients at increased risk of death after stroke.

  1. Profiling inflammation and tissue injury markers in perfusate and bronchoalveolar lavage fluid during human ex vivo lung perfusion.

    PubMed

    Andreasson, Anders S I; Karamanou, Danai M; Gillespie, Colin S; Özalp, Faruk; Butt, Tanveer; Hill, Paul; Jiwa, Kasim; Walden, Hannah R; Green, Nicola J; Borthwick, Lee A; Clark, Stephen C; Pauli, Henning; Gould, Kate F; Corris, Paul A; Ali, Simi; Dark, John H; Fisher, Andrew J

    2017-03-01

    Availability of donor lungs suitable for transplant falls short of current demand and contributes to waiting list mortality. Ex vivo lung perfusion (EVLP) offers the opportunity to objectively assess and recondition organs unsuitable for immediate transplant. Identifying robust biomarkers that can stratify donor lungs during EVLP to use or non-use or for specific interventions could further improve its clinical impact. In this pilot study, 16 consecutive donor lungs unsuitable for immediate transplant were assessed by EVLP. Key inflammatory mediators and tissue injury markers were measured in serial perfusate samples collected hourly and in bronchoalveolar lavage fluid (BALF) collected before and after EVLP. Levels were compared between donor lungs that met criteria for transplant and those that did not. Seven of the 16 donor lungs (44%) improved during EVLP and were transplanted with uniformly good outcomes. Tissue and vascular injury markers lactate dehydrogenase, HMGB-1 and Syndecan-1 were significantly lower in perfusate from transplanted lungs. A model combining IL-1β and IL-8 concentrations in perfusate could predict final EVLP outcome after 2 h assessment. In addition, perfusate IL-1β concentrations showed an inverse correlation to recipient oxygenation 24 h post-transplant. This study confirms the feasibility of using inflammation and tissue injury markers in perfusate and BALF to identify donor lungs most likely to improve for successful transplant during clinical EVLP. These results support examining this issue in a larger study. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery.

  2. Nuclear cardiology: Myocardial perfusion and function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seldin, D.W.

    1991-08-01

    Myocardial perfusion studies continue to be a major focus of research, with new investigations of the relationship of exercise-redistribution thallium imaging to diagnosis, prognosis, and case management. The redistribution phenomenon, which seemed to be fairly well understood a few years ago, is now recognized to be much more complex than originally thought, and various strategies have been proposed to clarify the meaning of persistent defects. Pharmacologic intervention with dipyridamole and adenosine has become available as an alternative to exercise, and comparisons with exercise imaging and catheterization results have been described. Thallium itself is no longer the sole single-photon perfusion radiopharmaceutical;more » two new technetium agents are now widely available. In addition to perfusion studies, advances in the study of ventricular function have been made, including reports of studies performed in conjunction with technetium perfusion studies, new insights into cardiac physiology, and the prognostic and case-management information that function studies provide. Finally, work has continued with monoclonal antibodies for the identification of areas of myocyte necrosis. 41 references.« less

  3. A reappraisal of retrograde cerebral perfusion

    PubMed Central

    2013-01-01

    Brain protection during aortic arch surgery by perfusing cold oxygenated blood into the superior vena cava was first reported by Lemole et al. In 1990 Ueda and associates first described the routine use of continuous retrograde cerebral perfusion (RCP) in thoracic aortic surgery for the purpose of cerebral protection during the interval of obligatory interruption of anterograde cerebral flow. The beneficial effects of RCP may be its ability to sustain brain hypothermia during hypothermic circulatory arrest (HCA) and removal of embolic material from the arterial circulation of the brain. RCP can offer effective brain protection during HCA for about 40 to 60 minutes. Animal experiments revealed that RCP provided inadequate cerebral perfusion and that neurological recovery was improved with selective antegrade cerebral perfusion (ACP), however, both RCP and ACP provide comparable clinical outcomes regarding both the mortality and stroke rates by risk-adjusted and case-matched comparative study. RCP still remains a valuable adjunct for brain protection during aortic arch repair in particular pathologies and patients. PMID:23977600

  4. Enhanced perfusion defect clarity and inhomogeneity in smokers' lungs with deep-inspiratory breath-hold perfusion SPECT images.

    PubMed

    Suga, Kazuyoshi; Yasuhiko, Kawakami; Iwanaga, Hideyuki; Hayashi, Norio; Yamashita, Tomio; Matsunaga, Naofumi

    2005-09-01

    Deep-inspiratory breath-hold (DIBrH) Tc-99m-macroaggregated albumin (MAA) SPECT images were developed to accurately evaluate perfusion impairment in smokers' lungs. DIBrH SPECT was performed in 28 smokers with or without low attenuation areas (LAA) on CT images, using a triple-headed SPECT system and a laser light respiratory tracking device. DIBrH SPECT images were reconstructed from every 4 degrees projection of five adequate 360 degrees projection data sets with almost the same respiratory dimension at 20 sec DIBrH. Perfusion defect clarity was assessed by the lesion (defect)-to-contralateral normal lung count ratios (L/N ratios). Perfusion inhomogeneity was assessed by the coefficient of variation (CV) values of pixel counts and correlated with the diffusing capacity of the lungs for carbon monoxide/alveolar volume (DLCO/VA) ratios. The results were compared with those on conventional images. Five DIBrH projection data sets with minimal dimension differences of 2.9+/-0.6 mm were obtained in all subjects. DIBrH images enhanced perfusion defects compared with conventional images, with significantly higher L/N ratios (P<0.0001), and detected a total of 109 (26.9%) additional detects (513 vs. 404), with excellent inter-observer agreement (kappa value of 0.816). CV values in the smokers' lungs on DIBrH images were also significantly higher compared with those on conventional images (0.31+/-0.10 vs. 0.19+/-0.06, P<0.0001). CV values in smokers on DIBrH images showed a significantly closer correlation with DLCO/VA ratios compared with conventional images (R = 0.872, P<0.0001 vs. R=0.499, P<0.01). By reducing adverse effect of respiratory motion, DIBrH SPECT images enhance perfusion defect clarity and inhomogeneity, and provide more accurate assessment of impaired perfusion in smokers' lungs compared with conventional images.

  5. Low level light therapy by LED of different wavelength induces angiogenesis and improves ischemic wound healing.

    PubMed

    Dungel, Peter; Hartinger, Joachim; Chaudary, Sidrah; Slezak, Paul; Hofmann, Anna; Hausner, Thomas; Strassl, Martin; Wintner, Ernst; Redl, Heinz; Mittermayr, Rainer

    2014-12-01

    Low-level light therapy (LLLT) has been revealed as a potential means to improve wound healing. So far, most studies are being performed with irradiation in the red to near-infrared spectra. Recently, we showed that blue light (470 nm) can significantly influence biological systems such as nitric oxide (NO) metabolism and is able to release NO from nitrosyl-hemoglobin or mitochondrial protein complexes. Therefore, the aim of this study was to evaluate and compare the therapeutic value of blue or red light emitting diodes (LEDs) on wound healing in an ischemia disturbed rodent flap model. An abdominal flap was rendered ischemic by ligation of one epigastric bundle and subjected to LED illumination with a wavelength of 470 nm (blue, n = 8) or 629 nm (red, n = 8) each at 50 mW/cm(2) and compared to a non-treated control group (n = 8). Illumination was performed for 10 minutes on five consecutive days. LED therapy with both wavelengths significantly increased angiogenesis in the sub-epidermal layer and intramuscularly (panniculus carnosus muscle) which was associated with significantly improved tissue perfusion 7 days after the ischemic insult. Accordingly, tissue necrosis was significantly reduced and shrinkage significantly less pronounced in the LED-treated groups of both wavelengths. LED treatment of ischemia challenged tissue improved early wound healing by enhancing angiogenesis irrespective of the wavelength thus delineating this noninvasive means as a potential, cost effective tool in complicated wounds. © 2014 Wiley Periodicals, Inc.

  6. Computed Tomography Perfusion Imaging for the Diagnosis of Hepatic Alveolar Echinococcosis

    PubMed Central

    Sade, Recep; Kantarci, Mecit; Genc, Berhan; Ogul, Hayri; Gundogdu, Betul; Yilmaz, Omer

    2018-01-01

    Objective: Alveolar echinococcosis (AE) is a rare life-threatening parasitic infection. Computed tomography perfusion (CTP) imaging has the potential to provide both quantitative and qualitative information about the tissue perfusion characteristics. The purpose of this study was the examination of the characteristic features and feasibility of CTP in AE liver lesions. Material and Methods: CTP scanning was performed in 25 patients who had a total of 35 lesions identified as AE of the liver. Blood flow (BF), blood volume (BV), portal venous perfusion (PVP), arterial liver perfusion (ALP), and hepatic perfusion indexes (HPI) were computed for background liver parenchyma and each AE lesion. Results: Significant differences were detected between perfusion values of the AE lesions and background liver tissue. The BV, BF, ALP, and PVP values for all components of the AE liver lesions were significantly lower than the normal liver parenchyma (p<0.01). Conclusions: We suggest that perfusion imaging can be used in AE of the liver. Thus, the quantitative knowledge of perfusion parameters are obtained via CT perfusion imaging. PMID:29531482

  7. A Novel Therapy to Attenuate Acute Kidney Injury and Ischemic Allograft Damage after Allogenic Kidney Transplantation in Mice

    PubMed Central

    Gueler, Faikah; Shushakova, Nelli; Mengel, Michael; Hueper, Katja; Chen, Rongjun; Liu, Xiaokun; Park, Joon-Keun; Haller, Hermann

    2015-01-01

    Ischemia followed by reperfusion contributes to the initial damage to allografts after kidney transplantation (ktx). In this study we tested the hypothesis that a tetrapeptide EA-230 (AQGV), might improve survival and attenuate loss of kidney function in a mouse model of renal ischemia/reperfusion injury (IRI) and ischemia-induced delayed graft function after allogenic kidney transplantation. IRI was induced in male C57Bl/6N mice by transient bilateral renal pedicle clamping for 35 min. Treatment with EA-230 (20–50mg/kg twice daily i.p. for four consecutive days) was initiated 24 hours after IRI when acute kidney injury (AKI) was already established. The treatment resulted in markedly improved survival in a dose dependent manner. Acute tubular injury two days after IRI was diminished and tubular epithelial cell proliferation was significantly enhanced by EA-230 treatment. Furthermore, CTGF up-regulation, a marker of post-ischemic fibrosis, at four weeks after IRI was significantly less in EA-230 treated renal tissue. To learn more about these effects, we measured renal blood flow (RBF) and glomerular filtration rate (GFR) at 28 hours after IRI. EA-230 improved both GFR and RBF significantly. Next, EA-230 treatment was tested in a model of ischemia-induced delayed graft function after allogenic kidney transplantation. The recipients were treated with EA-230 (50 mg/kg) twice daily i.p. which improved renal function and allograft survival by attenuating ischemic allograft damage. In conclusion, EA-230 is a novel and promising therapeutic agent for treating acute kidney injury and preventing IRI-induced post-transplant ischemic allograft injury. Its beneficial effect is associated with improved renal perfusion after IRI and enhanced regeneration of tubular epithelial cells. PMID:25617900

  8. A novel therapy to attenuate acute kidney injury and ischemic allograft damage after allogenic kidney transplantation in mice.

    PubMed

    Gueler, Faikah; Shushakova, Nelli; Mengel, Michael; Hueper, Katja; Chen, Rongjun; Liu, Xiaokun; Park, Joon-Keun; Haller, Hermann; Wensvoort, Gert; Rong, Song

    2015-01-01

    Ischemia followed by reperfusion contributes to the initial damage to allografts after kidney transplantation (ktx). In this study we tested the hypothesis that a tetrapeptide EA-230 (AQGV), might improve survival and attenuate loss of kidney function in a mouse model of renal ischemia/reperfusion injury (IRI) and ischemia-induced delayed graft function after allogenic kidney transplantation. IRI was induced in male C57Bl/6N mice by transient bilateral renal pedicle clamping for 35 min. Treatment with EA-230 (20-50mg/kg twice daily i.p. for four consecutive days) was initiated 24 hours after IRI when acute kidney injury (AKI) was already established. The treatment resulted in markedly improved survival in a dose dependent manner. Acute tubular injury two days after IRI was diminished and tubular epithelial cell proliferation was significantly enhanced by EA-230 treatment. Furthermore, CTGF up-regulation, a marker of post-ischemic fibrosis, at four weeks after IRI was significantly less in EA-230 treated renal tissue. To learn more about these effects, we measured renal blood flow (RBF) and glomerular filtration rate (GFR) at 28 hours after IRI. EA-230 improved both GFR and RBF significantly. Next, EA-230 treatment was tested in a model of ischemia-induced delayed graft function after allogenic kidney transplantation. The recipients were treated with EA-230 (50 mg/kg) twice daily i.p. which improved renal function and allograft survival by attenuating ischemic allograft damage. In conclusion, EA-230 is a novel and promising therapeutic agent for treating acute kidney injury and preventing IRI-induced post-transplant ischemic allograft injury. Its beneficial effect is associated with improved renal perfusion after IRI and enhanced regeneration of tubular epithelial cells.

  9. Radionuclides in haematology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, S.M.; Bayly, R.J.

    1986-01-01

    This book contains the following chapters: Some prerequisites to the use of radionuclides in haematology; Instrumentation and counting techniques; In vitro techniques; Cell labelling; Protein labelling; Autoradiography; Imaging and quantitative scanning; Whole body counting; Absorption and excretion studies; Blood volume studies; Plasma clearance studies; and Radionuclide blood cell survival studies.

  10. Brain perfusion alterations in tick-borne encephalitis-preliminary report.

    PubMed

    Tyrakowska-Dadełło, Zuzanna; Tarasów, Eugeniusz; Janusek, Dariusz; Moniuszko-Malinowska, Anna; Zajkowska, Joanna; Pancewicz, Sławomir

    2018-03-01

    Magnetic resonance imaging (MRI) changes in tick-borne encephalitis (TBE) are non-specific and the pathophysiological mechanisms leading to their formation remain unclear. This study investigated brain perfusion in TBE patients using dynamic susceptibility-weighted contrast-enhanced magnetic resonance perfusion imaging (DSC-MRI perfusion). MRI scans were performed for 12 patients in the acute phase, 3-5days after the diagnosis of TBE. Conventional MRI and DSC-MRI perfusion studies were performed. Cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and time to peak (TTP) parametric maps were created. The bilateral frontal, parietal, and temporal subcortical regions and thalamus were selected as regions of interest. Perfusion parameters of TBE patients were compared to those of a control group. There was a slight increase in CBF and CBV, with significant prolongation of TTP in subcortical areas in the study subjects, while MTT values were comparable to those of the control group. A significant increase in thalamic CBF (p<0.001) and increased CBV (p<0.05) were observed. Increased TTP and a slight reduction in MTT were also observed within this area. The DSC-MRI perfusion study showed that TBE patients had brain perfusion disturbances, expressed mainly in the thalami. These results suggest that DSC-MRI perfusion may provide important information regarding the areas affected in TBE patients. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Spatio-temporal analysis of blood perfusion by imaging photoplethysmography

    NASA Astrophysics Data System (ADS)

    Zaunseder, Sebastian; Trumpp, Alexander; Ernst, Hannes; Förster, Michael; Malberg, Hagen

    2018-02-01

    Imaging photoplethysmography (iPPG) has attracted much attention over the last years. The vast majority of works focuses on methods to reliably extract the heart rate from videos. Only a few works addressed iPPGs ability to exploit spatio-temporal perfusion pattern to derive further diagnostic statements. This work directs at the spatio-temporal analysis of blood perfusion from videos. We present a novel algorithm that bases on the two-dimensional representation of the blood pulsation (perfusion map). The basic idea behind the proposed algorithm consists of a pairwise estimation of time delays between photoplethysmographic signals of spatially separated regions. The probabilistic approach yields a parameter denoted as perfusion speed. We compare the perfusion speed versus two parameters, which assess the strength of blood pulsation (perfusion strength and signal to noise ratio). Preliminary results using video data with different physiological stimuli (cold pressure test, cold face test) show that all measures are influenced by those stimuli (some of them with statistical certainty). The perfusion speed turned out to be more sensitive than the other measures in some cases. However, our results also show that the intraindividual stability and interindividual comparability of all used measures remain critical points. This work proves the general feasibility of employing the perfusion speed as novel iPPG quantity. Future studies will address open points like the handling of ballistocardiographic effects and will try to deepen the understanding of the predominant physiological mechanisms and their relation to the algorithmic performance.

  12. BAG3 (Bcl-2-Associated Athanogene-3) Coding Variant in Mice Determines Susceptibility to Ischemic Limb Muscle Myopathy by Directing Autophagy.

    PubMed

    McClung, Joseph M; McCord, Timothy J; Ryan, Terence E; Schmidt, Cameron A; Green, Tom D; Southerland, Kevin W; Reinardy, Jessica L; Mueller, Sarah B; Venkatraman, Talaignair N; Lascola, Christopher D; Keum, Sehoon; Marchuk, Douglas A; Spangenburg, Espen E; Dokun, Ayotunde; Annex, Brian H; Kontos, Christopher D

    2017-07-18

    Critical limb ischemia is a manifestation of peripheral artery disease that carries significant mortality and morbidity risk in humans, although its genetic determinants remain largely unknown. We previously discovered 2 overlapping quantitative trait loci in mice, Lsq-1 and Civq-1 , that affected limb muscle survival and stroke volume after femoral artery or middle cerebral artery ligation, respectively. Here, we report that a Bag3 variant (Ile81Met) segregates with tissue protection from hind-limb ischemia. We treated mice with either adeno-associated viruses encoding a control (green fluorescent protein) or 2 BAG3 (Bcl-2-associated athanogene-3) variants, namely Met81 or Ile81, and subjected the mice to hind-limb ischemia. We found that the BAG3 Ile81Met variant in the C57BL/6 (BL6) mouse background segregates with protection from tissue necrosis in a shorter congenic fragment of Lsq-1 (C.B6- Lsq1-3 ). BALB/c mice treated with adeno-associated virus encoding the BL6 BAG3 variant (Ile81; n=25) displayed reduced limb-tissue necrosis and increased limb tissue perfusion compared with Met81- (n=25) or green fluorescent protein- (n=29) expressing animals. BAG3 Ile81 , but not BAG3 Met81 , improved ischemic muscle myopathy and muscle precursor cell differentiation and improved muscle regeneration in a separate, toxin-induced model of injury. Systemic injection of adeno-associated virus-BAG3 Ile81 (n=9), but not BAG3 Met81 (n=10) or green fluorescent protein (n=5), improved ischemic limb blood flow and limb muscle histology and restored muscle function (force production). Compared with BAG3 Met81 , BAG3 Ile81 displayed improved binding to the small heat shock protein (HspB8) in ischemic skeletal muscle cells and enhanced ischemic muscle autophagic flux. Taken together, our data demonstrate that genetic variation in BAG3 plays an important role in the prevention of ischemic tissue necrosis. These results highlight a pathway that preserves tissue survival and muscle

  13. Six-minute magnetic resonance imaging protocol for evaluation of acute ischemic stroke: pushing the boundaries.

    PubMed

    Nael, Kambiz; Khan, Rihan; Choudhary, Gagandeep; Meshksar, Arash; Villablanca, Pablo; Tay, Jennifer; Drake, Kendra; Coull, Bruce M; Kidwell, Chelsea S

    2014-07-01

    If magnetic resonance imaging (MRI) is to compete with computed tomography for evaluation of patients with acute ischemic stroke, there is a need for further improvements in acquisition speed. Inclusion criteria for this prospective, single institutional study were symptoms of acute ischemic stroke within 24 hours onset, National Institutes of Health Stroke Scale ≥3, and absence of MRI contraindications. A combination of echo-planar imaging (EPI) and a parallel acquisition technique were used on a 3T magnetic resonance (MR) scanner to accelerate the acquisition time. Image analysis was performed independently by 2 neuroradiologists. A total of 62 patients met inclusion criteria. A repeat MRI scan was performed in 22 patients resulting in a total of 84 MRIs available for analysis. Diagnostic image quality was achieved in 100% of diffusion-weighted imaging, 100% EPI-fluid attenuation inversion recovery imaging, 98% EPI-gradient recalled echo, 90% neck MR angiography and 96% of brain MR angiography, and 94% of dynamic susceptibility contrast perfusion scans with interobserver agreements (k) ranging from 0.64 to 0.84. Fifty-nine patients (95%) had acute infarction. There was good interobserver agreement for EPI-fluid attenuation inversion recovery imaging findings (k=0.78; 95% confidence interval, 0.66-0.87) and for detection of mismatch classification using dynamic susceptibility contrast-Tmax (k=0.92; 95% confidence interval, 0.87-0.94). Thirteen acute intracranial hemorrhages were detected on EPI-gradient recalled echo by both observers. A total of 68 and 72 segmental arterial stenoses were detected on contrast-enhanced MR angiography of the neck and brain with k=0.93, 95% confidence interval, 0.84 to 0.96 and 0.87, 95% confidence interval, 0.80 to 0.90, respectively. A 6-minute multimodal MR protocol with good diagnostic quality is feasible for the evaluation of patients with acute ischemic stroke and can result in significant reduction in scan time rivaling that

  14. Ischemic and oxidative damage to the hypothalamus may be responsible for heat stroke.

    PubMed

    Chen, Sheng-Hsien; Lin, Mao-Tsun; Chang, Ching-Ping

    2013-03-01

    The hypothalamus may be involved in regulating homeostasis, motivation, and emotional behavior by controlling autonomic and endocrine activity. The hypothalamus communicates input from the thalamus to the pituitary gland, reticular activating substance, limbic system, and neocortex. This allows the output of pituitary hormones to respond to changes in autonomic nervous system activity. Environmental heat stress increases cutaneous blood flow and metabolism, and progressively decreases splanchnic blood flow. Severe heat exposure also decreases mean arterial pressure (MAP), increases intracranial pressure (ICP), and decreases cerebral perfusion pressure (CPP = MAP - ICP), all of which lead to cerebral ischemia and hypoxia. Compared with normothermic controls, rodents with heatstroke have higher hypothalamic values of cellular ischemia (e.g., glutamate and lactate-to-pyruvate ratio) and damage (e.g., glycerol) markers, pro-oxidant enzymes (e.g., lipid peroxidation and glutathione oxidation), proinflammatory cytokines (e.g., interleukin-1β and tumor necrosis factor-α), inducible nitric oxide synthase-dependent nitric oxide, and an indicator for the accumulation of polymorphonuclear leukocytes (e.g., myeloperoxidase activity), as well as neuronal damage (e.g., apoptosis, necrosis, and autophagy) after heatstroke. Hypothalamic values of antioxidant defenses (e.g., glutathione peroxidase and glutathione reductase), however, are lower. The ischemic, hypoxic, and oxidative damage to the hypothalamus during heatstroke may cause multiple organ dysfunction or failure through hypothalamic-pituitary-adrenal axis mechanisms. Finding the link between the signaling and heatstroke-induced hypothalamic oxidative and ischemic damage might allow us to clinically attenuate heatstroke. In particular, free radical scavengers, heat shock protein-70 inducers, hypervolemic hemodilution, inducible nitric oxide synthase inhibitors, progenitor stem cells, flutamide, estrogen, interleukin-1

  15. The use of hemoglobin solutions in kidney perfusions.

    PubMed

    Daniels, F H; McCabe, R E; Leonard, E F

    1984-01-01

    Solutions of hemoglobin have often been considered for both hypothermic and normothermic perfusion of isolated kidneys. This paper considers basic issues, preparative techniques, and the viscosity of hemoglobin solutions, as well as the demands made by the kidney on a perfusate. The natural system of oxygen transport in higher animals is complex, and its perturbation to produce convenient hemoglobin-based renal perfusates produces numerous problems. The desirable effect of 2,3-diphosphoglycerate is not easily maintained in a perfusate, but its inclusion can be avoided by appropriate choice of species donating hemoglobin. Hemoglobin tetramer in free solution may dissociate and be lost by glomerular filtration. Ferric hemoglobin, the dominant form at redox equilibrium, is useless for oxygen transport; the ferrous form is maintained in the erythrocyte by reducing metabolites and, under normothermic conditions, the ferrous to ferric conversion is slow but significant. Methods for lysis of erythrocytes and removal of their stroma are discussed; reduction of ferric hemoglobin by chemical agents and electrolysis are considered in detail; and means for adjusting concentration and solute background are presented. The need for carbonic anhydrase in hemoglobin solutions used as perfusates is shown and methods for its provision are discussed. A review of viscometric data for hemoglobin solutions is provided to which original data are added. Hemoglobin solutions show a temperature-independent intrinsic viscosity, according to Einstein's theory for a molecule of 23 A radius. The O2 and CO2 transport requirements of renal perfusates are analyzed comprehensively. The normothermic kidney has an unusual respiration pattern, requiring an amount of oxygen that is not fixed but, rather, proportional to the total blood flow rate. In canines the average arterio-venous O2 content difference found by many investigators is 2.14 vol%; the corresponding CO2 value is 2.47 vol%; and the

  16. Effect of sample size on multi-parametric prediction of tissue outcome in acute ischemic stroke using a random forest classifier

    NASA Astrophysics Data System (ADS)

    Forkert, Nils Daniel; Fiehler, Jens

    2015-03-01

    The tissue outcome prediction in acute ischemic stroke patients is highly relevant for clinical and research purposes. It has been shown that the combined analysis of diffusion and perfusion MRI datasets using high-level machine learning techniques leads to an improved prediction of final infarction compared to single perfusion parameter thresholding. However, most high-level classifiers require a previous training and, until now, it is ambiguous how many subjects are required for this, which is the focus of this work. 23 MRI datasets of acute stroke patients with known tissue outcome were used in this work. Relative values of diffusion and perfusion parameters as well as the binary tissue outcome were extracted on a voxel-by- voxel level for all patients and used for training of a random forest classifier. The number of patients used for training set definition was iteratively and randomly reduced from using all 22 other patients to only one other patient. Thus, 22 tissue outcome predictions were generated for each patient using the trained random forest classifiers and compared to the known tissue outcome using the Dice coefficient. Overall, a logarithmic relation between the number of patients used for training set definition and tissue outcome prediction accuracy was found. Quantitatively, a mean Dice coefficient of 0.45 was found for the prediction using the training set consisting of the voxel information from only one other patient, which increases to 0.53 if using all other patients (n=22). Based on extrapolation, 50-100 patients appear to be a reasonable tradeoff between tissue outcome prediction accuracy and effort required for data acquisition and preparation.

  17. 49 CFR 173.433 - Requirements for determining basic radionuclide values, and for the listing of radionuclides on...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... radionuclide values, and for the listing of radionuclides on shipping papers and labels. (a) For individual... given in the table in § 173.436. (b) For individual radionuclides which are not listed in the tables in.... (d) Mixtures of radionuclides whose identities and respective activities are known must conform to...

  18. 49 CFR 173.433 - Requirements for determining basic radionuclide values, and for the listing of radionuclides on...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... radionuclide values, and for the listing of radionuclides on shipping papers and labels. (a) For individual... given in the table in § 173.436. (b) For individual radionuclides which are not listed in the tables in.... (d) Mixtures of radionuclides whose identities and respective activities are known must conform to...

  19. 49 CFR 173.433 - Requirements for determining basic radionuclide values, and for the listing of radionuclides on...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... radionuclide values, and for the listing of radionuclides on shipping papers and labels. (a) For individual... given in the table in § 173.436. (b) For individual radionuclides which are not listed in the tables in.... (d) Mixtures of radionuclides whose identities and respective activities are known must conform to...

  20. 49 CFR 173.433 - Requirements for determining basic radionuclide values, and for the listing of radionuclides on...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... radionuclide values, and for the listing of radionuclides on shipping papers and labels. (a) For individual... given in the table in § 173.436. (b) For individual radionuclides which are not listed in the tables in.... (d) Mixtures of radionuclides whose identities and respective activities are known must conform to...

  1. New perspectives on the pharmacotherapy of ischemic stroke.

    PubMed

    Bradberry, J Chris; Fagan, Susan C; Gray, David R; Moon, Yong S K

    2004-01-01

    To provide an overview of the impact of ischemic stroke and the steps that can be taken to reduce its burden through greater awareness of the disease, improved diagnosis and better treatment, with emphasis on the use of antiplatelet agents. Recent (1995-2003) published scientific literature, as identified by the authors through Medline searches, using the terms stroke, transient ischemic attack, cerebrovascular disease, atherothrombosis, risk factors, pharmacotherapy, prevention, and reviews on treatment. Recent systematic English-language review articles and reports of controlled randomized clinical trials were screened for inclusion. Ischemic stroke is generally the result of an atherothrombotic process leading to vessel obstruction or narrowing. Of the two types of ischemic stroke, thrombotic stroke is caused by a thrombus that develops within the cerebral vasculature, while embolic stroke arises from a distant embolus that lodges in a cerebral artery. The neurologic manifestations of stroke depend on the location of injury in the brain and the degree of ischemia or infarction. Symptoms may be reversible or irreversible and range from sensory deficits to hemiplegia. Risk factors for development of ischemic stroke include hypertension, diabetes, dyslipidemia, smoking, atrial fibrillation, prior stroke, and transient ischemic attack. Tissue plasminogen activator is currently the only available drug treatment for acute ischemic stroke. Stroke recurrence rates are high (about 40% over 5 years), and all ischemic stroke patients should receive antithrombotic therapy (unless contraindicated) for secondary prevention. Of the oral antiplatelet therapies, aspirin, clopidogrel (Plavix--Bristol-Myers Squibb/Sanofi Pharmaceuticals Partnership), and the extended-release dipyridamole plus aspirin combination are acceptable first-line agents, while anticoagulants (warfarin) are preferred in patients with atrial fibrillation. Lifestyle changes and drug therapy are important

  2. Oral alprazolam acutely increases nucleus accumbens perfusion

    PubMed Central

    Wolf, Daniel H.; Pinkham, Amy E.; Satterthwaite, Theodore D.; Ruparel, Kosha; Elliott, Mark A.; Valdez, Jeffrey; Smith, Mark A.; Detre, John A.; Gur, Ruben C.; Gur, Raquel E.

    2014-01-01

    Benzodiazepines treat anxiety, but can also produce euphoric effects, contributing to abuse. Using perfusion magnetic resonance imaging, we provide the first direct evidence in humans that alprazolam (Xanax) acutely increases perfusion in the nucleus accumbens, a key reward-processing region linked to addiction. PMID:23070072

  3. Transfer of fallout radionuclides derived from Fukushima NPP accident: 1 year study on transfer of radionuclides through geomorphic processes

    NASA Astrophysics Data System (ADS)

    Onda, Y.; Kato, H.; Fukushima, T.; Wakahara, T.; Kita, K.; Takahashi, Y.; Sakaguchi, A.; Tanaka, K.; Yamashiki, Y.; Yoshida, N.

    2012-12-01

    After the Fukushima Daiichi Nuclear Power Plant acciden, fallout radionuclides on the ground surface will transfer through geomorphic processes. Therefore, in order to estimate future changes in radionuclide deposition, migration process of radionuclides in forests, soils, ground water, rivers, and entrainment from trees and soils should be confirmed. We (FMWSE group) was funded by MEXT, Japanese government, and 1 year following monitoring has been conducted about 1 year. 1 Migration study of radionuclides in natural environment including forests and rivers 1) Study on depth distribution of radiocaesium in soils within forests, fields, and grassland. 2) Confirmation of radionuclide distribution and investigation on migration in forests. 3) Study on radionuclide migration due to soil erosion under different land use. 4) Measurement of radionuclides entrained from natural environment including forests and soils. 2 Migration study of radionuclides through hydrological cycle such as soil water, rivers, lakes and ponds, ground water. 1) Investigation on radionuclide migration through soil water, ground water, stream water, spring water under different land use. 2) Study on paddy-to-river transfer of radionuclides through suspended sediment. 3) Study on river-to-ocean transfer of radionuclides via suspended sediment. 4) Confirmation of radionuclide deposition in ponds and reservoirs. We will present how and where the fallout radionulides transfter through geomorphic processes.

  4. Patient-specific coronary blood supply territories for quantitative perfusion analysis

    PubMed Central

    Zakkaroff, Constantine; Biglands, John D.; Greenwood, John P.; Plein, Sven; Boyle, Roger D.; Radjenovic, Aleksandra; Magee, Derek R.

    2018-01-01

    Abstract Myocardial perfusion imaging, coupled with quantitative perfusion analysis, provides an important diagnostic tool for the identification of ischaemic heart disease caused by coronary stenoses. The accurate mapping between coronary anatomy and under-perfused areas of the myocardium is important for diagnosis and treatment. However, in the absence of the actual coronary anatomy during the reporting of perfusion images, areas of ischaemia are allocated to a coronary territory based on a population-derived 17-segment (American Heart Association) AHA model of coronary blood supply. This work presents a solution for the fusion of 2D Magnetic Resonance (MR) myocardial perfusion images and 3D MR angiography data with the aim to improve the detection of ischaemic heart disease. The key contribution of this work is a novel method for the mediated spatiotemporal registration of perfusion and angiography data and a novel method for the calculation of patient-specific coronary supply territories. The registration method uses 4D cardiac MR cine series spanning the complete cardiac cycle in order to overcome the under-constrained nature of non-rigid slice-to-volume perfusion-to-angiography registration. This is achieved by separating out the deformable registration problem and solving it through phase-to-phase registration of the cine series. The use of patient-specific blood supply territories in quantitative perfusion analysis (instead of the population-based model of coronary blood supply) has the potential of increasing the accuracy of perfusion analysis. Quantitative perfusion analysis diagnostic accuracy evaluation with patient-specific territories against the AHA model demonstrates the value of the mediated spatiotemporal registration in the context of ischaemic heart disease diagnosis. PMID:29392098

  5. Age-related reduction of cerebral ischemic preconditioning: myth or reality?

    PubMed Central

    Della-Morte, David; Cacciatore, Francesco; Salsano, Elisa; Pirozzi, Gilda; Genio, Maria Teresa Del; D’Antonio, Iole; Gargiulo, Gaetano; Palmirotta, Raffaele; Guadagni, Fiorella; Rundek, Tatjana; Abete, Pasquale

    2013-01-01

    Stroke is one of the leading causes of death in industrialized countries for people older than 65 years of age. The reasons are still unclear. A reduction of endogenous mechanisms against ischemic insults has been proposed to explain this phenomenon. The “cerebral” ischemic preconditioning mechanism is characterized by a brief episode of ischemia that renders the brain more resistant against subsequent longer ischemic events. This ischemic tolerance has been shown in numerous experimental models of cerebral ischemia. This protective mechanism seems to be reduced with aging both in experimental and clinical studies. Alterations of mediators released and/or intracellular pathways may be responsible for age-related ischemic preconditioning reduction. Agents able to mimic the “cerebral” preconditioning effect may represent a new powerful tool for the treatment of acute ischemic stroke in the elderly. In this article, animal and human cerebral ischemic preconditioning, its age-related difference, and its potential therapeutical applications are discussed. PMID:24204128

  6. Post-Ischemic Bowel Stricture: CT Features in Eight Cases

    PubMed Central

    Kim, Jin Sil; Hong, Seung-Mo; Park, Seong Ho; Lee, Jong Seok; Kim, Ah Young; Ha, Hyun Kwon

    2017-01-01

    Objective To investigate the characteristic radiologic features of post-ischemic stricture, which can then be implemented to differentiate that specific disease from other similar bowel diseases, with an emphasis on computed tomography (CT) features. Materials and Methods Eight patients with a diagnosis of ischemic bowel disease, who were also diagnosed with post-ischemic stricture on the basis of clinical or pathologic findings, were included. Detailed clinical data was collected from the available electronic medical records. Two radiologists retrospectively reviewed all CT images. Pathologic findings were also analyzed. Results The mean interval between the diagnosis of ischemic bowel disease and stricture formation was 57 days. The severity of ischemic bowel disease was variable. Most post-ischemic strictures developed in the ileum (n = 5), followed by the colon (n = 2) and then the jejunum (n = 1). All colonic strictures developed in the “watershed zone.” The pathologic features of post-ischemic stricture were deep ulceration, submucosal/subserosal fibrosis and chronic transmural inflammation. The mean length of the post-ischemic stricture was 7.4 cm. All patients in this study possessed one single stricture. On contrast-enhanced CT, most strictures possessed concentric wall thickening (87.5%), with moderate enhancement (87.5%), mucosal enhancement (50%), or higher enhancement in portal phase than arterial phase (66.7%). Conclusion Post-ischemic strictures develop in the ileum, jejunum and colon after an interval of several weeks. In the colonic segment, strictures mainly occur in the “watershed zone.” Typical CT findings include a single area of concentric wall thickening of medium length (mean, 7.4 cm), with moderate and higher enhancement in portal phase and vasa recta prominence. PMID:29089826

  7. Magnetic Resonance Imaging of Ventilation and Perfusion in the Lung

    NASA Technical Reports Server (NTRS)

    Prisk, Gordon Kim (Inventor); Hopkins, Susan Roberta (Inventor); Pereira De Sa, Rui Carlos (Inventor); Theilmann, Rebecca Jean (Inventor); Buxton, Richard Bruce (Inventor); Cronin, Matthew Vincent (Inventor)

    2017-01-01

    Methods, devices, and systems are disclosed for implementing a fully quantitative non-injectable contrast proton MRI technique to measure spatial ventilation-perfusion (VA/Q) matching and spatial distribution of ventilation and perfusion. In one aspect, a method using MRI to characterize ventilation and perfusion in a lung includes acquiring an MR image of the lung having MR data in a voxel and obtaining a breathing frequency parameter, determining a water density value, a specific ventilation value, and a perfusion value in at least one voxel of the MR image based on the MR data and using the water density value to determine an air content value, and determining a ventilation-perfusion ratio value that is the product of the specific ventilation value, the air content value, the inverse of the perfusion value, and the breathing frequency.

  8. Validating a Predictive Model of Acute Advanced Imaging Biomarkers in Ischemic Stroke.

    PubMed

    Bivard, Andrew; Levi, Christopher; Lin, Longting; Cheng, Xin; Aviv, Richard; Spratt, Neil J; Lou, Min; Kleinig, Tim; O'Brien, Billy; Butcher, Kenneth; Zhang, Jingfen; Jannes, Jim; Dong, Qiang; Parsons, Mark

    2017-03-01

    Advanced imaging to identify tissue pathophysiology may provide more accurate prognostication than the clinical measures used currently in stroke. This study aimed to derive and validate a predictive model for functional outcome based on acute clinical and advanced imaging measures. A database of prospectively collected sub-4.5 hour patients with ischemic stroke being assessed for thrombolysis from 5 centers who had computed tomographic perfusion and computed tomographic angiography before a treatment decision was assessed. Individual variable cut points were derived from a classification and regression tree analysis. The optimal cut points for each assessment variable were then used in a backward logic regression to predict modified Rankin scale (mRS) score of 0 to 1 and 5 to 6. The variables remaining in the models were then assessed using a receiver operating characteristic curve analysis. Overall, 1519 patients were included in the study, 635 in the derivation cohort and 884 in the validation cohort. The model was highly accurate at predicting mRS score of 0 to 1 in all patients considered for thrombolysis therapy (area under the curve [AUC] 0.91), those who were treated (AUC 0.88) and those with recanalization (AUC 0.89). Next, the model was highly accurate at predicting mRS score of 5 to 6 in all patients considered for thrombolysis therapy (AUC 0.91), those who were treated (0.89) and those with recanalization (AUC 0.91). The odds ratio of thrombolysed patients who met the model criteria achieving mRS score of 0 to 1 was 17.89 (4.59-36.35, P <0.001) and for mRS score of 5 to 6 was 8.23 (2.57-26.97, P <0.001). This study has derived and validated a highly accurate model at predicting patient outcome after ischemic stroke. © 2017 American Heart Association, Inc.

  9. Rapid resolution of brain ischemic hypoxia after cerebral revascularization in moyamoya disease.

    PubMed

    Arikan, Fuat; Vilalta, Jordi; Torne, Ramon; Noguer, Montserrat; Lorenzo-Bosquet, Carles; Sahuquillo, Juan

    2015-03-01

    In moyamoya disease (MMD), cerebral revascularization is recommended in patients with recurrent or progressive ischemic events and associated reduced cerebral perfusion reserve. Low-flow bypass with or without indirect revascularization is generally the standard surgical treatment. Intraoperative monitoring of cerebral partial pressure of oxygen (PtiO2) with polarographic Clark-type probes in cerebral artery bypass surgery for MMD-induced chronic cerebral ischemia has not yet been described. To describe basal brain tissue oxygenation in MMD patients before revascularization as well as the immediate changes produced by the surgical procedure using intraoperative PtiO2 monitoring. Between October 2011 and January 2013, all patients with a diagnosis of MMD were intraoperatively monitored. Cerebral oxygenation status was analyzed based on the Ptio2/PaO2 ratio. Reference thresholds of PtiO2/PaO2 had been previously defined as below 0.1 for the lower reference threshold (hypoxia) and above 0.35 for the upper reference threshold (hyperoxia). Before STA-MCA bypass, all patients presented a situation of severe tissue hypoxia confirmed by a PtiO2/PaO2 ratio <0.1. After bypass, all patients showed a rapid and sustained increase in PtiO2, which reached normal values (PtiO2/PaO2 ratio between 0.1 and 0.35). One patient showed an initial PtiO2 improvement followed by a decrease due to bypass occlusion. After repeat anastomosis, the patient's PtiO2 increased again and stabilized. Direct anastomosis quickly improves cerebral oxygenation, immediately reducing the risk of ischemic stroke in both pediatric and adult patients. Intraoperative PtiO2 monitoring is a very reliable tool to verify the effectiveness of this revascularization procedure.

  10. Solitaire™ with the Intention for Thrombectomy as Primary Endovascular Treatment for Acute Ischemic Stroke (SWIFT PRIME) trial: protocol for a randomized, controlled, multicenter study comparing the Solitaire revascularization device with IV tPA with IV tPA alone in acute ischemic stroke.

    PubMed

    Saver, Jeffrey L; Goyal, Mayank; Bonafe, Alain; Diener, Hans-Christoph; Levy, Elad I; Pereira, Vitor M; Albers, Gregory W; Cognard, Christophe; Cohen, David J; Hacke, Werner; Jansen, Olav; Jovin, Tudor G; Mattle, Heinrich P; Nogueira, Raul G; Siddiqui, Adnan H; Yavagal, Dileep R; Devlin, Thomas G; Lopes, Demetrius K; Reddy, Vivek; du Mesnil de Rochemont, Richard; Jahan, Reza

    2015-04-01

    Early reperfusion in patients experiencing acute ischemic stroke is critical, especially for patients with large vessel occlusion who have poor prognosis without revascularization. Solitaire™ stent retriever devices have been shown to immediately restore vascular perfusion safely, rapidly, and effectively in acute ischemic stroke patients with large vessel occlusions. The aim of the study was to demonstrate that, among patients with large vessel, anterior circulation occlusion who have received intravenous tissue plasminogen activator, treatment with Solitaire revascularization devices reduces degree of disability 3 months post stroke. The study is a global multicenter, two-arm, prospective, randomized, open, blinded end-point trial comparing functional outcomes in acute ischemic stroke patients who are treated with either intravenous tissue plasminogen activator alone or intravenous tissue plasminogen activator in combination with the Solitaire device. Up to 833 patients will be enrolled. Patients who have received intravenous tissue plasminogen activator are randomized to either continue with intravenous tissue plasminogen activator alone or additionally proceed to neurothrombectomy using the Solitaire device within six-hours of symptom onset. The primary end-point is 90-day global disability, assessed with the modified Rankin Scale (mRS). Secondary outcomes include mortality at 90 days, functional independence (mRS ≤ 2) at 90 days, change in National Institutes of Health Stroke Scale at 27 h, reperfusion at 27 h, and thrombolysis in cerebral infarction 2b/3 flow at the end of the procedure. Statistical analysis will be conducted using simultaneous success criteria on the overall distribution of modified Rankin Scale (Rankin shift) and proportions of subjects achieving functional independence (mRS 0-2). © 2015 The Authors. International Journal of Stroke published by John Wiley & Sons Ltd on behalf of World Stroke Organization.

  11. Comparative utility of gated myocardial perfusion imaging and transthoracic coronary flow reserve for the assessment of coronary artery disease in patients with left bundle branch block.

    PubMed

    Pavlovic, Smiljana; Sobic-Saranovic, Dragana; Djordjevic-Dikic, Ana; Beleslin, Branko; Stepanovic, Jelena; Artiko, Vera; Giga, Vojislav; Petrasinovic, Zorica; Ostojic, Miodrag; Vujisic-Tesic, Bosiljka; Obradovic, Vladimir

    2010-04-01

    To compare the diagnostic utility of gated single-photon emission computed tomography (SPECT) methoxy isobutyl isonitrile (MIBI) myocardial perfusion imaging and transthoracic Doppler echocardiography (TTDE) coronary flow reserve (CFR) to coronary angiography for detecting coronary artery disease (CAD) in patients with left bundle branch block (LBBB). Forty-three patients with complete LBBB and an intermediate pretest probability for CAD underwent dipyridamole stress TTDE and gated SPECT MIBI during the same session and coronary angiography within a month. The parameters of myocardial perfusion (summed stress score, summed difference scores) regional wall function (wall motion score, wall thickening score) and ejection fraction were derived using the 17-segment model and 4D-MSPECT software. TTDE variables included peak flow velocity at rest and during hyperemia in left anterior descending artery (LAD), based on which CFR was calculated (normal>2). Perfusion ischemic scores were significantly higher in group 1 with angiographic evidence of greater than 50% LAD stenosis compared with group 2 with less than 50% LAD stenosis (summed stress score 12.4+/-5.5 vs. 8.3+/-3.5, P<0.05, summed difference score 3.7+/-1.2 vs. 1.1+/-0.3, P<0.01, respectively). Left ventricular regional wall function and ejection fraction were not different between the two groups. CFR was significantly lower in group 1 than in group 2 (1.65+/-0.21 vs. 2.31+/-0.28, P<0.001). Gated SPECT MIBI and CFR had similar sensitivity (88 vs. 88%), specificity (80 vs. 84%), and accuracy (84 vs. 86%) for detecting CAD in patients with LBBB. The agreement between the two methods was 85%. Our results show comparable diagnostic utility and high agreement between gated SPECT MIBI perfusion imaging and TTDE CFR assessment for detecting CAD in patients with LBBB. The advantage of gated SPECT MIBI over TTDE CFR measurements is the ability to assess the perfusion abnormalities in multiple vascular territories during

  12. Developments in laser Doppler blood perfusion monitoring

    NASA Astrophysics Data System (ADS)

    Leahy, Martin J.; de Mul, Frits F. M.; Nilsson, Gert E.; Maniewski, Roman; Liebert, Adam

    2003-03-01

    This paper reviews the development and use of laser Doppler perfusion monitors and imagers. Despite their great success and almost universal applicability in microcirculation research, they have had great difficulty in converting to widespread clinical application. The enormous interest in microvascular blood perfusion coupled with the 'ease of use' of the technique has led to 2000+ publications citing its use. However, useful results can only be achieved with an understanding of the basic principles of the instrumentation and its application in the various clinical disciplines. The basic technical background is explored and definitions of blood perfusion and laser Doppler perfusion are established. The calibration method is then described together with potential routes to standardisation. A guide to the limitations in application of the technique gives the user a clear indication of what can be achieved in new studies as well as possible inadequacy in some published investigations. Finally some clinical applications have found acceptability and these will be explored.

  13. Transfer of fallout radionuclides derived from Fukushima NPP accident: 1 year study on transfer of radionuclides through hydrological processes

    NASA Astrophysics Data System (ADS)

    Onda, Yuichi; Kato, Hiroaki; Patin, Jeremy; Yoshimura, Kazuya; Tsujimura, Maki; Wakahara, Taeko; Fukushima, Takehiko

    2013-04-01

    Previous experiences such as Chernobyl Nuclear Power Plant accident have confirmed that fallout radionuclides on the ground surface migrate through natural environment including soils and rivers. Therefore, in order to estimate future changes in radionuclide deposition, migration process of radionuclides in forests, soils, ground water, rivers should be monitored. However, such comprehensive studies on migration through forests, soils, ground water and rivers have not been conducted so far. Here, we present the following comprehensive investigation was conducted to confirm migration of radionuclides through natural environment including soils and rivers. 1)Study on depth distribution of radiocaesium in soils within forests, fields, and grassland 2)Confirmation of radionuclide distribution and investigation on migration in forests 3)Study on radionuclide migration due to soil erosion under different land use 4)Measurement of radionuclides entrained from natural environment including forests and soils 5)Investigation on radionuclide migration through soil water, ground water, stream water, spring water under different land use 6)Study on paddy-to-river transfer of radionuclides through suspended sediments 7)Study on river-to-ocean transfer of radionuclides via suspended sediments 8)Confirmation of radionuclide deposition in ponds and reservoirs

  14. Demonstration of the Rat Ischemic Skin Wound Model

    PubMed Central

    Sherwood, Jacob; Wu, Mack; Gould, Lisa J.

    2015-01-01

    The propensity for chronic wounds in humans increases with ageing, disease conditions such as diabetes and impaired cardiovascular function, and unrelieved pressure due to immobility. Animal models have been developed that attempt to mimic these conditions for the purpose of furthering our understanding of the complexity of chronic wounds. The model described herein is a rat ischemic skin flap model that permits a prolonged reduction of blood flow resulting in wounds that become ischemic and resemble a chronic wound phenotype (reduced vascularization, increased inflammation and delayed wound closure). It consists of a bipedicled dorsal flap with 2 ischemic wounds placed centrally and 2 non-ischemic wounds lateral to the flap as controls. A novel addition to this ischemic skin flap model is the placement of a silicone sheet beneath the flap that functions as a barrier and a splint to prevent revascularization and reduce contraction as the wounds heal. Despite the debate of using rats for wound healing studies due to their quite distinct anatomic and physiologic differences compared to humans (i.e., the presence of a panniculus carnosus muscle, short life-span, increased number of hair follicles, and their ability to heal infected wounds) the modifications employed in this model make it a valuable alternative to previously developed ischemic skin flap models. PMID:25866964

  15. Demonstration of the rat ischemic skin wound model.

    PubMed

    Trujillo, Andrea N; Kesl, Shannon L; Sherwood, Jacob; Wu, Mack; Gould, Lisa J

    2015-04-01

    The propensity for chronic wounds in humans increases with ageing, disease conditions such as diabetes and impaired cardiovascular function, and unrelieved pressure due to immobility. Animal models have been developed that attempt to mimic these conditions for the purpose of furthering our understanding of the complexity of chronic wounds. The model described herein is a rat ischemic skin flap model that permits a prolonged reduction of blood flow resulting in wounds that become ischemic and resemble a chronic wound phenotype (reduced vascularization, increased inflammation and delayed wound closure). It consists of a bipedicled dorsal flap with 2 ischemic wounds placed centrally and 2 non-ischemic wounds lateral to the flap as controls. A novel addition to this ischemic skin flap model is the placement of a silicone sheet beneath the flap that functions as a barrier and a splint to prevent revascularization and reduce contraction as the wounds heal. Despite the debate of using rats for wound healing studies due to their quite distinct anatomic and physiologic differences compared to humans (i.e., the presence of a panniculus carnosus muscle, short life-span, increased number of hair follicles, and their ability to heal infected wounds) the modifications employed in this model make it a valuable alternative to previously developed ischemic skin flap models.

  16. Activation of p38 MAPK participates in brain ischemic tolerance induced by limb ischemic preconditioning by up-regulating HSP 70.

    PubMed

    Sun, Xiao-Cai; Xian, Xiao-Hui; Li, Wen-Bin; Li, Li; Yan, Cai-Zhen; Li, Qing-Jun; Zhang, Min

    2010-08-01

    This study investigates whether activation of p38 MAPK by the up-regulation of HSP 70 participates in the induction of brain ischemic tolerance by limb ischemic preconditioning (LIP). Western blot and immunohistochemical assays indicated that p38 MAPK activation occurred earlier than HSP 70 induction in the CA1 region of the hippocampus after LIP. P-p38 MAPK expression was up-regulated at 6h and reached its peak 12h after LIP, while HSP 70 expression was not significantly increased until 1 day and peaked 2 days after LIP. Neuropathological evaluation by thionin staining showed that quercetin (4 ml/kg, 50mg/kg, intraperitoneal injection), an inhibitor of HSP 70, blocked the protective effect of LIP against delayed neuronal death that is normally induced by lethal brain ischemic insult, indicating that HSP 70 participates in the induction of brain ischemic tolerance by LIP. Furthermore, SB 203580, an inhibitor of HSP 70, inhibited HSP 70 activation in the CA1 region of the hippocampus induced by LIP either with or without the presence of subsequent brain ischemic insult. Based on the above results, it can be concluded that activation of p38 MAPK participates in the brain ischemic tolerance induced by LIP at least partly by the up-regulation of HSP 70 expression. (c) 2010 Elsevier Inc. All rights reserved.

  17. Multiparametric, Longitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke

    PubMed Central

    Srinivasan, Vivek J.; Mandeville, Emiri T.; Can, Anil; Blasi, Francesco; Climov, Mihail; Daneshmand, Ali; Lee, Jeong Hyun; Yu, Esther; Radhakrishnan, Harsha; Lo, Eng H.; Sakadžić, Sava; Eikermann-Haerter, Katharina; Ayata, Cenk

    2013-01-01

    Progress in experimental stroke and translational medicine could be accelerated by high-resolution in vivo imaging of disease progression in the mouse cortex. Here, we introduce optical microscopic methods that monitor brain injury progression using intrinsic optical scattering properties of cortical tissue. A multi-parametric Optical Coherence Tomography (OCT) platform for longitudinal imaging of ischemic stroke in mice, through thinned-skull, reinforced cranial window surgical preparations, is described. In the acute stages, the spatiotemporal interplay between hemodynamics and cell viability, a key determinant of pathogenesis, was imaged. In acute stroke, microscopic biomarkers for eventual infarction, including capillary non-perfusion, cerebral blood flow deficiency, altered cellular scattering, and impaired autoregulation of cerebral blood flow, were quantified and correlated with histology. Additionally, longitudinal microscopy revealed remodeling and flow recovery after one week of chronic stroke. Intrinsic scattering properties serve as reporters of acute cellular and vascular injury and recovery in experimental stroke. Multi-parametric OCT represents a robust in vivo imaging platform to comprehensively investigate these properties. PMID:23940761

  18. Ischemic strokes in Pakistan: observations from the national acute ischemic stroke database.

    PubMed

    Khealani, Bhojo A; Khan, Maria; Tariq, Muhammad; Malik, Abdul; Siddiqi, Alam I; Awan, Safia; Wasay, Mohammad

    2014-07-01

    The objective of this study was to establish a multicenter ischemic stroke registry, first of its kind in Pakistan, to provide insight into the epidemiology, subtypes, and risk factors of ischemic strokes in this country. Four academic centers (3 urban and 1 rural) participated in this project. The inclusion criteria for subjects included adults (>14 years) with acute neurologic deficit, consistent with clinical diagnosis of ischemic stroke and supported by neuroimaging. Data were available for 874 subjects. Mean age of the subjects was 59.7 years, 60.5% were males, and 18% were young. Large vessel strokes were the most common subtype found in 31.7% subjects, followed by small vessel disease (25.7%) and cardioembolic strokes (10.4%). Almost 32% subjects had ill-defined etiology for their ischemic stroke. Dyslipidemia was a most common risk factor present in 83% patients. Data related to in-hospital complications were available for 808 subjects, of which 233 complications were recorded. Pneumonia was the most common of these seen in 105 (13%) subjects, followed by urinary tract infection (7.2%). Outcome at discharge was recorded for 697 subjects. Ninety-two had died during their hospital stay (13.2%). Only 36% subjects had a favorable outcome at discharge defined as a modified Rankin Scale (mRS) score of 2 or less. A total of 446 of 697 subjects had poor outcome at discharge (defined as an mRS score≥3). Hypertension and dyslipidemia were the most common risk factors and large vessel atherosclerosis was the most common stroke etiology. Elderly patients were significantly more likely to have in-hospital complications, die during their hospital stay, and have a higher mRS score at discharge. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  19. Dopaminergic Therapy Modulates Cortical Perfusion in Parkinson Disease With and Without Dementia According to Arterial Spin Labeled Perfusion Magnetic Resonance Imaging

    PubMed Central

    Lin, Wei-Che; Chen, Pei-Chin; Huang, Yung-Cheng; Tsai, Nai-Wen; Chen, Hsiu-Ling; Wang, Hung-Chen; Lin, Tsu-Kung; Chou, Kun-Hsien; Chen, Meng-Hsiang; Chen, Yi-Wen; Lu, Cheng-Hsien

    2016-01-01

    Abstract Arterial spin labeling (ASL) magnetic resonance imaging analyses allow for the quantification of altered cerebral blood flow, and provide a novel means of examining the impact of dopaminergic treatments. The authors examined the cerebral perfusion differences among 17 Parkinson disease (PD) patients, 17 PD with dementia (PDD) patients, and 17 healthy controls and used ASL-MRI to assess the effects of dopaminergic therapies on perfusion in the patients. The authors demonstrated progressive widespread cortical hypoperfusion in PD and PDD and robust effects for the dopaminergic therapies. Specifically, dopaminergic medications further decreased frontal lobe and cerebellum perfusion in the PD and PDD groups, respectively. These patterns of hypoperfusion could be related to cognitive dysfunctions and disease severity. Furthermore, desensitization to dopaminergic therapies in terms of cortical perfusion was found as the disease progressed, supporting the concept that long-term therapies are associated with the therapeutic window narrowing. The highly sensitive pharmaceutical response of ASL allows clinicians and researchers to easily and effectively quantify the absolute perfusion status, which might prove helpful for therapeutic planning. PMID:26844450

  20. Dopaminergic Therapy Modulates Cortical Perfusion in Parkinson Disease With and Without Dementia According to Arterial Spin Labeled Perfusion Magnetic Resonance Imaging.

    PubMed

    Lin, Wei-Che; Chen, Pei-Chin; Huang, Yung-Cheng; Tsai, Nai-Wen; Chen, Hsiu-Ling; Wang, Hung-Chen; Lin, Tsu-Kung; Chou, Kun-Hsien; Chen, Meng-Hsiang; Chen, Yi-Wen; Lu, Cheng-Hsien

    2016-02-01

    Arterial spin labeling (ASL) magnetic resonance imaging analyses allow for the quantification of altered cerebral blood flow, and provide a novel means of examining the impact of dopaminergic treatments. The authors examined the cerebral perfusion differences among 17 Parkinson disease (PD) patients, 17 PD with dementia (PDD) patients, and 17 healthy controls and used ASL-MRI to assess the effects of dopaminergic therapies on perfusion in the patients. The authors demonstrated progressive widespread cortical hypoperfusion in PD and PDD and robust effects for the dopaminergic therapies. Specifically, dopaminergic medications further decreased frontal lobe and cerebellum perfusion in the PD and PDD groups, respectively. These patterns of hypoperfusion could be related to cognitive dysfunctions and disease severity. Furthermore, desensitization to dopaminergic therapies in terms of cortical perfusion was found as the disease progressed, supporting the concept that long-term therapies are associated with the therapeutic window narrowing. The highly sensitive pharmaceutical response of ASL allows clinicians and researchers to easily and effectively quantify the absolute perfusion status, which might prove helpful for therapeutic planning.

  1. Localized Spatio-Temporal Constraints for Accelerated CMR Perfusion

    PubMed Central

    Akçakaya, Mehmet; Basha, Tamer A.; Pflugi, Silvio; Foppa, Murilo; Kissinger, Kraig V.; Hauser, Thomas H.; Nezafat, Reza

    2013-01-01

    Purpose To develop and evaluate an image reconstruction technique for cardiac MRI (CMR)perfusion that utilizes localized spatio-temporal constraints. Methods CMR perfusion plays an important role in detecting myocardial ischemia in patients with coronary artery disease. Breath-hold k-t based image acceleration techniques are typically used in CMR perfusion for superior spatial/temporal resolution, and improved coverage. In this study, we propose a novel compressed sensing based image reconstruction technique for CMR perfusion, with applicability to free-breathing examinations. This technique uses local spatio-temporal constraints by regularizing image patches across a small number of dynamics. The technique is compared to conventional dynamic-by-dynamic reconstruction, and sparsity regularization using a temporal principal-component (pc) basis, as well as zerofilled data in multi-slice 2D and 3D CMR perfusion. Qualitative image scores are used (1=poor, 4=excellent) to evaluate the technique in 3D perfusion in 10 patients and 5 healthy subjects. On 4 healthy subjects, the proposed technique was also compared to a breath-hold multi-slice 2D acquisition with parallel imaging in terms of signal intensity curves. Results The proposed technique results in images that are superior in terms of spatial and temporal blurring compared to the other techniques, even in free-breathing datasets. The image scores indicate a significant improvement compared to other techniques in 3D perfusion (2.8±0.5 vs. 2.3±0.5 for x-pc regularization, 1.7±0.5 for dynamic-by-dynamic, 1.1±0.2 for zerofilled). Signal intensity curves indicate similar dynamics of uptake between the proposed method with a 3D acquisition and the breath-hold multi-slice 2D acquisition with parallel imaging. Conclusion The proposed reconstruction utilizes sparsity regularization based on localized information in both spatial and temporal domains for highly-accelerated CMR perfusion with potential utility in free

  2. Perfusion MRI: The Five Most Frequently Asked Clinical Questions

    PubMed Central

    Essig, Marco; Nguyen, Thanh Binh; Shiroishi, Mark S.; Saake, Marc; Provenzale, James M.; Enterline, David S.; Anzalone, Nicoletta; Dörfler, Arnd; Rovira, Àlex; Wintermark, Max; Law, Meng

    2013-01-01

    OBJECTIVE This article addresses questions that radiologists frequently ask when planning, performing, processing, and interpreting MRI perfusion studies in CNS imaging. CONCLUSION Perfusion MRI is a promising tool in assessing stroke, brain tumors, and neurodegenerative diseases. Most of the impediments that have limited the use of perfusion MRI can be overcome to allow integration of these methods into modern neuroimaging protocols. PMID:23971482

  3. Insulin and GSK3β-inhibition abrogates the infarct sparing-effect of ischemic postconditioning in ex vivo rat hearts.

    PubMed

    Helgeland, Erik; Wergeland, Anita; Sandøy, Rune M; Askeland, Maren; Aspevik, Anne; Breivik, Lars; Jonassen, Anne K

    2017-06-01

    Pharmacological treatment of reperfusion injury using insulin and GSK3β inhibition has been shown to be cardioprotective, however, their interaction with the endogenous cardioprotective strategy, ischemic postconditioning, is not known. Langendorff perfused ex vivo rat hearts were subjected to 30 min of regional ischemia and 120 min of reperfusion. For the first 15 min of reperfusion hearts received either vehicle (Ctr), insulin (Ins) or a GSK3β inhibitor (SB415286; SB41), with or without interruption of ischemic postconditioning (IPost; 3 × 30 s of global ischemia). In addition, the combination of insulin and SB41 for 15 min was assessed. Insulin, SB41 or IPost significantly reduced infarct size versus vehicle treated controls (IPost 33.5 ± 3.3%, Ins 33.5 ± 3.4%, SB41 30.5 ± 3.0% vs. Ctr 54.7 ± 6.8%, p < 0.01). Combining insulin and SB415286 did not confer additional cardioprotection compared to the treatments given alone (SB41   + Ins 26.7 ± 3.5%, ns). Conversely, combining either of the pharmacological reperfusion treatments with IPost completely abrogated the cardioprotection afforded by the treatments separately (Ins + IPost 59.5 ± 3.4% vs. Ins 33.5 ± 3.4% and SB41 + IPost 50.2 ± 6.6% vs. SB41 30.5 ± 3.0%, both p < 0.01), and was associated with blunted Akt, GSK3β and STAT3 phosphorylation. Pharmacological reperfusion treatment with insulin and SB41 interferes with the cardioprotection afforded by ischemic postconditioning.

  4. [Myokard-Perfusions-SPECT. Myocardial perfusion SPECT - Update S1 guideline].

    PubMed

    Lindner, Oliver; Bengel, Frank; Burchert, Wolfgang; Dörr, Rolf; Hacker, Marcus; Schäfer, Wolfgang; Schäfers, Michael A; Schmidt, Matthias; Schwaiger, Markus; Vom Dahl, Jürgen; Zimmermann, Rainer

    2017-08-14

    The S1 guideline for myocardial perfusion SPECT has been published by the Association of the Scientific Medical Societies in Germany (AWMF) and is valid until 2/2022. This paper is a short summary with comments on all chapters and subchapters wich were modified and amended.

  5. Renal PKC-ε deficiency attenuates acute kidney injury and ischemic allograft injury via TNF-α-dependent inhibition of apoptosis and inflammation.

    PubMed

    Rong, Song; Hueper, Katja; Kirsch, Torsten; Greite, Robert; Klemann, Christian; Mengel, Michael; Meier, Matthias; Menne, Jan; Leitges, Michael; Susnik, Nathan; Meier, Martin; Haller, Hermann; Shushakova, Nelli; Gueler, Faikah

    2014-09-15

    Acute kidney injury (AKI) increases the risk of morbidity and mortality after major surgery and transplantation. We investigated the effect of PKC-ε deficiency on AKI and ischemic allograft damage after kidney transplantation. PKC-ε-deficient and wild type (WT) control mice were subjected to 35 min of renal pedicle clamping to induce AKI. PKC-ε deficiency was associated with a marked improvement in survival and an attenuated loss of kidney function. Furthermore, functional MRI experiments revealed better renal perfusion in PKC-ε-deficient mice than in WT mice one day after IRI. Acute tubular necrosis and neutrophil infiltration were markedly reduced in PKC-ε-deficient mice. To determine whether this resistance to ischemia-reperfusion injury resulted from changes in local renal cells or infiltrating leukocytes, we studied a life-supporting renal transplant model of ischemic graft injury. We transplanted kidneys from H(2b) PKC-ε-deficient mice (129/SV) and their corresponding WT littermates into major histocompatibility complex-incompatible H(2d) recipients (BALB/c) and induced ischemic graft injury by prolonged cold ischemia time. Recipients of WT allografts developed severe renal failure and died within 10 days of transplantation. Recipients of PKC-ε-deficient allografts had better renal function and survival; they had less generation of ROS and upregulation of proinflammatory proteins (i.e., ICAM-1, inducible nitric oxide synthase, and TNF-α) and showed less tubular epithelial cell apoptosis and inflammation in their allografts. These data suggest that local renal PKC-ε expression mediates proapoptotic and proinflammatory signaling and that an inhibitor of PKC-ε signaling could be used to prevent hypoxia-induced AKI. Copyright © 2014 the American Physiological Society.

  6. CT Perfusion of the Liver: Principles and Applications in Oncology

    PubMed Central

    Kim, Se Hyung; Kamaya, Aya

    2014-01-01

    With the introduction of molecularly targeted chemotherapeutics, there is an increasing need for defining new response criteria for therapeutic success because use of morphologic imaging alone may not fully assess tumor response. Computed tomographic (CT) perfusion imaging of the liver provides functional information about the microcirculation of normal parenchyma and focal liver lesions and is a promising technique for assessing the efficacy of various anticancer treatments. CT perfusion also shows promising results for diagnosing primary or metastatic tumors, for predicting early response to anticancer treatments, and for monitoring tumor recurrence after therapy. Many of the limitations of early CT perfusion studies performed in the liver, such as limited coverage, motion artifacts, and high radiation dose of CT, are being addressed by recent technical advances. These include a wide area detector with or without volumetric spiral or shuttle modes, motion correction algorithms, and new CT reconstruction technologies such as iterative algorithms. Although several issues related to perfusion imaging—such as paucity of large multicenter trials, limited accessibility of perfusion software, and lack of standardization in methods—remain unsolved, CT perfusion has now reached technical maturity, allowing for its use in assessing tumor vascularity in larger-scale prospective clinical trials. In this review, basic principles, current acquisition protocols, and pharmacokinetic models used for CT perfusion imaging of the liver are described. Various oncologic applications of CT perfusion of the liver are discussed and current challenges, as well as possible solutions, for CT perfusion are presented. © RSNA, 2014 Online supplemental material is available for this article. PMID:25058132

  7. Assessment of myocardial blood flow and coronary flow reserve with positron emission tomography in ischemic heart disease: current state and future directions.

    PubMed

    Al Badarin, Firas; Aljizeeri, Ahmed; Almasoudi, Fatimah; Al-Mallah, Mouaz H

    2017-07-01

    Positron emission tomography (PET) is a versatile imaging technology that allows assessment of myocardial perfusion, both at a spatially relative scale and also in absolute terms, thereby enabling noninvasive evaluation of myocardial blood flow (MBF) and coronary flow reserve (CFR). Assessment of MBF using FDA-approved PET isotopes, such as 82 Rb and 13 N-ammonia, has been well validated, and several software packages are currently available, thereby allowing for MBF evaluation to be incorporated into routine workflow in contemporary nuclear laboratories. Incremental diagnostic and prognostic information provided with the knowledge of MBF has the potential for widespread applications. Improving the ability to identify the true burden of obstructive epicardial coronary stenoses and allowing for noninvasive assessment of coronary micro circulatory function can be achieved with MBF assessment. On the other hand, attenuated CFR has been shown to predict adverse cardiovascular prognosis in a variety of clinical settings and patient subgroups. With expanding applications of MBF, this tool promises to provide unique insight into the integrity of the entire coronary vascular bed beyond what is currently available with relative perfusion assessment. This review intends to provide an in-depth discussion of technical and clinical aspects of MBF assessment with PET as it relates to patients with ischemic heart disease.

  8. Coronary Artery Disease: Analysis of Diagnostic Performance of CT Perfusion and MR Perfusion Imaging in Comparison with Quantitative Coronary Angiography and SPECT-Multicenter Prospective Trial.

    PubMed

    Rief, Matthias; Chen, Marcus Y; Vavere, Andrea L; Kendziora, Benjamin; Miller, Julie M; Bandettini, W Patricia; Cox, Christopher; George, Richard T; Lima, João; Di Carli, Marcelo; Plotkin, Michail; Zimmermann, Elke; Laule, Michael; Schlattmann, Peter; Arai, Andrew E; Dewey, Marc

    2018-02-01

    Purpose To compare the diagnostic performance of stress myocardial computed tomography (CT) perfusion with that of stress myocardial magnetic resonance (MR) perfusion imaging in the detection of coronary artery disease (CAD). Materials and Methods All patients gave written informed consent prior to inclusion in this institutional review board-approved study. This two-center substudy of the prospective Combined Noninvasive Coronary Angiography and Myocardial Perfusion Imaging Using 320-Detector Row Computed Tomography (CORE320) multicenter trial included 92 patients (mean age, 63.1 years ± 8.1 [standard deviation]; 73% male). All patients underwent perfusion CT and perfusion MR imaging with either adenosine or regadenoson stress. The predefined reference standards were combined quantitative coronary angiography (QCA) and single-photon emission CT (SPECT) or QCA alone. Results from coronary CT angiography were not included, and diagnostic performance was evaluated with the Mantel-Haenszel test stratified by disease status. Results The prevalence of CAD was 39% (36 of 92) according to QCA and SPECT and 64% (59 of 92) according to QCA alone. When compared with QCA and SPECT, per-patient diagnostic accuracy of perfusion CT and perfusion MR imaging was 63% (58 of 92) and 75% (69 of 92), respectively (P = .11); sensitivity was 92% (33 of 36) and 83% (30 of 36), respectively (P = .45); and specificity was 45% (25 of 56) and 70% (39 of 56), respectively (P < .01). When compared with QCA alone, diagnostic accuracy of CT perfusion and MR perfusion imaging was 82% (75 of 92) and 74% (68 of 92), respectively (P = .27); sensitivity was 90% (53 of 59) and 69% (41 of 59), respectively (P < .01); and specificity was 67% (22 of 33) and 82% (27 of 33), respectively (P = .27). Conclusion This multicenter study shows that the diagnostic performance of perfusion CT is similar to that of perfusion MR imaging in the detection of CAD. © RSNA, 2017 Online supplemental material is

  9. Ischemic postconditioning: from receptor to end-effector.

    PubMed

    Cohen, Michael V; Downey, James M

    2011-03-01

    Ischemic preconditioning, a robust cardioprotective intervention, has limited clinical efficacy because it must be initiated before myocardial ischemia. Conversely, ischemic postconditioning, repeated brief reocclusions of a coronary artery after release of prolonged coronary occlusion, provides cardioprotection in clinically feasible settings, that is, coronary angioplasty. Ischemic postconditioning's signaling is being investigated to identify pharmacological triggers that could be used without angioplasty. In initial minutes of reperfusion H(+) washes out of previously ischemic cells. pH rises enabling mitochondrial permeability transition pores (MPTPs) to form leading to cessation of ATP production and cell necrosis. Coronary reocclusions maintain sufficient acidosis to keep MPTP closed while signaling is initiated that can generate endogenous antagonists of MPTP formation even after cellular pH normalizes. Reintroduction of oxygen generates reactive oxygen species that activate protein kinase C to increase sensitivity of adenosine A(2b) receptors allowing adenosine released from ischemic cells to bind leading to activation of phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2. Phosphatidylinositol 3-kinase activation results in phosphorylation of Akt promoting activation of nitric oxide synthase and nitric oxide production, which inhibits glycogen synthase kinase-3β, perhaps the final cytosolic signaling step before inhibition of MPTP formation. Interference with MPTP may be the final step that determines cell salvage.

  10. A Comprehensive Texture Segmentation Framework for Segmentation of Capillary Non-Perfusion Regions in Fundus Fluorescein Angiograms

    PubMed Central

    Zheng, Yalin; Kwong, Man Ting; MacCormick, Ian J. C.; Beare, Nicholas A. V.; Harding, Simon P.

    2014-01-01

    Capillary non-perfusion (CNP) in the retina is a characteristic feature used in the management of a wide range of retinal diseases. There is no well-established computation tool for assessing the extent of CNP. We propose a novel texture segmentation framework to address this problem. This framework comprises three major steps: pre-processing, unsupervised total variation texture segmentation, and supervised segmentation. It employs a state-of-the-art multiphase total variation texture segmentation model which is enhanced by new kernel based region terms. The model can be applied to texture and intensity-based multiphase problems. A supervised segmentation step allows the framework to take expert knowledge into account, an AdaBoost classifier with weighted cost coefficient is chosen to tackle imbalanced data classification problems. To demonstrate its effectiveness, we applied this framework to 48 images from malarial retinopathy and 10 images from ischemic diabetic maculopathy. The performance of segmentation is satisfactory when compared to a reference standard of manual delineations: accuracy, sensitivity and specificity are 89.0%, 73.0%, and 90.8% respectively for the malarial retinopathy dataset and 80.8%, 70.6%, and 82.1% respectively for the diabetic maculopathy dataset. In terms of region-wise analysis, this method achieved an accuracy of 76.3% (45 out of 59 regions) for the malarial retinopathy dataset and 73.9% (17 out of 26 regions) for the diabetic maculopathy dataset. This comprehensive segmentation framework can quantify capillary non-perfusion in retinopathy from two distinct etiologies, and has the potential to be adopted for wider applications. PMID:24747681

  11. Ischemic Stroke Patients Demonstrate Increased Carotid Plaque Microvasculature Compared to (Ocular) Transient Ischemic Attack Patients

    PubMed Central

    van Hoof, Raf H.M.; Schreuder, Floris H.B.M.; Nelemans, Patty; Truijman, Martine T.B.; van Orshoven, Narender P.; Schreuder, Tobien H.; Mess, Werner H.; Heeneman, Sylvia; van Oostenbrugge, Robert J.; Wildberger, Joachim E.; Kooi, M. Eline

    2017-01-01

    Background Patients with a recent ischemic stroke have a higher risk of recurrent stroke compared to (ocular) transient ischemic attack (TIA) patients. Plaque microvasculature is considered as a feature of plaque vulnerability and can be quantified with carotid dynamic contrast-enhanced MRI (DCE-MRI). The purpose of this cross-sectional study was to explore the association between plaque microvasculature and the type of recent cerebrovascular events in symptomatic patients with mild-to-moderate carotid stenosis. Methods A total of 87 symptomatic patients with a recent stroke (n = 35) or (ocular) TIA (n = 52) underwent carotid DCE-MRI examination. Plaque microvasculature was studied in the vessel wall and adventitia using DCE-MRI and the pharmacokinetic modeling parameter Ktrans. Statistical analysis was performed with logistic regression, correcting for associated clinical risk factors. Results The 75th percentile adventitial (OR 1.97, 95% CI 1.18–3.29) Ktrans was significantly associated with a recent ischemic stroke compared to (ocular) TIA in multivariate analysis, while clinical risk factors were not significantly associated with the type of event. Conclusions This study indicates a positive association of leaky plaque microvasculature with a recent ischemic stroke compared to (ocular) TIA. Prospective longitudinal studies are needed to investigate whether Ktrans or other plaque characteristics may serve as an imaging marker for predicting (the type of) future cerebrovascular events. PMID:28946147

  12. Extravasation into brain and subsequent spread beyond the ischemic core of a magnetic resonance contrast agent following a step-down infusion protocol in acute cerebral ischemia

    PubMed Central

    2014-01-01

    Background Limiting expansion of the ischemic core lesion by reinstating blood flow and protecting the penumbral cells is a priority in acute stroke treatment. However, at present, methods are not available for effective drug delivery to the ischemic penumbra. To address these issues this study compared the extravasation and subsequent interstitial spread of a magnetic resonance contrast agent (MRCA) beyond the ischemic core into the surrounding brain in a rat model of ischemia-reperfusion for bolus injection and step-down infusion (SDI) protocols. Methods Male Wistar rats underwent middle cerebral artery (MCA) occlusion for 3 h followed by reperfusion. Perfusion-diffusion mismatched regions indicating the extent of spread were identified by measuring cerebral blood flow (CBF) deficits by arterial spin-labeled magnetic resonance imaging and the extent of the ischemic core by mapping the apparent diffusion coefficient (ADC) of water with diffusion-weighted imaging. Vascular injury was assessed via MRCA, gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) penetration, by Look-Locker T1-weighted MR imaging after either a bolus injection (n = 8) or SDI (n = 6). Spatial and temporal expansion of the MRCA front during a 25 min imaging period was measured from images obtained at 2.5 min intervals. Results The mean ADC lesion was 20 ± 7% of the hemispheric area whereas the CBF deficit area was 60 ± 16%, with the difference between the areas suggesting the possible presence of a penumbra. The bolus injection led to MRCA enhancement with an area that initially spread into the ischemic core and then diminished over time. The SDI produced a gradual increase in the area of MRCA enhancement that slowly enlarged to occupy the core, eventually expanded beyond it into the surrounding tissue and then plateaued. The integrated area from SDI extravasation was significantly larger than that for the bolus (p = 0.03). The total number of pixels covered by the

  13. Lung scintigraphy in differential diagnosis of peripheral lung cancer and community-acquired pneumonia

    NASA Astrophysics Data System (ADS)

    Krivonogov, Nikolay G.; Efimova, Nataliya Y.; Zavadovsky, Konstantin W.; Lishmanov, Yuri B.

    2016-08-01

    Ventilation/perfusion lung scintigraphy was performed in 39 patients with verified diagnosis of community-acquired pneumonia (CAP) and in 14 patients with peripheral lung cancer. Ventilation/perfusion ratio, apical-basal gradients of ventilation (U/L(V)) and lung perfusion (U/L(P)), and alveolar capillary permeability of radionuclide aerosol were determined based on scintigraphy data. The study demonstrated that main signs of CAP were increases in ventilation/perfusion ratio, perfusion and ventilation gradient on a side of the diseased lung, and two-side increase in alveolar capillary permeability rate for radionuclide aerosol. Unlike this, scintigraphic signs of peripheral lung cancer comprise an increase in ventilation/perfusion ratio over 1.0 on a side of the diseased lung with its simultaneous decrease on a contralateral side, normal values of perfusion and ventilation gradients of both lungs, and delayed alveolar capillary clearance in the diseased lung compared with the intact lung.

  14. The protective effects of ischemic preconditioning on rats with renal ischemia-reperfusion injury and the effects on the expression of Bcl-2 and Bax.

    PubMed

    Shen, Sheng; Zhou, Jiexue; Meng, Shandong; Wu, Jiaqing; Ma, Juan; Zhu, Chunli; Deng, Gengguo; Liu, Dong

    2017-11-01

    The aim of the present study was to investigate the protective effects of ischemic preconditioning on rats with renal ischemia-reperfusion injury and the effects on the expression of Bcl-2 and Bax. Thirty-six SD rats were randomly divided into three groups (n=12) including sham operation (S) group, ischemia-reperfusion group (I/R) group and ischemic preconditioning (IP) group. After anesthesia with intraperitoneal injection of chloral hydrate, bilateral renal pedicles were clipped for 45 min, followed by perfusion for 6 h to establish the I/R model. Both kidneys in rats of S group were separated and exposed for 45 min, but renal pedicles were not clipped. In IP group, bilateral renal pedicles were clipped for 5 min, followed by perfusion for 5 min, this procedure was repeated 3 times. Then bilateral renal pedicles were clipped for 45 min, followed by perfusion for 6 h. Blood samples were collected and rats were sacrificed to collect renal tissue. Levels of serum creatinine (Cr) and blood urea nitrogen (BUN) were measured. Activity of superoxide dismutase (SOD) was measured by xanthine oxidase assay. Degree of renal injury was evaluated by H&E staining. TUNEL kit was used to detect the number of apoptotic cells in renal tissue. Expression levels of Bcl-2 and Bax were detected by semi-quantitative PCR and western blot analysis at mRNA and protein levels, respectively. Results showed that levels of Cr and BUN in I/R and IP groups were significantly higher than those in S group, and levels of Cr and BUN in I/R group were significantly higher than that in IP group (P<0.05). Activity of SOD in I/R group and IP group were significantly lower than those in S group, and activity of SOD in I/R group were significantly lower than those in IP group (P<0.05). H&E staining showed that, compared with S group, renal injury in the I/R and IP groups was more serious than that in the S group, and I/R group was more serious than the IP group (P<0.05). TUNEL apoptosis assay showed that

  15. Rehabilitation Outcomes: Ischemic versus Hemorrhagic Strokes

    PubMed Central

    Perna, Robert; Temple, Jessica

    2015-01-01

    Background. Ischemic and hemorrhagic strokes have different pathophysiologies and possibly different long-term cerebral and functional implications. Hemorrhagic strokes expose the brain to irritating effects of blood and ischemic strokes reflect localized or diffuse cerebral vascular pathology. Methods. Participants were individuals who suffered either an ischemic (n = 172) or hemorrhagic stroke (n = 112) within the past six months and were involved in a postacute neurorehabilitation program. Participants completed three months of postacute neurorehabilitation and the Mayo Portland Adaptability Inventory-4 (MPAI-4) at admission and discharge. Admission MPAI-4 scores and level of functioning were comparable. Results. Group ANOVA comparisons show no significant group differences at admission or discharge or difference in change scores. Both groups showed considerably reduced levels of productivity/employment after discharge as compared to preinjury levels. Conclusions. Though the pathophysiology of these types of strokes is different, both ultimately result in ischemic injuries, possibly accounting for lack of findings of differences between groups. In the present study, participants in both groups experienced similar functional levels across all three MPAI-4 domains both at admission and discharge. Limitations of this study include a highly educated sample and few outcome measures. PMID:26246694

  16. Rehabilitation Outcomes: Ischemic versus Hemorrhagic Strokes.

    PubMed

    Perna, Robert; Temple, Jessica

    2015-01-01

    Background. Ischemic and hemorrhagic strokes have different pathophysiologies and possibly different long-term cerebral and functional implications. Hemorrhagic strokes expose the brain to irritating effects of blood and ischemic strokes reflect localized or diffuse cerebral vascular pathology. Methods. Participants were individuals who suffered either an ischemic (n = 172) or hemorrhagic stroke (n = 112) within the past six months and were involved in a postacute neurorehabilitation program. Participants completed three months of postacute neurorehabilitation and the Mayo Portland Adaptability Inventory-4 (MPAI-4) at admission and discharge. Admission MPAI-4 scores and level of functioning were comparable. Results. Group ANOVA comparisons show no significant group differences at admission or discharge or difference in change scores. Both groups showed considerably reduced levels of productivity/employment after discharge as compared to preinjury levels. Conclusions. Though the pathophysiology of these types of strokes is different, both ultimately result in ischemic injuries, possibly accounting for lack of findings of differences between groups. In the present study, participants in both groups experienced similar functional levels across all three MPAI-4 domains both at admission and discharge. Limitations of this study include a highly educated sample and few outcome measures.

  17. New Treatments for Nonarteritic Anterior Ischemic Optic Neuropathy.

    PubMed

    Foroozan, Rod

    2017-02-01

    Despite increasing knowledge about the risk factors and clinical findings of nonarteritic anterior ischemic optic neuropathy (NAION), the treatment of this optic neuropathy has remained limited and without clear evidence-based benefit. Historical treatments of NAION are reviewed, beginning with the Ischemic Optic Neuropathy Decompression Trial. More recent treatments are placed within the historical context and illustrate the need for evidence-based therapy for ischemic optic neuropathy. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Effect of alternate energy substrates on mammalian brain metabolism during ischemic events.

    PubMed

    Koppaka, S S; Puchowicz; LaManna, J C; Gatica, J E

    2008-01-01

    Regulation of brain metabolism and cerebral blood flow involves complex control systems with several interacting variables at both cellular and organ levels. Quantitative understanding of the spatially and temporally heterogeneous brain control mechanisms during internal and external stimuli requires the development and validation of a computational (mathematical) model of metabolic processes in brain. This paper describes a computational model of cellular metabolism in blood-perfused brain tissue, which considers the astrocyte-neuron lactate-shuttle (ANLS) hypothesis. The model structure consists of neurons, astrocytes, extra-cellular space, and a surrounding capillary network. Each cell is further compartmentalized into cytosol and mitochondria. Inter-compartment interaction is accounted in the form of passive and carrier-mediated transport. Our model was validated against experimental data reported by Crumrine and LaManna, who studied the effect of ischemia and its recovery on various intra-cellular tissue substrates under standard diet conditions. The effect of ketone bodies on brain metabolism was also examined under ischemic conditions following cardiac resuscitation through our model simulations. The influence of ketone bodies on lactate dynamics on mammalian brain following ischemia is studied incorporating experimental data.

  19. Ventilation-perfusion distribution in normal subjects.

    PubMed

    Beck, Kenneth C; Johnson, Bruce D; Olson, Thomas P; Wilson, Theodore A

    2012-09-01

    Functional values of LogSD of the ventilation distribution (σ(V)) have been reported previously, but functional values of LogSD of the perfusion distribution (σ(q)) and the coefficient of correlation between ventilation and perfusion (ρ) have not been measured in humans. Here, we report values for σ(V), σ(q), and ρ obtained from wash-in data for three gases, helium and two soluble gases, acetylene and dimethyl ether. Normal subjects inspired gas containing the test gases, and the concentrations of the gases at end-expiration during the first 10 breaths were measured with the subjects at rest and at increasing levels of exercise. The regional distribution of ventilation and perfusion was described by a bivariate log-normal distribution with parameters σ(V), σ(q), and ρ, and these parameters were evaluated by matching the values of expired gas concentrations calculated for this distribution to the measured values. Values of cardiac output and LogSD ventilation/perfusion (Va/Q) were obtained. At rest, σ(q) is high (1.08 ± 0.12). With the onset of ventilation, σ(q) decreases to 0.85 ± 0.09 but remains higher than σ(V) (0.43 ± 0.09) at all exercise levels. Rho increases to 0.87 ± 0.07, and the value of LogSD Va/Q for light and moderate exercise is primarily the result of the difference between the magnitudes of σ(q) and σ(V). With known values for the parameters, the bivariate distribution describes the comprehensive distribution of ventilation and perfusion that underlies the distribution of the Va/Q ratio.

  20. [Primary emergencies: management of acute ischemic stroke].

    PubMed

    Leys, Didier; Goldstein, Patrick

    2012-01-01

    The emergency diagnostic strategy for acute ischemic stroke consists of:--identification of stroke, based on clinical examination (sudden onset of a focal neurological deficit);--identification of the ischemic or hemorrhagic nature by MRI or CT;--determination of the early time-course (clinical examination) and the cause. In all strokes (ischemic or hemorrhagic), treatment consists of:--the same general management (treatment of a life-threatening emergency, ensuring normal biological parameters except for blood pressure, and prevention of complications);--decompressive surgery in the rare cases of intracranial hypertension. For proven ischemic stroke, other therapies consist of: rt-PA for patients admitted with 4.5 hours of stroke onset who have no contraindications, and aspirin (160 to 300 mg) for patients who are not eligible for rt-PA. These treatments should be administered within a few hours. A centralized emergency call system (phone number 15 in France) is the most effective way of achieving this objective.

  1. Donepezil, an acetylcholinesterase inhibitor against Alzheimer's dementia, promotes angiogenesis in an ischemic hindlimb model.

    PubMed

    Kakinuma, Yoshihiko; Furihata, Mutsuo; Akiyama, Tsuyoshi; Arikawa, Mikihiko; Handa, Takemi; Katare, Rajesh G; Sato, Takayuki

    2010-04-01

    Our recent studies have indicated that acetylcholine (ACh) protects cardiomyocytes from prolonged hypoxia through activation of the PI3K/Akt/HIF-1alpha/VEGF pathway and that cardiomyocyte-derived VEGF promotes angiogenesis in a paracrine fashion. These results suggest that a cholinergic system plays a role in modulating angiogenesis. Therefore, we assessed the hypothesis that the cholinergic modulator donepezil, an acetylcholinesterase inhibitor utilized in Alzheimer's disease, exhibits beneficial effects, especially on the acceleration of angiogenesis. We evaluated the effects of donepezil on angiogenic properties in vitro and in vivo, using an ischemic hindlimb model of alpha7 nicotinic receptor-deleted mice (alpha7 KO) and wild-type mice (WT). Donepezil activated angiogenic signals, i.e., HIF-1alpha and VEGF expression, and accelerated tube formation in human umbilical vein endothelial cells (HUVECs). ACh and nicotine upregulated signal transduction with acceleration of tube formation, suggesting that donepezil promotes a common angiogenesis pathway. Moreover, donepezil-treated WT exhibited rich capillaries with enhanced VEGF and PCNA endothelial expression, recovery from impaired tissue perfusion, prevention of ischemia-induced muscular atrophy with sustained surface skin temperature in the limb, and inhibition of apoptosis independent of the alpha7 receptor. Donepezil exerted comparably more effects in alpha7 KO in terms of angiogenesis, tissue perfusion, biochemical markers, and surface skin temperature. Donepezil concomitantly elevated VEGF expression in intracardiac endothelial cells of WT and alpha7 KO and further increased choline acetyltransferase (ChAT) protein expression, which is critical for ACh synthesis in endothelial cells. The present study concludes that donepezil can act as a therapeutic tool to accelerate angiogenesis in cardiovascular disease patients. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  2. Alteration of cerebral perfusion in patients with idiopathic normal pressure hydrocephalus measured by 3D perfusion weighted magnetic resonance imaging.

    PubMed

    Walter, Christof; Hertel, F; Naumann, E; Mörsdorf, M

    2005-12-01

    It is controversial whether alteration of cerebral perfusion plays an important role in the pathophysiology of patients with idiopathic normal pressure hydrocephalus (NPH) and can help to predict the outcome after shunt surgery. 28 patients with suspected NPH were examined clinically (Homburg Hydrocephalus Scale, walking test, incontinence protocol) and by 3D dynamic susceptibility based perfusion weighted magnetic resonance imaging (PWI-MRI) before and after cerebrospinal fluid release (spinal tap test, STT). The perfusion parameters (negative integral (NI), time of arrival (T0), time to peak (TTP), mean transit time, and the difference TTP-T0 were analysed. Three different groups of patients were identified preoperatively: In group 1 seven patients showed an increase in the cerebral perfusion and a clinical improvement after STT. The second group (9 patients) also revealed an increase of the cerebral perfusion, but no significant alteration of the clinical assessment could be found. In the third group neither the cerebral perfusion nor the clinical assessment changed. 14 of the 16 patients (group 1 and 2) were examined three months after shunt placement. 11 patients showed a good or excellent result, 2 patients revealed a fair assessment, and only 1 patient had transiently improved. No patient was downgraded after shunting. In the patient group 1 and 2 the NI increased significantly (effect size: 34%), whereas in group 3 no significant alteration of NI was observed. PWI-MRI improves the prediction of outcome after shunt placement in patients with NPH and can offer new insights into the pathophysiology.

  3. Metabolomic Perfusate Analysis during Kidney Machine Perfusion: The Pig Provides an Appropriate Model for Human Studies

    PubMed Central

    Nath, Jay; Guy, Alison; Smith, Thomas B.; Cobbold, Mark; Inston, Nicholas G.; Hodson, James; Tennant, Daniel A.

    2014-01-01

    Introduction Hypothermic machine perfusion offers great promise in kidney transplantation and experimental studies are needed to establish the optimal conditions for this to occur. Pig kidneys are considered to be a good model for this purpose and share many properties with human organs. However it is not established whether the metabolism of pig kidneys in such hypothermic hypoxic conditions is comparable to human organs. Methods Standard criteria human (n = 12) and porcine (n = 10) kidneys underwent HMP using the LifePort Kidney Transporter 1.0 (Organ Recovery Systems) using KPS-1 solution. Perfusate was sampled at 45 minutes and 4 hours of perfusion and metabolomic analysis performed using 1-D 1H-NMR spectroscopy. Results There was no inter-species difference in the number of metabolites identified. Of the 30 metabolites analysed, 16 (53.3%) were present in comparable concentrations in the pig and human kidney perfusates. The rate of change of concentration for 3-Hydroxybutyrate was greater for human kidneys (p<0.001). For the other 29 metabolites (96.7%), there was no difference in the rate of change of concentration between pig and human samples. Conclusions Whilst there are some differences between pig and human kidneys during HMP they appear to be metabolically similar and the pig seems to be a valid model for human studies. PMID:25502759

  4. Elevation of Autoantibody in Patients with Ischemic Stroke.

    PubMed

    Yoshida, Yoichi; Hiwasa, Takaki; Machida, Toshio; Kobayashi, Eiichi; Mine, Seiichiro; Matsushima, Jun; Takiguchi, Masaki; Iwadate, Yasuo

    2018-05-31

    Recent clinical research has revealed a significant correlation between atherosclerosis, one of the primary etiologies of ischemic stroke, and the immune system. Assuming that "disease-specific autoantibodies are produced in the sera of patients with ischemic stroke," we investigated multiple arteriosclerosis-related antibodies using the serological identification of antigens by recombinant cDNA expression cloning (SEREX), an established method for identifying antigenic proteins. We either screened a human aortic endothelial cell cDNA library or conducted protein array screening using the sera from patients with ischemic stroke, such as carotid artery stenosis or transient ischemic attack (TIA). Next, we measured serum antibody levels using amplified luminescent proximity homogeneous assay-linked immunosorbent assay (AlphaLISA) in patient/healthy donor (HD) cohorts and identified several antigens, the antibody levels of which were significantly higher in patients with ischemic stroke than in HDs. This review introduced the method of identifying antigens by the SEREX and protein microarray and summarized antigenic proteins. In particular, it focused on anti-replication protein A2 antibody and anti-programmed cell death 11 antibody, which are significantly related to atherosclerotic plaque and ischemic brain tissue, respectively, and proposed the mechanism of elevated autoantibody levels against them. Furthermore, this review suggests a possibility of clinical application as an atherosclerotic disease diagnostic marker for TIA or cerebral infarction.

  5. Relationship Between Ischemic Heart Disease and Sexual Satisfaction.

    PubMed

    Ghanbari Afra, Leila; Taghadosi, Mohsen; Gilasi, Hamid Reza

    2015-06-10

    Ischemic heart disease is a life-threatening condition. Considerable doubts exist over the effects of this disease on patients' sexual activity and satisfaction. The aim of this study was to evaluate the relationship between ischemic heart disease and sexual satisfaction. In a retrospective cohort study, the convenience sample of 150 patients exposure with ischemic heart disease and 150 people without exposure it was drawn from Shahid Beheshti hospital, Kashan, Iran. Sampling was performed from March to September 2014. We employed the Larson's Sexual Satisfaction Questionnaire for gathering the data. Data were analyzed using descriptive statistics and Chi-square, t-test and linear regression analysis. The means of sexual satisfaction in patients exposure with ischemic heart disease and among the subjects without exposure it were 101.47±13.42 and 100.91±16.52, respectively. There was no significant difference between the two groups regarding sexual satisfaction. However, sexual satisfaction was significantly correlated with gender and the use of cardiac medications (P value<0.05). The level of sexual satisfaction in patients with exposure ischemic heart disease is similar to the people without exposure it. Moreover, the men and the patients who do not receive cardiac medications have higher levels of sexual satisfaction. Nurses who are providing care to patients with ischemic heart disease need to pay closer attention to patient education about sexual issues.

  6. Usefulness of colonoscopy in ischemic colitis.

    PubMed

    Lozano-Maya, M; Ponferrada-Díaz, A; González-Asanza, C; Nogales-Rincón, O; Senent-Sánchez, C; Pérez-de-Ayala, V; Jiménez-Aleixandre, P; Cos-Arregui, E; Menchén-Fernández-Pacheco, P

    2010-07-01

    the ischemic colitis is intestinal the most frequent cause of ischemia. With this work we determine the demographic and clinical characteristics, and the usefulness of the colonoscopy in the patients with ischemic colitis diagnosed in our centre in relation to a change of therapeutic attitude. retrospective study in which were selected 112 patients diagnosed with ischemic colitis by colonoscopy and biopsy, in a period of five years. It was analyzed: age, sex, reason for examination, factors of cardiovascular risk, endoscopic degree of ischemia, change in the therapeutic attitude, treatment and outcome. the average age was of 73.64 + or - 12.10 years with an equal incidence in women (50.9%) and the men (49.1%). The associated factors were the HTA (61.1%), tobacco (37.2%) and antecedents of cardiovascular episode (52.2%). The most frequent reason for colonoscopy was rectorrhagia (53.6%) followed of the abdominal pain (30.4%), being urgent the 65.3%. Colonoscopy allowed a change in the therapeutic attitude in the 50 increasing in the urgent one to the 65.75%. Global mortality was of 27.67%. The serious ischemic colitis (25%) was more frequent in men (64.3%) in urgent indication (85.71%) and attends with high mortality (53.57%). Surgical treatment in the 57.14% was made with a good evolution in the 50%, whereas the patients with mild or moderate ischemic colitis had a better prognosis (favourable evolution in 80.95%) with smaller requirement of the surgical treatment (4.76%), p < 0.05. the colitis ischemic are more frequent in the older age. The most frequent symptoms are the rectorrhagia and the abdominal pain. The colonoscopy is a useful technique to evaluate the gravity and it induces a change of attitude according to the result of the same one. The evidence of a serious colitis supposed an increase of the necessity of surgery and worse prognosis.

  7. Hyperventilation, cerebral perfusion, and syncope.

    PubMed

    Immink, R V; Pott, F C; Secher, N H; van Lieshout, J J

    2014-04-01

    This review summarizes evidence in humans for an association between hyperventilation (HV)-induced hypocapnia and a reduction in cerebral perfusion leading to syncope defined as transient loss of consciousness (TLOC). The cerebral vasculature is sensitive to changes in both the arterial carbon dioxide (PaCO2) and oxygen (PaO2) partial pressures so that hypercapnia/hypoxia increases and hypocapnia/hyperoxia reduces global cerebral blood flow. Cerebral hypoperfusion and TLOC have been associated with hypocapnia related to HV. Notwithstanding pronounced cerebrovascular effects of PaCO2 the contribution of a low PaCO2 to the early postural reduction in middle cerebral artery blood velocity is transient. HV together with postural stress does not reduce cerebral perfusion to such an extent that TLOC develops. However when HV is combined with cardiovascular stressors like cold immersion or reduced cardiac output brain perfusion becomes jeopardized. Whether, in patients with cardiovascular disease and/or defect, cerebral blood flow cerebral control HV-induced hypocapnia elicits cerebral hypoperfusion, leading to TLOC, remains to be established.

  8. In Search of the Optimal Heart Perfusion Ultrasound Imaging Platform.

    PubMed

    Grishenkov, Dmitry; Gonon, Adrian; Janerot-Sjoberg, Birgitta

    2015-09-01

    Quantification of myocardial perfusion by contrast echocardiography remains a challenge. Existing imaging phantoms used to evaluate the performance of ultrasound scanners do not comply with perfusion basics in the myocardium, where perfusion and motion are inherently coupled. To contribute toward an improvement, we developed a contrast echocardiographic perfusion imaging platform based on an isolated rat heart coupled to an ultrasound scanner. Perfusion was assessed by using 3 different types of contrast agents: dextran-based Promiten (Meda AB, Solna, Sweden), phospholipid-shelled SonoVue (Bracco Diagnostics, Inc, Princeton, NJ), and polymer-shelled MB-pH5-RT, developed in-house. The myocardial video intensity was monitored over time from contrast agent administration to peak, and 2 characteristic constants were calculated by using an exponential fit: A, representing capillary volume; and β, representing inflow velocity. Acquired experimental evidence demonstrates that the application of all 3 contrast agents allows sonographic estimation of myocardial perfusion in the isolated rat heart. Video intensity maps show that an increase in contrast concentration increases the late-plateau values, A, mimicking increased capillary volume. Estimated values of the flow, proportional to A × β, increase when the pressure of the perfusate column increases from 80 to 110 cm of water. This finding is in agreement with the true values of the coronary flow increase measured by a flowmeter attached to the aortic cannula. The contrast echocardiographic perfusion imaging platform described holds promise for standardized evaluation and optimization of contrast perfusion ultrasound imaging in which real-time inflow curves at low acoustic power semiquantitatively reflect coronary flow. © 2015 by the American Institute of Ultrasound in Medicine.

  9. TECHNOLOGIES FOR RADON AND RADIONUCLIDE REMOVAL

    EPA Science Inventory

    This paper provides a summary of the technologies that are currently being used to remove radionuclides from drinking water. The radionuclides that are featured are the radionuclides currently regulated by EPA; radium, radon and uranium. Tehnologies effective for removal of eac...

  10. Neuroprotective Effects of Peptides during Ischemic Preconditioning.

    PubMed

    Zarubina, I V; Shabanov, P D

    2016-02-01

    Experiments on rats showed that neurospecific protein preparations reduce the severity of neurological deficit, restore the structure of individual behavior of the animals with different hypoxia tolerance, and exert antioxidant action during chronic ischemic damage to the brain unfolding during the early and late phases of ischemic preconditioning.

  11. Is there any advantage to the acquisition of 24-hour thallium images, in the presence of persistent perfusion defects at 4 h after reinjection?

    PubMed

    Bobba, K; Botvinick, E H; Sciammarella, M G; Starsken, N F; Zhu, Y Y; Lapidus, A; Dae, M W

    1998-05-01

    We determined the incidence of delayed 24-h reversibility post thallium-201 reinjection and imaging at 4 h, as well as the prognostic and significance of such delayed reversibility. We studied 46 consecutive patients with persistent thallium-201 perfusion or incompletely reversible single-photon emission tomography (SPET) perfusion defects acquired within 10 min after reinjection performed 4 h after stress. In 38 of 46 patients (82%) 24-h images showed no further reversibility beyond the post-reinjection 4-h study (group A). Eight of 46 patients (17%) demonstrated reversibility on 24-h imaging (group B). Of these eight, three patients showed no improvement compared with the post-stress images, with a mean perfusion score of the abnormal segments of 1. 25+/-0.50 on the 4-h images, and of 3.00 on the 24-h images, where normal is 4. Four patients presented with nine mixed regions. Four of these regions showed an improvement in the mean perfusion score of 2.50+/-0.58 on 4- and 24-h images. Two of them, with moderate/severe defects, demonstrated complete reversibility at 4-h post-reinjection imaging. In addition, five other regions presented no improvement at 4-h imaging, but showed an improvement in the mean perfusion score from 0.80+/-0.84 at 4-h to 3.30+/-0.89 at 24-h imaging. Two of these regions in one patient showed a severe perfusion score of 0 at 4 h, and complete reversibility at 24 hours, with a mean score improvement of 4. Another patient had three severe perfusion defects; two of them redistributed partially at 4 h and completely at 24 h. The remaining segment with a perfusion score of 0 at 4 h, presented complete reversibility with a score of 4 at 24 h. Two (4%) patients revealed significant reversibility at 24 h in a region that was severely underperfused after post-reinjection imaging at 4 h. Among group B patients, 75% (6/8) had recent acute ischemic syndrome, compared with only 13% (5/38) in group A (P = 0. 001). Among 11 patients with unstable angina

  12. Initial Radionuclide Inventories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, H

    The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only. Bounding waste stream information and data were collected that capture probable limits. For commercially generated waste, this analysis considers alternative waste stream projections to bound the characteristics of wastes likely to be encountered using arrival scenarios that potentially impact the commercial spent nuclearmore » fuel (CSNF) waste stream. For TSPA-LA, this radionuclide inventory analysis considers U.S. Department of Energy (DOE) high-level radioactive waste (DHLW) glass and two types of spent nuclear fuel (SNF): CSNF and DOE-owned (DSNF). These wastes are placed in two groups of waste packages: the CSNF waste package and the codisposal waste package (CDSP), which are designated to contain DHLW glass and DSNF, or DHLW glass only. The radionuclide inventory for naval SNF is provided separately in the classified ''Naval Nuclear Propulsion Program Technical Support Document'' for the License Application. As noted previously, the radionuclide inventory data presented here is intended only for TSPA-LA postclosure calculations. It is not applicable to preclosure safety calculations. Safe storage, transportation, and ultimate disposal of these wastes require safety analyses to support the design and licensing of repository equipment and facilities. These analyses will require radionuclide inventories to represent the radioactive source term that must be accommodated during handling, storage and disposition of these wastes. This analysis uses the best available information to identify the radionuclide inventory that is expected at the last year of last emplacement, currently

  13. NOTCH3 variants and risk of ischemic stroke.

    PubMed

    Ross, Owen A; Soto-Ortolaza, Alexandra I; Heckman, Michael G; Verbeeck, Christophe; Serie, Daniel J; Rayaprolu, Sruti; Rich, Stephen S; Nalls, Michael A; Singleton, Andrew; Guerreiro, Rita; Kinsella, Emma; Wszolek, Zbigniew K; Brott, Thomas G; Brown, Robert D; Worrall, Bradford B; Meschia, James F

    2013-01-01

    Mutations within the NOTCH3 gene cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). CADASIL mutations appear to be restricted to the first twenty-four exons, resulting in the gain or loss of a cysteine amino acid. The role of other exonic NOTCH3 variation not involving cysteine residues and mutations in exons 25-33 in ischemic stroke remains unresolved. All 33 exons of NOTCH3 were sequenced in 269 Caucasian probands from the Siblings With Ischemic Stroke Study (SWISS), a 70-center North American affected sibling pair study and 95 healthy Caucasian control subjects. Variants identified by sequencing in the SWISS probands were then tested for association with ischemic stroke using US Caucasian controls collected at the Mayo Clinic (n=654), and further assessed in a Caucasian (n=802) and African American (n=298) patient-control series collected through the Ischemic Stroke Genetics Study (ISGS). Sequencing of the 269 SWISS probands identified one (0.4%) with small vessel type stroke carrying a known CADASIL mutation (p.R558C; Exon 11). Of the 19 common NOTCH3 variants identified, the only variant significantly associated with ischemic stroke after multiple testing adjustment was p.R1560P (rs78501403; Exon 25) in the combined SWISS and ISGS Caucasian series (Odds Ratio [OR] 0.50, P=0.0022) where presence of the minor allele was protective against ischemic stroke. Although only significant prior to adjustment for multiple testing, p.T101T (rs3815188; Exon 3) was associated with an increased risk of small-vessel stroke (OR: 1.56, P=0.008) and p.P380P (rs61749020; Exon 7) was associated with decreased risk of large-vessel stroke (OR: 0.35, P=0.047) in Caucasians. No significant associations were observed in the small African American series. Cysteine-affecting NOTCH3 mutations are rare in patients with typical ischemic stroke, however our observation that common NOTCH3 variants may be associated with risk of ischemic

  14. Evaluation of Microvascular Perfusion and Resuscitation after Severe Injury.

    PubMed

    Lee, Yann-Leei L; Simmons, Jon D; Gillespie, Mark N; Alvarez, Diego F; Gonzalez, Richard P; Brevard, Sidney B; Frotan, Mohammad A; Schneider, Andrew M; Richards, William O

    2015-12-01

    Achieving adequate perfusion is a key goal of treatment in severe trauma; however, tissue perfusion has classically been measured by indirect means. Direct visualization of capillary flow has been applied in sepsis, but application of this technology to the trauma population has been limited. The purpose of this investigation was to compare the efficacy of standard indirect measures of perfusion to direct imaging of the sublingual microcirculatory flow during trauma resuscitation. Patients with injury severity scores >15 were serially examined using a handheld sidestream dark-field video microscope. In addition, measurements were also made from healthy volunteers. The De Backer score, a morphometric capillary density score, and total vessel density (TVD) as cumulative vessel area within the image, were calculated using Automated Vascular Analysis (AVA3.0) software. These indices were compared against clinical and laboratory parameters of organ function and systemic metabolic status as well as mortality. Twenty severely injured patients had lower TVD (X = 14.6 ± 0.22 vs 17.66 ± 0.51) and De Backer scores (X = 9.62 ± 0.16 vs 11.55 ± 0.37) compared with healthy controls. These scores best correlated with serum lactate (TVD R(2) = 0.525, De Backer R(2) = 0.576, P < 0.05). Mean arterial pressure, heart rate, oxygen saturation, pH, bicarbonate, base deficit, hematocrit, and coagulation parameters correlated poorly with both TVD and De Backer score. Direct measurement of sublingual microvascular perfusion is technically feasible in trauma patients, and seems to provide real-time assessment of microcirculatory perfusion. This study suggests that in severe trauma, many indirect measurements of perfusion do not correlate with microvascular perfusion. However, visualized perfusion deficiencies do reflect a shift toward anaerobic metabolism.

  15. Perfusion directed 3D mineral formation within cell-laden hydrogels.

    PubMed

    Sawyer, Stephen William; Shridhar, Shivkumar Vishnempet; Zhang, Kairui; Albrecht, Lucas; Filip, Alex; Horton, Jason; Soman, Pranav

    2018-06-08

    Despite the promise of stem cell engineering and the new advances in bioprinting technologies, one of the major challenges in the manufacturing of large scale bone tissue scaffolds is the inability to perfuse nutrients throughout thick constructs. Here, we report a scalable method to create thick, perfusable bone constructs using a combination of cell-laden hydrogels and a 3D printed sacrificial polymer. Osteoblast-like Saos-2 cells were encapsulated within a gelatin methacrylate (GelMA) hydrogel and 3D printed polyvinyl alcohol (PVA) pipes were used to create perfusable channels. A custom-built bioreactor was used to perfuse osteogenic media directly through the channels in order to induce mineral deposition which was subsequently quantified via microCT. Histological staining was used to verify mineral deposition around the perfused channels, while COMSOL modeling was used to simulate oxygen diffusion between adjacent channels. This information was used to design a scaled-up construct containing a 3D array of perfusable channels within cell-laden GelMA. Progressive matrix mineralization was observed by cells surrounding perfused channels as opposed to random mineral deposition in static constructs. MicroCT confirmed that there was a direct relationship between channel mineralization within perfused constructs and time within the bioreactor. Furthermore, the scalable method presented in this work serves as a model on how large-scale bone tissue replacement constructs could be made using commonly available 3D printers, sacrificial materials, and hydrogels. © 2018 IOP Publishing Ltd.

  16. FABRICA: A Bioreactor Platform for Printing, Perfusing, Observing, & Stimulating 3D Tissues.

    PubMed

    Smith, Lester J; Li, Ping; Holland, Mark R; Ekser, Burcin

    2018-05-15

    We are introducing the FABRICA, a bioprinter-agnostic 3D-printed bioreactor platform designed for 3D-bioprinted tissue construct culture, perfusion, observation, and analysis. The computer-designed FABRICA was 3D-printed with biocompatible material and used for two studies: (1) Flow Profile Study: perfused 5 different media through a synthetic 3D-bioprinted construct and ultrasonically analyzed the flow profile at increasing volumetric flow rates (VFR); (2) Construct Perfusion Study: perfused a 3D-bioprinted tissue construct for a week and compared histologically with a non-perfused control. For the flow profile study, construct VFR increased with increasing pump VFR. Water and other media increased VFR significantly while human and pig blood showed shallow increases. For the construct perfusion study, we confirmed more viable cells in perfused 3D-bioprinted tissue compared to control. The FABRICA can be used to visualize constructs during 3D-bioprinting, incubation, and to control and ultrasonically analyze perfusion, aseptically in real-time, making the FABRICA tunable for different tissues.

  17. New imaging technology: measurement of myocardial perfusion by contrast echocardiography

    NASA Technical Reports Server (NTRS)

    Rubin, D. N.; Thomas, J. D.

    2000-01-01

    Myocardial perfusion imaging has long been a goal for the non-invasive echocardiographic assessment of the heart. However, many factors at play in perfusion imaging have made this goal elusive. Harmonic imaging and triggered imaging with newer contrast agents have made myocardial perfusion imaging potentially practical in the very near future. The application of indicator dilution theory to the coronary circulation and bubble contrast agents is fraught with complexities and sources of error. Therefore, quantification of myocardial perfusion by non-invasive echocardiographic imaging requires further investigation in order to make this technique clinically viable.

  18. Targeted delivery of growth factors in ischemic stroke animal models.

    PubMed

    Rhim, Taiyoun; Lee, Minhyung

    2016-01-01

    Ischemic stroke is caused by reduced blood supply and leads to loss of brain function. The reduced oxygen and nutrient supply stimulates various physiological responses, including induction of growth factors. Growth factors prevent neuronal cell death, promote neovascularization, and induce cell growth. However, the concentration of growth factors is not sufficient to recover brain function after the ischemic damage, suggesting that delivery of growth factors into the ischemic brain may be a useful treatment for ischemic stroke. In this review, various approaches for the delivery of growth factors to ischemic brain tissue are discussed, including local and targeting delivery systems. To develop growth factor therapy for ischemic stroke, important considerations should be taken into account. First, growth factors may have possible side effects. Thus, concentration of growth factors should be restricted to the ischemic tissues by local administration or targeted delivery. Second, the duration of growth factor therapy should be optimized. Growth factor proteins may be degraded too fast to have a high enough therapeutic effect. Therefore, delivery systems for controlled release or gene delivery may be useful. Third, the delivery systems to the brain should be optimized according to the delivery route.

  19. Involvement of atrial natriuretic peptide in abrogated cardioprotective effect of ischemic preconditioning in ovariectomized rat heart.

    PubMed

    Vishwakarma, V K; Goyal, A; Gupta, J K; Upadhyay, P K; Yadav, H N

    2018-07-01

    Nitric oxide (NO) is an effective mediator of ischemic preconditioning (IPC)-induced cardioprotection. Atrial natriuretic peptide (ANP) is downregulated after ovariectomy, which results in reduction in the level of NO. The present study deals with the investigation of the role of ANP in abrogated cardioprotective effect of IPC in the ovariectomized rat heart. Heart was isolated from ovariectomized rat and mounted on Langendorff's apparatus, subjected to 30 min of ischemia and 120 min of reperfusion. IPC was given by four cycles of 5 min of ischemia and 5 min of reperfusion with Krebs-Henseleit solution. The myocardial infract size was estimated employing triphenyltetrazolium chloride stain, and coronary effluent was analyzed for creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH) release to consider the degree of myocardial injury. The cardiac release of NO was estimated by measuring the level of nitrite in coronary effluent. IPC-mediated cardioprotection was significantly attenuated in ovariectomized rat as compared to normal rat, which was restored by perfusion with ANP. However, this observed cardioprotection was significantly attenuated by perfusion with L-NAME, an endothelial nitric oxide synthase inhibitor, and Glibenclamide, a K ATP channel blocker, alone or in combination noted in terms of increase in myocardial infract size, release of CK-MB and LDH, and also decrease in release of NO. Thus, it is suggested that ANP restores the attenuated cardioprotective effect of IPC in the ovariectomized rat heart which may be due to increase in the availability of NO and consequent increase activation of mitochondrial K ATP channels.

  20. External Validation of Risk Scores for Major Bleeding in a Population-Based Cohort of Transient Ischemic Attack and Ischemic Stroke Patients.

    PubMed

    Hilkens, Nina A; Li, Linxin; Rothwell, Peter M; Algra, Ale; Greving, Jacoba P

    2018-03-01

    The S 2 TOP-BLEED score may help to identify patients at high risk of bleeding on antiplatelet drugs after a transient ischemic attack or ischemic stroke. The score was derived on trial populations, and its performance in a real-world setting is unknown. We aimed to externally validate the S 2 TOP-BLEED score for major bleeding in a population-based cohort and to compare its performance with other risk scores for bleeding. We studied risk of bleeding in 2072 patients with a transient ischemic attack or ischemic stroke on antiplatelet agents in the population-based OXVASC (Oxford Vascular Study) according to 3 scores: S 2 TOP-BLEED, REACH, and Intracranial-B 2 LEED 3 S. Performance was assessed with C statistics and calibration plots. During 8302 patient-years of follow-up, 117 patients had a major bleed. The S 2 TOP-BLEED score showed a C statistic of 0.69 (95% confidence interval [CI], 0.64-0.73) and accurate calibration for 3-year risk of major bleeding. The S 2 TOP-BLEED score was much more predictive of fatal bleeding than nonmajor bleeding (C statistics 0.77; 95% CI, 0.69-0.85 and 0.50; 95% CI, 0.44-0.58). The REACH score had a C statistic of 0.63 (95% CI, 0.58-0.69) for major bleeding and the Intracranial-B 2 LEED 3 S score a C statistic of 0.60 (95% CI, 0.51-0.70) for intracranial bleeding. The ratio of ischemic events versus bleeds decreased across risk groups of bleeding from 6.6:1 in the low-risk group to 1.8:1 in the high-risk group. The S 2 TOP-BLEED score shows modest performance in a population-based cohort of patients with a transient ischemic attack or ischemic stroke. Although bleeding risks were associated with risks of ischemic events, risk stratification may still be useful to identify a subgroup of patients at particularly high risk of bleeding, in whom preventive measures are indicated. © 2018 The Authors.

  1. Liver perfusion imaging in patients with primary and metastatic liver malignancy: prospective comparison between 99mTc-MAA spect and dynamic CT perfusion.

    PubMed

    Reiner, Caecilia S; Goetti, Robert; Burger, Irene A; Fischer, Michael A; Frauenfelder, Thomas; Knuth, Alexander; Pfammatter, Thomas; Schaefer, Niklaus; Alkadhi, Hatem

    2012-05-01

    To prospectively analyze the correlation between parameters of liver perfusion from technetium99m-macroaggregates of albumin (99mTc-MAA) single photon emission computed tomography (SPECT) with those obtained from dynamic CT perfusion in patients with primary or metastatic liver malignancy. Twenty-five consecutive patients (11 women, 14 men; mean age 60.9 ± 10.8; range: 32-78 years) with primary (n = 5) or metastatic (n = 20) liver malignancy planned to undergo selective internal radiotherapy underwent dynamic contrast-enhanced CT liver perfusion imaging (four-dimensional spiral mode, scan range 14.8 cm, 15 scans, cycle time 3 seconds) and 99m)Tc-MAA SPECT after intraarterial injection of 180 MBq 99mTc-MAA on the same day. Data were evaluated by two blinded and independent readers for the parameters arterial liver perfusion (ALP), portal venous perfusion (PVP), and total liver perfusion (TLP) from CT, and the 99mTc-MAA uptake-ratio of tumors in relation to normal liver parenchyma from SPECT. Interreader agreements for quantitative perfusion parameters were high for dynamic CT (r = 0.90-0.98, each P < .01) and 99mTc -MAA SPECT (r = 0.91, P < .01). Significant correlation was found between 99mTc-MAA uptake ratio and ALP (r = 0.7, P < .01) in liver tumors. No significant correlation was found between 99mTc-MAA uptake ratio, PVP (r = -0.381, P = .081), and TLP (r = 0.039, P = .862). This study indicates that in patients with primary and metastatic liver malignancy, ALP obtained by dynamic CT liver perfusion significantly correlates with the 99mTc-MAA uptake ratio obtained by SPECT. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.

  2. Variability and Reproducibility of 3rd-generation dual-source dynamic volume perfusion CT Parameters in Comparison to MR-perfusion Parameters in Rectal Cancer.

    PubMed

    Sudarski, Sonja; Henzler, Thomas; Floss, Teresa; Gaa, Tanja; Meyer, Mathias; Haubenreisser, Holger; Schoenberg, Stefan O; Attenberger, Ulrike I

    2018-05-02

    To compare in patients with untreated rectal cancer quantitative perfusion parameters calculated from 3 rd -generation dual-source dynamic volume perfusion CT (dVPCT) with 3-Tesla-MR-perfusion with regard to data variability and tumour differentiation. In MR-perfusion, plasma flow (PF), plasma volume (PV) and mean transit time (MTT) were assessed in two measurements (M1 and M2) by the same reader. In dVPCT, blood flow (BF), blood volume (BV), MTT and permeability (PERM) were assessed respectively. CT dose values were calculated. 20 patients (60 ± 13 years) were analysed. Intra-individual and intra-reader variability of duplicate MR-perfusion measurements was higher compared to duplicate dVPCT measurements. dVPCT-derived BF, BV and PERM could differentiate between tumour and normal rectal wall (significance level for M1 and M2, respectively, regarding BF: p < 0.0001*/0.0001*; BV: p < 0.0001*/0.0001*; MTT: p = 0.93/0.39; PERM: p < 0.0001*/0.0001*), with MR-perfusion this was true for PF and PV (p-values M1/M2 for PF: p = 0.04*/0.01*; PV: p = 0.002*/0.003*; MTT: p = 0.70/0.27*). Mean effective dose of CT-staging incl. dVPCT was 29 ± 6 mSv (20 ± 5 mSv for dVPCT alone). In conclusion, dVPCT has a lower data variability than MR-perfusion while both dVPCT and MR-perfusion could differentiate tumour tissue from normal rectal wall. With 3 rd -generation dual-source CT dVPCT could be included in a standard CT-staging without exceeding national dose reference values.

  3. Transient Ischemic Attack

    MedlinePlus

    A transient ischemic attack (TIA) is a stroke that lasts only a few minutes. It happens when the blood supply to part of the brain is briefly blocked. Symptoms of a TIA are like other stroke symptoms, but do not ...

  4. Radionuclides: Accumulation and Transport in Plants.

    PubMed

    Gupta, D K; Chatterjee, S; Datta, S; Voronina, A V; Walther, C

    Application of radioactive elements or radionuclides for anthropogenic use is a widespread phenomenon nowadays. Radionuclides undergo radioactive decays releasing ionizing radiation like gamma ray(s) and/or alpha or beta particles that can displace electrons in the living matter (like in DNA) and disturb its function. Radionuclides are highly hazardous pollutants of considerable impact on the environment, food chain and human health. Cleaning up of the contaminated environment through plants is a promising technology where the rhizosphere may play an important role. Plants belonging to the families of Brassicaceae, Papilionaceae, Caryophyllaceae, Poaceae, and Asteraceae are most important in this respect and offer the largest potential for heavy metal phytoremediation. Plants like Lactuca sativa L., Silybum marianum Gaertn., Centaurea cyanus L., Carthamus tinctorius L., Helianthus annuus and H. tuberosus are also important plants for heavy metal phytoremediation. However, transfer factors (TF) of radionuclide from soil/water to plant ([Radionuclide]plant/[Radionuclide]soil) vary widely in different plants. Rhizosphere, rhizobacteria and varied metal transporters like NRAMP, ZIP families CDF, ATPases (HMAs) family like P1B-ATPases, are involved in the radio-phytoremediation processes. This review will discuss recent advancements and potential application of plants for radionuclide removal from the environment.

  5. Perfusion MRI: The Five Most Frequently Asked Technical Questions

    PubMed Central

    Essig, Marco; Shiroishi, Mark S.; Nguyen, Thanh Binh; Saake, Marc; Provenzale, James M.; Enterline, David; Anzalone, Nicoletta; Dörfler, Arnd; Rovira, Àlex; Wintermark, Max; Law, Meng

    2013-01-01

    OBJECTIVE This and its companion article address the 10 most frequently asked questions that radiologists face when planning, performing, processing, and interpreting different MR perfusion studies in CNS imaging. CONCLUSION Perfusion MRI is a promising tool in assessing stroke, brain tumors, and patients with neurodegenerative diseases. Most of the impediments that have limited the use of perfusion MRI can be overcome to allow integration of these methods into modern neuroimaging protocols. PMID:23255738

  6. Atrial fibrillation is not uncommon among patients with ischemic stroke and transient ischemic stroke in China.

    PubMed

    Yang, Xiaomeng; Li, Shuya; Zhao, Xingquan; Liu, Liping; Jiang, Yong; Li, Zixiao; Wang, Yilong; Wang, Yongjun

    2017-12-04

    Atrial fibrillation (AF) is reported to be a less frequent cause of ischemic stroke in China than in Europe and North America, but it is not clear whether this is due to underestimation. Our aim was to define the true frequency of AF-associated stroke, to determine the yield of 6-day Holter ECG to detect AF in Chinese stroke patients, and to elucidate predictors of newly detected AF. Patients with acute ischemic stroke or transient ischemic attack (TIA) were enrolled in a prospective, multicenter cohort study of 6-day Holter monitoring within 7 days after stroke onset at 20 sites in China between 2013 and 2015. Independent predictors of newly-detected AF were determined by multivariate analysis. Among 1511 patients with ischemic stroke and TIA (mean age 63 years, 33.1% women), 305 (20.2%) had either previously known (196, 13.0%) or AF newly-detected by electrocardiography (53, 3.5%) or by 6-day Holter monitoring (56/1262, 4.4%). A history of heart failure (OR = 4.70, 95%CI, 1.64-13.5), advanced age (OR = 1.06, 95%CI, 1.04-1.09), NIHSS at admission (OR = 1.06, 95%CI, 1.02-1.10), blood high density lipoprotein (HDL) (OR = 1.52, 95%CI, 1.09-2.13), together with blood triglycerides (OR = 0.64, 95%CI, 0.45-0.91) were independently associated with newly-detected AF. Contrary to previous reports, AF-associated stroke is frequent (20%) in China if systemically sought. Prolonged noninvasive cardiac rhythm monitoring importantly increases AF detection in patients with recent ischemic stroke and TIA in China. Advanced age, history of heart failure, and higher admission NIHSS and higher level of HDL were independent indicators of newly-detected AF. NCT02156765 (June 5, 2014).

  7. Method of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, Lane A.; Ryan, Jack L.

    1999-01-01

    The present invention is a method of removing an impurity of plutonium, lead or a combination thereof from a mixture of radionuclides that contains the impurity and at least one parent radionuclide. The method has the steps of (a) insuring that the mixture is a hydrochloric acid mixture; (b) oxidizing the acidic mixture and specifically oxidizing the impurity to its highest oxidation state; and (c) passing the oxidized mixture through a chloride form anion exchange column whereupon the oxidized impurity absorbs to the chloride form anion exchange column and the 22.sup.9 Th or 2.sup.27 Ac "cow" radionuclide passes through the chloride form anion exchange column. The plutonium is removed for the purpose of obtaining other alpha emitting radionuclides in a highly purified form suitable for medical therapy. In addition to plutonium; lead, iron, cobalt, copper, uranium, and other metallic cations that form chloride anionic complexes that may be present in the mixture; are removed from the mixture on the chloride form anion exchange column.

  8. Method of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, L.A.; Ryan, J.L.

    1999-03-23

    The present invention is a method of removing an impurity of plutonium, lead or a combination thereof from a mixture of radionuclides that contains the impurity and at least one parent radionuclide. The method has the steps of (a) insuring that the mixture is a hydrochloric acid mixture; (b) oxidizing the acidic mixture and specifically oxidizing the impurity to its highest oxidation state; and (c) passing the oxidized mixture through a chloride form anion exchange column whereupon the oxidized impurity absorbs to the chloride form anion exchange column and the {sup 229}Th or {sup 227}Ac ``cow`` radionuclide passes through the chloride form anion exchange column. The plutonium is removed for the purpose of obtaining other alpha emitting radionuclides in a highly purified form suitable for medical therapy. In addition to plutonium, lead, iron, cobalt, copper, uranium, and other metallic cations that form chloride anionic complexes that may be present in the mixture are removed from the mixture on the chloride form anion exchange column. 8 figs.

  9. Long-term projections of temperature-related mortality risks for ischemic stroke, hemorrhagic stroke, and acute ischemic heart disease under changing climate in Beijing, China.

    PubMed

    Li, Tiantian; Horton, Radley M; Bader, Daniel A; Liu, Fangchao; Sun, Qinghua; Kinney, Patrick L

    2018-03-01

    Changing climates have been causing variations in the number of global ischemic heart disease and stroke incidences, and will continue to affect disease occurrence in the future. To project temperature-related mortality for acute ischemic heart disease, and ischemic and hemorrhagic stroke with concomitant climate warming. We estimated the exposure-response relationship between daily cause-specific mortality and daily mean temperature in Beijing. We utilized outputs from 31 downscaled climate models and two representative concentration pathways (RCPs) for the 2020s, 2050s, and 2080s. This strategy was used to estimate future net temperature along with heat- and cold-related deaths. The results for predicted temperature-related deaths were subsequently contrasted with the baseline period. In the 2080s, using the RCP8.5 and no population variation scenarios, the net total number of annual temperature-related deaths exhibited a median value of 637 (with a range across models of 434-874) for ischemic stroke; this is an increase of approximately 100% compared with the 1980s. The median number of projected annual temperature-related deaths was 660 (with a range across models of 580-745) for hemorrhagic stroke (virtually no change compared with the 1980s), and 1683 (with a range across models of 1351-2002) for acute ischemic heart disease (a slight increase of approximately 20% compared with the 1980s). In the 2080s, the monthly death projection for hemorrhagic stroke and acute ischemic heart disease showed that the largest absolute changes occurred in summer and winter while the largest absolute changes for ischemic stroke occurred in summer. We projected that the temperature-related mortality associated with ischemic stroke will increase dramatically due to climate warming. However, projected temperature-related mortality pertaining to acute ischemic heart disease and hemorrhagic stroke should remain relatively stable over time. Copyright © 2017 Elsevier Ltd. All rights

  10. Positron emission tomography to assess hypoxia and perfusion in lung cancer

    PubMed Central

    Verwer, Eline E; Boellaard, Ronald; van der Veldt, Astrid AM

    2014-01-01

    In lung cancer, tumor hypoxia is a characteristic feature, which is associated with a poor prognosis and resistance to both radiation therapy and chemotherapy. As the development of tumor hypoxia is associated with decreased perfusion, perfusion measurements provide more insight into the relation between hypoxia and perfusion in malignant tumors. Positron emission tomography (PET) is a highly sensitive nuclear imaging technique that is suited for non-invasive in vivo monitoring of dynamic processes including hypoxia and its associated parameter perfusion. The PET technique enables quantitative assessment of hypoxia and perfusion in tumors. To this end, consecutive PET scans can be performed in one scan session. Using different hypoxia tracers, PET imaging may provide insight into the prognostic significance of hypoxia and perfusion in lung cancer. In addition, PET studies may play an important role in various stages of personalized medicine, as these may help to select patients for specific treatments including radiation therapy, hypoxia modifying therapies, and antiangiogenic strategies. In addition, specific PET tracers can be applied for monitoring therapy. The present review provides an overview of the clinical applications of PET to measure hypoxia and perfusion in lung cancer. Available PET tracers and their characteristics as well as the applications of combined hypoxia and perfusion PET imaging are discussed. PMID:25493221

  11. White Matter Hyperintensities Improve Ischemic Stroke Recurrence Prediction.

    PubMed

    Andersen, Søren Due; Larsen, Torben Bjerregaard; Gorst-Rasmussen, Anders; Yavarian, Yousef; Lip, Gregory Y H; Bach, Flemming W

    2017-01-01

    Nearly one in 5 patients with ischemic stroke will invariably experience a second stroke within 5 years. Stroke risk stratification schemes based solely on clinical variables perform only modestly in non-atrial fibrillation (AF) patients and improvement of these schemes will enhance their clinical utility. Cerebral white matter hyperintensities are associated with an increased risk of incident ischemic stroke in the general population, whereas their association with the risk of ischemic stroke recurrence is more ambiguous. In a non-AF stroke cohort, we investigated the association between cerebral white matter hyperintensities and the risk of recurrent ischemic stroke, and we evaluated the predictive performance of the CHA2DS2VASc score and the Essen Stroke Risk Score (clinical scores) when augmented with information on white matter hyperintensities. In a registry-based, observational cohort study, we included 832 patients (mean age 59.6 (SD 13.9); 42.0% females) with incident ischemic stroke and no AF. We assessed the severity of white matter hyperintensities using MRI. Hazard ratios stratified by the white matter hyperintensities score and adjusted for the components of the CHA2DS2VASc score were calculated based on the Cox proportional hazards analysis. Recalibrated clinical scores were calculated by adding one point to the score for the presence of moderate to severe white matter hyperintensities. The discriminatory performance of the scores was assessed with the C-statistic. White matter hyperintensities were significantly associated with the risk of recurrent ischemic stroke after adjusting for clinical risk factors. The hazard ratios ranged from 1.65 (95% CI 0.70-3.86) for mild changes to 5.28 (95% CI 1.98-14.07) for the most severe changes. C-statistics for the prediction of recurrent ischemic stroke were 0.59 (95% CI 0.51-0.65) for the CHA2DS2VASc score and 0.60 (95% CI 0.53-0.68) for the Essen Stroke Risk Score. The recalibrated clinical scores showed

  12. EANM guidelines for radionuclide therapy of bone metastases with beta-emitting radionuclides.

    PubMed

    Handkiewicz-Junak, Daria; Poeppel, Thorsten D; Bodei, Lisa; Aktolun, Cumali; Ezziddin, Samer; Giammarile, Francesco; Delgado-Bolton, Roberto C; Gabriel, Michael

    2018-05-01

    The skeleton is the most common metastatic site in patients with advanced cancer. Pain is a major healthcare problem in patients with bone metastases. Bone-seeking radionuclides that selectively accumulate in the bone are used to treat cancer-induced bone pain and to prolong survival in selected groups of cancer patients. The goals of these guidelines are to assist nuclear medicine practitioners in: (a) evaluating patients who might be candidates for radionuclide treatment of bone metastases using beta-emitting radionuclides such as strontium-89 ( 89 Sr), samarium-153 ( 153 Sm) lexidronam ( 153 Sm-EDTMP), and phosphorus-32 ( 32 P) sodium phosphate; (b) performing the treatments; and ©) understanding and evaluating the treatment outcome and side effects.

  13. Ischemic colitis related to sumatriptan overuse.

    PubMed

    Hodge, Joshua A; Hodge, Katherine D

    2010-01-01

    Serotonin-1 5-hydroxytryptamine (5-HT 1) receptor agonists are first line agents for migraine headaches. Patients with refractory headaches may use supratherapeutic doses of these medications. Described is a case of ischemic colitis related to overuse of sumatriptan. A 35-year-old woman presented with severe abdominal pain without diarrhea or hematochezia. For several days prior she had been self-treating a refractory migraine headache with frequent doses of sumatriptan. She is a nonsmoker and took no oral contraceptives or other serotonin agonists. A computed tomography scan of the abdomen revealed left-sided colitis. A colonoscopy with biopsy confirmed ischemic colitis and excluded inflammatory bowel disease (IBD). Previously published case reports have suggested an association between 5-HT 1 receptor agonists and ischemic colitis. These reports have been dismissed because the patients were taking oral contraceptives, serotonin agonists, or had other comorbidities. This healthy patient lacked risk factors for ischemia, is the youngest to be reported, and is the first without hematochezia. 5-HT 1 receptor agonists are generally considered safe. Ischemic colitis is a potentially serious complication of these agents. A retrospective review of 5-HT 1 receptor agonist users who have presented with acute onset abdominal pain or hematochezia is necessary to elucidate the incidence of this adverse event.

  14. Lung scintigraphy in differential diagnosis of peripheral lung cancer and community-acquired pneumonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krivonogov, Nikolay G., E-mail: kng@cardio-tomsk.ru; Efimova, Nataliya Y., E-mail: efimova@cardio-tomsk.ru; Zavadovsky, Konstantin W.

    Ventilation/perfusion lung scintigraphy was performed in 39 patients with verified diagnosis of community-acquired pneumonia (CAP) and in 14 patients with peripheral lung cancer. Ventilation/perfusion ratio, apical-basal gradients of ventilation (U/L(V)) and lung perfusion (U/L(P)), and alveolar capillary permeability of radionuclide aerosol were determined based on scintigraphy data. The study demonstrated that main signs of CAP were increases in ventilation/perfusion ratio, perfusion and ventilation gradient on a side of the diseased lung, and two-side increase in alveolar capillary permeability rate for radionuclide aerosol. Unlike this, scintigraphic signs of peripheral lung cancer comprise an increase in ventilation/perfusion ratio over 1.0 on amore » side of the diseased lung with its simultaneous decrease on a contralateral side, normal values of perfusion and ventilation gradients of both lungs, and delayed alveolar capillary clearance in the diseased lung compared with the intact lung.« less

  15. Aryl Hydrocarbon Receptor Nuclear Translocator in Vascular Smooth Muscle Cells Is Required for Optimal Peripheral Perfusion Recovery.

    PubMed

    Borton, Anna Henry; Benson, Bryan L; Neilson, Lee E; Saunders, Ashley; Alaiti, M Amer; Huang, Alex Y; Jain, Mukesh K; Proweller, Aaron; Ramirez-Bergeron, Diana L

    2018-06-01

    Limb ischemia resulting from peripheral vascular disease is a common cause of morbidity. Vessel occlusion limits blood flow, creating a hypoxic environment that damages distal tissue, requiring therapeutic revascularization. Hypoxia-inducible factors (HIFs) are key transcriptional regulators of hypoxic vascular responses, including angiogenesis and arteriogenesis. Despite vascular smooth muscle cells' (VSMCs') importance in vessel integrity, little is known about their functional responses to hypoxia in peripheral vascular disease. This study investigated the role of VSMC HIF in mediating peripheral ischemic responses. We used Arnt SMKO mice with smooth muscle-specific deletion of aryl hydrocarbon receptor nuclear translocator (ARNT, HIF-1β), required for HIF transcriptional activity, in a femoral artery ligation model of peripheral vascular disease. Arnt SMKO mice exhibit impaired perfusion recovery despite normal collateral vessel dilation and angiogenic capillary responses. Decreased blood flow manifests in extensive tissue damage and hypoxia in ligated limbs of Arnt SMKO mice. Furthermore, loss of aryl hydrocarbon receptor nuclear translocator changes the proliferation, migration, and transcriptional profile of cultured VSMCs. Arnt SMKO mice display disrupted VSMC morphologic features and wrapping around arterioles and increased vascular permeability linked to decreased local blood flow. Our data demonstrate that traditional vascular remodeling responses are insufficient to provide robust peripheral tissue reperfusion in Arnt SMKO mice. In all, this study highlights HIF responses to hypoxia in arteriole VSMCs critical for the phenotypic and functional stability of vessels that aid in the recovery of blood flow in ischemic peripheral tissues. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  16. Machine perfusion preservation of the non-heart-beating donor rat livers using polysol, a new preservation solution.

    PubMed

    Bessems, M; Doorschodt, B M; van Vliet, A K; van Gulik, T M

    2005-01-01

    The increasing shortage of donor organs has led to a focus on extended criteria donors, including the non-heart-beating donor (NHBD). An optimal preservation method is required to facilitate successful transplantation of these ischemically damaged organs. The recent literature has shown clear advantages of hypothermic machine perfusion (MP) over cold storage (CS). For MP, modified University of Wisconsin perfusion solution (UW-G) is often used, which, however, is known to cause microcirculatory obstruction, is difficult to obtain, and is expensive. Therefore, Polysol was developed as a MP preservation solution that contains specific nutrients for the liver, such as amino acids, energy substrates, and vitamins. The aim of this study was to compare Polysol with UW-G in a NHBD rat liver model. After 24 hours hypothermic MP of NHBD rat livers using UW-G or Polysol, liver damage and function parameters were assessed during 60 minutes of reperfusion with Krebs-Henseleit buffer. Control livers were reperfused after 24 hours CS in UW. Liver enzyme release was significantly higher among the CS-UW group compared to MP using UW-G or Polysol. Flow during reperfusion was significantly higher when using Polysol compared to UW-G. Bile production and ammonia clearance were highest when using Polysol compared to UW-G. There was less cellular edema after preservation with Polysol compared to UW-G. MP of NHBD rat livers for 24 hours using UW-G or Polysol resulted in less hepatocellular damage than CS in UW. MP of NHBD livers for 24 hours using Polysol is superior to MP using UW-G.

  17. Tmax Determined Using a Bayesian Estimation Deconvolution Algorithm Applied to Bolus Tracking Perfusion Imaging: A Digital Phantom Validation Study.

    PubMed

    Uwano, Ikuko; Sasaki, Makoto; Kudo, Kohsuke; Boutelier, Timothé; Kameda, Hiroyuki; Mori, Futoshi; Yamashita, Fumio

    2017-01-10

    The Bayesian estimation algorithm improves the precision of bolus tracking perfusion imaging. However, this algorithm cannot directly calculate Tmax, the time scale widely used to identify ischemic penumbra, because Tmax is a non-physiological, artificial index that reflects the tracer arrival delay (TD) and other parameters. We calculated Tmax from the TD and mean transit time (MTT) obtained by the Bayesian algorithm and determined its accuracy in comparison with Tmax obtained by singular value decomposition (SVD) algorithms. The TD and MTT maps were generated by the Bayesian algorithm applied to digital phantoms with time-concentration curves that reflected a range of values for various perfusion metrics using a global arterial input function. Tmax was calculated from the TD and MTT using constants obtained by a linear least-squares fit to Tmax obtained from the two SVD algorithms that showed the best benchmarks in a previous study. Correlations between the Tmax values obtained by the Bayesian and SVD methods were examined. The Bayesian algorithm yielded accurate TD and MTT values relative to the true values of the digital phantom. Tmax calculated from the TD and MTT values with the least-squares fit constants showed excellent correlation (Pearson's correlation coefficient = 0.99) and agreement (intraclass correlation coefficient = 0.99) with Tmax obtained from SVD algorithms. Quantitative analyses of Tmax values calculated from Bayesian-estimation algorithm-derived TD and MTT from a digital phantom correlated and agreed well with Tmax values determined using SVD algorithms.

  18. Identification of CSF fistulas by radionuclide counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Y.; Kunishio, K.; Sunami, N.

    1990-07-01

    A radionuclide counting method, performed with the patient prone and the neck flexed, was used successfully to diagnose CSF rhinorrhea in two patients. A normal radionuclide ratio (radionuclide counts in pledget/radionuclide counts in 1-ml blood sample) was obtained in 11 normal control subjects. Significance was determined to be a ratio greater than 0.37. Use of radionuclide counting method of determining CSF rhinorrhea is recommended when other methods have failed to locate a site of leakage or when posttraumatic meningitis suggests subclinical CSF rhinorrhea.

  19. Feasibility of high-resolution quantitative perfusion analysis in patients with heart failure.

    PubMed

    Sammut, Eva; Zarinabad, Niloufar; Wesolowski, Roman; Morton, Geraint; Chen, Zhong; Sohal, Manav; Carr-White, Gerry; Razavi, Reza; Chiribiri, Amedeo

    2015-02-12

    Cardiac magnetic resonance (CMR) is playing an expanding role in the assessment of patients with heart failure (HF). The assessment of myocardial perfusion status in HF can be challenging due to left ventricular (LV) remodelling and wall thinning, coexistent scar and respiratory artefacts. The aim of this study was to assess the feasibility of quantitative CMR myocardial perfusion analysis in patients with HF. A group of 58 patients with heart failure (HF; left ventricular ejection fraction, LVEF ≤ 50%) and 33 patients with normal LVEF (LVEF >50%), referred for suspected coronary artery disease, were studied. All subjects underwent quantitative first-pass stress perfusion imaging using adenosine according to standard acquisition protocols. The feasibility of quantitative perfusion analysis was then assessed using high-resolution, 3 T kt perfusion and voxel-wise Fermi deconvolution. 30/58 (52%) subjects in the HF group had underlying ischaemic aetiology. Perfusion abnormalities were seen amongst patients with ischaemic HF and patients with normal LV function. No regional perfusion defect was observed in the non-ischaemic HF group. Good agreement was found between visual and quantitative analysis across all groups. Absolute stress perfusion rate, myocardial perfusion reserve (MPR) and endocardial-epicardial MPR ratio identified areas with abnormal perfusion in the ischaemic HF group (p = 0.02; p = 0.04; p = 0.02, respectively). In the Normal LV group, MPR and endocardial-epicardial MPR ratio were able to distinguish between normal and abnormal segments (p = 0.04; p = 0.02 respectively). No significant differences of absolute stress perfusion rate or MPR were observed comparing visually normal segments amongst groups. Our results demonstrate the feasibility of high-resolution voxel-wise perfusion assessment in patients with HF.

  20. Role of Homocysteine in the Ischemic Stroke and Development of Ischemic Tolerance

    PubMed Central

    Lehotský, Ján; Tothová, Barbara; Kovalská, Maria; Dobrota, Dušan; Beňová, Anna; Kalenská, Dagmar; Kaplán, Peter

    2016-01-01

    Homocysteine (Hcy) is a toxic, sulfur-containing intermediate of methionine metabolism. Hyperhomocysteinemia (hHcy), as a consequence of impaired Hcy metabolism or defects in crucial co-factors that participate in its recycling, is assumed as an independent human stroke risk factor. Neural cells are sensitive to prolonged hHcy treatment, because Hcy cannot be metabolized either by the transsulfuration pathway or by the folate/vitamin B12 independent remethylation pathway. Its detrimental effect after ischemia-induced damage includes accumulation of reactive oxygen species (ROS) and posttranslational modifications of proteins via homocysteinylation and thiolation. Ischemic preconditioning (IPC) is an adaptive response of the CNS to sub-lethal ischemia, which elevates tissues tolerance to subsequent ischemia. The main focus of this review is on the recent data on homocysteine metabolism and mechanisms of its neurotoxicity. In this context, the review documents an increased oxidative stress and functional modification of enzymes involved in redox balance in experimentally induced hyperhomocysteinemia. It also gives an interpretation whether hyperhomocysteinemia alone or in combination with IPC affects the ischemia-induced neurodegenerative changes as well as intracellular signaling. Studies document that hHcy alone significantly increased Fluoro-Jade C- and TUNEL-positive cell neurodegeneration in the rat hippocampus as well as in the cortex. IPC, even if combined with hHcy, could still preserve the neuronal tissue from the lethal ischemic effects. This review also describes the changes in the mitogen-activated protein kinase (MAPK) protein pathways following ischemic injury and IPC. These studies provide evidence for the interplay and tight integration between ERK and p38 MAPK signaling mechanisms in response to the hHcy and also in association of hHcy with ischemia/IPC challenge in the rat brain. Further investigations of the protective factors leading to ischemic

  1. Correlation between acoustic radiation force impulse (ARFI)-based tissue elasticity measurements and perfusion parameters acquired by perfusion CT in cirrhotic livers: a proof of principle.

    PubMed

    Esser, Michael; Bitzer, Michael; Kolb, Manuel; Fritz, Jan; Kurucay, Mustafa; Ruff, Christer; Horger, Marius

    2018-06-13

    To investigate whether liver stiffness measured by acoustic radiation force impulse (ARFI) sonoelastography always correlates with the liver perfusion parameters quantified by perfusion CT in patients with known liver cirrhosis. Sonoelastography and perfusion CT were performed in 50 patients (mean age 65.5; range 45-87 years) with liver cirrhosis, who were classified according to Child-Pugh into class A (30/50, 60%), B (17/50, 34%), and C (3/50, 6%). For standardized ARFI measurements in the left liver lobe at a depth of 4 cm, a convex 6-MHz probe was used. CT examinations were performed using 80 kV, 100 mAs, and 50 ml of iodinated contrast agent injected at 5 ml/s. Using standardized region-of-interest measurements, we quantified arterial, portal venous, and total liver perfusion. There was a significant linear correlation between tissue stiffness and arterial liver perfusion (p = 0.015), and also when limiting the analysis to patients with histology (p = 0.019). In addition, there was a positive correlation between the total blood supply (arterial + portal-venous liver perfusion) to the liver and tissue stiffness (p = 0.001; with histology, p = 0.027). Shear wave velocity increased with higher Child-Pugh stages (p = 0.013). The degree of tissue stiffness in cirrhotic livers correlates expectedly-even if only moderately-with the magnitude of arterial liver perfusion and total liver perfusion. As such, liver elastography remains the leading imaging tool in assessing liver fibrosis.

  2. Resveratrol Improves Myocardial Perfusion in a Swine Model of Hypercholesterolemia and Chronic Myocardial Ischemia

    PubMed Central

    Robich, Michael P.; Osipov, Robert M.; Nezafat, Reza; Feng, Jun; Clements, Richard T.; Bianchi, Cesario; Boodhwani, Munir; Coady, Michael A.; Laham, Roger J.; Sellke, Frank W.

    2010-01-01

    Introduction Resveratrol may provide protection against coronary artery disease. We hypothesized that supplemental resveratrol will improve cardiac perfusion in the ischemic territory of swine with hypercholesterolemia and chronic myocardial ischemia. Methods and Results Yorkshire swine were fed either a normal diet (control, n=7), a hypercholesterolemic diet (HCC, n=7), or a hypercholesterolemic diet with supplemental resveratrol (100 mg/kg/day orally, HCRV, n=7). Four weeks later, an ameroid constrictor was placed on the left circumflex artery. Animals underwent cardiac magnetic resonance imaging and coronary angiography 7 weeks later, prior to sacrifice and tissue harvest. Total cholesterol was lowered about 30% in HCRV animals (p<0.001). Regional wall motion analysis demonstrated a significant decrease in inferolateral function from baseline to 7 weeks in HCC swine (p=0.04). There was no significant change in regional function in HCRV swine from baseline to 7 weeks (p=0.32). Tissue blood flow during stress was 2.8 fold greater in HCRV swine when compared to HCC swine (p=0.04). Endothelial dependent microvascular relaxation response to Substance P was diminished in HCC swine which was rescued by resveratrol treatment (p=0.004). Capillary density (PECAM-1 staining) demonstrated fewer capillaries in both HCC and HCRV swine v. control swine (p=0.02). Immunoblot analysis demonstrated significantly greater expression in HCRV v. HCC swine of the following markers of angiogenesis: VEGF (p=0.002), peNOS(ser1177)(p=0.04), NFkB (p=0.004), and pAkt(thr308)(p=0.001). Conclusion Supplemental resveratrol attenuates regional wall motion abnormalities, improves myocardial perfusion in the collateral dependent region, preserves endothelial dependent coronary vessel function, and upregulates markers of angiogenesis associated with the VEGF signaling pathway. PMID:20837905

  3. Radionuclide Retention in Concrete Wasteforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wellman, Dawn M.; Jansik, Danielle P.; Golovich, Elizabeth C.

    2012-09-24

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate predictionmore » of radionuclide fate when the wasteforms come in contact with groundwater. Data collected throughout the course of this work will be used to quantify the efficacy of concrete wasteforms, similar to those used in the disposal of LLW and MLLW, for the immobilization of key radionuclides (i.e., uranium, technetium, and iodine). Data collected will also be used to quantify the physical and chemical properties of the concrete affecting radionuclide retention.« less

  4. Detection of cerebral collateral circulation with Tc-99m HMPAO radionuclide angiography in cerebrovascular diseases: Delayed filling-in sign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, K.

    1994-05-01

    In patients with internal carotid and major cerebral arterial obstructions, it is clinically important to know the presence of collateral circulation. However, this information is not available from Tc-99m HMPAO perfusion SPECT alone. To investigate the usefulness of Tc-99m HMPAO radionuclide angiography (RNA) in the diagnosis of collaterals, we retrospectively studied 39 patients (pts) cerebrovascular diseases (CVD) with HMPAO RNA and SPECT. Contrast angiography was done on all pts. Of these, 11 internal carotid artery (ICA), 1 anterior cerebral artery (ACA), and 3 middle cerebral artery (MCA) obstructions were found angiographically. Non- or decreased visualization of ICA was found inmore » 11 of 11 pts of ICA obstruction. In 1 pt of ICA obstruction, the collaterals were directly visualized with RNA. Early perfusion deficient area with delayed filling-in with Tc-HMPAO was found in 7 of 11 pts of ICA, 1 of 1 pt of ACA, and 2 of 3 pts of MCA obstructions. In all pts with the delayed filling-in sign on RNA, collateral circulations were confirmed angiographically. We conclude that the delayed filling-in of Tc-HMPAO is a useful sign of collateral circulation in the CVD pts.« less

  5. Pulmonary ventilation/perfusion scan

    MedlinePlus

    ... take a ventilation and perfusion scan and then evaluate it with a chest x-ray. All parts ... ADAM Health Solutions. About MedlinePlus Site Map FAQs Customer Support Get email updates Subscribe to RSS Follow ...

  6. Increased circulating leukocyte-derived microparticles in ischemic cerebrovascular disease.

    PubMed

    He, Zhangping; Tang, Yanyan; Qin, Chao

    2017-06-01

    Circulating leukocyte-derived microparticles act as proinflammatory mediators that reflect vascular inflammation. In this study, we examined the hypothesis that the quantity of leukocyte-derived microparticles is increased in patients with ischemic cerebrovascular diseases, and investigated utility of various phenotypes of leukocyte-derived microparticles as specific biomarkers of vascular inflammation injury. Additionally we focused on identifying leukocyte-derived microparticles that may be correlated with stroke severity in acute ischemic stroke patients. The plasma concentration of leukocyte-derived microparticles obtained by a series of centrifugations of 76 consecutive patients with ischemic cerebrovascular diseases and 70 age-, sex-, and race-matched healthy controls were determined by flow cytometry. Significantly elevated numbers of leukocyte (CD45+), monocyte (CD14+), lymphocyte (CD4+), granulocyte (CD15+) derived microparticles were found in the plasma samples of patients ischemic cerebrovascular diseases, compared to healthy controls (p<0.05). Furthermore, the plasma levels of CD14+ microparticles were significantly correlated with stroke severity (r=0.355, p=0.019), cerebral vascular stenosis severity (r=0.255, p=0.025) and stroke subtype (r=0.242, p=0.036). No association with stroke was observed for other leukocyte-derived phenotypes. These results demonstrate that circulating leukocyte-derived microparticles amounts are increased in patients with ischemic cerebrovascular diseases, compared with healthy controls. As proinflammatory mediators, leukocyte-derived microparticles may contribute to vascular inflammatory and the inflammatory process in acute ischemic stroke. Levels of CD14+ microparticles may be a promising biomarker of ischemic severity and outcome of stroke in the clinic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Autonomic Nervous System and Stress to Predict Secondary Ischemic Events after Transient Ischemic Attack or Minor Stroke: Possible Implications of Heart Rate Variability.

    PubMed

    Guan, Ling; Collet, Jean-Paul; Mazowita, Garey; Claydon, Victoria E

    2018-01-01

    Transient ischemic attack (TIA) and minor stroke have high risks of recurrence and deterioration into severe ischemic strokes. Risk stratification of TIA and minor stroke is essential for early effective treatment. Traditional tools have only moderate predictive value, likely due to their inclusion of the limited number of stroke risk factors. Our review follows Hans Selye's fundamental work on stress theory and the progressive shift of the autonomic nervous system (ANS) from adaptation to disease when stress becomes chronic. We will first show that traditional risk factors and acute triggers of ischemic stroke are chronic and acute stress factors or "stressors," respectively. Our first review shows solid evidence of the relationship between chronic stress and stroke occurrence. The stress response is tightly regulated by the ANS whose function can be assessed with heart rate variability (HRV). Our second review demonstrates that stress-related risk factors of ischemic stroke are correlated with ANS dysfunction and impaired HRV. Our conclusions support the idea that HRV parameters may represent the combined effects of all body stressors that are risk factors for ischemic stroke and, thus, may be of important predictive value for the risk of subsequent ischemic events after TIA or minor stroke.

  8. Autonomic Nervous System and Stress to Predict Secondary Ischemic Events after Transient Ischemic Attack or Minor Stroke: Possible Implications of Heart Rate Variability

    PubMed Central

    Guan, Ling; Collet, Jean-Paul; Mazowita, Garey; Claydon, Victoria E.

    2018-01-01

    Transient ischemic attack (TIA) and minor stroke have high risks of recurrence and deterioration into severe ischemic strokes. Risk stratification of TIA and minor stroke is essential for early effective treatment. Traditional tools have only moderate predictive value, likely due to their inclusion of the limited number of stroke risk factors. Our review follows Hans Selye’s fundamental work on stress theory and the progressive shift of the autonomic nervous system (ANS) from adaptation to disease when stress becomes chronic. We will first show that traditional risk factors and acute triggers of ischemic stroke are chronic and acute stress factors or “stressors,” respectively. Our first review shows solid evidence of the relationship between chronic stress and stroke occurrence. The stress response is tightly regulated by the ANS whose function can be assessed with heart rate variability (HRV). Our second review demonstrates that stress-related risk factors of ischemic stroke are correlated with ANS dysfunction and impaired HRV. Our conclusions support the idea that HRV parameters may represent the combined effects of all body stressors that are risk factors for ischemic stroke and, thus, may be of important predictive value for the risk of subsequent ischemic events after TIA or minor stroke. PMID:29556209

  9. Management of Liver Cancer Argon-helium Knife Therapy with Functional Computer Tomography Perfusion Imaging.

    PubMed

    Wang, Hongbo; Shu, Shengjie; Li, Jinping; Jiang, Huijie

    2016-02-01

    The objective of this study was to observe the change in blood perfusion of liver cancer following argon-helium knife treatment with functional computer tomography perfusion imaging. Twenty-seven patients with primary liver cancer treated with argon-helium knife and were included in this study. Plain computer tomography (CT) and computer tomography perfusion (CTP) imaging were conducted in all patients before and after treatment. Perfusion parameters including blood flows, blood volume, hepatic artery perfusion fraction, hepatic artery perfusion, and hepatic portal venous perfusion were used for evaluating therapeutic effect. All parameters in liver cancer were significantly decreased after argon-helium knife treatment (p < 0.05 to all). Significant decrease in hepatic artery perfusion was also observed in pericancerous liver tissue, but other parameters kept constant. CT perfusion imaging is able to detect decrease in blood perfusion of liver cancer post-argon-helium knife therapy. Therefore, CTP imaging would play an important role for liver cancer management followed argon-helium knife therapy. © The Author(s) 2014.

  10. Modeling Radionuclide Decay Chain Migration Using HYDROGEOCHEM

    NASA Astrophysics Data System (ADS)

    Lin, T. C.; Tsai, C. H.; Lai, K. H.; Chen, J. S.

    2014-12-01

    Nuclear technology has been employed for energy production for several decades. Although people receive many benefits from nuclear energy, there are inevitably environmental pollutions as well as human health threats posed by the radioactive materials releases from nuclear waste disposed in geological repositories or accidental releases of radionuclides from nuclear facilities. Theoretical studies have been undertaken to understand the transport of radionuclides in subsurface environments because that the radionuclide transport in groundwater is one of the main pathway in exposure scenarios for the intake of radionuclides. The radionuclide transport in groundwater can be predicted using analytical solution as well as numerical models. In this study, we simulate the transport of the radionuclide decay chain using HYDROGEOCHEM. The simulated results are verified against the analytical solution available in the literature. Excellent agreements between the numerical simulation and the analytical are observed for a wide spectrum of concentration. HYDROGECHEM is a useful tool assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.

  11. Right Ventricular Perfusion: Physiology and Clinical Implications.

    PubMed

    Crystal, George J; Pagel, Paul S

    2018-01-01

    Regulation of blood flow to the right ventricle differs significantly from that to the left ventricle. The right ventricle develops a lower systolic pressure than the left ventricle, resulting in reduced extravascular compressive forces and myocardial oxygen demand. Right ventricular perfusion has eight major characteristics that distinguish it from left ventricular perfusion: (1) appreciable perfusion throughout the entire cardiac cycle; (2) reduced myocardial oxygen uptake, blood flow, and oxygen extraction; (3) an oxygen extraction reserve that can be recruited to at least partially offset a reduction in coronary blood flow; (4) less effective pressure-flow autoregulation; (5) the ability to downregulate its metabolic demand during coronary hypoperfusion and thereby maintain contractile function and energy stores; (6) a transmurally uniform reduction in myocardial perfusion in the presence of a hemodynamically significant epicardial coronary stenosis; (7) extensive collateral connections from the left coronary circulation; and (8) possible retrograde perfusion from the right ventricular cavity through the Thebesian veins. These differences promote the maintenance of right ventricular oxygen supply-demand balance and provide relative resistance to ischemia-induced contractile dysfunction and infarction, but they may be compromised during acute or chronic increases in right ventricle afterload resulting from pulmonary arterial hypertension. Contractile function of the thin-walled right ventricle is exquisitely sensitive to afterload. Acute increases in pulmonary arterial pressure reduce right ventricular stroke volume and, if sufficiently large and prolonged, result in right ventricular failure. Right ventricular ischemia plays a prominent role in these effects. The risk of right ventricular ischemia is also heightened during chronic elevations in right ventricular afterload because microvascular growth fails to match myocyte hypertrophy and because microvascular

  12. A preliminary feasibility study of simultaneous dual-isotope imaging with a solid-state dedicated cardiac camera for evaluating myocardial perfusion and fatty acid metabolism.

    PubMed

    Ko, Toshiyuki; Utanohara, Yuko; Suzuki, Yasuhiro; Kurihara, Makiko; Iguchi, Nobuo; Umemura, Jun; Sumiyoshi, Tetsuya; Tomoike, Hitonobu

    2016-01-01

    Simultaneous dual-isotope SPECT imaging with 201Tl and (123)I-β-methyl-p-iodophenylpentadecanoic acid (BMIPP) is used to study the perfusion-metabolism mismatch. It predicts post-ischemic functional recovery by detecting stunned myocardium. On the other hand, (99m)Tc-MIBI is another radioisotope widely used in myocardial perfusion imaging because of its better image quality and lower radiation exposure than 201Tl. However, since the photopeak energies of (99m)Tc and (123)I are very similar, crosstalk hampers the simultaneous use of these two radioisotopes. To overcome this problem, we conducted simultaneous dual-isotope imaging study using the D-SPECT scanner (Spectrum-Dynamics, Israel) which has a novel detector design and excellent energy resolution. We first conducted a basic experiment using cardiac phantom to simulate the condition of normal perfusion and impaired fatty acid metabolism. Subsequently, we prospectively recruited 30 consecutive patients who underwent successful percutaneous coronary intervention for acute myocardial infarction, and performed (99m)Tc-MIBI/(123)I-BMIPP dual-isotope imaging within 5 days after reperfusion. Images were interpreted by two experienced cardiovascular radiologists to identify the infarcted and stunned areas based on the coronary artery territories. As a result, cardiac phantom experiment revealed no significant crosstalk between (99m)Tc and (123)I. In the subsequent clinical study, (99m)Tc-MIBI/(123)I-BMIPP dual-isotope imaging in all participant yielded excellent image quality and detected infarcted and stunned areas correctly when compared with coronary angiographic findings. Furthermore, we were able to reduce radiation exposure to significantly approximately one-eighth. In conclusion, we successfully demonstrated the practical application of simultaneous assessment of myocardial perfusion and fatty acid metabolism by (99m)Tc-MIBI and (123)I-BMIPP using a D-SPECT cardiac scanner. Compared with conventional (201)Tl

  13. Blood perfusion construction for infrared face recognition based on bio-heat transfer.

    PubMed

    Xie, Zhihua; Liu, Guodong

    2014-01-01

    To improve the performance of infrared face recognition for time-lapse data, a new construction of blood perfusion is proposed based on bio-heat transfer. Firstly, by quantifying the blood perfusion based on Pennes equation, the thermal information is converted into blood perfusion rate, which is stable facial biological feature of face image. Then, the separability discriminant criterion in Discrete Cosine Transform (DCT) domain is applied to extract the discriminative features of blood perfusion information. Experimental results demonstrate that the features of blood perfusion are more concentrative and discriminative for recognition than those of thermal information. The infrared face recognition based on the proposed blood perfusion is robust and can achieve better recognition performance compared with other state-of-the-art approaches.

  14. The Siblings With Ischemic Stroke Study (SWISS) Protocol

    PubMed Central

    Meschia, James F; Brown, Robert D; Brott, Thomas G; Chukwudelunzu, Felix E; Hardy, John; Rich, Stephen S

    2002-01-01

    Background Family history and twins studies suggest an inherited component to ischemic stroke risk. Candidate gene association studies have been performed but have limited capacity to identify novel risk factor genes. The Siblings With Ischemic Stroke Study (SWISS) aims to conduct a genome-wide scan in sibling pairs concordant or discordant for ischemic stroke to identify novel genetic risk factors through linkage analysis. Methods Screening at multiple clinical centers identifies patients (probands) with radiographically confirmed ischemic stroke and a family history of at least 1 living full sibling with stroke. After giving informed consent, without violating privacy among other family members, the proband invites siblings concordant and discordant for stroke to participate. Siblings then contact the study coordinating center. The diagnosis of ischemic stroke in potentially concordant siblings is confirmed by systematic centralized review of medical records. The stroke-free status of potentially discordant siblings is confirmed by validated structured telephone interview. Blood samples for DNA analysis are taken from concordant sibling pairs and, if applicable, from 1 discordant sibling. Epstein-Barr virus-transformed lymphoblastoid cell lines are created, and a scan of the human genome is planned. Discussion Conducting adequately powered genomics studies of stroke in humans is challenging because of the heterogeneity of the stroke phenotype and the difficulty of obtaining DNA samples from clinically well-characterized members of a cohort of stroke pedigrees. The multicentered design of this study is intended to efficiently assemble a cohort of ischemic stroke pedigrees without invoking community consent or using cold-calling of pedigree members. PMID:11882254

  15. CT perfusion imaging of the liver and the spleen in patients with cirrhosis: Is there a correlation between perfusion and portal venous hypertension?

    PubMed

    Talakić, Emina; Schaffellner, Silvia; Kniepeiss, Daniela; Mueller, Helmut; Stauber, Rudolf; Quehenberger, Franz; Schoellnast, Helmut

    2017-10-01

    To correlate hepatic and splenic CT perfusion parameters with hepatic venous pressure gradient (HVPG) measurements in patients with cirrhosis. Twenty-one patients with cirrhosis (males, 17; females, 4; mean ± SD age, 57 ± 7 years) underwent hepatic and splenic perfusion CT on a 320-detector row volume scanner as well as invasive measurement of HVPG. Different CT perfusion algorithms (maximum slope analysis and Patlak plot) were used to measure hepatic arterial flow (HAF), portal venous flow (PVF), hepatic perfusion index (HPI), splenic arterial flow (SAF), splenic blood volume (SBV) and splenic clearance (SCL). Hepatic and splenic perfusion parameters were correlated with HVPG, and sensitivity and specificity for detection of severe portal hypertension (≥12 mmHg) were calculated. The Spearman correlation coefficient was -0.53 (p < 0.05) between SAF and HVPG, and -0.68 (p < 0.01) between HVPG and SCL. Using a cut-off value of 125 ml/min/100 ml for SCL, sensitivity for detection of a HVPG of ≥12 mmHg was 94%, and specificity 100%. There was no significant correlation between hepatic perfusion parameters and HVPG. CT perfusion in patients with cirrhosis showed a strong correlation between SCL and HVPG and may be used for detection of severe portal hypertension. • SAF and SCL are statistically significantly correlated with HVPG • SCL showed stronger correlation with HVPG than SAF • 125 ml/min/100 ml SCL-cut-off yielded 94 % sensitivity, 100 % specificity for severe PH • HAF, PVF and HPI showed no statistically significant correlation with HVPG.

  16. Hospital costs of ischemic stroke and TIA in the Netherlands.

    PubMed

    Buisman, Leander R; Tan, Siok Swan; Nederkoorn, Paul J; Koudstaal, Peter J; Redekop, William K

    2015-06-02

    There have been no ischemic stroke costing studies since major improvements were implemented in stroke care. We therefore determined hospital resource use and costs of ischemic stroke and TIA in the Netherlands for 2012. We conducted a retrospective cost analysis using individual patient data from a national diagnosis-related group registry. We analyzed 4 subgroups: inpatient ischemic stroke, inpatient TIA, outpatient ischemic stroke, and outpatient TIA. Costs of carotid endarterectomy and costs of an extra follow-up visit were also estimated. Unit costs were based on reference prices from the Dutch Healthcare Insurance Board and tariffs provided by the Dutch Healthcare Authority. Linear regression analysis was used to examine the association between hospital costs and various patient and hospital characteristics. A total of 35,903 ischemic stroke and 21,653 TIA patients were included. Inpatient costs were €5,328 ($6,845) for ischemic stroke and €2,470 ($3,173) for TIA. Outpatient costs were €495 ($636) for ischemic stroke and €587 ($754) for TIA. Costs of carotid endarterectomy were €6,836 ($8,783). Costs of inpatient days were the largest contributor to hospital costs. Age, hospital type, and region were strongly associated with hospital costs. Hospital costs are higher for inpatients and ischemic strokes compared with outpatients and TIAs, with length of stay (LOS) the most important contributor. LOS and hospital costs have substantially declined over the last 10 years, possibly due to improved hospital stroke care and efficient integrated stroke services. © 2015 American Academy of Neurology.

  17. Normothermic machine perfusion of donor livers without the need for human blood products

    PubMed Central

    Matton, Alix P. M.; Burlage, Laura C.; van Rijn, Rianne; de Vries, Yvonne; Karangwa, Shanice A.; Nijsten, Maarten W.; Gouw, Annette S. H.; Wiersema‐Buist, Janneke; Adelmeijer, Jelle; Westerkamp, Andrie C.; Lisman, Ton

    2018-01-01

    Normothermic machine perfusion (NMP) enables viability assessment of donor livers prior to transplantation. NMP is frequently performed by using human blood products including red blood cells (RBCs) and fresh frozen plasma (FFP). Our aim was to examine the efficacy of a novel machine perfusion solution based on polymerized bovine hemoglobin‐based oxygen carrier (HBOC)‐201. Twenty‐four livers declined for transplantation were transported by using static cold storage. Upon arrival, livers underwent NMP for 6 hours using pressure‐controlled portal and arterial perfusion. A total of 12 livers were perfused using a solution based on RBCs and FFPs (historical cohort), 6 livers with HBOC‐201 and FFPs, and another 6 livers with HBOC‐201 and gelofusine, a gelatin‐based colloid solution. Compared with RBC + FFP perfused livers, livers perfused with HBOC‐201 had significantly higher hepatic adenosine triphosphate content, cumulative bile production, and portal and arterial flows. Biliary secretion of bicarbonate, bilirubin, bile salts, and phospholipids was similar in all 3 groups. The alanine aminotransferase concentration in perfusate was lower in the HBOC‐201–perfused groups. In conclusion, NMP of human donor livers can be performed effectively using HBOC‐201 and gelofusine, eliminating the need for human blood products. Perfusing livers with HBOC‐201 is at least similar to perfusion with RBCs and FFP. Some of the biomarkers of liver function and injury even suggest a possible superiority of an HBOC‐201–based perfusion solution and opens a perspective for further optimization of machine perfusion techniques. Liver Transplantation 24 528–538 2018 AASLD. PMID:29281862

  18. High-frequency Electrocardiogram Analysis in the Ability to Predict Reversible Perfusion Defects during Adenosine Myocardial Perfusion Imaging

    NASA Technical Reports Server (NTRS)

    Tragardh, Elin; Schlegel, Todd T.; Carlsson, Marcus; Pettersson, Jonas; Nilsson, Klas; Pahlm, Olle

    2007-01-01

    Background: A previous study has shown that analysis of high-frequency QRS components (HF-QRS) is highly sensitive and reasonably specific for detecting reversible perfusion defects on myocardial perfusion imaging (MPI) scans during adenosine. The purpose of the present study was to try to reproduce those findings. Methods: 12-lead high-resolution electrocardiogram recordings were obtained from 100 patients before (baseline) and during adenosine Tc-99m-tetrofosmin MPI tests. HF-QRS were analyzed regarding morphology and changes in root mean square (RMS) voltages from before the adenosine infusion to peak infusion. Results: The best area under the curve (AUC) was found in supine patients (AUC=0.736) in a combination of morphology and RMS changes. None of the measurements, however, were statistically better than tossing a coin (AUC=0.5). Conclusion: Analysis of HF-QRS was not significantly better than tossing a coin for determining reversible perfusion defects on MPI scans.

  19. Measurement of radionuclides in waste packages

    DOEpatents

    Brodzinski, R.L.; Perkins, R.W.; Rieck, H.G.; Wogman, N.A.

    1984-09-12

    A method is described for non-destructively assaying the radionuclide content of solid waste in a sealed container by analysis of the waste's gamma-ray spectrum and neutron emissions. Some radionuclides are measured by characteristic photopeaks in the gamma-ray spectrum; transuranic nuclides are measured by neutron emission rate; other radionuclides are measured by correlation with those already measured.

  20. Measurement of radionuclides in waste packages

    DOEpatents

    Brodzinski, Ronald L.; Perkins, Richard W.; Rieck, Henry G.; Wogman, Ned A.

    1986-01-01

    A method is described for non-destructively assaying the radionuclide content of solid waste in a sealed container by analysis of the waste's gamma-ray spectrum and neutron emissions. Some radionuclides are measured by characteristic photopeaks in the gamma-ray spectrum; transuranic nuclides are measured by neutron emission rate; other radionuclides are measured by correlation with those already measured.

  1. Perfusion Electronic Record Documentation Using Epic Systems Software.

    PubMed

    Riley, Jeffrey B; Justison, George A

    2015-12-01

    The authors comment on Steffens and Gunser's article describing the University of Wisconsin adoption of the Epic anesthesia record to include perfusion information from the cardiopulmonary bypass patient experience. We highlight the current-day lessons and the valuable quality and safety principles the Wisconsin-Epic model anesthesia-perfusion record provides.

  2. Development of an Ex Vivo, Beating Heart Model for CT Myocardial Perfusion

    PubMed Central

    Das, Marco; Haberland, Ulrike; Slump, Cees; Handayani, Astri; van Tuijl, Sjoerd; Stijnen, Marco; Oudkerk, Matthijs; Wildberger, Joachim E.; Vliegenthart, Rozemarijn

    2015-01-01

    Objective. To test the feasibility of a CT-compatible, ex vivo, perfused porcine heart model for myocardial perfusion CT imaging. Methods. One porcine heart was perfused according to Langendorff. Dynamic perfusion scanning was performed with a second-generation dual source CT scanner. Circulatory parameters like blood flow, aortic pressure, and heart rate were monitored throughout the experiment. Stenosis was induced in the circumflex artery, controlled by a fractional flow reserve (FFR) pressure wire. CT-derived myocardial perfusion parameters were analysed at FFR of 1 to 0.10/0.0. Results. CT images did not show major artefacts due to interference of the model setup. The pacemaker-induced heart rhythm was generally stable at 70 beats per minute. During most of the experiment, blood flow was 0.9–1.0 L/min, and arterial pressure varied between 80 and 95 mm/Hg. Blood flow decreased and arterial pressure increased by approximately 10% after inducing a stenosis with FFR ≤ 0.50. Dynamic perfusion scanning was possible across the range of stenosis grades. Perfusion parameters of circumflex-perfused myocardial segments were affected at increasing stenosis grades. Conclusion. An adapted Langendorff porcine heart model is feasible in a CT environment. This model provides control over physiological parameters and may allow in-depth validation of quantitative CT perfusion techniques. PMID:26185756

  3. Tumoricidal responses in spontaneous canine neoplasms after extracorporeal perfusion over immobilized protein A.

    PubMed

    Terman, D S

    1981-01-01

    I describe morphologic, histologic, immunohistochemical, and serologic changes in dogs with spontaneous breast adenocarcinoma, squamous cell carcinoma, hemangiopericytoma, and fibrosarcoma after extracorporeal perfusion of plasma over heat-killed and formalin-stabilized Staphylococcus aureus Cowans I (SAC), which was embedded in a membrane filtration system. In 12 dogs with breast adenocarcinoma, tumor necrosis was observed within 12 hours after perfusion; 24 hours after perfusion, multiple visible lesions in 6 of 6 dogs exhibited necrosis, but there was no reaction in uninvolved normal mammary tissue. In 8 dogs, healing of large ulcerated areas of cutaneous tumor was observed within 8 to 18 days after perfusion. Similar tumoricidal responses were observed in dogs with other neoplasms after SAC perfusion. Tumor cell necrosis oserved within 4 hours after extracorporeal perfusion was associated with immunohistochemical deposits of IgG and C'3 and ultrastructural evidence of lytic lesions on tumor cell membranes. No tumoricidal effects were observed after perfusion over Staphylococcus aureus Woods (SAW) (non-protein A bearing) in 3 dogs that previously or subsequently responded to SAC perfusion. No tumoricidal reactions were noted after phlebotomy of up to 50% of plasma volume in 6 tumor-bearing dogs that subsequently responded to SAC perfusion. SAC but not SAW perfusion was followed by increases in circulating tumor associated antibodies (TAA) for up to 48 hours after perfusion. Immune complexes increased after perfusion and remained elevated fo 72 hours. Findings suggest that the acute tumoricial responses are not due to mere removal of circulating immune reactants and may be initiated by TAA that are rendered operational after extracorporeal perfusion over SAC. The rapidity, specificity, and magnitude of the observed tumoricidal effects in various canine neoplastic diseases suggests that this may have potentially broad-based therapeutic and biologic implications

  4. Mild Thyrotoxicosis Leads to Brain Perfusion Changes: An Arterial Spin Labelling Study.

    PubMed

    Göbel, A; Heldmann, M; Sartorius, A; Göttlich, M; Dirk, A-L; Brabant, G; Münte, T F

    2017-01-01

    Hypo- and hyperthyroidism have effects on brain structure and function, as well as cognitive processes, including memory. However, little is known about the influence of thyroid hormones on brain perfusion and the relationship of such perfusion changes with cognition. The present study aimed to demonstrate the effect of short-term experimental hyperthyroidism on brain perfusion in healthy volunteers and to assess whether perfusion changes, if present, are related to cognitive performance. It is known that an interaction exists between brain perfusion and cerebral oxygen consumption rate and it is considered that neural activation increases cerebral regional perfusion rate in brain areas associated with memory. Measuring cerebral blood flow may therefore represent a proxy for neural activity. Therefore, arterial spin labelling (ASL) measurements were conducted and later analysed to evaluate brain perfusion in 29 healthy men before and after ingesting thyroid hormones for 8 weeks. Psychological tests concerning memory were performed at the same time-points and the results were correlated with the imaging results. In the hyperthyroid condition, perfusion was increased in the posterior cerebellum in regions connected with cerebral networks associated with cognitive control and the visual cortex compared to the euthyroid condition. In addition, these perfusion changes were positively correlated with changes of performance in the German version of the Auditory Verbal Learning Task [AVLT, Verbaler Lern-und-Merkfähigkeits-Test (VLMT)]. Cerebellar perfusion and function therefore appears to be modulated by thyroid hormones, likely because the cerebellum hosts a high number of thyroid hormone receptors. © 2016 British Society for Neuroendocrinology.

  5. Modelling of temperature and perfusion during scalp cooling

    NASA Astrophysics Data System (ADS)

    Janssen, F. E. M.; Van Leeuwen, G. M. J.; Van Steenhoven, A. A.

    2005-09-01

    Hair loss is a feared side effect of chemotherapy treatment. It may be prevented by cooling the scalp during administration of cytostatics. The supposed mechanism is that by cooling the scalp, both temperature and perfusion are diminished, affecting drug supply and drug uptake in the hair follicle. However, the effect of scalp cooling varies strongly. To gain more insight into the effect of cooling, a computer model has been developed that describes heat transfer in the human head during scalp cooling. Of main interest in this study are the mutual influences of scalp temperature and perfusion during cooling. Results of the standard head model show that the temperature of the scalp skin is reduced from 34.4 °C to 18.3 °C, reducing tissue blood flow to 25%. Based upon variations in both thermal properties and head anatomies found in the literature, a parameter study was performed. The results of this parameter study show that the most important parameters affecting both temperature and perfusion are the perfusion coefficient Q10 and the thermal resistances of both the fat and the hair layer. The variations in the parameter study led to skin temperature ranging from 10.1 °C to 21.8 °C, which in turn reduced relative perfusion to 13% and 33%, respectively.

  6. Recurrent Stroke in Minor Ischemic Stroke or Transient Ischemic Attack With Metabolic Syndrome and/or Diabetes Mellitus.

    PubMed

    Chen, Weiqi; Pan, Yuesong; Jing, Jing; Zhao, Xingquan; Liu, Liping; Meng, Xia; Wang, Yilong; Wang, Yongjun

    2017-06-01

    We aimed to determine the risk conferred by metabolic syndrome (METS) and diabetes mellitus (DM) to recurrent stroke in patients with minor ischemic stroke or transient ischemic attack from the CHANCE (Clopidogrel in High-risk patients with Acute Non-disabling Cerebrovascular Events) trial. In total, 3044 patients were included. Patients were stratified into 4 groups: neither, METS only, DM only, or both. METS was defined using the Chinese Diabetes Society (CDS) and International Diabetes Foundation (IDF) definitions. The primary outcome was new stroke (including ischemic and hemorrhagic) at 90 days. A multivariable Cox regression model was used to assess the relationship of METS and DM status to the risk of recurrent stroke adjusted for potential covariates. Using the CDS criteria of METS, 53.2%, 17.2%, 19.8%, and 9.8% of patients were diagnosed as neither, METS only, DM only, and both, respectively. After 90 days of follow-up, there were 299 new strokes (293 ischemic, 6 hemorrhagic). Patients with DM only (16.1% versus 6.8%; adjusted hazard ratio 2.50, 95% CI 1.89-3.39) and both (17.1% versus 6.8%; adjusted hazard ratio 2.76, 95% CI 1.98-3.86) had significantly increased rates of recurrent stroke. No interaction effect of antiplatelet therapy by different METS or DM status for the risk of recurrent stroke ( P =0.82 for interaction in the fully adjusted model of CDS) was observed. Using the METS (IDF) criteria demonstrated similar results. Concurrent METS and DM was associated with an increased risk of recurrent stroke in patients with minor stroke and transient ischemic attack. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  7. The complexity of atrial fibrillation newly diagnosed after ischemic stroke and transient ischemic attack: advances and uncertainties

    PubMed Central

    Cerasuolo, Joshua O.; Cipriano, Lauren E.; Sposato, Luciano A.

    2017-01-01

    Purpose of review Atrial fibrillation is being increasingly diagnosed after ischemic stroke and transient ischemic attack (TIA). Patient characteristics, frequency and duration of paroxysms, and the risk of recurrent ischemic stroke associated with atrial fibrillation detected after stroke and TIA (AFDAS) may differ from atrial fibrillation already known before stroke occurrence. We aim to summarize major recent advances in the field, in the context of prior evidence, and to identify areas of uncertainty to be addressed in future research. Recent findings Half of all atrial fibrillations in ischemic stroke and TIA patients are AFDAS, and most of them are asymptomatic. Over 50% of AFDAS paroxysms last less than 30 s. The rapid initiation of cardiac monitoring and its duration are crucial for its timely and effective detection. AFDAS comprises a heterogeneous mix of atrial fibrillation, possibly including cardiogenic and neurogenic types, and a mix of both. Over 25 single markers and at least 10 scores have been proposed as predictors of AFDAS. However, there are considerable inconsistencies across studies. The role of AFDAS burden and its associated risk of stroke recurrence have not yet been investigated. Summary AFDAS may differ from atrial fibrillation known before stroke in several clinical dimensions, which are important for optimal patient care strategies. Many questions remain unanswered. Neurogenic and cardiogenic AFDAS need to be characterized, as it may be possible to avoid some neurogenic cases by initiating timely preventive treatments. AFDAS burden may differ in ischemic stroke and TIA patients, with distinctive diagnostic and treatment implications. The prognosis of AFDAS and its risk of recurrent stroke are still unknown; therefore, it is uncertain whether AFDAS patients should be treated with oral anticoagulants. PMID:27984303

  8. Delayed Post-ischemic Conditioning Significantly Improves the Outcome after Retinal Ischemia

    PubMed Central

    Dreixler, John C.; Poston, Jacqueline N.; Shaikh, Afzhal R.; Alexander, Michael; Tupper, Kelsey Y.; Marcet, Marcus M.; Bernaudin, Myriam; Roth, Steven

    2011-01-01

    In previous studies, it was shown that post-conditioning, a transient period of brief ischemia following prolonged severe ischemia in the retina, could provide significant improvement in post-ischemic recovery, attenuation of cell loss, and decreased apoptosis. These studies showed that post-conditioning effectively prevented damage after retinal ischemia when it was instituted early (within one hour) in the post-ischemic period. While post-ischemic conditioning holds high promise of clinical translation, patients often present late after the onset of retinal ischemia and therefore immediate application of this anti-ischemic maneuver is generally not feasible. In this study, we examined the hypothesis that application of a post-conditioning stimulus at 24 h or greater following the end of prolonged ischemia would decrease the extent of ischemic injury. Ischemia was induced in rat retina in vivo. Recovery after ischemia followed by 5 minutes of post-conditioning brief ischemia 24 or 48 h after prolonged ischemia was assessed functionally (electroretinography) and histologically at 7 days after ischemia and post-conditioning or sham post-conditioning. We found that the brief ischemic stimulus applied 24, but not 48 h after prolonged ischemia significantly improved functional recovery and decreased histological damage induced by prolonged ischemia. We conclude that within a defined time window, delayed post-ischemic conditioning ameliorated post-ischemic injury in rats. Compared to earlier studies, the present work demonstrates for the first time the novel ability of a significantly delayed ischemic stimulus to provide robust neuroprotection in the retina following ischemia. PMID:21501608

  9. [Intratympanic corticosteroid perfusion in the therapy of Meniere's disease].

    PubMed

    Sanković-Babić, Snezana; Kosanović, Rade; Ivanković, Zoran; Babac, Snezana; Tatović, Milica

    2014-01-01

    Over the last two decades the intratympanic perfusion of corticosteroids has been used as a minimally invasive surgical therapy of Meniere's disease. According to experimental studies the antiinflammatory, immunoprotective, antioxidant and neuroprotective role of the locally perfused corticosteroids was noticed in the inner ear structures. The recovery of action potentials in the cells of the Corti organ was confirmed as well as a decreased expression of aquaporine-1, a glycoprotein responsible for labyrinth hydrops and N and K ions derangement. The study showed results of intratympanic perfusion therapy with dexamethasone in patients with retractable Meniere's disease who are resistant to conservative treatment. Single doses of 4 mg/ml dexamethasone were given intratympanically in 19 patients with retractable Meniere's disease. Six single successive doses of dexamethasone were administered in the posteroinferior quadrant of the tympanic membrane. Follow-up of the patients was conducted by using a clinical questionnaire a month after completed perfusion series as well as on every third month up to one year. One month after completed first course of perfusions, in 78% of patients, vertigo problems completely ceased or were markedly reduced. The recovery of hearing function was recorded in 68% and marked tinnitus reduction in 84% of patients. After a year of follow-up, in 63% of patients the reduction of vertigo persisted, while hearing function was satisfactory in 52%. Tinitus reduction was present in 73% of patients. Intratympanic perfusion of dexamethasone in patients with Meniere's disease is a minimally invasive therapeutic method that contributes to the reduction of the intensity of vertigo recurrent attacks, decrease of the intensity of tinnitus and improvement of the average hearing threshold. Patients with chronic diseases and Meniere's disease who are contraindicted for systemic administration of cortocosteroids (hypertension, diabetes, glaucoma, peptic

  10. The Migraine-Ischemic Stroke Relation in Young Adults

    PubMed Central

    Pezzini, Alessandro; Del Zotto, Elisabetta; Giossi, Alessia; Volonghi, Irene; Costa, Paolo; Dalla Volta, Giorgio; Padovani, Alessandro

    2011-01-01

    In spite of the strong epidemiologic evidence linking migraine and ischemic stroke in young adults, the mechanisms explaining this association remain poorly understood. The observation that stroke occurs more frequently during the interictal phase of migraine prompts to speculation that an indirect relation between the two diseases might exist. In this regard, four major issues might be considered which may be summarized as follows: (1) the migraine-ischemic stroke relation is influenced by specific risk factors such as patent foramen ovale or endothelial dysfunction and more frequent in particular conditions like spontaneous cervical artery dissection; (2) migraine is associated with an increased prevalence of cardiovascular risk factors; (3) the link is caused by migraine-specific drugs; (4) migraine and ischemic vascular events are linked via a genetic component. In the present paper, we will review epidemiological studies, discuss potential mechanisms of migraine-induced stroke and comorbid ischemic stroke, and pose new research questions. PMID:21197470

  11. The IK1/Kir2.1 channel agonist zacopride prevents and cures acute ischemic arrhythmias in the rat

    PubMed Central

    Zhai, Xu-Wen; Zhang, Li; Guo, Yun-Fei; Yang, Ying; Wang, Dong-Ming; Zhang, Yan; Li, Pan; Niu, Yi-Fan; Feng, Qi-Long; Wu, Bo-Wei; Cao, Ji-Min; Liu, Qing-Hua

    2017-01-01

    Arrhythmogenesis in acute myocardial infarction (MI) is associated with depolarization of resting membraine potential (RMP) and decrease of inward rectifier potassium current (IK1) in cardiomyocytes. However, clinical anti-arrhythmic agents that primarily act on RMP by enhancing the IK1 channel are not currently available. We hypothesized that zacopride, a selective and moderate agonist of the IK1/Kir2.1 channels, prevents and cures acute ischemic arrhythmias. To test this viewpoint, adult Sprague-Dawley (SD) rats were subjected to MI by ligating the left main coronary artery. The antiarrhythmic effects of zacopride (i.v. infusion) were observed in the settings of pre-treatment (zacopride given 3 min prior to coronary occlusion), post-treatment (zacopride given 3 min after coronary occlusion) and therapeutic treatment (zacopride given 30 s after the onset of the first sustained ventricular tachycardia (VT)/ventricular fibrillation (VF) post MI). In all the three treatment modes, zacopride (15 μg/kg) inhibited MI-induced ventricular tachyarrhythmias, as shown by significant decreases in the premature ventricular contraction (PVC) and the duration and incidence of VT or VF. In Langendorff perfused rat hearts, the antiarrhythmic effect of 1 μmol/L zacopride were reversed by 1 μmol/L BaCl2, a blocker of IK1 channel. Patch clamp results in freshly isolated rat ventricular myocytes indicated that zacopride activated the IK1 channel and thereby reversed hypoxia-induced RMP depolarization and action potential duration (APD) prolongation. In addition, zacopride (1 μmol/L) suppressed hypoxia- or isoproterenol- induced delayed afterdepolarizations (DADs). In Kir2.x transfected Chinese hamster ovary (CHO) cells, zacopride activated the Kir2.1 homomeric channel but not the Kir2.2 or Kir2.3 channels. These results support our hypothesis that moderately enhancing IK1/Kir2.1 currents as by zacopride rescues ischemia- and hypoxia- induced RMP depolarization, and thereby

  12. No influence of ischemic preconditioning on running economy.

    PubMed

    Kaur, Gungeet; Binger, Megan; Evans, Claire; Trachte, Tiffany; Van Guilder, Gary P

    2017-02-01

    Many of the potential performance-enhancing properties of ischemic preconditioning suggest that the oxygen cost for a given endurance exercise workload will be reduced, thereby improving the economy of locomotion. The aim of this study was to identify whether ischemic preconditioning improves exercise economy in recreational runners. A randomized sham-controlled crossover study was employed in which 18 adults (age 27 ± 7 years; BMI 24.6 ± 3 kg/m 2 ) completed two, incremental submaximal (65-85% VO 2max ) treadmill running protocols (3 × 5 min stages from 7.2-14.5 km/h) coupled with indirect calorimetry to assess running economy following ischemic preconditioning (3 × 5 min bilateral upper thigh ischemia) and sham control. Running economy was expressed as mlO 2 /kg/km and as the energy in kilocalories required to cover 1 km of horizontal distance (kcal/kg/km). Ischemic preconditioning did not influence steady-state heart rate, oxygen consumption, minute ventilation, respiratory exchange ratio, energy expenditure, and blood lactate. Likewise, running economy was similar (P = 0.647) between the sham (from 201.6 ± 17.7 to 204.0 ± 16.1 mlO 2 /kg/km) and ischemic preconditioning trials (from 202.8 ± 16.2 to 203.1 ± 15.6 mlO 2 /kg/km). There was no influence (P = 0.21) of ischemic preconditioning on running economy expressed as the caloric unit cost (from 0.96 ± 0.12 to 1.01 ± 0.11 kcal/kg/km) compared with sham (from 1.00 ± 0.10 to 1.00 ± 0.08 kcal/kg/km). The properties of ischemic preconditioning thought to affect exercise performance at vigorous to severe exercise intensities, which generate more extensive physiological challenge, are ineffective at submaximal workloads and, therefore, do not change running economy.

  13. [Ischemic brain injury and hepatocyte growth factor].

    PubMed

    Takeo, Satoshi; Takagi, Norio; Takagi, Keiko

    2007-11-01

    Cerebral ischemia causes an irreversible and neurodegenerative disorder that may lead to progressive dementia and global cognitive deterioration. Since the overall process of ischemic brain injuries is extremely complex, treatment with endogenous multifunctional factors would be better choices for preventing complicated ischemic brain injuries. Hepatocyte growth factor, HGF, is a multifunctional cytokine originally identified and purified as a potent mitogen for hepatocyte. The activation of the c-Met/HGF receptor evokes diverse cellular responses, including mitogenic, morphogenic, angiogenic and anti-apoptotic activities in various types of cell. Previous studies showed that HGF and c-Met were expressed in various brain regions under normal conditions and that HGF enhanced the survival of hippocampal and cortical neurons during the aging of cells in culture. The protective effects of HGF on in vivo ischemic brain injuries and their mechanisms have not fully understood. To elucidate therapeutic potencies of HGF for ischemic brain injuries, we examined effects of HGF on ischemia-induced learning and memory dysfunction, neuronal cell death and endothelial cell damage by using the 4-vessel occlusion model and the microsphere embolism model in rats. Our findings suggested that treatment with HGF was capable of protecting hippocampal neurons against ischemia-induced cell death through the prevention of apoptosis-inducing factor translocation to the nucleus. Furthermore, we demonstrated that HGF had the ability to prevent tissue degeneration and improved learning and memory function after cerebral embolism, possibly through prevention of cerebral vessel injuries. As HGF has a potent cerebroprotective effect, it could be a prospective agent for the therapy against complicated ischemic brain diseases.

  14. Assessment of foot perfusion in patients with a diabetic foot ulcer.

    PubMed

    Forsythe, Rachael O; Hinchliffe, Robert J

    2016-01-01

    Assessment of foot perfusion is a vital step in the management of patients with diabetic foot ulceration, in order to understand the risk of amputation and likelihood of wound healing. Underlying peripheral artery disease is a common finding in patients with foot ulceration and is associated with poor outcomes. Assessment of foot perfusion should therefore focus on identifying the presence of peripheral artery disease and to subsequently estimate the effect this may have on wound healing. Assessment of perfusion can be difficult because of the often complex, diffuse and distal nature of peripheral artery disease in patients with diabetes, as well as poor collateralisation and heavy vascular calcification. Conventional methods of assessing tissue perfusion in the peripheral circulation may be unreliable in patients with diabetes, and it may therefore be difficult to determine the extent to which poor perfusion contributes to foot ulceration. Anatomical data obtained on cross-sectional imaging is important but must be combined with measurements of tissue perfusion (such as transcutaneous oxygen tension) in order to understand the global and regional perfusion deficit present in a patient with diabetic foot ulceration. Ankle-brachial pressure index is routinely used to screen for peripheral artery disease, but its use in patients with diabetes is limited in the presence of neuropathy and medial arterial calcification. Toe pressure index may be more useful because of the relative sparing of pedal arteries from medial calcification but may not always be possible in patients with ulceration. Fluorescence angiography is a non-invasive technique that can provide rapid quantitative information about regional tissue perfusion; capillaroscopy, iontophoresis and hyperspectral imaging may also be useful in assessing physiological perfusion but are not widely available. There may be a future role for specialized perfusion imaging of these patients, including magnetic resonance

  15. Evaluation of CT Perfusion Biomarkers of Tumor Hypoxia

    PubMed Central

    Qi, Qi; Yeung, Timothy Pok Chi; Lee, Ting-Yim; Bauman, Glenn; Crukley, Cathie; Morrison, Laura; Hoffman, Lisa; Yartsev, Slav

    2016-01-01

    Background Tumor hypoxia is associated with treatment resistance to cancer therapies. Hypoxia can be investigated by immunohistopathologic methods but such procedure is invasive. A non-invasive method to interrogate tumor hypoxia is an attractive option as such method can provide information before, during, and after treatment for personalized therapies. Our study evaluated the correlations between computed tomography (CT) perfusion parameters and immunohistopathologic measurement of tumor hypoxia. Methods Wistar rats, 18 controls and 19 treated with stereotactic radiosurgery (SRS), implanted with the C6 glioma tumor were imaged using CT perfusion on average every five days to monitor tumor growth. A final CT perfusion scan and the brain were obtained on average 14 days (8–22 days) after tumor implantation. Tumor hypoxia was detected immunohistopathologically with pimonidazole. The tumor, necrotic, and pimonidazole-positive areas on histology samples were measured. Percent necrotic area and percent hypoxic areas were calculated. Tumor volume (TV), blood flow (BF), blood volume (BV), and permeability-surface area product (PS) were obtained from the CT perfusion studies. Correlations between CT perfusion parameters and histological parameters were assessed by Spearman’s ρ correlation. A Bonferroni-corrected P value < 0.05 was considered significant. Results BF and BV showed significant correlations with percent hypoxic area ρ = -0.88, P < 0.001 and ρ = -0.81, P < 0.001, respectively, for control animals and ρ = -0.7, P < 0.001 and ρ = -0.6, P = 0.003, respectively, for all animals, while TV and BV were correlated (ρ = -0.64, P = 0.01 and ρ = -0.43, P = 0.043, respectively) with percent necrotic area. PS was not correlated with either percent necrotic or percent hypoxic areas. Conclusions Percent hypoxic area provided significant correlations with BF and BV, suggesting that CT perfusion parameters are potential non-invasive imaging biomarkers of tumor

  16. Real-Time Fluorescence Measurements of ROS and [Ca2+] in Ischemic / Reperfused Rat Hearts: Detectable Increases Occur only after Mitochondrial Pore Opening and Are Attenuated by Ischemic Preconditioning

    PubMed Central

    Rossbach, Andreas; Halestrap, Andrew P

    2016-01-01

    Mitochondrial permeability transition pore (mPTP) opening is critical for ischemia / reperfusion (I/R) injury and is associated with increased [Ca2+] and reactive oxygen species (ROS). Here we employ surface fluorescence to establish the temporal sequence of these events in beating perfused hearts subject to global I/R. A bespoke fluorimeter was used to synchronously monitor surface fluorescence and reflectance of Langendorff-perfused rat hearts at multiple wavelengths, with simultaneous measurements of hemodynamic function. Potential interference by motion artefacts and internal filtering was assessed and minimised. Re-oxidation of NAD(P)H and flavoproteins on reperfusion (detected using autofluorescence) was rapid (t0.5 < 15 s) and significantly slower following ischemic preconditioning (IP). This argues against superoxide production from reduced Complex 1 being a critical mediator of initial mPTP opening during early reperfusion. Furthermore, MitoPY1 (a mitochondria-targeted H2O2-sensitive fluorescent probe) and aconitase activity measurements failed to detect matrix ROS increases during early reperfusion. However, two different fluorescent cytosolic ROS probes did detect ROS increases after 2–3 min of reperfusion, which was shown to be after initiation of mPTP opening. Cyclosporin A (CsA) and IP attenuated these responses and reduced infarct size. [Ca2+]i (monitored with Indo-1) increased progressively during ischemia, but dropped rapidly within 90 s of reperfusion when total mitochondrial [Ca2+] was shown to be increased. These early changes in [Ca2+] were not attenuated by IP, but substantial [Ca2+] increases were observed after 2–3 min reperfusion and these were prevented by both IP and CsA. Our data suggest that the major increases in ROS and [Ca2+] detected later in reperfusion are secondary to mPTP opening. If earlier IP-sensitive changes occur that might trigger initial mPTP opening they are below our limit of detection. Rather, we suggest that IP

  17. Real-Time Fluorescence Measurements of ROS and [Ca2+] in Ischemic / Reperfused Rat Hearts: Detectable Increases Occur only after Mitochondrial Pore Opening and Are Attenuated by Ischemic Preconditioning.

    PubMed

    Andrienko, Tatyana; Pasdois, Philippe; Rossbach, Andreas; Halestrap, Andrew P

    2016-01-01

    Mitochondrial permeability transition pore (mPTP) opening is critical for ischemia / reperfusion (I/R) injury and is associated with increased [Ca2+] and reactive oxygen species (ROS). Here we employ surface fluorescence to establish the temporal sequence of these events in beating perfused hearts subject to global I/R. A bespoke fluorimeter was used to synchronously monitor surface fluorescence and reflectance of Langendorff-perfused rat hearts at multiple wavelengths, with simultaneous measurements of hemodynamic function. Potential interference by motion artefacts and internal filtering was assessed and minimised. Re-oxidation of NAD(P)H and flavoproteins on reperfusion (detected using autofluorescence) was rapid (t0.5 < 15 s) and significantly slower following ischemic preconditioning (IP). This argues against superoxide production from reduced Complex 1 being a critical mediator of initial mPTP opening during early reperfusion. Furthermore, MitoPY1 (a mitochondria-targeted H2O2-sensitive fluorescent probe) and aconitase activity measurements failed to detect matrix ROS increases during early reperfusion. However, two different fluorescent cytosolic ROS probes did detect ROS increases after 2-3 min of reperfusion, which was shown to be after initiation of mPTP opening. Cyclosporin A (CsA) and IP attenuated these responses and reduced infarct size. [Ca2+]i (monitored with Indo-1) increased progressively during ischemia, but dropped rapidly within 90 s of reperfusion when total mitochondrial [Ca2+] was shown to be increased. These early changes in [Ca2+] were not attenuated by IP, but substantial [Ca2+] increases were observed after 2-3 min reperfusion and these were prevented by both IP and CsA. Our data suggest that the major increases in ROS and [Ca2+] detected later in reperfusion are secondary to mPTP opening. If earlier IP-sensitive changes occur that might trigger initial mPTP opening they are below our limit of detection. Rather, we suggest that IP may

  18. Sodium Valproate, a Histone Deacetylase Inhibitor, Is Associated With Reduced Stroke Risk After Previous Ischemic Stroke or Transient Ischemic Attack

    PubMed Central

    Brookes, Rebecca L.; Crichton, Siobhan; Wolfe, Charles D.A.; Yi, Qilong; Li, Linxin; Hankey, Graeme J.; Rothwell, Peter M.

    2018-01-01

    Background and Purpose— A variant in the histone deacetylase 9 (HDAC9) gene is associated with large artery stroke. Therefore, inhibiting HDAC9 might offer a novel secondary preventative treatment for ischemic stroke. The antiepileptic drug sodium valproate (SVA) is a nonspecific inhibitor of HDAC9. We tested whether SVA therapy given after ischemic stroke was associated with reduced recurrent stroke rate. Methods— Data were pooled from 3 prospective studies recruiting patients with previous stroke or transient ischemic attack and long-term follow-up: the South London Stroke Register, The Vitamins to Prevent Stroke Study, and the Oxford Vascular Study. Patients receiving SVA were compared with patients who received antiepileptic drugs other than SVA using survival analysis and Cox Regression. Results— A total of 11 949 patients with confirmed ischemic event were included. Recurrent stroke rate was lower in patient taking SVA (17 of 168) than other antiepileptic drugs (105 of 530; log-rank survival analysis P=0.002). On Cox regression, controlling for potential cofounders, SVA remained associated with reduced stroke (hazard ratio=0.44; 95% confidence interval: 0.3–0.7; P=0.002). A similar result was obtained when patients taking SVA were compared with all cases not taking SVA (Cox regression, hazard ratio=0.47; 95% confidence interval: 0.29–0.77; P=0.003). Conclusions— These results suggest that exposure to SVA, an inhibitor of HDAC, may be associated with a lower recurrent stroke risk although we cannot exclude residual confounding in this study design. This supports the hypothesis that HDAC9 is important in the ischemic stroke pathogenesis and that its inhibition, by SVA or a more specific HDAC9 inhibitor, is worthy of evaluation as a treatment to prevent recurrent ischemic stroke. PMID:29247141

  19. Sodium Valproate, a Histone Deacetylase Inhibitor, Is Associated With Reduced Stroke Risk After Previous Ischemic Stroke or Transient Ischemic Attack.

    PubMed

    Brookes, Rebecca L; Crichton, Siobhan; Wolfe, Charles D A; Yi, Qilong; Li, Linxin; Hankey, Graeme J; Rothwell, Peter M; Markus, Hugh S

    2018-01-01

    A variant in the histone deacetylase 9 ( HDAC9 ) gene is associated with large artery stroke. Therefore, inhibiting HDAC9 might offer a novel secondary preventative treatment for ischemic stroke. The antiepileptic drug sodium valproate (SVA) is a nonspecific inhibitor of HDAC9. We tested whether SVA therapy given after ischemic stroke was associated with reduced recurrent stroke rate. Data were pooled from 3 prospective studies recruiting patients with previous stroke or transient ischemic attack and long-term follow-up: the South London Stroke Register, The Vitamins to Prevent Stroke Study, and the Oxford Vascular Study. Patients receiving SVA were compared with patients who received antiepileptic drugs other than SVA using survival analysis and Cox Regression. A total of 11 949 patients with confirmed ischemic event were included. Recurrent stroke rate was lower in patient taking SVA (17 of 168) than other antiepileptic drugs (105 of 530; log-rank survival analysis P =0.002). On Cox regression, controlling for potential cofounders, SVA remained associated with reduced stroke (hazard ratio=0.44; 95% confidence interval: 0.3-0.7; P =0.002). A similar result was obtained when patients taking SVA were compared with all cases not taking SVA (Cox regression, hazard ratio=0.47; 95% confidence interval: 0.29-0.77; P =0.003). These results suggest that exposure to SVA, an inhibitor of HDAC, may be associated with a lower recurrent stroke risk although we cannot exclude residual confounding in this study design. This supports the hypothesis that HDAC9 is important in the ischemic stroke pathogenesis and that its inhibition, by SVA or a more specific HDAC9 inhibitor, is worthy of evaluation as a treatment to prevent recurrent ischemic stroke. © 2017 The Authors.

  20. [Preditive clinical factors for epileptic seizures after ischemic stroke].

    PubMed

    Fukujima, M M; Cardeal, J O; Lima, J G

    1996-06-01

    Preditive clinical factors for epileptic seizures after ischemic stroke. Clinical features of 35 patients with ischemic stroke who developed epilepsy (Group 1) were compared with those of 35 patients with ischemic stroke without epilepsy (Group 2). The age of the patients did not differ between the groups. There were more men than women and more white than other races in both groups. Diabetes melitus, hypertension, transient ischemic attack, previous stroke, migraine, Chagas disease, cerebral embolism of cardiac origin and use of oral contraceptive did not differ between the groups. Smokers and alcohol users were more frequent in Group 1 (p < 0.05). Most patients of Group 1 presented with hemiparesis; none presented cerebellar or brainstem involvement. Perhaps strokes in smokers have some different aspects, that let them more epileptogenic than in non smokers.

  1. Sexual dimorphism in ischemic stroke: lessons from the laboratory

    PubMed Central

    Manwani, Bharti; McCullough, Louise D

    2011-01-01

    Ischemic stroke is emerging as a major health problem for elderly women. Women have lower stroke incidence than men until an advanced age, when the epidemiology of ischemic stroke shifts and incidence rises dramatically in women. Experimental models of rodent stroke have replicated this clinical epidemiology, with exacerbated injury in older compared with young female rodents Many of the detrimental effects of aging on ischemic stroke outcome in females can be replicated by ovariectomy, suggesting that hormones such as estrogen play a neuroprotective role. However, emerging data suggest that the molecular mechanisms leading to ischemic cell death differ in the two sexes, and these effects may be independent of circulating hormone levels. This article highlights recent clinical and experimental literature on sex differences in stroke outcomes and mechanisms. PMID:21612353

  2. εPKC confers acute tolerance to cerebral ischemic reperfusion injury

    PubMed Central

    Bright, Rachel; Sun, Guo-Hua; Yenari, Midori A.; Steinberg, Gary K.; Mochly-Rosen, Daria

    2008-01-01

    In response to mild ischemic stress, the brain elicits endogenous survival mechanisms to protect cells against a subsequent lethal ischemic stress, referred to as ischemic tolerance. The molecular signals that mediate this protection are thought to involve the expression and activation of multiple kinases, including protein kinase C (PKC). Here we demonstrate that εPKC mediates cerebral ischemic tolerance in vivo. Systemic delivery of ψεRACK, an εPKC-selective peptide activator, confers neuroprotection against a subsequent cerebral ischemic event when delivered immediately prior to stroke. In addition, activation of εPKC by ψεRACK treatment decreases vascular tone in vivo, as demonstrated by a reduction in microvascular cerebral blood flow. Here we demonstrate the role of acute and transient εPKC in early cerebral tolerance in vivo and suggest that extra-parenchymal mechanisms, such as vasoconstriction, may contribute to the conferred protection. PMID:18586397

  3. Apoptosis and Acute Brain Ischemia in Ischemic Stroke.

    PubMed

    Radak, Djordje; Katsiki, Niki; Resanovic, Ivana; Jovanovic, Aleksandra; Sudar-Milovanovic, Emina; Zafirovic, Sonja; Mousad, Shaker A; Isenovic, Esma R

    2017-01-01

    Apoptosis may contribute to a significant proportion of neuron death following acute brain ischemia (ABI), but the underlying mechanisms are still not fully understood. Brain ischemia may lead to stroke, which is one of the main causes of long-term morbidity and mortality in both developed and developing countries. Therefore, stroke prevention and treatment is clinically important. There are two important separate areas of the brain during ABI: the ischemic core and the ischemic penumbra. The ischemic core of the brain experiences a sudden reduction of blood flow, just minutes after ischemic attack with irreversible injury and subsequent cell death. On the other hand, apoptosis within the ischemic penumbra may occur after several hours or days, while necrosis starts in the first hours after the onset of ABI in the ischemic core. ABI is characterized by key molecular events that initiate apoptosis in many cells, such as overproduction of free radicals, Ca2+ overload and excitotoxicity. These changes in cellular homeostasis may trigger either necrosis or apoptosis, which often depends on cell type, cell age, and location in the brain. Apoptosis results in DNA fragmentation, degradation of cytoskeletal and nuclear proteins, cross-linking of proteins, formation of apoptotic bodies, expression of ligands for phagocytic cell receptors and finally uptake by phagocytic cells. This review focuses on recent findings based on animal and human studies regarding the apoptotic mechanisms of neuronal death following ABI and the development of potential neuroprotective agents that reduce morbidity. The effects of statins on stroke prevention and treatment as well as on apoptotic mediators are also considered. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Arterial spin labelling reveals an abnormal cerebral perfusion pattern in Parkinson's disease.

    PubMed

    Melzer, Tracy R; Watts, Richard; MacAskill, Michael R; Pearson, John F; Rüeger, Sina; Pitcher, Toni L; Livingston, Leslie; Graham, Charlotte; Keenan, Ross; Shankaranarayanan, Ajit; Alsop, David C; Dalrymple-Alford, John C; Anderson, Tim J

    2011-03-01

    There is a need for objective imaging markers of Parkinson's disease status and progression. Positron emission tomography and single photon emission computed tomography studies have suggested patterns of abnormal cerebral perfusion in Parkinson's disease as potential functional biomarkers. This study aimed to identify an arterial spin labelling magnetic resonance-derived perfusion network as an accessible, non-invasive alternative. We used pseudo-continuous arterial spin labelling to measure cerebral grey matter perfusion in 61 subjects with Parkinson's disease with a range of motor and cognitive impairment, including patients with dementia and 29 age- and sex-matched controls. Principal component analysis was used to derive a Parkinson's disease-related perfusion network via logistic regression. Region of interest analysis of absolute perfusion values revealed that the Parkinson's disease pattern was characterized by decreased perfusion in posterior parieto-occipital cortex, precuneus and cuneus, and middle frontal gyri compared with healthy controls. Perfusion was preserved in globus pallidus, putamen, anterior cingulate and post- and pre-central gyri. Both motor and cognitive statuses were significant factors related to network score. A network approach, supported by arterial spin labelling-derived absolute perfusion values may provide a readily accessible neuroimaging method to characterize and track progression of both motor and cognitive status in Parkinson's disease.

  5. Free-breathing cardiac MR stress perfusion with real-time slice tracking.

    PubMed

    Basha, Tamer A; Roujol, Sébastien; Kissinger, Kraig V; Goddu, Beth; Berg, Sophie; Manning, Warren J; Nezafat, Reza

    2014-09-01

    To develop a free-breathing cardiac MR perfusion sequence with slice tracking for use after physical exercise. We propose to use a leading navigator, placed immediately before each 2D slice acquisition, for tracking the respiratory motion and updating the slice location in real-time. The proposed sequence was used to acquire CMR perfusion datasets in 12 healthy adult subjects and 8 patients. Images were compared with the conventional perfusion (i.e., without slice tracking) results from the same subjects. The location and geometry of the myocardium were quantitatively analyzed, and the perfusion signal curves were calculated from both sequences to show the efficacy of the proposed sequence. The proposed sequence was significantly better compared with the conventional perfusion sequence in terms of qualitative image scores. Changes in the myocardial location and geometry decreased by 50% in the slice tracking sequence. Furthermore, the proposed sequence had signal curves that are smoother and less noisy. The proposed sequence significantly reduces the effect of the respiratory motion on the image acquisition in both rest and stress perfusion scans. Copyright © 2013 Wiley Periodicals, Inc.

  6. Risk of ischemic stroke after atrial fibrillation diagnosis: A national sample cohort

    PubMed Central

    Son, Mi Kyoung; Lim, Nam-Kyoo; Kim, Hyung Woo

    2017-01-01

    Atrial fibrillation (AF) is a major risk factor for ischemic stroke and associated with a 5-fold higher risk of stroke. In this retrospective cohort study, the incidence of and risk factors for ischemic stroke in patients with AF were identified. All patients (≥30 years old) without previous stroke who were diagnosed with AF in 2007–2013 were selected from the National Health Insurance Service-National Sample Cohort. To identify factors that influenced ischemic stroke risk, Cox proportional hazard regression analysis was conducted. During a mean follow-up duration of 3.2 years, 1022 (9.6%) patients were diagnosed with ischemic stroke. The overall incidence rate of ischemic stroke was 30.8/1000 person-years. Of all the ischemic stroke that occurred during the follow-up period, 61.0% occurred within 1-year after AF diagnosis. Of the patients with CHA2DS2-VASc score of ≥2, only 13.6% were receiving warfarin therapy within 30 days after AF diagnosis. Relative to no antithrombotic therapy, warfarin treatment for >90 days before the index event (ischemic stroke in stroke patients and death/study end in non-stroke patients) associated with decreased ischemic stroke risk (Hazard Ratio = 0.41, 95%confidence intervals = 0.32–0.53). Heart failure, hypertension, and diabetes mellitus associated with greater ischemic stroke risk. AF patients in Korea had a higher ischemic stroke incidence rate than patients in other countries and ischemic stroke commonly occurred at early phase after AF diagnosis. Long-term (>90 days) continuous warfarin treatment may be beneficial for AF patients. However, warfarin treatment rates were very low. To prevent stroke, programs that actively detect AF and provide anticoagulation therapy are needed. PMID:28636620

  7. (1)H NMR-based metabonomics revealed protective effect of Naodesheng bioactive extract on ischemic stroke rats.

    PubMed

    Luo, Lan; Zhen, Lifeng; Xu, Yatao; Yang, Yongxia; Feng, Suxiang; Wang, Shumei; Liang, Shengwang

    2016-06-20

    Stroke is a leading cause of death and disability in the world. However, current therapies are limited. Naodesheng, a widely used traditional Chinese medicine prescription, has shown a good clinical curative effect on ischemic stroke. Also, Naodesheng has been suggested to have neuroprotective effect on focal cerebral ischemia rats, but the underlying molecular mechanism remains unclear. The present study was designed to evaluate the effect of Naodesheng bioactive extract on the metabolic changes in brain tissue, plasma and urine induced by cerebral ischemia perfusion injury, and explore the possible metabolic mechanisms by using a (1)H NMR-based metabonomics approach. A middle cerebral artery occlusion rat model was established and confirmed by the experiments of neurobehavioral abnormality evaluation, brain tissue TTC staining and pathological examination. The metabolic changes in brain tissue, plasma and urine were then assessed by a (1)H NMR technique combined with multivariate statistical analysis method. These NMR data showed that cerebral ischemia reperfusion induced great metabolic disorders in brain tissue, plasma and urine metabolisms. However, Naodesheng bioactive extract could reverse most of the imbalanced metabolites. Meanwhile, it was found that both the medium and high dosages of Naodesheng bioactive extract were more effective on the metabolic changes than the low dosage, consistent with histopathological assessments. These results revealed that Naodesheng had protective effect on ischemic stroke rats and the underlying mechanisms involved multiple metabolic pathways, including energy metabolism, amino acid metabolism, oxidative stress and inflammatory injury. The present study could provide evidence that metabonomics revealed its capacity to evaluate the holistic efficacy of traditional Chinese medicine and explore the underlying mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Fully quantitative pixel-wise analysis of cardiovascular magnetic resonance perfusion improves discrimination of dark rim artifact from perfusion defects associated with epicardial coronary stenosis.

    PubMed

    Ta, Allison D; Hsu, Li-Yueh; Conn, Hannah M; Winkler, Susanne; Greve, Anders M; Shanbhag, Sujata M; Chen, Marcus Y; Patricia Bandettini, W; Arai, Andrew E

    2018-03-08

    Dark rim artifacts in first-pass cardiovascular magnetic resonance (CMR) perfusion images can mimic perfusion defects and affect diagnostic accuracy for coronary artery disease (CAD). We evaluated whether quantitative myocardial blood flow (MBF) can differentiate dark rim artifacts from true perfusion defects in CMR perfusion. Regadenoson perfusion CMR was performed at 1.5 T in 76 patients. Significant CAD was defined by quantitative invasive coronary angiography (QCA) ≥ 50% diameter stenosis. Non-significant CAD (NonCAD) was defined as stenosis by QCA < 50% diameter stenosis or computed tomographic coronary angiography (CTA) < 30% in all major epicardial arteries. Dark rim artifacts had study specific and guideline-based definitions for comparison purposes. MBF was quantified at the pixel-level and sector-level. In a NonCAD subgroup with dark rim artifacts, stress MBF was lower in the subendocardial than midmyocardial and epicardial layers (2.17 ± 0.61 vs. 3.06 ± 0.75 vs. 3.24 ± 0.80 mL/min/g, both p < 0.001) and was also 30% lower than in remote regions (2.17 ± 0.61 vs. 2.83 ± 0.67 mL/min/g, p < 0.001). However, subendocardial stress MBF in dark rim artifacts was 37-56% higher than in true perfusion defects (2.17 ± 0.61 vs. 0.95 ± 0.43 mL/min/g, p < 0.001). Absolute stress MBF differentiated CAD from NonCAD with an accuracy ranging from 86 to 89% (all p < 0.001) using pixel-level analyses. Similar results were seen at a sector level. Quantitative stress MBF is lower in dark rim artifacts than remote myocardium but significantly higher than in true perfusion defects. If confirmed in larger series, this approach may aid the interpretation of clinical stress perfusion exams. ClinicalTrials.gov Identifier: NCT00027170 ; first posted 11/28/2001; updated 11/27/2017.

  9. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao Yue, E-mail: yuecao@umich.edu; Department of Radiology, University of Michigan, Ann Arbor, Michigan; Wang Hesheng

    2013-01-01

    Purpose: To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials: Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation betweenmore » mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results: There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions: This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver

  10. Hypothermia therapy for newborns with hypoxic ischemic encephalopathy.

    PubMed

    Silveira, Rita C; Procianoy, Renato S

    2015-01-01

    Therapeutic hypothermia reduces cerebral injury and improves the neurological outcome secondary to hypoxic ischemic encephalopathy in newborns. It has been indicated for asphyxiated full-term or near-term newborn infants with clinical signs of hypoxic-ischemic encephalopathy (HIE). A search was performed for articles on therapeutic hypothermia in newborns with perinatal asphyxia in PubMed; the authors chose those considered most significant. There are two therapeutic hypothermia methods: selective head cooling and total body cooling. The target body temperature is 34.5 °C for selective head cooling and 33.5 °C for total body cooling. Temperatures lower than 32 °C are less neuroprotective, and temperatures below 30 °C are very dangerous, with severe complications. Therapeutic hypothermia must start within the first 6h after birth, as studies have shown that this represents the therapeutic window for the hypoxic-ischemic event. Therapy must be maintained for 72 h, with very strict control of the newborn's body temperature. It has been shown that therapeutic hypothermia is effective in reducing neurologic impairment, especially in full-term or near-term newborns with moderate hypoxic-ischemic encephalopathy. Therapeutic hypothermia is a neuroprotective technique indicated for newborn infants with perinatal asphyxia and hypoxic-ischemic encephalopathy. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  11. Metabolomic profiling of the heart during acute ischemic preconditioning reveals a role for SIRT1 in rapid cardioprotective metabolic adaptation.

    PubMed

    Nadtochiy, Sergiy M; Urciuoli, William; Zhang, Jimmy; Schafer, Xenia; Munger, Joshua; Brookes, Paul S

    2015-11-01

    Ischemic preconditioning (IPC) protects tissues such as the heart from prolonged ischemia-reperfusion (IR) injury. We previously showed that the lysine deacetylase SIRT1 is required for acute IPC, and has numerous metabolic targets. While it is known that metabolism is altered during IPC, the underlying metabolic regulatory mechanisms are unknown, including the relative importance of SIRT1. Thus, we sought to test the hypothesis that some of the metabolic adaptations that occur in IPC may require SIRT1 as a regulatory mediator. Using both ex-vivo-perfused and in-vivo mouse hearts, LC-MS/MS based metabolomics and (13)C-labeled substrate tracing, we found that acute IPC altered several metabolic pathways including: (i) stimulation of glycolysis, (ii) increased synthesis of glycogen and several amino acids, (iii) increased reduced glutathione levels, (iv) elevation in the oncometabolite 2-hydroxyglutarate, and (v) inhibition of fatty-acid dependent respiration. The majority (83%) of metabolic alterations induced by IPC were ablated when SIRT1 was acutely inhibited with splitomicin, and a principal component analysis revealed that metabolic changes in response to IPC were fundamentally different in nature when SIRT1 was inhibited. Furthermore, the protective benefit of IPC was abrogated by eliminating glucose from perfusion media while sustaining normal cardiac function by burning fat, thus indicating that glucose dependency is required for acute IPC. Together, these data suggest that SIRT1 signaling is required for rapid cardioprotective metabolic adaptation in acute IPC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A novel Tc-99m and fluorescence labeled peptide as a multimodal imaging agent for targeting angiogenesis in a murine hindlimb ischemia model.

    PubMed

    Hyoun Kim, Myoung; Kim, Seul-Gi; Guhn Kim, Chang; Kim, Dae-Weung

    2017-03-01

    The serine-aspartic acid-valine (SDV) peptide binds specifically to integrin αvβ3. We developed a Tc-99m and TAMRA labeled peptide, Tc-99m SDV-ECG-K-TAMRA for multimodal imaging of angiogenesis. Tc-99m SDV-ECG-K-TAMRA was prepared in high yield (>96%) and showed low cytotoxicity. Tc-99m tetrofosmin images 1 week after operation, revealed significantly decreased perfusion of the ischemic hindlimb, and the perfusion recovered gradually for 4 weeks. In contrast, Tc-99m SDV-ECG-K-TAMRA uptake was maximal 1 week after the operation (ischemic-to-non-ischemic uptake ratio =5.03±1.01) and decreased gradually. The ischemic-to-non-ischemic ratio of Tc-99m SDV-ECG-K-TAMRA and Tc-99m tetrofosmin was strongly negatively correlated (r =-0.94). A postmortem analysis revealed increased angiogenesis markers and uptake of Tc-99m SDV-ECG-K-TAMRA by ischemic tissue. Our in vivo and in vitro studies revealed substantial uptake of Tc-99m SDV-ECG-K-TAMRA by ischemic tissue. Tc-99m SDV-ECG-K-TAMRA could be a good candidate dual-modality imaging agent to assess angiogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Experience with the first 50 ex vivo lung perfusions in clinical transplantation.

    PubMed

    Cypel, Marcelo; Yeung, Jonathan C; Machuca, Tiago; Chen, Manyin; Singer, Lianne G; Yasufuku, Kazuhiro; de Perrot, Marc; Pierre, Andrew; Waddell, Thomas K; Keshavjee, Shaf

    2012-11-01

    Normothermic ex vivo lung perfusion is a novel method to evaluate and improve the function of injured donor lungs. We reviewed our experience with 50 consecutive transplants after ex vivo lung perfusion. A retrospective study using prospectively collected data was performed. High-risk brain death donor lungs (defined as Pao(2)/Fio(2) <300 mm Hg or lungs with radiographic or clinical findings of pulmonary edema) and lungs from cardiac death donors were subjected to 4 to 6 hours of ex vivo lung perfusion. Lungs that achieved stable airway and vascular pressures and Pao(2)/Fio(2) greater than 400 mm Hg during ex vivo lung perfusion were transplanted. The primary end point was the incidence of primary graft dysfunction grade 3 at 72 hours after transplantation. End points were compared with lung transplants not treated with ex vivo lung perfusion (controls). A total of 317 lung transplants were performed during the study period (39 months). Fifty-eight ex vivo lung perfusion procedures were performed, resulting in 50 transplants (86% use). Of these, 22 were from cardiac death donors and 28 were from brain death donors. The mean donor Pao(2)/Fio(2) was 334 mm Hg in the ex vivo lung perfusion group and 452 mm Hg in the control group (P = .0001). The incidence of primary graft dysfunction grade 3 at 72 hours was 2% in the ex vivo lung perfusion group and 8.5% in the control group (P = .14). One patient (2%) in the ex vivo lung perfusion group and 7 patients (2.7%) in the control group required extracorporeal lung support for primary graft dysfunction (P = 1.00). The median time to extubation, intensive care unit stay, and hospital length of stay were 2, 4, and 20 days, respectively, in the ex vivo lung perfusion group and 2, 4, and 23 days, respectively, in the control group (P > .05). Thirty-day mortality (4% in the ex vivo lung perfusion group and 3.5% in the control group, P = 1.00) and 1-year survival (87% in the ex vivo lung perfusion group and 86% in the control

  14. Influence of perfusate temperature on nasal potential difference.

    PubMed

    Bronsveld, Inez; Vermeulen, François; Sands, Dorotha; Leal, Teresinha; Leonard, Anissa; Melotti, Paola; Yaakov, Yasmin; de Nooijer, Roel; De Boeck, Kris; Sermet, Isabelle; Wilschanski, Michael; Middleton, Peter G

    2013-08-01

    Nasal potential difference (NPD) quantifies abnormal ion transport in cystic fibrosis. It has gained acceptance as an outcome measure for the investigation of new therapies. To quantify the effect of solution temperature on NPD, we first examined the effect of switching from room temperature (20-25°C) to warmed (32-37°C) solutions and vice versa during each perfusion step. Secondly, standard protocols were repeated at both temperatures in the same subjects. Changing solution temperature did not alter NPD during perfusion with Ringer's solution (<1 mV) (p>0.1). During perfusion with zero chloride solution, changing from room temperature to warmed solutions tended to decrease absolute NPD (i.e. it became less negative) by 0.9 mV (p>0.1); changing from warmed to room temperature increased NPD by 2.1 mV (p<0.05). During isoprenaline perfusion, changing from room temperature to warmed solutions increased NPD by 1.5 mV (p<0.01) and from warmed to room temperature decreased NPD by 1.4 mV (p<0.05). For full protocols at room temperature or warmed in the same subjects, mean values were similar (n = 24). During warmed perfusion, group results for total chloride response had a larger standard deviation. As this increased variability will probably decrease the power of trials, this study suggests that solutions at room temperature should be recommended for the measurement of NPD.

  15. Spectroscopic photoacoustics for assessing ischemic kidney damage

    NASA Astrophysics Data System (ADS)

    Berndl, Elizabeth S. L.; He, Xiaolin; Yuen, Darren A.; Kolios, Michael C.

    2018-02-01

    Ischemic reperfusion injuries (IRIs) are caused by return of blood to a tissue or organ after a period without oxygen or nutrients. Damage in the microvasculature causes an inflammatory response and heterogeneous scarring, which is associated with an increase in collagen in the extracellular matrix. Although most often associated with heart attacks and strokes, IRI also occurs when blood reperfuses a transplanted organ. Currently, monitoring for IRI is limited to biopsies, which are invasive and sample a limited area. In this work, we explored photoacoustic (PA) biomarkers of scarring. IRI events were induced in mice (n=2) by clamping the left renal artery, then re-establishing flow. At 53 days post-surgery, kidneys were saline perfused and cut in half laterally. One half was immediately imaged with a VevoX system (Fujifilm-VisualSonics, Toronto) in two near infrared ranges - 680 to 970 nm (NIR), and 1200 to 1350 nm (NIR II). The other half was decellularized and then imaged at NIR and NIR II. Regions of interest were manually identified and analyzed for each kidney. For both cellularized and decellularized samples, the PA signal ratio based on irradiation wavelengths of 715:930 nm was higher in damaged kidneys than for undamaged kidneys (p < 0.0001 for both). Damaged kidneys had ROIs with spectra indicating the presence of collagen in the NIR II range, while healthy kidneys did not. Collagen rich spectra were more apparent in decellularized kidneys, suggesting that in the cellularized samples, other components may be contributing to the signal. PA imaging using spectral ratios associated with collagen signatures may provide a non-invasive tool to determine areas of tissue damage due to IRIs.

  16. Regulatory systems for hypoxia-inducible gene expression in ischemic heart disease gene therapy.

    PubMed

    Kim, Hyun Ah; Rhim, Taiyoun; Lee, Minhyung

    2011-07-18

    Ischemic heart diseases are caused by narrowed coronary arteries that decrease the blood supply to the myocardium. In the ischemic myocardium, hypoxia-responsive genes are up-regulated by hypoxia-inducible factor-1 (HIF-1). Gene therapy for ischemic heart diseases uses genes encoding angiogenic growth factors and anti-apoptotic proteins as therapeutic genes. These genes increase blood supply into the myocardium by angiogenesis and protect cardiomyocytes from cell death. However, non-specific expression of these genes in normal tissues may be harmful, since growth factors and anti-apoptotic proteins may induce tumor growth. Therefore, tight gene regulation is required to limit gene expression to ischemic tissues, to avoid unwanted side effects. For this purpose, various gene expression strategies have been developed for ischemic-specific gene expression. Transcriptional, post-transcriptional, and post-translational regulatory strategies have been developed and evaluated in ischemic heart disease animal models. The regulatory systems can limit therapeutic gene expression to ischemic tissues and increase the efficiency of gene therapy. In this review, recent progresses in ischemic-specific gene expression systems are presented, and their applications to ischemic heart diseases are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Ischemic postconditioning provides cardioprotective and antiapoptotic effects against ischemia-reperfusion injury through iNOS inhibition in hyperthyroid rats.

    PubMed

    Zaman, Jalal; Jeddi, Sajad; Daneshpour, Maryam Sadat; Zarkesh, Maryam; Daneshian, Zahra; Ghasemi, Asghar

    2015-10-10

    Ischemic postconditioning (IPost) is a strategy to provide protection against ischemia-reperfusion (IR) injury. The cardioprotective effects of IPost in cases of ischemic heart disease along with co-morbidities like hyperthyroidism remain unknown. The aim of this study was to investigate the effects of IPost on expression of eNOS, iNOS, Bax, and Bcl-2 genes in hyperthyroid male rats, subjected to myocardial IR. Hyperthyroidism was induced by adding thyroxine to drinking water for a period of 21 days. Using the Langendorff device hearts were perfused, then subjected to a 30-minute global ischemia which was followed by 120 min of reperfusion; subsequently IPost was induced immediately after ischemia. Results indicated that following IR, expression of eNOS and Bcl-2 decreased, whereas expression of iNOS and Bax increased in both the control and hyperthyroid groups. In hyperthyroid animals, IPost significantly increased expression of eNOS by 3.19 fold and Bcl-2 by 3.66 fold; it also decreased expression of Bax by 51%, and reduced IR-induced DNA laddering pattern and infarct size (45.7 ± 1.82% vs. 59.3 ± 1.83%, p<0.05) in the presence of aminoguanidine (AG), a selective iNOS inhibitor. In conclusion, IPost per se could not provide cardioprotection against myocardial ischemia in hyperthyroid rats, a loss of which however was restored by the combination of IPost and iNOS inhibition that acts by a decrease in Bax and an increase in both eNOS and Bcl-2 expression. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Diagnostic performance of dual-energy CT stress myocardial perfusion imaging: direct comparison with cardiovascular MRI.

    PubMed

    Ko, Sung Min; Song, Meong Gun; Chee, Hyun Kun; Hwang, Hweung Kon; Feuchtner, Gudrun Maria; Min, James K

    2014-12-01

    The purpose of this study was to assess the diagnostic performance of stress perfusion dual-energy CT (DECT) and its incremental value when used with coronary CT angiography (CTA) for identifying hemodynamically significant coronary artery disease. One hundred patients with suspected or known coronary artery disease without chronic myocardial infarction detected with coronary CTA underwent stress perfusion DECT, stress cardiovascular perfusion MRI, and invasive coronary angiography (ICA). Stress perfusion DECT and cardiovascular stress perfusion MR images were used for detecting perfusion defects. Coronary CTA and ICA were evaluated in the detection of ≥50% coronary stenosis. The diagnostic performance of coronary CTA for detecting hemo-dynamically significant stenosis was assessed before and after stress perfusion DECT on a per-vessel basis with ICA and cardiovascular stress perfusion MRI as the reference standard. The performance of stress perfusion DECT compared with cardiovascular stress perfusion MRI on a per-vessel basis in the detection of perfusion defects was sensitivity, 89%; specificity, 74%; positive predictive value, 73%; negative predictive value, 90%. Per segment, these values were sensitivity, 76%; specificity, 80%; positive predictive value, 63%; and negative predictive value, 88%. Compared with ICA and cardiovascular stress perfusion MRI per vessel territory the sensitivity, specificity, positive predictive value, and negative predictive value of coronary CTA were 95%, 61%, 61%, and 95%. The values for stress perfusion DECT were 92%, 72%, 68%, and 94%. The values for coronary CTA and stress perfusion DECT were 88%, 79%, 73%, and 91%. The ROC AUC increased from 0.78 to 0.84 (p=0.02) with the use of coronary CTA and stress perfusion DECT compared with coronary CTA alone. Stress perfusion DECT plays a complementary role in enhancing the accuracy of coronary CTA for identifying hemodynamically significant coronary stenosis.

  19. Radionuclide labeled lymphocytes for therapeutic use

    DOEpatents

    Srivastava, Suresh C.; Fawwaz, Rashid A.; Richards, Powell

    1985-01-01

    Lymphocytes labelled with .beta.-emitting radionuclides are therapeutically useful, particularly for lymphoid ablation. They are prepared by incubation of the lymphocytes with the selected radionuclide-oxine complex.

  20. Radionuclide labeled lymphocytes for therapeutic use

    DOEpatents

    Srivastava, S.C.; Fawwaz, R.A.; Richards, P.

    1983-05-03

    Lymphocytes labelled with ..beta..-emitting radionuclides are therapeutically useful, particularly for lymphoid ablation. They are prepared by incubation of the lymphocytes with the selected radionuclide-oxine complex.