Sample records for radionuclide migration experiments

  1. Transfer of fallout radionuclides derived from Fukushima NPP accident: 1 year study on transfer of radionuclides through hydrological processes

    NASA Astrophysics Data System (ADS)

    Onda, Yuichi; Kato, Hiroaki; Patin, Jeremy; Yoshimura, Kazuya; Tsujimura, Maki; Wakahara, Taeko; Fukushima, Takehiko

    2013-04-01

    Previous experiences such as Chernobyl Nuclear Power Plant accident have confirmed that fallout radionuclides on the ground surface migrate through natural environment including soils and rivers. Therefore, in order to estimate future changes in radionuclide deposition, migration process of radionuclides in forests, soils, ground water, rivers should be monitored. However, such comprehensive studies on migration through forests, soils, ground water and rivers have not been conducted so far. Here, we present the following comprehensive investigation was conducted to confirm migration of radionuclides through natural environment including soils and rivers. 1)Study on depth distribution of radiocaesium in soils within forests, fields, and grassland 2)Confirmation of radionuclide distribution and investigation on migration in forests 3)Study on radionuclide migration due to soil erosion under different land use 4)Measurement of radionuclides entrained from natural environment including forests and soils 5)Investigation on radionuclide migration through soil water, ground water, stream water, spring water under different land use 6)Study on paddy-to-river transfer of radionuclides through suspended sediments 7)Study on river-to-ocean transfer of radionuclides via suspended sediments 8)Confirmation of radionuclide deposition in ponds and reservoirs

  2. Transfer of fallout radionuclides derived from Fukushima NPP accident: 1 year study on transfer of radionuclides through geomorphic processes

    NASA Astrophysics Data System (ADS)

    Onda, Y.; Kato, H.; Fukushima, T.; Wakahara, T.; Kita, K.; Takahashi, Y.; Sakaguchi, A.; Tanaka, K.; Yamashiki, Y.; Yoshida, N.

    2012-12-01

    After the Fukushima Daiichi Nuclear Power Plant acciden, fallout radionuclides on the ground surface will transfer through geomorphic processes. Therefore, in order to estimate future changes in radionuclide deposition, migration process of radionuclides in forests, soils, ground water, rivers, and entrainment from trees and soils should be confirmed. We (FMWSE group) was funded by MEXT, Japanese government, and 1 year following monitoring has been conducted about 1 year. 1 Migration study of radionuclides in natural environment including forests and rivers 1) Study on depth distribution of radiocaesium in soils within forests, fields, and grassland. 2) Confirmation of radionuclide distribution and investigation on migration in forests. 3) Study on radionuclide migration due to soil erosion under different land use. 4) Measurement of radionuclides entrained from natural environment including forests and soils. 2 Migration study of radionuclides through hydrological cycle such as soil water, rivers, lakes and ponds, ground water. 1) Investigation on radionuclide migration through soil water, ground water, stream water, spring water under different land use. 2) Study on paddy-to-river transfer of radionuclides through suspended sediment. 3) Study on river-to-ocean transfer of radionuclides via suspended sediment. 4) Confirmation of radionuclide deposition in ponds and reservoirs. We will present how and where the fallout radionulides transfter through geomorphic processes.

  3. Radionuclide Migration at the Rio Blanco Site, A Nuclear-stimulated Low-permeability Natural Gas Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clay A. Cooper; Ming Ye; Jenny Chapman

    2005-10-01

    The U.S. Department of Energy and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability gas reservoirs. The third and final project in the program, Project Rio Blanco, was conducted in Rio Blanco County, in northwestern Colorado. In this experiment, three 33-kiloton nuclear explosives were simultaneously detonated in a single emplacement well in the Mesaverde Group and Fort Union Formation, at depths of 1,780, 1,899, and 2,039 m below land surface on May 17, 1973. The objective of this work is to estimate lateral distances that tritium released frommore » the detonations may have traveled in the subsurface and evaluate the possible effect of postulated natural-gas development on radionuclide migration. Other radionuclides were considered in the analysis, but the majority occur in relatively immobile forms (such as nuclear melt glass). Of the radionuclides present in the gas phase, tritium dominates in terms of quantity of radioactivity in the long term and contribution to possible whole body exposure. One simulation is performed for {sup 85}Kr, the second most abundant gaseous radionuclide produced after tritium.« less

  4. Modeling radionuclide migration from underground nuclear explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Dylan Robert; Stauffer, Philip H.; Viswanathan, Hari S.

    2017-03-06

    The travel time of radionuclide gases to the ground surface in fracture rock depends on many complex factors. Numerical simulators are the most complete repositories of knowledge of the complex processes governing radionuclide gas migration to the ground surface allowing us to verify conceptualizations of physical processes against observations and forecast radionuclide gas travel times to the ground surface and isotopic ratios

  5. Hydrology and radionuclide migration program 1987 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, K.V.

    1991-03-01

    This report presents results from the Lawrence Livermore National Laboratory's participation in the Hydrology and Radionuclide Migration Program at the Nevada Test Site (NTS) during the fiscal year 1987. The report discussed initial data from a new well (UE20n-1) drilled at the Cheshire site; presents a description of a proposed laboratory study of migration of colloids in fractured media; lists data collected during the drilling and initial sampling of UE20n-1; and describes a tentative proposal for work to be performed in FY88 by Lamont-Doherty Geological Observatory. Groundwater sampled from the new well at the Cheshire site contains tritium concentrations comparablemore » to those measured in previous years from locations above and within the Cheshire cavity. This presence of tritium, as well as several other radionuclides, in a well 100 m away from the cavity region indicates transport of radionuclides, validates a proposed model of the flow path, and provides data on rates of groundwater flow. Previous work at the Cheshire site has shown that radionuclides are transported by colloids through fractured media. However, we have no data that can be used for predictive modeling, and existing theories are not applicable. While physical transport mechanisms of sub-micrometer colloids to defined mineral surfaces are well known, predictions based on well-defined conditions differ from experimental observations by orders of magnitude. The U.C. Berkeley group has designed a laboratory experiment to quantify colloid retention and permeability alteration by the retained colloids.« less

  6. Biogeochemical cycles of Chernobyl-born radionuclides in the contaminated forest ecosystems: long-term dynamics of the migration processes

    NASA Astrophysics Data System (ADS)

    Shcheglov, Alexey; Tsvetnova, Ol'ga; Klyashtorin, Alexey

    2013-04-01

    Biogeochemical migration is a dominant factor of the radionuclide transport through the biosphere. In the early XX century, V.I. Vernadskii, a Russian scientist known, noted about a special role living things play in transport and accumulation of natural radionuclide in various environments. The role of biogeochemical processes in migration and redistribution of technogenic radionuclides is not less important. In Russia, V. M. Klechkovskii and N.V. Timofeev-Ressovskii showed some important biogeochemical aspects of radionuclide migration by the example of global fallout and Kyshtym accident. Their followers, R.M. Alexakhin, M.A. Naryshkin, N.V. Kulikov, F.A. Tikhomirov, E.B. Tyuryukanova, and others also contributed a lot to biogeochemistry of radionuclides. In the post-Chernobyl period, this area of knowledge received a lot of data that allowed building the radioactive element balance and flux estimation in various biogeochemical cycles [Shcheglov et al., 1999]. Regrettably, many of recent radioecological studies are only focused on specific radionuclide fluxes or pursue some applied tasks, missing the holistic approach. Most of the studies consider biogeochemical fluxes of radioactive isotopes in terms of either dose estimation or radionuclide migration rates in various food chains. However, to get a comprehensive picture and develop a reliable forecast of environmental, ecological, and social consequences of radioactive pollution in a vast contaminated area, it is necessary to investigate all the radionuclide fluxes associated with the biogeochemical cycles in affected ecosystems. We believe such an integrated approach would be useful to study long-term environmental consequences of the Fukushima accident as well. In our long-term research, we tried to characterize the flux dynamics of the Chernobyl-born radionuclides in the contaminated forest ecosystems and landscapes as a part of the integrated biogeochemical process. Our field studies were started in June of 1986 (less than two months after the accident) and have been continued up to now, focused on the most common forest ecosystems scattered over the contaminated areas of Russian Federation and Ukraine. A comprehensive analysis of the 137Cs and 90Sr biogeochemical fluxes shows that downward radionuclide fluxes (those directed from tree crowns to the soil) dominated over the upward fluxes (from the soil to forest vegetation) in the first years after the accident. Currently, the biological cycle in the contaminated ecosystems is a main factor impeding further vertical migration of long-lived radionuclides from upper soil layers to the ground water. The role of biota as a retardation factor depends on landscape type as well. In accumulative landscapes (with positive material balance), biota plays leading role in radionuclide retardation, while in eluvial landscapes (with the negative balance) soil absorbing complex serves as the dominant barrier for radionuclides leaching down the soil profile. The manifestation of both soil- and biota-driven factors depends on the radionuclide chemical speciation in the initial fallout. The latter factor is most important for 137Cs, yet less manifested for 90Sr. Among the biota components, fungi and forest vegetation are of particular importance for 137Cs and 90Sr accumulation, respectively. In summary, biogeochemical cycles of 137Cs and 90Sr in the investigated forest ecosystems serve as main factors impeding the radionuclide migration from the fallout to ground water. Larger-scale landscape factors determine the radionuclide flux intensity in the biogeochemical cycles and affect the radionuclide spatial variability in the contaminated biota components.

  7. Radionuclide Incorporation and Long Term Performance of Apatite Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jianwei; Lian, Jie; Gao, Fei

    2016-01-04

    This project aims to combines state-of-the-art experimental and characterization techniques with atomistic simulations based on density functional theory (DFT) and molecular dynamics (MD) simulations. With an initial focus on long-lived I-129 and other radionuclides such as Cs, Sr in apatite structure, specific research objectives include the atomic scale understanding of: (1) incorporation behavior of the radionuclides and their effects on the crystal chemistry and phase stability; (2) stability and microstructure evolution of designed waste forms under coupled temperature and radiation environments; (3) incorporation and migration energetics of radionuclides and release behaviors as probed by DFT and molecular dynamics (MD) simulations;more » and (4) chemical durability as measured in dissolution experiments for long term performance evaluation and model validation.« less

  8. Intrinsic and Carrier Colloid-facilitated transport of lanthanides through discrete fractures in chalk

    NASA Astrophysics Data System (ADS)

    Weisbrod, N.; Tran, E. L.; Klein-BenDavid, O.; Teutsch, N.

    2015-12-01

    Geological disposal of high-level radioactive waste is the long term solution for the disposal of long lived radionuclides and spent fuel. However, some radionuclides might be released from these repositories into the subsurface as a result of leakage, which ultimately make their way into groundwater. Engineered bentonite barriers around nuclear waste repositories are generally considered sufficient to impede the transport of radionuclides from their source to the groundwater. However, colloidal-sized mobile bentonite particles ("carrier" colloids) originating from these barriers have come under investigation as a potential transport vector for radionuclides sorbed to them. As lanthanides are generally accepted to have the same chemical behaviors as their more toxic actinide counterparts, lanthanides are considered an acceptable substitute for research on radionuclide transportation. This study aims to evaluate the transport behaviors of lanthanides in colloid-facilitated transport through a fractured chalk matrix and under geochemical conditions representative the Negev desert, Israel. The migration of Ce both with and without colloidal particles was explored and compared to the migration of a conservative tracer (bromide) using a flow system constructed around a naturally fractured chalk core. Results suggest that mobility of Ce as a solute is negligible. In experiments conducted without bentonite colloids, the 1% of the Ce that was recovered migrated as "intrinsic" colloids in the form of carbonate precipitates. However, the total recovery of the Ce increased to 9% when it was injected into the core in the presence of bentonite colloids and 13% when both bentonite and precipitate colloids were injected. This indicates that lanthanides are essentially immobile in chalk as a solute but may be mobile as carbonate precipitates. Bentonite colloids, however, markedly increase the mobility of lanthanides through fractured chalk matrices.

  9. Colloid facilitated transport of lanthanides through discrete fractures in chalk

    NASA Astrophysics Data System (ADS)

    Tran, Emily; Klein Ben-David, Ofra; Teutsch, Nadya; Weisbrod, Noam

    2015-04-01

    Geological disposal of high-level radioactive waste is the internationally agreed-upon, long term solution for the disposal of long lived radionuclides and spent fuel. Eventually, corrosion of the waste canisters may lead to leakage of their hazardous contents, and the radionuclides can ultimately make their way into groundwater and pose a threat to the biosphere. Engineered bentonite barriers placed around nuclear waste repositories are generally considered sufficient to impede the transport of radionuclides from their storage location to the groundwater. However, colloidal-sized mobile bentonite particles eroding from these barriers have come under investigation as a potential transport vector for radionuclides sorbed to them. In addition, the presence of organic matter in groundwater has been shown to additionally facilitate the uptake of radionuclides by the clay colloids. This study aims to evaluate the transport behaviors of radionuclides in colloid-facilitated transport through a fractured chalk matrix and under geochemical conditions representative of the Negev desert, Israel. Lanthanides are considered an acceptable substitute to actinides for research on radionuclide transportation due to their similar chemical behavior. In this study, the migration of Ce both with and without colloidal particles was explored and compared to the migration of a conservative tracer (bromide). Tracer solutions containing known concentrations of Ce, bentonite colloids, humic acid and bromide were prepared in a matrix solution containing salt concentrations representative of that of the average rain water found in the Negev. These solutions were then injected into a flow system constructed around a naturally fractured chalk core. Samples were analyzed for Ce and Br using ICP-MS, and colloid concentrations were determined using spectrophotographic analysis. Breakthrough curves comparing the rates of transportation of each tracer were obtained, allowing for comparison of transport rates and calculation of overall tracer recovery. Preliminary results suggest that mobility of Ce as a solute is negligible, and in experiments conducted without bentonite colloids, the 2% of the Ce that was recovered during the experiments travelled as "intrinsic" colloids in the form of Ce2(CO3)3-6H2O precipitate. However, the total recovery of the Ce increased to 9% when it was injected into the core in the presence of bentonite colloids and 13% when both bentonite and the carbonate precipitate colloids were injected. In addition, the maximum relative concentration (C/C0) of the Ce in the samples from the experiments conducted without bentonite colloids is about 0.002, whereas that of the experiments conducted in the presence of bentonite colloids reaches almost 0.2. This indicates that colloid presence does indeed markedly increase the mobility of radionuclides through fractured chalk matrices and should therefore be considered in models representing transport of radionuclide waste originating from nuclear repositories.

  10. A random walk model to simulate the atmospheric dispersion of radionuclide

    NASA Astrophysics Data System (ADS)

    Zhuo, Jun; Huang, Liuxing; Niu, Shengli; Xie, Honggang; Kuang, Feihong

    2018-01-01

    To investigate the atmospheric dispersion of radionuclide in large-medium scale, a numerical simulation method based on random walk model for radionuclide atmospheric dispersion was established in the paper. The route of radionuclide migration and concentration distribution of radionuclide can be calculated out by using the method with the real-time or historical meteorological fields. In the simulation, a plume of radionuclide is treated as a lot of particles independent of each other. The particles move randomly by the fluctuations of turbulence, and disperse, so as to enlarge the volume of the plume and dilute the concentration of radionuclide. The dispersion of the plume over time is described by the variance of the particles. Through statistical analysis, the relationships between variance of the particles and radionuclide dispersion characteristics can be derived. The main mechanisms considered in the physical model are: (1) advection of radionuclide by mean air motion, (2) mixing of radionuclide by atmospheric turbulence, (3) dry and wet deposition, (4) disintegration. A code named RADES was developed according the method. And then, the European Tracer Experiment (ETEX) in 1994 is simulated by the RADES and FLEXPART codes, the simulation results of the concentration distribution of tracer are in good agreement with the experimental data.

  11. On the possible leakage of ET-RR1 liquid waste tank: hydrological and migration modes studies.

    PubMed

    Mahmoud, N S; El-Hemamy, S T

    2005-03-20

    The first Egyptian (ET-RR1) research reactor has been in operation since 1961 at the Egyptian Atomic Energy Authority (EAEA) Inshas site. Therefore, at present, it faces a serious problem due to aging equipment, especially those directly in contact with the environment such as the underground settling tanks of nuclear and radioactive waste. The possible leakage of radionuclides from these aging tanks and their migration to the aquifer was studied using instantaneous release. This study was done based on the geological and hydrological characteristics of the site, which were obtained from the hydrogeological data of 25 wells previously drilled at the site of the reactor[1]. These data were used to calculate the trend of water levels, hydraulic gradient, and formulation of water table maps from 1993-2002. This information was utilized to determine water velocity in the unsaturated zone. Radionuclides released from the settling tank to the aquifer were screened according to the radionuclides that have high migration ability and high activity. The amount of fission and activation products of the burned fuels that contaminated the water content of the reactor pool were considered as 10% of the original spent fuel. The radionuclides considered in this case were H-3, Sr-90, Zr-93, Tc-99, Cd-113, Cs-135, Cs-137, Sm-151, Pu-238, Pu-240, Pu-241, and Am-241. The instantaneous release was analyzed by theoretical calculations, taking into consideration the migration mechanism of the various radionuclides through the soil space between the tank bottom and the aquifer. The migration mechanism through the unsaturated zone was considered depending on soil type, thickness of the unsaturated zone, water velocity, and other factors that are specific for each radionuclide, namely retardation factor, which is the function of the specific distribution coefficient of each radionuclide. This was considered collectively as delay time. Meanwhile, the mechanism of radionuclide migration during their passage in the water body of the aquifer was the main focus of this study. The degree of water pollution in the aquifer at a point of contact with the main water body of Ismailia Canal 1000 m from the reactor site was assessed for the instantaneous release by comparing the results obtained with the regulations of the standard limit of radionuclides in drinking water.

  12. On The Possible Leakage of ET-RR1 Liquid Waste Tank: Hydrological and Migration Modes Studies

    PubMed Central

    Mahmoud, N. S.; EL-Hemamy, S. T.

    2005-01-01

    The first Egyptian (ET-RR1) research reactor has been in operation since 1961 at the Egyptian Atomic Energy Authority (EAEA) Inshas site. Therefore, at present, it faces a serious problem due to aging equipment, especially those directly in contact with the environment such as the underground settling tanks of nuclear and radioactive waste. The possible leakage of radionuclides from these aging tanks and their migration to the aquifer was studied using instantaneous release.This study was done based on the geological and hydrological characteristics of the site, which were obtained from the hydrogeological data of 25 wells previously drilled at the site of the reactor[1]. These data were used to calculate the trend of water levels, hydraulic gradient, and formulation of water table maps from 1993–2002. This information was utilized to determine water velocity in the unsaturated zone.Radionuclides released from the settling tank to the aquifer were screened according to the radionuclides that have high migration ability and high activity. The amount of fission and activation products of the burned fuels that contaminated the water content of the reactor pool were considered as 10% of the original spent fuel. The radionuclides considered in this case were H-3, Sr-90, Zr-93, Tc-99, Cd-113, Cs-135, Cs-137, Sm-151, Pu-238, Pu-240, Pu-241, and Am-241.The instantaneous release was analyzed by theoretical calculations, taking into consideration the migration mechanism of the various radionuclides through the soil space between the tank bottom and the aquifer. The migration mechanism through the unsaturated zone was considered depending on soil type, thickness of the unsaturated zone, water velocity, and other factors that are specific for each radionuclide, namely retardation factor, which is the function of the specific distribution coefficient of each radionuclide. This was considered collectively as delay time. Meanwhile, the mechanism of radionuclide migration during their passage in the water body of the aquifer was the main focus of this study.The degree of water pollution in the aquifer at a point of contact with the main water body of Ismailia Canal 1000 m from the reactor site was assessed for the instantaneous release by comparing the results obtained with the regulations of the standard limit of radionuclides in drinking water[2,3]. PMID:15798884

  13. Radionuclide migration: laboratory experiments with isolated fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rundberg, R.S.; Thompson, J.L.; Maestas, S.

    Laboratory experiments examining flow and element migration in rocks containing isolated fractures have been initiated at the Los Alamos National Laboratory. Techniques are being developed to establish simple fracture flow systems which are appropriate to models using analytical solutions to the matrix diffusion-flow equations, such as those of I. Neretnieks [I. Neretnieks, Diffusion in the Rock Matrix: An Important Factor in Radionuclide Retardation? J. Geophys. Res. 85, 4379 (1980).] These experiments are intended to be intermediate steps toward larger scale field experiments where it may become more difficult to establish and control the parameters important to nuclide migration in fracturedmore » media. Laboratory experiments have been run on fractures ranging in size from 1 to 20 cm in length. The hydraulic flow in these fractures was studied to provide the effective apertures. The flows established in these fracture systems are similar to those in the granite fracture flow experiments of Witherspoon et al. [P.A. Witherspoon, J.S.Y. Wang, K. Iwai, and J.E. Gale, Validity of Cubic Law for Fluid Flow in a Deformable Rock Fracture, Lawrence Berkeley Laboratory report LBL-9557 (October 1979).] Traced solutions containing {sup 85}Sr and {sup 137}Cs were flowed through fractures in Climax Stock granite and welded tuff (Bullfrog and Tram members, Yucca Mountain, Nevada Test Site). The results of the elutions through granite agree with the matrix diffusion calculations based on independent measurements of K/sub d/. The results of the elutions through tuff, however, agree only if the K/sub d/ values used in the calculations are lower than the K/sub d/ values measured using a batch technique. This trend has been previously observed in chromatographic column experiments with tuff. 5 figures, 3 tables.« less

  14. Concerning initial and secondary character of radionuclide distribution in elementary landscape geochemical systems

    NASA Astrophysics Data System (ADS)

    Korobova, Elena; Romanov, Sergey

    2017-04-01

    Specificity of radionuclide distribution in elementary landscape geochemical systems (ELGS) treated as local system of geochemically linked elementary terrestrial units (in toposequence: watershed-slope-closing depression), belongs to one of the less investigated but practically significant problems of current geochemistry. First measurements after the Chernobyl accident showed a considerable variation of Cs-137 distribution in all examined ELGS (Shcheglov et al, 2001; Romanov, 1989; Korobova, Korovaykov, 1990; Linnik, 2008). The results may be interpreted in frames of two alternative hypotheses: 1) irregularity of the initial contamination; 2) secondary redistribution of the initially regular level of fallout. But herewith only a disproof of the first hypothesis automatically justifies the second one. Factors responsible for initial irregularity of surface contamination included: 1) the presence of the so-called "hot" particles in the initial fallout; 2) interception of radionuclides by forest canopy; 3) irregular aerial particles deposition; 4) uneven initial precipitation. Basing on monitoring Cs-137 spatial distribution that has been performed since 2005, we demonstrate that the observed spatial irregularity in distribution of Cs-137 in ELGS reflects a purely secondary distribution of initial reserves of radionuclides in fallout matter due to its migration with water in local geochemical systems. This statement has some significant consequences. 1. Mechanism of migration of matter in ELGS is complicated and could not be reduced solely to a primitive moving from watershed to closing depression. 2. The control of migration of "labeled atoms" (Cs-137) permits to understand common mechanism of migration of water in all systems on the level of ELGS. 3. Understanding formation of the structure of contamination zones in ELGS permits to use mathematical model to solve the inverse problem of restoration of the initially equable level of their contamination. Performed study confirms that Cs-137 as a label helps to trace processes and patterns of chemical elements' migration on the level of ELGS that are numerously reproduced elsewhere in natural systems. The study is aimed at and believed to provide solution for a number of important problems related to generation and evolution of soil structure, spatial redistribution of fertilizers and pesticides, other important processes of matter redistribution on the level of local LGS. References Korobova E.M., Korovaykov P.A., 1990. Landscape and geochemical approach to drawing up a soil distribution profile for Chernobyl radionuclides in distant areas //Seminar "Comparative assessment of the environmental impact of radionuclides released during three major nuclear accidents: Kyshtum, Windscale, Chernobyl". V. 1. Luxembourg, 309-327. Linnik V.G., 2008. Landscape differentiation of technogenic radionuclides: geoinformation systems and models. Thesis. Moscow: Moscow State University, 42 p. Romanov S.L., 1989. Principles of formation of radionuclide dispersion and concentration fields // Abstracts of the All-Union Conference "Principles and methods of landscape geochemical studies of radionuclide migration". Moscow: Vernadsky Institute, p. 46. Shcheglov A.I., Tsvetnova O.B., KlyashtorinA.L., 2001. Biogeochemical migration of technogenic radionuclides in forest ecosystems. Moscow: Nauka, 235 p.

  15. LONG-TERM DYNAMICS OF RADIONUCLIDE VERTICAL MIGRATION IN SOILS OF THE CHERNOBYL NUCLEAR POWER PLANT EXCLUSION ZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farfan, E

    2009-11-19

    The radioactive fallout from the Chernobyl Nuclear Power Plant (ChNPP) accident consisted of fuel and condensation components. An important radioecological task associated with the late phase of the accident is to evaluate the dynamics of radionuclide mobility in soils. Identification of the variability (or invariability) in the radionuclide transfer parameters makes it possible to (1) accurately predict migration patterns and biological availability of radionuclides and (2) evaluate long-term exposure trends for the population who may reoccupy the remediated abandoned areas. In 1986-1987, a number of experimental plots were established within various tracts of the fallout plume to assist with themore » determination of the long-term dynamics of radionuclide vertical migration in the soils. The transfer parameters for {sup 137}Cs, {sup 90}Sr, and {sup 239,240}Pu in the soil profile, as well as their ecological half-time of the radionuclide residence (T{sub 1/2}{sup ecol}) values in the upper 5-cm thick soil layers of different grasslands were estimated at various times since the accident. Migration characteristics in the grassland soils tend to decrease as follows: {sup 90}Sr > {sup 137}Cs {ge} {sup 239,240}Pu. It was found that the {sup 137}Cs absolute T{sub 1/2}{sup ecol} values are 3-7 times higher than its radioactive decay half-life value. Therefore, changes in the exposure dose resulting from the soil deposited {sup 137}Cs now depend only on its radioactive decay. The {sup 90}Sr T{sub 1/2}{sup ecol} values for the 21st year after the fallout tend to decrease, indicating an intensification of its migration capabilities. This trend appears consistent with a pool of mobile {sup 90}Sr forms that grows over time due to destruction of the fuel particles.« less

  16. Shallow land burial of low-level radioactive wastes. A selected, annotated bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fore, C.S.; Vaughan, N.D.; Tappen, J.

    1978-06-01

    The data file was built to provide information support to DOE researchers in the field of low-level radioactive waste disposal and management. The scope of the data base emphasizes studies which deal with the ''old'' Manhattan sites, commercial disposal sites, and the specific parameters which affect the soil and geologic migration of radionuclides. Specialized data fields have been incorporated into the data base to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the ''Measured Radionuclides'' field, and specific parameters which affect the migration of these radionuclides are presented inmore » the ''Measured Parameters'' field. The 504 references are rated indicating applicability to shallow land burial technology and whether interpretation is required. Indexes are provided for author, geographic location, title, measured parameters, measured radionuclides, keywords, subject categories, and publication description. (DLC)« less

  17. Use of thermodynamic sorption models to derive radionuclide Kd values for performance assessment: Selected results and recommendations of the NEA sorption project

    USGS Publications Warehouse

    Ochs, M.; Davis, J.A.; Olin, M.; Payne, T.E.; Tweed, C.J.; Askarieh, M.M.; Altmann, S.

    2006-01-01

    For the safe final disposal and/or long-term storage of radioactive wastes, deep or near-surface underground repositories are being considered world-wide. A central safety feature is the prevention, or sufficient retardation, of radionuclide (RN) migration to the biosphere. To this end, radionuclide sorption is one of the most important processes. Decreasing the uncertainty in radionuclide sorption may contribute significantly to reducing the overall uncertainty of a performance assessment (PA). For PA, sorption is typically characterised by distribution coefficients (Kd values). The conditional nature of Kd requires different estimates of this parameter for each set of geochemical conditions of potential relevance in a RN's migration pathway. As it is not feasible to measure sorption for every set of conditions, the derivation of Kd for PA must rely on data derived from representative model systems. As a result, uncertainty in Kd is largely caused by the need to derive values for conditions not explicitly addressed in experiments. The recently concluded NEA Sorption Project [1] showed that thermodynamic sorption models (TSMs) are uniquely suited to derive K d as a function of conditions, because they allow a direct coupling of sorption with variable solution chemistry and mineralogy in a thermodynamic framework. The results of the project enable assessment of the suitability of various TSM approaches for PA-relevant applications as well as of the potential and limitations of TSMs to model RN sorption in complex systems. ?? by Oldenbourg Wissenschaftsverlag.

  18. Modelling of Tc migration in an un-oxidized fractured drill core from Äspö, Sweden

    NASA Astrophysics Data System (ADS)

    Huber, F. M.; Totskiy, Y.; Montoya Garcia, V.; Enzmann, F.; Trumm, M.; Wenka, A.; Geckeis, H.; Schaefer, T.

    2015-12-01

    The radionuclide retention of redox sensitive radionuclides (e.g. Pu, Np, U, Tc) in crystalline host rock greatly depends on the rock matrix and the rock redox capacity. Preservation of drill cores concerning oxidation is therefore of paramount importance to reliably predict the near-natural radionuclide retention properties. Here, experimental results of HTO and Tc laboratory migration experiments in a naturally single fractured Äspö un-oxidized drill core are modelled using two different 2D models. Both models employ geometrical information obtained by μ-computed tomography (μCT) scanning of the drill core. The models differ in geometrical complexity meaning the first model (PPM-MD) consists of a simple parallel plate with a porous matrix adjacent to the fracture whereas the second model (MPM) uses the mid-plane of the 3D fracture only (no porous matrix). Simulation results show that for higher flow rates (Peclet number > 1), the MPM satisfactorily describes the HTO breakthrough curves (BTC) whereas the PPM-MD model nicely reproduces the HTO BTC for small Pe numbers (<1). These findings clearly highlight the influence of fracture geometry/flow field complexity on solute transport for Pe numbers > 1 and the dominating effect of matrix diffusion for Peclet numbers < 1. Retention of Tc is modelled using a simple Kd-approach in case of the PPM-MD and including 1st order sorptive reduction/desorption kinetics in case of the MPM. Batch determined sorptive reduction/desorption kinetic rates and Kd values for Tc on non-oxidized Äspö diorite are used in the model and compared to best fit values. By this approach, the transferability of kinetic data concerning sorptive reduction determined in static batch experiments to dynamic transport experiments is examined.

  19. Uranium and Cesium sorption to bentonite colloids in high salinity and carbonate-rich environments: Implications for radionuclide transport

    NASA Astrophysics Data System (ADS)

    Tran, E. L.; Teutsch, N.; Klein-BenDavid, O.; Weisbrod, N.

    2017-12-01

    When radionuclides are leaked into the subsurface due to engineered waste disposal container failure, the ultimate barrier to migration of radionuclides into local aquifers is sorption to the surrounding rock matrix and sediments, which often includes a bentonite backfill. The extent of this sorption is dependent on pH, ionic strength, surface area availability, radionuclide concentration, surface mineral composition, and solution chemistry. Colloidal-sized bentonite particles eroded from the backfill have been shown to facilitate the transport of radionuclides sorbed to them away from their source. Thus, sorption of radionuclides such as uranium and cesium to bentonite surfaces can be both a mobilization or retardation factor. Though numerous studies have been conducted to-date on sorption of radionuclides under low ionic strength and carbonate-poor conditions, there has been little research conducted on the behavior of radionuclides in high salinities and carbonate rich conditions typical of aquifers in the vicinity of some potential nuclear repositories. This study attempts to characterize the sorption properties of U(VI) and Cs to bentonite colloids under these conditions using controlled batch experiments. Results indicated that U(VI) undergoes little to no sorption to bentonite colloids in a high-salinity (TDS= 9000 mg/L) artificial groundwater. This lack of sorption was attributed to the formation of CaUO2(CO3)22- and Ca2UO2(CO3)3 aqueous ions which stabilize the UO22+ ions in solution. In contrast, Cs exhibited greater sorption, the extent to which was influenced greatly by the matrix water's ionic strength and the colloid concentration used. Surprisingly, when both U and Cs were together, the presence of U(VI) in solution decreased Cs sorption, possibly due to the formation of stabilizing CaUO2(CO3)22- anions. The implications of this research are that rather than undergoing colloid-facilitated transport, U(VI) is expected to migrate similarly to a conservative dissolved species under these conditions, and little retardation through sorption onto the surrounding rock matrix is predicted. Cs is expected to undergo more sorption, though U(VI) presence may have a mobilizing effect.

  20. Research of Radionuclides Migrating in Porous Media Allowing for the "Solution-Rock" Interaction

    NASA Astrophysics Data System (ADS)

    Drozhko, E.; Aleksakhin, A. I.; Samsanova, L.; Kotchergina, N.; Zinin, A.

    2001-12-01

    Industrial solutions from the surface storage of liquid radioactive waste in Lake Karachay, near the Mayak Production Association in Russia, enter groundwaters through the reservoir loamy bed and have formed a contaminated groundwater plume. In order to predict radionuclide migration with the groundwater flow in porous unconsolidated rocks and to assess the protective mechanism of the natural environment, it is necessary to allow for the "solution-rock" physical and chemical interaction described by the distribution factor (Kd). In order to study radionuclide distribution in porous media, a numerical model was developed which models stontium-90 migration in a uniform unit of loams typical for the Karachay Lake bed. For the migration to be calculated, the results of the in situ and laboratory reasearch on strontium-90 sorption and desorption were used in the code, as well as strontium-90 dependance on sodium nitrate concentration in the solution. The code uses various models of the "solution-rock" interaction, taking into account both sorption/desorption and diffusion processes. Numerical research of strontium-90 migration resulted in data on strontium-90 distribution in solid and liquid phases of the porous loam unit over different time periods. Various models of the "solution-rock" interaction affecting strontium-90 migration are demonstrated.

  1. Microbial impacts on 99mTc migration through sandstone under highly alkaline conditions relevant to radioactive waste disposal.

    PubMed

    Smith, Sarah L; Boothman, Christopher; Williams, Heather A; Ellis, Beverly L; Wragg, Joanna; West, Julia M; Lloyd, Jonathan R

    2017-01-01

    Geological disposal of intermediate level radioactive waste in the UK is planned to involve the use of cementitious materials, facilitating the formation of an alkali-disturbed zone within the host rock. The biogeochemical processes that will occur in this environment, and the extent to which they will impact on radionuclide migration, are currently poorly understood. This study investigates the impact of biogeochemical processes on the mobility of the radionuclide technetium, in column experiments designed to be representative of aspects of the alkali-disturbed zone. Results indicate that microbial processes were capable of inhibiting 99m Tc migration through columns, and X-ray radiography demonstrated that extensive physical changes had occurred to the material within columns where microbiological activity had been stimulated. The utilisation of organic acids under highly alkaline conditions, generating H 2 and CO 2 , may represent a mechanism by which microbial processes may alter the hydraulic conductivity of a geological environment. Column sediments were dominated by obligately alkaliphilic H 2 -oxidising bacteria, suggesting that the enrichment of these bacteria may have occurred as a result of H 2 generation during organic acid metabolism. The results from these experiments show that microorganisms are able to carry out a number of processes under highly alkaline conditions that could potentially impact on the properties of the host rock surrounding a geological disposal facility for intermediate level radioactive waste. Copyright © 2016. Published by Elsevier B.V.

  2. Simulating Radionuclide Migrations of Low-level Wastes in Nearshore Environment

    NASA Astrophysics Data System (ADS)

    Lu, C. C.; Li, M. H.; Chen, J. S.; Yeh, G. T.

    2016-12-01

    Tunnel disposal into nearshore mountains was tentatively selected as one of final disposal sites for low-level wastes in Taiwan. Safety assessment on radionuclide migrations in far-filed may involve geosphere processes under coastal environments and into nearshore ocean. In this study the 3-D HYDROFEOCHE5.6 numerical model was used to perform simulations of groundwater flow and radionuclide transport with decay chains. Domain of interest on the surface includes nearby watersheds delineated by digital elevation models and nearshore seabed. As deep as 800 m below the surface and 400 m below sea bed were considered for simulations. The disposal site was located at 200m below the surface. Release rates of radionuclides from near-field was estimated by analytical solutions of radionuclide diffusion with decay out of engineered barriers. Far-field safety assessments were performed starting from the release of radionuclides out of engineered barriers to a time scale of 10,000 years. Sensitivity analyses of geosphere and transport parameters were performed to improve our understanding of safety on final disposal of low-level waste in nearshore environments.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Y.; Serne, R.J.; Arnold, E.M.

    This report describes the results of a detailed literature review of radionuclide transport models applicable to rivers, estuaries, coastal waters, the Great Lakes, and impoundments. Some representatives sediment transport and water quality models were also reviewed to evaluate if they can be readily adapted to radionuclide transport modeling. The review showed that most available transport models were developed for dissolved radionuclide in rivers. These models include the mechanisms of advection, dispersion, and radionuclide decay. Since the models do not include sediment and radionuclide interactions, they are best suited for simulating short-term radionuclide migration where: (1) radionuclides have small distribution coefficients;more » (2) sediment concentrations in receiving water bodies are very low. Only 5 of the reviewed models include full sediment and radionuclide interactions: CHMSED developed by Fields; FETRA SERATRA, and TODAM developed by Onishi et al, and a model developed by Shull and Gloyna. The 5 models are applicable to cases where: (1) the distribution coefficient is large; (2) sediment concentrations are high; or (3) long-term migration and accumulation are under consideration. The report also discusses radionuclide absorption/desorption distribution ratios and addresses adsorption/desorption mechanisms and their controlling processes for 25 elements under surface water conditions. These elements are: Am, Sb, C, Ce, Cm, Co, Cr, Cs, Eu, I, Fe, Mn, Np, P, Pu, Pm, Ra, Ru, Sr, Tc, Th, {sup 3}H, U, Zn and Zr.« less

  4. Distribution of Natural (U-238, Th-232, Ra-226) and Technogenic (Sr-90, Cs-137) Radionuclides in Soil-Plants Complex Near Issyk-Kul Lake, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Jovanovic, L.; Kaldybaev, B.; Djenbaev, B.; Tilenbaev, A.

    2012-04-01

    Researches on radionuclides distribution in the soil-plants complex provide essential information in understanding human exposure to natural and technogenic sources of radiation. It is necessary in establishing regulation relating to radiation protection. The aim of this study was the radiochemical analysis of the content natural radionuclides 238U, 232Th,226Ra and technogenic radionuclides content (90Sr, 137Cs) in soils near Issyk-Kul lake (Kyrgyzstan). Results of radiochemical analyses have shown, that the concentrations of thorium-232 are fluctuating in the limits (11.7-84.1)-10-4% in the soils. The greatest concentration of thorium-232 has been found in the light chestnut soils. The content of uranium-238 in the soils near Issyk-Kul lake is fluctuating from 2.8 up to 12.7-10-4%. Radium-226 has more migration ability in comparison with other heavy natural radionuclides. According to our research the concentrations of radium-226 are fluctuating in the limits (9.4-43.0)-10-11%. The greatest concentration of radium-226 (43,0±2,8)-10-11% has been determined in the light chestnut soil. In connection with global migration of contaminating substances, including radioactive, the special attention is given long-lived radionuclides strontium-90 and caesium-137 in food-chains, and agroecosystems. Results of radiochemical analyses have shown, that specific activity of strontium-90 is fluctuating in the range of 2.9 up to 11.1 Bq/kg, and caesium-137 from 3.7 up to 14,3 Bq/kg in the soil of agroecosystems in the region of Issyk-Kul. In soil samples down to 1 meter we have observed vertical migration of these radionuclides, they were found to accumulate on the surface of soil horizon (0-5 cm) and their specific activity sharply decreases with depth. In addition in high-mountain pastures characterized by horizontal migration of cattle in profiles of soil, it was discovered that specific activity of radionuclides are lower on the slope than at the foot of the mountain. The content of natural radionuclides (238U, 232Th, 226Ra ) and technogenic radionuclides (90Sr, 137Cs) in the soils depend on many factors: the type and mechanical composition of soil, capacity of absorption, acidity, concentration of exchange forms of carbonates, organic substances. The radionuclides accumulation process in the plants depend on a specific accumulation ability of plants. During the researches it has been found that radionuclides accumulate in vegetative organs more than in reproductive parts of plants. According to the accumulation degrees of natural radionuclides plants taking place in the following decreasing series: sugar beet > potatoes > lucerne > clover > oats > perennial herbs > wheat > annual grass crops > barley > corn. Radiochemical analysis of the technogenic radionuclides in the plants has been determined that specific activity of strontium-90 is increased in leguminous plants (cobs of corn, lucerne) in comparison with other cultures. Caesium-137 is accumulated in beet roots, cobs of corn and lucerne. Key words: natural radionuclides, technogenic radionuclides, soil-plants complex, Issyk-Kul lake, Kyrgyzstan

  5. Surrogate Indicators of Radionuclide Migration at the Amargosa Desert Research Site, Nye County, Nevada

    NASA Astrophysics Data System (ADS)

    Stonestrom, D. A.; Andraski, B. J.; Baker, R. J.; Luo, W.; Michel, R. L.

    2005-05-01

    Contaminant-transport processes are being investigated at the U.S. Geological Survey's Amargosa Desert Research Site (ADRS), adjacent to the Nation's first commercial disposal facility for low-level radioactive waste. Gases containing tritium and radiocarbon are migrating through a 110-m thick unsaturated zone from unlined trenches that received waste from 1962 to 1992. Information on plume dynamics comes from an array of shallow (<2 m) and two vertical arrays of deep (5-109 m) gas-sampling ports, plus ground-water monitoring wells. Migration is dominated by lateral transport in the upper 50 m of sediments. Radiological analyses require ex-situ wet-chemical techniques, because in-situ sensors for the radionuclides of interest do not exist. As at other LLRW-disposal facilities, radionuclides at the ADRS are mixed with varying amounts of volatile organic compounds (VOCs) and other substances. Halogenated-methanes, -ethanes, and -ethenes dominate the complex mixture of VOCs migrating from the disposal area. These compounds and their degradates provide a distinctive "fingerprint" of contamination originating from low-level radioactive waste. Carbon-dioxide and VOC anomalies provide indicator proxies for radionuclide contamination. Spatial and temporal patterns of co-disposed and byproduct constituents provide field-scale information about physical and biochemical processes involved in transport. Processes include reduction and biorespiration within trenches, and largely non-reactive, barometrically dispersed diffusion away from trenches.

  6. Vertical migration of plutonium-239 + -240, americium-241 and caesium-137 fallout in a forest soil under spruce.

    PubMed

    Bunzl, K; Kracke, W; Schimmack, W

    1992-03-01

    The vertical activity distributions of fallout 238Pu, 239+240Pu, 241Am, 134Cs and 137Cs in a forest soil (Hapludult) were determined at several locations in a spruce stand separately according to their origin (global fallout or Chernobyl fallout). To determine the rate of migration of these radionuclides in each soil horizon, the observed depth profiles of the radionuclides were evaluated with a compartment model. In the top organic horizons (LOf1 and Of2), the migration rates for all radionuclides from both sources were above 0.5 cm per year. In the Oh horizon the migration rates observed for global fallout Pu, Am and Cs were similar (0.2-0.4 cm per year). Compared with Pu, however, the mobility of Am is slightly, but statistically significantly, enhanced. The highest rate in this layer was found for Chernobyl-derived radiocaesium (2 cm per year). In the layers of the mineral horizon (depth 0-2, 2-5 and 5-10 cm) the observed migration rates were very similar for global fallout Pu (0.08-0.7 cm per year) and Am (0.1-2 cm per year). In comparison, the migration rate of global fallout radiocaesium was about half in each layer. The highest rate was observed again for Chernobyl-derived radiocaesium (0.5-3 cm per year).

  7. Regular patterns of Cs-137 distribution in natural conjugated elementary landscapes as a result of a balanced surface and depth water migration

    NASA Astrophysics Data System (ADS)

    Korobova, Elena; Romanov, Sergey

    2016-04-01

    Distribution of artificial radionuclides in the environment has long been used successfully for revealing migration pathways of their stable analogues. Migration of water in natural conjugated elementary landscapes characterizing the system of top-slope-resulting depression, has a specific structure and the radionuclide tracer is inevitably reflecting it by specific sorption and exchange processes. Other important issues are the concentration levels and the difference in characteristic time of chemical element dispersion. Modern biosphere has acquired its sustainable structure within a long period of time and is formed by basic macroelements allowing the water soluble portion of elements functioning as activators of chemical exchange. Water migration is controlled by gravitation, climate and relief while fixation depends upon the parameters of surfaces and chemical composition. The resulting structure depends on specificity and duration of the process. The long-term redistribution of chemical elements in terrestrial environment has led to a distinct geochemical structure of conjugated landscapes with a specific geometry of redistribution and accumulation of chemical elements. Migration of the newly born anthropogenic radionuclides followed natural pathways in biosphere. The initial deposition of the Chernobyl's radionuclides within the elementary landscape-geochemical system was even by condition of aerial deposition. But further exchange process is controlled by the strength of fixation and migration ability of the carriers. Therefore patterns of spatial distribution of artificial radionuclides in natural landscapes are considerably different as compared to those of the long-term forming the basic structure of chemical fields in biosphere. Our monitoring of Cs-137 radial and lateral distribution in the test plots characterizing natural undisturbed conjugated elementary landscapes performed in the period from 2005 until now has revealed a stable and specifically polycentric structure of radiocesium distribution believed to reflect the character of radial and lateral water body migration and a high sensitivity of water distribution to surface parameters. This leads to an unusual wavy type of Cs-137 distribution down, along and across all the slopes examined for surface Cs-137 activity at every measured point. The finding is believed to have an important practical outcome allowing much more detailed evaluation of micronutrients distribution and optimization of their application.

  8. Recent developments in assessment of long-term radionuclide behavior in the geosphere-biosphere subsystem.

    PubMed

    Smith, G M; Smith, K L; Kowe, R; Pérez-Sánchez, D; Thorne, M; Thiry, Y; Read, D; Molinero, J

    2014-05-01

    Decisions on permitting, controlling and monitoring releases of radioactivity into the environment rely on a great variety of factors. Important among these is the prospective assessment of radionuclide behavior in the environment, including migration and accumulation among and within specific environmental media, and the resulting environmental and human health impacts. Models and techniques to undertake such assessments have been developed over several decades based on knowledge of the ecosystems involved, as well as monitoring of previous radionuclide releases to the environment, laboratory experiments and other related research. This paper presents developments in the assessment of radiation doses and related research for some of the key radionuclides identified as of potential significance in the context of releases to the biosphere from disposal facilities for solid radioactive waste. Since releases to the biosphere from disposal facilities involve transfers from the geosphere to the biosphere, an important aspect is the combined effects of surface hydrology, near-surface hydrogeology and chemical gradients on speciation and radionuclide mobility in the zone in which the geosphere and biosphere overlap (herein described as the geosphere-biosphere subsystem). In turn, these aspects of the environment can be modified as a result of environmental change over the thousands of years that have to be considered in radioactive waste disposal safety assessments. Building on the experience from improved understanding of the behavior of the key radionuclides, this paper proceeds to describe development of a generic methodology for representing the processes and environmental changes that are characteristic of the interface between the geosphere and the biosphere. The information that is provided and the methodology that is described are based on international collaborative work implemented through the BIOPROTA forum, www.bioprota.org. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Hydrologic resources management program and underground test area FY 1999 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D K; Eaton, G F; Rose, T P

    2000-07-01

    This report presents the results from fiscal year (FY) 1999 technical studies conducted by Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area (UGTA) work-for-others project. This report is the latest in a series of annual reports published by LLNL to document the migration of radionuclides and controls of radionuclide movement at the Nevada Test Site. The FY 1999 studies highlighted in this report are: (1) Chapter 1 provides the results from flow-through leaching of nuclear melt glasses at 25 C and near-neutral pH using dilute bicarbonate groundwaters. (2) Chaptermore » 2 reports on a summary of the size and concentration of colloidal material in NTS groundwaters. (3) Chapter 3 discusses the collaboration between LLNL/ANCD (Analytical and Nuclear Chemistry Division) and the Center for Accelerator Mass Spectrometry (CAMS) to develop a technique for analyzing NTS groundwater for 99-Technicium ({sup 99}Tc) using accelerator mass spectrometry (AMS). Since {sup 99}Tc is conservative like tritium in groundwater systems, and is not sorbed to geologic material, it has the potential for being an important tool for radionuclide migration studies. (4) Chapter 4 presents the results of secondary ion mass spectrometry measurements of the in-situ distribution of radionuclides in zeolitized tuffs from cores taken adjacent to nuclear test cavities and chimneys. In-situ measurements provide insight to the distribution of specific radionuclides on a micro-scale, mineralogical controls of radionuclide sorption, and identification of migration pathways (i.e., matrix diffusion, fractures). (5) Chapter 5 outlines new analytical techniques developed in LLNL/ANCD to study hydrologic problems at the NTS using inductively coupled plasma mass spectrometry (ICP-MS). With costs for thermal-ionization mass spectrometry (TIMS) increasing relative to sample preparation time and facility support, ICP-MS technology provides a means for rapidly measuring dilute concentrations of radionuclides with precision and abundance sensitivity comparable to TIMS. (6) Chapter 6 provides results of a characterization study of alluvium collected from the U-1a complex approximately 300 meters below ground surface in Yucca Flat. The purpose of this investigation was to provide information on particle size, mineralogical context, the proportion of primary and secondary minerals, and the texture of the reactive surface area that could be used to accurately model radionuclide interactions within Nevada Test Site alluvial basins (i.e., Frenchman Flat and Yucca Flat).« less

  10. Radionuclide Migration through Sediment and Concrete: 16 Years of Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovich, Elizabeth C.; Mattigod, Shas V.; Snyder, Michelle MV

    The Waste Management Project provides safe, compliant, and cost-effective waste management services for the Hanford Site and the U.S. Department of Energy (DOE) complex. Part of these services includes safe disposal of low-level waste and mixed low-level waste at the Hanford Low-Level Waste Burial Grounds in accordance with the requirements of DOE Order 435.1, Radioactive Waste Management. To partially satisfy these requirements, performance assessment analyses were completed and approved. DOE Order 435.1 also requires continuing data collection to increase confidence in the critical assumptions used in these analyses to characterize the operational features of the disposal facility that are reliedmore » on to satisfy the performance objectives identified in the order. Cement-based solidification and stabilization is considered for hazardous waste disposal because it is easily done and cost-efficient. One critical assumption is that concrete will be used as a waste form or container material at the Hanford Site to control and minimize the release of radionuclide constituents in waste into the surrounding environment. Concrete encasement would contain and isolate the waste packages from the hydrologic environment and act as an intrusion barrier. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The radionuclides iodine-129, selenium-75, technetium-99, and uranium-238 have been identified as long-term dose contributors (Mann et al. 2001; Wood et al. 1995). Because of their anionic nature in aqueous solutions, these constituents of potential concern may be released from the encased concrete by mass flow and/or diffusion and migrate into the surrounding subsurface environment (Serne et al. 1989; 1992; 1993a, b; 1995). Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. Each of the test methods performed throughout the lifetime of the project has focused on different aspects of the concrete waste form weathering process. Diffusion of different analytes [technetium-99 (Tc-99), iodine-125 (I-125), stable iodine (I), uranium (U), and rhenium (Re)] has been quantified from experiments under both saturated and unsaturated conditions. The water-saturated conditions provide a conservative estimate of the concrete’s performance in situ, and the unsaturated conditions provide a more accurate estimate of the diffusion of contaminants from the concrete.« less

  11. Association of actinides with microorganisms and clay: Implications for radionuclide migration from waste-repository sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohnuki, T.; Francis, A.; Kozai, N.

    2010-04-01

    We conducted a series of basic studies on the microbial accumulation of actinides to elucidate their migration behavior around backfill materials used in the geological disposal of radioactive wastes. We explored the interactions of U(VI) and Pu(VI) with Bacillus subtilis, kaolinite clay, and within a mixture of the two, directly analyzing their association with the bacterium in the mixture by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The accumulation of U by the mixture rose as the numbers of B. subtilis cells increased. Treating the kaolinite with potassium acetate (CH{sub 3}COOK) removed approximately 80% of the associated uraniummore » while only 65% was removed in the presence of B. subtilis. TEM-EDS analysis confirmed that most of the U taken from solution was associated with B. subtilis. XANES analyses revealed that the oxidation state of uranium associated with B. subtilis, kaolinite, and with the mixture containing both was U(VI). The amount of Pu sorbed by B. subtilis increased with time, but did not reach equilibrium in 48 h; in kaolinite alone, equilibrium was attained within 8 h. After 48 h, the oxidation state of Pu in the solutions exposed to B. subtilis and to the mixture had changed to Pu(V), whereas the oxidation state of the Pu associated with both was Pu(IV). In contrast, there was no change in the oxidation state of Pu in the solution nor on kaolinite after exposure to Pu(VI). SEM-EDS analysis indicated that most of the Pu in the mixture was associated with the bacteria. These results suggest that U(VI) and Pu(VI) preferentially are sorbed to bacterial cells in the presence of kaolinite clay, and that the mechanism of accumulation of U and Pu differs. U(VI) is sorbed directly to the bacterial cells, whereas Pu(VI) first is reduced to Pu(V) and then to Pu(IV), and the latter is associated with the cells. These results have important implications on the migrations of radionuclides around the repository sites of geological disposal. Microbial cells compete with clay colloids for radionuclides accumulation, and because of their higher affinity and larger size, the microbes accumulate radionuclides and migrate much slower than do the clay colloids. Additionally, biofilm coatings formed on the fractured rock surfaces also accumulate radionuclides, thereby retarding radionuclide migration.« less

  12. Pacific bluefin tuna transport Fukushima-derived radionuclides from Japan to California

    PubMed Central

    Madigan, Daniel J.; Baumann, Zofia; Fisher, Nicholas S.

    2012-01-01

    The Fukushima Dai-ichi release of radionuclides into ocean waters caused significant local and global concern regarding the spread of radioactive material. We report unequivocal evidence that Pacific bluefin tuna, Thunnus orientalis, transported Fukushima-derived radionuclides across the entire North Pacific Ocean. We measured γ-emitting radionuclides in California-caught tunas and found 134Cs (4.0 ± 1.4 Bq kg−1) and elevated 137Cs (6.3 ± 1.5 Bq kg−1) in 15 Pacific bluefin tuna sampled in August 2011. We found no 134Cs and background concentrations (∼1 Bq kg−1) of 137Cs in pre-Fukushima bluefin and post-Fukushima yellowfin tunas, ruling out elevated radiocesium uptake before 2011 or in California waters post-Fukushima. These findings indicate that Pacific bluefin tuna can rapidly transport radionuclides from a point source in Japan to distant ecoregions and demonstrate the importance of migratory animals as transport vectors of radionuclides. Other large, highly migratory marine animals make extensive use of waters around Japan, and these animals may also be transport vectors of Fukushima-derived radionuclides to distant regions of the North and South Pacific Oceans. These results reveal tools to trace migration origin (using the presence of 134Cs) and potentially migration timing (using 134Cs:137Cs ratios) in highly migratory marine species in the Pacific Ocean. PMID:22645346

  13. Effects of groundwater on radionuclides buried at the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, B.A.; Maestas, S.; Thompson, J.L.

    A large fraction of the radioactive source from a nuclear test is confined to the cavity created by the event. A {open_quotes}melt glass{close_quotes} accumulates at the bottom of the cavity where the highest concentrations of refractory radionuclides (e.g., Zr-95, Eu-155, Pu-239) are found. Most of the movement of radionuclides underground at the Nevada Test Site occurs through the agency of moving groundwater. Results from samples that were taken from the cavity formed in 1981 by the underground test named Baseball indicate that radioactive materials have remained where they were deposited during the formation of the cavity and chimney. There maymore » not be a mechanism for radionuclides to migrate at this location due to small hydraulic gradients and a low hydraulic conductivity. The study done at this site offers further evidence that extensive migration of radioactive materials away from underground nuclear test sites does not occur in the absence of appreciable groundwater movement.« less

  14. Uranium mill tailings: nuclear waste and natural laboratory for geochemical and radioecological investigations

    USGS Publications Warehouse

    Landa, Edward R.

    2004-01-01

    Uranium mill tailings (UMT) are a high volume, low specific activity radioactive waste typically disposed in surface impoundments. This review focuses on research on UMT and related earth materials during the past decade relevant to the assessment of: (1) mineral hosts of radionuclides; (2) the use of soil analogs in predicting long-term fate of radionuclides; (3) microbial and diagenetic processes that may alter radionuclide mobility in the surficial environment; (4) waste-management technologies to limit radionuclide migration; and (5) the impact of UMT on biota.

  15. Influence of Intrinsic Colloid Formation on Migration of Cerium through Fractured Carbonate Rock.

    PubMed

    Tran, Emily L; Klein-BenDavid, Ofra; Teutsch, Nadya; Weisbrod, Noam

    2015-11-17

    Migration of colloids may facilitate the transport of radionuclides leaked from near surface waste sites and geological repositories. Intrinsic colloids are favorably formed by precipitation with carbonates in bicarbonate-rich environments, and their migration may be enhanced through fractured bedrock. The mobility of Ce(III) as an intrinsic colloid was studied in an artificial rainwater solution through a natural discrete chalk fracture. The results indicate that at variable injection concentrations (between 1 and 30 mg/L), nearly all of the recovered Ce takes the form of an intrinsic colloid of >0.45 μm diameter, including in those experiments in which the inlet solution was first filtered via 0.45 μm. In all experiments, these intrinsic colloids reached their maximum relative concentrations prior to that of the Br conservative tracer. Total Ce recovery from experiments using 0.45 μm filtered inlet solutions was only about 0.1%, and colloids of >0.45 μm constituted the majority of recovered Ce. About 1% of Ce was recovered when colloids of >0.45 μm were injected, indicating the enhanced mobility and recovery of Ce in the presence of bicarbonate.

  16. Natural radionuclides in rocks and soils of the high-mountain regions of the Great Caucasus

    NASA Astrophysics Data System (ADS)

    Asvarova, T. A.; Abdulaeva, A. S.; Magomedov, M. A.

    2012-06-01

    The results of the radioecological survey in the high-mountain regions of the Great Caucasus at the heights from 2200 to 3800 m a.s.l. are considered. This survey encompassed the territories of Dagestan, Azerbaijan, Georgia, Chechnya, Northern Ossetia-Alania, Kabardino-Balkaria, Karachay-Cherkessia, and the Stavropol and Krasnodar regions. The natural γ background radiation in the studied regions is subjected to considerable fluctuations and varies from 6 to 40 μR/h. The major regularities of the migration of natural radionuclides 238U, 232Th, 226Ra, and 40K in soils in dependence on the particular environmental conditions (the initial concentration of the radionuclides in the parent material; the intensity of pedogenesis; the intensity of the vertical and horizontal migration; and the geographic, climatic, and landscape-geochemical factors) are discussed.

  17. [Migration in soil and accumulation in plants of peaceful nuclear explosion products in Perm region].

    PubMed

    Raskosha, N G; Shuktova, I I

    2015-01-01

    The data on the migration capacity in soil and accumulation of 238Pu, 239, 240Pu, 137Cs and 90Sr by plants in the area of a peaceful nuclear explosion located in the taiga zone are presented. The influence of the soil parameters on the distribution and transformation forms of the radionuclides in the podzolic soil profile was studied. The major amounts of man-made radionuclides were found in the matter of the ground lip. The accumulation parameters of pollutants by plants were the highest for the leaves, young branches and conifer of trees.

  18. Nanoparticles migration in fractured rocks and affects on contaminant migration

    NASA Astrophysics Data System (ADS)

    Missana, Tiziana; Garcia-Gutierrez, Miguel; Alonso, Ursula

    2014-05-01

    In previous studies, the transport behavior of artificial (gold and latex) and natural (smectite clay) colloids, within a planar fracture in crystalline rock, was analyzed. In order to better understand the effects of colloid size, shape and surface charge on nanoparticle migration and especially on filtration processes on natural rock surfaces, different clay colloids and oxide nanoparticles were selected and their transport studied as a function of the residence time. In all the cases, (a fraction of) the nanoparticles travelled in the fracture as fast as or faster than water (with a retardation factor, Rf ≤ 1) and the observed Rf, was related to the Taylor dispersion coefficient, accounting for colloid size, water velocity and fracture width. However, under most of the cases, in contrast to the behavior of a conservative tracer, colloids recovery was much lower than 100 %. Differences in recovery between different nanoparticles, under similar residence times, were analyzed. In order to evaluate the possible consequences, on contaminant migration, of the presence of nanoparticles in the system, transport tests were carried out with both colloids and sorbing radionuclides. The overall capacity for colloids of enhancing radionuclide migration in crystalline rock fractures is discussed. Acknowledgments: The research leading to these results received funding from EU FP7/2007-2011 grant agreement Nº 295487 (BELBAR, Bentonite Erosion: effects on the Long term performance of the engineered Barrier and Radionuclide Transport) and by the Spanish Government under the project NANOBAG (CTM2011-2797).

  19. Colloid-Facilitated Radionuclide Transport: Current State of Knowledge from a Nuclear Waste Repository Risk Assessment Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimus, Paul William; Zavarin, Mavrik; Wang, Yifeng

    2017-01-25

    This report provides an overview of the current state of knowledge of colloid-facilitated radionuclide transport from a nuclear waste repository risk assessment perspective. It draws on work that has been conducted over the past 3 decades, although there is considerable emphasis given to work that has been performed over the past 3-5 years as part of the DOE Used Fuel Disposition Campaign. The timing of this report coincides with the completion of a 3-year DOE membership in the Colloids Formation and Migration (CFM) partnership, an international collaboration of scientists studying colloid-facilitated transport of radionuclides at both the laboratory and field-scalesmore » in a fractured crystalline granodiorite at the Grimsel Test Site in Switzerland. This Underground Research Laboratory has hosted the most extensive and carefully-controlled set of colloid-facilitated solute transport experiments that have ever been conducted in an in-situ setting, and a summary of the results to date from these efforts, as they relate to transport over long time and distance scales, is provided in Chapter 3 of this report.« less

  20. [On the effect of partial flooding on 137Cs and 90Sr in forest biogeocenosis].

    PubMed

    Perevolotskaia, T V; Bulavik, I M; Perevolotskiĭ, A N

    2009-01-01

    The analysis was made on 137Cs and 90Sr distribution oak, pine and hornbeam plantations depending on different under soil water levels. Intensity of 137Cs and of 90Sr migration along the vertical layers of soils is determined by under soil water level at a specific sampling site. The closer under soil water to the surface of the soil, the lowest radionuclide contamination is in the upper soil levels and the highest radionuclide contamination is in the deeper layers. The "fast" and "slow" quasi diffusion coefficients for 137Cs and for 90Sr and their contribution to the total migration of radionuclide through vertical soil levels were determined. A decrease in 137Cs and increase in 90Sr transfer factors to the elements of overground phytomass as a result of under soil water level lowering was established.

  1. Artificial and natural radionuclides in soils of the southern and middle taiga zones of Komi Republic

    NASA Astrophysics Data System (ADS)

    Beznosikov, V. A.; Lodygin, E. D.; Shuktomova, I. I.

    2017-07-01

    Specific activities of artificial (137Cs, 90Sr) and natural (40K, 232Th, 226Ra) radionuclides in background soils of southern and middle taiga of Komi Republic have been estimated with consideration for the landscape-geochemical features of the territory. It has been shown that their accumulation and migration in soils are determined by the following factors: position in relief, texture, and organic matter content. No anomalous zones with increased contents of radionuclides in soils have been revealed.

  2. Ion beam analyses of radionuclide migration in heterogeneous rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alonso, Ursula; Missana, Tiziana; Garcia-Gutierrez, Miguel

    2013-07-18

    The migration of radionuclides (RN) in the environment is a topic of general interest, for its implications on public health, and it is an issue for the long-term safety studies of deep geological repositories (DGR) for high-level radioactive waste. The role played by colloids on RN migration is also of great concern. Diffusion and sorption are fundamental mechanisms controlling RN migration in rocks and many experimental approaches are applied to determine transport parameters for low sorbing RN in homogeneous rocks. However, it is difficult to obtain relevant data for high sorbing RN or colloids, for which diffusion lengths are extremelymore » short, or within heterogeneous rocks, where transport might be different in different minerals. The ion beam techniques Rutherford Backscattering Spectrometry (RBS) and micro-Particle Induced X-Ray Emission ({mu}PIXE), rarely applied in the field, were selected for their micro-analytical potential to study RN diffusion and surface retention within heterogeneous rocks. Main achievements obtained during last 12 years are highlighted.« less

  3. TYBO/BENHAM: Model Analysis of Groundwater Flow and Radionuclide Migration from Underground Nuclear Tests in Southwestern Pahute Mesa, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew Wolfsberg; Lee Glascoe; Guoping Lu

    Recent field studies have led to the discovery of trace quantities of plutonium originating from the BENHAM underground nuclear test in two groundwater observation wells on Pahute Mesa at the Nevada Test Site. These observation wells are located 1.3 km from the BENHAM underground nuclear test and approximately 300 m from the TYBO underground nuclear test. In addition to plutonium, several other conservative (e.g. tritium) and reactive (e.g. cesium) radionuclides were found in both observation wells. The highest radionuclide concentrations were found in a well sampling a welded tuff aquifer more than 500m above the BENHAM emplacement depth. These measurementsmore » have prompted additional investigations to ascertain the mechanisms, processes, and conditions affecting subsurface radionuclide transport in Pahute Mesa groundwater. This report describes an integrated modeling approach used to simulate groundwater flow, radionuclide source release, and radionuclide transport near the BENHAM and TYBO underground nuclear tests on Pahute Mesa. The components of the model include a flow model at a scale large enough to encompass many wells for calibration, a source-term model capable of predicting radionuclide releases to aquifers following complex processes associated with nonisothermal flow and glass dissolution, and site-scale transport models that consider migration of solutes and colloids in fractured volcanic rock. Although multiple modeling components contribute to the methodology presented in this report, they are coupled and yield results consistent with laboratory and field observations. Additionally, sensitivity analyses are conducted to provide insight into the relative importance of uncertainty ranges in the transport parameters.« less

  4. Multiactinide Analysis with Accelerator Mass Spectrometry for Ultratrace Determination in Small Samples: Application to an in Situ Radionuclide Tracer Test within the Colloid Formation and Migration Experiment at the Grimsel Test Site (Switzerland).

    PubMed

    Quinto, Francesca; Blechschmidt, Ingo; Garcia Perez, Carmen; Geckeis, Horst; Geyer, Frank; Golser, Robin; Huber, Florian; Lagos, Markus; Lanyon, Bill; Plaschke, Markus; Steier, Peter; Schäfer, Thorsten

    2017-07-05

    The multiactinide analysis with accelerator mass spectrometry (AMS) was applied to samples collected from the run 13-05 of the Colloid Formation and Migration (CFM) experiment at the Grimsel Test Site (GTS). In this in situ radionuclide tracer test, the environmental behavior of 233 U, 237 Np, 242 Pu, and 243 Am was investigated in a water conductive shear zone under conditions relevant for a nuclear waste repository in crystalline rock. The concentration of the actinides in the GTS groundwater was determined with AMS over 6 orders of magnitude from ∼15 pg/g down to ∼25 ag/g. Levels above 10 fg/g were investigated with both sector field inductively coupled plasma mass spectrometry (SF-ICPMS) and AMS. Agreement within a relative uncertainty of 50% was found for 237 Np, 242 Pu, and 243 Am concentrations determined with the two analytical methods. With the extreme sensitivity of AMS, the long-term release and retention of the actinides was investigated over 8 months in the tailing of the breakthrough curve of run 13-05 as well as in samples collected up to 22 months after. Furthermore, the evidence of masses 241 and 244 u in the CFM samples most probably representing 241 Am and 244 Pu employed in a previous tracer test demonstrated the analytical capability of AMS for in situ studies lasting more than a decade.

  5. Hydrology of the solid waste burial ground as related to potential migration of radionuclides, Idaho National Engineering Laboratory

    USGS Publications Warehouse

    Barraclough, Jack T.; Robertson, J.B.; Janzer, V.J.; Saindon, L.G.

    1976-01-01

    A study was made (1970-1974) to evaluate the geohydrologic and geochemical controls on subsurface migration of radionuclides from pits and trenches in the Idaho National Engineering Laboratory (INEL) solid waste burial ground and to determine the existence and extent of radionuclide migration from the burial ground. A total of about 1,700 sediment, rock, and water samples were collected from 10 observation wells drilled in and near the burial ground of Idaho National Engineering Laboratory, formerly the National Reactor Testing Station (NRTS). Within the burial ground area, the subsurface rocks are composed principally of basalt. Wind- and water-deposited sediments occur at the surface and in beds between the thicker basalt zones. Two principal sediment beds occur at about 110 feet and 240 feet below the land surface. The average thickness of the surficial sedimentary layer is about 15 feet while that of the two principal subsurface layers is 13 and 14 feet, respectively. The water table in the aquifer beneath the burial ground is at a depth of about 580 feet. Fission, activation, and transuranic elements were detected in some of the samples from the 110- and 240-foot sedimentary layers. (Woodard-USGS)

  6. Vertical Migration of Radionuclides in Soils on the Chernobyl Nuclear Power Plant (ChNPP) Exclusion Zone (1987-2007)

    NASA Astrophysics Data System (ADS)

    Jannik, G. T.; Ivanov, Y. A.; Kashparov, V. A.; Levchuk, S. E.; Bondarkov, M. D.; Maksymenko, A. M.; Farfan, E. B.; Marra, J. C.

    2009-12-01

    In 1986-1987, a set of experimental sites for studies of vertical migration of radionuclides released from the ChNPP was established in the ChNPP Exclusion Zone for various fallout plumes. The sites were selected considering local terrain and geo-chemical conditions, as well as physical and chemical characteristics of the fallout. The experimental sites included grasslands, and pre-Chernobyl cultivated meadows and croplands. Vertical migration of radionuclides in the ChNPP Exclusion Zone grasslands was evaluated. Parameters of 137Cs, 90Sr, and 239,240Pu transfer were calculated and the periods during which these radionuclides reach their ecological half-life in the upper 5 cm soil layer were estimated. Migration capabilities of these radionuclides in the grassland soils tend to decrease as follows: 90Sr >137Cs ≥ 239,240Pu. A significant retardation of the 137Cs vertical migration was shown in the grasslands long after the Chernobyl accident. During the 21st year after the fallout, average Tecol values for 137Cs (the period of time it takes in the environment for 137Cs to reach half the value of its original concentration in the upper 5 cm soil layer, regardless of physical decay) are as follows: 180 - 320 years for grassland containing automorphous mineral soils of a light granulometric composition; and 90 - 100 years for grassland containing hydromorphous organogenic soils. These values are significantly higher than those estimated for the period of 6-9 years after the fallout: 60 - 150 years and 11 - 20 years, respectively. The absolute 137Cs Tecol values are by factors of 3-7 higher than 137Cs radiological decay values long after the accident. Changes in the exposure dose resulting from the soil deposited 137Cs only depend on its radiological decay. This factor should necessarily be considered for development of predictive assessments, including dose exposures for the hypothetical population in case of their re-evacuation to the exclusion areas. The obtained results have to be considered for predictive assessments, including those for dose exposures for the hypothetical population in case of their re-evacuation to the exclusion areas if implementation and/or planning of remediation activities at the ChNPP Exclusion Zone are considered reasonable and appropriate.

  7. Influence of heteroaggregation processes between intrinsic colloids and carrier colloids on cerium(III) mobility through fractured carbonate rocks.

    PubMed

    Tran, Emily; Klein Ben-David, Ofra; Teutch, Nadya; Weisbrod, Noam

    2016-09-01

    Colloid facilitated transport of radionuclides has been implicated as a major transport vector for leaked nuclear waste in the subsurface. Sorption of radionuclides onto mobile carrier colloids such as bentonite and humic acid often accelerates their transport through saturated rock fractures. Here, we employ column studies to investigate the impact of intrinsic, bentonite and humic acid colloids on the transport and recovery of Ce(III) through a fractured chalk core. Ce(III) recovery where either bentonite or humic colloids were added was 7.7-26.9% Ce for all experiments. Greater Ce(III) recovery was observed when both types of carrier colloids were present (25.4-37.4%). When only bentonite colloids were present, Ce(III) appeared to be fractionated between chemical sorption to the bentonite colloid surfaces and heteroaggregation of bentonite colloids with intrinsic carbonate colloids, precipitated naturally in solution. However, scanning electron microscope (SEM) images and colloid stability experiments reveal that in suspensions of humic acid colloids, colloid-facilitated Ce(III) migration results only from the latter attachment mechanism rather than from chemical sorption. This observed heteroaggregation of different colloid types may be an important factor to consider when predicting potential mobility of leaked radionuclides from geological repositories for spent fuel located in carbonate rocks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Modeling Radionuclide Decay Chain Migration Using HYDROGEOCHEM

    NASA Astrophysics Data System (ADS)

    Lin, T. C.; Tsai, C. H.; Lai, K. H.; Chen, J. S.

    2014-12-01

    Nuclear technology has been employed for energy production for several decades. Although people receive many benefits from nuclear energy, there are inevitably environmental pollutions as well as human health threats posed by the radioactive materials releases from nuclear waste disposed in geological repositories or accidental releases of radionuclides from nuclear facilities. Theoretical studies have been undertaken to understand the transport of radionuclides in subsurface environments because that the radionuclide transport in groundwater is one of the main pathway in exposure scenarios for the intake of radionuclides. The radionuclide transport in groundwater can be predicted using analytical solution as well as numerical models. In this study, we simulate the transport of the radionuclide decay chain using HYDROGEOCHEM. The simulated results are verified against the analytical solution available in the literature. Excellent agreements between the numerical simulation and the analytical are observed for a wide spectrum of concentration. HYDROGECHEM is a useful tool assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.

  9. Plutonium Particle Migration in the Shallow Vadose Zone: The Nevada Test Site as an Analog Site

    NASA Astrophysics Data System (ADS)

    Hunt, J. R.; Smith, D. K.

    2004-12-01

    The upper meter of the vadose zone in desert environments is the horizon where wastes have been released and human exposure is determined through dermal, inhalation, and food uptake pathways. This region is also characterized by numerous coupled processes that determine contaminant transport, including precipitation infiltration, evapotranspiration, daily and annual temperature cycling, dust resuspension, animal burrowing, and geochemical weathering reactions. While there is considerable interest in colloidal transport of minerals, pathogenic organisms, and contaminants in the vadose zone, there are limited field sites where the actual occurrence of contaminant migration can be quantified over the appropriate spatial and temporal scales of interest. At the US Department of Energy Nevada Test Site, there have been numerous releases of radionuclides since the 1950's that have become field-scale tracer tests. One series of tests was the four safety shots conducted in an alluvial valley of Area 11 in the 1950's. These experiments tested the ability of nuclear materials to survive chemical explosions without initiating fission reactions. Four above-ground tests were conducted and they released plutonium and uranium on the desert valley floor with only one of the tests undergoing some fission. Shortly after the tests, the sites were surveyed for radionuclide distribution on the land surface using aerial surveys and with depth. Additional studies were conducted in the 1970's to better understand the fate of plutonium in the desert that included studies of depth distribution and dust resuspension. More recently, plutonium particle distribution in the soil profile was detected using autoradiography. The results to date demonstrate the vertical migration of plutonium particles to depths in excess of 30 cm in this arid vadose zone. While plutonium migration at the Nevada Test Site has been and continues to be a concern, these field experiments have become analog sites for the release of radiological materials potentially important to consequence management investigations. In particular, these 50-year old experiments with long and detailed site investigations under relative undisturbed conditions offer insights into transport pathways that must be represented in simulation models that evaluate responses to radiological dispersal devices (RDDs). A compilation of the available site characterization data suggests additional experimental and modeling programs that can ultimately quantify the fate of contaminant particles released at the soil surface.

  10. Mechanisms for surface contamination of soils and bottom sediments in the Shagan River zone within former Semipalatinsk Nuclear Test Site.

    PubMed

    Aidarkhanov, A O; Lukashenko, S N; Lyakhova, O N; Subbotin, S B; Yakovenko, Yu Yu; Genova, S V; Aidarkhanova, A K

    2013-10-01

    The Shagan River is the only surface watercourse within the former Semipalatinsk Test Site (STS). Research in the valley of the Shagan River was carried out to study the possible migration of artificial radionuclides with surface waters over considerable distances, with the possibility these radionuclides may have entered the Irtysh River. The investigations revealed that radioactive contamination of soil was primarily caused by the first underground nuclear test with soil outburst conducted at the "Balapan" site in Borehole 1004. The surface nuclear tests carried out at the "Experimental Field" site and global fallout made insignificant contributions to contamination. The most polluted is the area in the immediate vicinity of the "Atomic" Lake crater. Contamination at the site is spatial. The total area of contamination is limited to 10-12 km from the crater piles. The ratio of plutonium isotopes was useful to determine the source of soil contamination. There was virtual absence of artificial radionuclide migration with surface waters, and possible cross-border transfer of radionuclides with the waters of Shagan and Irtysh rivers was not confirmed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Geomorphic control of radionuclide diffusion in desert soils

    USGS Publications Warehouse

    Pelletier, J.D.; Harrington, C.D.; Whitney, J.W.; Cline, M.; DeLong, S.B.; Keating, G.; Ebert, T.K.

    2005-01-01

    Diffusion is a standard model for the vertical migration of radionuclides in soil profiles. Here we show that diffusivity values inferred from fallout 137CS profiles in soils on the Fortymile Wash alluvial fan, Nye County, Nevada, have a strong inverse correlation with the age of the geomorphic surface. This result suggests that radionuclide-bound particles are predominantly transported by infiltration rather than by bulk-mixing processes such as wetting/ drying, freeze/thaw, and bioturbation. Our results provide a preliminary basis for using soil-geomorphic mapping, point-based calibration data, and the diffusion model to predict radionuclide trans desert soils within a pedotransfer-function approach. Copyright 2005 by the American Geophysical Union.

  12. An Experimental Study of Diffusivity of Technetium-99 in Hanford Vadose Zone Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattigod, Shas V.; Bovaird, Chase C.; Wellman, Dawn M.

    2012-11-01

    One of the methods being considered at the Hanford site in Washington for safely disposing of low-level radioactive wastes (LLW) is to encase the waste in concrete and entomb the packages in the Hanford vadose zone sediments. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages with concrete. Any failure of the concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion andmore » move into the surrounding subsurface sediments. It is therefore necessary to conduct an assessment of the performance of the concrete encasement structure and the surrounding soil’s ability to retard radionuclide migration. The retardation factors for radionuclides contained in the waste packages can be determined from measurements of diffusion coefficients for these contaminants through concrete and fill material. Because of their anionic nature in aqueous solutions, the radionuclides, 99Tc and 129I were identified as long-term dose contributors in LLW. The leachability and/or diffusion of these radionuclide species must be measured in order to assess the long-term performance of waste grouts when contacted with vadose-zone porewater or groundwater. To measure the diffusivity, a set of experiments were conducted using 99Tc-spiked concrete (with 0 and 4% metallic iron additions) in contact with unsaturated soil half-cells that reflected the typical moisture contents of Hanford vadose zone sediments. The 99Tc diffusion profiles in the soil half cells were measured after a time lapse of ~1.9 yr. Using the concentration profiles, the 99Tc diffusivity coefficients were calculated based on Fick’s Second Law.« less

  13. Characterization of Discharge Areas of Radionuclides Originating From Nuclear Waste Repositories

    NASA Astrophysics Data System (ADS)

    Marklund, L.; Xu, S.; Worman, A.

    2009-05-01

    If leakages in nuclear waste repositories located in crystalline bedrock arise, radionuclides will reach the biosphere and cause a risk of radiological impact. The extent of the radiological impact depends on in which landscape elements the radionuclides emerge. In this study, we investigate if there are certain landscape elements that generally will act as discharge areas for radionuclides leaking from subsurface deposits. We also characterize the typical properties that distinguish these areas from others. In humid regions, landscape topography is the most important driving force for groundwater flow. Because groundwater is the main transporting agent for migrating radionuclides, the topography will determine the flowpaths of leaking radionuclides. How topography and heterogeneities in the subsurface affect the discharge distribution of the radionuclides is therefore an important scope of this study. To address these issues, we developed a 3-D transport model. Our analyses are based on site-specific data from two different areas in Sweden, Forsmark, Uppland, and Oskarshamn, Småland. The Swedish Nuclear Waste Management Company (SKB) has selected these two areas as candidate areas for a deep repository of nuclear waste and the areas are currently subject to site investigations. Our results suggest that there are hot-spots in the landscape i.e. areas with high probability of receiving large amounts of radionuclides from a leaking repository of nuclear waste. The hot-spots concentrate in the sea, streams, lakes and wetlands. All these elements are found at lower elevations in the landscape. This pattern is mostly determined by the landscape topography and the locations of fracture zones. There is a relationship between fracture zones and topography, and therefore the importance of the topography for the discharge area distribution is not contradicted by the heterogeneity in the bedrock. The varieties of landscape elements which have potential for receiving significant amounts of radionuclides are limited. To limit the radiological dose assessment, analyses should be focused to and more detailed in such landscape areas in which doses are expected to be high. Due to the similarities among deep groundwater discharge areas, one can make site-specific analyses of those areas, which have a broad applicability for migration of radionuclides originating from a nuclear waste repository.

  14. [Trans-uranium elements in food products (review)].

    PubMed

    Vasilenko, I Ia

    1994-01-01

    The data of Russian and foreign authors concerning of level environmental contamination and migration of transuranic elements in food chains, metabolism and biological danger of nuclides entering in human body with foods are reviewed. A level of radionuclide load of population and doses of radiation are discussed and the danger is estimated. The doses of radiation from radionuclide ingestion are lower than level of allowed radiation safety standards.

  15. Mobility of Source Zone Heavy Metals and Radionuclides: The Mixed Roles of Fermentative Activity on Fate and Transport of U and Cr. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerlach, Robin; Peyton, Brent M.; Apel, William A.

    2014-01-29

    Various U. S. Department of Energy (DOE) low and medium-level radioactive waste sites contain mixtures of heavy metals, radionuclides and assorted organic materials. In addition, there are numerous sites around the world that are contaminated with a mixture of organic and inorganic contaminants. In most sites, over time, water infiltrates the wastes, and releases metals, radionuclides and other contaminants causing transport into the surrounding environment. We investigated the role of fermentative microorganisms in such sites that may control metal, radionuclide and organics migration from source zones. The project was initiated based on the following overarching hypothesis: Metals, radionuclides and othermore » contaminants can be mobilized by infiltration of water into waste storage sites. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These low molecular weight organic acids and alcohols can increase metal and radionuclide mobility by chelation (i.e., certain organic acids) or decrease mobility by stimulating respiratory metal reducing microorganisms. We demonstrated that fermentative organisms capable of affecting the fate of Cr6+, U6+ and trinitrotoluene can be isolated from organic-rich low level waste sites as well as from less organic rich subsurface environments. The mechanisms, pathways and extent of contaminant transformation depend on a variety of factors related to the type of organisms present, the aqueous chemistry as well as the geochemistry and mineralogy. This work provides observations and quantitative data across multiple scales that identify and predict the coupled effects of fermentative carbon and electron flow on the transport of radionuclides, heavy metals and organic contaminants in the subsurface; a primary concern of the DOE Environmental Remediation Science Division (ERSD) and Subsurface Geochemical Research (SBR) Program.« less

  16. GIS Modelling of Radionuclide Transport from the Semipalatinsk Test Site

    NASA Astrophysics Data System (ADS)

    Balakay, L.; Zakarin, E.; Mahura, A.; Baklanov, A.; Sorensen, J. H.

    2009-04-01

    In this study, the software complex GIS-project MigRad (Migration of Radionuclide) was developed, tested and applied for the territory of the Semipalatinsk test site/ polygon (Republic of Kazakhstan), where since 1961, in total 348 underground nuclear explosions were conducted. The MigRad is oriented on integration of large volumes of different information (mapping, ground-based, and satellite-based survey): and also includes modeling on its base local redistribution of radionuclides by precipitation and surface waters and by long-range transport of radioactive aerosols. The existing thermal anomaly on territory of the polygon was investigated in details, and the object-oriented analysis was applied for the studied area. Employing the RUNOFF model, the simulation of radionuclides migration with surface waters was performed. Employing the DERMA model, the simulation of long-term atmospheric transport, dispersion and deposition patterns for cesium was conducted from 3 selected locations (Balapan, Delegen, and Experimental Field). Employing geoinformation technology, the mapping of the of the high temperature zones and epicenters of radioactive aerosols transport for the territory of the test site was carried out with post-processing and integration of modelling results into GIS environment. Contamination levels of pollution due to former nuclear explosions for population and environment of the surrounding polygon territories of Kazakhstan as well as adjacent countries were analyzed and evaluated. The MigRad was designed as instrument for comprehensive analysis of complex territorial processes influenced by former nuclear explosions on the territory of Semipalatinsk test site. It provides possibilities in detailed analyses for (i) extensive cartographic material, remote sensing, and field measurements data collected in different level databases; (ii) radionuclide migration with flows using accumulation and redistribution of soil particles; (iii) thermal anomalies caused by explosions and observed on the test site and adjacent territories, and (iv) long-range transport of radioactive aerosols with analysis of dynamics of spatial distribution, averaged and accumulated fields for concentration and deposition patterns.

  17. Radionuclide Retention in Concrete Wasteforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovaird, Chase C.; Jansik, Danielle P.; Wellman, Dawn M.

    2011-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate predictionmore » of radionuclide fate when the wasteforms come in contact with groundwater. The information present in the report provides data that (1) measures the effect of concrete wasteform properties likely to influence radionuclide migration; and (2) quantifies the rate of carbonation of concrete materials in a simulated vadose zone repository.« less

  18. Monitoring radionuclide contamination in the unsaturated zone - Lessons learned at the Amargosa Desert Research Site, Nye County, Nevada

    USGS Publications Warehouse

    Stonestrom, David A.; Abraham, Jared D.; Andraski, Brian J.; Baker, Ronald J.; Mayers, C. Justin; Michel, Robert L.; Prudic, David E.; Striegl, Robert G.; Walvoord, Michelle Ann

    2004-01-01

    Contaminant-transport processes are being investigated at the U.S. Geological Survey’s Amargosa Desert Research Site (A DRS), adjacent to the Nation’s first commercial disposal facility for low-level radioactive waste. Gases containing tritium and radiocarbon are migrating through a 110-m thick unsaturated zone from unlined trenches that received waste from 1962 to 1992. Results relevant to long- term monitoring of radionuclides are summarized as follows. Contaminant plumes have unexpected histories and spatial configurations due to uncertainties in the: (1) geologic framework, (2) biochemical reactions involving waste components, (3) interactions between plume components and unsaturated-zone materials, (4) disposal practices, and (5) physical transport processes. Information on plume dynamics depends on ex-situ wet-chemical techniques because in-situ sensors for the radionuclides of interest do not exist. As at other radioactive-waste disposal facilities, radionuclides at the ADRS are mixed with varying amounts of volatile organic compounds (VOCs). Carbon-dioxide and VOC anomalies provide proxies for radioactive contamination. Contaminants in the unsaturated zone migrate along preferential pathways. Effective monitoring thus requires accurate geologic characterization. Direct- current electrical-resistivity imaging successfully mapped geologic units controlling preferential transport at the ADRS. Direct sampling of water from the unsaturated zone is complex and time consuming. Sampling plant water is an efficient alternative for mapping shallow tritium contamination.

  19. Radionuclide Transport in Fracture-Granite Interface Zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Q; Mori, A

    In situ radionuclide migration experiments, followed by excavation and sample characterization, were conducted in a water-conducting shear zone at the Grimsel Test Site (GTS) in Switzerland to study diffusion paths of radionuclides in fractured granite. In this work, we employed a micro-scale mapping technique that interfaces laser ablation sampling with inductively coupled plasma-mass spectrometry (LA/ICP-MS) to measure the fine-scale (micron-range) distribution of actinides ({sup 234}U, {sup 235}U, and {sup 237}Np) in the fracture-granite interface zones. Long-lived {sup 234}U, {sup 235}U, and {sup 237}Np were detected in flow channels, as well as in the adjacent rock matrix, using the sensitive, feature-basedmore » mapping of the LA/ICP-MS technique. The injected sorbing actinides are mainly located within the advective flowing fractures and the immediately adjacent regions. The water-conducting fracture studied in this work is bounded on one side by mylonite and the other by granitic matrix regions. These actinides did not penetrate into the mylonite side as much as the relatively higher-porosity granite matrix, most likely due to the low porosity, hydraulic conductivity, and diffusivity of the fracture wall (a thickness of about 0.4 mm separates the mylonite region from the fracture) and the mylonite region itself. Overall, the maximum penetration depth detected with this technique for the more diffusive {sup 237}Np over the field experimental time scale of about 60 days was about 10 mm in the granitic matrix, illustrating the importance of matrix diffusion in retarding radionuclide transport from the advective fractures. Laboratory tests and numerical modeling of radionuclide diffusion into granitic matrix was conducted to complement and help interpret the field results. Measured apparent diffusivity of multiple tracers in granite provided consistent predictions for radionuclide transport in the fractured granitic rock.« less

  20. Transport of Gas Phase Radionuclides in a Fractured, Low-Permeability Reservoir

    NASA Astrophysics Data System (ADS)

    Cooper, C. A.; Chapman, J.

    2001-12-01

    The U.S. Atomic Energy Commission (predecessor to the Department of Energy, DOE) oversaw a joint program between industry and government in the 1960s and 1970s to develop technology to enhance production from low-permeability gas reservoirs using nuclear stimulation rather than conventional means (e.g., hydraulic and/or acid fracturing). Project Rio Blanco, located in the Piceance Basin, Colorado, was the third experiment under the program. Three 30-kiloton nuclear explosives were placed in a 2134 m deep well at 1780, 1899, and 2039 m below the land surface and detonated in May 1973. Although the reservoir was extensively fractured, complications such as radionuclide contamination of the gas prevented production and subsequent development of the technology. Two-dimensional numerical simulations were conducted to identify the main transport processes that have occurred and are currently occurring in relation to the detonations, and to estimate the extent of contamination in the reservoir. Minor modifications were made to TOUGH2, the multiphase, multicomponent reservoir simulator developed at Lawrence Berkeley National Laboratories. The simulator allows the explicit incorporation of fractures, as well as heat transport, phase change, and first order radionuclide decay. For a fractured two-phase (liquid and gas) reservoir, the largest velocities are of gases through the fractures. In the gas phase, tritium and one isotope of krypton are the principle radionuclides of concern. However, in addition to existing as a fast pathway, fractures also permit matrix diffusion as a retardation mechanism. Another retardation mechanism is radionuclide decay. Simulations show that incorporation of fractures can significantly alter transport rates, and that radionuclides in the gas phase can preferentially migrate upward due to the downward gravity drainage of liquid water in the pores. This project was funded by the National Nuclear Security Administration, Nevada Operations Office, under DOE Contract no. DE-AC08-00NV13609.

  1. Fast analysis of radionuclide decay chain migration

    NASA Astrophysics Data System (ADS)

    Chen, J. S.; Liang, C. P.; Liu, C. W.; Li, L.

    2014-12-01

    A novel tool for rapidly predicting the long-term plume behavior of an arbitrary length radionuclide decay chain is presented in this study. This fast tool is achieved based on generalized analytical solutions in compact format derived for a set of two-dimensional advection-dispersion equations coupled with sequential first-order decay reactions in groundwater system. The performance of the developed tool is evaluated by a numerical model using a Laplace transform finite difference scheme. The results of performance evaluation indicate that the developed model is robust and accurate. The developed model is then used to fast understand the transport behavior of a four-member radionuclide decay chain. Results show that the plume extents and concentration levels of any target radionuclide are very sensitive to longitudinal, transverse dispersion, decay rate constant and retardation factor. The developed model are useful tools for rapidly assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.

  2. [Migration of industrial radionuclides in soils and benthal deposits at the coastal margins of the temporary waste storage facility (TWSF) of the Northwest Center for Radioactive Waste Management (SevRAO) and its influence on the possible contamination of the sea offshore waters].

    PubMed

    Filonova, A A; Seregin, V A

    2014-01-01

    For obtaining the integral information about the current radiation situation in the sea offshore waters of the temporary waste storage facility (TWSF) of the Northwest Center for Radioactive Waste Management "SevRAO" in the Andreeva Bay and in the settle Gremikha with a purpose of a comprehensive assessment of its condition there was performed radiation-ecological monitoring of the adjacent sea offshore waters of the TWSF. It was shown that in the territory of industrial sites of the TWSF as a result of industrial activity there are localized areas of pollution by man-made radionuclides. As a result of leaching of radionuclides by tidal stream, snowmelt and rainwater radioactive contamination extends beyond the territory of the sanitary protection zone and to the coastal sea offshore waters. To confirm the coastal pollution of the sea offshore waters the levels of mobility of 90Sr and 137Cs in environmental chains and bond strength of them with the soil and benthal deposits were clarified by determining with the method of detection of the forms of the presence of radionuclides in these media. There was established a high mobility of 137Cs and 90Sr in soils and benthal deposits (desorption coefficient (Kd) of 137Cs and 90Sr (in soils - 0.56 and 0.98), in the sediments - 0.82). The migration of radionuclides in environmental chains can lead to the contamination of the environment, including the sea offshore waters.

  3. Migration of conservative and sorbing radionuclides in heterogeneous fractured rock aquifers at the Nevada Test Site

    NASA Astrophysics Data System (ADS)

    Boryta, J. R.; Wolfsberg, A. V.

    2003-12-01

    The Nevada Test Site (NTS) is the United States continental nuclear weapons testing site. The larger underground tests, including BENHAM and TYBO, were conducted at Pahute Mesa. The BENHAM test, conducted in 1968, was detonated 1.4 km below the surface and the TYBO test, conducted in 1975, was detonated at a depth of 765 m. Between 1996 and 1998, several radionuclides were discovered in trace concentrations in a monitoring well complex 273 m from TYBO and 1300 m from BENHAM. Previous studies associated with these measurements have focused primarily on a) plutonium discovered in the observation wells, which was identified through isotopic finger printing as originating at BENHAM, b) colloid-facilitated plutonium transport processes, and c) vertical convection in subsurface nuclear test collapse chimneys. In addition to plutonium, several other non-, weakly-, and strongly-sorbing radionuclides were discovered in trace concentrations in the observation wells, including tritium, carbon-14, chlorine-36, iodine-129, technetium-99, neptunium-237, strontium-90, cesium-137, americium-241, and europium-152,154,155. The range in retardation processes affecting these different radionuclides provides additional information for assessing groundwater solute transport model formulations. For all radionuclides, simulation results are most sensitive to the fracture porosity and fracture aperture. Additionally, for weakly sorbing Np, simulation results are highly sensitive to the matrix sorption coefficient. For strongly sorbing species, migration in the absence of colloids can only be simulated if fracture apertures are set very large, reducing the amount of diffusion that can occur. For these species, colloid-facilitated transport appears to be a more likely explanation for the measurements. This is corroborated with colloid-transport model simulations.

  4. Salmon migration patterns revealed the temporal and spatial fluctuations of the radiocesium levels in terrestrial and ocean environments.

    PubMed

    Arai, Takaomi

    2014-01-01

    The disabling of the Fukushima Daiichi Nuclear Power Plant (F1NPP) resulted in the release of radionuclides, including 134Cs and 137Cs, into the air and the ocean. The unpredicted nuclear accident is of global concern for human health and the ecosystem. Although investigations of radionuclides in environments were performed shortly after the accident started, the temporal and spatial impacts and fluctuations on the releasing radionuclides to natural environment remain unclear. I focused on salmon, which migrate from inland to the open ocean globally, to reveal the three-year (May 2011 to February 2014) fluctuations and accumulations of 134Cs and 137Cs from terrestrial to open ocean environments after the F1NPP accident. The 134Cs and 137Cs concentrations in six salmonids exhibited lower temporal variations for three years after the F1NPP accident, suggesting that these radionuclides are widely distributed and these radionuclides remain in the natural environment globally with less convergence. The accumulation patterns were significantly different among the different salmon species. Fluvial (freshwater residence) type salmons exhibited significantly higher accumulation in 134Cs (25.3-40.2 Bq kg(-1) in mean) and 137Cs (41.4-51.7 Bq kg(-1) in mean) than did the anadromous (sea-run) type salmons (0.64-8.03 Bq kg(-1) in mean 134Cs and 0.42-10.2 Bq kg(-1) in mean 137Cs) suggesting widespread contamination in terrestrial environments versus the coastal and open ocean environments. Salmonids are the most highly migratory animals and are characterised by their strong tendency to return home to their natal site for reproduction. Salmonids have a potential to be a good indicator as an effective monitoring animal.

  5. Radionuclide migration in clayrock host formations for deep geological disposal of radioactive waste: advances in process understanding and up-scaling methods resulting from the EC integrated project `Funmig

    NASA Astrophysics Data System (ADS)

    Altmann, S.; Tournassat, C.; Goutelard, F.; Parneix, J. C.; Gimmi, T.; Maes, N.

    2009-04-01

    One of the ‘pillars' supporting Safety Cases for deep geological disposal of radioactive waste in clayrock formations is the knowledge base regarding radionuclide (Rn) retention by sorption and diffusion-driven transport which is why the EC integrated project ‘Funmig' focused a major part of its effort on advancing understanding of these two macroscopic phenomena. This talk presents some of the main results of this four year effort (2005-2008). One of the keys to understanding diffusion-driven transport of anionic and cationic radionuclide species in clayrocks lies in a detailed understanding of the phenomena governing Rn total concentration and speciation (dissolved, adsorbed) in the different types of pore spaces present in highly-compacted masses of permanently charged clay minerals. Work carried out on a specifically synthesized montmorillonite (a model for the clay mineral fraction in clayrocks) led to development, and preliminary experimental validation, of a conceptually coherent set of theoretical models (molecular dynamics, electrostatic double layer, thermodynamic) describing dissolved ion and water solvent behavior in this material. This work, complemented by the existing state of the art, provides a sound theoretical basis for explaining such important phenomena as anion exclusion, cation exchange and the diffusion behavior of anions, weakly sorbing cations and water tracers. Concerning the behavior of strongly sorbing and/or redox-reactive radionuclides in clay systems, project research improved understanding of the nature of sorption reactions and sorbed species structure for key radioelements, or analogues (U, Se, Eu, Sm, Yb, Nd) on the basal surfaces and in the interlayers of synthetic or purified clay minerals. A probable mechanism for Se(IV) retention by reduction to Se° in Fe2+-containing clays was brought to light; this same process was also studied on the Callovo-Oxfordien clayrock targeted by the French radwaste management program. The migration of most radionuclides in clayrocks, in particular the actinides, is limited by their strong sorption on rock mineral surfaces. Much effort was devoted in Funmig to improving understanding of this process on the clayrocks being studied in the Swiss, Belgian and French radwaste management programs. Specific attention was focused on (i) elucidating the effect of dissolved organic matter on Am(III), Th(IV), Eu(III) sorption on clayrock surfaces and (ii) determining the link between Kd measured on dispersed rock systems and the Kd operant in intact rock volumes, i.e. during diffusion. Regarding the latter question, results indicate that Kd values for ‘dispersed' and ‘intact' materials are quite similar for certain elements (Na, Sr, Cs, Co). On the other hand, Kd values obtained by modeling results of diffusion experiments involving strongly sorbing elements as Cs, Co and Eu were always significantly smaller than those predicted based on sorption data measured in corresponding batch systems. This is an area where additional research is being planned. A major effort was devoted to improving understanding of the effects of small-scale (m to cm) clayrock structure and large-scale (dm to hm) mineralogical composition on radionuclide diffusion-retention. The program focusing on the small-scale produced a method for simulating the results of tracer diffusion in an intact rock based on the actual rock microstructure of the rock sample to be used in the diffusion experiment. This model was used to predict / inverse model the spatial distribution of highly sorbing tracers (Eu, Cu). This overall approach is also being used to understand how changes in mineralogical composition can affect the values of macroscopic diffusion parameters (De, tortuosity, anisiotropy). At a much larger scale, the results of (i) a geostatistical analysis of clayrock mineralogical variability and (ii) measurements of De and Kd dependence on mineralogy for Cs and Cl, were combined to create models of parameter variability at the formation scale. These models were used to evaluate the effects of formation scale heterogeneity on predictive modeling of radionuclide migration. Measurements and modeling of natural tracer profiles were also carried out in order to evaluate the diffusion characteristics at geological time and space scales.

  6. The role of organic complexants and microparticulates in the facilitated transport of radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schilk, A.J.; Robertson, D.E.; Abel, K.H.

    1996-12-01

    This progress report describes the results of ongoing radiological and geochemical investigations of the mechanisms of radionuclide transport in groundwater at two low-level waste (LLW) disposal sites within the waste management area of the Chalk River Laboratories (CRL), Ontario, Canada. These sites, the Chemical Pit liquid disposal facility and the Waste Management Area C solid LLW disposal site, have provided valuable 30- to 40-year-old field locations for characterizing the migration of radionuclides and evaluating a number of recent site performance objectives for LLW disposal facilities. This information will aid the NRC and other federal, state, and local regulators, as wellmore » as LLW disposal site developers and waste generators, in maximizing the effectiveness of existing or projected LLW disposal facilities for isolating radionuclides from the general public and thereby improving the health and safety aspects of LLW disposal.« less

  7. Actinide geochemistry: from the molecular level to the real system.

    PubMed

    Geckeis, Horst; Rabung, Thomas

    2008-12-12

    Geochemical processes leading to either mobilization or retention of radionuclides in an aquifer system are significantly influenced by their interaction with rock, sediment and colloid surfaces. Therefore, a sound safety assessment of nuclear waste disposal requires the elucidation and quantification of those processes. State-of-the-art analytical techniques as e.g. laser- and X-ray spectroscopy are increasingly applied to study solid-liquid interface reactions to obtain molecular level speciation insight. We have studied the sorption of trivalent lanthanides and actinides onto aluminium oxides, hydroxides and purified clay minerals by the time-resolved laser fluorescence spectroscopy and X-ray-absorption spectroscopy. Chemical constitution and structure of surface bound actinides are proposed based on spectroscopic information. Open questions still remain with regard to the exact nature of mineral surface ligands and the mineral/water interface. Similarities of spectroscopic data obtained for M(III) sorbed onto gamma-alumina, and clay minerals suggest the formation of very comparable inner-sphere surface complexes such as S-O-An(III)(OH)x(2-x)(H2O)5-x at pH > 5. Those speciation data are found consistent with those predicted by surface complexation modelling. The applicability of data obtained for pure mineral phases to actinide sorption onto heterogeneously composed natural clay rock is examined by experiments and by geochemical modelling. Good agreement of experiment and model calculations is found for U(VI) and trivalent actinide/lanthanide sorption to natural clay rock. The agreement of spectroscopy, geochemical modelling and batch experiments with natural rock samples and purified minerals increases the reliability in model predictions. The assessment of colloid borne actinide migration observed in various laboratory and field studies calls for detailed information on actinide-colloid interaction. Kinetic stabilization of colloid bound actinides can be due to inclusion into inorganic colloid matrix or by macromolecular rearrangement in case of organic, humic/fulvic like colloids. Only a combination of spectroscopy, microscopy and classical batch sorption experiments can help to elucidate the actinide-colloid interaction mechanisms and thus contribute to the assessment of colloids for radionuclide migration.

  8. Tracing long-term vadose zone processes at the Nevada Test Site, USA

    PubMed Central

    Hunt, James R.; Tompson, Andrew F. B.

    2010-01-01

    The nuclear weapons testing programme of the USA has released radionuclides to the subsurface at the Nevada Test Site. One of these tests has been used to study the hydrological transport of radionuclides for over 25 years in groundwater and the deep unsaturated zone. Ten years after the weapon’s test, a 16 year groundwater pumping experiment was initiated to study the mobility of radionuclides from that test in an alluvial aquifer. The continuously pumped groundwater was released into an unlined ditch where some of the water infiltrated into the 200 m deep vadose zone. The pumped groundwater had well-characterized tritium activities that were utilized to trace water migration in the shallow and deep vadose zones. Within the near-surface vadose zone, tritium levels in the soil water are modelled by a simple one-dimensional, analytical wetting front model. In the case of the near-surface soils at the Cambric Ditch experimental site, water flow and salt accumulation appear to be dominated by rooted vegetation, a mechanism not included within the wetting front model. Simulation results from a two-dimensional vadose groundwater flow model illustrate the dominance of vertical flow in the vadose zone and the recharge of the aquifer with the pumped groundwater. The long-time series of hydrological data provides opportunities to understand contaminant transport processes better in the vadose zone with an appropriate level of modelling. PMID:21785525

  9. Delayed signatures of underground nuclear explosions

    PubMed Central

    Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; Ruddle, David G.; Wagoner, Jeffrey L.; Myers, Katherine B. L.; Emer, Dudley F.; Drellack, Sigmund L.; Chipman, Veraun D.

    2016-01-01

    Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. We observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). Our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates. PMID:26979288

  10. Delayed signatures of underground nuclear explosions

    NASA Astrophysics Data System (ADS)

    Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; Ruddle, David G.; Wagoner, Jeffrey L.; Myers, Katherine B. L.; Emer, Dudley F.; Drellack, Sigmund L.; Chipman, Veraun D.

    2016-03-01

    Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. We observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). Our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates.

  11. Delayed signatures of underground nuclear explosions.

    PubMed

    Carrigan, Charles R; Sun, Yunwei; Hunter, Steven L; Ruddle, David G; Wagoner, Jeffrey L; Myers, Katherine B L; Emer, Dudley F; Drellack, Sigmund L; Chipman, Veraun D

    2016-03-16

    Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. We observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People's Republic of Korea (DPRK). Our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates.

  12. Radionuclide inventories for the F- and H-area seepage basin groundwater plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiergesell, Robert A; Kubilius, Walter P.

    2016-05-01

    Within the General Separations Areas (GSA) at the Savannah River Site (SRS), significant inventories of radionuclides exist within two major groundwater contamination plumes that are emanating from the F- and H-Area seepage basins. These radionuclides are moving slowly with groundwater migration, albeit more slowly due to interaction with the soil and aquifer matrix material. The purpose of this investigation is to quantify the activity of radionuclides associated with the pore water component of the groundwater plumes. The scope of this effort included evaluation of all groundwater sample analyses obtained from the wells that have been established by the Environmental Compliancemore » & Area Completion Projects (EC&ACP) Department at SRS to monitor groundwater contamination emanating from the F- and H-Area Seepage Basins. Using this data, generalized groundwater plume maps for the radionuclides that occur in elevated concentrations (Am-241, Cm-243/244, Cs-137, I-129, Ni-63, Ra-226/228, Sr-90, Tc-99, U-233/234, U-235 and U-238) were generated and utilized to calculate both the volume of contaminated groundwater and the representative concentration of each radionuclide associated with different plume concentration zones.« less

  13. The influence of physico-chemical properties of soils on the bioavailability of 65Zn

    NASA Astrophysics Data System (ADS)

    Kochetkov, Ilia; Anisimov, Vyacheslav

    2014-05-01

    Stability of soils to the effects of man-made origin pollutants is determined by their buffer capaci-ty (the ability to inactivate pollutants in a soil - soil solution - plant system). Soils are character-ized by the same types of stability as the ecosystem as a whole. Increased migration activity of pollutants is a symptom of ecological trouble, due to the soil transformation in an unstable state. Thus, the problem of the stability of soil is one of the fundamental problems of modern science. The aim of the study was to estimate the buffering capacity of soil as a key factor of their ecological and geochemical stability with respect to a relatively long-lived radionuclides 65Zn (T1/2 = 224 days), representing the radiological hazard in the location of nuclear facilities. There was proposed a method for scoring the buffering capacity of soils as for 65Zn contamination. It's based on dependence between the main physico-chemical soil properties and accumulation of the radionuclide in the aboveground plant parts (barley kind of "Zazersky-85"). The role of the considered indicators of soil health in the accumulation of radiozinc by plants was defined. The essence of this technique was to assess the contribution of individual characteristics of the soil condition, which play the most important role in the regulation of mobility (and bioavailability) of radionuclides, using the method of stepwise multiple regression analysis. For this aim representative sampling was compiled (from 20 soil types and varieties belonging to different climatic zones of the European part of the Russian Federation), thus providing a wide range of variation of the studied physical and chemical parameters, and also vegetation model experiments using 65Zn were held. On the basis of the conducted statistical analysis was revealed that the dominant contribution to the variation of the effective trait (accumulation coefficient of 65Zn) make: CaCO3 content, mobile iron (Tamm extract) and pH. As a result the studied soils were ranked according to the degree of resistance to pollution by 65Zn (ability to restrict migration ability of radionuclide in soil - plant system). It turned out that inactivating ability of soddy-carbonaceous soils (rendzina) more than 8 times higher than the same indicator for soddy-podzolic soils; 5 - 7 times for gray forest soils and chernozems; 1.5 times for the southern chernozems.

  14. Recent advances in the detection of specific natural organic compounds as carriers for radionuclides in soil and water environments, with examples of radioiodine and plutonium

    DOE PAGES

    Santschi, P. H.; Xu, C.; Zhang, S.; ...

    2017-03-09

    Among the key environmental factors influencing the fate and transport of radionuclides in the environment is natural organic matter (NOM). While this has been known for decades, there still remains great uncertainty in predicting NOM-radionuclide interactions because of lack of understanding of radionuclide interactions with the specific organic moieties within NOM. Furthermore, radionuclide-NOM studies conducted using modelled organic compounds or elevated radionuclide concentrations provide compromised information related to true environmental conditions. Thus, sensitive techniques are required not only for the detection of radionuclides, and their different species, at ambient and/or far-field concentrations, but also for potential trace organic compounds thatmore » are chemically binding these radionuclides. GC-MS and AMS techniques developed in our lab are reviewed in this paper that aim to assess how two radionuclides, iodine and plutonium, form strong bonds with NOM by entirely different mechanisms; iodine tends to bind to aromatic functionalities, whereas plutonium binds to N-containing hydroxamate siderophores at ambient concentrations. While low-level measurements are a prerequisite for assessing iodine and plutonium migration at nuclear waste sites and as environmental tracers, it is necessary to determine their in-situ speciation, which ultimately controls their mobility and transport in natural environments. Finally and more importantly, advanced molecular-level instrumentation (e.g., nuclear magnetic resonance (NMR) and Fourier-transform ion cyclotron resonance coupled with electrospray ionization (ESI-FTICRMS) were applied to resolve either directly or indirectly the molecular environments in which the radionuclides are associated with the NOM.« less

  15. Recent advances in the detection of specific natural organic compounds as carriers for radionuclides in soil and water environments, with examples of radioiodine and plutonium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santschi, P. H.; Xu, C.; Zhang, S.

    Among the key environmental factors influencing the fate and transport of radionuclides in the environment is natural organic matter (NOM). While this has been known for decades, there still remains great uncertainty in predicting NOM-radionuclide interactions because of lack of understanding of radionuclide interactions with the specific organic moieties within NOM. Furthermore, radionuclide-NOM studies conducted using modelled organic compounds or elevated radionuclide concentrations provide compromised information related to true environmental conditions. Thus, sensitive techniques are required not only for the detection of radionuclides, and their different species, at ambient and/or far-field concentrations, but also for potential trace organic compounds thatmore » are chemically binding these radionuclides. GC-MS and AMS techniques developed in our lab are reviewed in this paper that aim to assess how two radionuclides, iodine and plutonium, form strong bonds with NOM by entirely different mechanisms; iodine tends to bind to aromatic functionalities, whereas plutonium binds to N-containing hydroxamate siderophores at ambient concentrations. While low-level measurements are a prerequisite for assessing iodine and plutonium migration at nuclear waste sites and as environmental tracers, it is necessary to determine their in-situ speciation, which ultimately controls their mobility and transport in natural environments. Finally and more importantly, advanced molecular-level instrumentation (e.g., nuclear magnetic resonance (NMR) and Fourier-transform ion cyclotron resonance coupled with electrospray ionization (ESI-FTICRMS) were applied to resolve either directly or indirectly the molecular environments in which the radionuclides are associated with the NOM.« less

  16. Problems in shallow land disposal of solid low-level radioactive waste in the united states

    USGS Publications Warehouse

    Stevens, P.R.; DeBuchananne, G.D.

    1976-01-01

    Disposal of solid low-level wastes containing radionuclides by burial in shallow trenches was initiated during World War II at several sites as a method of protecting personnel from radiation and isolating the radionuclides from the hydrosphere and biosphere. Today, there are 11 principal shallow-land burial sites in the United States that contain a total of more than 1.4 million cubic meters of solid wastes contaminated with a wide variety of radionuclides. Criteria for burial sites have been few and generalized and have contained only minimal hydrogeologic considerations. Waste-management practices have included the burial of small quantities of long-lived radionuclides with large volumes of wastes contaminated with shorter-lived nuclides at the same site, thereby requiring an assurance of extremely long-time containment for the entire disposal site. Studies at 4 of the 11 sites have documented the migration of radionuclides. Other sites are being studied for evidence of containment failure. Conditions at the 4 sites are summarized. In each documented instance of containment failure, ground water has probably been the medium of transport. Migrating radionuclides that have been identified include90Sr,137Cs,106Ru,239Pu,125Sb,60Co, and3H. Shallow land burial of solid wastes containing radionuclides can be a viable practice only if a specific site satisfies adequate hydrogeologic criteria. Suggested hydrogeologic criteria and the types of hydrogeologic data necessary for an adequate evaluation of proposed burial sites are given. It is mandatory that a concomitant inventory and classification be made of the longevity, and the physical and chemical form of the waste nuclides to be buried, in order that the anticipated waste types can be matched to the containment capability of the proposed sites. Ongoing field investigations at existing sites will provide data needed to improve containment at these sites and help develop hydrogeologic criteria for new sites. These studies have necessitated the development of special drilling, sampling, well construction, and testing techniques. A recent development in borehole geophysical techniques is downhole spectral gammaray analysis which not only locates but identifies specific radionuclides in the subsurface. Field investigations are being supplemented by laboratory studies of the hydrochemistry of the transuranic elements, the kinetics of solid-liquid phase interactions, and the potential complexing of radionuclides with organic compounds and solvents which mobilize normally highly sorbable nuclides. Theoretical studies of digital predictive solute transport models are being implemented to assure their availability for application to problems and processes identified in the field and laboratory. ?? 1976 International Association of Engineering Geology.

  17. The behavior of U- and Th-series nuclides in groundwater

    USGS Publications Warehouse

    Porcelli, D.; Swarzenski, P.W.

    2003-01-01

    Groundwater has long been an active area of research driven by its importance both as a societal resource and as a component in the global hydrological cycle. Key issues in groundwater research include inferring rates of transport of chemical constituents, determining the ages of groundwater, and tracing water masses using chemical fingerprints. While information on the trace elements pertinent to these topics can be obtained from aquifer tests using experimentally introduced tracers, and from laboratory experiments on aquifer materials, these studies are necessarily limited in time and space. Regional studies of aquifers can focus on greater scales and time periods, but must contend with greater complexities and variations. In this regard, the isotopic systematics of the naturally occurring radionuclides in the U- and Th- decay series have been invaluable in investigating aquifer behavior of U, Th, and Ra. These nuclides are present in all groundwaters and are each represented by several isotopes with very different half-lives, so that processes occurring over a range of time-scales can be studied (Table 1⇓). Within the host aquifer minerals, the radionuclides in each decay series are generally expected to be in secular equilibrium and so have equal activities (see Bourdon et al. 2003). In contrast, these nuclides exhibit strong relative fractionations within the surrounding groundwaters that reflect contrasting behavior during release into the water and during interaction with the surrounding host aquifer rocks. Radionuclide data can be used, within the framework of models of the processes involved, to obtain quantitative assessments of radionuclide release from aquifer rocks and groundwater migration rates. The isotopic variations that are generated also have the potential for providing fingerprints for groundwaters from specific aquifer environments, and have even been explored as a means for calculating groundwater ages.

  18. Numerical modeling of the radionuclide water pathway with HYDRUS and comparison with the IAEA model of SR 44.

    PubMed

    Merk, Rainer

    2012-02-01

    This study depicts a theoretical experiment in which the radionuclide transport through the porous material of a landfill consisting of concrete rubble (e.g., from the decommissioning of nuclear power plants) and the subsequent migration through the vadose zone and aquifer to a model well is calculated by means of the software HYDRUS-1D (Simunek et al., 2008). The radionuclides originally contained within the rubble become dissolved due to leaching caused by infiltrated rainwater. The resulting well-water contamination (in Bq/L) is calculated numerically as a function of time and location and compared with the outcome of a simplified analytic model for the groundwater pathway published by the IAEA (2005). Identical model parameters are considered. The main objective of the present work is to evaluate the predictive capacity of the more simple IAEA model using HYDRUS-1D as a reference. For most of the radionuclides considered (e.g., ¹²⁹I, and ²³⁹Pu), results from applying the IAEA model were found to be comparable to results from the more elaborate HYDRUS modeling, provided the underlying parameter values are comparable. However, the IAEA model appears to underestimate the effects resulting from, for example, high nuclide mobility, short half-life, or short-term variations in the water infiltration. The present results indicate that the IAEA model is suited for screening calculations and general recommendation purposes. However, the analysis of a specific site should be accompanied by detailed HYDRUS computer simulations. In all models considered, the calculation outcome largely depends on the choice of the sorption parameter K(d). Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Uptake and transport of radioactive nickel and cadmium into three vegetables after wet aerial contamination.

    PubMed

    Fismes, Joëlle; Echevarria, Guillaume; Leclerc-Cessac, Elisabeth; Morel, Jean Louis

    2005-01-01

    Knowledge of radionuclide or trace element retention and translocation to plants following an aerial contamination event, for example, sprinkling with contaminated water, is necessary for the evaluation of human exposure through consumption of contaminated vegetables. The fate of 63Ni and 109Cd in all plant parts of three different vegetables after wet deposition on leaves or on fruits was studied. Lettuce (Lactuca sativa L.), radish (Raphanus sativus L.), and bean (Phaseolus vulgaris L.) grown under controlled conditions in a growth chamber were contaminated with 63Ni and 109Cd either on leaves, by means of two different contamination methods (a single early contamination and a repetitive one), or on bean husks (third contamination method: a single contamination at a late stage). Spiked and nonspiked organs were harvested at maturity and radionuclide contents were measured. The fraction retained was on average 56% of the initially administered doses of 63Ni and 87% of 109Cd. The leaf-to-other organ translocation factor was considerably higher for 63Ni (on average 43% of retained radioactivity) than for 109Cd (8%). Nickel-63 migrated throughout the whole plant following foliar contamination, and mainly toward young leaves, seeds in formation, and sink organs, whereas 109Cd migrated to a much lesser extent and only to the organs that were closest to the spiked one, and not at all into fruit. After a fruit contamination event, both radionuclides were translocated into the seeds of spiked fruits. Radionuclide retention and translocation were not affected by plant species, but principally by the type of organ contaminated.

  20. Development of a sorption data base for the cementitious near-field of a repository for radioactive waste

    NASA Astrophysics Data System (ADS)

    Wieland, E.; Bradbury, M. H.; van Loon, L.

    2003-01-01

    The migration of radionuclides within a repository for radioactive waste is retarded due to interaction with the engineered barrier system. Sorption processes play a decisive role in the retardation of radionuclides in the repository environment, and thus, the development of sorption data bases (SDBs) is an important task and an integral part of performance assessment. The methodology applied in the development of a SDB for the cementitious near-field of a repository for long-lived intermediate-level waste is presented in this study. The development of such a SDB requires knowledge of the chemical conditions of the near-field and information on the uptake process of radionuclides by hardened cement paste. The principles upon which the selection of the “best available” laboratory sorption values is based are outlined. The influence of cellulose degradation products, cement additives and cement-derived colloids on the sorption behaviour of radionuclides is addressed in conjunction with the development of the SDB.

  1. Diffusion of Radionuclides in Concrete and Soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.

    2012-04-25

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Such concrete encasement would contain and isolate the waste packages from the hydrologic environment and would act as an intrusion barrier. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion and move into the surrounding subsurface environment. Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability ofmore » the surrounding soil to retard radionuclide migration. The objective of our study was to measure the diffusivity of Re, Tc and I in concrete containment and the surrounding vadose zone soil. Effects of carbonation, presence of metallic iron, and fracturing of concrete and the varying moisture contents in soil on the diffusivities of Tc and I were evaluated.« less

  2. Phosphate-Mediated Remediation of Metals and Radionuclides

    DOE PAGES

    Martinez, Robert J.; Beazley, Melanie J.; Sobecky, Patricia A.

    2014-01-01

    Worldwide industrialization activities create vast amounts of organic and inorganic waste streams that frequently result in significant soil and groundwater contamination. Metals and radionuclides are of particular concern due to their mobility and long-term persistence in aquatic and terrestrial environments. As the global population increases, the demand for safe, contaminant-free soil and groundwater will increase as will the need for effective and inexpensive remediation strategies. Remediation strategies that include physical and chemical methods (i.e., abiotic) or biological activities have been shown to impede the migration of radionuclide and metal contaminants within soil and groundwater. However, abiotic remediation methods are oftenmore » too costly owing to the quantities and volumes of soils and/or groundwater requiring treatment. The in situ sequestration of metals and radionuclides mediated by biological activities associated with microbial phosphorus metabolism is a promising and less costly addition to our existing remediation methods. This review highlights the current strategies for abiotic and microbial phosphate-mediated techniques for uranium and metal remediation.« less

  3. Evaluation of the Hydrologic Source Term from Underground Nuclear Tests on Pahute Mesa at the Nevada Test Site: The CHESHIRE Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawloski, G A; Tompson, A F B; Carle, S F

    The objectives of this report are to develop, summarize, and interpret a series of detailed unclassified simulations that forecast the nature and extent of radionuclide release and near-field migration in groundwater away from the CHESHIRE underground nuclear test at Pahute Mesa at the NTS over 1000 yrs. Collectively, these results are called the CHESHIRE Hydrologic Source Term (HST). The CHESHIRE underground nuclear test was one of 76 underground nuclear tests that were fired below or within 100 m of the water table between 1965 and 1992 in Areas 19 and 20 of the NTS. These areas now comprise the Pahutemore » Mesa Corrective Action Unit (CAU) for which a separate subregional scale flow and transport model is being developed by the UGTA Project to forecast the larger-scale migration of radionuclides from underground tests on Pahute Mesa. The current simulations are being developed, on one hand, to more fully understand the complex coupled processes involved in radionuclide migration, with a specific focus on the CHESHIRE test. While remaining unclassified, they are as site specific as possible and involve a level of modeling detail that is commensurate with the most fundamental processes, conservative assumptions, and representative data sets available. However, the simulation results are also being developed so that they may be simplified and interpreted for use as a source term boundary condition at the CHESHIRE location in the Pahute Mesa CAU model. In addition, the processes of simplification and interpretation will provide generalized insight as to how the source term behavior at other tests may be considered or otherwise represented in the Pahute Mesa CAU model.« less

  4. Managing previously disposed waste to today's standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    A Radioactive Waste Management Complex (RWMC) was established at the Idaho National Engineering Laboratory (INEL) in 1952 for controlled disposal of radioactive waste generated at the INEL. Between 1954 and 1970 waste characterized by long lived, alpha emitting radionuclides from the Rocky Flats Plant was also buried at this site. Migration of radionuclides and other hazardous substances from the buried Migration of radionuclides and other hazardous substances from the buried waste has recently been detected. A Buried Waste Program (BWP) was established to manage cleanup of the buried waste. This program has four objectives: (1) determine contaminant sources, (2) determinemore » extent of contamination, (3) mitigate migration, and (4) recommend an alternative for long term management of the waste. Activities designed to meet these objectives have been under way since the inception of the program. The regulatory environment governing these activities is evolving. Pursuant to permitting activities under the Resource Conservation and Recovery Act (RCRA), the Department of Energy (DOE) and the Environmental Protection Agency (EPA) entered into a Consent Order Compliance Agreement (COCA) for cleanup of past practice disposal units at the INEL. Subsequent to identification of the RWMC as a release site, cleanup activities proceeded under dual regulatory coverage of RCRA and the Atomic Energy Act. DOE, EPA, and the State of Idaho are negotiating a RCRA/Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Interagency Agreement (IAG) for management of waste disposal sites at the INEL as a result of the November 1989 listing of the INEL on the National Priority List (NPL). Decision making for selection of cleanup technology will be conducted under the CERCLA process supplemented as required to meet the requirements of the National Environmental Policy Act (NEPA). 7 figs.« less

  5. Geochemical effects on the behavior of LLW radionuclides in soil/groundwater environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupka, K.M.; Sterne, R.J.

    1995-12-31

    Assessing the migration potential of radionuclides leached from low-level radioactive waste (LLW) and decommissioning sites necessitates information on the effects of sorption and precipitation on the concentrations of dissolved radionuclides. Such an assessment requires that the geochemical processes of aqueous speciation, complexation, oxidation/reduction, and ion exchange be taken into account. The Pacific Northwest National Laboratory (PNNL) is providing technical support to the U.S. Nuclear Regulatory Commission (NRC) for defining the solubility and sorption behavior of radionuclides in soil/ground-water environments associated with engineered cementitious LLW disposal systems and decommissioning sites. Geochemical modeling is being used to predict solubility limits for radionuclidesmore » under geochemical conditions associated with these environments. The solubility limits are being used as maximum concentration limits in performance assessment calculations describing the release of contaminants from waste sources. Available data were compiled regarding the sorption potential of radionuclides onto {open_quotes}fresh{close_quotes} cement/concrete where the expected pH of the cement pore waters will equal to or exceed 10. Based on information gleaned from the literature, a list of preferred minimum distribution coefficients (Kd`s) was developed for these radionuclides. The K{sub d} values are specific to the chemical environments associated with the evolution of the compositions of cement/concrete pore waters.« less

  6. Assessment of potential migration of radionuclides and trace elements from the White Mesa uranium mill to the Ute Mountain Ute Reservation and surrounding areas, southeastern Utah

    USGS Publications Warehouse

    Naftz, David L.; Ranalli, Anthony J.; Rowland, Ryan C.; Marston, Thomas M.

    2011-01-01

    In 2007, the Ute Mountain Ute Tribe requested that the U.S. Environmental Protection Agency and U.S. Geological Survey conduct an independent evaluation of potential offsite migration of radionuclides and selected trace elements associated with the ore storage and milling process at an active uranium mill site near White Mesa, Utah. Specific objectives of this study were (1) to determine recharge sources and residence times of groundwater surrounding the mill site, (2) to determine the current concentrations of uranium and associated trace elements in groundwater surrounding the mill site, (3) to differentiate natural and anthropogenic contaminant sources to groundwater resources surrounding the mill site, (4) to assess the solubility and potential for offsite transport of uranium-bearing minerals in groundwater surrounding the mill site, and (5) to use stream sediment and plant material samples from areas surrounding the mill site to identify potential areas of offsite contamination and likely contaminant sources.

  7. Integration of genotoxicity and population genetic analyses in kangaroo rats (Dipodomys merriami) exposed to radionuclide contamination at the Nevada Test Site, USA

    USGS Publications Warehouse

    Theodorakis, Christopher W.; Bickham, John W.; Lamb, Trip; Medica, Philip A.; Lyne, T. Barrett

    2001-01-01

    We examined effects of radionuclide exposure at two atomic blast sites on kangaroo rats (Dipodomys merriami) at the Nevada Test Site, Nevada, USA, using genotoxicity and population genetic analyses. We assessed chromosome damage by micronucleus and flow cytometric assays and genetic variation by randomly amplified polymorphic DNA (RAPD) and mitochondrial DNA (mtDNA) analyses. The RAPD analysis showed no population structure, but mtDNA exhibited differentiation among and within populations. Genotoxicity effects were not observed when all individuals were analyzed. However, individuals with mtDNA haplotypes unique to the contaminated sites had greater chromosomal damage than contaminated-site individuals with haplotypes shared with reference sites. When interpopulation comparisons used individuals with unique haplotypes, one contaminated site had greater levels of chromosome damage than one or both of the reference sites. We hypothesize that shared-haplotype individuals are potential migrants and that unique-haplotype individuals are potential long-term residents. A parsimony approach was used to estimate the minimum number of migration events necessary to explain the haplotype distributions on a phylogenetic tree. The observed predominance of migration events into the contaminated sites supported our migration hypothesis. We conclude the atomic blast sites are ecological sinks and that immigration masks the genotoxic effects of radiation on the resident populations.

  8. Delayed signatures of underground nuclear explosions

    DOE PAGES

    Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; ...

    2016-03-16

    Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. Here, we observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be anmore » indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). In conclusion, our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates.« less

  9. Regulatory Technology Development Plan - Sodium Fast Reactor. Mechanistic Source Term - Metal Fuel Radionuclide Release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabaskas, David; Bucknor, Matthew; Jerden, James

    2016-02-01

    The development of an accurate and defensible mechanistic source term will be vital for the future licensing efforts of metal fuel, pool-type sodium fast reactors. To assist in the creation of a comprehensive mechanistic source term, the current effort sought to estimate the release fraction of radionuclides from metal fuel pins to the primary sodium coolant during fuel pin failures at a variety of temperature conditions. These release estimates were based on the findings of an extensive literature search, which reviewed past experimentation and reactor fuel damage accidents. Data sources for each radionuclide of interest were reviewed to establish releasemore » fractions, along with possible release dependencies, and the corresponding uncertainty levels. Although the current knowledge base is substantial, and radionuclide release fractions were established for the elements deemed important for the determination of offsite consequences following a reactor accident, gaps were found pertaining to several radionuclides. First, there is uncertainty regarding the transport behavior of several radionuclides (iodine, barium, strontium, tellurium, and europium) during metal fuel irradiation to high burnup levels. The migration of these radionuclides within the fuel matrix and bond sodium region can greatly affect their release during pin failure incidents. Post-irradiation examination of existing high burnup metal fuel can likely resolve this knowledge gap. Second, data regarding the radionuclide release from molten high burnup metal fuel in sodium is sparse, which makes the assessment of radionuclide release from fuel melting accidents at high fuel burnup levels difficult. This gap could be addressed through fuel melting experimentation with samples from the existing high burnup metal fuel inventory.« less

  10. Model Evaluation Report for Corrective Action Unit 98: Frenchman Flat, Nevada National Security Site, Nye County, Nevada, Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruskauff, Greg; Marutzky, Sam

    Model evaluation focused solely on the PIN STRIPE and MILK SHAKE underground nuclear tests’ contaminant boundaries (CBs) because they had the largest extent, uncertainty, and potential consequences. The CAMBRIC radionuclide migration experiment also had a relatively large CB, but because it was constrained by transport data (notably Well UE-5n), there was little uncertainty, and radioactive decay reduced concentrations before much migration could occur. Each evaluation target and the associated data-collection activity were assessed in turn to determine whether the new data support, or demonstrate conservatism of, the CB forecasts. The modeling team—in this case, the same team that developed themore » Frenchman Flat geologic, source term, and groundwater flow and transport models—analyzed the new data and presented the results to a PER committee. Existing site understanding and its representation in numerical groundwater flow and transport models was evaluated in light of the new data and the ability to proceed to the CR stage of long-term monitoring and institutional control.« less

  11. Oak Ridge Reservation Annual Site environmental report summary for 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    This document presents a summary of the information collected for the Oak Ridge Reservation 1994 site environmental report. Topics discussed include: Oak Ridge Reservation mission; ecology; environmental laws; community participation; environmental restoration; waste management; radiation effects; chemical effects; risk to public; environmental monitoring; and radionuclide migration.

  12. Effect of Iron and Carbonation of the Diffusion of Iodine and Rhenium in Waste Encasement Concrete and Soil Fill Material under Hydraulically Unsaturated Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wellman, Dawn M.; Parker, Kent E.; Powers, Laura

    2008-07-31

    Assessing long-term performance of Category 3 cement wasteforms and accurate prediction for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e. sorption or precipitation). A set of sediment-concrete half-cell diffusion experiments was conducted under unsaturated conditions (4% and 7% by weight moisture content) using carbonated and non-carbonated concrete-soil half-cells. Results indicate the behavior of rhenium and iodine release was comparable within a given half-cell test. Diffusivity in soil is a function of moisture content; a 3% increase in moisture content affords a one to two order of magnitude increase in diffusivity. Release of iodine and rheniummore » was 1 to 3 orders of magnitude less from non-carbonated, relative to carbonated, concrete monoliths. Inclusion of iron in non-carbonate monoliths resulted in the lowest concrete diffusivity values for both iodine and rhenium. This suggests that in the presence of iron, iodine and rhenium are converted to reduced species, which are less soluble and better retained within the concrete monolith. The release of iodine and rhenium was greatest from iron-bearing, carbonated concrete monoliths, suggesting carbonation negates the effect of iron on the retention of iodine and rhenium within concrete monoliths. This is likely due to enhanced formation of microcracks in the presence of iron, which provide preferential paths for contaminant migration. Although the release of iodine and rhenium were greatest from carbonated concrete monoliths containing iron, the migration of iodine and rhenium within a given half-cell is dependent on the moisture content, soil diffusivity, and diffusing species.« less

  13. Fate and transport of radionuclides in soil-water environment. Review.

    NASA Astrophysics Data System (ADS)

    Konoplev, Aleksei

    2017-04-01

    The ease in which radionuclides move through the environment and are taken up by plants and animals is governed by their chemical forms and by site-specific environmental characteristics. The objective of this paper is to review basic mechanisms of the behavior of radiocesium and radiostrontium in the environment after the nuclear accident. Our understanding of radionuclide's speciation and migration processes seems to be adequate and explains similarities and differences of radiocesium (r-Cs) behavior in the environment after Fukushima and Chernobyl accidents. Climate and geographical conditions in Fukushima Prefecture of Japan and Chernobyl's near-field zone are obviously different. In particular, precipitation differs substantially, with the annual average for Fukushima being about 3 times higher than at Chernobyl. The landscapes and soils also differ significantly. What is more, the speciation of r-Cs in the releases was distinct (large fraction of radionuclides was deposited as fuel particles in 30-km zone around Chernobyl NPP, while in Fukushima radiocesium is mostly part of condensation particles including glassy hot particles). Radiocesium (r-Cs) in the environment is strongly bound to soil and sediment particles containing micaceous clay minerals (illite, vermiculite, etc.), which is associated with two basic processes - high selective reversible sorption and fixation. The r-Cs distribution coefficient Kd in Fukushima rivers was found to be 1-2 orders of magnitude higher than corresponding values for rivers and surface runoff of Chernobyl area. This is indicative of higher ability of Fukushima soils and sediments to bind r-Cs. Dissolved r-Cs wash-off for Fukushima river watersheds is essentially slower than those for Chernobyl. However, steeper slopes and higher precipitation in Fukushima area cause higher erosion and higher particulate r-Cs wash-off. For a comparable time after the accident the total r-Cs wash-off from contaminated catchments in Fukushima is up to one order of magnitude higher than in Chernobyl. Long-term dynamics of radionuclide concentrations in rivers is approached from the standpoint of basic mechanisms of radionuclide sorption-desorption, fixation, vertical migration in catchment soils. Corresponding semi-empirical models are presented and discussed. For the Chernobyl case, radiostrontium (r-Sr) was shown to be more mobile and moving faster in dissolved state with surface runoff and river water in comparison with r-Cs. Similar pattern was observed for Mayak area in South Ural (Russia), where r-Sr was traced up to 1500 km away from the release point migrating through Techa-Iset'-Tobol-Irtysh-Ob' river system. On the other hand, r-Cs bound to clay particles settles down in Techa river reservoirs and is transported with river water only insignificantly. For the first 3 years after the accident vertical migration of r-Cs in soils of Fukushima catchments was found to be faster than in Chernobyl due to higher air temperature, higher precipitation and higher biological activity in top soil. However, with time this process slows down because of higher r-Cs retardation in Fukushima soils. In Fukushima case, extreme floods during typhoons lead to substantial reduction in dose rate on floodplain areas due to sedimentation of relatively clean material and burial of contaminated top soil layer. In general, due to higher precipitation, higher temperatures and higher biological activities in soils, self-purification of the environment and natural attenuation in Fukushima is essentially faster than in Chernobyl area.

  14. WORKSHOP ON DEVELOPMENT OF RADIONUCLIDE GETTERS FOR THE YUCCA MOUNTAIN WASTE REPOSITORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K.C. Holt

    One of the important that the U.S. Department of Energy (DOE) is currently undertaking is the development of a high-level nuclear waste repository to be located at Yucca Mountain, Nevada. Concern is generated by the Yucca Mountain Project (YMP) is due to potential releases as groundwater contamination, as described in the Total System Performance Assessment (TSPA). The dose to an off-site individual using this groundwater for drinking and irrigation is dominated by four radionuclides: Tc-99, I-127, Np-237, and U-238. Ideally, this dose would be limited to a single radionuclide, U-238; in other words, YMP would resemble a uranium ore body,more » a common geologic feature in the Western U.S. For this reason and because of uncertainties in the behavior of Tc-99, I-127, and Np-237, it would be helpful to limit the amount of Tc, I, and Np leaving the repository, which would greatly increase the confidence in the long-term performance of YMP. An approach to limiting the migration of Tc, I, and Np that is complementary to the existing YMP repository design plans is to employ sequestering agents or ''getters'' for these radionuclides such that their migration is greatly hindered, thus decreasing the amount of radionuclide leaving the repository. Development of such getters presents a number of significant challenges. The getter must have a high affinity and high selectivity for the radionuclide in question since there is approximately a 20- to 50-fold excess of other fission products and a 1000-fold excess of uranium in addition to the ions present in the groundwater. An even greater challenge is that the getters must function over a period greater than the half-life of the radionuclide (greater than 5 half-lives would be ideal). Typically, materials with a high affinity for Tc, I, or Np are not sufficiently durable. For example, strong-base ion exchange resins have a very high affinity for TcO{sub 4}{sup -} but are not expected to be durable. On the other hand, durable materials, such as hydrotalcite, do not have sufficient affinity to be useful getters. Despite these problems, the great increase in the repository performance and corresponding decrease in uncertainty promised by a useful getter has generated significant interest in these materials. This report is the result a workshop sponsored by the Office of Civilian Radioactive Waste Management and Office of Science and Technology and International of the DOE to assess the state of research in this field.« less

  15. Groundwater monitoring in the Savannah River Plant Low Level Waste Burial Ground

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlton, W.H.

    1983-12-31

    This document describes chemical mechanisms that may affect trace-level radionuclide migration through acidic sandy clay soils in a humid environment, and summarizes the extensive chemical and radiochemical analyses of the groundwater directly below the SRP Low-Level Waste (LLW) Burial Ground (643-G). Anomalies were identified in the chemistry of individual wells which appear to be related to small amounts of fission product activity that have reached the water table. The chemical properties which were statistically related to trace level transport of Cs-137 and Sr-90 were iron, potassium, sodium and calcium. Concentrations on the order of 100 ppM appear sufficient to affectmore » nuclide migration. Several complexation mechanisms for plutonium migration were investigated.« less

  16. Interaction of 3H+ (as HTO) and 36Cl- (as Na36Cl) with crushed granite and corresponding fracture infill material investigated in column experiments.

    PubMed

    Štamberg, K; Palágyi, Š; Videnská, K; Havlová, V

    The transport of 3 H + (as HTO) and 36 Cl - (as Na 36 Cl) was investigated in the dynamic system, i.e., in the columns filled with crushed pure granite and fracture infill of various grain sizes. The aim of column experiments was to determine important transport parameter, such as the retardation, respectively distribution coefficients, Peclet numbers and hydrodynamic dispersion coefficients. Furthermore, the research was focused to quantification of the effect of grain size on migration of studied radionuclides. The experimental breakthrough curves were fitted by a model based on the erfc-function, assuming a linear reversible equilibrium sorption/desorption isotherm, and the above mentioned transport parameters were determined. The results showed that influence of grain size on sorption of 3 H + and 36 Cl - was negligible. Retardation and distribution coefficients of both tracers converged to one and zero, respectively, in case of all fractions of crushed granite and infill material. Generally, the presumed ion exclusion of 36 Cl in anionic form was proved under given conditions, only very weak one seems to exist in a case of infill material. In principal, both radionuclides behaved as non-sorbing, conservative tracers. On the other hand, the influence of grain size on Peclet numbers value and on dispersion coefficient was observed for both crystalline materials, namely in agreement with theoretical suppositions that the values of Peclet numbers decrease with increasing grain size and values of dispersion coefficient increase.

  17. 10 CFR 60.134 - Design of seals for shafts and boreholes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... boreholes shall be designed so that following permanent closure they do not become pathways that compromise... pathway for groundwater to contact the waste packages or (2) For radionuclide migration through existing pathways. [48 FR 28222, June 21, 1983, as amended at 50 FR 29648, July 22, 1985] Design Criteria for the...

  18. 10 CFR 60.134 - Design of seals for shafts and boreholes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... boreholes shall be designed so that following permanent closure they do not become pathways that compromise... pathway for groundwater to contact the waste packages or (2) For radionuclide migration through existing pathways. [48 FR 28222, June 21, 1983, as amended at 50 FR 29648, July 22, 1985] Design Criteria for the...

  19. 10 CFR 60.134 - Design of seals for shafts and boreholes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... boreholes shall be designed so that following permanent closure they do not become pathways that compromise... pathway for groundwater to contact the waste packages or (2) For radionuclide migration through existing pathways. [48 FR 28222, June 21, 1983, as amended at 50 FR 29648, July 22, 1985] Design Criteria for the...

  20. Trace levels of Fukushima disaster radionuclides in East Pacific albacore.

    PubMed

    Neville, Delvan R; Phillips, A Jason; Brodeur, Richard D; Higley, Kathryn A

    2014-05-06

    The Fukushima Daiichi power station released several radionuclides into the Pacific following the March 2011 earthquake and tsunami. A total of 26 Pacific albacore (Thunnus alalunga) caught off the Pacific Northwest U.S. coast between 2008 and 2012 were analyzed for (137)Cs and Fukushima-attributed (134)Cs. Both 2011 (2 of 2) and several 2012 (10 of 17) edible tissue samples exhibited increased activity concentrations of (137)Cs (234-824 mBq/kg of wet weight) and (134)Cs (18.2-356 mBq/kg of wet weight). The remaining 2012 samples and all pre-Fukushima (2008-2009) samples possessed lower (137)Cs activity concentrations (103-272 mBq/kg of wet weight) with no detectable (134)Cs activity. Age, as indicated by fork length, was a strong predictor for both the presence and concentration of (134)Cs (p < 0.001). Notably, many migration-aged fish did not exhibit any (134)Cs, suggesting that they had not recently migrated near Japan. None of the tested samples would represent a significant change in annual radiation dose if consumed by humans.

  1. Conditions and processes affecting radionuclide transport

    USGS Publications Warehouse

    Simmons, Ardyth M.; Neymark, Leonid A.

    2012-01-01

    Understanding of unsaturated-zone transport is based on laboratory and field-scale experiments. Fractures provide advective transport pathways. Sorption and matrix diffusion may contribute to retardation of radionuclides. Conversely, sorption onto mobile colloids may enhance radionuclide transport.

  2. NNSS Soils Monitoring: Plutonium Valley (CAU366) FY2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George

    2013-01-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events. Field measurements at the T-4 Atmospheric Test Site (CAU 370) suggest that radionuclide-contaminated soils may have migrated along a shallow ephemeral drainage that traverses the site (NNSA/NSO, 2009). (It is not entirely clear how contaminated soils got into their present location at the T-4more » Site, but flow to the channel has been redirected and the contamination does not appear to be migrating at present.) Aerial surveys in selected portions of the Nevada National Security Site (NNSS) also suggest that radionuclide-contaminated soils may be migrating along ephemeral channels in Areas 3, 8, 11, 18, and 25 (Colton, 1999). In Area 11, several low-level airborne surveys of the Plutonium Valley Dispersion Sites (CAU 366) show plumes of Americium 241 (Am-241) extending along ephemeral channels (Figure 1, marker numbers 5 and 6) below Corrective Action Site (CAS) 11-23-03 (marker number 3) and CAS 11 23-04 (marker number 4) (Colton, 1999). Plutonium Valley in Area 11 of the NNSS was selected for the study because of the aerial survey evidence suggesting downstream transport of radionuclide-contaminated soil. The aerial survey (Figure 1) shows a well defined finger of elevated radioactivity (marker number 5) extending to the southwest from the southernmost detonation site (marker number 4). This finger of contamination overlies a drainage channel mapped on the topographic base map used for presentation of the survey data suggesting surface runoff as a likely cause of the contaminated area. Additionally, instrumenting sites strongly suspected of conveying soil from areas of surface contamination offers the most efficient means to confirm that surface runoff may transport radioactive contamination as a result of ambient precipitation/runoff events. Closure plans being developed for the CAUs on the NNSS may include post-closure monitoring for possible release of radioactive contaminants. Determining the potential for transport of radionuclide-contaminated soils under ambient meteorological conditions will facilitate an appropriate closure design and post-closure monitoring program.« less

  3. Optimizing Standard Sequential Extraction Protocol With Lake And Ocean Sediments

    EPA Science Inventory

    The environmental mobility/availability behavior of radionuclides in soils and sediments depends on their speciation. Experiments have been carried out to develop a simple but robust radionuclide sequential extraction method for identification of radionuclide partitioning in sed...

  4. The latest results on colloid associated radionuclide migration from the CFM Project, Grimsel Test Site (GTS, Switzerland)

    NASA Astrophysics Data System (ADS)

    Schaefer, T.; Blechschmidt, I.; Bouby, M.; Buechner, S.; Brendlé, J.; Geckeis, H.; Kupcik, T.; Goetz, R.; Hauser, W.; Heck, S.; Huber, F. M.; Lagos, M.; Martin, A. J.

    2013-12-01

    The influence of colloidal/nano-scale phases on the radionuclide (RNs) solubility and migration behavior is still one of the uncertainties in repository safety assessment [1]. Within the Colloid Formation and Migration (CFM) project at the Grimsel Test Site (GTS Switzerland) a huge geo-technical effort was taken to isolate hydraulically a shear-zone from the artificially introduced hydraulic gradient due to the tunnel construction. The construction is a combination of polymer resin impregnation of the tunnel surface and a steel torus to seal the tunnel surface. Natural outflow points of the MI shear zone were localized prior to the construction and sealed by surface packers. This design gives the opportunity to adjust the flow velocity in the fracture. After optimization of the experimental setup and injection procedure through a number of conservative tracer tests a license was granted in January 2012 by the Swiss regulator (BAG) to perform the first radionuclide tracer test under these low-flow conditions. The injection cocktail of 2.25L volume consisted of 101.4 × 2.5 mg/L montmorillonite clay colloids, whereas 8.9 × 0.4mg/L were present as synthetic montmorillonite with structural incorporated Ni. For details on the structural characterization of the Ni-montmorillonite phyllosilicate, see [2]. Beside the colloids and the conservative tracer Amino-G (1646 × 8ppb) the radioisotopes Na-22, Ba-133, Cs-137, Th-232, Np-237, Pu-242 and Am-243 were injected. The trivalent and tetravalent actinides were quantitatively associated with the colloids present as well as a part of the Cs, whereas Np(V) and Na are not bentonite colloid bond. For on-site colloid analysis a mobile Laser- Induced Breakdown Detection (LIBD) system similar to the one used in the CRR experiments [3] was transferred to Grimsel and installed in-line at the 'Pinkel' outlet to directly monitor the mobile colloid fraction throughout the experiment. The conservative tracer Amino-G was recovered quantitatively and for the weakly sorbing tracers analyzed by γ-spectrometry recoveries for Na-22, Cs-137 and Ba-133 of 64%, 10% and 1%, respectively, were found. The clay colloid recovery determined by LIBD and HR-ICP-MS analyzing Al and Ni as structural components of the clay particles provided 48-52%. For the initial quantitatively colloid associated actinides Am(III) and Pu(IV) a recovery of 21-22% and 30-35%, respectively, could be determined. Np recovery is significantly reduced to ~4 %, which hints to a kinetic controlled Np(V) reduction. The data obtained so far clearly show the mobility of bentonite derived montmorillonite colloids under near-natural flow conditions in the MI shear zone of the Grimsel Test Site [4]. The experimental data will be discussed in detail in the presentation. [1] T. Schäfer, et al. Appl. Geochem., 27 (2012) 390-403. [2] Reinholdt, et al., Nanomaterials, 3 (2013) 48-69. [3] H. Geckeis, et al., Radiochim. Acta, 92 (2004) 765-774. [4] www.grimsel.com

  5. Experimental and Numerical Investigations on Colloid-facilitated Plutonium Reactive Transport in Fractured Tuffaceous Rocks

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Wolfsberg, A. V.; Zhu, L.; Reimus, P. W.

    2017-12-01

    Colloids have the potential to enhance mobility of strongly sorbing radionuclide contaminants in fractured rocks at underground nuclear test sites. This study presents an experimental and numerical investigation of colloid-facilitated plutonium reactive transport in fractured porous media for identifying plutonium sorption/filtration processes. The transport parameters for dispersion, diffusion, sorption, and filtration are estimated with inverse modeling for minimizing the least squares objective function of multicomponent concentration data from multiple transport experiments with the Shuffled Complex Evolution Metropolis (SCEM). Capitalizing on an unplanned experimental artifact that led to colloid formation and migration, we adopt a stepwise strategy to first interpret the data from each experiment separately and then to incorporate multiple experiments simultaneously to identify a suite of plutonium-colloid transport processes. Nonequilibrium or kinetic attachment and detachment of plutonium-colloid in fractures was clearly demonstrated and captured in the inverted modeling parameters along with estimates of the source plutonium fraction that formed plutonium-colloids. The results from this study provide valuable insights for understanding the transport mechanisms and environmental impacts of plutonium in fractured formations and groundwater aquifers.

  6. Predicting the impact of land management decisions on overland flow generation: Implications for cesium migration in forested Fukushima watersheds

    NASA Astrophysics Data System (ADS)

    Siirila-Woodburn, Erica R.; Steefel, Carl I.; Williams, Kenneth H.; Birkholzer, Jens T.

    2018-03-01

    The effects of land use and land cover (LULC) change on environmental systems across the land surface's "critical zone" are highly uncertain, often making prediction and risk management decision difficult. In a series of numerical experiments with an integrated hydrologic model, overland flow generation is quantified for both present day and forest thinning scenarios. A typhoon storm event in a watershed near the Fukushima Dai-ichi Nuclear Power Plant is used as an example application in which the interplay between LULC change and overland flow generation is important given that sediment-bound radionuclides may cause secondary contamination via surface water transport. Results illustrate the nonlinearity of the integrated system spanning from the deep groundwater to the atmosphere, and provide quantitative tools when determining the tradeoffs of different risk-mitigation strategies.

  7. Environmental evolution records reflected by radionuclides in the sediment of coastal wetlands: A case study in the Yellow River Estuary wetland.

    PubMed

    Wang, Qidong; Song, Jinming; Li, Xuegang; Yuan, Huamao; Li, Ning; Cao, Lei

    2016-10-01

    Vertical profiles of environmental radionuclides ( 210 Pb, 137 Cs, 238 U, 232 Th, 226 Ra and 4 0 K) in a sediment core (Y1) of the Yellow River Estuary wetland were investigated to assess whether environmental evolutions in the coastal wetland could be recorded by the distributions of radionuclides. Based on 210 Pb and 137 Cs dating, the average sedimentation rate of core Y1 was estimated to be 1.0 cm y -1 . Vertical distributions of natural radionuclides ( 238 U, 232 Th, 226 Ra and 40 K) changed dramatically, reflecting great changes in sediment input. Concentrations of 238 U, 232 Th, 226 Ra and 40 K all had significant positive relationships with organic matter and clay content, but their distributions were determined by different factors. Factor analysis showed that 238 U was determined by the river sediment input while 226 Ra was mainly affected by the seawater erosion. Environmental changes such as river channel migrations and sediment discharge variations could always cause changes in the concentrations of radionuclides. High concentrations of 238 U and 226 Ra were consistent with high accretion rate. Frequent seawater intrusion decreased the concentration of 226 Ra significantly. The value of 238 U/ 226 Ra tended to be higher when the sedimentation rate was low and tide intrusion was frequent. In summary, environmental evolutions in the estuary coastal wetland could be recorded by the vertical profiles of natural radionuclides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Application of the migration models implemented in the decision system MOIRA-PLUS to assess the long term behaviour of (137)Cs in water and fish of the Baltic Sea.

    PubMed

    Monte, Luigi

    2014-08-01

    This work presents and discusses the results of an application of the contaminant migration models implemented in the decision support system MOIRA-PLUS to simulate the time behaviour of the concentrations of (137)Cs of Chernobyl origin in water and fish of the Baltic Sea. The results of the models were compared with the extensive sets of highly reliable empirical data of radionuclide contamination available from international databases and covering a period of, approximately, twenty years. The model application involved three main phases: a) the customisation performed by using hydrological, morphometric and water circulation data obtained from the literature; b) a blind test of the model results, in the sense that the models made use of default values of the migration parameters to predict the dynamics of the contaminant in the environmental components; and c) the adjustment of the model parameter values to improve the agreement of the predictions with the empirical data. The results of the blind test showed that the models successfully predicted the empirical contamination values within the expected range of uncertainty of the predictions (confidence level at 68% of approximately a factor 2). The parameter adjustment can be helpful for the assessment of the fluxes of water circulating among the main sub-basins of the Baltic Sea, substantiating the usefulness of radionuclides to trace the movement of masses of water in seas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Environmental risks of radioactive discharges from a low-level radioactive waste disposal site at Dessel, Belgium.

    PubMed

    Batlle, J Vives I; Sweeck, L; Wannijn, J; Vandenhove, H

    2016-10-01

    The potential radiological impact of releases from a low-level radioactive waste (Category A waste) repository in Dessel, Belgium on the local fauna and flora was assessed under a reference scenario for gradual leaching. The potential impact situations for terrestrial and aquatic fauna and flora considered in this study were soil contamination due to irrigation with contaminated groundwater from a well at 70 m from the repository, contamination of the local wetlands receiving the highest radionuclide flux after migration through the aquifer and contamination of the local river receiving the highest radionuclide flux after migration through the aquifer. In addition, an exploratory study was carried out for biota residing in the groundwater. All impact assessments were performed using the Environmental Risk from Ionising Contaminants: Assessment and Management (ERICA) tool. For all scenarios considered, absorbed dose rates to biota were found to be well below the ERICA 10 μGy h -1 screening value. The highest dose rates were observed for the scenario where soil was irrigated with groundwater from the vicinity of the repository. For biota residing in the groundwater well, a few dose rates were slightly above the screening level but significantly below the dose rates at which the smallest effects are observed for those relevant species or groups of species. Given the conservative nature of the assessment, it can be concluded that manmade radionuclides deposited into the environment by the near surface disposal of category A waste at Dessel do not have a significant radiological impact to wildlife. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Geotechnical, geological, and selected radionuclide retention characteristics of the radioactive waste disposal site near the Farallon Islands

    USGS Publications Warehouse

    Booth, J.S.; Winters, W.J.; Poppe, L.J.; Neiheisel, J.; Dyer, R.S.

    1989-01-01

    A geotechnical and geological investigation of the Farallon Islands low-level radioactive waste (LLW) disposal area was conducted to qualitatively assess the host sediments' relative effectiveness as a barrier to radionuclide migration, to estimate the portion of the barrier that is in contact with the waste packages at the three primary disposal sites, and to provide a basic physical description of the sediments. Box cores recovered from within the general disposal area at depths of 500, 1000, and 1500 m were subcored to provide samples (~30 cm in length) for detailed descriptions, textural and mineralogical analyses, and a suite of geotechnical tests (index property, CRS consolidation, and CIU triaxial compression). -from Authors

  11. Subsurface Xenon Migration by Atmospheric Pumping Using an Implicit Non-Iterative Algorithm for a Locally 1D Dual-Porosity Model

    NASA Astrophysics Data System (ADS)

    Annewandter, R.; Kalinowksi, M. B.

    2009-04-01

    An underground nuclear explosion injects radionuclids in the surrounding host rock creating an initial radionuclid distribution. In the case of fractured permeable media, cyclical changes in atmospheric pressure can draw gaseous species upwards to the surface, establishing a ratcheting pump effect. The resulting advective transport is orders of magnitude more significant than transport by molecular diffusion. In the 1990s the US Department of Energy funded the socalled Non-Proliferation Experiment conducted by the Lawrence Livermore National Laboratory to investigate this barometric pumping effect for verifying compliance with respect to the Comprehensive Nuclear Test Ban Treaty. A chemical explosive of approximately 1 kt TNT-equivalent has been detonated in a cavity located 390 m deep in the Rainier Mesa (Nevada Test Site) in which two tracer gases were emplaced. Within this experiment SF6 was first detected in soil gas samples taken near fault zones after 50 days and 3He after 325 days. For this paper a locally one-dimensional dual-porosity model for flow along the fracture and within the permeable matrix was used after Nilson and Lie (1990). Seepage of gases and diffusion of tracers between fracture and matrix are accounted. The advective flow along the fracture and within the matrix block is based on the FRAM filtering remedy and methodology of Chapman. The resulting system of equations is solved by an implicit non-iterative algorithm. Results on time of arrival and subsurface concentration levels for the CTBT-relevant xenons will be presented.

  12. VERTICAL MIGRATION OF RADIONUCLIDES IN THE VICINITY OF THE CHERNOBYL CONFINEMENT SHELTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farfan, E.; Jannik, T.; Marra, J.

    2011-10-01

    Studies on vertical migration of Chernobyl-origin radionuclides in the 5-km zone of the Chernobyl Nuclear Power Plant (ChNPP) in the area of the Red Forest experimental site were completed. Measurements were made by gamma spectrometric methods using high purity germanium (HPGe) detectors with beryllium windows. Alpha-emitting isotopes of plutonium were determined by the measurement of the x-rays from their uranium progeny. The presence of {sup 60}Co, {sup 134,137}Cs, {sup 154,155}Eu, and {sup 241}Am in all soil layers down to a depth of 30 cm was observed. The presence of {sup 137}Cs and {sup 241}Am were noted in the area containingmore » automorphous soils to a depth of 60 cm. In addition, the upper soil layers at the test site were found to contain {sup 243}Am and {sup 243}Cm. Over the past ten years, the {sup 241}Am/{sup 137}Cs ratio in soil at the experimental site has increased by a factor of 3.4, nearly twice as much as would be predicted based solely on radioactive decay. This may be due to 'fresh' fallout emanating from the ChNPP Confinement Shelter.« less

  13. Geologic and hydrologic characterization and evaluation of the Basin and Range Province relative to the disposal of high-level radioactive waste: Part I, Introduction and guidelines

    USGS Publications Warehouse

    Bedinger, M.S.; Sargent, Kenneth A.; Reed, J.E.

    1984-01-01

    The U.S. Geological Survey's program for geologic and hydrologic evaluation of physiographic provinces to identify areas potentially suitable for locating repository sites for disposal of high-level nuclear wastes was announced to the Governors of the eight States in the Basin and Range Province on May 5, 1981. Representatives of Arizona, California, Idaho, New Mexico, Nevada, Oregon, Texas, and Utah, were invited to cooperate with the Federal Government in the evaluation process. Each Governor was requested to nominate an Earth scientist to represent the State in a province working group composed of State and U.S. Geological Survey representatives. This report, Part I of a three-part report, provides the background, introduction and scope of the study. This part also includes a discussion of geologic and hydrologic guidelines that will be used in the evaluation process and illustrates geohydrologic environments and the effect of individual factors in providing multiple natural barriers to radionuclide migration.Part II is a reconnaissance characterization of the geologic and hydrologic factors to be used in the initial screening of the Basin and Range Province. Part III will be the initial evaluation of the Province and will identify regions that appear suitable for further study.The plan for study of the Province includes a stepwise screening process by which successively smaller land units are considered in increasing detail. Each step involves characterization of the geology and hydrology and selection of subunits for more intensive characterization. Selection of subunits for further study is by evaluation of geologic and hydrologic conditions following a set of guidelines. By representation on the Province Working Group, the States participate in a consultation and review role in: (1) Establishing geologic and hydrologic guidelines, and (2) characterizing and evaluating the Province. The States also participate in compilation of geologic and hydrologic data used in characterizing the Province.The current (1983) needs for a high-level radioactive waste repository include: (1) Disposal in a mined repository; (2) retrievability of the waste for as much as 50 years; and (3) confidence of isolation of the waste from the accessible environment. Isolation of the waste needs to be assured using geologic and hydrologic conditions that: (1) Minimize risk of inadvertent future intrusions by man; (2) minimize the possibility of disturbance by processes that would expose the waste or increase its mobility; and (3) provide a system of natural barriers to the migration of waste by ground water. The guidelines adopted by the Province Working Group are designed to provide a standard with which these conditions can be compared.The guidelines can be grouped into four principal categories: (1) Potential host media, (2) ground-water conditions, (3) tectonic conditions, and. (4) occurrence of natural resources. Ideally the host medium constitutes the first natural barrier to migration of radionculides. The host medium ideally should be a rock type that prevents or retards dissolution and transport of radionuclides. Rocks in both the saturated and unsaturated zones may have desirable characteristics for host media. Rocks-other than the host-in the ground-water flow path from the repository ideally should be major barriers to radionuclide migration. Confining beds of low permeability might be present to retard the rate of flow between more permeable beds. Additionally, sorption of radionuclides by materials such as clays and zeolites in the flow path can further retard the flow of radionuclides by several orders of magnitude. Tectonic conditions in an area should not present a probable cause for exhumation or increased mobility of radioactive waste. Natural resources are a factor for consideration because of the problem of future human intrusion and exposure to radioactivity in the quest for minerals, oil, gas, water, and geothermal resources.The ultimate evaluation of the suitability of a geohydrologic environment for developing a mined repository needs to assess all geologic and hydrologic characteristics and their interaction in providing confidence that a geohydrologic environment will effectively isolate radionuclides from human access. Several hypothetical settings with typical geohydrologic conditions in the Basin and Range Province are used to illustrate the effect of multiple barriers in the isolation of radionuclides.

  14. Coupling of Nuclear Waste Form Corrosion and Radionuclide Transports in Presence of Relevant Repository Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Nathalie A.; Neeway, James J.; Qafoku, Nikolla P.

    2015-09-30

    Assessments of waste form and disposal options start with the degradation of the waste forms and consequent mobilization of radionuclides. Long-term static tests, single-pass flow-through tests, and the pressurized unsaturated flow test are often employed to study the durability of potential waste forms and to help create models that predict their durability throughout the lifespan of the disposal site. These tests involve the corrosion of the material in the presence of various leachants, with different experimental designs yielding desired information about the behavior of the material. Though these tests have proved instrumental in elucidating various mechanisms responsible for material corrosion,more » the chemical environment to which the material is subject is often not representative of a potential radioactive waste repository where factors such as pH and leachant composition will be controlled by the near-field environment. Near-field materials include, but are not limited to, the original engineered barriers, their resulting corrosion products, backfill materials, and the natural host rock. For an accurate performance assessment of a nuclear waste repository, realistic waste corrosion experimental data ought to be modeled to allow for a better understanding of waste form corrosion mechanisms and the effect of immediate geochemical environment on these mechanisms. Additionally, the migration of radionuclides in the resulting chemical environment during and after waste form corrosion must be quantified and mechanisms responsible for migrations understood. The goal of this research was to understand the mechanisms responsible for waste form corrosion in the presence of relevant repository sediments to allow for accurate radionuclide migration quantifications. The rationale for this work is that a better understanding of waste form corrosion in relevant systems will enable increased reliance on waste form performance in repository environments and potentially decrease the need for expensive engineered barriers.Our current work aims are 1) quantifying and understanding the processes associated with glass alteration in contact with Fe-bearing materials; 2) quantifying and understanding the processes associated with glass alteration in presence of MgO (example of engineered barrier used in WIPP); 3) identifying glass alteration suppressants and the processes involved to reach glass alteration suppression; 4) quantifying and understanding the processes associated with Saltstone and Cast Stone (SRS and Hanford cementitious waste forms) in various representative groundwaters; 5) investigating positron annihilation as a new tool for the study of glass alteration; and 6) quantifying and understanding the processes associated with glass alteration under gamma irradiation.« less

  15. Investigation of radionuclide distribution in soil particles in different landscapes

    NASA Astrophysics Data System (ADS)

    Shkinev, V. M.; Korobova, E. M.; Linnik, V. G.

    2012-04-01

    Russian and foreign publications have been analyzed for understanding the role of micro- and nano- particles in distribution and migration of technogenic elements in soils in different landscape conditions. A technique for application of various fractionation methods to separate and study -particles of different size down to micro- and nano-level has been developed. The dry sit method on the first stage of particle separation is recommend to be followed by the membrane filtration method. For obtaining more comprehensive information, combinations of fractionation technique should be chosen taking into account that (1) the efficiency of particles' separation using subsequent technique would be higher than using the preceding one; (2) separation methods should preferably be based on different principles (separation according size, density, charge etc.); (3) initial fractionation should separate particles according to their size, that makes possible to create an even scale for various samples. A study of distribution and balance of technogenic radionuclides' in soil particles of the size intervals 1.0—0.25, 0.25-0.1, 0.1-0.05, 0.05-0.01, 0.01-0.005, 0.005-0.001 and <0.001 mm in the Yenisey flood plain landscapes proved a significant role of both the particle size and the portion of contaminated fraction in contribution to the total radionuclide inventory in the soil layers. Contribution of the silt particles (0,05-0,01 mm) to Cs-137 contamination ranged from 26 to 33,8%, 45% maximum due to "optimal" combination of both factors. Clay fraction was responsible for approximately 30% of Cs-137 contained in soil horizons due to higher sorption capacity. Relatively high correlation between the activity of 152,154Eu and 60 and the content of silt and clay allowed suggesting their incorporation mainly in clay fraction. Selected experimental plots near the Kola NPP (northern taiga) were used to compare soil particles (fractions 140-71; 71-40 and < 40 µm) in their ability to concentrate technogenic radionuclides and heavy metals. Maximum radioactivity found in soil litter appeared to be related to the Chernobyl contamination. Concentration of s-137 was higher in small size fractions. Obtained results were considered to be useful for understanding of radionuclide migration in the environment and decision making on radioecological monitoring, rehabilitation and landuse in the contaminated areas.

  16. Principles of landscape-geochemical studies in the zones contaminated by technogenical radionuclides for ecological and geochemical mapping

    NASA Astrophysics Data System (ADS)

    Korobova, Elena; Romanov, Sergey

    2013-04-01

    Efficiency of landscape-geochemical approach was proved to be helpful in spatial and temporal evaluation of the Chernobyl radionuclide distribution in the environment. The peculiarity of such approach is in hierarchical consideration of factors responsible for radionuclide redistribution and behavior in a system of inter-incorporated landscape-geochemical structures of the local and regional scales with due regard to the density of the initial fallout and patterns of radionuclide migration in soil-water-plant systems. The approach has been applied in the studies of distribution of Cs-137, Sr-90 and some other radionuclides in soils and vegetation cover and in evaluation of contribution of the stable iodine supply in soils to spatial variation of risk of thyroid cancer in areas subjected to radioiodine contamination after the Chernobyl accident. The main feature of the proposed approach is simultaneous consideration of two types of spatial heterogeneities: firstly, the inhomogeneity of external radiation exposure due to a complex structure of the contamination field, and, secondly, the landscape geochemical heterogeneity of the affected area, so that the resultant effect of radionuclide impact could significantly vary in space. The main idea of risk assessment in this respect was to reproduce as accurately as possible the result of interference of two surfaces in the form of risk map. The approach, although it demands to overcome a number of methodological difficulties, allows to solve the problems associated with spatially adequate protection of the affected population and optimization of the use of contaminated areas. In general it can serve the basis for development of the idea of the two-level structure of modern radiobiogeochemical provinces formed by superposition of the natural geochemical structures and the fields of technogenic contamination accompanied by the corresponding peculiar and integral biological reactions.

  17. Advanced Polymer Technology for Containing and Immobilizing Strontium-90 in the Subsurface - 8361

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Baker; G. Heath; C. Scott

    2008-02-01

    Many Department of Energy (DOE) sites, including Idaho and Hanford, have heavy metals and/or radionuclides (e.g. strontium-90) present that are strongly adsorbed in the vadose zone, but which nevertheless are propagating toward the water table. A key challenge for immobilization of these contaminants is bringing the chosen amendment or remediation technology into contact with the contaminated porous medium, while ensuring that contaminated water and colloids do not escape. This is particularly challenging when the subsurface geology is complex and highly heterogeneous, as is the case at many DOE sites. The Idaho National Laboratory (INL) in collaboration with the University ofmore » Texas at Austin (UT) has conducted research sponsored through the DOE Office of Environmental Management (EM) Advanced Remediation Technologies Phase I program that successfully demonstrated application of a novel, pH-triggered advanced polymer for creating a physical barrier that prevents heavy metals and radionuclides in vadose zone soil and soil-pore water from migrating to the groundwater. The focus of this paper is on the column and sandbox experiments conducted by researchers at the Idaho National Laboratory in support of the Phase I program objectives. Proof of these concepts provides a technology basis for confining or isolating a volume of contaminated groundwater, to be implemented in future investigations at the Vadose Zone Research Park (VZRP) at INL.« less

  18. Effect of organic complexing agents on the interactions of Cs(+), Sr(2+) and UO(2)(2+) with silica and natural sand.

    PubMed

    Reinoso-Maset, Estela; Worsfold, Paul J; Keith-Roach, Miranda J

    2013-05-01

    Sorption processes play a key role in controlling radionuclide migration through subsurface environments and can be affected by the presence of anthropogenic organic complexing agents found at contaminated sites. The effect of these complexing agents on radionuclide-solid phase interactions is not well known. Therefore the aim of this study was to examine the processes by which EDTA, NTA and picolinate affect the sorption kinetics and equilibria of Cs(+), Sr(2+) and UO2(2+) onto natural sand. The caesium sorption rate and equilibrium were unaffected by the complexing agents. Strontium however showed greater interaction with EDTA and NTA in the presence of desorbed matrix cations than geochemical modelling predicted, with SrNTA(-) enhancing sorption and SrEDTA(2-) showing lower sorption than Sr(2+). Complexing agents reduced UO2(2+) sorption to silica and enhanced the sorption rate in the natural sand system. Elevated concentrations of picolinate reduced the sorption of Sr(2+) and increased the sorption rate of UO2(2+), demonstrating the potential importance of this complexing agent. These experiments provide a direct comparison of the sorption behaviour of Cs(+), Sr(2+) and UO2(2+)onto natural sand and an assessment of the relative effects of EDTA, NTA and picolinate on the selected elements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Evaluation of Groundwater Pathways and Travel Times From the Nevada Test Site to the Potential Yucca Mountain Repository

    NASA Astrophysics Data System (ADS)

    Pohlmann, K. F.; Zhu, J.; Ye, M.; Carroll, R. W.; Chapman, J. B.; Russell, C. E.; Shafer, D. S.

    2006-12-01

    Yucca Mountain (YM), Nevada has been recommended as a deep geological repository for the disposal of spent fuel and high-level radioactive waste. If YM is licensed as a repository by the Nuclear Regulatory Commission, it will be important to identify the potential for radionuclides to migrate from underground nuclear testing areas located on the Nevada Test Site (NTS) to the hydraulically downgradient repository area to ensure that monitoring does not incorrectly attribute repository failure to radionuclides originating from other sources. In this study, we use the Death Valley Regional Flow System (DVRFS) model developed by the U.S. Geological Survey to investigate potential groundwater migration pathways and associated travel times from the NTS to the proposed YM repository area. Using results from the calibrated DVRFS model and the particle tracking post-processing package MODPATH we modeled three-dimensional groundwater advective pathways in the NTS and YM region. Our study focuses on evaluating the potential for groundwater pathways between the NTS and YM withdrawal area and whether travel times for advective flow along these pathways coincide with the prospective monitoring time frame at the proposed repository. We include uncertainty in effective porosity as this is a critical variable in the determination of time for radionuclides to travel from the NTS region to the YM withdrawal area. Uncertainty in porosity is quantified through evaluation of existing site data and expert judgment and is incorporated in the model through Monte Carlo simulation. Since porosity information is limited for this region, the uncertainty is quite large and this is reflected in the results as a large range in simulated groundwater travel times.

  20. Investigation of radionuclides and anthropic tracer migration in groundwater at the Chernobyl site

    NASA Astrophysics Data System (ADS)

    Le Gal La Salle, Corinnne; Simonucci, Caroline; Roux, Céline; Bugai, Dmitry; Aquilina, Luc; Fourré, Elise; Jean-Baptiste, Philippe; Labasque, Thierry; Michelot, Jean-Luc; Fifield, Keith; Team Aster Team; Van Meir, Nathalie; Kashparov, Valeriy; Diez, Olivier; Bassot, Sylvain; Lancelot, Joel

    2013-04-01

    Following the reactor 4 explosion of the Chernobyl Nuclear Power Plant (ChNPP), at least 1019 Bq of radionuclides (RN) were released in the environment. In order to protect workers and prevent further atmospheric RN dispersion in the area adjacent to the ChNPP, contaminated wastes including fuel particles, topsoil layer and forest remains were buried in approximately 800 shallow trenches in the sand formation in the Red Forest waste dump site [1]. No containment measures were taken, and since then RN have leaked to the unsaturated zone and to the groundwater. Since 1999, migration of RN in the vicinity of the trench 22 at Red Forest site has been investigated within the frame of the EPIC program carried out by IRSN in collaboration with UIAR and IGS [2, 3]. A plume of 90Sr was shown downgradient from the trench 22 with activites reaching 3750 Bq/L [2]. In 2008, further studies were initiated through the TRASSE research group, based on a collaboration between IRSN and CNRS. These programs aim at combining groundwater dating with RN migration monitoring studies in order to constrain RN transport models [3]. Groundwater residence time was investigated based on 3H/He and CFC. Both tracers led to ages ranging from modern (1-3 y) at 2 m depth below the groundwater table to significantly higher apparent ages of 50-60 y at 27 m below the groundwater table [3]. 36Cl/Cl ratios 2 to 4 orders of magnitude higher than the theoretical natural ratio are measured in groundwater. Similarly, SF6 shows concentrations as high as 1200 pptv while natural concentrations are in the order of 6-7 pptv. Based on apparent groundwater ages, both contaminations are linked to the Chernobyl explosion. Hence those tracers show excellent potential to constrain conservative and reactive transport, respectively. In contrast, 238U/235U ratio down gradient from trench 22 remains similar to the natural ratio. This suggests that either most of the U contained in the trench is in a non soluble form, associated with U-Zr matrix fuel particles [5] and/or that migration of U is limited due to redox processes and/or microbial activity. The above described experience of post-Chernobyl studies shows that a combined analysis of radionuclides, natural and anthropogenic tracers provides an efficient research tool to better understand and quantify contaminant transport processes in the geo-sphere. Similar approaches can be applied to the study transport of RN in the subsurface, issued from both, diffuse (contaminated watersheds) and point (damaged NPP and fuel storage units) radioactive sources produced by the Fukushima accident. References [1] Dzhepo S. P., Skalskyy A., 2002, In Chernobyl disaster and groundwater, Shestopalov, V., Ed. A.A. Balkema: Lisse, pp 25-70. [2] Dewiere L., Bugai D. et al., 2004, J. Environ. Radioactiv., 74, (1-3), 139-150. [3] Van Meir N., Bugaï, et al., 2009, in: Oughton, D.H., Kashparov, V. (Eds.), Radioactive Particles in the Environment. Springer Science+Business Media B.V., pp.197-208. [4] Le Gal La Salle C., Aquilina L., et al., 2012, Appl. Geochem., 27 1304-1319. [5] Kashparov V.A., Ahamdach N., et. al., 2004, J. Environ. Radioactiv., 72, 335-353.

  1. The Dnieper River Aquatic System Radioactive Contamination; Long-tern Natural Attenuation And Remediation History

    NASA Astrophysics Data System (ADS)

    Voitsekhovych, Oleg; Laptev, Genadiy; Kanivets, Vladimir; Konoplev, Alexey

    2013-04-01

    Near 27 year passed after the Chernobyl Accident, and the experience gained to study radionuclide behavior in the aquatic systems and to mitigate water contamination are still pose of interest for scientists, society and regulatory austerities. There are different aspects of radionuclide transport in the environment were studied since the Chernobyl fallout in 1986 covered the river catchments, wetlands, river, lakes/reservoirs and reached the Black Sea. The monitoring time series data set and also data on the radionuclides behavior studies in the water bodies (river, lakes and the Black Sea) are available now in Ukraine and other affected countries. Its causation analyses, considering the main geochemical, physical and chemical and hydrological process, governing by radionuclide mobility and transport on the way from the initially contaminated catchments, through the river-reservoir hydrological system to the Black Sea can help in better understanding of the main factors governing be the radionuclide behavior in the environment. Radionuclide washout and its hydrological transport are determined speciation of radionuclides as well as soil types and hydrological mode and also geochemistry and landscape conditions at the affected areas. Mobility and bioavailability of radionuclides are determined by ratio of radionuclide chemical forms in fallout and site-specific environmental characteristics determining rates of leaching, fixation/remobilization as well as sorption-desorption of mobile fraction (its solid-liquid distribution). In many cases the natural attenuation processes governing by the above mentioned processes supported by water flow transportation and sedimentation played the key role in self-rehabilitation of the aquatic ecosystems. The models developed during post-Chernobyl decade and process parameters studies can help in monitoring and remediation programs planed for Fukusima Daichi affected watersheds areas as well. Some most important monitoring data collection results and experience gained during post-Chernobyl decades at the Dnieper River aquatic system are presented (catchments, river and reservoirs). This experience show that only information on radionuclide deposition levels is not enough for accurate predictions on radionuclide wash-out and transport in the hydrological systems. Data on speciation in fallout, rates of transformation processes and site-specific environmental characteristics determining these rates are needed. Information on radionuclide chemical forms, their transformation in other words mobility and bioavailability should be taken into account when rehabilitation and decontamination strategies are developed on local or regional scale. Number of inadequate water protection measures carried out during initial post-accidental period took place because lack of preparedness, data and decision making support tools were in use, Environmental radiation monitoring network has not been developed and huge impact of social stressing and inadequate risk perception took place. Many experimental data, models developed and experience for safe management at the contaminated watersheds and water bodies can be useful and in particular those, who dealing with consequences of Fucusima accident 2011. The paper gives extended overview and describes experience of authors in justification and evaluation of the remedial actions applied after Chernobyl accident with focus on most important lessons learned and potentially utilized in future.

  2. Efficiency of a borehole seal by means of pre-compacted bentonite blocks

    NASA Astrophysics Data System (ADS)

    Van Geet, M.; Volckaert, G.; Bastiaens, W.; Maes, N.; Weetjens, E.; Sillen, X.; Vallejan, B.; Gens, A.

    The backfilling and sealing of shafts and galleries is an essential part of the design of underground repositories for high-level radioactive waste. Part of the EC funded project RESEAL studied the feasibility of sealing off a borehole in plastic Boom Clay by means of pre-compacted bentonite blocks. Two bentonites, namely the FoCa and Serrata clay, have been used. Based on laboratory tests, the bentonite blocks had an initial dry density of about 1.8 g/cm 3 to obtain a swelling pressure of about 4.4 MPa, corresponding to the in situ lithostatic stress, at full saturation. The set-up was equipped with several sensors to follow-up the behaviour of the seal and the surrounding host rock during hydration. Full saturation was reached after five months and was mainly reached by natural hydration. Swelling pressure was lower than originally foreseen due to the slow reconsolidation of the host rock. Later on, the efficiency of the seal with respect to water, gas and radionuclide migration was tested. The in situ measured permeability of the seals was about 5 × 10 -13 m/s. A gas breakthrough experiment did not show any preferential gas migration through the seal. No evidences of a preferential pathway could be detected from 125I tracer test results.

  3. Laboratory Training Manual on the Use of Radionuclides and Radiation in Animal Research, Third Edition.

    ERIC Educational Resources Information Center

    International Atomic Energy Agency, Vienna (Austria).

    This publication is written for those researchers who are interested in the use of radionuclides and radiation in the animal science field. Part I presents topics intended to provide the theoretical base of radionuclides which is important in order to design an experiment for drawing maximum information from it. The topics included in this…

  4. THE EFFECT OF IONIZING RADIATION ON U6+ -PHASES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Utsunomiya; R.C. Ewing

    2005-07-07

    U{sup 6+}-minerals commonly form during the alteration of uraninite and spent nuclear fuel under oxidizing conditions. By the incorporation of actinides and fissiogenic elements into their structures, U{sup 6+}-minerals may be important in retarding the migration of radionuclides released during corrosion of spent nuclear fuel. Thus, the stability and the structural transformation of the U{sup 6+}-minerals in radiation fields are of great interest.

  5. Increased Concentrations of Short-Lived Decay-Series Radionuclides in Groundwaters Underneath the Nopal I Uranium Deposit at Pena Blanca, Mexico

    NASA Astrophysics Data System (ADS)

    Luo, S.; Ku, T.; Todd, V.; Murrell, M. T.; Dinsmoor, J. C.

    2007-05-01

    The Nopal I uranium ore deposit at Pena Blanca, Mexico, located at > 200 meters above the groundwater table, provides an ideal natural analog for quantifying the effectiveness of geological barrier for isolation of radioactive waste nuclides from reaching the human environments through ground water transport. To fulfill such natural analog studies, three wells (PB1, PB2, and PB3 respectively) were drilled at the site from the land surface down to the saturated groundwater zone and ground waters were collected from each of these wells through large- volume sampling/in-situ Mn-filter filtration for analyses of short-lived uranium/thorium-series radionuclides. Our measurements from PB1 show that the groundwater standing in the hole has much lower 222Rn activity than the freshly pumped groundwater. From this change in 222Rn activity, we estimate the residence time of groundwater in PB1 to be about 20 days. Our measurements also show that the activities of short-lived radioisotopes of Th (234Th), Ra (228Ra, 224Ra, 223Ra), Rn (222Rn), Pb (210Pb), and Po (210Po) in PB1, PB2, and PB3 are all significantly higher than those from the other wells near the Nopal I site. These high activities provide evidence for the enrichment of long-lived U and Ra isotopes in the groundwater as well as in the associated adsorbed phases on the fractured aquifer rocks underneath the ore deposit. Such enrichment suggests a rapid dissolution of U and Ra isotopes from the uranium ore deposit in the vadose zone and the subsequent migration to the groundwater underneath. A reactive transport model can be established to characterize the in-situ transport of radionuclides at the site. The observed change of 222Rn activity at PB1 also suggests that the measured high radioactivityies in ground waters from the site isare not an artifact of drilling operations. However, further studies are needed to assess if or to what extent the radionuclide migration is affected by the previous mining activities at the site.

  6. The characterization and risk assessment of the `Red Forest` radioactive waste burial site at Chernobyl Nuclear Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bungai, D.A.; Skalskij, A.S.; Dzhepo, S.P.

    The `Red Forest` radioactive waste burials created during emergency clean-up activities at Chernobyl Nuclear Power Plant represent a serious source of radioactive contamination of the local ground water system with 9OSr concentration in ground water exceeding the drinking water standard by 3-4 orders of magnitude. In this paper we present results of our hydrogeological and radiological `Red Forest` site characterization studies, which allow us to estimate 9OSr subsurface migration parameters. We use then these parameters to assess long terrain radionuclide transport to groundwater and surface water, and to analyze associated health risks. Our analyses indicate that 9OSr transport via groundmore » water pathway from `Red Forest` burials to the adjacent Pripyat River is relatively insignificant due to slow release of 9OSr from the waste burials (less than 1% of inventory per year) and due to long enough ground water residence time in the subsurface, which allows substantial decay of the radioactive contaminant. Tins result and our previous analyses indicate, that though conditions of radioactive waste storage in burials do not satisfy Ukrainian regulation on radiation protection, health risks caused by radionuclide migration to ground water from `Red Forest` burials do not justify application of expensive countermeasures.« less

  7. Nuclear Waste Package Mockups: A Study of In-situ Redox State

    NASA Astrophysics Data System (ADS)

    Helean, K.; Anderson, B.; Brady, P. V.

    2006-05-01

    The Yucca Mountain Repository (YMR), located in southern Nevada, is to be the first facility in the U.S. for the permanent disposal of high-level radioactive waste and spent nuclear fuels. Total system performance assessment(TSPA) has indicated that among the major radionuclides contributing to dose are Np, Tc, and I. These three radionuclides are mobile in most geochemical settings, and therefore sequestering them within the repository horizon is a priority for the Yucca Mountain Project (YMP). Corroding steel may offset radionuclide transport processes within the proposed waste packages at YMR by retaining radionuclides, creating locally reducing conditions, and reducing porosity. Ferrous iron has been shown to reduce UO22+ to UO2s, and some ferrous iron-bearing ion-exchange materials have been shown to adsorb radionuclides and heavy metals. Locally reducing conditions may lead to the reduction and subsequent immobilization of problematic dissolved species such as TcO4-, NpO2+, and UO22+ and can also inhibit corrosion of spent nuclear fuel. Water occluded during corrosion produces bulky corrosion products, and consequently less porosity is available for water and radionuclide transport. The focus of this study is on the nature of Yucca Mountain waste package corrosion products and their effects on local redox conditions, radionuclide transport, and porosity. In order to measure in-situ redox, six small-scale (1:40) waste package mockups were constructed using A516 and 316 stainless steel, the same materials as the proposed Yucca Mountain waste packages. The mockups are periodically injected with a simulated groundwater and the accumulated effluent and corrosion products are evaluated for their Fe(II)/Fe(III) content and mineralogy. Oxygen fugacities are then calculated and, thus, in-situ redox conditions are determined. Early results indicate that corrosion products are largely amorphous Fe-oxyhydroxides, goethite and magnetite. That information together with the measured Fe(II)/Fe(III) ratios in the mockup effluent constrain the oxygen fugacity to approximately 10-38 atm, many orders of magnitude below ambient. These results and their impact on radionuclide migration from YMR will be discussed.

  8. Selected, annotated bibliography of studies relevant to the isolation of nuclear wastes. [705 references

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyder, L.K.; Fore, C.S.; Vaughan, N.D.

    This annotated bibliography of 705 references represents the first in a series to be published by the Ecological Sciences Information Center containing scientific, technical, economic, and regulatory information relevant to nuclear waste isolation. Most references discuss deep geologic disposal, with fewer studies of deep seabed disposal; space disposal is also included. The publication covers both domestic and foreign literature for the period 1954 to 1980. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Envirnmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Repository Design and Engineering; Transportation Technology;more » Waste Production; and Waste Treatment. Specialized data fields have been incorporated to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. When the author is not given, the corporate affiliation appears first. If these two levels of authorship are not given, the title of the document is used as the identifying level. Indexes are provided for author(s), keywords, subject category, title, geographic location, measured parameters, measured radionuclides, and publication description.« less

  9. Radionuclide desorption kinetics on synthetic Zn/Ni-labeled montmorillonite nanoparticles

    NASA Astrophysics Data System (ADS)

    Huber, F. M.; Heck, S.; Truche, L.; Bouby, M.; Brendlé, J.; Hoess, P.; Schäfer, T.

    2015-01-01

    Sorption/desorption kinetics for selected radionuclides (99Tc(VII), 232Th(IV), 233U(VI), 237Np(V), 242Pu and 243Am(III)) under Grimsel (Switzerland) ground water conditions (pH 9.7 and ionic strength of ∼1 mM) in the presence of synthetic Zn or Ni containing montmorillonite nanoparticles and granodiorite fracture filling material (FFM) from Grimsel were examined in batch studies. The structurally bound Zn or Ni in the octahedral sheet of the synthetic colloids rendered them suitable as colloid markers. Only a weak interaction of the montmorillonite colloids with the fracture filling material occurs over the experimental duration of 10,000 h (∼13 months). The tri- and tetravalent radionuclides are initially strongly associated with nanoparticles in contrast to 99Tc(VII), 233U(VI) and 237Np(V) which showed no sorption to the montmorillonite colloids. Radionuclide desorption of the nanoparticles followed by sorption to the fracture filling material is observed for 232Th(IV), 242Pu and 243Am(III). Based on the conceptual model that the driving force for the kinetically controlled radionuclide desorption from nanoparticles and subsequent association to the FFM is the excess in surface area offered by the FFM, the observed desorption kinetics are related to the colloid/FFM surface area ratio. The observed decrease in concentration of the redox sensitive elements 99Tc(VII), 233U(VI) and 237Np(V) may be explained by reduction to lower oxidation states in line with Eh-pH conditions prevailing in the experiments and thermodynamic considerations leading to (i) precipitation of a sparingly soluble phase, (ii) sorption to the fracture filling material, (iii) possible formation of eigencolloids and/or (iv) sorption to the montmorillonite colloids. Subsequent to the sorption/desorption kinetics study, an additional experiment was conducted investigating the potential remobilization of radionuclides/colloids attached to the FFM used in the sorption/desorption kinetic experiments by contacting this FFM with pure Grimsel groundwater for 7 days. A positive correlation of 242Pu, 232Th(IV) and 237Np was observed with the Zn and Ni concentrations in the desorption experiments indicating a remobilization of sorbed montmorillonite colloids. The results of the study in hand highlight (i) the novel use of structural labeled colloids to decrease the uncertainties in the determination of nanoparticle attachment providing more confidence in the derived radionuclide desorption rates. Moreover, the data illustrate (ii) the importance of radionuclide colloid desorption to be considered in the analysis and application of colloid facilitated transport both in laboratory or in-situ experiments and numerical model simulations and (iii) a possible remobilization of sorbed colloids and associated radionuclides by desorption from the matrix material (FFM) under non-equilibrium conditions.

  10. Natural attenuation of Fukushima-derived radiocesium in soils due to its vertical and lateral migration.

    PubMed

    Konoplev, A; Golosov, V; Wakiyama, Y; Takase, T; Yoschenko, V; Yoshihara, T; Parenyuk, O; Cresswell, A; Ivanov, M; Carradine, M; Nanba, K; Onda, Y

    2018-06-01

    Processes of vertical and lateral migration lead to gradual reduction in contamination of catchment soil, particularly its top layer. The reduction can be considered as natural attenuation. This, in turn, results in a gradual decrease of radiocesium activity concentrations in the surface runoff and river water, in both dissolved and particulate forms. The purpose of this research is to study the dynamics of Fukushima-derived radiocesium in undisturbed soils and floodplain deposits exposed to erosion and sedimentation during floods. Combined observations of radiocesium vertical distribution in soil and sediment deposition on artificial lawn-grass mats on the Niida River floodplain allowed us to estimate both annual mean sediment accumulation rates and maximum sedimentation rates corresponding to an extreme flood event during Tropical Storm Etau, 6-11 September 2015. Dose rates were reduced considerably for floodplain sections with high sedimentation because the top soil layer with high radionuclide contamination was eroded and/or buried under cleaner fresh sediments produced mostly due to bank erosion and sediments movements. Rate constants of natural attenuation on the sites of the Takase River and floodplain of Niida River was found to be in range 0.2-0.4 year -1 . For the site in the lower reach of the Niida River, collimated shield dose readings from soil surfaces slightly increased during the period of observation from February to July 2016. Generally, due to more precipitation, steeper slopes, higher temperatures and increased biological activities in soils, self-purification of radioactive contamination in Fukushima associated with vertical and lateral radionuclide migration is faster than in Chernobyl. In many cases, monitored natural attenuation along with appropriate restrictions seems to be optimal option for water remediation in Fukushima contaminated areas. Copyright © 2017. Published by Elsevier Ltd.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockhold, Mark L.; White, Mark D.; Freeman, Eugene J.

    This letter report documents initial numerical analyses conducted by PNNL to provide support for a feasibility study on decommissioning of the canyon buildings at Hanford. The 221-U facility is the first of the major canyon buildings to be decommissioned. The specific objective of this modeling effort was to provide estimates of potential rates of migration of residual contaminants out of the 221-U facility during the first 40 years after decommissioning. If minimal contaminant migration is predicted to occur from the facility during this time period, then the structure may be deemed to provide a level of groundwater protection that ismore » essentially equivalent to the liner and leachate collection systems that are required at conventional landfills. The STOMP code was used to simulate transport of selected radionuclides out of a canyon building, representative of the 221-U facility after decommissioning, for a period of 40 years. Simulation results indicate that none of the selected radionuclides that were modeled migrated beyond the concrete structure of the facility during the 40-year period of interest. Jacques (2001) identified other potential contaminants in the 221-U facility that were not modeled, however, including kerosene, phenol, and various metals. Modeling of these contaminants was beyond the scope of this preliminary effort due to increased complexity. Simulation results indicate that contaminant release from the canyon buildings will be diffusion controlled at early times. Advection is expected to become much more important at later times, after contaminants have diffused out of the facility and into the surrounding soil environment. After contaminants have diffused out of the facility, surface infiltration covers will become very important for mitigating further transport of contaminants in the underlying vadose zone and groundwater.« less

  12. Column Experiments for Radionuclide Adsorption Studies of the Culebra Dolomite: Retardation Parameter Estimation for Non-Eluted Actinide Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, G.O.; Lucero, D.A.; Perkins, W.G.

    The U.S. Department of Energy (DOE) has been developing a nuclear waste disposal facility, the Waste Isolation Pilot Plant (WIPP), located approximately 42 km east of Carlsbad, New Mexico. The WIPP is designed to demonstrate the safe disposal of transuranic wastes produced by the defense nuclear-weapons program. Performance assessment analyses (U.S. DOE, 1996) indicate that human intrusion by inadvertent and intermittent drilling for resources provide the only credible mechanisms for significant releases of radionuclides horn the disposal system. These releases may occur by five mechanisms: (1) cuttings, (2) cavings, (3) spallings, (4) direct brine releases, and (5) long-term brine releases.more » The first four mechanisms could result in immediate release of contaminant to the accessible environment. For the last mechanism, migration pathways through the permeable layers of rock above the Salado are important, and major emphasis is placed on the Culebra Member of the Rustler Formation because this is the most transmissive geologic layer in the disposal system. For reasons of initial quantity, half-life, and specific radioactivity, certain isotopes of Th, U, Am, and Pu would dominate calculated releases from the WIPP. In order to help quanti~ parameters for the calculated releases, radionuclide transport experiments have been carried out using five intact-core columns obtained from the Culebra dolomite member of the Rustler Formation within the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. This report deals primarily with results of mathematical analyses related to the retardation of %J%, 24%, and 24'Am in two of these cores (B-Core - VPX26-11A and C-Core - VPX28-6C). All B-Core transport experiments were done using Culebra-simukmt brine relevant to the core recovery location (the WIPP air-intake shaft - AIS). Most experiments with C-Core were done with AIS brine with some admixture of a brine composition (ERDA-6) that simulated deeper formation brines. No significant changes in transport behavior were observed for changes in brine. Hydraulic characteristics (i.e., apparent porosity and apparent dispersion coefficient) for the cores were obtained via experiments using conservative tracer `Na. Elution experiments carried out over periods of a few days with tracers `*U and %Np indicated that these tracers were weakly retarded as indicated by delayed elution of these species. Elution experiments with tracers `%, 24'Pu, and 24'Ani were performed, but no elution of any of these species was observed in any flow experiment to date, including experiments of up to two years duration. However, B-Core was subjected to tomographic analysis from which a retardation factor can be inferred for%. Moreover, the fact of non- elution for 24*Pu and 24'Am after more than two years brine flow through C-Core can be coupled with the minimum detectable activity for each of these species to compute minimum retardation factors in C-Core. The retardation factors for all three species can then be coupled with the apparent hydraulic characteristics to estimate an apparent minimum solutionhock distribution coefficient, &, for each actinide. The specific radionuclide isotopes used in these experiments were chosen to facilitate analysis. Even though these isotopes are not necessarily the same as those that are most important to WIPP performance, they are isotopes of the same elements, and . their chemical and transport properties are therefore identical to those of isotopes in the WIPP inventory. The retardation factors and & values deduced from experimental results strongly support the contention that sorption in the Culebra provides an effective barrier to release of Th, Pu, and Am during the regulatory period.« less

  13. Meeting report from the Prostate Cancer Foundation PSMA-directed radionuclide scientific working group.

    PubMed

    Miyahira, Andrea K; Pienta, Kenneth J; Morris, Michael J; Bander, Neil H; Baum, Richard P; Fendler, Wolfgang P; Goeckeler, William; Gorin, Michael A; Hennekes, Hartwig; Pomper, Martin G; Sartor, Oliver; Tagawa, Scott T; Williams, Scott; Soule, Howard R

    2018-05-01

    The Prostate Cancer Foundation (PCF) convened a PSMA-Directed Radionuclide Scientific Working Group on November 14, 2017, at Weill Cornell Medicine, New York, NY. The meeting was attended by 35 global investigators with expertise in prostate cancer biology, radionuclide therapy, molecular imaging, prostate-specific membrane antigen (PSMA)-targeted agents, drug development, and prostate cancer clinical trials. The goal of this meeting was to discuss the potential for using PSMA-targeted radionuclide agents for the treatment of advanced prostate cancer and to define the studies and clinical trials necessary for validating and optimizing the use of these agents. Several major topic areas were discussed including the overview of PSMA biology, lessons and applications of PSMA-targeted PET imaging, the nuances of designing PSMA-targeted radionuclide agents, clinical experiences with PSMA-targeted radionuclides, PCF-funded projects to accelerate PSMA-targeted radionuclide therapy, and barriers to the use of radionuclide treatments in widespread clinical practice. This article reviews the major topics discussed at the meeting with the goal of promoting research that will validate and optimize the use of PSMA-targeted radionuclide therapies for the treatment of advanced prostate cancer. © 2018 Wiley Periodicals, Inc.

  14. Interpretation of actinide-distribution data obtained from non-destructive and destructive post-test analyses of an intact-core column of Culebra dolomite.

    PubMed

    Perkins, W G; Lucero, D A

    2001-02-01

    The US Department of Energy (DOE), with technical assistance from Sandia National Laboratories, has successfully received EPA certification and opened the Waste Isolation Pilot Plant (WIPP), a nuclear waste disposal facility located approximately 42 km east of Carlsbad, NM. Performance assessment (PA) analyses indicate that human intrusions by inadvertent, intermittent drilling for resources provide the only credible mechanisms for significant releases of radionuclides from the disposal system. For long-term brine releases, migration pathways through the permeable layers of rock above the Salado formation are important. Major emphasis is placed on the Culebra Member of the Rustler Formation because this is the most transmissive geologic layer overlying the WIPP site. In order to help quantify parameters for the calculated releases, radionuclide transport experiments have been carried out using intact-core columns obtained from the Culebra dolomite member of the Rustler Formation within the WIPP site. This paper deals primarily with results of analyses for 241Pu and 241Am distributions developed during transport experiments in one of these cores. Transport experiments were done using a synthetic brine that simulates Culebra brine at the core recovery location (the WIPP air-intake shaft (AIS)). Hydraulic characteristics (i.e., apparent porosity and apparent dispersion coefficient) for intact-core columns were obtained via experiments using the conservative tracer 22Na. Elution experiments carried out over periods of a few days with tracers 232U and 239Np indicated that these tracers were weakly retarded as indicated by delayed elution of the species. Elution experiments with tracers 241Pu and 241Am were attempted but no elution of either species has been observed to date, including experiments of many months' duration. In order to quantify retardation of the non-eluted species 241Pu and 241Am after a period of brine flow, non-destructive and destructive analyses of one intact-core column were carried out to determine distribution of these actinides in the rock. Analytical results indicate that the majority of the 241Am remained very near the injection surface of the core (possibly as a precipitate), and that the majority of the 241Pu was dispersed with a very high apparent retardation value. The 241Pu distribution is interpreted using a single-porosity advection-dispersion model, and an approximate retardation value is reported.

  15. Three-dimensional DFN Model Development and Calibration: A Case Study for Pahute Mesa, Nevada National Security Site

    NASA Astrophysics Data System (ADS)

    Pham, H. V.; Parashar, R.; Sund, N. L.; Pohlmann, K.

    2017-12-01

    Pahute Mesa, located in the north-western region of the Nevada National Security Site, is an area where numerous underground nuclear tests were conducted. The mesa contains several fractured aquifers that can potentially provide high permeability pathways for migration of radionuclides away from testing locations. The BULLION Forced-Gradient Experiment (FGE) conducted on Pahute Mesa injected and pumped solute and colloid tracers from a system of three wells for obtaining site-specific information about the transport of radionuclides in fractured rock aquifers. This study aims to develop reliable three-dimensional discrete fracture network (DFN) models to simulate the BULLION FGE as a means for computing realistic ranges of important parameters describing fractured rock. Multiple conceptual DFN models were developed using dfnWorks, a parallelized computational suite developed by Los Alamos National Laboratory, to simulate flow and conservative particle movement in subsurface fractured rocks downgradient from the BULLION test. The model domain is 100x200x100 m and includes the three tracer-test wells of the BULLION FGE and the Pahute Mesa Lava-flow aquifer. The model scenarios considered differ from each other in terms of boundary conditions and fracture density. For each conceptual model, a number of statistically equivalent fracture network realizations were generated using data from fracture characterization studies. We adopt the covariance matrix adaptation-evolution strategy (CMA-ES) as a global local stochastic derivative-free optimization method to calibrate the DFN models using groundwater levels and tracer breakthrough data obtained from the three wells. Models of fracture apertures based on fracture type and size are proposed and the values of apertures in each model are estimated during model calibration. The ranges of fracture aperture values resulting from this study are expected to enhance understanding of radionuclide transport in fractured rocks and support development of improved large-scale flow and transport models for Pahute Mesa.

  16. Task 3: PNNL Visit by JAEA Researchers to Participate in TODAM Code Applications to Fukushima Rivers and to Evaluate the Feasibility of Adaptation of FLESCOT Code to Simulate Radionuclide Transport in the Pacific Ocean Coastal Water Around Fukushima

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Yasuo

    Four JAEA researchers visited PNNL for two weeks in February, 2013 to learn the PNNL-developed, unsteady, one-dimensional, river model, TODAM and the PNNL-developed, time-dependent, three dimensional, coastal water model, FLESCOT. These codes predict sediment and contaminant concentrations by accounting sediment-radionuclide interactions, e.g., adsorption/desorption and transport-deposition-resuspension of sediment-sorbed radionuclides. The objective of the river and coastal water modeling is to simulate • 134Cs and 137Cs migration in Fukushima rivers and the coastal water, and • their accumulation in the river and ocean bed along the Fukushima coast. Forecasting the future cesium behavior in the river and coastal water under various scenariosmore » would enable JAEA to assess the effectiveness of various on-land remediation activities and if required, possible river and coastal water clean-up operations to reduce the contamination of the river and coastal water, agricultural products, fish and other aquatic biota. PNNL presented the following during the JAEA visit to PNNL: • TODAM and FLESCOT’s theories and mathematical formulations • TODAM and FLESCOT model structures • Past TODAM and FLESCOT applications • Demonstrating these two codes' capabilities by applying them to simple hypothetical river and coastal water cases. • Initial application of TODAM to the Ukedo River in Fukushima and JAEA researchers' participation in its modeling. PNNL also presented the relevant topics relevant to Fukushima environmental assessment and remediation, including • PNNL molecular modeling and EMSL computer facilities • Cesium adsorption/desorption characteristics • Experiences of connecting molecular science research results to macro model applications to the environment • EMSL tour • Hanford Site road tour. PNNL and JAEA also developed future course of actions for joint research projects on the Fukushima environmental and remediation assessments.« less

  17. Defining modeling parameters for juniper trees assuming pleistocene-like conditions at the NTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarbox, S.R.; Cochran, J.R.

    1994-12-31

    This paper addresses part of Sandia National Laboratories` (SNL) efforts to assess the long-term performance of the Greater Confinement Disposal (GCD) facility located on the Nevada Test Site (NTS). Of issue is whether the GCD site complies with 40 CFR 191 standards set for transuranic (TRU) waste burial. SNL has developed a radionuclide transport model which can be used to assess TRU radionuclide movement away from the GCD facility. An earlier iteration of the model found that radionuclide uptake and release by plants is an important aspect of the system to consider. Currently, the shallow-rooted plants at the NTS domore » not pose a threat to the integrity of the GCD facility. However, the threat increases substantially it deeper-rooted woodland species migrate to the GCD facility, given a shift to a wetter climate. The model parameters discussed here will be included in the next model iteration which assumes a climate shift will provide for the growth of juniper trees at the GCD facility. Model parameters were developed using published data and wherever possible, data were taken from juniper and pinon-juniper studies that mirrored as many aspects of the GCD facility as possible.« less

  18. Mass spectrometry of long-lived radionuclides

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine

    2003-10-01

    The capability of determining element concentrations at the trace and ultratrace level and isotope ratios is a main feature of inorganic mass spectrometry. The precise and accurate determination of isotope ratios of long-lived natural and artificial radionuclides is required, e.g. for their environmental monitoring and health control, for studying radionuclide migration, for age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, for quality assurance and determination of the burn-up of fuel material in a nuclear power plant, for reprocessing plants, nuclear material accounting and radioactive waste control. Inorganic mass spectrometry, especially inductively coupled plasma mass spectrometry (ICP-MS) as the most important inorganic mass spectrometric technique today, possesses excellent sensitivity, precision and good accuracy for isotope ratio measurements and practically no restriction with respect to the ionization potential of the element investigated—therefore, thermal ionization mass spectrometry (TIMS), which has been used as the dominant analytical technique for precise isotope ratio measurements of long-lived radionuclides for many decades, is being replaced increasingly by ICP-MS. In the last few years instrumental progress in improving figures of merit for the determination of isotope ratio measurements of long-lived radionuclides in ICP-MS has been achieved by the application of a multiple ion collector device (MC-ICP-MS) and the introduction of the collision cell interface in order to dissociate disturbing argon-based molecular ions, to reduce the kinetic energy of ions and neutralize the disturbing noble gas ions (e.g. of 129Xe + for the determination of 129I). The review describes the state of the art and the progress of different inorganic mass spectrometric techniques such as ICP-MS, laser ablation ICP-MS vs. TIMS, glow discharge mass spectrometry, secondary ion mass spectrometry, resonance ionization mass spectrometry and accelerator mass spectrometry for the determination of long-lived radionuclides in quite different materials.

  19. Isotopic ratio and vertical distribution of radionuclides in soil affected by the accident of Fukushima Dai-ichi nuclear power plants.

    PubMed

    Fujiwara, Takeshi; Saito, Takumi; Muroya, Yusa; Sawahata, Hiroyuki; Yamashita, Yuji; Nagasaki, Shinya; Okamoto, Koji; Takahashi, Hiroyuki; Uesaka, Mitsuru; Katsumura, Yosuke; Tanaka, Satoru

    2012-11-01

    The results of γ analyses of soil samples obtained from 50 locations in Fukushima prefecture on April 20, 2011, revealed the presence of a spectrum of radionuclides resulted from the accident of the Fukushima Dai-ichi nuclear power plant (FDNPP). The sum γ radioactivity concentration ranged in more than 3 orders of magnitude, depending on the sampling locations. The contamination of soils in the northwest of the FDNPP was considerable. The (131)I/(137)Cs activity ratios of the soil samples plotted as a function of the distance from the F1 NPPs exhibited three distinctive patterns. Such patterns would reflect not only the different deposition behaviors of these radionuclides, but also on the conditions of associated release events such as temperature and compositions and physicochemical forms of released radionuclides. The (136)Cs/(137)Cs activity ratio, on the other hand, was considered to only reflect the difference in isotopic compositions of source materials. Two locations close to the NPP in the northwest direction were found to be depleted in short-lived (136)Cs. This likely suggested the presence of distinct sources with different (136)Cs/(137)Cs isotopic ratios, although their details were unknown at present. Vertical γ activity profiles of (131)I and (137)Cs were also investigated, using 20-30 cm soil cores in several locations. About 70% or more of the radionuclides were present in the uppermost 2-cm regions. It was found that the profiles of (131)I/(137)Cs activity ratios showed maxima in the 2-4 cm regions, suggesting slightly larger migration of the former nuclide. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Distribution coefficients (Kd's) for use in risk assessment models of the Kara Sea.

    PubMed

    Carroll, J; Boisson, F; Teyssie, J L; King, S E; Krosshavn, M; Carroll, M L; Fowler, S W; Povinec, P P; Baxter, M S

    1999-07-01

    As a prerequisite for most evaluations of radionuclide transport pathways in marine systems, it is necessary to obtain basic information on the sorption potential of contaminants onto particulate matter. Kd values for use in modeling radionuclide dispersion in the Kara Sea have been determined as part of several international programs addressing the problem of radioactive debris residing in Arctic Seas. Field and laboratory Kd experiments were conducted for the following radionuclides associated with nuclear waste: americium, europium, plutonium, cobalt, cesium and strontium. Emphasis has been placed on two regions in the Kara Sea: (i) the Novaya Zemlya Trough (NZT) and (ii) the mixing zones of the Ob and Yenisey Rivers (RMZ). Short-term batch Kd experiments were performed at-sea on ambient water column samples and on samples prepared both at-sea and in the laboratory by mixing filtered bottom water with small amounts of surficial bottom sediments (particle concentrations in samples = 1-30 mg/l). Within both regions, Kd values for individual radionuclides vary over two to three orders of magnitude. The relative particle affinities for radionuclides in the two regions are americium approximately equal to europium > plutonium > cobalt > cesium > strontium. The values determined in this study agree with minimum values given in the IAEA Technical Report [IAEA, 1985. Sediment Kd's and Concentration Factors for Radionuclides in the Marine Environment. Technical Report No. 247. International Atomic Energy Agency, Vienna.]. Given the importance of Kd's in assessments of critical transport pathways for radionuclide contaminants, we recommend that Kd ranges of values for specific elements rather than single mean values be incorporated into model simulations of radionuclide dispersion.

  1. Modeling Sr-90 Retardation by Fractured Rocks Based on the Results of In Situ and Laboratory Research

    NASA Astrophysics Data System (ADS)

    Samsanova, L.; Kotchergina, N. V.; Glinsky, M.; Zinin, A.; Ivanov, I.

    2001-12-01

    Industrial solutions from the surface storage of liquid radioactive wastes in Lake Karachay have been migrating in groundwaters for 50 years. Interaction of industrial solutions with fractured water-bearing rocks results in the formation of a plume body of contaminated rocks due to a partial retardation of the migrating radionuclides. In conducting research of the fractured rocks core samples from the wells located within the contaminated ground water plume, we have obtained empirical estimations of the retardation parameter (Sr-90 interphase distribution factor, Kd). To interpret the experimental data on Sr-90 Kd, a method of modeling of strontium-90 retardation by fractured rocks has been developed. The process of transient filtration for a flow fragment from Lake Karachay was reconstructed. Epignose modeling of the industrial solution's main flow migrating from Lake Karachay in south direction was performed. By solving the inverse tasks Kd of strontium-90 was estimated for the fractured rocks.

  2. Radioactive characterization of phosphogypsum from Imbituba, Brazil.

    PubMed

    Borges, Renata Coura; Ribeiro, Fernando Carlos Araujo; Lauria, Dejanira da Costa; Bernedo, Alfredo Victor Bellido

    2013-12-01

    This research aims to characterize the content of natural occurring radionuclides in phosphogypsum stacks at Imbituba, Santa Catarina state, Brazil. (226)Ra, (228)Ra, (40)K, (238)U and (232)Th were determined in PG, soils and sediment samples by gamma spectrometry using the hyper pure germanium detector and neutron activation. The migration of radionuclides in the phosphogypsum profile did not show the same behavior for all sampling sites. The mean activity concentration of (226)Ra was 95 Bq kg(-1), which is far below the limit recommended by the U.S. Environmental Agency (USEPA) for its application in agriculture (370 Bq kg(-1)) and the Brazilian Commission of Nuclear Energy Resolution 113 that established a reference level of 1000 Bq kg(-1) of (226)Ra or (228)Ra for the use of PG in agriculture as well as building materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napier, Bruce A.; Fellows, Robert J.; Krupka, Kenneth M.

    This report describes work performed for the U.S. Nuclear Regulatory Commission’s project Assessment of Food Chain Pathway Parameters in Biosphere Models, which was established to assess and evaluate a number of key parameters used in the food-chain models used in performance assessments of radioactive waste disposal facilities. Section 2 of this report summarizes characteristics of samples of soils and groundwater from three geographical regions of the United States, the Southeast, Northwest, and Southwest, and analyses performed to characterize their physical and chemical properties. Because the uptake and behavior of radionuclides in plant roots, plant leaves, and animal products depends onmore » the chemistry of the water and soil coming in contact with plants and animals, water and soil samples collected from these regions of the United States were used in experiments at Pacific Northwest National Laboratory to determine radionuclide soil-to-plant concentration ratios. Crops and forage used in the experiments were grown in the soils, and long-lived radionuclides introduced into the groundwater provide the contaminated water used to water the grown plants. The radionuclides evaluated include 99Tc, 238Pu, and 241Am. Plant varieties include alfalfa, corn, onion, and potato. The radionuclide uptake results from this research study show how regional variations in water quality and soil chemistry affect radionuclide uptake. Section 3 summarizes the procedures and results of the uptake experiments, and relates the soil-to-plant uptake factors derived. In Section 4, the results found in this study are compared with similar values found in the biosphere modeling literature; the study’s results are generally in line with current literature, but soil- and plant-specific differences are noticeable. This food-chain pathway data may be used by the NRC staff to assess dose to persons in the reference biosphere (e.g., persons who live and work in an area potentially affected by radionuclide releases) of waste disposal facilities and decommissioning sites.« less

  4. Effects of Containment on Radionuclide Releases from Underground Nuclear Explosions

    NASA Astrophysics Data System (ADS)

    Carrigan, C. R.; Sun, Y.

    2016-12-01

    Confirming the occurrence of an underground nuclear explosion can require capturing short-lived noble gas radioisotopes produced by the explosion, sometimes referred to as the "smoking gun" for nuclear explosion detection. It is well known that the radioisotopic distribution resulting from the detonation evolves with time in the explosion cavity. In effect, the explosion cavity or chimney behaves as a chemical reactor. As long as the parent and daughter radionuclides remain in a closed and well-mixed cavity, parameters, such as radioxenon isotopic ratios, can be calculated analytically from a decay-chain network model. When gases from the cavity migrate into the containment regime, consideration of a "leaky reactor" model is more appropriate. We consider several implications of such a leaky reactor model relevant to interpretations of gas samples from the subsurface during an on-site inspection that could potentially be carried out under the Comprehensive Nuclear Test Ban Treaty. Additionally, we have attempted to validate our leaky reactor model against atmospheric observations of radioactive xenon isotopes detected by radionuclide monitoring stations in Japan and Russia following the February 2013 DPRK underground nuclear explosion (Carrigan et al., 2016). While both model uncertainty and observational error are significant, our model of isotopic evolution appears to be in broad agreement with radionuclide observations, and for the first time links atmospheric measurements of radioxenon isotopic ratios to estimates of seismic yield. Carrigan et al., Scientific Reports 6, Article number: 23032 (2016) doi:10.1038/srep23032

  5. Low-level radioactive waste technology: a selected, annotated bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fore, C.S.; Vaughan, N.D.; Hyder, L.K.

    1980-10-01

    This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinentmore » references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.« less

  6. Laboratory and field studies related to radionuclide migration at the Nevada Test Site October 1, 1998-September 30, 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. L. Finnegan; K. S. Kung; B. A. Martinez

    In this report the author describes his research in FY 1999 at the Nevada Test Site regarding the movement of radionuclides in groundwater. This work is funded by the US Department of Energy/Nevada Operations Office through their Defense Programs and Environmental Restorations divisions. Significant accomplishments include upgrading a spectrometer used to characterize groundwater colloids, acquisition of a probe to allow in situ measurement of groundwater parameters, and purchase of pumps for use in small-diameter access tubing. He collected water samples from a number of nuclear test sites during the past year. Samples from the chimney horizon at the Camembert sitemore » show that only volatile radionuclides are present there, as expected. Groundwater from the cavity region at the Cheshire site shows evidence of fission product leaching or desorption from melt glass or rock surfaces. Colloids present in this water were found to be remarkably stable during storage for many years. The colloid content of groundwater at the Cambric site and at UE-5n was found to be low relative to that in groundwater on Pahute Mesa. This, coupled with the apparent lack of groundwater flow in the alluvial rock at the Cambric site, suggests that radionuclide movement underground in this area is relatively minimal. He continued the yearly monitoring of the thermally hot cavity fluids at the Almendro site. He concludes this report by listing documents reviewed and presentations and publications generated by the program.« less

  7. Americium, Cesium, and Plutonium Colloid-Facilitated Transport in a Groundwater/Bentonite/Fracture Fill Material System: Column Experiments and Model Results

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.; Boukhalfa, H.; Reimus, P. W.

    2014-12-01

    The objective of this study was to investigate and quantify the effects of desorption kinetics and colloid transport on radionuclides with different sorption affinities. We focused on quantifying transport mechanisms important for upscaling in time and distance. This will help determine the long-term fate and transport of radionuclides to aid in risk assessments. We selected a fractured/weathered granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model crystalline rock repository system because the system has been thoroughly studied and field experiments involving radionuclides have already been conducted. Working on this system provides a unique opportunity to compare lab experiments with field-scale observations. Weathered fracture fill material (FFM) and bentonite used as backfill at the GTS were characterized (e.g., BET, SEM/EDS, QXRD), and batch and breakthrough column experiments were conducted. Solutions were prepared in synthetic groundwaters that matched the natural water chemistry. FFM samples were crushed, rinsed, sieved (150-355 μm), and equilibrated with synthetic groundwater. Bentonite was crushed, sodium-saturated, equilibrated with synthetic groundwater, and settled to yield a stable suspension. Suspensions were equilibrated with Am, Cs, or Pu. All experiments were conducted with Teflon®materials to limit sorption to system components. After radionuclide/colloid injections reached stability, radionuclide-free solutions were injected to observe the desorption and release behavior. Aliquots of effluent were measured for pH, colloid concentration, and total and dissolved radionuclides. Unanalyzed effluent from the first column was then injected through a second column of fresh material. The process was repeated for a third column and the results of all three breakthrough curves were modeled with a multi-site/multi-rate MATLAB code to elucidate the sorption rate coefficients and binding site densities of the bentonite colloids and fracture fill material. Nearly 50% of the sorbed Am was exchanged from the colloids to the fracture filling material in each of the three columns; whereas, less Cs and Pu was desorbed with each pass through a new column. Using a two-site kinetic model allowed for interrogation of desorption rates and dominant transport parameters.

  8. Ion exchange of several radionuclides on the hydrous crystalline silicotitanate, UOP IONSIV IE-911

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huckman, M.E.; Latheef, I.M.; Anthony, R.G.

    1999-04-01

    The crystalline silicotitanate, UOP IONSIV IE-911, is a proven material for removing radionuclides from a wide variety of waste streams. It is superior for removing several radionuclides from the highly alkaline solutions typical of DOE wastes. This laboratory previously developed an equilibrium model applicable to complex solutions for IE-910 (the power form of the granular IE-911), and more recently, the authors have developed several single component ion-exchange kinetic models for predicting column breakthrough curves and batch reactor concentration histories. In this paper, the authors model ion-exchange column performance using effective diffusivities determined from batch kinetic experiments. This technique is preferablemore » because the batch experiments are easier, faster, and cheaper to perform than column experiments. They also extend these ideas to multicomponent systems. Finally, they evaluate the ability of the equilibrium model to predict data for IE-911.« less

  9. Vertical distribution of 137Cs in alluvial soils of the Lokna River floodplain (Tula oblast) long after the Chernobyl accident and its simulation

    NASA Astrophysics Data System (ADS)

    Mamikhin, S. V.; Golosov, V. N.; Paramonova, T. A.; Shamshurina, E. N.; Ivanov, M. M.

    2016-12-01

    Profiles of vertical 137Cs distribution in alluvial meadow soils on the low and medium levels of the Lokna River floodplain (central part of the Plavsk radioactive spot in Tula oblast) 28 years after the Chernobyl fallout have been studied. A significant increase in the 137Cs pool is revealed on the low floodplain areas compared to the soils of interfluves due to the accumulation of alluvium, which hampers the reduction of the total radionuclide pool in alluvial soils because of radioactive decay. The rate of alluvium accumulation in the soil on the medium floodplain level is lower by three times on average. An imitation prognostic model has been developed, which considers the flooding and climatic conditions in the region under study. Numerical experiments have quantitatively confirmed the deciding role of low-mobile forms in the migration of maximum 137Cs content along the soil profile in the absence of manifested erosion-accumulation processes.

  10. Development of performance assessment methodology for nuclear waste isolation in geologic media

    NASA Astrophysics Data System (ADS)

    Bonano, E. J.; Chu, M. S. Y.; Cranwell, R. M.; Davis, P. A.

    The burial of nuclear wastes in deep geologic formations as a means for their disposal is an issue of significant technical and social impact. The analysis of the processes involved can be performed only with reliable mathematical models and computer codes as opposed to conducting experiments because the time scales associated are on the order of tens of thousands of years. These analyses are concerned primarily with the migration of radioactive contaminants from the repository to the environment accessible to humans. Modeling of this phenomenon depends on a large number of other phenomena taking place in the geologic porous and/or fractured medium. These are ground-water flow, physicochemical interactions of the contaminants with the rock, heat transfer, and mass transport. Once the radionuclides have reached the accessible environment, the pathways to humans and health effects are estimated. A performance assessment methodology for a potential high-level waste repository emplaced in a basalt formation has been developed for the U.S. Nuclear Regulatory Commission.

  11. Assessing Natural Radionuclide Migration in the Legacy Tailings of Uranium Production

    NASA Astrophysics Data System (ADS)

    Bondarenko, G.; Koliabina, I.; Marinich, O.

    2011-12-01

    The former Prydniprovsky Chemical Plant in Dniprodzerzhynsk, Ukraine, processed uranium ore from 1949 until 1991. Multiple tailing ponds containing solid residual waste products from the uranium leaching and processing of uranium were accumulated along the Dnieper River, including the largest, adjacent to the Dnieper Reservoir, containing over 12 million tons of tailings. Samples for this study were selected from a core recovered from the Dnieper tailing pit in 2009, and used to assess radionuclide migration from tailing ponds. Samples were selected from different depths of the tailing pit core, analyzed for total radionuclide concentrations [Marinich et al., 2009], and successively leached using distilled water, followed by 1N ammonium acetate solution, and finally by 1N HCl solution. Leaching times were ~24 h at 15.17 °C. 238U, 230Th and 226Ra leachate activities were measured by γ-spectrometry with a Ge(Li) detector. 210Pb activity was measured using a SEB-01 scintillation β-spectrometer. Errors depended on measuring method, radionuclide, activity and exposure time: 238U, 11.9%; 230Th, 10.9%; 226Ra, 9.3%; 210Pb ~30%. The average total 238U activity in the tailing profile was 4 Bq/g. The concentration of 238U in the water leachates increased with depth from 14.5% (7-7.5 m), to 43% (11-11.5 m). The concentration of 238U in the acid leachates behaved similarly, increasing from 5.5 % to 15.5% with depth. While the total 230Th activity in increased from 30 Bq/g (7-7.5 m) to 540 Bq/g (11-11.5 m), the 230Th concentration in ammonium acetate leachates decreased from ˜15% to ˜1%. The concentration of 226Ra in all leachates was <1%, indicating that, under conditions of the Dnieper tailing pit, 226Ra is essentially immobile. The concentration of 210Pb in the leachates was as high as 10%. In general, the magnitude of mobile activity from the Dnieper tailing pit core samples decreases in the order 238U>230Th≥210Pb> 226Ra. Secular radioactive equilibrium in the 238U - 230Th - 226Ra - 210Pb decay chain, typical for closed systems, has been disturbed during selective chemical uranium extraction from the parent ore. We calculated the migration of 210Pb, assuming constant 226Ra activity. The results of these calculations show that over 50 years, ~18% of the initial (unknown) 210Pb(0) activity was removed. If we assume removal of 226Ra decay products will continue at the current level, we expect the future annual activity loss of 210Pb to be about 0.36% per year, or 0.072 Bq/g. Assuming the examined core sample is representative of all 12 million tons of tails, the total annual activity loss is estimated to be ~1012 Bq/year. These results allow us to conclude that the loss of activity from the tailing pit by water migration is mainly associated with the 226Ra decay products: 222Rn, 210Pb, 210Po.
    Activity ratios, Dnieper tailings

  12. Colloid-facilitated radionuclide transport: a regulatory perspective

    NASA Astrophysics Data System (ADS)

    Dam, W. L.; Pickett, D. A.; Codell, R. B.; Nicholson, T. J.

    2001-12-01

    What hydrogeologic-geochemical-microbial conditions and processes affect migration of radionuclides sorbed onto microparticles or native colloid-sized radionuclide particles? The U.S. Nuclear Regulatory Commission (NRC) is responsible for protecting public health, safety, and the environment at numerous nuclear facilities including a potential high-level nuclear waste disposal site. To fulfill these obligations, NRC needs to understand the mechanisms controlling radionuclide release and transport and their importance to performance. The current focus of NRC staff reviews and technical interactions dealing with colloid-facilitated transport relates to the potential nuclear-waste repository at Yucca Mountain, Nevada. NRC staff performed bounding calculations to quantify radionuclide releases available for ground-water transport to potential receptors from a Yucca Mountain repository. Preliminary analyses suggest insignificant doses of plutonium and americium colloids could be derived from spent nuclear fuel. Using surface complexation models, NRC staff found that colloids can potentially lower actinide retardation factors by up to several orders of magnitude. Performance assessment calculations, in which colloidal transport of plutonium and americium was simulated by assuming no sorption or matrix diffusion, indicated no effect of colloids on human dose within the 10,000 year compliance period due largely to long waste-package lifetimes. NRC staff have identified information gaps and developed technical agreements with the U.S. Department of Energy (DOE) to ensure sufficient information will be presented in any potential future Yucca Mountain license application. DOE has agreed to identify which radionuclides could be transported via colloids, incorporate uncertainties in colloid formation, release and transport parameters, and conceptual models, and address the applicability of field data using synthetic microspheres as colloid analogs. NRC is currently investigating approaches to colloid modeling in order to help evaluate DOE's approach. One alternative approach uses DOE laboratory data to invoke kinetic controls on reversible radionuclide attachment to colloids. A kinetic approach in which desorption from colloids is slow may help assess whether DOE's instantaneous equilibrium approach for reversible attachment, as well as their application of irreversible attachment to only a small portion of the radionuclide inventory, are reasonable and conservative. An approach to examine microbial processes would also contribute to considerations of leaching of radionuclides and colloid formation. Reducing uncertainties in colloid transport processes should help in better understanding their importance to repository performance. This work is an independent product and does not necessarily reflect the views or regulatory position of the NRC. CNWRA participation was funded under contract No. NRC-02-97-009.

  13. Transfer of radionuclides from high polluted bottom sediments to marine organisms through benthic food chain in post Fukushima period

    NASA Astrophysics Data System (ADS)

    Bezhenar, Roman; Jung, Kyung Tae; Maderich, Vladimir; Willemsen, Stefan; de With, Govert; Qiao, Fangli

    2015-04-01

    A catastrophic earthquake and tsunami occurred on March 11, 2011 and severely damaged the Fukushima Daiichi Nuclear Power Plant (FDNPP) that resulted in an uncontrolled release of radioactivity into air and ocean. Around 80% of the radioactivity released due to the FDNPP accident in March-April 2011 was either directly discharged into the ocean or deposited onto the ocean surface from the atmosphere. A large amount of long-lived radionuclides (mainly Cs-137) were released into the environment. The concentration of radionuclides in the ocean reached a maximum in mid-April of 2011, and then gradually decreased. From 2011 the concentration of Cs-137 in water essentially fell except the area around the FDNPP where leaks of contaminated water are continued. However, in the bottom sediment high concentrations of Cs-137 were found in the first months after the accident and slowly decreased with time. Therefore, it should be expected that a time delay is found of sediment-bound radionuclides in marine organisms. For the modeling of radionuclide transfer from highly polluted bottom sediments to marine organisms the dynamical food chain model BURN-POSEIDON (Heling et al, 2002; Maderich et al., 2014) was extended. In this model marine organisms are grouped into a limited number of classes based on their trophic level and type of species. These include: phytoplankton, zooplankton, fishes (two types: piscivorous and non-piscivorous), crustaceans, and molluscs for pelagic food chain and bottom sediment invertebrates, demersal fishes and bottom predators for benthic food chain and whole water column predators feeding by pelagial and benthic fishes. Bottom invertebrates consume organic parts of bottom sediments with adsorbed radionuclides which then migrate through the food chain. All organisms take radionuclides directly from water as well as via food. In fishes where radioactivity is not homogeneously distributed over all tissues of the organism, it is assumed that radionuclide accumulates in a specific tissue called target tissue. This tissue (bone, flesh, stomach, and organs) controls the overall elimination rate of the nuclide in the organism. The model prediction for the coastal area around the FDNPP agree well with observations. In addition the effects from the Chernobyl accident on the Baltic Sea are modelled and these results also are in good agreement with available data. These results demonstrate the importance of the benthic food chain in long-term transfer of radionuclides from high polluted bottom sediments to the marine organisms. The developed model can be applied for different regions of the World Ocean.

  14. Migration of 137Cs in the soil of sloping semi-natural ecosystems in Northern Greece.

    PubMed

    Arapis, G D; Karandinos, M G

    2004-01-01

    In the present study, the 137Cs concentration in the soil of sloping semi-natural ecosystems at four different regions of Western Macedonia in Greece was measured 10 years after the Chernobyl accident. These regions were highly polluted due to the deposition of radionuclides escaped during the accident. The concentrations of 137Cs measured were found to differ significantly among the four regions. The rates of both horizontal and vertical migration in the soil were also evaluated. The vertical migration velocity of 137Cs was found to range from 0.1 to 0.3 cm per year, in the most contaminated areas. Consequently, 10 years following the Chernobyl accident, the bulk of 137Cs deposited over the surface of the studied areas in Greece was found to be restricted in the upper 5 cm layer of soil. Regarding the horizontal migration, in most of the sampling sites, we did not detect any displacement or trend to movement of radiocaesium on the surface from the upper to the lower levels of the slopes. Instead, we recorded decreased concentrations of 137Cs with the decrease of altitude.

  15. Laser sensor for monitoring radioactive contamination

    NASA Astrophysics Data System (ADS)

    Kascheev, S. V.; Elizarov, V. V.; Grishkanich, A. S.; Bespalov, V. G.; Vasiev, S. K.; Zhevlakov, A. P.

    2014-11-01

    Remote laser spectroscopy availability for airborne search of radionuclides polution has been examined. Experiments were carried out under the CARS circuit. The method of remote detection a radionuclide in atmosphere from container burial places and in places of recycling the fuel waste of the atomic power station is elaborated. Preliminary results of investigation show the real possibility to register of leakage of a radionuclide with concentration at level of 1012÷1013 cm-3 on a safe distance from the infected object.

  16. A mathematical model for the release of noble gas and Cs from porous nuclear fuel based on VEGA 1&2 experiments

    NASA Astrophysics Data System (ADS)

    Simones, M. P.; Reinig, M. L.; Loyalka, S. K.

    2014-05-01

    Release of fission products from nuclear fuel in accidents is an issue of major concern in nuclear reactor safety, and there is considerable room for development of improved models, supported by experiments, as one needs to understand and elucidate role of various phenomena and parameters. The VEGA (Verification Experiments of radionuclides Gas/Aerosol release) program on several irradiated nuclear fuels investigated the release rates of radionuclides and results demonstrated that the release rates of radionuclides from all nuclear fuels tested decreased with increasing external gas pressure surrounding the fuel. Hidaka et al. (2004-2011) accounted for this pressure effect by developing a 2-stage diffusion model describing the transport of radionuclides in porous nuclear fuel. We have extended this 2-stage diffusion model to account for mutual binary gas diffusion in the open pores as well as to introduce the appropriate parameters to cover the slip flow regime (0.01 ⩽ Kn ⩽ 0.1). While we have directed our numerical efforts toward the simulation of the VEGA experiments and assessments of differences from the results of Hidaka et al., the model and the techniques reported here are of larger interest as these would aid in modeling of diffusion in general (e.g. in graphite and other nuclear materials of interest).

  17. Experimental system to displace radioisotopes from upper to deeper soil layers: chemical research

    PubMed Central

    Cazzola, Pietro; Cena, Agostino; Ghignone, Stefano; Abete, Maria C; Andruetto, Sergio

    2004-01-01

    Background Radioisotopes are introduced into the environment following nuclear power plant accidents or nuclear weapons tests. The immobility of these radioactive elements in uppermost soil layers represents a problem for human health, since they can easily be incorporated in the food chain. Preventing their assimilation by plants may be a first step towards the total recovery of contaminated areas. Methods The possibility of displacing radionuclides from the most superficial soil layers and their subsequent stabilisation at lower levels were investigated in laboratory trials. An experimental system reproducing the environmental conditions of contaminated areas was designed in plastic columns. A radiopolluted soil sample was treated with solutions containing ions normally used in fertilisation (NO3-, NH4+, PO4--- and K+). Results Contaminated soils treated with an acid solution of ions NO3-, PO4--- and K+, undergo a reduction of radioactivity up to 35%, after a series of washes which simulate one year's rainfall. The capacity of the deepest soil layers to immobilize the radionuclides percolated from the superficial layers was also confirmed. Conclusion The migration of radionuclides towards deeper soil layers, following chemical treatments, and their subsequent stabilization reduces bioavailability in the uppermost soil horizon, preventing at the same time their transfer into the water-bearing stratum. PMID:15132749

  18. Assessing the fate of radioactive nickel in cultivated soil cores.

    PubMed

    Denys, Sébastien; Echevarria, Guillaume; Florentin, Louis; Leclerc, Elisabeth; Morel, Jean-Louis

    2009-10-01

    Parameters regarding fate of (63)Ni in the soil-plant system (soil: solution distribution coefficient, K(d) and soil plant concentration ratio, CR) are mostly determined in controlled pot experiments or from simple models involving a limited set of soil parameters. However, as migration of pollutants in soil is strongly linked to the water migration, variation of soil structure in the field and seasonal variation of evapotranspiration will affect these two parameters. The aim of this work was to explore to what extent the downward transfer of (63)Ni and its uptake by plants from surface-contaminated undisturbed soil cores under cultivation can be explained by isotopic dilution of this radionuclide in the pool of stable Ni of soils. Undisturbed soil cores (50 cm x 50 cm) were sampled from a brown rendzina (Rendzic Leptosol), a colluvial brown soil (Fluvic Cambisol) and an acidic brown soil (Dystric Cambisol) using PVC lysimeter tubes (three lysimeters sampled per soil type). Each core was equipped with a leachate collector. Cores were placed in a greenhouse and maize (DEA, Pioneer) was sown. After 44 days, an irrigation was simulated at the core surfaces to supply 10 000 Bq (63)NiCl(2). Maize was harvested 135 days after (63)Ni input and radioactivity determined in both vegetal and water samples. Effective uptake of (63)Ni by maize was calculated for leaves and kernels. Water drainage and leaching of (63)Ni were monitored over the course of the experiment. Values of K(d) in surface soil samples were calculated from measured parameters of isotopic exchange kinetics. Results confirmed that (63)Ni was strongly retained at the soil surface. Prediction of the (63)Ni downward transfer could not be reliably assessed using the K(d) values, since the soil structure, which controls local water fluxes, also affected both water and Ni transport. In terms of (63)Ni plant uptake, the effective uptake in undisturbed soil cores is controlled by isotope dilution as previously shown at the pot experiment scale.

  19. Environmental radioactivity assessment around old uranium mining sites near Mangualde (Viseu), Portugal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvalho, Fernando P.; Torres, Lubelia M.; Oliveira, Joao M.

    2007-07-01

    Uranium ore was extracted in the surroundings of Mangualde city, North of Portugal, in the mines of Cunha Baixa, Quinta do Bispo and Espinho until a few years ago. Mining waste, milling tailings and acid mine waters are the on site remains of this extractive activity. Environmental radioactivity measurements were performed in and around these sites in order to assess the dispersal of radionuclides from uranium mining waste and the spread of acidic waters resulting from the in situ uranium leaching with sulphuric acid. Results show migration of acid waters into groundwater around the Cunha Baixa mine. This groundwater ismore » tapped by irrigation wells in the agriculture area near the Cunha Baixa village. Water from wells displayed uranium ({sup 238}U) concentrations up to 19x10{sup 3} mBq L{sup -1} and sulphate ion concentrations up to 1070 mg L{sup -1}. These enhanced concentrations are positively correlated with low water pH, pointing to a common origin for radioactivity, dissolved sulphate, and acidity in underground mining works. Radionuclide concentrations were determined in horticulture and farm products from this area also and results suggest low soil to plant transfer of radionuclides and low food chain transfer of radionuclides to man. Analysis of aerosols in surface air showed re suspension of dust from mining and milling waste heaps. Therefore, it is recommended to maintain mine water treatment and to plan remediation of these mine sites in order to prevent waste dispersal in the environment. (authors)« less

  20. Separation of Long-Lived Fission Products Tc-99 and I-129 from Synthetic Effluents by Crown Ethers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paviet-Hartmann, P.; Hartmann, T.

    2006-07-01

    To minimize significantly the radio-toxic inventory of nuclear geological repositories to come as well as to reduce the potential of radionuclides migration and to minimize long-term exposure, the concept of partitioning and transmutation (P/T) of nuclear waste is currently discussed. Transmutation offers the possibility to convert radio-toxic radionuclides with long half-lives into radionuclides of shorter half-lives, less toxic isotopes, or even into stable isotopes. Besides the most prominent isotopes of neptunium, plutonium, americium, and curium, the long-lived fission products Tc-99 and I-129 (half-lives of 2.13 x 10{sup 5} years, and 1.57 x 10{sup 7} years, respectively) are promising candidates formore » transmutation in order to prevent their migration from a nuclear repository. Partitioning and transmutation of the most radio-toxic radionuclides will not only minimize the nuclear waste load but most importantly will significantly reduce the long-term radio-toxic hazard of nuclear waste repositories to come. Prior to the deployment of partitioning and transmutation, selective extraction techniques are required to separate the radionuclides of concern. Since the discovery of crown ethers by C. Pedersen, various applications of crown ethers have drawn much attention. Although liquid-liquid extraction of alkali and alkali earth metals by crown ethers has been extensively studied, little data is available on the extraction of Tc-99 and I-129 by crown ethers. The methods developed herein for the specific extraction of Tc-99 and I-129 provide recommendations in support of their selectively extraction from liquid radioactive waste streams, mainly ILW. We report data on the solvent extraction of Tc-99 and I-129 from synthetic effluents by six crown ethers of varying cavity dimensions and derivatization. To satisfy the needs of new extractant systems we are demonstrating that crown ether (CE) based systems have the potential to serve as selective extractants for the separation of these long lived radionuclides from high level nuclear waste (HLW), intermediate level nuclear waste (ILW), and low level nuclear waste (LLW) streams. The experimental results show that dibenzo-18-crown-6 (DB 18C6) is highly selective towards Tc-99, and dicyclohexano-18-crown-6 (DC18C6) is highly selective towards I-129. The nature of the diluent was examined and was shown to be the most influential variable in controlling the extraction coefficients of Tc-99 and I-129. Therefore the addition of polar diluent acetone to non-polar diluent toluene enhanced the distribution coefficient of Tc-99 (DTc) was by a factor of 30. For I-129, the best extraction yield was obtained after introducing tetrachloroethane. Through the process, by a single extraction step, 85 % to 95 % of Tc-99 was extracted from synthetic effluents, while 84 % to 88 % of I-129 was extracted from different acidic media. The extraction by crown ether is a fairly rapid process and the total preparation time of the chemical separation takes about 20 minutes for a batch of eight samples. (authors)« less

  1. Interpretation of data obtained from non-destructive and destructive post-test analyses of an intact-core column of culebra dolomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucero, Daniel L.; Perkins, W. George

    The U.S. Department of Energy (DOE) has been developing a nuclear waste disposal facility, the Waste Isolation Pilot Plant (WIPP), located approximately 42 km east of Carlsbad, New Mexico. The WIPP is designed to demonstrate the safe disposal of transuranic wastes produced by the defense nuclear-weapons program. Pefiormance assessment analyses (U.S. DOE, 1996) indicate that human intrusion by inadvertent and intermittent drilling for resources provide the only credible mechanisms for significant releases of radionuclides horn the disposal system. These releases may occur by five mechanisms: (1) cuttings, (2) cavings, (3) spallings, (4) direct brine releases, and (5) long- term brinemore » releases. The first four mechanisms could result in immediate release of contaminant to the accessible environment. For the last mechanisq migration pathways through the permeable layers of rock above the Salado are important, and major emphasis is placed on the Culebra Member of the Rustler Formation because this is the most transmissive geologic layer in the disposal system. For reasons of initial quantity, half-life, and specific radioactivity, certain isotopes of T~ U, Am, and Pu would dominate calculated releases from the WIPP. In order to help quantifi parameters for the calculated releases, radionuclide transport experiments have been carried out using five intact-core columns obtained from the Culebra dolomite member of the Rustler Formation within the Waste Isolation Pilot Pknt (WIPP) site in southeastern New Mexico. This report deals primarily with results of analyses for 241Pu and 241Am distributions developed during transport experiments in one of these cores. All intact-core column transport experiments were done using Culebra-simukmt brine relevant to the core recovery location (the WIPP air-intake shaft - AK). Hydraulic characteristics (i.e., apparent porosity and apparent dispersion coefficient) for intact-core columns were obtained via experiments using conservative tracer `Na. Elution experiments carried out over periods of a few days with tracers `2U and `?Np indicated that these tracers were weakly retarded as indicated by delayed elution of these species. Elution experiments with tracers 24% and 24*Arn were performed, but no elution of either species was observed in any flow experiment to date, including experiments of many months' duration. In order to quanti~ retardation of the non-eluted species 24*Pu and 241Arn afler a period of brine flow, non-destructive and destructive analyses of an intact-core column were carried out to determine distribution of these actinides in the rock. Analytical results indicate that the majority of the 241Am is present very near the top (injection) surface of the core (possibly as a precipitate), and that the majority of the 241Pu is dispersed with a very high apparent retardation value. The 24]Pu distribution is interpreted using a single-porosity advection-dispersion model, and an approximate retardation value is reported for this actinide. The specific radionuclide isotopes used in these experiments were chosen to facilitate analysis. Even though these isotopes are not necessarily the same as those that are most important to WIPP performance, they are isotopes of the same elements, and their chemical and transport properties are therefore identical to those of isotopes in the inventory.« less

  2. A biosphere modeling methodology for dose assessments of the potential Yucca Mountain deep geological high level radioactive waste repository.

    PubMed

    Watkins, B M; Smith, G M; Little, R H; Kessler, J

    1999-04-01

    Recent developments in performance standards for proposed high level radioactive waste disposal at Yucca Mountain suggest that health risk or dose rate limits will likely be part of future standards. Approaches to the development of biosphere modeling and dose assessments for Yucca Mountain have been relatively lacking in previous performance assessments due to the absence of such a requirement. This paper describes a practical methodology used to develop a biosphere model appropriate for calculating doses from use of well water by hypothetical individuals due to discharges of contaminated groundwater into a deep well. The biosphere model methodology, developed in parallel with the BIOMOVS II international study, allows a transparent recording of the decisions at each step, from the specification of the biosphere assessment context through to model development and analysis of results. A list of features, events, and processes relevant to Yucca Mountain was recorded and an interaction matrix developed to help identify relationships between them. Special consideration was given to critical/potential exposure group issues and approaches. The conceptual model of the biosphere system was then developed, based on the interaction matrix, to show how radionuclides migrate and accumulate in the biosphere media and result in potential exposure pathways. A mathematical dose assessment model was specified using the flexible AMBER software application, which allows users to construct their own compartment models. The starting point for the biosphere calculations was a unit flux of each radionuclide from the groundwater in the geosphere into the drinking water in the well. For each of the 26 radionuclides considered, the most significant exposure pathways for hypothetical individuals were identified. For 14 of the radionuclides, the primary exposure pathways were identified as consumption of various crops and animal products following assumed agricultural use of the contaminated water derived from the deep well. Inhalation of dust (11 radionuclides) and external irradiation (1 radionuclide) were also identified as significant exposure modes. Contribution to the total flux to dose conversion factor from the drinking water pathway for each radionuclide was also assessed and for most radionuclides was found to be less than 10% of the total flux to dose conversion factor summed across all pathways. Some of the uncertainties related to the results were considered. The biosphere modeling results have been applied within an EPRI Total Systems Performance Assessment of Yucca Mountain. Conclusions and recommendations for future performance assessments are provided.

  3. Geology and hydrology of radioactive solid-waste burial grounds at the Hanford Reservation, Washington

    USGS Publications Warehouse

    LaSala, Albert Mario; Doty, Gene C.

    1976-01-01

    The geology and hydrology of radioactive solid waste burial grounds at the Hanford Reservation were investigated, using existing data, by the U.S. Geological Survey as part of the waste management plan of the Richland Operations Office of the Energy Research and Development Administration. The purpose of the investigation was to assist the operations office in characterizing the burial sites as to present environmental safety and as to their suitability for long-term storage (several thousand to tens of thousands of years) of radioactive sol id wastes. The burial ground sites fall into two classifications: (1) those on the low stream terraces adjacent to the Columbia River, mainly in the 100 Areas and 300 Area, and (2) those lying on the high terraces south of Gable Mountain in the 200 Areas. Evaluation of the suitability of the burial grounds for long-term storage was made almost entirely on hydrologic, geologic, and topographic criteria. Of greatest concern was the possibility that radionuclides might be leached from the buried wastes by infiltrating water and carried downward to the water table. The climate is semi-arid and the average annual precipitation is 6.4 inches at the Hanford Meteorological Station. However, the precipitation is seasonally distributed with about 50 percent occurring during the months of November, December, January, and February when evapotranspiration is negligible and conditions for infiltration are most favorable. None of the burial grounds are instrumented with monitoring devices that could be used to determine if radionuclides derived from them are reaching the water table. Burial grounds on the low stream terraces are mainly underlain by permeable materials and the water table lies at relatively shallow depths. Radionuclides conceivably could be leached from these burial grounds by percolating soil water, and radionuclides might reach the Columbia River in a relatively short time. These sites could also be inundated by erosion during a catastrophic flood. For these reasons, they are judged to be unsuited for long-term storage. Local conditions at several of these burial grounds are particularly unfavorable from the standpoint of safety. Depressions and swales at some burial grounds, such as numbers 4 and 5 in the 300 Area in which runoff can collect, enhance the possibility of water infiltrating through the buried wastes and transporting radionuclides to the water table. Also, during a high stage of the Columbia River, the water table conceivably could rise into burial grounds l and 2 of the 100 F Area. Most of the burial grounds on the low terraces contain either (1) reactor components and related equipment bearing activation products, principally cobalt-60, or (2) less hazardous radioactive materials such as uranium. The inventory of activation products in these burial grounds will decay to a safe level in a relatively short period of time (about 100 years), according to estimates made by C. D. Corbit, Douglas United Nuclear, Inc., 1969. The inventory of radionuclides is not considered by the ERDA staff to be complete, however. At these burial grounds containing activation products or less hazardous materials, investigations should be made of the radioactivity in soil and ground water beneath selected representative sites to verify that radionuclides are not migrating from the burial grounds. If migration is detected, field investigations should be made to determine the source or sources of the radionuclides and the desirability of removing the source wastes. Other burial grounds on the low terraces contain plutonium and fission products, which require long-term storage. Both the 300 WYE and the 300 North burial grounds are reported to contain plutonium in large quantities. Burial ground no. l in the 300 Area reportedly also contains plutonium. The inventory records of any other burial grounds on the low terraces suspected of containing plutonium should be reviewed to determine if pl

  4. Radionuclides in radiation-induced bystander effect; may it share in radionuclide therapy?

    PubMed

    Widel, M

    2017-01-01

    For many years in radiobiology and radiotherapy predominated the conviction that cellular DNA is the main target for ionizing radiation, however, the view has changed in the past 20 years. Nowadays, it is assumed that not only directed (targeted) radiation effect, but also an indirect (non-targeted) effect may contribute to the result of radiation treatment. Non-targeted effect is relatively well recognized after external beam irradiation in vitro and in vivo, and comprises such phenomena like radiation-induced bystander effect (RIBE), genomic instability, adaptive response and abscopal (out of field) effect. These stress-induced and molecular signaling mediated phenomena appear in non-targeted cells as variety responses resembling that observed in directly hit cells. Bystander effects can be both detrimental and beneficial in dependence on dose, dose-rate, cell type, genetic status and experimental condition. Less is known about radionuclide-induced non-targeted effects in radionuclide therapy, although, based on characteristics of the radionuclide radiation, on experiments in vitro utilizing classical and 3-D cell cultures, and preclinical study on animals it seems obvious that exposure to radionuclide is accompanied by various bystander effects, mostly damaging, less often protective. This review summarizes existing data on radionuclide induced bystander effects comprising radionuclides emitting beta- and alpha-particles and Auger electrons used in tumor radiotherapy and diagnostics. So far, separation of the direct effect of radionuclide decay from crossfire and bystander effects in clinical targeted radionuclide therapy is impossible because of the lack of methods to assess whether, and to what extent bystander effect is involved in human organism. Considerations on this topic are also included.

  5. Assimilation and biological turnover of cesium-134, iodine-131, and chromium-51 in brown crickets, Acheta domesticus (L. )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hook, R.I. Jr.; Crossley, D.A. Jr.

    1969-01-01

    Understanding of radionuclide accumulation by insects requires careful assessment of assimilation and turnover rates. In separate experiments, three radionuclides (/sup 134/Cs, /sup 131/I or /sup 51/Cr) were fed to adult brown crickets for a 24-hr period. The insects were then transferred to nonradioactive food and their whole-body retention measured at 1-hr intervals. The retention of each radionuclide can be described by a sum of two exponential functions, a shorter one related to loss of unassimilated radionuclide from the gut and a longer one describing excretion of assimilated radionuclide from tissues. The shorter components had similar rates (half-time = about 4more » hr) for all three radionuclides, indicating that they were a measure of gut clearance time. Chromium had the lowest assimilation (6%) and cesium the highest (65%). Assimilated /sup 134/Cs and /sup 51/Cr were eliminated at moderate rates (biological half-lives of 62 and 83 hr, respectively) but assimilated /sup 131/I was stored rather than excreted. 18 references, 2 figures, 1 table.« less

  6. A new code for modelling the near field diffusion releases from the final disposal of nuclear waste

    NASA Astrophysics Data System (ADS)

    Vopálka, D.; Vokál, A.

    2003-01-01

    The canisters with spent nuclear fuel produced during the operation of WWER reactors at the Czech power plants are planned, like in other countries, to be disposed of in an underground repository. Canisters will be surrounded by compacted bentonite that will retard the migration of safety-relevant radionuclides into the host rock. A new code that enables the modelling of the critical radionuclides transport from the canister through the bentonite layer in the cylindrical geometry was developed. The code enables to solve the diffusion equation for various types of initial and boundary conditions by means of the finite difference method and to take into account the non-linear shape of the sorption isotherm. A comparison of the code reported here with code PAGODA, which is based on analytical solution of the transport equation, was made for the actinide chain 4N+3 that includes 239Pu. A simple parametric study of the releases of 239Pu, 129I, and 14C into geosphere is discussed.

  7. The Strategy of Elaborating a Common Approach to Solve the Problems of Surface and Ground Waters Contamination at the PA "Mayak" Territory Based on the International Co-operation Experience

    NASA Astrophysics Data System (ADS)

    Glinsky, M.; Hutter, A.; Drozhko, E. G.

    2001-12-01

    In the early 90's international organizations showed great interest concerning the contamination problems at the PA "Mayak" territory, where liquid radioactive wastes have been stored on the surface, including Lake Karachay, reservoir "Staroye Boloto" and the Techa River cascade reservoirs. As a result of this interest, international contracts funded by DOE (USA), NRRA, EC and DGXL were instituted to study the experience of radioactive waste management accumulated at the PA "Mayak" territory, including proposed rehabilitation of the contaminated territories. However, at the initial stage of international research, the works were not coordinated and often duplicated each other, which was taken by the public and mass media as a serious divergence of opinion between the scientists on the risk assessment for the population. Many years of research resulted in elaboration of a common scientific approach to the solution of the problems of water resources contamination at the PA "Mayak" territory. A successful experience of coordinating the international projects to study radionuclide migration with surface and ground waters at the PA "Mayak" territory is demonstrated, as well as the risk assessment for the population. Substantiation for rehabilitation measures can be based on long-term predictions and modeling research that are continuing under these international projects.

  8. [Microbiological Aspects of Radioactive Waste Storage].

    PubMed

    Safonov, A V; Gorbunova, O A; German, K E; Zakharova, E V; Tregubova, V E; Ershov, B G; Nazina, T N

    2015-01-01

    The article gives information about the microorganisms inhabiting in surface storages of solid radioactive waste and deep disposal sites of liquid radioactive waste. It was shown that intensification of microbial processes can lead to significant changes in the chemical composition and physical state of the radioactive waste. It was concluded that the biogeochemical processes can have both a positive effect on the safety of radioactive waste storages (immobilization of RW macrocomponents, a decreased migration ability of radionuclides) and a negative one (biogenic gas production in subterranean formations and destruction of cement matrix).

  9. Radioactivity measurements on migrating birds (Turdus philomelos) captured in the Comunidad Valenciana (Spain).

    PubMed

    Navarro, E; Roldán, C; Cervera, J; Ferrero, J L

    1998-01-19

    The radionuclides 137Cs, 134Cs and 90Sr have been measured in edible tissues and bones of migratory birds (song-thrushes, Turdus philomelos) from central and northern Europe and captured in the Comunidad Valenciana, Spain in the 1994 autumn-winter season. Eight years after the Chernobyl accident, extensive agricultural lands in Europe are still contaminated and this study shows that there was a transfer of radioactive isotopes to the captured migratory song-thrushes. The whole-body dose commitment to humans consuming these birds is estimated.

  10. Methods for Estimating Physicochemical Properties of Inorganic Chemicals of Environmental Concern.

    DTIC Science & Technology

    1984-06-01

    atoms from a solid surface into an adjacent vapor phase. This effect has had significant implications for environmental pollution in the case of 210 ...for industrial 55 An um tt, i • purposes, 210 - polonium becomes unstable with respect to spontaneous migration through the air, leading to severe...1.6x10 s 8xlO- 210 -lead 210P 22 y 3.7x107 * 210 - polonium 210 -(5.30 14eV) 138 d 6.4x105 Po 91 AAfdr DL futt, imc Table 12. SELECTED RADIONUCLIDES WITH HALF

  11. Soil-plant transfer of Cs-137 and Sr-90 in digestate amended agricultural soils- a lysimeter scale experiment

    NASA Astrophysics Data System (ADS)

    Mehmood, Khalid; Berns, Anne E.; Pütz, Thomas; Burauel, Peter; Vereecken, Harry; Zoriy, Myroslav; Flucht, Reinhold; Opitz, Thorsten; Hofmann, Diana

    2014-05-01

    Radiocesium and radiostrontium are among the most problematic soil contaminants following nuclear fallout due to their long half-lives and high fission yields. Their chemical resemblance to potassium, ammonium and calcium facilitates their plant uptake and thus enhances their chance to reach humans through the food-chain dramatically. The plant uptake of both radionuclides is affected by the type of soil, the amount of organic matter and the concentration of competitive ions. In the present lysimeter scale experiment, soil-plant transfer of Cs-137 and Sr-90 was investigated in an agricultural silty soil amended with digestate, a residue from a biogas plant. The liquid fraction of the digestate, liquor, was used to have higher nutrient competition. Digestate application was done in accordance with the field practice with an application rate of 34 Mg/ha and mixing it in top 5 cm soil, yielding a final concentration of 38 g digestate/Kg soil. The top 5 cm soil of the non-amended reference soil was also submitted to the same mixing procedure to account for the physical disturbance of the top soil layer. Six months after the amendment of the soil, the soil contamination was done with water-soluble chloride salts of both radionuclides, resulting in a contamination density of 66 MBq/m2 for Cs-137 and 18 MBq/m2 for Sr-90 in separate experiments. Our results show that digestate application led to a detectable difference in soil-plant transfer of the investigated radionuclides, effect was more pronounced for Cs-137. A clear difference was observed in plant uptake of different plants. Pest plants displayed higher uptake of both radionuclides compared to wheat. Furthermore, lower activity values were recorded in ears compared to stems for both radionuclides.

  12. Science, policy, and stakeholders: developing a consensus science plan for Amchitka Island, Aleutians, Alaska.

    PubMed

    Burger, Joanna; Gochfeld, Michael; Kosson, David S; Powers, Charles W; Friedlander, Barry; Eichelberger, John; Barnes, David; Duffy, Lawrence K; Jewett, Stephen C; Volz, Conrad D

    2005-05-01

    With the ending of the Cold War, the US Department of Energy is responsible for the remediation of radioactive waste and disposal of land no longer needed for nuclear material production or related national security missions. The task of characterizing the hazards and risks from radionuclides is necessary for assuring the protection of health of humans and the environment. This is a particularly daunting task for those sites that had underground testing of nuclear weapons, where the radioactive contamination is currently inaccessible. Herein we report on the development of a Science Plan to characterize the physical and biological marine environment around Amchitka Island in the Aleutian chain of Alaska, where three underground nuclear tests were conducted (1965-1971). Information on the ecology, geology, and current radionuclide levels in biota, water, and sediment is necessary for evaluating possible current contamination and to serve as a baseline for developing a plan to ensure human and ecosystem health in perpetuity. Other information required includes identifying the location of the salt water/fresh water interface where migration to the ocean might occur in the future and determining groundwater recharge balances, as well as assessing other physical/geological features of Amchitka near the test sites. The Science Plan is needed to address the confusing and conflicting information available to the public about radionuclide risks from underground nuclear blasts in the late 1960s and early 1970s, as well as the potential for volcanic or seismic activity to disrupt shot cavities or accelerate migration of radionuclides into the sea. Developing a Science Plan involved agreement among regulators and other stakeholders, assignment of the task to the Consortium for Risk Evaluation with Stakeholder Participation, and development of a consensus Science Plan that dealt with contentious scientific issues. Involvement of the regulators (State of Alaska), resource trustees (U S Fish and Wildlife Service), representatives of the Aleut and Pribilof Island communities, and other stakeholders was essential for plan development and approval, although this created tensions because of the different objectives of each group. The complicated process of developing a Science Plan involved iterations and interactions with multiple agencies and organizations, scientists in several disciplines, regulators, and the participation of Aleut people in their home communities, as well as the general public. The importance of including all parties in all phases of the development of the Science Plan was critical to its acceptance by a broad range of regulators, agencies, resource trustees, Aleutian/Pribilof communities, and other stakeholders.

  13. Patterns of Cs-137 and Sr-90 distribution in conjugated landscape systems

    NASA Astrophysics Data System (ADS)

    Korobova, E.

    2012-04-01

    The main goal of the study was to reveal spatial patterns of 137Cs and 90Sr distribution in soils and plants of conjugated landscapes and to use 137Cs as a tracer for natural migration and accumulation processes in the environment. The studies were based on presumptions that: 1) the environment consisted of interrelated bio- and geochemical fields of hierarchical structure depending on the level and age of factors responsible for spatial distribution of chemical elements; 2)distribution of technogenic radionuclides in natural landscapes depended upon the location and type of the initial source and radionuclide involvement in natural pathways controlled by the state and mobility of the typomorphic elements and water migration. Case studies were undertaken in areas subjected to contamination after the Chernobyl accident and in the estuary zones of the Yenisey and Pechora rivers. First observations in the Chernobyl remote zone in 1987-1989 demonstrated relation between the dose rate, 137Cs, 134Cs, 144Ce, 106Ru, 125Sb in soil cover and the location of the measured plot in landscape toposequence. Later study of 137Cs and 90Sr concentration and speciation confirmed different patterns of their distribution dependent upon the radioisotope, soil features and vegetation cover corresponding to the local landscape and landuse structure. Certain patterns in distribution and migration of 137Cs and 90Sr in soils and local food chain were followed in private farms situated in different landscape position [1]. Detailed study of 137Cs activity in forested site with a pronounced relief 20 and 25 years after the Chernobyl accident showed its stable polycentric structure in soils, mosses and litter which was sensitive to meso- and micro-relief features [2]. Radionuclide contamination of the lower Yenisey and Pechora studied along meridian landscape transects proved both areas be subjected to global 137Cs pollution while the Yenisey floodplain received additional regional contamination transported by the river [3]. Local zones of enhanced 137Cs accumulation in soil samples and some plant species were found in island systems, and the Yenisey upper delta island in particular. Hydromica identified in samples was considered significant for 137Cs accumulation in floodplain soils. The distinct tendency of secondary redistribution of the global 137Cs fallout in soils due to wind and water transport and subsequent accumulation, 137Cs accumulation in topsoil and slightly over the permafrost table were characteristic for both catchments. Therefore 137Cs proved to be an effective isotope tracer for studying and mapping technogenic contamination and the recent processes of water and particulate mass transport on the global, regional and local scales. Obtained results may be useful for monitoring, eco-geochemical evaluation and regionalizing of the areas contaminated by artificial radionuclides. 1. Korobova E.M., Ermakov A., Linnik V., 1998. Applied Geochemistry 13, .7, 803-814. 2. E.M. Korobova, S.L. Romanov, 2009. Chemometrics and Intelligent Laboratory Systems 99, 1-8. 3. E.M. Korobova, N.G. Ukraintseva, V.V. Surkov, J.E. Brown, W. Standring and A.P. Borisov, 2009. Eds: Mattia N. Gallo, Marco N. Ferrari. River Pollution Research Progress. Nova Science Publishers, Inc. N-Y, 91-156.

  14. Evaluation of forest decontamination using radiometric measurements.

    PubMed

    Cresswell, Alan J; Kato, Hiroaki; Onda, Yuichi; Nanba, Kenji

    2016-11-01

    An experiment has been conducted to evaluate the additional dose reduction by clear felling contaminated forestry in Fukushima Prefecture, Japan, and using the timber to cover the areas with wood chips. A portable gamma spectrometry system, comprising a backpack containing a 3 × 3″ NaI(Tl) detector with digital spectrometer and GPS receiver, has been used to map dose rate and radionuclide activity concentrations before, after and at stages during this experiment. The data show the effect of the different stages of the experiment on dose rate at different locations around the site. The spectrometric data have allowed the assessment of the contributions of natural and anthropogenic radionuclides to the dose rate at different parts of the site before and after the experiment. This has clearly demonstrated the value of radiometric methods in evaluating remediation, and the effect of other environmental processes. The value of spectrometric methods which directly measure radionuclide concentrations has also been shown, especially through the identification of the contribution of natural and anthropogenic activity to the measured dose rate. The experiment has shown that clearing trees and applying wood chips can reduce dose rates by 10-15% beyond that achieved by just clearing the forest litter and natural redistribution of radiocaesium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Identification of penetration path and deposition distribution of radionuclides in houses by experiments and numerical model

    NASA Astrophysics Data System (ADS)

    Hirouchi, Jun; Takahara, Shogo; Iijima, Masashi; Watanabe, Masatoshi; Munakata, Masahiro

    2017-11-01

    In order to lift of an evacuation order in evacuation areas and return residents to their homes, human dose assessments are required. However, it is difficult to exactly assess indoor external dose rate because the indoor distribution and infiltration pathways of radionuclides are unclear. This paper describes indoor and outdoor dose rates measured in eight houses in the difficult-to-return area in Fukushima Prefecture and identifies the distribution and main infiltration pathway of radionuclides in houses. In addition, it describes dose rates calculated with a Monte Carlo photon transport code to aid a thorough understanding of the measurements. The measurements and calculations indicate that radionuclides mainly infiltrate through visible openings such as vents, windows, and doors, and then deposit near these visible openings; however, they hardly infiltrate through sockets and air conditioning outlets. The measurements on rough surfaces such as bookshelves implies that radionuclides discharged from the Fukushima-Daiichi nuclear power plant did not deposit locally on rough surfaces.

  16. THERANOSTICS: From Molecular Imaging Using Ga-68 Labeled Tracers and PET/CT to Personalized Radionuclide Therapy - The Bad Berka Experience

    PubMed Central

    Baum, Richard P.; Kulkarni, Harshad R.

    2012-01-01

    The acronym THERANOSTICS epitomizes the inseparability of diagnosis and therapy, the pillars of medicine and takes into account personalized management of disease for a specific patient. Molecular phenotypes of neoplasms can be determined by molecular imaging with specific probes using positron emission tomography (PET), single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), or optical methods, so that the treatment is specifically targeted against the tumor and its environment. To meet these demands, we need to define the targets, ligands, coupling and labeling chemistry, the most appropriate radionuclides, biodistribution modifiers, and finally select the right patients for the personalized treatment. THERANOSTICS of neuroendocrine tumors (NETs) using Ga-68 labeled tracers for diagnostics with positron emission tomography/ computed tomography (PET/CT), and using Lu-177 or other metallic radionuclides for radionuclide therapy by applying the same peptide proves that personalized radionuclide therapy today is already a fact and not a fiction. PMID:22768024

  17. THERANOSTICS: From Molecular Imaging Using Ga-68 Labeled Tracers and PET/CT to Personalized Radionuclide Therapy - The Bad Berka Experience.

    PubMed

    Baum, Richard P; Kulkarni, Harshad R

    2012-01-01

    The acronym THERANOSTICS epitomizes the inseparability of diagnosis and therapy, the pillars of medicine and takes into account personalized management of disease for a specific patient. Molecular phenotypes of neoplasms can be determined by molecular imaging with specific probes using positron emission tomography (PET), single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), or optical methods, so that the treatment is specifically targeted against the tumor and its environment. To meet these demands, we need to define the targets, ligands, coupling and labeling chemistry, the most appropriate radionuclides, biodistribution modifiers, and finally select the right patients for the personalized treatment. THERANOSTICS of neuroendocrine tumors (NETs) using Ga-68 labeled tracers for diagnostics with positron emission tomography/ computed tomography (PET/CT), and using Lu-177 or other metallic radionuclides for radionuclide therapy by applying the same peptide proves that personalized radionuclide therapy today is already a fact and not a fiction.

  18. Radioecology of Vertebrate Animals in the Area Adjacent to the Chernobyl Nuclear Power Plant Site in 1986-2008

    NASA Astrophysics Data System (ADS)

    Farfan, E. B.; Gashchak, S. P.; Makliuk, Y. A.; Maksymenko, A. M.; Bondarkov, M. D.; Jannik, G. T.; Marra, J. C.

    2009-12-01

    A widespread environmental contamination of the areas adjacent to the Chernobyl Nuclear Power Plant (ChNPP) site attracted a great deal of publicity to the biological consequences of the ChNPP catastrophe. However, only a few studies focused on a detailed analysis of radioactive contamination of the local wild fauna and most of them were published in Eastern European languages, making them poorly accessible for Western scientists. In addition, evaluation of this information appears difficult due to significant differences in raw data acquisition and analysis methodologies and final data presentation formats. Using an integrated approach to assessment of all available information, the International Radioecology Laboratory scientists showed that the ChNPP accident had increased the average values of the animals 137Cs and 90Sr contamination by a factor of thousands, followed by its decrease by a factor of tens, primarily resulting from a decrease in the biological accessibility of the radionuclides. However, this trend depended on many factors. Plant and bottom feeding fish species were the first to reach the maximum contamination levels. No data are available on other vertebrates, but it can be assumed that the same trend was true for all plant feeding animals and animals searching for food on the soil surface. The most significant decrease of the average values occurred during the first 3-5 years after the accident and it was the most pronounced for elks and plant and plankton feeding fish. Their diet included elements “alienated” from the major radionuclide inventory; for example, upper soil layers and bottom deposits where the fallout that had originally precipitated on plants, water and soils gradually migrated. Further radionuclide penetration into deeper layers of soils and its bonding with their mineral components intensified decontamination of the fauna. It took a while for the contamination of predatory fish and mammals (wolves) to reach the maximum followed by its similar slow decrease. Currently, these species are found to be the most contaminated. Species that are environmentally connected with soils or bottom deposits (terrestrial amphibians, rodents, burrowing animals, birds searching for food in soils and underlying layers and wild hogs) also show relatively high contamination levels. In general, by the mid 1990’s, fluctuations in 137Cs contamination primarily depended on seasonal changes in food patterns, physiology and migration for animal species and on all these factors plus seasonal changes of water temperature and flood patterns for fish species. An increase of 90Sr biological accessibility in soils affected its average accumulation. Currently, due to stabilization of environmental complexes and processes in the region, long-term profiles of radioactive contamination of vertebrate animals mostly indicate a gradual decay of radionuclides, with further changes in biological accessibility of radionuclides being practically unnoticeable due to significant seasonal and geographical fluctuations of the contamination.

  19. Collective behavior of brain tumor cells: The role of hypoxia

    NASA Astrophysics Data System (ADS)

    Khain, Evgeniy; Katakowski, Mark; Hopkins, Scott; Szalad, Alexandra; Zheng, Xuguang; Jiang, Feng; Chopp, Michael

    2011-03-01

    We consider emergent collective behavior of a multicellular biological system. Specifically, we investigate the role of hypoxia (lack of oxygen) in migration of brain tumor cells. We performed two series of cell migration experiments. In the first set of experiments, cell migration away from a tumor spheroid was investigated. The second set of experiments was performed in a typical wound-healing geometry: Cells were placed on a substrate, a scratch was made, and cell migration into the gap was investigated. Experiments show a surprising result: Cells under normal and hypoxic conditions have migrated the same distance in the “spheroid” experiment, while in the “scratch” experiment cells under normal conditions migrated much faster than under hypoxic conditions. To explain this paradox, we formulate a discrete stochastic model for cell dynamics. The theoretical model explains our experimental observations and suggests that hypoxia decreases both the motility of cells and the strength of cell-cell adhesion. The theoretical predictions were further verified in independent experiments.

  20. Potential migration of buoyant LNAPL from intermediate level waste (ILW) emplaced in a geological disposal facility (GDF) for U.K. radioactive waste.

    PubMed

    Benbow, Steven J; Rivett, Michael O; Chittenden, Neil; Herbert, Alan W; Watson, Sarah; Williams, Steve J; Norris, Simon

    2014-10-15

    A safety case for the disposal of Intermediate Level (radioactive) Waste (ILW) in a deep geological disposal facility (GDF) requires consideration of the potential for waste-derived light non-aqueous phase liquid (LNAPL) to migrate under positive buoyancy from disposed waste packages. Were entrainment of waste-derived radionuclides in LNAPL to occur, such migration could result in a shorter overall travel time to environmental or human receptors than radionuclide migration solely associated with the movement of groundwater. This paper provides a contribution to the assessment of this issue through multiphase-flow numerical modelling underpinned by a review of the UK's ILW inventory and literature to define the nature of the associated ILW LNAPL source term. Examination has been at the waste package-local GDF environment scale to determine whether proposed disposal of ILW would lead to significant likelihood of LNAPL migration, both from waste packages and from a GDF vault into the local host rock. Our review and numerical modelling support the proposition that the release of a discrete free phase LNAPL from ILW would not present a significant challenge to the safety case even with conservative approximations. 'As-disposed' LNAPL emplaced with the waste is not expected to pose a significant issue. 'Secondary LNAPL' generated in situ within the disposed ILW, arising from the decomposition of plastics, in particular PVC (polyvinyl chloride), could form the predominant LNAPL source term. Released high molecular weight phthalate plasticizers are judged to be the primary LNAPL potentially generated. These are expected to have low buoyancy-based mobility due to their very low density contrast with water and high viscosity. Due to the inherent uncertainties, significant conservatisms were adopted within the numerical modelling approach, including: the simulation of a deliberately high organic material--PVC content wastestream (2D03) within an annular grouted waste package vulnerable to LNAPL release; upper bound inventory estimates of LNAPLs; incorporating the lack of any hydraulic resistance of the package vent; the lack of any degradation of dissolved LNAPL; and, significantly, the small threshold displacement pressure assumed at which LNAPL is able to enter initially water-saturated pores. Initial scoping calculations on the latter suggested that the rate at which LNAPL is able to migrate from a waste package is likely to be very small and insignificant for likely representative displacement pressure data: this represents a key result. Adopting a conservative displacement pressure, however, allowed the effect of other features and processes in the system to be assessed. High LNAPL viscosity together with low density contrast with water reduces LNAPL migration potential. Migration to the host rock is less likely if waste package vent fluxes are small, solubility limits are high and path lengths through the backfill are short. The capacity of the system to dissolve all of the free LNAPL will, however, depend on groundwater availability. Even with the conservatisms invoked, the overall conclusion of model simulations of intact and compromised (cracked or corroded) waste packages, for a range of realistic ILW LNAPL scenarios, is that it is unlikely that significant LNAPL would be able to migrate from the waste packages and even more unlikely it would be sufficiently persistent to reach the host rock immediately beyond the GDF. Copyright © 2014. Published by Elsevier B.V.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glucksberg, Nadia; Peters, Jay

    The Conceptual Site Model (CSM) is a powerful tool for understanding the link between contamination sources, cleanup objectives, and ultimate site reuse. The CSM describes the site setting, geology, hydrogeology, potential sources, release mechanisms and migration pathways of contaminants. The CSM is needed to understand the extent of contamination and how receptors may be exposed to both radiological and chemical constituents. A key component of the CSM that is often overlooked concerns how the regulatory requirements drive remediation and how each has to be integrated into the CSM to ensure that all stakeholder requirements are understood and addressed. This papermore » describes how the use of the CSM helped reach closure and reuse at two facilities in Connecticut that are pursuing termination of their Nuclear Regulatory Commission (NRC) license. The two facilities are the Combustion Engineering Site, located in Windsor, Connecticut, (CE Windsor Site) and the Connecticut Yankee Atomic Power Company, located in Haddam Neck, Connecticut (CYAPCO). The closure of each of these facilities is regulated by four agencies: - Nuclear Regulatory Commission (NRC) - which requires cleanup levels for radionuclides to be protective of public health; - US Environmental Protection Agency (USEPA) - which requires cleanup levels for chemicals to be protective of public health and the environment; - Connecticut Department of Environmental Protection (CTDEP) Bureau of Air Management, Radiation Division - which requires cleanup levels for radionuclides to be protective of public health; and - Connecticut Department of Environmental Protection (CTDEP) Bureau of Water Protection and Land Reuse - which requires cleanup levels for chemicals to be protective of public health and the environment. Some of the radionuclides at the CE Windsor Site are also regulated under the Formerly Utilized Site Remedial Action Program (FUSRAP) under the Army Corps of Engineers. The remainder of this paper presents the similarities and differences between the CSMs for these two sites and how each site used the CSM to reach closure. Although each of these site have unique histories and physical features, the CSM approach was used to understand the geology, hydrogeology, migration and exposure pathways, and regulatory requirements to successfully characterize and plan closure of the sites. A summary of how these attributes affected site closure is provided.« less

  2. Water-Chemistry Evolution and Modeling of Radionuclide Sorption and Cation Exchange during Inundation of Frenchman Flat Playa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hershey, Ronald; Cablk, Mary; LeFebre, Karen

    2013-08-01

    Atmospheric tests and other experiments with nuclear materials were conducted on the Frenchman Flat playa at the Nevada National Security Site, Nye County, Nevada; residual radionuclides are known to exist in Frenchman Flat playa soils. Although the playa is typically dry, extended periods of winter precipitation or large single-event rainstorms can inundate the playa. When Frenchman Flat playa is inundated, residual radionuclides on the typically dry playa surface may become submerged, allowing water-soil interactions that could provide a mechanism for transport of radionuclides away from known areas of contamination. The potential for radionuclide transport by occasional inundation of the Frenchmanmore » Flat playa was examined using geographic information systems and satellite imagery to delineate the timing and areal extent of inundation; collecting water samples during inundation and analyzing them for chemical and isotopic content; characterizing suspended/precipitated materials and archived soil samples; modeling water-soil geochemical reactions; and modeling the mobility of select radionuclides under aqueous conditions. The physical transport of radionuclides by water was not evaluated in this study. Frenchman Flat playa was inundated with precipitation during two consecutive winters in 2009-2010 and 2010-2011. Inundation allowed for collection of multiple water samples through time as the areal extent of inundation changed and ultimately receded. During these two winters, precipitation records from a weather station in Frenchman Flat (Well 5b) provided information that was used in combination with geographic information systems, Landsat imagery, and image processing techniques to identify and quantify the areal extent of inundation. After inundation, water on the playa disappeared quickly, for example, between January 25, 2011 and February 10, 2011, a period of 16 days, 92 percent of the areal extent of inundation receded (2,062,800 m2). Water sampling provided valuable information about chemical processes occurring during inundation as the water disappeared. Important observations from water-chemistry analyses included: 1) total dissolved solids (TDS) and chloride ion (Cl-) concentrations were very low (TDS: < 200 mg/L and Cl-: < 3.0 mg/L, respectively) for all water samples regardless of time or areal extent; 2) all dissolved constituents were at concentrations well below what might be expected for evaporating shallow surface waters on a playa, even when 98 to 99 percent of the water had disappeared; 3) the amount of evaporation for the last water samples collected at the end of inundation, estimated with the stable isotopic ratios δ2H or δ18O, was approximately 60 percent; and 4) water samples analyzed by gamma spectroscopy did not show any man-made radioactivity; however, the short scanning time (24 hours) and relative chemical diluteness of the water samples (TDS ranged between 39 and 190 mg/L) may have contributed to none being detected. Additionally, any low-energy beta emitting radionuclides would not have been detected by gamma spectroscopy. From these observations, it was apparent that a significant portion of water on the playa did not evaporate, but rather infiltrated into the subsurface (approximately 40 percent). Consistent with this water chemistry-based conclusion is particle-size analysis of two archived Frenchman Flat playa soils samples, which showed low clay content in the near surface soil that also suggested infiltration. Infiltration of water from the playa during inundation into the subsurface does not necessarily imply that groundwater recharge is occurring, but it does provide a mechanism for moving residual radionuclides downward into the subsurface of Frenchman Flat playa. Water-mineral geochemical reactions were modeled so that changes in the water chemistry could be identified and the extent of reactions quantified. Geochemical modeling showed that evaporation; equilibrium with atmospheric carbon dioxide and calcite; dissolution of sodium chloride, gypsum, and composite volcanic glass; and precipitation of composite clay and quartz represented changes in water as it disappeared from the playa. This modeling provided an understanding of the water-soil geochemical environment, which was then used to evaluate the potential mobility of residual radionuclides into the playa soils by water. Because there is no information on the chemical forms of anthropogenic radionuclides in Frenchman Flat playa soil, it was assumed that soil radionuclides go into solution when the playa is inundated. In mobility modeling, a select group of radionuclides were allowed to sorb onto, or exchange with, playa soil minerals to evaluate the likelihood that the radionuclides would be removed from water during playa inundation. Radionuclide mobility modeling suggested that there would be minimal sorption or exchange of several important radionuclides (uranium, cesium, and technetium) with playa minerals such that they may be mobile in water when the playa is inundated and could infiltrate into the subsurface. Mobility modeling also showed that plutonium may be much less mobile because of sorption onto calcite, but the amount of reactive surface area of playa soil calcite is highly uncertain. Plutonium is also known to sorb onto colloidal particles suspended in water, suspended colloidal particles will move with the water, providing a mechanism to redistribute plutonium when Frenchman Flat playa is inundated. Water chemistry, stable isotopes, and geochemical modeling showed that residual radionuclides in Frenchman Flat playa soils could be mobilized in water when the playa is inundated with precipitation. Also, there is potential for these radionuclides to infiltrate into the subsurface with water. As a result of the information obtained both during this study and the conclusions drawn from it, additional data collection, investigation, and modeling are recommended. Specifically: sampling the playa soil to search for evidence of surface-water infiltration and the presence of radionuclides; developing a preliminary unsaturated flow and transport model to guide soil sampling; characterizing the chemical forms of radionuclides on the playa surface and any radionuclides that might have migrated into the subsurface; and, refining the unsaturated flow and transport model with data obtained from sampling and analysis of soil samples to guide any future sampling, development of remediation strategies, and defining risk-based boundaries for Frenchman Flat playa.« less

  3. Radionuclide speciation in effluent from La Hague reprocessing plant in France.

    PubMed

    Salbu, B; Skipperud, L; Germain, P; Guéguéniat, P; Strand, P; Lind, O C; Christensen, G

    2003-09-01

    Effluent from the La Hague nuclear fuel reprocessing plant was mixed with seawater in order to investigate the fate of the various radionuclides. Thus, a major objective of the present work is to characterize the effluent from La Hague reprocessing plant and to study how the radionuclide speciation changes with time when discharged into the marine environment. Discharges from the La Hague nuclear reprocessing plant represent an important source of artificially produced radionuclides to the North Sea. The transport, distribution, and biological uptake of radionuclides in the marine environment depends, however, on the physicochemical forms of radionuclides in the discharged effluents and on transformation processes that occur after entering the coastal waters. Information of these processes is needed to understand the transport and long-term distribution of the radionuclides. In the present work, a weekly discharged effluent from the nuclear fuel reprocessing plant at Cap La Hague in France was mixed with coastal water and fractionated with respect to particle size and charged species using ultra centrifugation and hollow fiber ultrafiltration with on line ion exchange. The size distribution pattern of gamma-emitting radionuclides was followed during a 62-h period after mixing the effluent with seawater. 54Mn was present as particulate material in the effluent, while other investigated radionuclides were discharged in a more mobile form or were mobilized after mixing with sea water (e.g., 60Co) and can be transported long distances in the sea. Sediments can act as a sink for less mobile discharged radionuclides (Skipperud et al. 2000). A kinetic model experiment was performed to provide information of the time-dependent distribution coefficients, Kd (t). The retention of the effluent radionuclides in sediments was surprisingly low (Kd 20-50), and the sediments acted as a poor sink for the released radionuclides. Due to the presence of non-reacting radionuclide species in the effluent, a major fraction of the radionuclides, such as Cs-isotopes, 106Ru and 125Sb, in the effluent will be subjected to marine transport to the Northern Seas (i.e., the North Sea, Norwegian Sea and the Barents Sea). The La Hague effluent may, therefore, contribute to enriched levels of radionuclides found in the English Channel, including 90Sr, 60Co and Pu-isotopes, and also 106Ru and 125Sb.

  4. Radionuclide Migation Project 1984 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buddemeier, R.W.; Isherwood, D.

    1985-04-01

    The report discusses the hydrogeologic settings and histories of studies associated with the Cheshire (U20n), Cambric (U5e), Nash (UE2ce), Bilby (U3cn), Bourbon (U7n), and Faultless (UC1) Events. Radionuclide and some chemical data are presented for water samples from cavity or chimney wells associated with the Cheshire, Cambric, and Bilby Events, and from satellite wells at the Cambric, Nash, Bibly, Bourbon, and Faultless Event sites. The report also gives the results of studies of specific sampling or analytical methodologies. These studies demonstrated that the apparent migration of /sup 155/Eu is an artfact of spectrometric misidentification of gamma- and x-ray peaks frommore » other constituents. A potential problem with atmospheric contamination of samples collected with evacuated thief samples was also identified. Ultrafiltration techniques were applied to some of the Cheshire cavity samples collected, and preliminary results suggest that substantial amounts of activity may be associated with colloidal particles in the size range of 0.006 to 0.45 ..mu..m. A study has begun of the recharge of effluent water from RNM-2S (Cambric satellite well) into the desert floor as a result of nine years of continuous pumping. This report gives the initial results of unsaturated zone studies showing the propagation of moisture and tritium fronts through the shallow soil. Geochemical modeling of the behavior of ruthenium and technetium was carried out, with particular emphasis on the identification of ionic species that would be potentially mobile under NTS ground-water conditions. The report compares the results with observations of ruthenium migration to the Cambric satellite well.« less

  5. Distribution and migration of 239+240Pu in abiotic components of the Black Sea ecosystems during the post-Chernobyl period.

    PubMed

    Tereshchenko, N N; Gulin, S B; Proskurnin, V Yu

    2018-08-01

    Distribution of 239,240 Pu in abiotic components (water and bottom sediment) of the Black Sea ecosystems was studied during the post-Chernobyl period at different offshore and near-shore locations. The trends of these radionuclides accumulation by sediments were analyzed. The spatial-temporal changes in the 239,240 Pu distribution as well as effective half-life for these radionuclides in the Black Sea surface water in deep-sea area are presented. The estimations of the average annual removal fluxes of the 239,240 Pu into the bottom sediments were obtained. The Black Sea sediments were characterized by a higher 239,240 Pu concentration factor (C f  ≈ n·10 4 -n·10 6 ) and radiocapacity factor (F( 239,240 Pu) was about 99.9% on the shelf, 94.5-99.1% on deep-sea basin for silty and 94.6-98.9% on the shelf for sandy bottom sediments) as compared with C f and F for 137 Cs and 90 Sr. Silty bottom sediments play the role of 239,240 Pu main depot in the Black Sea ecosystem. The studied radioecological characteristics of Pu allowed us to define the type of plutonium biogeochemical behavior in the Black Sea as a pedotropic one. The results of this complex radioecological monitoring of 239+240 Pu contamination in the Black Sea and their analysis makes it possible to understand the plutonium redistribution pathways which will enable to carry out the tracing of its migration within the ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Overview of exposure to and effects from radionuclides in terrestrial and marine environments.

    PubMed

    Sample, Bradley E

    2011-07-01

    The accident at the Fukushima Daiichi nuclear power plant, precipitated by the devastating earthquake and subsequent tsunami that struck the northeastern coast of Japan in March 2011, has raised concerns about potential impacts to terrestrial and marine environments from radionuclides released into the environment. A preliminary understanding of the potential ecological impacts from radionuclides can be ascertained from observations and data developed following previous environmental incidents elsewhere in the world. This article briefly summarizes how biota experience exposure to ionizing radiation, what effects may be produced, and how they may differ among taxa and habitats. Copyright © 2011 SETAC.

  7. Collective Behavior of Brain Tumor Cells: the Role of Hypoxia

    NASA Astrophysics Data System (ADS)

    Khain, Evgeniy; Katakowski, Mark; Hopkins, Scott; Szalad, Alexandra; Zheng, Xuguang; Jiang, Feng; Chopp, Michael

    2013-03-01

    We consider emergent collective behavior of a multicellular biological system. Specifically we investigate the role of hypoxia (lack of oxygen) in migration of brain tumor cells. We performed two series of cell migration experiments. The first set of experiments was performed in a typical wound healing geometry: cells were placed on a substrate, and a scratch was done. In the second set of experiments, cell migration away from a tumor spheroid was investigated. Experiments show a controversy: cells under normal and hypoxic conditions have migrated the same distance in the ``spheroid'' experiment, while in the ``scratch'' experiment cells under normal conditions migrated much faster than under hypoxic conditions. To explain this paradox, we formulate a discrete stochastic model for cell dynamics. The theoretical model explains our experimental observations and suggests that hypoxia decreases both the motility of cells and the strength of cell-cell adhesion. The theoretical predictions were further verified in independent experiments.

  8. Inventory and vertical migration of 90Sr fallout and 137Cs/90Sr ratio in Spanish mainland soils.

    PubMed

    Herranz, M; Romero, L M; Idoeta, R; Olondo, C; Valiño, F; Legarda, F

    2011-11-01

    In this paper the inventory of (90)Sr in 34 points distributed along the Spanish peninsular territory is presented. Obtained values range between 173 Bq/m(2) and 2047 Bq/m(2). From these data set and those (137)Cs data obtained in a previous work the (137)Cs/(90)Sr activity ratio has been established, laying this value between 0.9 and 3.6. Also the migration depth of both radionuclides has been analysed obtaining for (137)Cs an average value 57% lower than that obtained for (90)Sr. Additionally, this paper presents the results obtained in 11 sampling points in which the activity vertical profile has been measured. These profiles have been analysed to state the behaviour of strontium in soils and after, by using a convective-diffusive model, the parameters of the model which governs the vertical migration of (90)Sr in the soil, v (apparent convection velocity) and D (apparent diffusion coefficient) have been evaluated. Mean values obtained are 0.20 cm/year and 3.67 cm(2)/year, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Determination and maintenance of DE minimis risk for migration of residual tritium (3H) from the 1969 Project Rulison nuclear test to nearby hydraulically fractured natural gas wells.

    PubMed

    Daniels, Jeffrey I; Chapman, Jenny B

    2013-05-01

    The Project Rulison underground nuclear test was a proof-of-concept experiment that was conducted under the Plowshare Program in 1969 in the Williams Fork Formation of the Piceance Basin in west-central Colorado. Today, commercial production of natural gas is possible from low permeability, natural gas bearing formations like that of the Williams Fork Formation using modern hydraulic fracturing techniques. With natural gas exploration and production active in the Project Rulison area, this human health risk assessment was performed in order to add a human health perspective for site stewardship. Tritium (H) is the radionuclide of concern with respect to potential induced migration from the test cavity leading to subsequent exposure during gas-flaring activities. This analysis assumes gas flaring would occur for up to 30 d and produce atmospheric H activity concentrations either as low as 2.2 × 10 Bq m (6 × 10 pCi m) from the minimum detectable activity concentration in produced water or as high as 20.7 Bq m (560 pCi m), which equals the highest atmospheric measurement reported during gas-flaring operations conducted at the time of Project Rulison. The lifetime morbidity (fatal and nonfatal) cancer risks calculated for adults (residents and workers) and children (residents) from inhalation and dermal exposures to such activity concentrations are all below 1 × 10 and considered de minimis. The implications for monitoring production water for conforming health-protective, risk-based action levels also are examined.

  10. The chemical behavior of the transuranic elements and the barrier function in natural aquifer systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jewett, J.R.

    1997-09-17

    In a geological repository for long-lived radioactive wastes, such as actinides and certain fission products, most of the stored radionuclides remain immobile in the particular geological formation. If any of these could possibly become mobile, only trace concentrations of a few radionuclides would result. Nevertheless, with an inventory in the repository of many tonnes of transuranic elements, the amounts that could disperse cannot be neglected. A critical assessment of the chemical behavior of these nuclides, especially their migration properties in the aquifer system around the repository site, is mandatory for analysis of the long-term safety. The chemistry requited for thismore » includes many geochemical multicomponent reactions that are so far only partially understood and [which] therefore can be quantified only incompletely. A few of these reactions have been discussed in this paper based on present knowledge. If a comprehensive discussion of the subject is impossible because of this [lack of information], then an attempt to emphasize the importance of the predominant geochemical reactions of the transuranic elements in various aquifer systems should be made.« less

  11. Modeling of transport phenomena in concrete porous media.

    PubMed

    Plecas, Ilija

    2014-02-01

    Two fundamental concerns must be addressed when attempting to isolate low-level waste in a disposal facility on land. The first concern is isolating the waste from water, or hydrologic isolation. The second is preventing movement of the radionuclides out of the disposal facility, or radionuclide migration. Particularly, we have investigated here the latter modified scenario. To assess the safety for disposal of radioactive waste-concrete composition, the leakage of 60Co from a waste composite into a surrounding fluid has been studied. Leakage tests were carried out by the original method, developed at the Vinča Institute. Transport phenomena involved in the leaching of a radioactive material from a cement composite matrix are investigated using three methods based on theoretical equations. These are: the diffusion equation for a plane source: an equation for diffusion coupled to a first-order equation, and an empirical method employing a polynomial equation. The results presented in this paper are from a 25-y mortar and concrete testing project that will influence the design choices for radioactive waste packaging for a future Serbian radioactive waste disposal center.

  12. Relevance of PET for pretherapeutic prediction of doses in peptide receptor radionuclide therapy.

    PubMed

    Blaickner, Matthias; Baum, Richard P

    2014-01-01

    Personalized dosimetry in radionuclide therapy has gained much attention in recent years. This attention has also an impact on peptide receptor radionuclide therapy (PRRT). This article reviews the PET-based imaging techniques that can be used for pretherapeutic prediction of doses in PRRT. More specifically the usage of (86)Y, (90)Y, (68)Ga, and (44)Sc are discussed: their characteristics for PET acquisition, the available peptides for labeling, the specifics of the imaging protocols, and the experiences gained from phantom and clinical studies. These techniques are evaluated with regard to their usefulness for dosimetry predictions in PRRT, and future perspectives are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Analysis of trace neptunium in the vicinity of underground nuclear tests at the Nevada National Security Site.

    PubMed

    Zhao, P; Tinnacher, R M; Zavarin, M; Kersting, A B

    2014-11-01

    A high sensitivity analytical method for (237)Np analysis was developed and applied to groundwater samples from the Nevada National Security Site (NNSS) using short-lived (239)Np as a yield tracer and HR magnetic sector ICP-MS. The (237)Np concentrations in the vicinity of the Almendro, Cambric, Dalhart, Cheshire, and Chancellor underground nuclear test locations range from <4 × 10(-4) to 2.6 mBq/L (6 × 10(-17)-4.2 × 10(-13) mol/L). All measured (237)Np concentrations are well below the drinking water maximum contaminant level for alpha emitters identified by the U.S. EPA (560 mBq/L). Nevertheless, (237)Np remains an important indicator for radionuclide transport rates at the NNSS. Retardation factor ratios were used to compare the mobility of (237)Np to that of other radionuclides. The results suggest that (237)Np is less mobile than tritium and other non-sorbing radionuclides ((14)C, (36)Cl, (99)Tc and (129)I) as expected. Surprisingly, (237)Np and plutonium ((239,240)Pu) retardation factors are very similar. It is possible that Np(IV) exists under mildly reducing groundwater conditions and exhibits a retardation behavior that is comparable to Pu(IV). Independent of the underlying process, (237)Np is migrating downgradient from NNSS underground nuclear tests at very low but measureable concentrations. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Spatial variability of the dose rate from (137)Cs fallout in settlements in Russia and Belarus more than two decades after the Chernobyl accident.

    PubMed

    Bernhardsson, C; Rääf, C L; Mattsson, S

    2015-11-01

    Radionuclides from the 1986 Chernobyl accident were released and dispersed during a limited period of time, but under widely varying weather conditions. As a result, there was a high geographical variation in the deposited radioactive fallout per unit area over Europe, depending on the released composition of fission products and the weather during the 10 days of releases. If the plume from Chernobyl coincided with rain, then the radionuclides were unevenly distributed on the ground. However, large variations in the initial fallout also occurred locally or even on a meter scale. Over the ensuing years the initial deposition may have been altered further by different weathering processes or human activities such as agriculture, gardening, and decontamination measures. Using measurements taken more than two decades after the accident, we report on the inhomogeneous distribution of the ground deposition of the fission product (137)Cs and its influence on the dose rate 1 m above ground, on both large and small scales (10ths of km(2) - 1 m(2)), in the Gomel-Bryansk area close to the border between Belarus and Russia. The dose rate from the deposition was observed to vary by one order of magnitude depending on the size of the area considered, whether human processes were applied to the surface or not, and on location specific properties (e.g. radionuclide migration in soil). Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Chemical composition of drinking water as a possible environment-specific factor modifying the thyroid risk in the areas subjected to radioiodine contamination

    NASA Astrophysics Data System (ADS)

    Kolmykova, Lyudmila; Korobova, Elena; Ryzhenko, Boris

    2015-04-01

    Water is one of the main natural agents providing chemical elements' migration in the environment and food chains. In our opinion a study of spatial variation of the essential trace elements in local drinking water is worth considering as the factor that may contribute to variation of the health risk in areas contaminated by radionuclides and radioiodine in particular. Radioiodine was proved to increase the risk of thyroid cancer among children who lived in areas contaminated during the Chernobyl accident. It was also shown that low stable iodine status of the contaminated area and population also contributed to the risk of this disease in case of radionuclide contamination. The goal of the study was to investigate chemical composition of the drinking water in rural settlements of the Bryansk oblast' subjected to radioiodine contamination and to evaluate speciation of stable I and Se on the basis of their total concentration and chemical composition of the real water samples with the help of thermodynamic modelling. Water samples were collected from different aquifers discharging at different depths (dug wells, local private bore holes and water pipes) in rural settlements located in areas with contrasting soil iodine status. Thermodynamic modelling was performed using original software (HCh code of Y.Shvarov, Moscow State University, RUSSIA) incorporating the measured pH, Corg and elements' concentration values. Performed modelling showed possibility of formation of complex CaI+ ion in aqueous phase, I sorption by goethite and transfer of Se to solid phase as FeSe in the observed pH-Eh conditions. It helped to identify environmental conditions providing high I and Se mobility and their depletion from natural waters. Both the experimental data and modeling showed that I and Se migration and deficiency in natural water is closely connected to pH, Eh conditions and the concentration of typomorphic chemical elements (Ca, Mg, Fe) defining the class of water migration in landscapes (according Perel'man, 1975). Obtained data will be used for evaluation of contribution of I and Se status of drinking water to the risk of thyroid diseases among local population.

  16. Cloud Migration Experiment Configuration and Results

    DTIC Science & Technology

    2017-12-01

    ARL-TR-8248 ● DEC 2017 US Army Research Laboratory Cloud Migration Experiment Configuration and Results by Michael De Lucia...or reconstruction of the document. ARL-TR-8248 ● DEC 2017 US Army Research Laboratory Cloud Migration Experiment Configuration...and Results by Michael De Lucia Computational and Information Sciences Directorate, ARL Justin Wray and Steven S Collmann ICF International

  17. Chancellor Water Colloids: Characterization and Radionuclide Associated Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimus, Paul William; Boukhalfa, Hakim

    2014-09-26

    Column transport experiments were conducted in which water from the Chancellor nuclear test cavity was transported through crushed volcanic tuff from Pahute Mesa. In one experiment, the cavity water was spiked with solute 137Cs, and in another it was spiked with 239/240Pu(IV) nanocolloids. A third column experiment was conducted with no radionuclide spike at all, although the 137Cs concentrations in the water were still high enough to quantify in the column effluent. The radionuclides strongly partitioned to natural colloids present in the water, which were characterized for size distribution, mass concentration, zeta potential/surface charge, critical coagulation concentration, and qualitative mineralogy.more » In the spiked water experiments, the unanalyzed portion of the high-concentration column effluent samples were combined and re-injected into the respective columns as a second pulse. This procedure was repeated again for a third injection. Measurable filtration of the colloids was observed after each initial injection of the Chancellor water into the columns, but the subsequent injections (spiked water experiments only) exhibited no apparent filtration, suggesting that the colloids that remained mobile after relatively short transport distances were more resistant to filtration than the initial population of colloids. It was also observed that while significant desorption of 137Cs from the colloids occurred after the first injection in both the spiked and unspiked waters, subsequent injections of the spiked water exhibited much less 137Cs desorption (much greater 137Cs colloid-associated transport). This result suggests that the 137Cs that remained associated with colloids during the first injection represented a fraction that was more strongly adsorbed to the mobile colloids than the initial 137Cs associated with the colloids. A greater amount of the 239/240Pu desorbed from the colloids during the second column injection compared to the first injection, but then desorption decreased significantly in the third injection. This result suggests that the Pu(IV) nanocolloids probably at least partially dissolved during and after the first injection, resulting in enhanced desorption from the colloids during the second injection, but by the third injection the Pu started following the same trend that was observed for 137Cs. The experiments suggest a transport scale dependence in which mobile colloids and colloid-associated radionuclides observed at downstream points along a flow path have a greater tendency to remain mobile along the flow path than colloids and radionuclides observed at upstream points. This type of scale dependence may help explain observations of colloid-facilitated Pu transport over distances of up to 2 km at Pahute Mesa.« less

  18. Geoinformational modelling of the land use of Polesye and Opolje landscapes in Bryansk region (Russia) under conditions of 137Cs radionuclides contamination

    NASA Astrophysics Data System (ADS)

    Nenko, Christina; Linnik, Vitaliy; Volkova, Nadezhda

    2015-04-01

    Significant part of Russian Federation was contaminated by 137Cs radionuclides due to Chernobyl disaster in 1986. South-western part of Bryansk region has suffered the most. Study area (the central part of Bryansk region, Polesye and high plains landscapes) is situated outside the officially specified zone of contamination with contamination levels under 1 Ci / km2. Nevertheless, such contamination levels (which are 20 times greater than levels of global fallout) require particular attention as it may contain a threat of the land use and the health of population, living within the territory. Radioactive contamination within the model area was formed as a result of a "dry" deposition from the atmosphere. Consequently, the initial contamination of soil by isotopes 137Cs, unlike the western part of the Bryansk region, was spread relatively equally. The main part of 137Cs (up to 90%) in natural landscapes is contained in the top 5 cm of soil, which itself creates danger of biogeochemical migration from soil to plants. In agricultural landscapes under cultivation 137Cs is uniformly spread within a 20 cm layer of soil and can also come from soil to plants grown in the fields. The area of radioactive contamination that was formed during the period of deposition (late April - early May 1986), is exposed to the processes of secondary redistribution. It is influenced by several factors as topography, vegetation type, proportion of arable soils, soil humidity, soil texture etc. In the presented study there was evaluated the impact of these factors on the secondary redistribution of 137Cs. Sustainable development of agricultural production in the contaminated territories requires managing a number of measures to reduce radiation risks to the population. Regarding this point the greatest threat may be represented by milk production, as well as picking berries and mushrooms. Planning of the sustainable use of the territory requires an evaluation of contamination levels within the existing agricultural lands. For this purpose, geographic information system (GIS) of the territory was created. It contains following layers: aero-gamma spectrometry data with interval of 100 m; soil types (scale 1: 50,000); relief (SRTM data); schematic map of agricultural lands and forests. The analysis of the secondary redistribution of radionuclides was conducted for the radio-ecological zoning of the territory, as well as the stock of 137Cs was calculated according to types of land use. It made it possible to evaluate the contamination of milk (using transfer coefficients "soil-plant-milk") for different natural landscapes. Evaluation of factors of radionuclides' migration in landscape also allows to predict possible trends in distribution of contamination and to develop recommendations regarding the future use of the territory.

  19. Utilizing hydrologic, statistical, and geochemical tools to assess uranium mobility in surface and near-surface environments

    NASA Astrophysics Data System (ADS)

    Naftz, D. L.; Walton-Day, K. E.; Fuller, C.; Dam, W. L.; Briggs, M. A.; Snyder, T.

    2015-12-01

    Legacy uranium (U) mining and processing activities have resulted in soil and water contamination on Federal, state, and tribal lands in the western United States. Sites include legacy mill sites associated with U extraction now managed by the Department of Energy and thousands of waste dumps associated with U exploration, mining, and processing. Recently (2012), over 400,000 hectares of federally managed land in northern Arizona was withdrawn from consideration of mining for a 20-year period to protect the Grand Canyon watershed from potentially adverse effects of U mineral exploration and development. Ore from active and recently active U mines in the Colorado Plateau, the Henry Mountains Complex, and the Arizona Strip is transported to the only currently (2015) active conventional mill site in the western United States, located in Utah. Previous and ongoing U.S. Geological Survey assessments to examine U mobility at a variety of legacy and active sites associated with ore exploration, extraction, and processing will be presented as field-scale examples. Topics associated with site investigations will include: (1) offsite migration of radionuclides associated with the operation of the White Mesa U mill; (2) long-term contaminant transport from legacy U waste dumps on Bureau of Land Management regulated land in Utah; (3) application of incremental soil sampling techniques to determine pre- and post-mining radionuclide levels associated with planned and operating U mines in northern Arizona; (4) application of fiber optic digital temperature sensing equipment to identify areas where shallow groundwater containing elevated U levels may be discharging to a river adjacent to a reclaimed mill site in central Wyoming; and (5) field-scale manipulation of groundwater chemistry to limit U migration from a legacy upgrader site in southeastern Utah.

  20. Investigating the Potential Barrier Function of Nanostructured Materials Formed in Engineered Barrier Systems (EBS) Designed for Nuclear Waste Isolation.

    PubMed

    Cuevas, Jaime; Ruiz, Ana Isabel; Fernández, Raúl

    2018-02-21

    Clay and cement are known nano-colloids originating from natural processes or traditional materials technology. Currently, they are used together as part of the engineered barrier system (EBS) to isolate high-level nuclear waste (HLW) metallic containers in deep geological repositories (DGR). The EBS should prevent radionuclide (RN) migration into the biosphere until the canisters fail, which is not expected for approximately 10 3  years. The interactions of cementitious materials with bentonite swelling clay have been the scope of our research team at the Autonomous University of Madrid (UAM) with participation in several European Union (EU) projects from 1998 up to now. Here, we describe the mineral and chemical nature and microstructure of the alteration rim generated by the contact between concrete and bentonite. Its ability to buffer the surrounding chemical environment may have potential for further protection against RN migration. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Father's Labour Migration and Children's School Discontinuation in Rural Mozambique.

    PubMed

    Yabiku, Scott T; Agadjanian, Victor

    2017-08-01

    We examine how the discontinuation of schooling among left-behind children is related to multiple dimensions of male labor migration: the accumulation of migration experience, the timing of these migration experiences in the child's life course, and the economic success of the migration. Our setting is rural southern Mozambique, an impoverished area with massive male labor out-migration. Results show that fathers' economically successful labor migration is more beneficial for children's schooling than unsuccessful migration or non-migration. There are large differences, however, by gender: compared to sons of non-migrants, sons of migrant fathers (regardless of migration success) have lower rates of school discontinuation, while daughters of migrant fathers have rates of school discontinuation no different than daughters of non-migrants. Furthermore, accumulated labor migration across the child's life course is beneficial for boys' schooling, but not girls'. Remittances sent in the past year reduce the rate of discontinuation for sons, but not daughters.

  2. Quality control of positron emission tomography radiopharmaceuticals: An institutional experience.

    PubMed

    Shukla, Jaya; Vatsa, Rakhee; Garg, Nitasha; Bhusari, Priya; Watts, Ankit; Mittal, Bhagwant R

    2013-10-01

    To study quality control parameters of routinely prepared positron emission tomography (PET) radiopharmaceuticals. Three PET radiopharmaceuticals fluorine-18 fluorodeoxyglucose (F-18 FDG), N-13 ammonia (N-13 NH3), and Ga-68 DOTATATE (n = 25 each), prepared by standardized protocols were used. The radionuclide purity, radiochemical purity, residual solvents, pH, endotoxins, and sterility of these radiopharmaceuticals were determined. The physical half-life of radionuclide in radiopharmaceuticals, determined by both graphical and formula method, demonstrated purity of radionuclides used. pH of all PET radiopharmaceuticals used was in the range of 5-6.5. No microbial growth was observed in radiopharmaceutical preparations. The residual solvents, chemical impurity, and pyrogens were within the permissible limits. All three PET radiopharmaceuticals were safe for intravenous administration.

  3. Migration Experiences of Foreign Educated Nurses: A Systematic Review of the Literature.

    PubMed

    Moyce, Sally; Lash, Rebecca; de Leon Siantz, Mary Lou

    2016-03-01

    Global nurse migration has a recognized impact on host and source countries, but the lived experience of foreign educated nurses is an important aspect of the success of this migration. A systematic review of the literature was conducted to understand the lived migration and acculturation experiences of foreign educated nurses. A systematic review of the literature, based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, was conducted. Primary research articles or secondary analyses were selected based on keyword and citation-based searches (n = 44). Nurses' experiences included migration and licensing barriers, difficulty with communication, racism and discrimination, skill underutilization, acculturation, and the role of the family. Barriers encountered in host countries may impede acculturation and successful nursing practice, resulting in circular migration and poor patient safety outcomes. Social support systems and cultural orientation programs can mitigate the impacts of social isolation and racism. Addressing common barriers can help minimize deskilling and allow safe and effective transitions to host countries. © The Author(s) 2015.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Q; Zavarin, M; Rose, T P

    Laboratory batch sorption experiments were used to investigate variations in the retardation behavior of redox-sensitive radionuclides. Water-rock compositions used during these experiments were designed to simulate subsurface conditions at the Nevada Test Site (NTS), where a suite of radionuclides were deposited as a result of underground nuclear testing. Experimental redox conditions were controlled by varying the oxygen content inside an enclosed glove box and by adding reductants into the testing solutions. Under atmospheric (oxidizing) conditions, the radionuclide distribution coefficients varied with the mineralogical composition of the sorbent and the water chemistry. Under reducing conditions, distribution coefficients showed marked increases formore » {sup 99}Tc and {sup 237}Np in devitrified tuff, but much smaller variations in alluvium, carbonate rock, and zeolitic tuff. This effect was particularly important for {sup 99}Tc, which tends to be mobile under oxidizing conditions. Unlike other redox-sensitive radionuclides, iodine sorption may decrease under reducing conditions when I{sup -} is the predominant species. Overall, sorption of U to alluvium, devitrified tuff, and zeolitic tuff under atmospheric conditions was less than in the glove-box tests. However, the mildly reducing conditions achieved here were not likely to result in substantial U(VI) reduction to U(IV). Sorption of Pu was not affected by the decreasing redox conditions achieved in this study, as the predominant sorbed Pu species in all conditions was expected to be the low-solubility and strongly sorbing Pu(OH){sub 4}. Depending on the aquifer lithology, the occurrence of reducing conditions along a groundwater flowpath could potentially contribute to the retardation of redox-sensitive radionuclides {sup 99}Tc and {sup 237}Np, which are commonly identified as long-term dose contributors in the risk assessment in various nuclear facilities.« less

  5. Fukushima derived radiocesium in subsistence-consumed northern fur seal and wild celery

    DOE PAGES

    Ruedig, Elizabeth; Duncan, Colleen; Dickerson, Bobette; ...

    2015-11-28

    In July 2014, our investigative team traveled to St. Paul Island, Alaska to measure concentrations of radiocesium in wild-caught food products, primarily northern fur seal (Callorhinus ursinus). The 2011 Fukushima Daiichi Nuclear Power Plant accident released radiocesium into the atmosphere and into the western Pacific Ocean; other investigators have detected Fukushima-derived radionuclides in a variety of marine products harvested off the western coast of North America. We tested two subsistence-consumed food products from St. Paul Island, Alaska for Fukushima-derived radionuclides: 54 northern fur seal, and nine putchki (wild celery, Angelica lucida) plants. Individual northern fur seal samples were below minimummore » detectable activity concentrations of 137Cs and 134Cs, but when composited, northern fur seal tissues tested positive for trace quantities of both isotopes. Radiocesium was detected at an activity concentration of 37.2 mBq 134Cs kg -1 f.w. (95% CI: 35.9–38.5) and 141.2 mBq 137Cs kg -1f.w. (95% CI: 135.5–146.8). The measured isotopic ratio, decay-corrected to the date of harvest, was 0.26 (95% CI: 0.25–0.28). The Fukushima nuclear accident released 134Cs and 137Cs in roughly equal quantities, but by the date of harvest in July 2014, this ratio was 0.2774, indicating that this population of seals has been exposed to small quantities of Fukushima-derived radiocesium. Activity concentrations of both 134Cs and 137Cs in putchki were below detection limits, even for composited samples. Northern fur seal is known to migrate between coastal Alaska and Japan and the trace 134Cs in northern fur seal tissue suggests that the population under study had been minimally exposed Fukushima-derived radionuclides. Despite this inference, the radionuclide quantities detected are small and no impact is expected as a result of the measured radiation exposure, either in northern fur seal or human populations consuming this species.« less

  6. Fukushima derived radiocesium in subsistence-consumed northern fur seal and wild celery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruedig, Elizabeth; Duncan, Colleen; Dickerson, Bobette

    In July 2014, our investigative team traveled to St. Paul Island, Alaska to measure concentrations of radiocesium in wild-caught food products, primarily northern fur seal (Callorhinus ursinus). The 2011 Fukushima Daiichi Nuclear Power Plant accident released radiocesium into the atmosphere and into the western Pacific Ocean; other investigators have detected Fukushima-derived radionuclides in a variety of marine products harvested off the western coast of North America. We tested two subsistence-consumed food products from St. Paul Island, Alaska for Fukushima-derived radionuclides: 54 northern fur seal, and nine putchki (wild celery, Angelica lucida) plants. Individual northern fur seal samples were below minimummore » detectable activity concentrations of 137Cs and 134Cs, but when composited, northern fur seal tissues tested positive for trace quantities of both isotopes. Radiocesium was detected at an activity concentration of 37.2 mBq 134Cs kg -1 f.w. (95% CI: 35.9–38.5) and 141.2 mBq 137Cs kg -1f.w. (95% CI: 135.5–146.8). The measured isotopic ratio, decay-corrected to the date of harvest, was 0.26 (95% CI: 0.25–0.28). The Fukushima nuclear accident released 134Cs and 137Cs in roughly equal quantities, but by the date of harvest in July 2014, this ratio was 0.2774, indicating that this population of seals has been exposed to small quantities of Fukushima-derived radiocesium. Activity concentrations of both 134Cs and 137Cs in putchki were below detection limits, even for composited samples. Northern fur seal is known to migrate between coastal Alaska and Japan and the trace 134Cs in northern fur seal tissue suggests that the population under study had been minimally exposed Fukushima-derived radionuclides. Despite this inference, the radionuclide quantities detected are small and no impact is expected as a result of the measured radiation exposure, either in northern fur seal or human populations consuming this species.« less

  7. Fukushima derived radiocesium in subsistence-consumed northern fur seal and wild celery.

    PubMed

    Ruedig, Elizabeth; Duncan, Colleen; Dickerson, Bobette; Williams, Michael; Gelatt, Thomas; Bell, Justin; Johnson, Thomas E

    2016-02-01

    In July 2014, our investigative team traveled to St. Paul Island, Alaska to measure concentrations of radiocesium in wild-caught food products, primarily northern fur seal (Callorhinus ursinus). The 2011 Fukushima Daiichi Nuclear Power Plant accident released radiocesium into the atmosphere and into the western Pacific Ocean; other investigators have detected Fukushima-derived radionuclides in a variety of marine products harvested off the western coast of North America. We tested two subsistence-consumed food products from St. Paul Island, Alaska for Fukushima-derived radionuclides: 54 northern fur seal, and nine putchki (wild celery, Angelica lucida) plants. Individual northern fur seal samples were below minimum detectable activity concentrations of (137)Cs and (134)Cs, but when composited, northern fur seal tissues tested positive for trace quantities of both isotopes. Radiocesium was detected at an activity concentration of 37.2 mBq (134)Cs kg(-1) f.w. (95% CI: 35.9-38.5) and 141.2 mBq (137)Cs kg(-1) f.w. (95% CI: 135.5-146.8). The measured isotopic ratio, decay-corrected to the date of harvest, was 0.26 (95% CI: 0.25-0.28). The Fukushima nuclear accident released (134)Cs and (137)Cs in roughly equal quantities, but by the date of harvest in July 2014, this ratio was 0.2774, indicating that this population of seals has been exposed to small quantities of Fukushima-derived radiocesium. Activity concentrations of both (134)Cs and (137)Cs in putchki were below detection limits, even for composited samples. Northern fur seal is known to migrate between coastal Alaska and Japan and the trace (134)Cs in northern fur seal tissue suggests that the population under study had been minimally exposed Fukushima-derived radionuclides. Despite this inference, the radionuclide quantities detected are small and no impact is expected as a result of the measured radiation exposure, either in northern fur seal or human populations consuming this species. Published by Elsevier Ltd.

  8. Contaminated groundwater characterization at the Chalk River Laboratories, Ontario, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schilk, A.J.; Robertson, D.E.; Thomas, C.W.

    1993-03-01

    The licensing requirements for the disposal of low-level radioactive waste (10 CFR 61) specify the performance objectives and technical requisites for federal and commercial land disposal facilities, the ultimate goal of which is to contain the buried wastes so that the general population is adequately protected from harmful exposure to any released radioactive materials. A major concern in the operation of existing and projected waste disposal sites is subterranean radionuclide transport by saturated or unsaturated flow, which could lead to the contamination of groundwater systems as well as uptake by the surrounding biosphere, thereby directly exposing the general public tomore » such materials. Radionuclide transport in groundwater has been observed at numerous commercial and federal waste disposal sites [including several locations within the waste management area of Chalk River Laboratories (CRL)], yet the physico-chemical processes that lead to such migration are still not completely understood. In an attempt to assist in the characterization of these processes, an intensive study was initiated at CRL to identify and quantify the mobile radionuclide species originating from three separate disposal sites: (a) the Chemical Pit, which has received aqueous wastes containing various radioisotopes, acids, alkalis, complexing agents and salts since 1956, (b) the Reactor Pit, which has received low-level aqueous wastes from a reactor rod storage bay since 1956, and (c) the Waste Management Area C, a thirty-year-old series of trenches that contains contaminated solid wastes from CRL and various regional medical facilities. Water samples were drawn downgradient from each of the above sites and passed through a series of filters and ion-exchange resins to retain any particulate and dissolved or colloidal radionuclide species, which were subsequently identified and quantified via radiochemical separations and gamma spectroscopy. These groundwaters were also analyzed for anions, trace metals, Eh, pH, alkalinity and dissolved oxygen.« less

  9. Visualization of Macrophage Recruitment to Inflammation Lesions using Highly Sensitive and Stable Radionuclide-Embedded Gold Nanoparticles as a Nuclear Bio-Imaging Platform

    PubMed Central

    Lee, Sang Bong; Lee, Ho Won; Singh, Thoudam Debraj; Li, Yinghua; Kim, Sang Kyoon; Cho, Sung Jin; Lee, Sang-Woo; Jeong, Shin Young; Ahn, Byeong-Cheol; Choi, Sangil; Lee, In-Kyu; Lim, Dong-Kwon; Lee, Jaetae; Jeon, Yong Hyun

    2017-01-01

    Reliable and sensitive imaging tools are required to track macrophage migration and provide a better understating of their biological roles in various diseases. Here, we demonstrate the possibility of radioactive iodide-embedded gold nanoparticles (RIe-AuNPs) as a cell tracker for nuclear medicine imaging. To demonstrate this utility, we monitored macrophage migration to carrageenan-induced sites of acute inflammation in living subjects and visualized the effects of anti-inflammatory agents on this process. Macrophage labeling with RIe-AuNPs did not alter their biological functions such as cell proliferation, phenotype marker expression, or phagocytic activity. In vivo imaging with positron-emission tomography revealed the migration of labeled macrophages to carrageenan-induced inflammation lesions 3 h after transfer, with highest recruitment at 6 h and a slight decline of radioactive signal at 24 h; these findings were highly consistent with the data of a bio-distribution study. Treatment with dexamethasone (an anti-inflammation drug) or GSK5182 (an ERRγ inverse agonist) hindered macrophage recruitment to the inflamed sites. Our findings suggest that a cell tracking strategy utilizing RIe-AuNPs will likely be highly useful in research related to macrophage-related disease and cell-based therapies. PMID:28382164

  10. Biotesting of radioactively contaminated forest soils using barley-based bioassay

    NASA Astrophysics Data System (ADS)

    Mel'nikova, T. V.; Polyakova, L. P.; Oudalova, A. A.

    2017-01-01

    Findings from radioactivity and phytotoxicity study are presented for soils from nine study-sites of the Klintsovsky Forestry located in the Bryansk region that were radioactively contaminated after the Chernobyl accident. According to the bioassay based on barley as test-species, stimulating effect of the soils analyzed is revealed for biological indexes of the length of barley roots and sprouts. From data on 137Cs specific activities in soils and plant biomass, the migration potential of radionuclide in the "soil-plant" system is assessed as a transfer factor. With correlation analysis, an impact of 137Cs in soil on the biological characteristics of barley is estimated.

  11. Physical Phenomena in Containerless Glass Processing

    NASA Technical Reports Server (NTRS)

    Subramanian, R. S.; Cole, R.

    1985-01-01

    An investigation into the various physical phenomena of importance in the space experiments is under way. Theoretical models of thermocapillary flow in drops, thermal migration of bubbles and droplets, the motion of bubbles inside drops, and the migration of bubbles in rotating liquid bodies are being developed. Experiments were conducted on the migration of bubbles and droplets to the axis of a rotating liquid body, and the rise of bubbles in molten glass. Also, experiments on thermocapillary motion in silicone oils as well as glass melts were performed. Experiments are currently being conducted on the migration of bubbles in a thermal gradient, and on their motion inside unconstrained liquid drops in a rotating liquid.

  12. Engineering refinements to overcome default nuclide regulatory constraints

    NASA Astrophysics Data System (ADS)

    Finn, R.; Capitelli, P.; Sheh, Y.; Lom, C.; Graham, M.; Germain, J. St.

    2005-12-01

    The "classical" positron emitting radionuclides include oxygen-15, nitrogen-13 and carbon-11 which possess unique properties for medical imaging. They are radionuclides of the fundamental elements of biological matter. They each possess short half-lives which allow their use in designed radiotracers for clinical investigations with minimal risk and they are readily able to be produced in sufficient activities by low energy nuclear reactions. At present several accelerator manufacturers offer production packages for these radionuclides emphasizing targetry with consideration of the cyclotron extracted energies for nuclide production and on-line chemistry systems for the continuous production of specific precursors or radiotracers. Following the installation and acceptance of the MSKCC TR 19/9 Cyclotron, our experience with the procured chemistry module for the preparation of oxygen-15 labeled water has forced us to examine the design and the operation of the synthetic unit with a view toward the state of New York's regulations addressing the environmental pollution from radioactive materials. The chemistry module was refined with subtle modifications to the chemistry procedure/unit and our experience with the unit is presented as an example of our approach to insure regulatory compliance.

  13. Romanian Experience in The Conditioning of Radium Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dogaru, Gh.; Dragolici, F.; Rotarescu, Gh.

    2008-07-01

    Ra{sup 226} first radionuclide separated from pitchblende in 1898 by Pierre and Marie Curie was successfully used in medicine, industry as in other fields being the only one available radionuclide till 1940 when were produced other radionuclides in accelerators. On long term the use of Ra{sup 226} sealed sources are not any more safe due to: the high specific activity, long half live, decays in Rn{sup 226} gas which increases the internal pressure of capsule leading in time to the leakage, the salts as raw materials from which the sealed sources are manufactured are soluble, there is a leak ofmore » information and records on the manufacture and operation. Based on this consideration in Romania regulatory authority did not authorized any more the use of these sealed sources [1]. The paper presents some aspects from Romanian experience related to the collection and conditioning of radium sealed sources. Data relating the radium inventory as well as the arrangements made in order to create a workshop for the conditioning of radium sources are presented. (authors)« less

  14. Motorized Migrations: the Future or Mere Fantasy?

    USGS Publications Warehouse

    Ellis, D.H.; Sladen, William J. L.; Lishman, W.A.; Clegg, K.R.; Duff, J.W.; Gee, G.F.; Lewis, J.C.

    2003-01-01

    In 15 experiments from 1993-2002, we led cranes, geese, or swans on their first southward migration with either ultralight aircraft or vehicles on the ground. These experiments reveal that large birds can be readily trained to follow and most will return north (and south) in subsequent migrations unassisted. These techniques can now be used to teach birds new (or forgotten) migration paths. Although we are constantly improving our training techniques, we now have an operational program that can be broadly applied to those species where juveniles learn migration routes from their parents.

  15. Stories of Identity: Religion, Migration, and Belonging in a Changing World

    ERIC Educational Resources Information Center

    Facing History and Ourselves, 2008

    2008-01-01

    This resource book reflects the way that migration affects personal identity and offers educators and students the resources to examine this migration through methods of storytelling. It reveals experiences of immigrants from the individual to the collective through memoirs, journalistic accounts, and interviews. These experiences reflect a recent…

  16. Children Moving "Home"? Everyday Experiences of Return Migration in Highly Skilled Households

    ERIC Educational Resources Information Center

    Hatfield, Madeleine E.

    2010-01-01

    Through its focus on children and return migration, this article addresses two invisibilities within migration research. It presents the experiences of children as equal movers in returning households, drawing on research with them in their domestic spaces. Exploring how children negotiate coming "home" and highlighting their experiences…

  17. Radionuclide concentrations in underground waters of Mururoa and Fangataufa Atolls.

    PubMed

    Mulsow, S; Coquery, M; Dovlete, C; Gastaud, J; Ikeuchi, Y; Pham, M K; Povinec, P P

    1999-09-30

    In 1997 an expedition to Mururoa and Fangataufa Atolls was carried out to sample underground waters from cavity-chimneys and carbonate monitoring wells. The aim of this study was to determine the prevailing concentration and distribution status of radionuclides. Elemental analysis of interstitial waters was carried out in the water fraction as well as in particles collected at 11 underground monitoring wells. 238Pu, 239,240Pu, 241Am, 137Cs, 90Sr, 3H, 125Sb, 155Eu and 60Co were analyzed in both fractions by alpha-, beta- and gamma-spectrometry. Measurements showed that at 60% of the sites, pH and Eh seemed to be related to tidal cycles; in contrast HTO was constant during the sampling time. Interstitial waters from carbonates and transition zones shared similar chemical composition that were not different from that of the surrounding seawater. Waters collected from basalt cavities left after nuclear tests, (Aristee and Ceto) have a different chemical signature characterized by a deficiency in Mg, K and SO4 as well as enrichment in Sr, Si, Al and Cl compared to the rest of the stations. Radionuclide concentrations present in both, water and particulate fractions, were significantly higher at Ceto and Aristee than at any other monitoring wells, except for Fuseau and Mitre monitoring wells (Fangataufa) where values similar to Ceto were found (e.g. 239,240Pu: > 20 mBq g-1). Considering that Pu isotopes showed high Kd values compared to non-sorbing radionuclides such as 3H, 90Sr and 137Cs it is very unlikely that migration from cavities to monitoring wells accounts for the concentration of Pu isotopes and Am at Fuseau 30 and Mitre 27. Perhaps the contact of lagoon waters with the well before sealing could be a possible source of the transuranics found at these sites. The 238Pu/239,240Pu ratios measured in the particles were similar to that of the lagoon (0.38), thus supporting this hypothesis. The fact that transuranics were found only in the particle fraction, in the water (colloids included) these radionuclides were below detection limits, may be accounted for the conspicuous quantity of iron oxy-hydroxides present in the particulate fraction that under the appropriate redox conditions may be interacting selectively with elements in solution (scavenging) resulting in the enhanced transuranic signal. While transuranics have been found in places of their origin, radionuclides with low Kd values (3H, 90Sr, 137Cs) have already been transported to monitoring wells, as well as to the atolls' lagoons and the open ocean.

  18. Specificity of Cs-137 redistribution in toposequence of arable soils cultivated after the Chernobyl accident

    NASA Astrophysics Data System (ADS)

    Korobova, Elena; Romanov, Sergey; Baranchukov, Vladimir; Berezkin, Victor; Moiseenko, Fedor; Kirov, Sergey

    2017-04-01

    Investigations performed after the Chernobyl accident showed high spatial variation of radionuclide contamination of the soil cover in elementary landscape geochemical systems (ELGS) that characterize catena's structure. Our studies of Cs-137 distribution along and cross the slopes of local ridges in natural forested key site revealed a cyclic character of variation of the radionuclide surface activity along the studied transections (Korobova et al, 2008; Korobova, Romanov, 2009; 2011). We hypothesized that the observed pattern reflects a specific secondary migration of Cs-137 with water, and that this process could have taken place in any ELGS. To test this hypothesis a detailed field measurement of Cs-137 surface activity was performed in ELGS in agricultural area cultivated after the Chernobyl accident but later withdrawn from land-use. In situ measurements carried out by field gamma-spectrometry were accompanied by soil core sampling at the selected points. Soil samples were taken in increments of 2 cm down to 20 cm and of 5 cm down to 40 cm. The samples were analyzed for Cs-137 in laboratory using Canberra gamma-spectrometer with HP-Ge detector. Obtained results confirmed the fact of area cultivation down to 20 cm that was clearly traced by Cs-137 profile in soil columns. At the same time, the measurements also showed a cyclic character of Cs-137 variation in a sequence of ELGS from watershed to the local depression similar to that found in woodland key site. This proved that the observed pattern is a natural process typical for matter migration in ELGS independently of the vegetation type and ploughing. Therefore, spatial aspect is believed to be an important issue for development of adequate technique for a forecast of contamination of agricultural production and remediation of the soil cover on the local scale within the contaminated areas. References Korobova, E.M., Romanov, S.L., 2009. A Chernobyl 137Cs contamination study as an example for the spatial structure of geochemical fields and modeling of the geochemical field //Chemometrics and Intelligent Laboratory Systems, 99, 1-8. Korobova, E., Romanov S., 2011. Experience of mapping spatial structure of Cs-137 in natural landscape and patterns of its distribution in soil toposequence // Journal of Geochemical Exploration, 109, 1-3, 139-145. Korobova Elena, Sergey Romanov, Vladimir Samsonov, Fedor Moiseenko, 2008. Peculiarities of spatial structure of 137Cs contamination field in landscape toposequence: regularities in geo-field structure. Proceedings of the International Conference on Radioecology and Environmental Radioactivity, 15-20 June 2008, Bergen, Norway, Part 2, 182-186.

  19. Validation of a physically based catchment model for application in post-closure radiological safety assessments of deep geological repositories for solid radioactive wastes.

    PubMed

    Thorne, M C; Degnan, P; Ewen, J; Parkin, G

    2000-12-01

    The physically based river catchment modelling system SHETRAN incorporates components representing water flow, sediment transport and radionuclide transport both in solution and bound to sediments. The system has been applied to simulate hypothetical future catchments in the context of post-closure radiological safety assessments of a potential site for a deep geological disposal facility for intermediate and certain low-level radioactive wastes at Sellafield, west Cumbria. In order to have confidence in the application of SHETRAN for this purpose, various blind validation studies have been undertaken. In earlier studies, the validation was undertaken against uncertainty bounds in model output predictions set by the modelling team on the basis of how well they expected the model to perform. However, validation can also be carried out with bounds set on the basis of how well the model is required to perform in order to constitute a useful assessment tool. Herein, such an assessment-based validation exercise is reported. This exercise related to a field plot experiment conducted at Calder Hollow, west Cumbria, in which the migration of strontium and lanthanum in subsurface Quaternary deposits was studied on a length scale of a few metres. Blind predictions of tracer migration were compared with experimental results using bounds set by a small group of assessment experts independent of the modelling team. Overall, the SHETRAN system performed well, failing only two out of seven of the imposed tests. Furthermore, of the five tests that were not failed, three were positively passed even when a pessimistic view was taken as to how measurement errors should be taken into account. It is concluded that the SHETRAN system, which is still being developed further, is a powerful tool for application in post-closure radiological safety assessments.

  20. Scatter and crosstalk corrections for {sup 99m}Tc/{sup 123}I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Peng; Hutton, Brian F.; Holstensson, Maria

    2015-12-15

    Purpose: The energy spectrum for a cadmium zinc telluride (CZT) detector has a low energy tail due to incomplete charge collection and intercrystal scattering. Due to these solid-state detector effects, scatter would be overestimated if the conventional triple-energy window (TEW) method is used for scatter and crosstalk corrections in CZT-based imaging systems. The objective of this work is to develop a scatter and crosstalk correction method for {sup 99m}Tc/{sup 123}I dual-radionuclide imaging for a CZT-based dedicated cardiac SPECT system with pinhole collimators (GE Discovery NM 530c/570c). Methods: A tailing model was developed to account for the low energy tail effectsmore » of the CZT detector. The parameters of the model were obtained using {sup 99m}Tc and {sup 123}I point source measurements. A scatter model was defined to characterize the relationship between down-scatter and self-scatter projections. The parameters for this model were obtained from Monte Carlo simulation using SIMIND. The tailing and scatter models were further incorporated into a projection count model, and the primary and self-scatter projections of each radionuclide were determined with a maximum likelihood expectation maximization (MLEM) iterative estimation approach. The extracted scatter and crosstalk projections were then incorporated into MLEM image reconstruction as an additive term in forward projection to obtain scatter- and crosstalk-corrected images. The proposed method was validated using Monte Carlo simulation, line source experiment, anthropomorphic torso phantom studies, and patient studies. The performance of the proposed method was also compared to that obtained with the conventional TEW method. Results: Monte Carlo simulations and line source experiment demonstrated that the TEW method overestimated scatter while their proposed method provided more accurate scatter estimation by considering the low energy tail effect. In the phantom study, improved defect contrasts were observed with both correction methods compared to no correction, especially for the images of {sup 99m}Tc in dual-radionuclide imaging where there is heavy contamination from {sup 123}I. In this case, the nontransmural defect contrast was improved from 0.39 to 0.47 with the TEW method and to 0.51 with their proposed method and the transmural defect contrast was improved from 0.62 to 0.74 with the TEW method and to 0.73 with their proposed method. In the patient study, the proposed method provided higher myocardium-to-blood pool contrast than that of the TEW method. Similar to the phantom experiment, the improvement was the most substantial for the images of {sup 99m}Tc in dual-radionuclide imaging. In this case, the myocardium-to-blood pool ratio was improved from 7.0 to 38.3 with the TEW method and to 63.6 with their proposed method. Compared to the TEW method, the proposed method also provided higher count levels in the reconstructed images in both phantom and patient studies, indicating reduced overestimation of scatter. Using the proposed method, consistent reconstruction results were obtained for both single-radionuclide data with scatter correction and dual-radionuclide data with scatter and crosstalk corrections, in both phantom and human studies. Conclusions: The authors demonstrate that the TEW method leads to overestimation in scatter and crosstalk for the CZT-based imaging system while the proposed scatter and crosstalk correction method can provide more accurate self-scatter and down-scatter estimations for quantitative single-radionuclide and dual-radionuclide imaging.« less

  1. Speciation of uranium in surface-modified, hydrothermally treated, (UO{sub 2}){sup 2+}-exchanged smectite clays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giaquinta, D.M.; Soderholm, L.; Yuchs, S.E.

    1997-08-01

    A successful solution to the problem of disposal and permanent storage of water soluble radioactive species must address two issues: exclusion of the radionuclides from the environment and the prevention of leaching from the storage media into the environment. Immobilization of radionuclides in clay minerals has been studied. In addition to the use of clays as potential waste forms, information about the interactions of radionuclides with clays and how such interactions affect their speciations is crucial for successful modeling of actinide-migration. X-ray absorption spectroscopy (XAS) is used to determine the uranium speciation in exchanged and surface-modified clays. The XAS datamore » from uranyl-loaded bentonite clay are compared with those obtained after the particle surfaces have been coated with alkylsilanes. These silane films, which render the surface of the clay hydrophobic, are added in order to minimize the ability of external water to exchange with the water in the clay interlayer, thereby decreasing the release rate of the exchanged-uranium species. Mild hydrothermal conditions are used in an effort to mimic potential geologic conditions that may occur during long-term radioactive waste storage. The XAS spectra indicate that the uranyl monomer species remain unchanged in most samples, except in those samples that were both coated with an alkylsilane and hydrothermally treated. When the clay was coated with an organic film, formed by the acidic deposition of octadecyltrimethoxysilane, hydrothermal treatment results in the formation of aggregated uranium species in which the uranium is reduced from U{sup VI} to U{sup IV}.« less

  2. Analysis of a nuclear accident: fission and activation product releases from the Fukushima Daiichi nuclear facility as remote indicators of source identification, extent of release, and state of damaged spent nuclear fuel.

    PubMed

    Schwantes, Jon M; Orton, Christopher R; Clark, Richard A

    2012-08-21

    Researchers evaluated radionuclide measurements of environmental samples taken from the Fukushima Daiichi nuclear facility and reported on the Tokyo Electric Power Co. Website following the 2011 tsunami-initiated catastrophe. This effort identified Units 1 and 3 as the major source of radioactive contamination to the surface soil near the facility. Radionuclide trends identified in the soils suggested that: (1) chemical volatility driven by temperature and reduction potential within the vented reactors' primary containment vessels dictated the extent of release of radiation; (2) all coolant had likely evaporated by the time of venting; and (3) physical migration through the fuel matrix and across the cladding wall were minimally effective at containing volatile species, suggesting damage to fuel bundles was extensive. Plutonium isotopic ratios and their distance from the source indicated that the damaged reactors were the major contributor of plutonium to surface soil at the source, decreasing rapidly with distance from the facility. Two independent evaluations estimated the fraction of the total plutonium inventory released to the environment relative to cesium from venting Units 1 and 3 to be ∼0.002-0.004%. This study suggests significant volatile radionuclides within the spent fuel at the time of venting, but not as yet observed and reported within environmental samples, as potential analytes of concern for future environmental surveys around the site. The majority of the reactor inventories of isotopes of less volatile elements like Pu, Nb, and Sr were likely contained within the damaged reactors during venting.

  3. Imaging, Mapping and Monitoring Environmental Radionuclide Transport Using Compton-Geometry Gamma Camera

    NASA Astrophysics Data System (ADS)

    Bridge, J. W.; Dormand, J.; Cooper, J.; Judson, D.; Boston, A. J.; Bankhead, M.; Onda, Y.

    2014-12-01

    The legacy to-date of the nuclear disaster at Fukushima Dai-ichi, Japan, has emphasised the fundamental importance of high quality radiation measurements in soils and plant systems. Current-generation radiometers based on coded-aperture collimation are limited in their ability to locate sources of radiation in three dimensions, and require a relatively long measurement time due to the poor efficiency of the collimation system. The quality of data they can provide to support biogeochemical process models in such systems is therefore often compromised. In this work we report proof-of-concept experiments demonstrating the potential of an alternative approach in the measurement of environmentally-important radionuclides (in particular 137Cs) in quartz sand and soils from the Fukushima exclusion zone. Compton-geometry imaging radiometers harness the scattering of incident radiation between two detectors to yield significant improvements in detection efficiency, energy resolution and spatial location of radioactive sources in a 180° field of view. To our knowledge we are reporting its first application to environmentally-relevant systems at low activity, dispersed sources, with significant background radiation and, crucially, movement over time. We are using a simple laboratory column setup to conduct one-dimensional transport experiments for 139Ce and 137Cs in quartz sand and in homogenized repacked Fukushima soils. Polypropylene columns 15 cm length with internal diameter 1.6 cm were filled with sand or soil and saturated slowly with tracer-free aqueous solutions. Radionuclides were introduced as 2mL pulses (step-up step-down) at the column inlet. Data were collected continuously throughout the transport experiment and then binned into sequential time intervals to resolve the total activity in the column and its progressive movement through the sand/soil. The objective of this proof-of-concept work is to establish detection limits, optimise image reconstruction algorithms, and develop a novel approach to time-lapse quantification of radionuclide dynamics in the soil-plant system. The aim is to underpin the development of a new generation of Compton radiometers equipped to provide high resolution, dynamic measurements of radionuclides in terrestrial biogeochemical environments.

  4. Potential for microbial H2 and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments.

    PubMed

    Hernsdorf, Alex W; Amano, Yuki; Miyakawa, Kazuya; Ise, Kotaro; Suzuki, Yohey; Anantharaman, Karthik; Probst, Alexander; Burstein, David; Thomas, Brian C; Banfield, Jillian F

    2017-08-01

    Geological sequestration in deep underground repositories is the prevailing proposed route for radioactive waste disposal. After the disposal of radioactive waste in the subsurface, H 2 may be produced by corrosion of steel and, ultimately, radionuclides will be exposed to the surrounding environment. To evaluate the potential for microbial activities to impact disposal systems, we explored the microbial community structure and metabolic functions of a sediment-hosted ecosystem at the Horonobe Underground Research Laboratory, Hokkaido, Japan. Overall, we found that the ecosystem hosted organisms from diverse lineages, including many from the phyla that lack isolated representatives. The majority of organisms can metabolize H 2 , often via oxidative [NiFe] hydrogenases or electron-bifurcating [FeFe] hydrogenases that enable ferredoxin-based pathways, including the ion motive Rnf complex. Many organisms implicated in H 2 metabolism are also predicted to catalyze carbon, nitrogen, iron and sulfur transformations. Notably, iron-based metabolism is predicted in a novel lineage of Actinobacteria and in a putative methane-oxidizing ANME-2d archaeon. We infer an ecological model that links microorganisms to sediment-derived resources and predict potential impacts of microbial activity on H 2 consumption and retardation of radionuclide migration.

  5. Organic matter and containment of uranium and fissiogenic isotopes at the Oklo natural reactors

    USGS Publications Warehouse

    Nagy, B.; Gauthier-Lafaye, F.; Holliger, P.; Davis, D.W.; Mossman, D.J.; Leventhal, J.S.; Rigali, M.J.; Parnell, J.

    1991-01-01

    SOME of the Precambrian natural fission reactors at Oklo in Gabon contain abundant organic matter1,2, part of which was liquefied at the time of criticality and subsequently converted to a graphitic solid3,4. The liquid organic matter helps to reduce U(VI) to U(IV) from aqueous solutions, resulting in the precipitation of uraninite5. It is known that in the prevailing reactor environments, precipitated uraninite grains incorporated fission products. We report here observations which show that these uraninite crystals were held immobile within the resolidified, graphitic bitumen. Unlike water-soluble (humic) organic matter, the graphitic bituminous organics at Oklo thus enhanced radionu-clide containment. Uraninite encased in solid graphitic matter in the organic-rich reactor zones lost virtually no fissiogenic lan-thanide isotopes. The first major episode of uranium and lead migration was caused by the intrusion of a swarm of adjacent dolerite dykes about 1,100 Myr after the reactors went critical. Our results from Oklo imply that the use of organic, hydrophobic solids such as graphitic bitumen as a means of immobilizing radionuclides in pretreated nuclear waste warrants further investigation. ?? 1991 Nature Publishing Group.

  6. Experiments shed new light on nickel-fluorine reactions

    NASA Technical Reports Server (NTRS)

    Fischer, J.; Gunther, W.; Jarry, R. L.

    1967-01-01

    Isotopic tracer experiments and scale-impingement experiments show fluorine to be the migrating species through the nickel fluoride scale formed during the fluorination of nickel. This is in contrast to nickel oxide scales, where nickel is the migrating species.

  7. Japanese Migration and the Americas: An Introduction to the Study of Migration.

    ERIC Educational Resources Information Center

    Mukai, Gary; Brunette, Rachel

    This curriculum module introduces students to the study of migration, including a brief overview of some categories of migration and reasons why people migrate. As a case study, the module uses the Japanese migration experience in the United States, Peru, Brazil, Canada, Mexico, Argentina, Bolivia, and Paraguay. The module introduces students to…

  8. The case of Asian migrants to the Gulf Region.

    PubMed

    Pongsapich, A

    1989-06-01

    International migration from Asia to the Gulf Region is desirable and has benefited both individuals and the countries. At the individual level, migrants benefit economically and socially. They earn more income and are able to improve the quality of life of their family members when they return home. Although there are cases of negative impacts of international migration, such as fraud and corruption, as well as broken homes and extravagance, in general most migrants benefit and the experiences are worthwhile. Available data indicate that there are occupational shifts, a change in attitude towards community life, the world situation, and attainment of goals. At the national level, international migration has brought in foreign exchange and helped reduce unemployment. In addition to facilitating and making the pre-migration phase as easy as possible, activities of government during migration and post-migration phases are also required if the government is truly to promote international migration. Establishment of the post of Labor Attache in embassies will support migrants while they work abroad by providing services and moral support, thus making adjustment in host countries easier. Upon returning home, the government can provide consulting services to returnees on investment possibilities and may be able to tap resources form returnees for overall development. Granted that returnees are ordinary people with not much savings, remittances in foreign currency sent home have reduced financial difficulties in the home country. International migration is seen by the author as a rite-of-passage. This is an activity or an educational experience which happens once or twice in a lifetime and is not repeated. There must be a revolving system where young people migrate to work, gain experience, earn extra income, and return to settle down, bringing with them the benefits gained while working abroad. Data collected from this study show negative social impacts, especially when migration covers a long period in one's lifetime. In promoting international migration, the government therefore has to help returnees settle down and treat international migration as an educational experience.

  9. 1993-94-95 Kara sea field experiments and analysis. 1995 progress report to onr Arctic Nuclear Waste Assessment Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, G.W.; August, R.A.; King, S.E.

    1996-01-14

    This progress report covers field work and laboratory analysis efforts for quantifying the environmental threat of radioactive waste released in the Arctic seas adjacent to the former Soviet Union and for studying the various transport mechanisms by which this radioactivity could effect populations of the U.S. and other countries bordering the Arctic. We obtained water, sediment, biological samples and oceanographic data from several cruises to the Kara Sea and adjacent waters and conducted detailed laboratory analyses of the samples for radionuclides and physical biological properties. In addition, we obtained water and sediment samples and conducted on site low level radionuclidemore » analysis on the Angara, Yenisey River system which drains a major part of the Siberian industrial heartland and empties into the Kara Sea. We report on radionuclide concentrations, on radionuclide transport and scrubbing by sediments, on adsorption by suspended particles, on transport by surface and benthic boundary layer currents, on the effects of benthic and demersal organisms, on studies of long term monitoring in the Arctic, and on an interlaboratory calibration for radionuclide analysis.« less

  10. An Enhanced Monitoring Network at the Central Nevada Test Area (CNTA) Work performed under U.S. Department of Energy Office of Legacy Management contract #DE-AM01-07LM00060

    NASA Astrophysics Data System (ADS)

    Hodges, R.; Findlay, R.; Kautsky, M.

    2009-12-01

    On January 19, 1968 the Atomic Energy Commission detonated a 200-1000 kt nuclear device at a depth of 975 meters at CNTA, approximately 100 miles north of the Nevada Test Site. Details of the detonation remain classified, including the specific yield and the size of the resultant cavity. Therefore, using the rough, generic relationships between yield and cavity size, yield and depth of burial, and cancelling out yield, leads to an estimated cavity radius of 100 meters for this detonation in the volcanic section. A collapse chimney subsequently formed that extended several hundred meters above the detonation into the overlying alluvium. The detonation reactivated several faults at the site and created a 2 km2 graben at the surface. The radionuclides in the detonation zone are a potential source of groundwater contamination. The most permeable unit near the detonation zone through which transport might occur is believed to be a densely welded tuff unit (DWT) below the detonation level. A three-well monitoring network was designed using a numerical model, and data were collected from the wells for comparison with model predictions. The head data from the wells were not in agreement with those predicted by the model, and the model was not validated. In a positive finding for radionuclide containment, aquifer test results from the new wells indicate that the DWT is less permeable than previously expected and suggest that the contaminant boundary developed from the model is likely conservative for predicting transport within the volcanic section. The overlying alluvial aquifer is not believed to be a migration pathway for significant quantities of radionuclides, though it is the most likely pathway to potential receptors in that it is the primary groundwater source in the area. To enhance the CNTA monitoring network, two new alluvial wells were installed in 2009, downgradient (east-southeast and south-southeast) of the detonation. The dual-completion alluvial wells were designed to not only monitor for radionuclides but also to determine if a southeast-bounding graben fault acts as a flow barrier. A seismic survey was conducted to optimally locate the wells with respect to the fault. The survey imaged the water table and showed offsets of the water table reflector at numerous faults; some of the faults were known and others had not been previously recognized. Water levels from the new alluvial wells and piezometers compare well with existing well data and support the conjecture that the southeast-bounding graben fault is a flow barrier. Over the last five years, a monitoring network at CNTA has been developed that monitors both the most likely migration pathway and the most likely pathway to potential receptors. The site investigation processes discussed here have also identified factors that affect groundwater flow at the site, and the methods employed can be used in similar hydrogeologic environments.

  11. Scenario for the safety assessment of near surface radioactive waste disposal in Serpong, Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purnomo, A.S.

    2007-07-01

    Near surface disposal has been practiced for some decades, with a wide variation in sites, types and amounts of wastes, and facility designs employed. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components or barriers: the site, the disposal facility and the waste form. The objective of radioactive waste disposal is to isolate waste so that it does not result in undue radiation exposure to humans and the environment. In near surface disposal, the disposal facility is located on or below themore » ground surface, where the protective covering is generally a few meters thick. These facilities are intended to contain low and intermediate level waste without appreciable quantities of long-lived radionuclides. Safety is the most important aspect in the applications of nuclear technology and the implementation of nuclear activities in Indonesia. This aspect is reflected by a statement in the Act Number 10 Year 1997, that 'The Development and use of nuclear energy in Indonesia has to be carried out in such away to assure the safety and health of workers, the public and the protection of the environment'. Serpong are one of the sites for a nuclear research center facility, it is the biggest one in Indonesia. In the future will be developed the first near surface disposal on site of the nuclear research facility in Serpong. The paper will mainly focus on scenario of the safety assessments of near-surface radioactive waste disposal is often important to evaluate the performance of the disposal system (disposal facility, geosphere and biosphere). It will give detail, how at the present and future conditions, including anticipated and less probable events in order to prevent radionuclide migration to human and environment. Refer to the geology characteristic and ground water table is enable to place something Near Surface Disposal on unsaturated zone in Serpong site. (authors)« less

  12. Effects of post-migration factors on PTSD outcomes among immigrant survivors of political violence.

    PubMed

    Chu, Tracy; Keller, Allen S; Rasmussen, Andrew

    2013-10-01

    This study examined the predictors of posttraumatic stress disorder (PTSD) in a clinical sample of 875 immigrant survivors of political violence resettled in the United States, with a specific aim of comparing the relative predictive power of pre-migration and post-migration experiences. Results from a hierarchical OLS regression indicated that pre-migration experiences such as rape/sexual assault were significantly associated with worse PTSD outcomes, as were post-migration factors such as measures of financial and legal insecurity. Post-migration variables, which included immigration status in the US, explained significantly more variance in PTSD outcomes than premigration variables alone. Discussion focused on the importance of looking at postmigration living conditions when treating trauma in this population.

  13. Use of radon and cosmogenic radionuclides as indicators of exchange between troposphere and stratosphere

    NASA Technical Reports Server (NTRS)

    Kritz, Mark A.

    1994-01-01

    This research grant covered participation in the operational phase of NASA's Stratosphere-Troposphere Exchange Project (STEP), a multi-agency airborne science program conducted aboard NASA U-2 and ER-2 high altitude research aircraft. The primary goals of STEP were to investigate the mechanisms of irreversible movement of mass, trace gases, and aerosols from the troposphere into the stratosphere, and to explain the observed dryness of the stratosphere. Three flight experiments were conducted to address these questions: two extratropical experiments, in 1984 and 1986, and a tropical experiment, in 1987. The cosmogenic radionuclides Be-7 and P-32, produced in the stratosphere by cosmic rays, and Rn-222 (radon), emitted from continental soils, were well-suited as tracers of intra-stratospheric air mass movements, and to follow episodes of troposphere to stratosphere exchange. Measurements of Be-7 and P-32 were made in all three STEP experiments. Measurements of radon were made in the tropical experiment only. The equipment worked well, and produced a valuable data set in support of the STEP objectives, as indicated by the 'quick-look' results outlined.

  14. Measurements and calculations of air activation in the NuMI neutrino production facility at Fermilab with the 120-GeV proton beam on target

    NASA Astrophysics Data System (ADS)

    Rakhno, I. L.; Hylen, J.; Kasper, P.; Mokhov, N. V.; Quinn, M.; Striganov, S. I.; Vaziri, K.

    2018-01-01

    Measurements and calculations of the air activation at a high-energy proton accelerator are described. The quantity of radionuclides released outdoors depends on operation scenarios including details of the air exchange inside the facility. To improve the prediction of the air activation levels, the MARS15 Monte Carlo code radionuclide production model was modified to be used for these studies. Measurements were done to benchmark the new model and verify its use in optimization studies for the new DUNE experiment at the Long Baseline Neutrino Facility (LBNF) at Fermilab. The measured production rates for the most important radionuclides - 11C, 13N, 15O and 41Ar - are in a good agreement with those calculated with the improved MARS15 code.

  15. Sensitivity improvement of Cerenkov luminescence endoscope with terbium doped Gd{sub 2}O{sub 2}S nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Xin; Chen, Xueli, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn; Cao, Xu

    2015-05-25

    Our previous study showed a great attenuation for the Cerenkov luminescence endoscope (CLE), resulting in relatively low detection sensitivity of radiotracers. Here, a kind of radioluminescence nanoparticles (RLNPs), terbium doped Gd{sub 2}O{sub 2}S was mixed with the radionuclide {sup 68}Ga to enhance the intensity of emitted luminescence, which finally improved the detection sensitivity of the CLE by using the radioluminescence imaging technique. With the in vitro and in vivo pseudotumor experiments, we showed that the use of RLNPs mixed with the radionuclide {sup 68}Ga enabled superior sensitivity compared with the radionuclide {sup 68}Ga only, with 50-fold improvement on detection sensitivity,more » which guaranteed meeting the demands of the clinical diagnosis of gastrointestinal tract tumors.« less

  16. An exploratory study of internal migration and substance use among an indigenous community in Southern Mexico

    PubMed Central

    Pinedo, Miguel; Sim, D. Eastern Kang; Giacinto, Rebeca Espinoza; Zúñiga, María Luisa

    2015-01-01

    The primary aim of this study was to explore the association between internal migration experience within Mexico and lifetime substance use among a sample of 442 indigenous persons from Yucatan, Mexico. Adjusting for potential confounding, correlates of lifetime substance use were assessed among participants with and without internal migration experience. Internal migration to a tourist destination was independently associated with higher odds (Adjusted Odds Ratio (AOR): 2.1; 95% Confidence Interval (CI): 1.3-3.4) of reporting lifetime substance use. Findings suggest that environmental contexts of internal migration may be of importance in shaping vulnerability to substance use. PMID:26605952

  17. Beyond Education and Employment: Exploring Youth Experiences of Their Communities, Place Attachment and Reasons for Migration

    ERIC Educational Resources Information Center

    Eacott, Chelsea; Sonn, Christopher C.

    2006-01-01

    The population in rural areas of Australia has been declining for many decades and it has become common practice to blame this decline on the migration of young people due to structural limitations (e.g. education and employment). This study explores factors associated with migration of youth from rural Victoria looking at their experience of…

  18. Between Mexico and New York City: Mexican Maternal Migration's Influences on Separated Siblings' Social and Educational Lives

    ERIC Educational Resources Information Center

    Oliveira, Gabrielle

    2017-01-01

    There are negative consequences for children and youth when a primary caregiver leaves to migrate. However there are unforeseen experiences related to schooling. I compare how Mexican maternal migration has influenced the education experiences of the children left behind in Mexico and their siblings living in the United States. These microcontexts…

  19. The Rest of the Story: A Qualitative Study of Chinese and Indian Women's Graduate Education Migration

    ERIC Educational Resources Information Center

    Yakaboski, Tamara

    2013-01-01

    Previous migration discourse views educational migration through narrowly defined push-pull forces, which ignores overseas graduate education as a path for maneuvering through restrictive gendered and cultural experiences. The purpose of this exploratory research is to expand migration research and view women's migration decisions as employing…

  20. The role of migration in the development of depressive symptoms among Latino immigrant parents in the USA.

    PubMed

    Ornelas, India J; Perreira, Krista M

    2011-10-01

    Nearly one out of every four children in the US is a child of immigrants. Yet few studies have assessed how factors at various stages of migration contribute to the development of health problems in immigrant populations. Most focus only on post-migration factors influencing health. Using data from the Latino Adolescent Migration, Health, and Adaptation Project, this study assessed the extent to which pre-migration (e.g., major life events, high poverty), migration (e.g., unsafe and stressful migration experiences), post-migration (e.g., discrimination, neighborhood factors, family reunification, linguistic isolation), and social support factors contributed to depressive symptoms among a sample of Latino immigrant parents with children ages 12-18. Results indicated that high poverty levels prior to migration, stressful experiences during migration, as well as racial problems in the neighborhood and racial/ethnic discrimination upon settlement in the US most strongly contribute to the development of depressive symptoms among Latino immigrant parents. Family reunification, social support, and familism reduce the likelihood of depressive symptoms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. The Role of Migration in the Development of Depressive Symptoms among Latino Immigrant Parents in the USA

    PubMed Central

    Ornelas, India J.; Perreira, Krista M.

    2011-01-01

    Nearly one out of every four children in the US is a child of immigrants. Yet few studies have assessed how factors at various stages of migration contribute to the development of health problems in immigrant populations. Most focus only on post-migration factors influencing health. Using data from the Latino Adolescent Migration, Health, and Adaptation Project, this study assessed the extent to which pre-migration (e.g., major life events, high poverty), migration (e.g., unsafe and stressful migration experiences), post-migration (e.g., discrimination, neighborhood factors, family reunification, linguistic isolation), and social support factors contributed to depressive symptoms among a sample of Latino immigrant parents with children ages 12-18. Results indicated that high poverty levels prior to migration, stressful experiences during migration, as well as racial problems in the neighborhood and racial/ethnic discrimination upon settlement in the US most strongly contribute to the development of depressive symptoms among Latino immigrant parents. Family reunification, social support, and familism reduce the likelihood of depressive symptoms. PMID:21908089

  2. Radionuclide field lysimeter experiment (RadFLEx): geochemical and hydrological data for SRS performance assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, D.; Powell, B.; Barber, K.

    The SRNL Radiological Field Lysimeter Experiment (RadFLEx) is a one-of-a-kind test bed facility designed to study radionuclide geochemical processes in the Savannah River Site (SRS) vadose zone at a larger spatial scale (from grams to tens of kilograms of sediment) and temporal scale (from months to decade) than is readily afforded through laboratory studies. RadFLEx is a decade-long project that was initiated on July 5, 2012 and is funded by six different sources. The objective of this status report is as follows: 1) to report findings to date that have an impact on SRS performance assessment (PA) calculations, and 2)more » to provide performance metrics of the RadFLEx program. The PA results are focused on measurements of transport parameters, such as distribution coefficients (Kd values), solubility, and unsaturated flow values. As this is an interim report, additional information from subsequent research may influence our interpretation of current results. Research related to basic understanding of radionuclide geochemistry in these vadose zone soils and other source terms are not described here but are referenced for the interested reader.« less

  3. Crystalline and Crystalline International Disposal Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viswanathan, Hari S.; Chu, Shaoping; Dittrich, Timothy M.

    This report presents the results of work conducted between September 2015 and July 2016 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program. Los Alamos focused on two main activities during this period: Discrete fracture network (DFN) modeling to describe flow and radionuclide transport in complex fracture networks that are typical of crystalline rock environments, and a comprehensive interpretation of three different colloid-facilitated radionuclide transport experiments conducted in a fractured granodiorite at the Grimsel Test Site in Switzerland betweenmore » 2002 and 2013. Chapter 1 presents the results of the DFN work and is divided into three main sections: (1) we show results of our recent study on the correlation between fracture size and fracture transmissivity (2) we present an analysis and visualization prototype using the concept of a flow topology graph for characterization of discrete fracture networks, and (3) we describe the Crystalline International work in support of the Swedish Task Force. Chapter 2 presents interpretation of the colloidfacilitated radionuclide transport experiments in the crystalline rock at the Grimsel Test Site.« less

  4. Modelling PET radionuclide production in tissue and external targets using Geant4

    NASA Astrophysics Data System (ADS)

    Amin, T.; Infantino, A.; Lindsay, C.; Barlow, R.; Hoehr, C.

    2017-07-01

    The Proton Therapy Facility in TRIUMF provides 74 MeV protons extracted from a 500 MeV H- cyclotron for ocular melanoma treatments. During treatment, positron emitting radionuclides such as 1C, 15O and 13N are produced in patient tissue. Using PET scanners, the isotopic activity distribution can be measured for in-vivo range verification. A second cyclotron, the TR13, provides 13 MeV protons onto liquid targets for the production of PET radionuclides such as 18F, 13N or 68Ga, for medical applications. The aim of this work was to validate Geant4 against FLUKA and experimental measurements for production of the above-mentioned isotopes using the two cyclotrons. The results show variable degrees of agreement. For proton therapy, the proton-range agreement was within 2 mm for 11C activity, whereas 13N disagreed. For liquid targets at the TR13 the average absolute deviation ratio between FLUKA and experiment was 1.9±2.7, whereas the average absolute deviation ratio between Geant4 and experiment was 0. 6±0.4. This is due to the uncertainties present in experimentally determined reaction cross sections.

  5. Diffusion and Leaching Behavior of Radionuclides in Category 3 Waste Encasement Concrete and Soil Fill Material – Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.

    2011-08-31

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Such concrete encasement would contain and isolate the waste packages from the hydrologic environment and would act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expectedmore » to have a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed, and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion and move into the surrounding subsurface environment. Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. The retardation factors for radionuclides contained in the waste packages can be determined from measurements of diffusion coefficients for these contaminants through concrete and fill material. Some of the mobilization scenarios include (1) potential leaching of waste form before permanent closure cover is installed; (2) after the cover installation, long-term diffusion of radionuclides from concrete waste form into surrounding fill material; (3) diffusion of radionuclides from contaminated soils into adjoining concrete encasement and clean fill material. Additionally, the rate of diffusion of radionuclides may be affected by the formation of structural cracks in concrete, the carbonation of the buried waste form, and any potential effect of metallic iron (in the form of rebars) on the mobility of radionuclides. The radionuclides iodine-129 ({sup 129}I), technetium-99 ({sup 99}Tc), and uranium-238 ({sup 238}U) are identified as long-term dose contributors in Category 3 waste (Mann et al. 2001; Wood et al. 1995). Because of their anionic nature in aqueous solutions, {sup 129}I, {sup 99}Tc, and carbonate-complexed {sup 238}U may readily leach into the subsurface environment (Serne et al. 1989, 1992a, b, 1993, and 1995). The leachability and/or diffusion of radionuclide species must be measured to assess the long-term performance of waste grouts when contacted with vadose-zone pore water or groundwater. Although significant research has been conducted on the design and performance of cementitious waste forms, the current protocol conducted to assess radionuclide stability within these waste forms has been limited to the Toxicity Characteristic Leaching Procedure, Method 1311 Federal Registry (EPA 1992) and ANSI/ANS-16.1 leach test (ANSI 1986). These tests evaluate the performance under water-saturated conditions and do not evaluate the performance of cementitious waste forms within the context of waste repositories which are located within water-deficient vadose zones. Moreover, these tests assess only the diffusion of radionuclides from concrete waste forms and neglect evaluating the mechanisms of retention, stability of the waste form, and formation of secondary phases during weathering, which may serve as long-term secondary hosts for immobilization of radionuclides. The results of recent investigations conducted under arid and semi-arid conditions (Al-Khayat et al. 2002; Garrabrants et al. 2002; Garrabrants and Kosson 2003; Garrabrants et al. 2004; Gervais et al. 2004; Sanchez et al. 2002; Sanchez et al. 2003) provide valuable information suggesting structural and chemical changes to concrete waste forms which may affect contaminant containment and waste form performance. However, continued research is necessitated by the need to understand: the mechanism of contaminant release; the significance of contaminant release pathways; how waste form performance is affected by the full range of environmental conditions within the disposal facility; the process of waste form aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of waste form aging on chemical, physical, and radiological properties, and the associated impact on contaminant release. Recent reviews conducted by the National Academies of Science recognized the efficacy of cementitious materials for waste isolation, but further noted the significant shortcomings in our current understanding and testing protocol for evaluating the performance of various formulations.« less

  6. Distribution of artificial radionuclides in particle-size fractions of soil on fallout plumes of nuclear explosions.

    PubMed

    Kabdyrakova, A M; Lukashenko, S N; Mendubaev, A T; Kunduzbayeva, A Ye; Panitskiy, A V; Larionova, N V

    2018-06-01

    In this paper are analyzed the artificial radionuclide distributions ( 137 Cs, 90 Sr, 241 Am, 239+240 Pu) in particle-size fractions of soils from two radioactive fallout plumes at the Semipalatinsk Test Site. These plumes were generated by a low-yield surface nuclear test and a surface non-nuclear experiment with insignificant nuclear energy release, respectively, and their lengths are approximately 3 and 0,65 km. In contrast with the great majority of similar studies performed in areas affected mainly by global fallout where adsorbing radionuclides such as Pu are mainly associated with the finest soil fractions, in this study it was observed that along both analyzed plumes the highest activity concentrations are concentrated in the coarse soil fractions. At the plume generated by the surface nuclear test, the radionuclides are concentrated mainly in the 1000-500 μm soil fraction (enrichment factor values ranging from 1.2 to 3.8), while at the plume corresponding to the surface non-nuclear test is the 500-250 μm soil fraction the enriched one by technogenic radionuclides (enrichment factor values ranging from 1.1 to 5.1). In addition, the activity concentration distributions among the different soil size fractions are similar for all radionuclides in both plumes. All the obtained data are in agreement with the hypothesis indicating that enrichment observed in the coarse fractions is caused by the presence of radioactive particles resulted from the indicated nuclear tests. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Detection of cerebrospinal fluid leakage: initial experience with three-dimensional fast spin-echo magnetic resonance myelography.

    PubMed

    Tomoda, Y; Korogi, Y; Aoki, T; Morioka, T; Takahashi, H; Ohno, M; Takeshita, I

    2008-03-01

    The pathogenesis of cerebrospinal fluid (CSF) hypovolemia is supposed to be caused by CSF leakage through small dural defects. To compare source three-dimensional (3D) fast spin-echo (FSE) images of magnetic resonance (MR) myelography with radionuclide cisternography findings, and to evaluate the feasibility of MR myelography in the detection of CSF leakage. A total of 67 patients who were clinically suspected of CSF hypovolemia underwent indium-111 radionuclide cisternography, and 27 of those who had direct findings of CSF leakage were selected for evaluation. MR myelography with 3D FSE sequences (TR/TE 6000/203 ms) was performed at the lumbar spine for all patients. We evaluated source images and maximum intensity projection (MIP) images of MR myelography, and the findings were correlated with radionuclide cisternography findings. MR myelography of five healthy volunteers was used as a reference. The MR visibility of the CSF leakage was graded as definite (leakage clearly visible), possible (leakage poorly seen), or absent (not shown). CSF leakage was identified with source 3D FSE images in 22 (81.5%) of 27 patients. Of the 22 patients, 16 were graded as definite and six were graded as possible. For the definite cases, 3D FSE images clearly showed the extent of the leaked CSF in the paraspinal structures. In the remaining five patients with absent findings, radionuclide cisternography showed only slight radionuclide activity out of the arachnoid space. Source 3D FSE images of MR myelography seem useful in the detection of CSF leakage. Invasive radionuclide cisternography may be reserved for equivocal cases only.

  8. Anti-CD45 Pretargeted Radioimmunotherapy using Bismuth-213: High Rates of Complete Remission and Long-Term Survival in a Mouse Myeloid Leukemia Xenograft Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagel, John M; Kenoyer, Aimee L; Back, Tom

    2011-07-21

    Pretargeted radioimmunotherapy (PRIT) using an anti-CD45 antibody (Ab)-streptavidin (SA) conjugate and DOTA-biotin labeled with β-emitting radionuclides has been explored as a strategy to decrease relapse and toxicity. α-emitting radionuclides exhibit high cytotoxicity coupled with a short path-length, potentially increasing the therapeutic index and making them an attractive alternative to β-emitting radionuclides for patients with Acute Myeloid Leukemia (AML). Accordingly, we have used 213Bi in mice with human leukemia xenografts. Results demonstrated excellent localization of 213Bi-DOTA-biotin to tumors with minimal uptake into normal organs. After 10 minutes, 4.5 ± 1.1% of the injected dose of 213Bi was delivered per gram ofmore » tumor. α imaging demonstrated uniform radionuclide distribution within tumor tissue 45 minutes after 213Bi-DOTA-biotin injection. Radiation absorbed doses were similar to those observed using a β-emitting radionuclide (90Y) in the same model. We conducted therapy experiments in a xenograft model using a single-dose of 213Bi-DOTA-biotin given 24 hours after anti-CD45 Ab-SA conjugate. Among mice treated with anti-CD45 Ab-SA conjugate followed by 800 μCi of 213Bi- or 90Y-DOTA-biotin, 80% and 20%, respectively, survived leukemia-free for >100 days with minimal toxicity. These data suggest that anti-CD45 PRIT using an α-emitting radionuclide may be highly effective and minimally toxic for treatment of AML.« less

  9. Flood and Fire Monitoring and Forecasting Within the Chornobyl Exclusion Zone

    NASA Astrophysics Data System (ADS)

    Los, Victor

    2001-03-01

    Taking into consideration that radioactivity from the contaminating elements of the Chernobyl Exclusion Zone (CEZ) amounts to a huge number, one of the most urgent tasks, at present, is the resolution of problems related to secondary radioactive contamination caused by floods and fires. These factors may lead to critical consequences. For instance, if radioactive contaminants migrate into the water system, namely into the Dnipro River, a threat arises to more than 20 million inhabitants of Ukraine. Additionally, fires in the CEZ potentially could cause contaminants to be dispersed into the air and to migrate in the atmosphere for long distances. The elements of information support system for administrative decision-making to respond to the appearances and consequences of forest fires and floods in contaminated areas of the CEZ have been developed. The system proposes: using Earth Remote Sensing (R/S) data for timely detection of forest fires; integration by Geographic Information System (GIS) of mathematical models for radionuclide migration by air in order to forecast radiological consequences of forest fires; forecasting and assessing flood consequences by means of spatial analysis of GIS and R/S; and development of a system for dissemination of information. This project was performed within the framework of USAID Cooperative Agreement #121-A-00-98-00615-00, dedicated to the establishment of the Ukrainian Land and Resource Management Center.

  10. Violated expectations and acculturative stress among U.S. Hispanic immigrants.

    PubMed

    Negy, Charles; Schwartz, Shari; Reig-Ferrer, Abilio

    2009-07-01

    Expectancy violation theory (EVT) was tested with 112 Hispanic immigrants living in the United States by determining whether discrepancies between their retrospectively recalled pre-migration expectations about life in the United States and their post-migration (actual) experiences in the United States would predict their levels of acculturative stress. Discrepancies were assessed in 4 domains (ability to communicate with English speakers, perceiving their communities and the United States as safe, obtaining adequate employment, and experiencing racism). Overall, the results indicated that discrepancies between pre-migration expectations and post-migration experiences were associated significantly with acculturative stress, although some of the findings were counter to EVT. Also, on the basis of a hierarchical regression analysis, the discrepancies significantly, albeit modestly, contributed to the prediction of acculturative stress beyond the predictive ability of general demographic variables and post-migration experiences. Implications for clinical interventions and research opportunities with EVT and Hispanic immigrants are discussed.

  11. Modelling Iron-Bentonite Interactions

    NASA Astrophysics Data System (ADS)

    Watson, C.; Savage, D.; Benbow, S.; Wilson, J.

    2009-04-01

    The presence of both iron canisters and bentonitic clay in some engineered barrier system (EBS) designs for the geological disposal of high-level radioactive wastes creates the potential for chemical interactions which may impact upon the long-term performance of the clay as a barrier to radionuclide migration. Flooding of potential radionuclide sorption sites on the clay by ferrous ions and conversion of clay to non-swelling sheet silicates (e.g. berthierine) are two possible outcomes deleterious to long-term performance. Laboratory experimental studies of the corrosion of iron in clay show that corrosion product layers are generally thin (< 1 µm) with magnetite, siderite, or ‘green rust' occurring depending upon temperature and ambient partial pressure of carbon dioxide. In theory, incorporation of iron into clay alteration products could act as a ‘pump' to accelerate corrosion. However, the results of laboratory experiments to characterise the products of iron-bentonite interaction are less than unequivocal. The type and amounts of solid products appear to be strong functions of time, temperature, water/clay ratio, and clay and pore fluid compositions. For example, the products of high temperature experiments (> 250 °C) are dominated by chlorite, whereas lower temperatures produce berthierine, odinite, cronstedtite, or Fe-rich smectite. Unfortunately, the inevitable short-term nature of laboratory experimental studies introduces issues of metastability and kinetics. The sequential formation in time of minerals in natural systems often produces the formation of phases not predicted by equilibrium thermodynamics. Evidence from analogous natural systems suggests that the sequence of alteration of clay by Fe-rich fluids will proceed via an Ostwald step sequence. The computer code, QPAC, has been modified to incorporate processes of nucleation, growth, precursor cannibalisation, and Ostwald ripening to address the issues of the slow growth of bentonite alteration products. This, together with inclusion of processes of iron corrosion and diffusion, has enabled investigation of a representative model of the alteration of bentonite in a typical EBS environment. Simulations with fixed mineral surface areas show that berthierine dominates the solid product assemblage, with siderite replacing it at simulation times greater than 10 000 years. Simulations with time-dependent mineral surface areas show a sequence of solid alteration products, described by: magnetite -> cronstedtite -> berthierine -> chlorite. Using plausible estimates of mineral-fluid interfacial free energies, chlorite growth is not achieved until 5 000 years of simulation time. The results of this modelling work suggest that greater emphasis should be placed upon methods to up-scale the results of laboratory experiments to timescales of relevance to performance assessment.

  12. Kurdish men's experiences of migration-related mental health issues.

    PubMed

    Taloyan, Marina; Al-Windi, Ahmad; Johansson, Leena Maria; Saleh-Stattin, Nuha

    2011-10-01

    The migration process may impose stress on the mental health of immigrants. To describe the experiences of immigrant men of Kurdish ethnicity during and after migration to Sweden with regard to mental health issues. Using the grounded theory method, we conducted a focus group interview with four Kurdish men and in-depth individual interviews with 10 other Kurdish men. A model with two major themes and interlinked categories was developed. The themes were (1) protective factors for good mental health (sense of belonging, creation and re-creation of Kurdish identity, sense of freedom, satisfaction with oneself) and (2) risk factors for poor mental health (worry about current political situation in the home country, yearning, lack of sense of freedom, dissatisfaction with Swedish society). The study provides insights into the psychological and emotional experiences of immigrant men of Kurdish ethnicity during and after migration to Sweden. It is important for primary health care providers to be aware of the impact that similar migration-related and life experiences have on the health status of immigrants, and also to be aware that groups are comprised of unique individuals with differing experiences and reactions to these experiences. The findings highlight the common themes of the men's experiences and suggest ways to ameliorate mental health issues, including feeling like one is seen as an individual, is a full participant in society, and can contribute to one's own culture.

  13. Electrostatic Radionuclide Separation: A New Version of Rutherford's "Thorium Cow".

    ERIC Educational Resources Information Center

    Eiswirth, Marcus; And Others

    1982-01-01

    Describes three experiments (also useful as demonstrations) using a "thorium cow," a device which concentrates the daughter products from thorium compounds by precipitation on a charged electrode. (JN)

  14. Approaches in the determination of plant nutrient uptake and distribution in space flight conditions

    NASA Technical Reports Server (NTRS)

    Heyenga, A. G.; Forsman, A.; Stodieck, L. S.; Hoehn, A.; Kliss, M.

    2000-01-01

    The effective growth and development of vascular plants rely on the adequate availability of water and nutrients. Inefficiency in either the initial absorption, transportation, or distribution of these elements are factors which impinge on plant structure and metabolic integrity. The potential effect of space flight and microgravity conditions on the efficiency of these processes is unclear. Limitations in the available quantity of space-grown plant material and the sensitivity of routine analytical techniques have made an evaluation of these processes impractical. However, the recent introduction of new plant cultivating methodologies supporting the application of radionuclide elements and subsequent autoradiography techniques provides a highly sensitive investigative approach amenable to space flight studies. Experiments involving the use of gel based 'nutrient packs' and the radionuclides calcium-45 and iron-59 were conducted on the Shuttle mission STS-94. Uptake rates of the radionuclides between ground and flight plant material appeared comparable.

  15. Radiological Impact of Phosphogypsum Application in Agriculture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dias, Nivea M. P.; Caires, Eduardo F.; Pires, Luiz F.

    2010-08-04

    Phosphogypsum (PG) contains radionuclides from {sup 238}U and {sup 232}Th decay series. Due to the presence of these radionuclides, many countries restricted the use of PG in agriculture, however there is not such restriction in Brazil. The main objective of this work was to evaluate the impact of PG application on {sup 226}Ra ({sup 238}U) and {sup 228}Ra ({sup 232}Th) concentrations in soil. Gamma-spectrometry was carried out using HPGe detector. No increment of {sup 226}Ra and {sup 228}Ra was observed for increasing PG doses. Average values found for {sup 226}Ra and {sup 228}Ra were respectively 37 Bq kg{sup -1} andmore » 57 Bq kg{sup -1}. The results showed that the increasing PG doses in the specific conditions of the experiment did not cause a significant increment of radionuclides.« less

  16. Measurements and calculations of air activation in the NuMI neutrino production facility at Fermilab with the 120-GeV proton beam on target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakhno, I. L.; Hylen, J.; Kasper, P.

    Measurements and calculations of the air activation at a high-energy proton accelerator are described. The quantity of radionuclides released outdoors depends on operation scenarios including details of the air exchange inside the facility. To improve the prediction of the air activation levels, the MARS15 Monte Carlo code radionuclide production model was modified to be used for these studies. Measurements were done to benchmark the new model and verify its use in optimization studies for the new DUNE experiment at the Long Baseline Neutrino Facility (LBNF) at Fermilab. The measured production rates for the most important radionuclides – 11C, 13N, 15Omore » and 41Ar – are in a good agreement with those calculated with the improved MARS15 code.« less

  17. Measurements and calculations of air activation in the NuMI neutrino production facility at Fermilab with the 120-GeV proton beam on target

    DOE PAGES

    Rakhno, I. L.; Hylen, J.; Kasper, P.; ...

    2017-10-04

    Measurements and calculations of the air activation at a high-energy proton accelerator are described. The quantity of radionuclides released outdoors depends on operation scenarios including details of the air exchange inside the facility. To improve the prediction of the air activation levels, the MARS15 Monte Carlo code radionuclide production model was modified to be used for these studies. Measurements were done to benchmark the new model and verify its use in optimization studies for the new DUNE experiment at the Long Baseline Neutrino Facility (LBNF) at Fermilab. The measured production rates for the most important radionuclides – 11C, 13N, 15Omore » and 41Ar – are in a good agreement with those calculated with the improved MARS15 code.« less

  18. Preliminary investigation of PAGAT polymer gel radionuclide dosimetry of Tc-99m

    NASA Astrophysics Data System (ADS)

    Braun, Kelly; Bailey, Dale; Hill, Brendan; Baldock, Clive

    2009-05-01

    PAGAT polymer gel was investigated as a suitable dosimeter materials for measuring absorbed dose from the unsealed source radionuclide Tc-99m. Differing amounts of Tc-99m over the range of 25-5000 MBq were introduced into a normoxic polymer gel mixture (PAGAT) in sealed nitrogen-filled P6 glass vials. After irradiation the gels were evaluated using MRI more than 48 hours after preparation to allow for radioactive decay. The dose delivered to the vial was also calculated empirically. R2 versus total activity curves were obtained over a number of experiments and these were used to evaluate the relationship between the amount of gel polymerization and the dose deposited by the radionuclide. A linear response up to 1000 MBq (corresponding to 20Gy) was displayed and was still behaving monotonically at 5000 MBq. Polymer gels offer the potential to measure radiation dose three-dimensionally using MRI.

  19. Estimation of Cs-137 hillslope patterns of Polesje landscapes using geo-information modeling techniques (on example of the Bryansk region)

    NASA Astrophysics Data System (ADS)

    Linnik, Vitaly; Nenko, Kristina; Sokolov, Alexander; Saveliev, Anatoly

    2015-04-01

    In the result of Chernobyl disaster on 26 April 1986 many regions of Ukraine, Belarus and Russia were contaminated by radionuclides. Vast areas of farmlands and woodlands were contaminated in Russia. The deposited radionuclides continue to cause concern about the possible contamination of food (in particular, mushrooms and berries). But the radioactive materials are also an ideal marker for understanding of hillslope processes in natural and seminatural landscapes. Model area chosen for the research (Opolje landscapes located in the central part of the Bryansk region) is characterized by relatively low levels of Cs-137 contamination. It just 4-33 times higher than global fallout which was equal 1,75 kBq/m2 in 1986 . According the results of air gamma survey (grid size: 100 m x100 m), which was done in 1993, it was explicitly to identify that the processes of Cs-137 lateral migration took place due to nearly fourfold increase of Cs-137 in the lower slope in comparison with the surface of the watershed during a seven-year period after Chernobyl accident. Erosion processes which define Cs-137 pattern in the lowest part of hillslope depend upon such parameters as slope, hillslope forms, vegetation, land use and the roads, which intersect a streamline. GIS-modeling of Cs-137 was carried out in SAGA software. The spatial modeling resolution was equal 100x100 m according the air-gamma data. SRTM data was resampled to a grid 100x100 m. Erosion rates were the highest on the slope of southern exposure. There the processes of lateral migration are more intensive and observed within the entire slope. The main contribution in receipt of Cs-137 to floodplain on the northern slopes comes only from the lower part of the slope and gullies and ravines network. We have used geo-information modeling techniques and some kind of interpolation and statistical models to predict or understand forming of Cs-137 spatial patterns and trends in soil erosion. To study the role of some geomorphological parameters in the Cs-137 redistribution we apply different mathematical models. We have identified the main trend (dependence on the X, Y coordinate) and contribution of such geomorphological parameters as concave and convex profiles, slope and others. Thus, the use of fallout radionuclides, measured with air-gamma survey, can complement our concept about Cs-137 secondary redistribution due the erosion processes which controlled by numerous of landscape factors.

  20. Warming increases plant biomass and reduces diversity across continents, latitudes, and species migration scenarios in experimental wetland communities.

    PubMed

    Baldwin, Andrew H; Jensen, Kai; Schönfeldt, Marisa

    2014-03-01

    Atmospheric warming may influence plant productivity and diversity and induce poleward migration of species, altering communities across latitudes. Complicating the picture is that communities from different continents deviate in evolutionary histories, which may modify responses to warming and migration. We used experimental wetland plant communities grown from seed banks as model systems to determine whether effects of warming on biomass production and species richness are consistent across continents, latitudes, and migration scenarios. We collected soil samples from each of three tidal freshwater marshes in estuaries at three latitudes (north, middle, south) on the Atlantic coasts of Europe and North America. In one experiment, we exposed soil seed bank communities from each latitude and continent to ambient and elevated (+2.8 °C) temperatures in the greenhouse. In a second experiment, soil samples were mixed either within each estuary (limited migration) or among estuaries from different latitudes in each continent (complete migration). Seed bank communities of these migration scenarios were also exposed to ambient and elevated temperatures and contrasted with a no-migration treatment. In the first experiment, warming overall increased biomass (+16%) and decreased species richness (-14%) across latitudes in Europe and North America. Species richness and evenness of south-latitude communities were less affected by warming than those of middle and north latitudes. In the second experiment, warming also stimulated biomass and lowered species richness. In addition, complete migration led to increased species richness (+60% in North America, + 100% in Europe), but this higher diversity did not translate into increased biomass. Species responded idiosyncratically to warming, but Lythrum salicaria and Bidens sp. increased significantly in response to warming in both continents. These results reveal for the first time consistent impacts of warming on biomass and species richness for temperate wetland plant communities across continents, latitudes, and migration scenarios. © 2013 John Wiley & Sons Ltd.

  1. Romanians Abroad: A Snapshot of Highly Skilled Migration

    ERIC Educational Resources Information Center

    Ferro, Anna

    2004-01-01

    This paper is about the experience of labour migration among skilled Romanians, mainly Information Technology workers and highly qualified researchers. It is based on a questionnaire survey where, among other elements, the researcher investigated the push-pull aspects of qualified migration and the strategies of labour migration. This paper…

  2. Proceedings of a Workshop on Cosmogenic Nuclide Production Rates

    NASA Technical Reports Server (NTRS)

    Englert, Peter A. J. (Editor); Reedy, Robert C. (Editor); Michel, Rolf (Editor)

    1989-01-01

    Abstracts of reports from the proceedings are presented. The presentations were divided into discussion topics. The following general topic areas were used: (1) measured cosmogenic noble gas and radionuclide production rates in meteorite and planetary surface samples; (2) cross-section measurements and simulation experiments; and (3) interpretation of sample studies and simulation experiments.

  3. Radionuclide studies in coccidioidal meningitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbus, H.F.; Lippert, R.G.; Radding, J.

    1976-10-01

    Although the uniformly fatal outcome in untreated meningitis due to Coccidioides immitis has been modified by amphotericin B, use of this drug presents a challenge to therapists striving to maximize its effectiveness and minimize its not inconsiderable toxicity. Many of the complications of intraventricular therapy, using an Ommaya reservoir, were encountered in a patient with coccidioidal meningitis, and this experience is reported to reemphasize the usefulness of radionuclide studies in guiding therapy and assessing the progress of the disease. The examples presented may be of interest to those faced with the difficult task of treating this still dangerous infection.

  4. Research remote laser methods for radionuclides monitoring

    NASA Astrophysics Data System (ADS)

    Kascheev, S. V.; Elizarov, Valentin V.; Grishkanich, Alexander S.; Bespalov, V. G.; Vasil'ev, Sergey K.; Zhevlakov, A. P.

    2014-05-01

    Laser sensing can serve as a highly effective method of searching and monitoring of radioactive contamination. The first method is essence consists in definition the Sr90 and Сs137 concentration by excitation and registration of fluorescence at wavelength of λ = 0.347÷7.0 μm at laser sounding. The second method experiments were carried out under the Raman-scattering circuit. Preliminary results of investigation show the real possibility to register of leakage of a radionuclide with concentration at level of 108÷109 сm-3 on a safe distance from the infected object.

  5. Importance of coccolithophore-associated organic biopolymers for fractionating particle-reactive radionuclides (234Th, 233Pa, 210Pb, 210Po, and 7Be) in the ocean

    NASA Astrophysics Data System (ADS)

    Lin, Peng; Xu, Chen; Zhang, Saijin; Sun, Luni; Schwehr, Kathleen A.; Bretherton, Laura; Quigg, Antonietta; Santschi, Peter H.

    2017-08-01

    Laboratory incubation experiments using the coccolithophore Emiliania huxleyi were conducted in the presence of 234Th, 233Pa, 210Pb, 210Po, and 7Be to differentiate radionuclide uptake to the CaCO3 coccosphere from coccolithophore-associated biopolymers. The coccosphere (biogenic calcite exterior and its associated biopolymers), extracellular (nonattached and attached exopolymeric substances), and intracellular (sodium-dodecyl-sulfate extractable and Fe-Mn-associated metabolites) fractions were obtained by sequentially extraction after E. huxleyi reached its stationary growth phase. Radionuclide partitioning and the composition of different organic compound classes, including proteins, total carbohydrates (TCHO), and uronic acids (URA), were assessed. 210Po was closely associated with the more hydrophobic biopolymers (high protein/TCHO ratio, e.g., in attached exopolymeric substances), while 234Th and 233Pa showed similar partitioning behavior with most activity being distributed in URA-enriched, nonattached exopolymeric substances and intracellular biopolymers. 234Th and 233Pa were nearly undetectable in the coccosphere, with a minor abundance of organic components in the associated biopolymers. These findings provide solid evidence that biogenic calcite is not the actual main carrier phase for Th and Pa isotopes in the ocean. In contrast, both 210Pb and 7Be were found to be mostly concentrated in the CaCO3 coccosphere, likely substituting for Ca2+ during coccolith formation. Our results demonstrate that even small cells (E. huxleyi) can play an important role in the scavenging and fractionation of radionuclides. Furthermore, the distinct partitioning behavior of radionuclides in diatoms (previous studies) and coccolithophores (present study) explains the difference in the scavenging of radionuclides between diatom- and coccolithophore-dominated marine environments.

  6. Soil prokaryotic communities in Chernobyl waste disposal trench T22 are modulated by organic matter and radionuclide contamination.

    PubMed

    Theodorakopoulos, Nicolas; Février, Laureline; Barakat, Mohamed; Ortet, Philippe; Christen, Richard; Piette, Laurie; Levchuk, Sviatoslav; Beaugelin-Seiller, Karine; Sergeant, Claire; Berthomieu, Catherine; Chapon, Virginie

    2017-08-01

    After the Chernobyl nuclear power plant accident in 1986, contaminated soils, vegetation from the Red Forest and other radioactive debris were buried within trenches. In this area, trench T22 has long been a pilot site for the study of radionuclide migration in soil. Here, we used 454 pyrosequencing of 16S rRNA genes to obtain a comprehensive view of the bacterial and archaeal diversity in soils collected inside and in the vicinity of the trench T22 and to investigate the impact of radioactive waste disposal on prokaryotic communities. A remarkably high abundance of Chloroflexi and AD3 was detected in all soil samples from this area. Our statistical analysis revealed profound changes in community composition at the phylum and OTUs levels and higher diversity in the trench soils as compared to the outside. Our results demonstrate that the total absorbed dose rate by cell and, to a lesser extent the organic matter content of the trench, are the principal variables influencing prokaryotic assemblages. We identified specific phylotypes affiliated to the phyla Crenarchaeota, Acidobacteria, AD3, Chloroflexi, Proteobacteria, Verrucomicrobia and WPS-2, which were unique for the trench soils. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Potential for microbial H2 and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments

    PubMed Central

    Hernsdorf, Alex W; Amano, Yuki; Miyakawa, Kazuya; Ise, Kotaro; Suzuki, Yohey; Anantharaman, Karthik; Probst, Alexander; Burstein, David; Thomas, Brian C; Banfield, Jillian F

    2017-01-01

    Geological sequestration in deep underground repositories is the prevailing proposed route for radioactive waste disposal. After the disposal of radioactive waste in the subsurface, H2 may be produced by corrosion of steel and, ultimately, radionuclides will be exposed to the surrounding environment. To evaluate the potential for microbial activities to impact disposal systems, we explored the microbial community structure and metabolic functions of a sediment-hosted ecosystem at the Horonobe Underground Research Laboratory, Hokkaido, Japan. Overall, we found that the ecosystem hosted organisms from diverse lineages, including many from the phyla that lack isolated representatives. The majority of organisms can metabolize H2, often via oxidative [NiFe] hydrogenases or electron-bifurcating [FeFe] hydrogenases that enable ferredoxin-based pathways, including the ion motive Rnf complex. Many organisms implicated in H2 metabolism are also predicted to catalyze carbon, nitrogen, iron and sulfur transformations. Notably, iron-based metabolism is predicted in a novel lineage of Actinobacteria and in a putative methane-oxidizing ANME-2d archaeon. We infer an ecological model that links microorganisms to sediment-derived resources and predict potential impacts of microbial activity on H2 consumption and retardation of radionuclide migration. PMID:28350393

  8. Geodynamic modeling of the capture and release of a plume conduit by a migrating mid-ocean ridge

    NASA Astrophysics Data System (ADS)

    Hall, P. S.

    2011-12-01

    plates over the relatively stationary, long-lived conduits of mantle plumes. However, paleomagnetic data from the Hawaii-Emperor Seamount Chain suggests that the Hawaiian hotspot moved rapidly (~40 mm/yr) between 81 - 47 Ma [Tarduno et al., 2003]. Recently, Tarduno et al. [2009] suggested that this period of rapid motion might be the surface expression of a plume conduit returning to a largely vertical orientation after having been captured and tilted as the result of being "run over" by migrating mid-ocean ridge. I report on a series of analog geodynamic experiments designed to characterize the evolution of a plume conduit as a mid-ocean ridge migrates over. Experiments were conducted in a clear acrylic tank (100 cm x 70 cm x 50 cm) filled with commercial grade high-fructose corn syrup. Plate-driven flow is modeled by dragging two sheets of Mylar film (driven by independent DC motors) in opposite directions over the surface of the fluid. Ridge migration is achieved by moving the point at which the mylar sheets diverge using a separate motor drive. Buoyant plume flow is generated using a small electrical heater placed at the bottom of the tank. Plate velocities and ridge migration rate are controlled and plume temperature monitored using LabView software. Experiments are recorded using digital video which is then analyzed using digital image analysis software to track the position and shape of the plume conduit throughout the course of the experiment. The intersection of the plume conduit with the surface of the fluid is taken as an analog for the locus of hotspot volcanism and tracked as a function of time to obtain a hotspot migration rate. Results show that the plume conduit experiences significant tilting immediately following the passage of the migrating ridge.

  9. External beam radiation therapy enhances mesenchymal stem cell-mediated sodium iodide symporter gene delivery.

    PubMed

    Schug, Christina; Sievert, Wolfgang; Urnauer, Sarah; Müller, Andrea Maria; Schmohl, Kathrin Alexandra; Wechselberger, Alexandra; Schwenk, Nathalie; Lauber, Kirsten; Schwaiger, Markus; Multhoff, Gabriele; Wagner, Ernst; Nelson, Peter J; Spitzweg, Christine

    2018-05-04

    The tumor-homing properties of mesenchymal stem cells (MSC) have led to their development as delivery vehicles for the targeted delivery of therapeutic genes such as the sodium iodide symporter (NIS) to solid tumors. External beam radiation therapy (EBRT) may represent an ideal setting for the application of engineered MSC-based gene therapy as tumor irradiation may enhance MSC recruitment into irradiated tumors through the increased production of select factors linked to MSC migration. In the present study, the irradiation of human liver cancer cells (HuH7) (1-10 Gy) showed a strong dose-dependent increase in steady state mRNA levels of CXCL8, CXCL12/SDF-1, FGF2, PDGFβ, TGFβ1, TSP-1 and VEGF (0-48 h), which was verified for most factors at the protein level (after 48 h). Radiation effects on directed MSC migration was tested in vitro using a live cell tracking migration assay and supernatants from control and irradiated HuH7 cells. A robust increase in mean forward migration index (yFMI), mean center of mass (yCoM) and mean directionality of MSCs towards supernatants was seen from irradiated as compared to nonirradiated tumor cells. Transferability of this effect to other tumor sources was demonstrated using the human breast adenocarcinoma cell line (MDA-MB-231), which showed a similar behavior to radiation as seen with HuH7 cells in qPCR and migration assay. To evaluate this in a more physiologic in vivo setting, subcutaneously growing HuH7 xenograft tumors were irradiated with 0, 2 or 5 Gy followed by CMV-NIS-MSC application 24 h later. Tumoral iodide uptake was monitored using 123I-scintigraphy. The results showed increased tumor-specific dose-dependent accumulation of radioiodide in irradiated tumors. Our results demonstrate that EBRT enhances the migratory capacity of MSCs and may thus increase the therapeutic efficacy of MSC-mediated NIS radionuclide therapy.

  10. Effect of time on migration of Oesophagostomum spp. and Hyostrongylus rubidus out of agar-gel.

    PubMed

    Nosal, P; Christensen, C M; Nansen, P

    1998-01-01

    The agar-gel migration technique has previously been described, however, aspects regarding the effect of timing on worm migration needed further scrutiny. In the first experiment, pigs inoculated with Oesophagostomum dentatum were slaughtered simultaneously and their intestines stored at 21-23 degrees C until processed pairwise 2, 4, 6, 8, 12 and 18 h after slaughter. More than 95% of the worms migrated out of the agar if processed within 6 h. In the second experiment, intestines were treated immediately after slaughter and the migratory speed of adult worms or 4th-stage larvae of O. dentatum or O. quadrispinulatum, or adult Hyostrongylus rubidus were studied. For both Oesophagostomum species, more than 90% of the worms were recovered within 1 h. H. rubidus was significantly slower; however, approximately 98% of the worms had migrated out of the agar-gel by 20 h. This information is essential in planning experiments where recovery of live worms is of value.

  11. On the Reality of Illusory Conjunctions.

    PubMed

    Botella, Juan; Suero, Manuel; Durán, Juan I

    2017-01-01

    The reality of illusory conjunctions in perception has been sometimes questioned, arguing that they can be explained by other mechanisms. Most relevant experiments are based on migrations along the space dimension. But the low rate of illusory conjunctions along space can easily hide them among other types of errors. As migrations over time are a more frequent phenomenon, illusory conjunctions can be disentangled from other errors. We report an experiment in which series of colored letters were presented in several spatial locations, allowing for migrations over both space and time. The distribution of frequencies were fit by several multinomial tree models based on alternative hypothesis about illusory conjunctions and the potential sources of free-floating features. The best-fit model acknowledges that most illusory conjunctions are migrations in the time domain. Migrations in space are probably present, but the rate is very low. Other conjunction errors, as those produced by guessing or miscategorizations of the to-be-reported feature, are also present in the experiment. The main conclusion is that illusory conjunctions do exist.

  12. Parental Migration and Children's Academic Engagement: The Case of China

    ERIC Educational Resources Information Center

    Chen, Shuang; Adams, Jennifer; Qu, Zhiyong; Wang, Xiaohua; Chen, Li

    2013-01-01

    In the context of China's increasing rural-urban migration, few studies have investigated how parental migration affects children's experience in school. The high cost of schooling, taken together with the institutional barriers in destination cities, have compelled many rural parents in China to migrate without their children, leaving them in the…

  13. Internal Migration and Citizenship Education in China's Shenzhen City

    ERIC Educational Resources Information Center

    Ye, Wangbei

    2016-01-01

    Migration's influences on citizenship education were widely discussed in the literature. However, most studies were based on international migration that drew experience from, for example, North America and Europe. Less attention was paid to internal migration or developing areas. This article takes China as an example, which is a country that has…

  14. Retention of barium and europium radionuclides from aqueous solutions on ash-based sorbents by application of radiochemical techniques.

    PubMed

    Noli, Fotini; Kapnisti, Maria; Buema, Gabriela; Harja, Maria

    2016-10-01

    New materials were synthesized for application in sorption of radionuclides from aqueous solutions. The elaboration was performed by conversion of power plant ash using the hydrothermal method under optimum experimental conditions. Sodalite, Na-Y, and analcime were formed from ash precursor during the treatment, exhibiting thermal stability as revealed by the characterization by X-ray diffraction (XRD) and thermogravimetric differential thermal analysis (TG-DTA). The Brunauer-Emmett-Teller (BET) surface area and pore volume were determined and they presented higher values than plant ash. The ability of the new products to retain Ba and Eu radionuclides was studied in aqueous solutions using (133)Ba and (152)Eu as tracers and γ-ray spectroscopy under batch experiments. The experimental data were modeled by the Langmuir and Freundlich equations, whereas sorption kinetics measurements were performed at 293, 308, and 323K and thermodynamic parameters were calculated. The release of the sorbed ions into the environment was also tested by leaching experiments. The results of these tests indicated that the synthesized materials are very efficient in removing the aforementioned metals from aqueous solutions and can be considered as potential low-cost sorbents in nuclear waste management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Impact of natural organic matter on uranium transport through saturated geologic materials: from molecular to column scale.

    PubMed

    Yang, Yu; Saiers, James E; Xu, Na; Minasian, Stefan G; Tyliszczak, Tolek; Kozimor, Stosh A; Shuh, David K; Barnett, Mark O

    2012-06-05

    The risk stemming from human exposure to actinides via the groundwater track has motivated numerous studies on the transport of radionuclides within geologic environments; however, the effects of waterborne organic matter on radionuclide mobility are still poorly understood. In this study, we compared the abilities of three humic acids (HAs) (obtained through sequential extraction of a peat soil) to cotransport hexavalent uranium (U) within water-saturated sand columns. Relative breakthrough concentrations of U measured upon elution of 18 pore volumes increased from undetectable levels (<0.001) in an experiment without HAs to 0.17 to 0.55 in experiments with HAs. The strength of the HA effect on U mobility was positively correlated with the hydrophobicity of organic matter and NMR-detected content of alkyl carbon, which indicates the possible importance of hydrophobic organic matter in facilitating U transport. Carbon and uranium elemental maps collected with a scanning transmission X-ray microscope (STXM) revealed uneven microscale distribution of U. Such molecular- and column-scale data provide evidence for a critical role of hydrophobic organic matter in the association and cotransport of U by HAs. Therefore, evaluations of radionuclide transport within subsurface environments should consider the chemical characteristics of waterborne organic substances, especially hydrophobic organic matter.

  16. CEM V based special cementitious materials investigated by means of SANS method. Preliminary results

    NASA Astrophysics Data System (ADS)

    Dragolici, A. C.; Balasoiu, M.; Orelovich, O. L.; Ionascu, L.; Nicu, M.; Soloviov, D. V.; Kuklin, A. I.; Lizunov, E. I.; Dragolici, F.

    2017-05-01

    The management of the radioactive waste assume the conditioning in a cement matrix as an embedding, stable, disposal material. Cement matrix is the first and most important engineering barrier against the migration in the environment of the radionuclides contained in the waste packages. Knowing how the microstructure develops is therefore desirable in order to assess the compatibility of radioactive streams with cement and predict waste form performance during storage and disposal. For conditioning wastes containing radioactive aluminum new formulas of low basicity cements, using coatings as a barrier between the metal and the conditioning environment or introducing a corrosion inhibitor in the matrix system are required. Preliminary microstructure investigation of such improved CEM V based cement matrix is reported.

  17. APT radionuclide production experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullmann, J.L.; Gavron, A.; King, J.D.

    1994-07-02

    Tritium ({sup 3}H, a heavy isotope of hydrogen) is produced by low energy neutron-induced reactions on various elements. One such reaction is n+{sup 3}He {yields}>{sup 3}H+{sup 1}H in which {sup 3}He is transmuted to tritium. Another reaction, which has been used in reactor production of tritium, is the n+{sup 6}Li {yields}> {sup 3}H+{sup 4}He reaction. Accelerator Production of Tritium relies on a high-energy proton beam to produce these neutrons using the spallation reaction, in which high-energy proton beam to produce these neutrons using the spallation reaction, in which high-energy protons reacting with a heavy nucleus produce a shower of low-energymore » neutrons and a lower-mass residual nucleus. It is important to quantify the residual radionuclides produced in the spallation target for two reasons. From an engineering point of view, one must understand short-lived isotopes that may contribute to decay heat. From a safety viewpoint, one must understand what nuclei and decay gammas are produced in order to design adequate shielding, to estimate ultimate waste disposal problems, and to predict possible effects due to accidental dispersion during operation. The authors have performed an experiment to measure the production of radioisotopes in stopping-length W and Pb targets irradiated by a 800 MeV proton beam, and are comparing the results to values obtained from calculations using LAHET and MCNP. The experiment was designed to pay particular attention to the short half-life radionuclides, which have not been previously measured. In the following, they present details of the experiment, explain how they analyzed the data and obtain the results, how they perform the calculations, and finally, how the experimental data agree with the calculations.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endo, Masayuki, E-mail: masay010@yahoo.co.jp; Kaminou, Toshio, E-mail: kaminout@med.tottori-u.ac.jp; Ohuchi, Yasufumi, E-mail: oyasu@med.tottori-u.ac.jp

    Purpose: Covered, self-expandable metallic stents (SEMS) have been enthusiastically adopted for the treatment of esophagotracheal fistula, but problems with stent migration have yet to be resolved. To overcome this problem, we have developed a new hanging-type esophageal stent designed to prevent migration, and we conducted an animal study to assess the efficacy of our method. Methods: A total of six female pigs were used in this study. The main characteristic of our stent was the presence of a string tied to the proximal edge of the stent for fixation under the skin of the neck. The first experiment was performedmore » to confirm technical feasibility in three pigs with esophagotracheal fistula. The second experiment was performed to evaluate stent migration and esophagotracheal fistula in three pigs. Results: Creation of the esophagotracheal fistula and stent placement were technically successful in all pigs. In the first experiment, esophagotracheal fistula was sealed by stent placement. In the second experiment, no stent migration was seen 11 or 12 days after stent placement. Gross findings showed no fistulas on the esophageal or tracheal wall. Conclusions: Our new hanging-type esophageal stent seems to offer a feasible method for preventing stent migration.« less

  19. Security and skills: the two key issues in health worker migration

    PubMed Central

    Bidwell, Posy; Laxmikanth, Pallavi; Blacklock, Claire; Hayward, Gail; Willcox, Merlin; Peersman, Wim; Moosa, Shabir; Mant, David

    2014-01-01

    Background Migration of health workers from Africa continues to undermine the universal provision of quality health care. South Africa is an epicentre for migration – it exports more health workers to high-income countries than any other African country and imports health workers from its lower-income neighbours to fill the gap. Although an inter-governmental agreement in 2003 reduced the very high numbers migrating from South Africa to the United Kingdom, migration continues to other high-income English-speaking countries and few workers seem to return although the financial incentive to work abroad has lessened. A deeper understanding of reasons for migration from South Africa and post-migration experiences is therefore needed to underpin policy which is developed in order to improve retention within source countries and encourage return. Methods Semi-structured interviews were conducted with 16 South African doctors and nurses who had migrated to the United Kingdom. Interviews explored factors influencing the decision to migrate and post-migration experiences. Results Salary, career progression, and poor working conditions were not major push factors for migration. Many health workers reported that they had previously overcome these issues within the South African healthcare system by migrating to the private sector. Overwhelmingly, the major push factors were insecurity, high levels of crime, and racial tension. Although the wish to work and train in what was perceived to be a first-class care system was a pull factor to migrate to the United Kingdom, many were disappointed by the experience. Instead of obtaining new skills, many (particularly nurses) felt they had become ‘de-skilled’. Many also felt that working conditions and opportunities for them in the UK National Health Service (NHS) compared unfavourably with the private sector in South Africa. Conclusions Migration from South Africa seems unlikely to diminish until the major concerns over security, crime, and racial tensions are resolved. However, good working conditions in the private sector in South Africa provide an occupational incentive to return if security did improve. Potential migrants should be made more aware of the risks of losing skills while working abroad that might prejudice return. In addition, re-skilling initiatives should be encouraged. PMID:25079286

  20. Security and skills: the two key issues in health worker migration.

    PubMed

    Bidwell, Posy; Laxmikanth, Pallavi; Blacklock, Claire; Hayward, Gail; Willcox, Merlin; Peersman, Wim; Moosa, Shabir; Mant, David

    2014-01-01

    Migration of health workers from Africa continues to undermine the universal provision of quality health care. South Africa is an epicentre for migration--it exports more health workers to high-income countries than any other African country and imports health workers from its lower-income neighbours to fill the gap. Although an inter-governmental agreement in 2003 reduced the very high numbers migrating from South Africa to the United Kingdom, migration continues to other high-income English-speaking countries and few workers seem to return although the financial incentive to work abroad has lessened. A deeper understanding of reasons for migration from South Africa and post-migration experiences is therefore needed to underpin policy which is developed in order to improve retention within source countries and encourage return. Semi-structured interviews were conducted with 16 South African doctors and nurses who had migrated to the United Kingdom. Interviews explored factors influencing the decision to migrate and post-migration experiences. Salary, career progression, and poor working conditions were not major push factors for migration. Many health workers reported that they had previously overcome these issues within the South African healthcare system by migrating to the private sector. Overwhelmingly, the major push factors were insecurity, high levels of crime, and racial tension. Although the wish to work and train in what was perceived to be a first-class care system was a pull factor to migrate to the United Kingdom, many were disappointed by the experience. Instead of obtaining new skills, many (particularly nurses) felt they had become 'de-skilled'. Many also felt that working conditions and opportunities for them in the UK National Health Service (NHS) compared unfavourably with the private sector in South Africa. Migration from South Africa seems unlikely to diminish until the major concerns over security, crime, and racial tensions are resolved. However, good working conditions in the private sector in South Africa provide an occupational incentive to return if security did improve. Potential migrants should be made more aware of the risks of losing skills while working abroad that might prejudice return. In addition, re-skilling initiatives should be encouraged.

  1. Phase segregation due to simultaneous migration and coalescence

    NASA Technical Reports Server (NTRS)

    Davis, Robert H.

    1994-01-01

    The primary objective of the research is to perform ground-based analysis and experiments on the interaction and coalescence of drops (or bubbles) leading to macroscopic phase separation. Migration of the drops occurs as a result of the individual and collective action of gravity and thermocapillary effects. Larger drops migrate faster than smaller ones, leading to the possibility of collisions and coalescence. Coalescence increases the rate of macroscopic phase separation, since the result is larger drops with higher migration rates. It is hoped that the understanding gained will lead to the design of microgravity experiments to further elucidate the mechanisms governing coalescence and phase separation.

  2. Ethnicity versus migration: two hypotheses about the psychosocial adjustment of immigrant adolescents.

    PubMed

    Slonim-Nevo, Vered; Sharaga, Yana; Mirsky, Julia; Petrovsky, Vadim; Borodenko, Marina

    2006-01-01

    STUDY BACKGROUND AND AIMS: This study investigates the psychosocial adjustment of immigrant adolescents and examines two hypotheses: the ethnicity hypothesis, which suggests that ethnic background determines the psychosocial reactions of immigrant adolescents; and the migration hypothesis, which suggests that the migration experience determines such reactions. The study compared four groups of respondents: first-generation immigrants (N = 63) and second-generation immigrants (N = 64) from the former Soviet Union (FSU) in Israel; and Jewish (N = 212) and non-Jewish (N = 184) adolescents in the FSU. A self-report questionnaire administered to the respondents collected demographic, educational and psychological data using standardised scales. Immigrant adolescents reported higher psychological distress, lower self-esteem and higher alchohol consumption than non-immigrant adolescents. Second-generation immigrants generally showed a higher level of functioning than first-generation immigrants. These findings favor the migration hypothesis. Our findings support the widely accepted view of migration as a potentially distress-provoking experience. They suggest that psychological reactions of immigrant adolescents, and in fact all immigrants, are best interpreted as reactive and are related to the universal stressful qualities of the migration experience. Further multiethnic comparative studies, however, are needed to confirm and refine these findings.

  3. Migration of antioxidants from polylactic acid films: A parameter estimation approach and an overview of the current mass transfer models.

    PubMed

    Samsudin, Hayati; Auras, Rafael; Mishra, Dharmendra; Dolan, Kirk; Burgess, Gary; Rubino, Maria; Selke, Susan; Soto-Valdez, Herlinda

    2018-01-01

    Migration studies of chemicals from contact materials have been widely conducted due to their importance in determining the safety and shelf life of a food product in their packages. The US Food and Drug Administration (FDA) and the European Food Safety Authority (EFSA) require this safety assessment for food contact materials. So, migration experiments are theoretically designed and experimentally conducted to obtain data that can be used to assess the kinetics of chemical release. In this work, a parameter estimation approach was used to review and to determine the mass transfer partition and diffusion coefficients governing the migration process of eight antioxidants from poly(lactic acid), PLA, based films into water/ethanol solutions at temperatures between 20 and 50°C. Scaled sensitivity coefficients were calculated to assess simultaneously estimation of a number of mass transfer parameters. An optimal experimental design approach was performed to show the importance of properly designing a migration experiment. Additional parameters also provide better insights on migration of the antioxidants. For example, the partition coefficients could be better estimated using data from the early part of the experiment instead at the end. Experiments could be conducted for shorter periods of time saving time and resources. Diffusion coefficients of the eight antioxidants from PLA films were between 0.2 and 19×10 -14 m 2 /s at ~40°C. The use of parameter estimation approach provided additional and useful insights about the migration of antioxidants from PLA films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Geomicrobiological redox cycling of the transuranic element neptunium.

    PubMed

    Law, Gareth T W; Geissler, Andrea; Lloyd, Jonathan R; Livens, Francis R; Boothman, Christopher; Begg, James D C; Denecke, Melissa A; Rothe, Jörg; Dardenne, Kathy; Burke, Ian T; Charnock, John M; Morris, Katherine

    2010-12-01

    Microbial processes can affect the environmental behavior of redox sensitive radionuclides, and understanding these reactions is essential for the safe management of radioactive wastes. Neptunium, an alpha-emitting transuranic element, is of particular importance because of its long half-life, high radiotoxicity, and relatively high solubility as Np(V)O(2)(+) under oxic conditions. Here, we describe experiments to explore the biogeochemistry of Np where Np(V) was added to oxic sediment microcosms with indigenous microorganisms and anaerobically incubated. Enhanced Np removal to sediments occurred during microbially mediated metal reduction, and X-ray absorption spectroscopy showed this was due to reduction to poorly soluble Np(IV) on solids. In subsequent reoxidation experiments, sediment-associated Np(IV) was somewhat resistant to oxidative remobilization. These results demonstrate the influence of microbial processes on Np solubility and highlight the critical importance of radionuclide biogeochemistry in nuclear legacy management.

  5. An Experiment with CC Version 3.0 Migration

    DTIC Science & Technology

    2006-09-01

    7th International Common Criteria Conference Lanzarote , Spain September 19-21, 2006 An Experiment with CC Version 3.0 Migration Thuy D. Nguyen...SUPPLEMENTARY NOTES 7th International Common Criteria Conference (ICCC 06), Lanzarote , Spaon, 19-21 Sep 2006 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY

  6. Experiences of migration and the determinants of obesity among recent Iranian immigrants in Victoria, Australia.

    PubMed

    Delavari, Maryam; Farrelly, Ashley; Renzaho, Andre; Mellor, David; Swinburn, Boyd

    2013-01-01

    There is evidence to suggest that immigrant groups from low- or medium-human development index countries show a significant adoption of obesogenic behaviors and experience weight gain following migration to Australia. The objective of this study is to understand the changes that Iranian immigrants experience in relation to the determinants of obesity after migration to Victoria, Australia. We conducted five focus group discussions with 33 recent Iranian immigrants. This study took an interpretive qualitative approach to data analysis using the constant comparative method. Participants discussed individual level acculturation (e.g., in diet, body size, attitudes), as well as environmental level changes (e.g., physical/structural and sociocultural) that occurred after immigration. Stress during the initial immigration transition, which affected diet and physical activity habits, was a common experience among participants. Gender and the effect of political/religious changes were also important factors. Participants' discourse largely focused on their ability and willingness to adopt positive health behaviors after migration. This study provides insight into the effect of migration on the determinants of obesity among Iranian immigrants in Victoria, Australia, and offers a contrast with the existing evidence by considering the experience of a group that is generally well educated, often emigrates for reasons related to personal freedom as opposed to material deprivation, and has rates of obesity similar to high-income countries.

  7. Use of Quantity Indicators for Forecasting of Biogeochemical Behavior Sr-90 and Cs-137 in the Conditions of the Combined Pollution of Soils

    NASA Astrophysics Data System (ADS)

    Lavrentyeva, G. V.; Geshel, I. V.

    2012-04-01

    From huge number of the radionuclides generated by anthropogenous activity the major value the group of biologically active radionuclides has. First of all, it Sr-90 and Cs-137 which play an important role in various radiological situations. In researches on studying of laws of behavior in environment Sr -90 and Cs-137 the basic attention was given to studying of influence of their chemical analogs Ca and K, instead of stable isotopes Sr and Cs. However, even low concentration of stable isotopes Sr and Cs in soil can influence on biogeochemical behavior of radionuclides. Objects of research: dernovo-podsolic soil, summer barley of grade, stable and radioactive isotopes Sr, Cs. Schemes of experiments provided entering of 8 doses stable Cs and Sr in the range from 0 to 500-750 mg/kg of air-dry weight of soil and 50 kBq of radionuclides on each frequency. Absorption of radionuclides by plants will be defined by two parametres of transport. The first - factor of transition (TF), which characterises level of regulation of process of carrying over of a radionuclide from soil in plants and depends on distribution of an element between the firm and liquid phase, distribution defined in the factor (Kd). The second parametre - factor of concentrating (CF) which characterises biological level of regulation of this process. The increase in quantity of stable Sr in soil leads to an active desorption Sr-90 in a soil solution on all frequency. Kd of Cs-137 on the general background of which decrease in values some increase in factor in the range of 120-225 mg of Cs/kg of soil is observed. Received Kd of radionuclides will well be co-ordinated with the revealed functional dependences between concentration Cs and Sr in soil and specific activity Cs-137 and Sr-90 in a soil solution. Comparison CF of two radionuclides shows that plants absorb Sr-90 from a soil solution actively, than Cs-137. Thus values CF of Sr-90 in the investigated interval of concentration of a stable isotope are in inverse relationship from the element maintenance in a soil solution in all investigated interval of the maintenance of the isotope carrier whereas change similar the indicator for Cs-137 has more difficult dependence. The revealed laws of change of CF studied radionuclides prove to be true the received dependences of accumulation Sr-90 and Cs-137 in barley from specific activity of radionuclides in a soil solution. Values of TF of Sr-90 are in direct dependence on level of the maintenance stable Sr, below similar indicators for Cs-137 in all interval of change of concentration of stable isotopes. It finds reflection in the analysis of functional dependences between concentration of radionuclides in plants and soil. The received values of studied factors completely reflect change of specific activity of radionuclides in a soil solution and their biological availability depending on concentration of their stable isotopes that confirms use possibility in the prognostic purposes of these indicators.

  8. Transnational migration of Mexican scientists: A circuit between Mexico and the EEUU

    NASA Astrophysics Data System (ADS)

    Tinoco Herrera, Mario Luis

    The experience and meaning of migration for a group of Mexican scientists participating in the construction of a migratory circuit between Mexico and US within the field of agricultural sciences is the object of this study. I define this migratory circuit of scientists as a social, historical and cultural process, and draw from transnational migration theories to analyze it. From this perspective, I view the migratory circuit of Mexican scientists to be a field of social relationships extended across Mexico and the US. In studying the migratory experience and its significance, I draw upon the methods of historical reconstruction of the circuit of scientists between Mexico and the US, participatory observation, informal narratives, testimonies and their analysis. This study focuses on three crucial moments of their migratory experience: (1) the moment prior to their trip to the US; (2) their academic training at a research center in the US; and (3) their return to a research center in Mexico. At the same time, this study highlights three key factors that determine and ascribe different meanings to the experiences of this migratory circuit: gender, academic trajectory, and the belonging to a migratory circuit. The findings from this study have shown that the experiences of migration and their multiple meanings are complex, heterogeneous and paradoxical. The complexity lies in the challenges of academic responsibilities and their near total integration and transformation of the participants' social life, as well as family life. These migratory experiences are further differentiated and problematic because of the various perceptions and sense of value that are mediated by gender, academic trajectory, and belonging to a circuit of migration; and, they are paradoxical because even though the experiences, perceptions and meanings are different and, at times, challenging, every single participant has described their experience as positive.

  9. Beyond greener pastures: exploring contexts surrounding Filipino nurse migration in Canada through oral history.

    PubMed

    Ronquillo, Charlene; Boschma, Geertje; Wong, Sabrina T; Quiney, Linda

    2011-09-01

    The history of immigrant Filipino nurses in Canada has received little attention, yet Canada is a major receiving country of a growing number of Filipino migrants and incorporates Filipino immigrant nurses into its healthcare workforce at a steady rate. This study aims to look beyond the traditional economic and policy analysis perspectives of global migration and beyond the push and pull factors commonly discussed in the migration literature. Through oral history, this study explores biographical histories of nine Filipino immigrant nurses currently working in British Columbia and Alberta, Canada. Narratives reveal the instrumental role of the deeply embedded culture of migration in the Philippines in influencing Filipino nurses to migrate. Additionally, the stories illustrate the weight of cultural pressures and societal constructs these nurses faced that first colored their decision to pursue a career in nursing and ultimately to pursue emigration. Oral history is a powerful tool for examining migration history and sheds light on nuances of experience that might otherwise be neglected. This study explores the complex connections between various factors motivating Filipino nurse migration, the decision-making process, and other pre-migration experiences. © 2011 Blackwell Publishing Ltd.

  10. Resuspension and redistribution of radionuclides during grassland and forest fires in the Chernobyl exclusion zone: part II. Modeling the transport process.

    PubMed

    Yoschenko, V I; Kashparov, V A; Levchuk, S E; Glukhovskiy, A S; Khomutinin, Yu V; Protsak, V P; Lundin, S M; Tschiersch, J

    2006-01-01

    To predict parameters of radionuclide resuspension, transport and deposition during forest and grassland fires, several model modules were developed and adapted. Experimental data of controlled burning of prepared experimental plots in the Chernobyl exclusion zone have been used to evaluate the prognostic power of the models. The predicted trajectories and elevations of the plume match with those visually observed during the fire experiments in the grassland and forest sites. Experimentally determined parameters could be successfully used for the calculation of the initial plume parameters which provide the tools for the description of various fire scenarios and enable prognostic calculations. In summary, the model predicts a release of some per thousand from the radionuclide inventory of the fuel material by the grassland fires. During the forest fire, up to 4% of (137)Cs and (90)Sr and up to 1% of the Pu isotopes can be released from the forest litter according to the model calculations. However, these results depend on the parameters of the fire events. In general, the modeling results are in good accordance with the experimental data. Therefore, the considered models were successfully validated and can be recommended for the assessment of the resuspension and redistribution of radionuclides during grassland and forest fires in contaminated territories.

  11. Rapid removal of Chernobyl fallout from Mediterranean surface waters by biological activity

    NASA Astrophysics Data System (ADS)

    Fowler, Scott W.; Buat-Menard, Patrick; Yokoyama, Yuji; Ballestra, Serge; Holm, Elis; Nguyen, Huu Van

    1987-09-01

    The sinking of participate organic matter from the euphotic zone is an important pathway for the vertical transport of many elements and organic compounds in the sea1-3. Many natural4-5 and artificial5-7 radionuclides in surface waters are readily adsorbed onto suspended particles and are presumably scavenged and removed to depth on time scales commensurate with both particle sinking rate and retention time of the radionuclide on the particle. Previously, abyssal benthic organisms from the northeast Pacific were found to contain short-lived fission products which entered the sea surface as fallout from nuclear testing8. The presence of these radionuclides at great depth could not be explained by Stokesian settling of small fallout particles and it was hypothesized8 that zooplankton grazing in the surface layers packaged these particle-reactive radionuclides into large, relatively dense faecal pellets which rapidly sank to depth. We report here data from a time-series sediment trap experiment and concomitant zooplankton collections which show conclusively that Chernobyl radioactivity, in particular the rare earth nuclides 141Ce and 144Ce, entering the Mediterranean as a single pulse, was rapidly removed from surface waters and transported to 200m in a few days primarily by zooplankton grazing.

  12. Worldwide dispersion and deposition of radionuclides produced in atmospheric tests.

    PubMed

    Bennett, Burton G

    2002-05-01

    Radionuclides produced in atmospheric nuclear tests were widely dispersed in the global environment. From the many measurements of the concentrations in air and the deposition amounts, much was learned of atmospheric circulation and environmental processes. Based on these results and the reported fission and total yields of individual tests, it has been possible to devise an empirical model of the movement and residence times of particles in the various atmospheric regions. This model, applied to all atmospheric weapons tests, allows extensive calculations of air concentrations and deposition amounts for the entire range of radionuclides produced throughout the testing period. Especially for the shorter-lived fission radionuclides, for which measurement results at the time of the tests are less extensive, a more complete picture of levels and isotope ratios can be obtained, forming a basis for improved dose estimations. The contributions to worldwide fallout can be inferred from individual tests, from tests at specific sites, or by specific countries. Progress was also made in understanding the global hydrological and carbon cycles from the tritium and 14C measurements. A review of the global measurements and modeling results is presented in this paper. In the future, if injections of materials into the atmosphere occur, their anticipated motions and fates can be predicted from the knowledge gained from the fallout experience.

  13. Microtomography-based Inter-Granular Network for the simulation of radionuclide diffusion and sorption in a granitic rock

    NASA Astrophysics Data System (ADS)

    Iraola, Aitor; Trinchero, Paolo; Voutilainen, Mikko; Gylling, Björn; Selroos, Jan-Olof; Molinero, Jorge; Svensson, Urban; Bosbach, Dirk; Deissmann, Guido

    2017-12-01

    Field investigation studies, conducted in the context of safety analyses of deep geological repositories for nuclear waste, have pointed out that in fractured crystalline rocks sorbing radionuclides can diffuse surprisingly long distances deep into the intact rock matrix; i.e. much longer distances than those predicted by reactive transport models based on a homogeneous description of the properties of the rock matrix. Here, we focus on cesium diffusion and use detailed micro characterisation data, based on micro computed tomography, along with a grain-scale Inter-Granular Network model, to offer a plausible explanation for the anomalously long cesium penetration profiles observed in these in-situ experiments. The sparse distribution of chemically reactive grains (i.e. grains belonging to sorbing mineral phases) is shown to have a strong control on the diffusive patterns of sorbing radionuclides. The computed penetration profiles of cesium agree well with an analytical model based on two parallel diffusive pathways. This agreement, along with visual inspection of the spatial distribution of cesium concentration, indicates that for sorbing radionuclides the medium indeed behaves as a composite system, with most of the mass being retained close to the injection boundary and a non-negligible part diffusing faster along preferential diffusive pathways.

  14. Radioactive waste handling and disposal at King Faisal Specialist Hospital and Research Centre.

    PubMed

    Al-Haj, Abdalla N; Lobriguito, Aida M; Al Anazi, Ibrahim

    2012-08-01

    King Faisal Specialist Hospital & Research Centre (KFSHRC) is the largest specialized medical center in Saudi Arabia. It performs highly specialized diagnostic imaging procedures with the use of various radionuclides required by sophisticated dual imaging systems. As a leading institution in cancer research, KFSHRC uses both long-lived and short-lived radionuclides. KFSHRC established the first cyclotron facility in the Middle East, which solved the in-house high demand for radionuclides and the difficulty in importing them. As both user and producer of high standard radiopharmaceuticals, KFSHRC generates large volumes of low and high level radioactive wastes. An old and small radioactive facility that was used for storage of radioactive waste was replaced with a bigger warehouse provided with facilities that will reduce radiation exposure of the staff, members of the public, and of the environment in the framework of "as low as reasonably achievable." The experiences and the effectiveness of the radiation protection program on handling and storage of radioactive wastes are presented.

  15. An international model validation exercise on radionuclide transfer and doses to freshwater biota.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yankovich, T. L.; Vives i Batlle, J.; Vives-Lynch, S.

    2010-06-09

    Under the International Atomic Energy Agency (IAEA)'s EMRAS (Environmental Modelling for Radiation Safety) program, activity concentrations of {sup 60}Co, {sup 90}Sr, {sup 137}Cs and {sup 3}H in Perch Lake at Atomic Energy of Canada Limited's Chalk River Laboratories site were predicted, in freshwater primary producers, invertebrates, fishes, herpetofauna and mammals using eleven modelling approaches. Comparison of predicted radionuclide concentrations in the different species types with measured values highlighted a number of areas where additional work and understanding is required to improve the predictions of radionuclide transfer. For some species, the differences could be explained by ecological factors such as trophicmore » level or the influence of stable analogues. Model predictions were relatively poor for mammalian species and herpetofauna compared with measured values, partly due to a lack of relevant data. In addition, concentration ratios are sometimes under-predicted when derived from experiments performed under controlled laboratory conditions representative of conditions in other water bodies.« less

  16. Modification of (137)Cs transfer to rape (Brassica napus L.) phytomass under the influence of soil microorganisms.

    PubMed

    Pareniuk, O; Shavanova, K; Laceby, J P; Illienko, V; Tytova, L; Levchuk, S; Gudkov, I; Nanba, K

    2015-11-01

    After nuclear accidents, such as those experienced in Chernobyl and Fukushima, microorganisms may help purify contaminated soils by changing the mobility of radionuclides and their availability for plants by altering the physical and chemical properties of the substrate. Here, using model experiments with quartz sand as a substrate we investigate the influence of microorganisms on (137)Cs transfer from substrate to plants. The highest transition of (137)Cs from substrate to plants (50% increase compared to the control) was observed after Brassica napus L. seeds were inoculated by Azotobacter chroococcum. The best results for reducing the accumulation of (137)Cs radionuclides (30% less) were noted after the inoculation by Burkholderia sp.. Furthermore, Bacillus megaterium demonstrated an increased ability to accumulate (137)Cs. This research improves our prediction of the behavior of radionuclides in soil and may contribute towards new, microbiological countermeasures for soil remediation following nuclear accidents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Setting a New Research Agenda: Professional Migration Experiences and Their Impact on Family Well-Being

    ERIC Educational Resources Information Center

    Dunlop, Ted

    2011-01-01

    In this article, the author talks about the growing pattern of migration experiences for professional people and the impact these have on the well-being of the family as a whole and individual family members who reside outside their home countries for prescribed periods of time. It is easy to argue that the experiences of such families are far…

  18. Estimation of apparent rate coefficients for radionuclides interacting with marine sediments from Novaya Zemlya.

    PubMed

    Børretzen, P; Salbu, B

    2000-10-30

    To assess the impact of radionuclides entering the marine environment from dumped nuclear waste, information on the physico-chemical forms of radionuclides and their mobility in seawater-sediment systems is essential. Due to interactions with sediment components, sediments may act as a sink, reducing the mobility of radionuclides in seawater. Due to remobilisation, however, contaminated sediments may also act as a potential source of radionuclides to the water phase. In the present work, time-dependent interactions of low molecular mass (LMM, i.e. species < 10 kDa) radionuclides with sediments from the Stepovogo Fjord, Novaya Zemlya and their influence on the distribution coefficients (Kd values) have been studied in tracer experiments using 109Cd2+ and 60Co2+ as gamma tracers. Sorption of the LMM tracers occurred rapidly and the estimated equilibrium Kd(eq)-values for 109Cd and 60Co were 500 and 20000 ml/g, respectively. Remobilisation of 109Cd and 60Co from contaminated sediment fractions as a function of contact time was studied using sequential extraction procedures. Due to redistribution, the reversibly bound fraction of the gamma tracers decreased with time, while the irreversibly (or slowly reversibly) associated fraction of the gamma tracers increased. Two different three-compartment models, one consecutive and one parallel, were applied to describe the time-dependent interaction of the LMM tracers with operationally defined reversible and irreversible (or slowly reversible) sediment fractions. The interactions between these fractions were described using first order differential equations. By fitting the models to the experimental data, apparent rate constants were obtained using numerical optimisation software. The model optimisations showed that the interactions of LMM 60Co were well described by the consecutive model, while the parallel model was more suitable to describe the interactions of LMM 109Cd with the sediments, when the squared sum of residuals were compared. The rate of sorption of the irreversibly (or slowly reversibly) associated fraction was greater than the rate of desorption of the reversibly bound fractions (i.e. k3 > k2) for both radionuclides. Thus, the Novaya Zemlya sediment are supposed to act as a sink for the radionuclides under oxic conditions, and transport to the water phase should mainly be attributed to resuspended particles.

  19. Processes for Removal and Immobilization of 14C, 129I, and 85Kr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strachan, Denis M.; Bryan, Samuel A.; Henager, Charles H.

    2009-10-05

    This is a white paper covering the results of a literature search and preliminary experiments on materials and methods to remove and immobilize gaseous radionuclided that come from the reprocessing of spent nuclear fuel.

  20. Methods of separating short half-life radionuclides from a mixture of radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bray, L.A.; Ryan, J.L.

    1998-09-15

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of {sup 223}Ra and {sup 225}Ac, from a radionuclide ``cow`` of {sup 227}Ac or {sup 229}Th respectively. The method comprises the steps of (a) permitting ingrowth of at least one radionuclide daughter from said radionuclide ``cow`` forming an ingrown mixture; (b) insuring that the ingrown mixture is a nitric acid ingrown mixture; (c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the ``cow`` from at least one radionuclide daughter; (d) insuring that the at leastmore » one radionuclide daughter contains the radionuclide product; (e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and (f) recycling the at least one radionuclide daughter by adding it to the ``cow``. In one embodiment the radionuclide ``cow`` is the {sup 227}Ac, the at least one daughter radionuclide is a {sup 227}Th and the product radionuclide is the {sup 223}Ra and the first nitrate form ion exchange column passes the {sup 227}Ac and retains the {sup 227}Th. In another embodiment the radionuclide ``cow`` is the {sup 229}Th, the at least one daughter radionuclide is a {sup 225}Ra and said product radionuclide is the {sup 225}Ac and the {sup 225}Ac and nitrate form ion exchange column retains the {sup 229}Th and passes the {sup 225}Ra/Ac. 8 figs.« less

  1. Methods of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, Lane A.; Ryan, Jack L.

    1998-01-01

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of .sup.223 Ra and .sup.225 Ac, from a radionuclide "cow" of .sup.227 Ac or .sup.229 Th respectively. The method comprises the steps of a) permitting ingrowth of at least one radionuclide daughter from said radionuclide "cow" forming an ingrown mixture; b) insuring that the ingrown mixture is a nitric acid ingrown mixture; c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the "cow" from at least one radionuclide daughter; d) insuring that the at least one radionuclide daughter contains the radionuclide product; e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and f) recycling the at least one radionuclide daughter by adding it to the "cow". In one embodiment the radionuclide "cow" is the .sup.227 Ac, the at least one daughter radionuclide is a .sup.227 Th and the product radionuclide is the .sup.223 Ra and the first nitrate form ion exchange column passes the .sup.227 Ac and retains the .sup.227 Th. In another embodiment the radionuclide "cow"is the .sup.229 Th, the at least one daughter radionuclide is a .sup.225 Ra and said product radionuclide is the .sup.225 Ac and the .sup.225 Ac and nitrate form ion exchange column retains the .sup.229 Th and passes the .sup.225 Ra/Ac.

  2. Methods of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, L.A.; Ryan, J.L.

    1998-09-15

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of {sup 223}Ra and {sup 225}Ac, from a radionuclide ``cow`` of {sup 227}Ac or {sup 229}Th respectively. The method comprises the steps of (a) permitting ingrowth of at least one radionuclide daughter from said radionuclide ``cow`` forming an ingrown mixture; (b) insuring that the ingrown mixture is a nitric acid ingrown mixture; (c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the ``cow`` from at least one radionuclide daughter; (d) insuring that the at least one radionuclide daughter contains the radionuclide product; (e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and (f) recycling the at least one radionuclide daughter by adding it to the ``cow``. In one embodiment the radionuclide ``cow`` is the {sup 227}Ac, the at least one daughter radionuclide is a {sup 227}Th and the product radionuclide is the {sup 223}Ra and the first nitrate form ion exchange column passes the {sup 227}Ac and retains the {sup 227}Th. In another embodiment the radionuclide ``cow`` is the {sup 229}Th, the at least one daughter radionuclide is a {sup 225}Ra and said product radionuclide is the {sup 225}Ac and the {sup 225}Ac and nitrate form ion exchange column retains the {sup 229}Th and passes the {sup 225}Ra/Ac. 8 figs.

  3. Global migration and health: ecofeminist perspectives.

    PubMed

    McGuire, S

    1998-12-01

    Global migration is occurring at an unprecedented rate. The phenomenon of migration is complex and poorly understood by most people in countries who host immigrants. People migrate for numerous reasons related to social, economic, political, cultural, and physical environmental conditions formed by historical antecedents. Migrating people, especially vulnerable women and children, are exposed to numerous health hazards, a situation calling for a response from nursing. To respond effectively nursing needs knowledge development of global migration and health that includes the precursors to migration in addition to the postmigration experience where nurses encounter immigrants. Ecofeminist perspectives allowing for reflection on historical determinants and interlocking socioeconomic, political, and environmental conditions are used as a prism to examine global migration and health.

  4. Turbulence investigation and reproduction for assisting downstream migrating juvenile salmonids, Part II of II: Effects of induced turbulence on behavior of juvenile salmon, 2001-2005 final report

    USGS Publications Warehouse

    Perry, R.; Farley , M.; Hansen, G.; Morse , J.; Rondorf, D.

    2005-01-01

    Passage through dams is a major source of mortality of anadromous juvenile salmonids because some populations must negotiate up to eight dams in Columbia and Snake rivers. Dams cause direct mortality when fish pass through turbines, but dams may also cause indirect mortality by altering migration conditions in rivers. Forebays immediately upstream of dams have decreased the water velocity of rivers and may contribute substantially to the total migration delay of juvenile salmonids. Recently, Coutant (2001a) suggested that in addition to low water velocities, lack of natural turbulence may contribute to migration delay by causing fish to lose directional cues. Coutant (2001a) further hypothesized that restoring turbulence in dam forebays may reduce migration delay by providing directional cues that allow fish to find passage routes more quickly (Coutant 2001a). Although field experiments have yielded proof of the concept of using induced turbulence to guide fish to safe passage routes, little is known about mechanisms actually causing behavioral changes. To test hypotheses about how turbulence influences movement and behavior of migrating juvenile salmonids, we conducted two types of controlled experiments at Cowlitz Falls Dam, Washington. A common measure of migration delay is the elapsed time between arrival at, and passage through, a dam. Therefore, for the first set of experiments, we tested the effect of induced turbulence on the elapsed time needed for fish to traverse through a raceway and pass over a weir at its downstream end (time trial experiment). If turbulence helps guide fish to passage routes, then fish should pass through the raceway quicker in the presence of appropriately scaled and directed turbulent cues. Second, little is known about how the physical properties of water movement provide directional cues to migrating juvenile salmonids. To examine the feasibility of guiding fish with turbulence, we tested whether directed turbulence could guide fish into one of two channels in the raceway, and subsequently cause them to pass disproportionately over the weir where turbulent cues were aimed (guidance experiment). Last, we measured and mapped water velocity and turbulence during the experiments to understand water movement patterns and the spatial distribution of turbulence in the raceways.

  5. Retardation of mobile radionuclides in granitic rock fractures by matrix diffusion

    NASA Astrophysics Data System (ADS)

    Hölttä, P.; Poteri, A.; Siitari-Kauppi, M.; Huittinen, N.

    Transport of iodide and sodium has been studied by means of block fracture and core column experiments to evaluate the simplified radionuclide transport concept. The objectives were to examine the processes causing retention in solute transport, especially matrix diffusion, and to estimate their importance during transport in different scales and flow conditions. Block experiments were performed using a Kuru Grey granite block having a horizontally planar natural fracture. Core columns were constructed from cores drilled orthogonal to the fracture of the granite block. Several tracer tests were performed using uranine, 131I and 22Na as tracers at water flow rates 0.7-50 μL min -1. Transport of tracers was modelled by applying the advection-dispersion model based on the generalized Taylor dispersion added with matrix diffusion. Scoping calculations were combined with experiments to test the model concepts. Two different experimental configurations could be modelled applying consistent transport processes and parameters. The processes, advection-dispersion and matrix diffusion, were conceptualized with sufficient accuracy to replicate the experimental results. The effects of matrix diffusion were demonstrated on the slightly sorbing sodium and mobile iodine breakthrough curves.

  6. The consequences of Ireland's culture of medical migration.

    PubMed

    Humphries, Niamh; Crowe, Sophie; McDermott, Cian; McAleese, Sara; Brugha, Ruairi

    2017-12-28

    In recent years, Ireland has experienced a large-scale, outward migration of doctors. This presents a challenge for national policy makers and workforce planners seeking to build a self-sufficient medical workforce that trains and retains enough doctors to meet demand. Although, traditionally, medical migration has been considered beneficial to the Irish health system, austerity has brought a greater level of uncertainty to the health system and, with it, a need to reappraise the professional culture of migration and its impact on the Irish health system. This paper illustrates how a culture of migration informs career and migration plans. It draws on quantitative data-registration and migration data from source and destination countries-and qualitative data-in-depth interviews with 50 doctors who had undertaken postgraduate medical training in Ireland. Of 50 respondents, 42 highlighted the importance of migration. The culture of medical migration rests on two assumptions-that international training/experience is beneficial to all doctors and that those who emigrate will return to Ireland with additional skills and experience. This assumption of return is challenged by a new generation of doctors whose professional lives have been shaped by globalisation and by austerity. Global comparisons reveal the comparatively poor working conditions, training and career opportunities in Ireland and the relative attractiveness of a permanent career abroad. In light of these changes, there is a need to critically appraise the culture of medical migration to determine if and in what circumstances migration is appropriate to the needs of the Irish health system. The paper considers the need to reappraise the culture of medical migration and the widespread emigration that it promotes.

  7. New Methods for Targeted Alpha Radiotherapy

    NASA Astrophysics Data System (ADS)

    Robertson, J. David

    2014-03-01

    Targeted radiotherapies based on alpha emitters are a promising alternative to beta emitting radionuclides. Because of their much shorter range, targeted α-radiotherapy (TAT) agents have great potential for application to small, disseminated tumors and micro metastases and treatment of hematological malignancies consisting of individual, circulating neoplastic cells. A promising approach to TAT is the use of the in vivo α-generator radionuclides 223 = 11.4 d) and 225Ac 1/2 = 10.0 d). In addition to their longer half-lives, these two isotopes have the potential of dramatically increasing the therapeutic efficacy of TAT as they each emit four α particles in their decay chain. This principle has recently been exploited in the development of Xofigo®, the first TAT agent approved for clinical use by the U.S. FDA. Xofigo, formulated as 223RaCl2, is used for treatment of metastatic bone cancer in men with castration-resistant prostate cancer. TAT with 223Ra works, however, only in the case of bone cancer because radium, as a chemical analogue of calcium, efficiently targets bone. In order to bring the benefits of TAT with 223Ra or 225Ac to other tumor types, a new delivery method must be devised. Retaining the in vivo α generator radionuclides at the target site through the decay process is one of the major challenges associated with the development of TAT. Because the recoil energy of the daughter radionuclides from the α-emission is ~ 100 keV - a value which is four orders of magnitude greater than the energy of a covalent bond - the daughters will not remain bound to the bioconjugate at the targeting site. Various approaches have been attempted to achieve retention of the α-generator daughter radionuclides at the target site, including incorporation of the in vivo generator into liposomes and fullerenes. Unfortunately, to date single wall liposomes and fullerenes are able to retain less than 10% of the daughter radionuclides. We have recently demonstrated that a multilayered nanoparticle-antibody conjugate can deliver multiple α radiations from the in vivo α-generator 225Ac at biologically relevant receptor sites. The nanoparticles retained over 90% of the 221Fr daughter over the course of three weeks in in vitro experiments. In in vivo experiments, approximately 90% of the 213Bi was retained in the target tissue 24 hours after injection of the antibody labeled nanoparticle. An overview of the development and application of this promising, new approach to targeted alpha therapy will be presented.

  8. Joint release rate estimation and measurement-by-measurement model correction for atmospheric radionuclide emission in nuclear accidents: An application to wind tunnel experiments.

    PubMed

    Li, Xinpeng; Li, Hong; Liu, Yun; Xiong, Wei; Fang, Sheng

    2018-03-05

    The release rate of atmospheric radionuclide emissions is a critical factor in the emergency response to nuclear accidents. However, there are unavoidable biases in radionuclide transport models, leading to inaccurate estimates. In this study, a method that simultaneously corrects these biases and estimates the release rate is developed. Our approach provides a more complete measurement-by-measurement correction of the biases with a coefficient matrix that considers both deterministic and stochastic deviations. This matrix and the release rate are jointly solved by the alternating minimization algorithm. The proposed method is generic because it does not rely on specific features of transport models or scenarios. It is validated against wind tunnel experiments that simulate accidental releases in a heterogonous and densely built nuclear power plant site. The sensitivities to the position, number, and quality of measurements and extendibility of the method are also investigated. The results demonstrate that this method effectively corrects the model biases, and therefore outperforms Tikhonov's method in both release rate estimation and model prediction. The proposed approach is robust to uncertainties and extendible with various center estimators, thus providing a flexible framework for robust source inversion in real accidents, even if large uncertainties exist in multiple factors. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Plume capture by a migrating ridge: Analog geodynamic experiments

    NASA Astrophysics Data System (ADS)

    Mendez, J. S.; Hall, P.

    2010-12-01

    Paleomagnetic data from the Hawaii-Emperor Seamount Chain (HESC) suggests that the Hawaiian hotspot moved rapidly (~40 mm/yr) between 81 - 47 Ma but has remained relatively stationary since that time. This implies that the iconic bend in the HESC may in fact reflect the transition from a period of rapid hotspot motion to a stationary state, rather than a change in motion of the Pacific plate. Tarduno et al. (2009) have suggested that this period of rapid hotspot motion might be the surface expression of a plume conduit returning to a largely vertical orientation after having been “captured” and tilted by a migrating mid-ocean ridge. We report on a series of analog fluid dynamic experiments designed to characterize the interaction between a migrating spreading center and a thermally buoyant mantle plume. Experiments were conducted in a clear acrylic tank (100 cm x 70 cm x 50 cm) filled with commercial grade high-fructose corn syrup. Plate-driven flow is modeled by dragging two sheets of Mylar film (driven by independent DC motors) in opposite directions over the surface of the fluid. Ridge migration is achieved by moving the point at which the mylar sheets diverge using a separate motor drive. Buoyant plume flow is modeled using corn syrup introduced into the bottom of the tank from an external, heated, pressurized reservoir. Small (~2 mm diameter), neutrally buoyant Delrin spheres are mixed into reservoir of plume material to aid in visualization. Plate velocities and ridge migration rate are controlled and plume temperature monitored using LabView software. Experiments are recorded using digital video which is then analyzed using digital image analysis software to track the position and shape of the plume conduit throughout the course of the experiment. The intersection of the plume conduit with the surface of the fluid is taken as an analog for the locus of hotspot volcanism and tracked as a function of time to obtain a hotspot migration rate. Experiments are scaled to the Earth's mantle through a combination of a Peclet number and a plume buoyancy number. A range of spreading rates, ridge migration rates, and plume excess temperatures representative of the Earth are considered.

  10. Local Practice, Translocal People: Conflicting Identities in the Multilingual Classroom

    ERIC Educational Resources Information Center

    Sharples, Robert

    2017-01-01

    Increasing rates of migration to the global West are focusing attention on the experiences of young migrants in schools. Too often, these young people are identified in terms of linguistic deficiency but this obscures the skills, experiences and expectations of formal education that they have developed before or during their migration. This…

  11. Nurses across borders: foregrounding international migration in nursing history.

    PubMed

    Choy, Catherine Ceniza

    2010-01-01

    Although the international migration of nurses has played a formative role in increasing the racial and ethnic diversity of the health care labor force, nursing historians have paid very little attention to the theme of international migration and the experiences of foreign-trained nurses, A focus on international migration complements two new approaches in nursing history: the agenda to internationalize its frameworks, and the call to move away from "great women, great events" and toward the experiences of "ordinary" nurses. This article undertakes a close reading of the life and work of Filipino American nurse Ines Cayaban to reconceptualize nursing biography in an international framework that is attentive to issues of migration, race, gender, and colonialism. It was a Hannah keynote lecture delivered by the author on June 5, 2008, as part of the CAHN/ACHN (Canadian Association for the History of Nursing/Association Canadienne pour l'Histoire du Nursing) International Nursing History Conference.

  12. Glial cell migration in the eye disc.

    PubMed

    Silies, Marion; Yuva, Yeliz; Engelen, Daniel; Aho, Annukka; Stork, Tobias; Klämbt, Christian

    2007-11-28

    Any complex nervous system is made out of two major cell types, neurons and glial cells. A hallmark of glial cells is their pronounced ability to migrate. En route to their final destinations, glial cells are generally guided by neuronal signals. Here we show that in the developing visual system of Drosophila glial cell migration is largely controlled by glial-glial interactions and occurs independently of axonal contact. Differentiation into wrapping glia is initiated close to the morphogenetic furrow. Using single cell labeling experiments we identified six distinct glial cell types in the eye disc. The migratory glial population is separated from the wrapping glial cells by the so-called carpet cells, extraordinary large glial cells, each covering a surface area of approximately 10,000 epithelial cells. Subsequent cell ablation experiments demonstrate that the carpet glia regulates glial migration in the eye disc epithelium and suggest a new model underlying glial migration and differentiation in the developing visual system.

  13. Radionuclide Therapy

    NASA Astrophysics Data System (ADS)

    Zalutsky, M. R.

    Radionuclide therapy utilizes unsealed sources of radionuclides as a treatment for cancer or other pathological conditions such as rheumatoid arthritis. Radionuclides that decay by the emission of β and α particles, as well as those that emit Auger electrons, have been used for this purpose. In this chapter, radiochemical aspects of radionuclide therapy, including criteria for radionuclide selection, radionuclide production, radiolabeling chemistry, and radiation dosimetry are discussed.

  14. Method and apparatus for separating radionuclides from non-radionuclides

    DOEpatents

    Harp, Richard J.

    1990-01-01

    In an apparatus for separating radionuclides from non-radionuclides in a mixture of nuclear waste, a vessel is provided wherein the mixture is heated to a temperature greater than the temperature of vaporization for the non-radionuclides but less than the temperature of vaporization for the radionuclides. Consequently the non-radionuclides are vaporized while the non-radionuclides remain the solid or liquid state. The non-radionuclide vapors are withdrawn from the vessel and condensed to produce a flow of condensate. When this flow decreases the heat is reduced to prevent temperature spikes which might otherwise vaporize the radionuclides. The vessel is removed and capped with the radioactive components of the apparatus and multiple batches of the radionuclide residue disposed therein. Thus the vessel ultimately provides a burial vehicle for all of the radioactive components of the process.

  15. Impact of iron redox chemistry on nuclear waste disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearce, Carolyn I.; Rosso, Kevin M.; Pattrick, Richard

    For the safe disposal of nuclear waste, the ability to predict the changes in oxidation states of redox active actinide elements and fission products, such as U, Pu, Tc and Np is a key factor in determining their long term mobility. Both in the Geological Disposal Facility (GDF) near-field and in the far-field subsurface environment, the oxidation states of radionuclides are closely tied to changes in the redox condition of other elements in the subsurface such as iron. Iron pervades all aspects of the waste package environment, from the steel in the waste containers, through corrosion products, to the ironmore » minerals present in the host rock. Over the long period required for nuclear waste disposal, the chemical conditions of the subsurface waste package will vary along the entire continuum from oxidizing to reducing conditions. This variability leads to the expectation that redox-active components such as Fe oxides can undergo phase transformations or dissolution; to understand and quantify such a system with respect to potential impacts on waste package integrity and radionuclide fate is clearly a serious challenge. Traditional GDF performance assessment models currently rely upon surface adsorption or single phase solubility experiments and do not deal with the incorporation of radionuclides into specific crystallographic sites within the evolving Fe phases. In this chapter, we focus on the iron-bearing phases that are likely to be present in both the near and far-field of a GDF, examining their potential for redox activity and interaction with radionuclides. To support this, thermodynamic and molecular modelling is particularly important in predicting radionuclide behaviour in the presence of Fe-phases. Examination of radionuclide contamination of the natural environment provides further evidence of the importance of Fe-phases in far-field processes; these can be augmented by experimental and analogue studies.« less

  16. Performance-assessment progress for the Rozan low-level waste disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smietanski, L.; Mitrega, J.; Frankowski, Z.

    1995-12-31

    The paper presents a condensed progress report on the performance assessment of Poland`s low-level waste disposal facility which is operating since 1961. The Rozan repository is of near-surface type with facilities which are the concrete fortifications built about 1910. Site characterization activities supplied information on regional geology, geohydrology, climatic and hydrologic conditions and terrain surface evolution due to geodynamic processes. Field surveys enabled to decode lithological, hydrogeological and geochemical site specific conditions. From the laboratory tests the data on groundwater chemistry and soil geochemical and hydraulic characteristics were obtained. The site geohydrologic main vulnerable element is the upmost directly endangeredmore » unconfined aquifer which is perched in relation to the region-wide hydraulic system. Heterogeneity of this system reflects in a wide range of hydraulic conductivity and thickness variations. It strongly affects velocity and flow directions. The chemistry of groundwater is unstable due to large sensitivity to external impacts. Modeling of the migration of the critical long-lived radionuclides Tc-99, U-238 and Pu-239 showed that the nearly 20 m thick unsaturated zone plays crucial role as an effective protective barrier. These radionuclides constitute minor part of the total inventory. Modeling of the development of the H-3 plume pointed out the role the macrodispersion plays in the unsaturated zone beneath the repository.« less

  17. Mobile fission and activation products in nuclear waste disposal

    NASA Astrophysics Data System (ADS)

    Grambow, Bernd

    2008-12-01

    When disposing nuclear waste in clay formations it is expected that the most radiotoxic elements like Pu, Np or Am move only a few centimetres to meters before they decay. Only a few radionuclides are able to reach the biosphere and contribute to their long-term exposure risks, mainly anionic species like I129, Cl36, Se79 and in some cases C14 and Tc99, whatever the scenario considered. The recent OECD/NEA cosponsored international MOFAP workshop focussed on transport and chemical behaviour of these less toxic radionuclides. New research themes have been addressed, such as how to make use of molecular level information for the understanding of the problem of migration at large distances. Diffusion studies need to face mineralogical heterogeneities over tens to hundreds of meters. Diffusion rates are very low since the clay rock pores are so small (few nm) that electrostatic repulsion limits the space available for anion diffusion (anion exclusion). The large volume of traversed rock will provide so many retention sites that despite weak retention, even certain of these "mobile" nuclides may show significant retardation. However, the question how to measure reliably very low retention parameters has been posed. An important issue is whether redox states or organic/inorganic speciation change from their initial state at the moment of release from the waste during long term contact with surfaces, hydrogen saturated environments, etc.

  18. Mobile fission and activation products in nuclear waste disposal.

    PubMed

    Grambow, Bernd

    2008-12-12

    When disposing nuclear waste in clay formations it is expected that the most radiotoxic elements like Pu, Np or Am move only a few centimetres to meters before they decay. Only a few radionuclides are able to reach the biosphere and contribute to their long-term exposure risks, mainly anionic species like I129, Cl36, Se79 and in some cases C14 and Tc99, whatever the scenario considered. The recent OECD/NEA cosponsored international MOFAP workshop focussed on transport and chemical behaviour of these less toxic radionuclides. New research themes have been addressed, such as how to make use of molecular level information for the understanding of the problem of migration at large distances. Diffusion studies need to face mineralogical heterogeneities over tens to hundreds of meters. Diffusion rates are very low since the clay rock pores are so small (few nm) that electrostatic repulsion limits the space available for anion diffusion (anion exclusion). The large volume of traversed rock will provide so many retention sites that despite weak retention, even certain of these "mobile" nuclides may show significant retardation. However, the question how to measure reliably very low retention parameters has been posed. An important issue is whether redox states or organic/inorganic speciation change from their initial state at the moment of release from the waste during long term contact with surfaces, hydrogen saturated environments, etc.

  19. Analysis of trace neptunium in the vicinity of underground nuclear tests at the Nevada National Security Site

    DOE PAGES

    Zhao, P.; Tinnacher, R. M.; Zavarin, M.; ...

    2014-11-01

    A high sensitivity analytical method for 237Np analysis was developed and applied to groundwater samples from the Nevada National Security Site (NNSS) using short-lived 239Np as a yield tracer and HR magnetic sector ICP-MS. The 237Np concentrations in the vicinity of the Almendro, Cambric, Dalhart, Cheshire, and Chancellor underground nuclear test locations range from <4 × 10 -4 to 2.6 mBq/L (6 × 10 -17–4.2 × 10 -13 mol/L). All measured 237Np concentrations are well below the drinking water maximum contaminant level for alpha emitters identified by the U.S. EPA (560 mBq/L). Nevertheless, 237Np remains an important indicator for radionuclidemore » transport rates at the NNSS. Retardation factor ratios were used to compare the mobility of 237Np to that of other radionuclides. The results suggest that 237Np is less mobile than tritium and other non-sorbing radionuclides ( 14C, 36Cl, 99Tc and 129I) as expected. Surprisingly, 237Np and plutonium ( 239,240Pu) retardation factors are very similar. It is possible that Np(IV) exists under mildly reducing groundwater conditions and exhibits a retardation behavior that is comparable to Pu(IV). Independent of the underlying process, 237Np is migrating downgradient from NNSS underground nuclear tests at very low but measureable concentrations.« less

  20. Contamination of terrestrial ecosystem components with 90Sr, 137Cs, and 226Ra caused by the deterioration of the multibarrier protection of radioactive waste storages

    NASA Astrophysics Data System (ADS)

    Latynova, N. E.

    2010-03-01

    The spatial-temporal features of the radioactive contamination of terrestrial ecosystem components caused by the deterioration of the multibarrier protection of regional radioactive waste storages of the State Research Center of the Russian Federation-Leipunskii Institute of Physics and Power Engineering at the input of radionuclides into the soil and ground water were studied. The composition of the radioactive contamination was determined, and the hydrological and geochemical processes resulting in the formation of large radioactive sources were described. The natural features of the radioactive waste storage areas favoring the entry of 90Sr, 137Cs, and 226Ra into the soils and their inclusion in the biological turnover were characterized. The directions of the horizontal migration of 90Sr, 137Cs, and 226Ra and the sites of their accumulation within the superaquatic and aquatic landscapes of a near-terrace depression were studied; the factors of the 90Sr accumulation in plants and cockles were calculated. The results of the studies expand the theoretical concepts of the mechanisms, processes, and factors controlling the behavior of radionuclides at the deterioration of the multibarrier protection of radioactive waste storages. The presented experimental data can be used for solving practical problems related to environmental protection in the areas of industrial nuclear complexes.

  1. The geohydrologic setting of Yucca Mountain, Nevada

    USGS Publications Warehouse

    Stuckless, J.S.; Dudley, W.W.

    2002-01-01

    This paper provides a geologic and hydrologic framework of the Yucca Mountain region for the geochemical papers in this volume. The regional geologic units, which range in age from late Precambrian through Holocene, are briefly described. Yucca Mountain is composed of dominantly pyroclastic units that range in age from 11.4 to 15.2 Ma. The principal focus of study has been on the Paintbrush Group, which includes two major zoned and welded ash-flow tuffs separated by an important hydrogeologic unit referred to as the Paintbrush non-welded (PTn). The regional structural setting is currently one of extension, and the major local tectonic domains are presented together with a tectonic model that is consistent with the known structures at Yucca Mountain. Streamflow in this arid to semi-arid region occurs principally in intermittent or ephemeral channels. Near Yucca Mountain, the channels of Fortymile Wash and Amargosa River collect infrequent runoff from tributary basins, ultimately draining to Death Valley. Beneath the surface, large-scale interbasin flow of groundwater from one valley to another occurs commonly in the region. Regional groundwater flow beneath Yucca Mountain originates in the high mesas to the north and returns to the surface either in southern Amargosa Desert or in Death Valley, where it is consumed by evapotranspiration. The water table is very deep beneath the upland areas such as Yucca Mountain, where it is 500-750 m below the land surface, providing a large thickness of unsaturated rocks that are potentially suitable to host a nuclear-waste repository. The nature of unsaturated flow processes, which are important for assessing radionuclide migration, are inferred mainly from hydrochemical or isotopic evidence, from pneumatic tests of the fracture systems, and from the results of in situ experiments. Water seeping down through the unsaturated zone flows rapidly through fractures and more slowly through the pores of the rock matrix. Although capillary forces are expected to divert much of the flow around repository openings, some may drip onto waste packages, ultimately causing release of radionuclides, followed by transport down to the water table. ?? 2002 Elsevier Science Ltd. All rights reserved.

  2. Migration and Socio-Economic Change in Africa.

    ERIC Educational Resources Information Center

    Adepoju, Aderanti

    1979-01-01

    Explores determinants, characteristics, and patterns of migration in Africa and relates these factors to socioeconomic change processes. Influences of migration are evaluated as they relate to work conditions, land use, marriage and family patterns, life style, and new skills and experiences gained in formal and non-formal educational situations.…

  3. Impact of radionuclide spatial variability on groundwater quality downstream from a shallow waste burial in the Chernobyl Exclusion Zone

    NASA Astrophysics Data System (ADS)

    Nguyen, H. L.; de Fouquet, C.; Courbet, C.; Simonucci, C. A.

    2016-12-01

    The effects of spatial variability of hydraulic parameters and initial groundwater plume localization on the possible extent of groundwater pollution plumes have already been broadly studied. However, only a few studies, such as Kjeldsen et al. (1995), take into account the effect of source term spatial variability. We explore this question with the 90Sr migration modeling from a shallow waste burial located in the Chernobyl Exclusion Zone to the underlying sand aquifer. Our work is based upon groundwater sampled once or twice a year since 1995 until 2015 from about 60 piezometers and more than 3,000 137Cs soil activity measurements. These measurements were taken in 1999 from one of the trenches dug after the explosion of the Chernobyl nuclear power plant, the so-called "T22 Trench", where radioactive waste was buried in 1987. The geostatistical analysis of 137Cs activity data in soils from Bugai et al. (2005) is first reconsidered to delimit the trench borders using georadar data as a covariable and to perform geostatistical simulations in order to evaluate the uncertainties of this inventory. 90Sr activity in soils is derived from 137Cs/154Eu and 90Sr/154Eu activity ratios in Chernobyl hot fuel particles (Bugai et al., 2003). Meanwhile, a coupled 1D non saturated/3D saturated transient transport model is constructed under the MELODIE software (IRSN, 2009). The previous 90Sr transport model developed by Bugai et al. (2012) did not take into account the effect of water table fluctuations highlighted by Van Meir et al. (2007) which may cause some discrepancies between model predictions and field observations. They are thus reproduced on a 1D vertical non saturated model. The equiprobable radionuclide localization maps produced by the geostatistical simulations are selected to illustrate different heterogeneities in the radionuclide inventory and are implemented in the 1D model. The obtained activity fluxes from all the 1D vertical models are then injected in a 3D saturated transient model to assess the extent of the radionuclide plume in the groundwater and its most likely evolution over time by taking into account uncertainties associated with the source term spatial variability.

  4. Application of PIXE in the determination of the production cross section of a radionuclide decaying by electron capture

    NASA Astrophysics Data System (ADS)

    Morales, J. R.; Chesta, M. A.; Cancino, S. A.; Miranda, P. A.; Dinator, M. I.; Avila, M. J.

    2005-01-01

    Proton induced X-ray emission (PIXE) has been applied to the measurement of the production cross section of a radionuclide decaying by electron capture. By performing a PIXE type experiment on the daughter nuclide important advantages are obtained. The determination of some factors with usually large uncertainties, like solid angle and detector efficiency were avoided. The method was applied to the determination of cross section of the reaction 63Cu(d, p)64Cu at 2.4 MeV for 64Cu production. This result is in full agreement with that obtained through the decay of the 1346 keV gamma ray of 64Cu.

  5. Radiation-Induced Defects in Kaolinite as Tracers of Past Occurrence of Radionuclides in a Natural Analogue of High Level Nuclear Waste Repository

    NASA Astrophysics Data System (ADS)

    Allard, T.; Fourdrin, C.; Calas, G.

    2007-05-01

    Understanding the processes controlling migrations of radioelements at the Earth's surface is an important issue for the long-term safety assessment of high level nuclear waste repositories (HLNWR). Evidence of past occurrence and transfer of radionuclides can be found using radiation-induced defects in minerals. Clay minerals are particularly relevant because of their widespread occurrence at the Earth's surface and their finely divided nature which provides high contact area with radioactive fluids. Owing to its sensitivity to radiations, kaolinite can be used as natural, in situ dosimeter. Kaolinite is known to contain radiation-induced defects which are detected by Electron Paramagnetic Resonance. They are differentiated by their nature, their production kinetics and their thermal stability. One of these defects is stable at the scale of geological periods and provides a record of past radionuclide occurrence. Based on artificial irradiations, a methodology has been subsequently proposed to determine paleodose cumulated by kaolinite since its formation. The paleodose can be used to derive equivalent radioelement concentrations, provided that the age of kaolinite formation can be constrained. This allows quantitative reconstruction of past transfers of radioelements in natural systems. An example is given for the Nopal I U-deposit (Chihuahua, Mexico), hosted in hydrothermally altered volcanic tufs and considered as analogue of the Yucca Mountain site. The paleodoses experienced by kaolinites were determined from the concentration of defects and dosimetry parameters of experimental irradiations. Using few geochemical assumption, a equivalent U-content responsible for defects in kaolinite was calculated from the paleodose, a dose rate balance and model ages of kaolinites constrained by tectonic phases. In a former study, the ages were assumptions derived from regional tectonic events. In thepresent study, ages of mineralization events are measured from U systematics. The corresponding results reveal past accumulation of uranium in the mineralized zone and past leaching in the fissure network of the present barren rock. Geochemical implications for HLNWR will be discussed.

  6. Plutonium Interactions with Pseudomonas sp. and its Extracellular Polymeric Substances (Sorption and Reduction of Plutonium by Bacterial Extracellular Polymeric Substances)

    DOE PAGES

    Boggs, Mark A.; Jiao, Yongqin; Dai, Zurong; ...

    2016-09-30

    Safe and effective nuclear waste disposal, as well as accidental radionuclide releases, necessitates our understanding of the fate of radionuclides in the environment, including their interaction with microorganisms. We examined the sorption of Pu(IV) and Pu(V) toPseudomonassp. strain EPS-1W, an aerobic bacterium isolated from plutonium (Pu) contaminated groundwater collected in the United States at the Nevada National Security Site (NNSS), Nevada. We compared Pu sorption to cells with and without bound extracellular polymeric substances (EPS). Wild type cells with intact EPS sorbed Pu(V) more effectively than cells with EPS removed. In contrast, cells with and without EPS showed the samemore » sorption affinity for Pu(IV).In vitroexperiments with extracted EPS revealed rapid reduction of Pu(V) to Pu(IV). Transmission Electron Microscopy indicated that 2-3 nm nanocrystalline Pu(IV)O 2formed on cells equilibrated with high concentrations of Pu(IV) but not Pu(V). Thus, EPS, while facilitating Pu(V) reduction, inhibit the formation of nanocrystalline Pu(IV) precipitates. ImportanceOur results indicate that EPS are an effective reductant for Pu(V) and sorbent for Pu(IV), and may impact Pu redox cycling and mobility in the environment. Additionally, the resulting Pu morphology associated with EPS will depend on the concentration and initial Pu oxidation state. While our results are not directly applicable to the Pu transport situation at the NNSS, the results suggest that, in general, stationary microorganisms and biofilms will tend to limit the migration of Pu and provide an important Pu retardation mechanism in the environment. In a broader sense, our results along with a growing body of literature highlight the important role of microorganisms as producers of redox-active organic ligands and therefore as modulators of radionuclide redox transformations and complexation in the subsurface.« less

  7. Plutonium Interactions with Pseudomonas sp. and its Extracellular Polymeric Substances (Sorption and Reduction of Plutonium by Bacterial Extracellular Polymeric Substances)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boggs, Mark A.; Jiao, Yongqin; Dai, Zurong

    Safe and effective nuclear waste disposal, as well as accidental radionuclide releases, necessitates our understanding of the fate of radionuclides in the environment, including their interaction with microorganisms. We examined the sorption of Pu(IV) and Pu(V) toPseudomonassp. strain EPS-1W, an aerobic bacterium isolated from plutonium (Pu) contaminated groundwater collected in the United States at the Nevada National Security Site (NNSS), Nevada. We compared Pu sorption to cells with and without bound extracellular polymeric substances (EPS). Wild type cells with intact EPS sorbed Pu(V) more effectively than cells with EPS removed. In contrast, cells with and without EPS showed the samemore » sorption affinity for Pu(IV).In vitroexperiments with extracted EPS revealed rapid reduction of Pu(V) to Pu(IV). Transmission Electron Microscopy indicated that 2-3 nm nanocrystalline Pu(IV)O 2formed on cells equilibrated with high concentrations of Pu(IV) but not Pu(V). Thus, EPS, while facilitating Pu(V) reduction, inhibit the formation of nanocrystalline Pu(IV) precipitates. ImportanceOur results indicate that EPS are an effective reductant for Pu(V) and sorbent for Pu(IV), and may impact Pu redox cycling and mobility in the environment. Additionally, the resulting Pu morphology associated with EPS will depend on the concentration and initial Pu oxidation state. While our results are not directly applicable to the Pu transport situation at the NNSS, the results suggest that, in general, stationary microorganisms and biofilms will tend to limit the migration of Pu and provide an important Pu retardation mechanism in the environment. In a broader sense, our results along with a growing body of literature highlight the important role of microorganisms as producers of redox-active organic ligands and therefore as modulators of radionuclide redox transformations and complexation in the subsurface.« less

  8. Emotional Problems and Victimisation among Youth with National and International Migration Experience Living in Austria and Turkey

    ERIC Educational Resources Information Center

    Strohmeier, Dagmar; Dogan, Aysun

    2012-01-01

    Young people with international migration experiences constitute an increasing proportion of the population in many European countries. In Austria, a substantial proportion of these international migrants come from Turkey. In Turkey, many adolescents are national migrants, having moved from the eastern part to the western part of the country. This…

  9. Radiostrontium hot spot in the Russian Arctic: ground surface contamination by (90)Sr at the "Kraton-3" underground nuclear explosion site.

    PubMed

    Ramzaev, Valery; Mishine, Arkady; Basalaeva, Larisa; Brown, Justin

    2007-01-01

    Strontium-90 activity concentrations in surface soils and areal deposition densities have been studied at a site contaminated by an accidental release to atmosphere from the underground nuclear explosion "Kraton-3" conducted near the Polar Circle (65.9 degrees N, 112.3 degrees E) within the territory of the former USSR in 1978. In 2001-2002, the ground surface contamination at 14 plots studied ranged from 20 to 15 000 kBq m(-2), which significantly exceeds the value of 0.44 kBq m(-2) deduced for three background plots. The zone with substantial radiostrontium contamination extends, at least, 2.5 km in a north-easterly direction from the borehole. The average (137)Cs/(90)Sr ratio in the ground contamination originated from the "Kraton-3" fallout was estimated to be 0.55, which is significantly different from the ratio of 2.05 evaluated for background plots contaminated mostly from global fallout. Although vertical migration of (90)Sr in all undisturbed soil profiles studied is more rapid than that for (137)Cs, the depth of percolation of both radionuclides into the ground is mostly limited to the top 10-20 cm, which may be explained, primarily, by permafrost conditions. The horizontal migration rate of radiostrontium in the aqueous phase exceeds the radiocaesium migration rate by many times. This phenomenon seems to be a reason for the significant enrichment of the soil surface layers by radiostrontium at some sites, with variations occurring in accordance with small-scale irregularities of landscape.

  10. The Psychology of Puerto Rican Migration.

    ERIC Educational Resources Information Center

    Prewitt Diaz, Joseph O.

    The psychology of the Puerto Rican migrant to the United States mainland is explored. Puerto Ricans have been migrating to the U.S. mainland and returning to Puerto Rico for more than 125 years, and, in fact, approximately 57% of all Puerto Ricans have migrated at one time or another. The migrant experience, including the circular migration…

  11. Fractured Connections: Migration and Holistic Models of Counselling

    ERIC Educational Resources Information Center

    Wright, Jeannie; Lang, Steve K. W.; Cornforth, Sue

    2011-01-01

    In this article we aim to explore those points at which migrant identity and landscape intersect. We also consider implications for holistic models of counselling with migrant groups. The New Zealand migration literature was the starting point to consider how and why the experience of migration has been studied. We asked how collective biography…

  12. Passive non-linear microrheology for determining extensional viscosity

    NASA Astrophysics Data System (ADS)

    Hsiao, Kai-Wen; Dinic, Jelena; Ren, Yi; Sharma, Vivek; Schroeder, Charles M.

    2017-12-01

    Extensional viscosity is a key property of complex fluids that greatly influences the non-equilibrium behavior and processing of polymer solutions, melts, and colloidal suspensions. In this work, we use microfluidics to determine steady extensional viscosity for polymer solutions by directly observing particle migration in planar extensional flow. Tracer particles are suspended in semi-dilute solutions of DNA and polyethylene oxide, and a Stokes trap is used to confine single particles in extensional flows of polymer solutions in a cross-slot device. Particles are observed to migrate in the direction transverse to flow due to normal stresses, and particle migration is tracked and quantified using a piezo-nanopositioning stage during the microfluidic flow experiment. Particle migration trajectories are then analyzed using a second-order fluid model that accurately predicts that migration arises due to normal stress differences. Using this analytical framework, extensional viscosities can be determined from particle migration experiments, and the results are in reasonable agreement with bulk rheological measurements of extensional viscosity based on a dripping-onto-substrate method. Overall, this work demonstrates that non-equilibrium properties of complex fluids can be determined by passive yet non-linear microrheology.

  13. Removal of actinide elements from liquid scintillation cocktail wastes using liquid-liquid extraction and demulsification techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, K.; Landsberger, S.; Srinivasan, B.

    1994-12-31

    For many years liquid scintillation cocktail (LSC) wastes have been generated and stored at Argonne National Laboratory (ANL). These wastes are stored in thousands of 10--20 m scintillation vials, many of which contain elements with Z > 88. Because storage space is limited, disposal of this waste is pressing. These wastes could be commercially incinerated if the radionuclides with Z>88 are reduced to sufficiently low levels. However, there is currently no deminimus level for these radionuclides, and separation techniques are still being tested. The University of Illinois is conducting experiments to separate radionuclides with Z > 88 from simulated LSCmore » wastes by using liquid-liquid extraction (LLX) and demulsification techniques. The actinide elements are removed from the LSC by extraction into an aqueous phase after the cocktail has been demulsified. The aqueous and organic phases are separated and the organic phase, now free from radionuclides with Z > 88, can be sent to a commercial incineration facility. The aqueous phase may be treated and disposed of using existing techniques. The LLX separation techniques used solutions of sodium oxalate, aluminum nitrate, and tetrasodium EDTA at varying concentrations. These extractants were mixed with the simulated waste in a 1:1 volume ratio. Using 1.0M Na{sub 4} EDTA salt solutions, decontamination ratios as high as 230 were achieved.« less

  14. Effects of arctic temperatures on distribution and retention of the nuclear waste radionuclides 241Am, 57Co, and 137Cs in the bioindicator bivalve Macoma balthica

    USGS Publications Warehouse

    Hutchins, D.A.; Stupakoff, I.; Hook, S.; Luoma, S.N.; Fisher, N.S.

    1998-01-01

    The disposal of radioactive wastes in Arctic seas has made it important to understand the processes affecting the accumulation of radionuclides in food webs in coldwater ecosystems. We examined the effects of temperature on radionuclide assimilation and retention by the bioindicator bivalve Macoma balthica using three representative nuclear waste components, 241Am, 57Co, and 137Cs. Experiments were designed to determine the kinetics of processes that control uptake from food and water, as well as kinetic constants of loss. 137Cs was not accumulated in soft tissue from water during short exposures, and was rapidly lost from shell with no thermal dependence. No effects of temperature on 57Co assimilation or retention from food were observed. The only substantial effect of polar temperatures was that on the assimilation efficiency of 241Am from food, where 10% was assimilated at 2??C and 26% at 12??C. For all three radionuclides, body distributions were correlated with source, with most radioactivity obtained from water found in the shell and food in the soft tissues. These results suggest that in general Arctic conditions had relatively small effects on the biological processes which influence the bioaccumulation of radioactive wastes, and bivalve concentration factors may not be appreciably different between polar and temperate waters.

  15. Mycoextraction of radiolabeled cesium and strontium by Pleurotus eryngii mycelia in the presence of alumina nanoparticles: Sorption and accumulation studies.

    PubMed

    Asztemborska, Monika; Jakubiak, Małgorzata; Rykaczewska, Magdalena; Bembenek, Marcin; Stęborowski, Romuald; Bystrzejewska-Piotrowska, Grażyna

    2016-11-01

    Widespread use of products based on nanomaterials results in the release of nanoparticles into the environment. Nanoparticles can be taken up by organisms, but they can also coexist with other substances such as radionuclides, thus affecting their uptake or toxicity. In contrast, the sorption capacity of nanoparticles is exploited in water purification. The aim of the study was to investigate: (i) bioaccumulation of cesium and strontium by Pleurotus eryngii mycelia in the presence of alumina nanoparticles (Al 2 O 3 NPs); and (ii) sorption of radionuclides on the surface of nanoparticles. For the experiments, living and dried mycelia were used to permit distinguishing between active uptake and passive sorption of the NPs by P. eryngii. The results are discussed from the perspective of the use of P. eryngii in the mycoextraction of radionuclides. The sorption capacity of Al 2 O 3 NPs and the accumulation by P. eryngii mycelia differ for the applied radioisotopes. The efficiency of Cs and Sr sorption by alumina nanoparticles is 20% and 40%, respectively. Mycelia of P. eryngii have the ability to accumulate 30% of both radioisotopes from the medium. More than 60% of strontium can be removed accumulated from water by P. eryngii mycelia in coexistence with Al 2 O 3 NPs, while the efficiency of cesium removal accumulation is negligible. It was found that alumina nanoparticles do not enhance uptake of radionuclides by P. eryngii mycelia; mycoextraction of radionuclides by mycelia and sorption by Al 2 O 3 NPs are concurrent processes. There was no difference between live or dried mycelia uptake. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Radionuclide transfer from feed to camel milk.

    PubMed

    Al-Masri, M S; Al-Hamwi, A; Amin, Y; Safieh, M B; Zarkawi, M; Soukouti, A; Dayyoub, R; Voigt, G; Fesenko, S

    2014-06-01

    The transfer of (137)Cs, (85)Sr, (131)I, (210)Po, (210)Pb and (238)U from feed to camel's milk was investigated in a pilot experiment with three lactating camels. For a period of 60 days, the animals were fed on spiked feed containing the studied radionuclides. They were subsequently returned to a contamination-free diet and monitored for another 90 days. The activity concentrations of (137)Cs, (85)Sr and (131)I in milk decreased with time and reached background levels after 20 days. Equilibrium transfer coefficients and biological half-lives were estimated and transfer coefficients were calculated as (8.1 ± 3.6) × 10(-4), (4.4 ± 1.6) × 10(-2), (7.8 ± 3.9) × 10(-4), (2.7 ± 3.5) × 10(-4), (1.8 ± 1.5) × 10(-4) and (7.0 ± 3.6) × 10(-3) d L(-1) for (85)Sr, (131)I, (137)Cs, (210)Po, (210)Pb and (238)U, respectively. The biological half-lives were estimated to be 6.4, 4.2, 8.9, and 53.3 days for (85)Sr, (131)I, (137)Cs, and (238)U, respectively. Estimates of the half-lives were based on a one component model: it was found that the half-life values measured for artificial radionuclides were slightly shorter than those for natural radionuclides. The data obtained in the study are the first published experimental data on radionuclide transfer to camel milk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Fault gouge evolution during rupture and healing: Continual active-seismic observations across laboratory-scale fault zones

    NASA Astrophysics Data System (ADS)

    Krysta, M.; Kusmierczyk-Michulec, J.; Nikkinen, M.; Carter, J. A.

    2011-12-01

    In order to support its mission of monitoring compliance with the treaty banning nuclear explosions, the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) operates four global networks of, respectively, seismic, infrasound, hydroacoustic sensors and air samplers accompanied with radionuclide detectors. The role of the International Data Centre (IDC) of CTBTO is to associate the signals detected in the monitoring networks with the physical phenomena which emitted these signals, by forming events. One of the aspects of associating detections with emitters is the problem of inferring the sources of radionuclides from the detections made at CTBTO radionuclide network stations. This task is particularly challenging because the average transport distance between a release point and detectors is large. Complex processes of turbulent diffusion are responsible for efficient mixing and consequently for decreasing the information content of detections with an increasing distance from the source. The problem is generally addressed in a two-step process. In the first step, an atmospheric transport model establishes a link between the detections and the regions of possible source location. In the second step this link is inverted to infer source information from the detections. In this presentation, we will discuss enhancements of the presently used regression-based inversion algorithm to reconstruct a source of radionuclides. To this aim, modern inversion algorithms accounting for prior information and appropriately regularizing an under-determined reconstruction problem will be briefly introduced. Emphasis will be on the CTBTO context and the choice of inversion methods. An illustration of the first tests will be provided using a framework of twin experiments, i.e. fictitious detections in the CTBTO radionuclide network generated with an atmospheric transport model.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egli, J.; Amrhein, N.; Andres, R.

    In the framework of a CEC-research program in radiation protection, the uptake and subsequent translocation of radionuclides in potato plants is studied. Results from these studies will be used to further refine computational models applied in calculating doses and in decision making after a potential nuclear fallout. Potatoes are an important staple food crop in western European countries. Foliar absorption of radionuclides plays a major role for the contamination of agricultural products during the first vegetation period after a nuclear fallout. This study aims at investigating the influence of the time-point of contamination on crop radionuclide content. Three groups ofmore » potato plants were of contaminated with an aqueous solution {sup 134}CsCl at three different time-points: Group A: First leaves were fully developed. Group B: Immediately before onset of flowering (4 weeks after group A). Group C: Onset of senescence (8 weeks after group A). Plants were harvested 7, 14, 21, and 28 days after each contamination, and after full tuber development. The distribution of {sup 134}Cs within the plants was studied in three compartments: contaminated part, newly grown part, and subterranean part (roots and tubers). A steady translocation of {sup 134}CS from the contaminated parts into the other parts of the plants was observed in all three groups. The highest radionuclide content of the crop was observed in group B, i.e. in fully developed plants: 58 {+-} 3% (n = 4) of the originally applied radioactivity was found in the tubers. This experiment clearly identified the beginning of tuber formation to be the most critical time for a foliar contamination. These results serve as an important experimental verification of parameters used in computational radioecological models of radionuclide transport through the biosphere.« less

  19. Project 57 Air Monitoring Report: October 1, 2013, through December 31, 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizell, Steve A.; Nikolich, George; McCurdy, Greg

    On April 24, 1957, the Atomic Energy Commission (AEC, now the Department of Energy [DOE]) conducted the Project 57 safety experiment in western Emigrant Valley north east of the Nevada National Security Site (NNSS, formerly the Nevada Test Site) on lands withdrawn by the Department of Defense (DoD) for the Nevada Test and Training Range (NTTR). The test was undertaken to develop (1) a means of estimating plutonium distribution resulting from a nonnuclear detonation; (2) biomedical evaluation techniques for use in plutonium-laden environments; (3) methods of surface decontamination; and (4) instruments and field procedures for prompt estimation of alpha contaminationmore » (Shreve, 1958). Although the test did not result in the fission of nuclear materials, it did disseminate plutonium across the land surface. Following the experiment, the AEC fenced the contaminated area and returned control of the surrounding land to the DoD. Various radiological surveys have been performed in the area and in 2007, the DOE expanded the demarked contamination area by posting signs 200 to 400 feet (60 to 120 meters) outside of the original fence. Plutonium in soil is thought to attach preferentially to smaller particles. Therefore, redistribution of soil particulates by wind (dust) is the mechanism most likely to transport plutonium beyond the boundary of the Project 57 contamination area. In 2011, DRI installed two instrumentation towers to measure radiological, meteorological, and dust conditions. The monitoring activity was implemented to determine if radionuclide contamination was detectable in samples of airborne dust and characterize meteorological and environmental parameters that influence dust transport. Collected data also permits comparison of radiological conditions at the Project 57 monitoring stations to conditions observed at Community Environmental Monitoring Program (CEMP) stations around the NTTR. Biweekly samples of airborne particulates are submitted for laboratory assessment of gross alpha and gross beta radioactivity and for determination of gamma-emitting radionuclides. Annual average gross alpha values at the Project 57 monitoring stations are in the same range as the highest two values reported for the CEMP stations surrounding the NTTR. Annual average gross beta values at the Project 57 monitoring stations are slightly higher than the lowest value reported for the CEMP stations surrounding the NTTR. Gamma spectroscopy analyses on samples collected from the Project 57 stations identified only naturally occurring radionuclides. No manmade radionuclides were detected. Thermoluminescent dosimeters (TLDs) indicated that the average annual radioactivity dose at the monitoring stations is higher than the dose determined at surrounding CEMP stations but approximately half of the estimated national average dose received by the general public as a result of exposure to natural sources. The TLDs at the Project 57 monitoring stations are exposed to both natural sources (terrestrial and cosmic) and radioactive releases from the Project 57 contamination area. These comparisons show that the gross alpha, gross beta, and gamma spectroscopy levels at the Project 57 monitoring stations are similar to levels observed at the CEMP stations but that the average annual dose rate is higher than at the CEMP stations. Winds in excess of approximately 15 mph begin to generate dust movement by saltation (migration of sand at the ground surface) or direct suspension in the air. Saltated sand, PM10 (inhalable) dust, and PM2.5 (fine particulate dust) exhibit an approximately exponential increase with increasing wind speed. The greatest concentrations of dust occur for winds exceeding 20 mph. During the reporting period, winds in excess of 20 mph occurred approximately 1.6 percent of the time. Preliminary assessment of individual wind events suggests that dust generation is highly variable likely because of the influence of other meteorological and environmental parameters. Although winds sufficient to generate significant amounts of dust occur at the Project 57 site, they are infrequent and of short duration. Additionally, the potential for wind transport of dust is dependent on other parameters whose influence have not yet been assessed.« less

  20. Interaction of Sr-90 with site candidate soil for demonstration disposal facility at Serpong

    NASA Astrophysics Data System (ADS)

    Setiawan, Budi; Mila, Oktri; Safni

    2014-03-01

    Interaction of radiostrontium (Sr-90) with site candidate soil for demonstration disposal facility to be constructed in the near future at Serpong has been done. This activity is to anticipate the interim storage facility at Serpong nuclear area becomes full off condition, and show to the public how radioactive waste can be well managed with the existing technology. To ensure that the location is save, a reliability study of site candidate soil becomes very importance to be conducted through some experiments consisted some affected parameters such as contact time, effect of ionic strength, and effect of Sr+ ion in solution. Radiostrontium was used as a tracer on the experiments and has role as radionuclide reference in low-level radioactive waste due to its long half-live and it's easy to associate with organism in nature. So, interaction of radiostrontium and soil samples from site becomes important to be studied. Experiment was performed in batch method, and soil sample-solution containing radionuclide was mixed in a 20 ml of PE vial. Ratio of solid: liquid was 10-2 g/ml. Objective of the experiment is to collect the specific characteristics data of radionuclide sorption onto soil from site candidate. Distribution coefficient value was used as indicator where the amount of initial and final activities of radiostrontium in solution was compared. Result showed that equilibrium condition was reached after contact time 10 days with Kd values ranged from 1600-2350 ml/g. Increased in ionic strength in solution made decreased of Kd value into soil sample due to competition of background salt and radiostrontium into soil samples, and increased in Sr ion in solution caused decreased of Kd value in soil sample due to limitation of sorption capacity in soil samples. Fast condition in saturated of metal ion into soil samples was reached due to a simple reaction was occurred.

  1. 49 CFR 173.433 - Requirements for determining basic radionuclide values, and for the listing of radionuclides on...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... radionuclide values, and for the listing of radionuclides on shipping papers and labels. (a) For individual... given in the table in § 173.436. (b) For individual radionuclides which are not listed in the tables in.... (d) Mixtures of radionuclides whose identities and respective activities are known must conform to...

  2. 49 CFR 173.433 - Requirements for determining basic radionuclide values, and for the listing of radionuclides on...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... radionuclide values, and for the listing of radionuclides on shipping papers and labels. (a) For individual... given in the table in § 173.436. (b) For individual radionuclides which are not listed in the tables in.... (d) Mixtures of radionuclides whose identities and respective activities are known must conform to...

  3. 49 CFR 173.433 - Requirements for determining basic radionuclide values, and for the listing of radionuclides on...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... radionuclide values, and for the listing of radionuclides on shipping papers and labels. (a) For individual... given in the table in § 173.436. (b) For individual radionuclides which are not listed in the tables in.... (d) Mixtures of radionuclides whose identities and respective activities are known must conform to...

  4. 49 CFR 173.433 - Requirements for determining basic radionuclide values, and for the listing of radionuclides on...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... radionuclide values, and for the listing of radionuclides on shipping papers and labels. (a) For individual... given in the table in § 173.436. (b) For individual radionuclides which are not listed in the tables in.... (d) Mixtures of radionuclides whose identities and respective activities are known must conform to...

  5. Fate of 90Sr and U(VI) in Dounreay sediments following saline inundation and erosion.

    PubMed

    Eagling, Jane; Worsfold, Paul J; Blake, William H; Keith-Roach, Miranda J

    2013-08-01

    There is concern that sea level rise associated with projected climate change will lead to the inundation, flooding and erosion of soils and sediments contaminated with radionuclides at coastal nuclear sites, such as Dounreay (UK), with seawater. Here batch and column experiments were designed to simulate these scenarios and sequential extractions were used to identify the key radionuclide solid phase associations. Strontium was exchangeable and was mobilised rapidly by ion exchange with seawater Mg(2+) in both batch and column experiments. In contrast, U was more strongly bound to the sediments and mobilisation was initially limited by the influence of the sediment on the pH of the water. Release was only observed when the pH increased above 6.9, suggesting that the formation of soluble U(VI)-carbonate species was important. Under dynamic flow conditions, long term release was significant (47%), but controlled by slow desorption kinetics from a range of binding sites. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The potential of two Salix genotypes for radionuclide/heavy metal accumulation. A case study of Rovinari ash pit (Gorj District, Romania)

    NASA Astrophysics Data System (ADS)

    Hernea, Cornelia; Neţoiu, Constantin; Corneanu, Gabriel; Crăciun, Constantin; Corneanu, Mihaela; Cojocaru, Luminiţa; Rovena Lăcătuşu, Anca; Popescu, Ion

    2014-05-01

    Thermo Electric Power Plants (TEPP) produce a high amount of ash, that contains heavy metals and radionuclides. Ash is usually stored in ash-pits, in mixture with water and contains U235, Th 234 and their decay products, that are released from the coal matrix, during combustion, as well as heavy metals. Warm weather dried the ash and it can be spread by the wind in surrounded area. This paper presents the results of an experiment with two Salix genotypes, cultivated on an old closed ash-pit, nearby the Rovinari TEPP, in the middle Jiu valley (Gorj District, Romania), in order to evaluate its tolerance to heavy metals and radionuclides. Ash analysis revealed the presence of natural radionuclides, beloging from ash and coal dust, as well as of Cs 137, of Chernobil provenance. Radionuclides content over the normal limits for Romania were registered for Th 234, Pb210, U235 and Ra226. The heavy metals level in ash was over the normal limits, but under the alerts limits. In order to establish the woody plants tolerance to heavy metals and radionuclides, it is important to study the seedlings behavior. In this respect Salix alba and Salix viminalis whips and cuttings culture have been establish on Rovinari ash-pit. The observations made on survival and growth rate pointed out the superiority of Salix viminalis behaviour. After a period of three years Salix viminalis registered a 96% survival rate, while in Salix alba annual decreases, reaching to 14%. These results are supported by the radionuclides content in leaves and by the electron microscopy studies. In Salix alba the leaves parenchimatic cells present a low sinthesis activity. The exogenous particles are accumulated in parenchima cells vacuola, the chloroplasts are usually agranal, with few starch grains and mitocondria presents slightly dillated crista. The ultrastructural features of the mature leaf cells, evidenced the natural adaptation of Salix viminalins for development in an environment with a big amount of heavy metals and radionuclides, in comparison with Salix alba. In seedlings developed on ash waste dump, in leaf cells, the fine blocks of heterochromatin are dispersed in nucleus. The chloroplast with well developed grana and numerous plastoglobuls, are in active synthesis (being present 2 - 4 starch grains), some chloroplasts being transformed in amyloplast. In the mitochondria matrix, are present ferritin aggregates, with role in cell detoxification processes.

  7. Modelling the reworking effects of bioturbation on the incorporation of radionuclides into the sediment column: implications for the fate of particle-reactive radionuclides in Irish Sea sediments.

    PubMed

    Cournane, S; León Vintró, L; Mitchell, P I

    2010-11-01

    A microcosm laboratory experiment was conducted to determine the impact of biological reworking by the ragworm Nereis diversicolor on the redistribution of particle-bound radionuclides deposited at the sediment-water interface. Over the course of the 40-day experiment, as much as 35% of a (137)Cs-labelled particulate tracer deposited on the sediment surface was redistributed to depths of up to 11 cm by the polychaete. Three different reworking models were employed to model the profiles and quantify the biodiffusion and biotransport coefficients: a gallery-diffuser model, a continuous sub-surface egestion model and a biodiffusion model. Although the biodiffusion coefficients obtained for each model were quite similar, the continuous sub-surface egestion model provided the best fit to the data. The average biodiffusion coefficient, at 1.8 +/- 0.9 cm(2) y(-1), is in good agreement with the values quoted by other workers on the bioturbation effects of this polychaete species. The corresponding value for the biotransport coefficient was found to be 0.9 +/- 0.4 cm y(-1). The effects of non-local mixing were incorporated in a model to describe the temporal evolution of measured (99)Tc and (60)Co radionuclide sediment profiles in the eastern Irish Sea, influenced by radioactive waste discharged from the Sellafield reprocessing plant. Reworking conditions in the sediment column were simulated by considering an upper mixed layer, an exponentially decreasing diffusion coefficient, and appropriate biotransport coefficients to account for non-local mixing. The diffusion coefficients calculated from the (99)Tc and (60)Co cores were in the range 2-14 cm(2) y(-1), which are consistent with the values found by other workers in the same marine area, while the biotransport coefficients were similar to those obtained for a variety of macrobenthic organisms in controlled laboratories and field studies.

  8. The costs and benefits of nurse migration on families: A Lesotho experience.

    PubMed

    Ntlale, Matsola E; Duma, Sinegugu E

    2012-02-22

    The present day migration of nurses from developing countries, to more developed countries,depletes these countries of this vital human resource, which is necessary to provide optimum quality nursing care to their populations. If nurse migration persists, the health systems of these countries face collapse.It is important that a nurse understands the costs and benefits of migration to their families, whom they leave behind. This is not only to curb the problems that may occur, but to help the migrant nurses to realise how migration affects their families, especially their children and spouses, before they decide to leave their home countries to work in foreign lands.The purpose of this study, which was exploratory, descriptive and qualitative, was to investigate and describe the experiences of family members, of migrant nurses, from the Maseru district of Lesotho, about the costs and benefits of nurse migration. The objectives were to explore and describe the disadvantageous costs and the benefits gained by the families of migrant nurses. These were explored through the research question 'What are the experiences of family members of migrating nurses with regard to the costs and benefits of nurse migration?'The target population of the study was families of migrant nurses from Lesotho. Using purposive sampling the families of two migrant nurses, who were colleagues of the researcher, were identified and approached to participate in the study. Snowball sampling was next utilised to recruit the remainder of the participants. In total, six families were identified and included in the study.The semi-structured interviews and field notes were the two data collection methods that were implemented. The Giorgi's (1970) steps for data analysis, as outlined in (Burns & Grove 2001:610), were followed and seven themes were discovered as findings. The themes that relate to the costs of nurse migration are: emotional instability, weaker family connections and increased responsibility. The themes that relate to the benefits of nurse migration for their families are: better household income, improved quality of life, essential skills development and travelling opportunities.The use of communication technology is recommended to increase contact across borders in order to reduce the emotional costs of nurse migration on the families of migrant nurses. The article provides a balanced view of the costs and benefits of nurse migration on their families.

  9. Exploring Child Mortality Risks Associated with Diverse Patterns of Maternal Migration in Haiti

    PubMed Central

    Smith-Greenaway, Emily; Thomas, Kevin

    2014-01-01

    Internal migration is a salient dimension of adulthood in Haiti, particularly among women. Despite the prevalence of migration in Haiti, it remains unknown whether Haitian women’s diverse patterns of migration influence their children’s health and survival. In this paper, we introduce the concept of lateral (i.e., rural-to-rural, urban-to-urban) versus nonlateral (i.e., rural-to-urban, urban-to-rural) migration to describe how some patterns of mothers’ internal migration may be associated with particularly high mortality among children. We use the 2006 Haitian Demographic and Health Survey to estimate a series of discrete-time hazard models among 7,409 rural children and 3,864 urban children. We find that, compared with their peers with nonmigrant mothers, children born to lateral migrants generally experience lower mortality whereas those born to nonlateral migrants generally experience higher mortality. Although there are important distinctions across Haiti’s rural and urban contexts, these associations remain net of socioeconomic factors, suggesting they are not entirely attributable to migrant selection. Considering the timing of maternal migration uncovers even more variation in the child health implications of maternal migration; however, the results counter the standard disruption and adaptation perspective. Although future work is needed to identify the processes underlying the differential risk of child mortality across lateral versus nonlateral migrants, the study demonstrates that looking beyond rural-to-urban migration and considering the timing of maternal migration can provide a fuller, more complex understanding of migration’s association with child health. PMID:25506111

  10. Neutral endopeptidase inhibits prostate cancer cell migration by blocking focal adhesion kinase signaling.

    PubMed

    Sumitomo, M; Shen, R; Walburg, M; Dai, J; Geng, Y; Navarro, D; Boileau, G; Papandreou, C N; Giancotti, F G; Knudsen, B; Nanus, D M

    2000-12-01

    Neutral endopeptidase 24.11 (NEP, CD10) is a cell-surface enzyme expressed by prostatic epithelial cells that cleaves and inactivates neuropeptides implicated in the growth of androgen-independent prostate cancer (PC). NEP substrates such as bombesin and endothelin-1 induce cell migration. We investigated the mechanisms of NEP regulation of cell migration in PC cells, including regulation of phosphorylation on tyrosine of focal adhesion kinase (FAK). Western analyses and cell migration assays revealed an inverse correlation between NEP expression and the levels of FAK phosphorylation and cell migration in PC cell lines. Constitutively expressed NEP, recombinant NEP, and induced NEP expression using a tetracycline-repressive expression system inhibited bombesin- and endothelin-1-stimulated FAK phosphorylation and cell migration. This results from NEP-induced inhibition of neuropeptide-stimulated association of FAK with cSrc protein. Expression of a mutated catalytically inactive NEP protein also resulted in partial inhibition of FAK phosphorylation and cell migration. Coimmunoprecipitation experiments show that NEP associates with tyrosine-phosphorylated Lyn kinase, which then binds the p85 subunit of phosphatidylinositol 3-kinase (PI3-K) resulting in an NEP-Lyn-PI3-K protein complex. This complex competitively blocks FAK-PI3-K interaction, suggesting that NEP protein inhibits cell migration via a protein-protein interaction independent of its catalytic function. These experiments demonstrate that NEP can inhibit FAK phosphorylation on tyrosine and PC cell migration through multiple pathways and suggest that cell migration which contributes to invasion and metastases in PC cells can be regulated by NEP.

  11. Neutral endopeptidase inhibits prostate cancer cell migration by blocking focal adhesion kinase signaling

    PubMed Central

    Sumitomo, Makoto; Shen, Ruoqian; Walburg, Marc; Dai, Jie; Geng, Yiping; Navarro, Daniel; Boileau, Guy; Papandreou, Christos N.; Giancotti, Filippo G.; Knudsen, Beatrice; Nanus, David M.

    2000-01-01

    Neutral endopeptidase 24.11 (NEP, CD10) is a cell-surface enzyme expressed by prostatic epithelial cells that cleaves and inactivates neuropeptides implicated in the growth of androgen-independent prostate cancer (PC). NEP substrates such as bombesin and endothelin-1 induce cell migration. We investigated the mechanisms of NEP regulation of cell migration in PC cells, including regulation of phosphorylation on tyrosine of focal adhesion kinase (FAK). Western analyses and cell migration assays revealed an inverse correlation between NEP expression and the levels of FAK phosphorylation and cell migration in PC cell lines. Constitutively expressed NEP, recombinant NEP, and induced NEP expression using a tetracycline-repressive expression system inhibited bombesin- and endothelin-1–stimulated FAK phosphorylation and cell migration. This results from NEP-induced inhibition of neuropeptide-stimulated association of FAK with cSrc protein. Expression of a mutated catalytically inactive NEP protein also resulted in partial inhibition of FAK phosphorylation and cell migration. Coimmunoprecipitation experiments show that NEP associates with tyrosine-phosphorylated Lyn kinase, which then binds the p85 subunit of phosphatidylinositol 3-kinase (PI3-K) resulting in an NEP-Lyn-PI3-K protein complex. This complex competitively blocks FAK-PI3-K interaction, suggesting that NEP protein inhibits cell migration via a protein-protein interaction independent of its catalytic function. These experiments demonstrate that NEP can inhibit FAK phosphorylation on tyrosine and PC cell migration through multiple pathways and suggest that cell migration which contributes to invasion and metastases in PC cells can be regulated by NEP. PMID:11104793

  12. Follow-the-leader cell migration requires biased cell-cell contact and local microenvironmental signals

    NASA Astrophysics Data System (ADS)

    Wynn, Michelle L.; Rupp, Paul; Trainor, Paul A.; Schnell, Santiago; Kulesa, Paul M.

    2013-06-01

    Directed cell migration often involves at least two types of cell motility that include multicellular streaming and chain migration. However, what is unclear is how cell contact dynamics and the distinct microenvironments through which cells travel influence the selection of one migratory mode or the other. The embryonic and highly invasive neural crest (NC) are an excellent model system to study this question since NC cells have been observed in vivo to display both of these types of cell motility. Here, we present data from tissue transplantation experiments in chick and in silico modeling that test our hypothesis that cell contact dynamics with each other and the microenvironment promote and sustain either multicellular stream or chain migration. We show that when premigratory cranial NC cells (at the pre-otic level) are transplanted into a more caudal region in the head (at the post-otic level), cells alter their characteristic stream behavior and migrate in chains. Similarly, post-otic NC cells migrate in streams after transplantation into the pre-otic hindbrain, suggesting that local microenvironmental signals dictate the mode of NC cell migration. Simulations of an agent-based model (ABM) that integrates the NC cell behavioral data predict that chain migration critically depends on the interplay of biased cell-cell contact and local microenvironment signals. Together, this integrated modeling and experimental approach suggests new experiments and offers a powerful tool to examine mechanisms that underlie complex cell migration patterns.

  13. Response of soil microorganisms to radioactive oil waste: results from a leaching experiment

    NASA Astrophysics Data System (ADS)

    Galitskaya, P.; Biktasheva, L.; Saveliev, A.; Ratering, S.; Schnell, S.; Selivanovskaya, S.

    2015-01-01

    Oil wastes produced in large amounts in the processes of oil extraction, refining, and transportation are of great environmental concern because of their mutagenicity, toxicity, high fire hazardousness, and other properties. About 40% of these wastes contain radionuclides; however, the effects of oil products and radionuclides on soil microorganisms are frequently studied separately. The toxicity and effects on various microbial parameters of raw waste (H) containing 575 g of total petroleum hydrocarbons (TPH) kg-1 waste, 4.4 kBq kg-1 of 226Ra, 2.8 kBq kg-1 of 232Th, and 1.3 kBq kg-1 of 40K and its treated variant (R) (1.6 g kg-1 of TPH, 7.9 kBq kg-1 of 226Ra, 3.9 kBq kg-1 of 232Th, and 183 kBq kg-1 of 40K) were estimated in a leaching column experiment to separate the effects of hydrocarbons from those of radioactive elements. The disposal of H waste samples on the soil surface led to an increase of the TPH content in soil: it became 3.5, 2.8, and 2.2 times higher in the upper (0-20 cm), middle (20-40 cm), and lower (40-60 cm) layers respectively. Activity concentrations of 226Ra and 232Th increased in soil sampled from both H- and R-columns in comparison to their concentrations in control soil. The activity concentrations of these two elements in samples taken from the upper and middle layers were much higher for the R-column compared to the H-column, despite the fact that the amount of waste added to the columns was equalized with respect to the activity concentrations of radionuclides. The H waste containing both TPH and radionuclides affected the functioning of the soil microbial community, and the effect was more pronounced in the upper layer of the column. Metabolic quotient and cellulase activity were the most sensitive microbial parameters as their levels were changed 5-1.4 times in comparison to control ones. Changes of soil functional characteristics caused by the treated waste containing mainly radionuclides were not observed. PCR-SSCP (polymerase chain reaction - single strand conformation polymorphism) analysis followed by MDS (metric multidimensional scaling) and clustering analysis revealed that the shifts in microbial community structure were affected by both hydrocarbons and radioactivity.

  14. Migration challenges among Zimbabwean refugees before, during and post arrival in South Africa

    PubMed Central

    Idemudia, Erhabor Sunday; Williams, John K.; Wyatt, Gail E.

    2013-01-01

    Abstract: Background: Zimbabweans are immigrating to South Africa with a commonly cited reason being economic opportunities. Prospects of finding employment may be a significant reason to leave behind family, friends, and community, sources that buffer and offer social support against life’s challenges. Currently, there is a dearth of research examining the motivators for Zimbabweans immigrating and the experiences encountered along the way and after arrival in South Africa. Such research is essential as large numbers of Zimbabweans may be at risk for emotional and physical trauma during this process. Methods: Two gender specific focus group discussions, each lasting 90-minutes and consisting of homeless Zimbabwean refugees, were conducted in the Limpopo Province of South Africa. A semi-structured interview assessed for experiences in and reasons for leaving Zimbabwe, as well as experiences en-route and within South Africa. Discussions were audio-recorded, transcribed, and analyzed using consensual qualitative research and a constant comparison qualitative method. Results: Three temporal themes were identified and included challenges and trauma experienced in Zimbabwe (pre-migration), during the immigration journey (mid-migration), and upon arrival in South Africa (post-migration). While there were some experiential differences, Zimbabwean men and women shared numerous traumatic commonalities. In addition to the themes, three subthemes contributing to reasons for leaving Zimbabwe, two subthemes of negative and traumatic experiences incurred mid-migration, and two post-migration subthemes of challenges were identified. Conclusions: Despite the difficulties encountered in their homeland, newly arrived Zimbabweans in South Africa may be exchanging old struggles for a new array of foreign and traumatic challenges. Reasons to immigrate and the psychological and physical toll of migration exacted at the individual and community levels are discussed. Recommendations advocating for culturally congruent mental health research, the training of culturally competent researchers and clinicians, and the development of policies that could influence the quality of life of Zimbabwean refugees are provided. PMID:22095004

  15. Migration challenges among Zimbabwean refugees before, during and post arrival in South Africa.

    PubMed

    Idemudia, Erhabor Sunday; Williams, John K; Wyatt, Gail E

    2013-01-01

    Zimbabweans are immigrating to South Africa with a commonly cited reason being economic opportunities. Prospects of finding employment may be a significant reason to leave behind family, friends, and community, sources that buffer and offer social support against life's challenges. Currently, there is a dearth of research examining the motivators for Zimbabweans immigrating and the experiences encountered along the way and after arrival in South Africa. Such research is essential as large numbers of Zimbabweans may be at risk for emotional and physical trauma during this process. Two gender specific focus group discussions, each lasting 90-minutes and consisting of homeless Zimbabwean refugees, were conducted in the Limpopo Province of South Africa. A semi-structured interview assessed for experiences in and reasons for leaving Zimbabwe, as well as experiences en-route and within South Africa. Discussions were audio-recorded, transcribed, and analyzed using consensual qualitative research and a constant comparison qualitative method. Three temporal themes were identified and included challenges and trauma experienced in Zimbabwe (pre-migration), during the immigration journey (mid-migration), and upon arrival in South Africa (post-migration). While there were some experiential differences, Zimbabwean men and women shared numerous traumatic commonalities. In addition to the themes, three subthemes contributing to reasons for leaving Zimbabwe, two subthemes of negative and traumatic experiences incurred mid-migration, and two post-migration subthemes of challenges were identified. Despite the difficulties encountered in their homeland, newly arrived Zimbabweans in South Africa may be exchanging old struggles for a new array of foreign and traumatic challenges. Reasons to immigrate and the psychological and physical toll of migration exacted at the individual and community levels are discussed. Recommendations advocating for culturally congruent mental health research, the training of culturally competent researchers and clinicians, and the development of policies that could influence the quality of life of Zimbabwean refugees are provided.

  16. Effect of temperature on the acid-base properties of the alumina surface: microcalorimetry and acid-base titration experiments.

    PubMed

    Morel, Jean-Pierre; Marmier, Nicolas; Hurel, Charlotte; Morel-Desrosiers, Nicole

    2006-06-15

    Sorption reactions on natural or synthetic materials that can attenuate the migration of pollutants in the geosphere could be affected by temperature variations. Nevertheless, most of the theoretical models describing sorption reactions are at 25 degrees C. To check these models at different temperatures, experimental data such as the enthalpies of sorption are thus required. Highly sensitive microcalorimeters can now be used to determine the heat effects accompanying the sorption of radionuclides on oxide-water interfaces, but enthalpies of sorption cannot be extracted from microcalorimetric data without a clear knowledge of the thermodynamics of protonation and deprotonation of the oxide surface. However, the values reported in the literature show large discrepancies and one must conclude that, amazingly, this fundamental problem of proton binding is not yet resolved. We have thus undertaken to measure by titration microcalorimetry the heat effects accompanying proton exchange at the alumina-water interface at 25 degrees C. Based on (i) the surface sites speciation provided by a surface complexation model (built from acid-base titrations at 25 degrees C) and (ii) results of the microcalorimetric experiments, calculations have been made to extract the enthalpic variations associated respectively to first and second deprotonation of the alumina surface. Values obtained are deltaH1 = 80+/-10 kJ mol(-1) and deltaH2 = 5+/-3 kJ mol(-1). In a second step, these enthalpy values were used to calculate the alumina surface acidity constants at 50 degrees C via the van't Hoff equation. Then a theoretical titration curve at 50 degrees C was calculated and compared to the experimental alumina surface titration curve. Good agreement between the predicted acid-base titration curve and the experimental one was observed.

  17. Temporary vs. Permanent Sub-slab Ports: A Comparative ...

    EPA Pesticide Factsheets

    Vapor intrusion (VI) is the migration of subsurface vapors, including radon and volatile organic compounds (VOCs), from the subsurface to indoor air. The VI exposure pathway extends from the contaminant source, which can be impacted soil, non-aqueous phase liquid, or contaminated groundwater, to indoor air-exposure points. Therefore, contaminated matrices may include groundwater, soil, soil gas, and indoor air. VOC contaminants of concern typically include halogenated solvents such as trichloroethene, tetrachloroethene, and chloroform, as well as petroleum hydrocarbons, such as the aromatic VOCs benzene, toluene, and xylenes. Radon is a colorless radioactive gas that is released by radioactive decay of radionuclides in rock and soil that migrate into homes through VI in a similar fashion to VOCs. This project focused on the performance of permanent versus temporary sub-slab sampling ports for the determination of VI of halogenated VOCs and radon into an unoccupied house. VOC and radon concentrations measured simultaneously in soil gas using collocated temporary and permanent ports appeared to be independent of the type of port. The variability between collocated temporary and permanent ports was much less than the spatial variability between different locations within a single residential duplex. The agreement of the majority of VOC and radon concentrations, 0–36% relative percent difference, and 2–19% relative standard deviation respectively, of each sub-sl

  18. Phased Migration to Koha: Our Library's Experience

    ERIC Educational Resources Information Center

    Kohn, Karen; McCloy, Eric

    2010-01-01

    Landman Library is two-thirds of the way through a three-stage process of migrating to the Koha open-source integrated library system (http://koha-community.org). We are an academic library with roughly 143,000 volumes, six professional librarians, and three support staff. The migration to open source was driven by the desire to access our own…

  19. Using Autumn Hawk Watch to track raptor migration and to monitor populations of North American birds of prey

    Treesearch

    Kyle McCarty; Keith L. Bildstein

    2005-01-01

    Raptors are secretive, area-sensitive predators whose populations can be logistically difficult and financially prohibitive to monitor. Many North American populations of raptors are migratory however, and on migration raptors are frequently counted at traditional migration watchsites. Experiences at Hawk Mountain Sanctuary (HMS) and elsewhere suggest that long-term...

  20. The Use of Migration-Related Competencies in Continuing Education: Individual Strategies, Social and Institutional Conditions

    ERIC Educational Resources Information Center

    Sadjed, Ariane; Sprung, Annette; Kukovetz, Brigitte

    2015-01-01

    Focusing especially on biographical competencies that are gained through the experience of migration and socialisation in a certain country or cultural context, this article analyses how professionals define and deploy these "migration-related competencies" when it comes to employment in the field of adult education in Austria. By means…

  1. Local Villages and Global Networks: The Language and Migration Experiences of African Skilled Migrant Academics

    ERIC Educational Resources Information Center

    Hurst, Ellen

    2017-01-01

    African skilled migrants and their circular and return migration strategies have received relatively little attention in the literature, with the previous focus of much African migration literature being on the net loss of skills to countries with developed economies in the global north. This article considers 13 interviews with African skilled…

  2. Experience drives innovation of new migration patterns of whooping cranes in response to global change.

    PubMed

    Teitelbaum, Claire S; Converse, Sarah J; Fagan, William F; Böhning-Gaese, Katrin; O'Hara, Robert B; Lacy, Anne E; Mueller, Thomas

    2016-09-06

    Anthropogenic changes in climate and land use are driving changes in migration patterns of birds worldwide. Spatial changes in migration have been related to long-term temperature trends, but the intrinsic mechanisms by which migratory species adapt to environmental change remain largely unexplored. We show that, for a long-lived social species, older birds with more experience are critical for innovating new migration behaviours. Groups containing older, more experienced individuals establish new overwintering sites closer to the breeding grounds, leading to a rapid population-level shift in migration patterns. Furthermore, these new overwintering sites are in areas where changes in climate have increased temperatures and where food availability from agriculture is high, creating favourable conditions for overwintering. Our results reveal that the age structure of populations is critical for the behavioural mechanisms that allow species to adapt to global change, particularly for long-lived animals, where changes in behaviour can occur faster than evolution.

  3. Experience drives innovation of new migration patterns of whooping cranes in response to global change

    PubMed Central

    Teitelbaum, Claire S.; Converse, Sarah J.; Fagan, William F.; Böhning-Gaese, Katrin; O'Hara, Robert B.; Lacy, Anne E.; Mueller, Thomas

    2016-01-01

    Anthropogenic changes in climate and land use are driving changes in migration patterns of birds worldwide. Spatial changes in migration have been related to long-term temperature trends, but the intrinsic mechanisms by which migratory species adapt to environmental change remain largely unexplored. We show that, for a long-lived social species, older birds with more experience are critical for innovating new migration behaviours. Groups containing older, more experienced individuals establish new overwintering sites closer to the breeding grounds, leading to a rapid population-level shift in migration patterns. Furthermore, these new overwintering sites are in areas where changes in climate have increased temperatures and where food availability from agriculture is high, creating favourable conditions for overwintering. Our results reveal that the age structure of populations is critical for the behavioural mechanisms that allow species to adapt to global change, particularly for long-lived animals, where changes in behaviour can occur faster than evolution. PMID:27597446

  4. Experience drives innovation of new migration patterns of whooping cranes in response to global change

    USGS Publications Warehouse

    Teitelbaum, Claire S.; Converse, Sarah J.; Fagan, William F.; Böhning-Gaese, Katrin; O'Hara, Robert B.; Lacy, Anne E; Mueller, Thomas

    2016-01-01

    Anthropogenic changes in climate and land use are driving changes in migration patterns of birds worldwide. Spatial changes in migration have been related to long-term temperature trends, but the intrinsic mechanisms by which migratory species adapt to environmental change remain largely unexplored. We show that, for a long-lived social species, older birds with more experience are critical for innovating new migration behaviours. Groups containing older, more experienced individuals establish new overwintering sites closer to the breeding grounds, leading to a rapid population-level shift in migration patterns. Furthermore, these new overwintering sites are in areas where changes in climate have increased temperatures and where food availability from agriculture is high, creating favourable conditions for overwintering. Our results reveal that the age structure of populations is critical for the behavioural mechanisms that allow species to adapt to global change, particularly for long-lived animals, where changes in behaviour can occur faster than evolution.

  5. Migration, cultural bereavement and cultural identity

    PubMed Central

    BHUGRA, DINESH; BECKER, MATTHEW A

    2005-01-01

    Migration has contributed to the richness in diversity of cultures, ethnicities and races in developed countries. Individuals who migrate experience multiple stresses that can impact their mental well being, including the loss of cultural norms, religious customs, and social support systems, adjustment to a new culture and changes in identity and concept of self. Indeed, the rates of mental illness are increased in some migrant groups. Mental health practitioners need to be attuned to the unique stresses and cultural aspects that affect immigrants and refugees in order to best address the needs of this increasing and vulnerable population. This paper will review the concepts of migration, cultural bereavement and cultural identity, and explore the interrelationship between these three aspects of the migrant's experience and cultural congruity. The complex interplay of the migration process, cultural bereavement, cultural identity, and cultural congruity, along with biological, psychological and social factors, is hypothesized as playing a major role in the increased rates of mental illness in affected migrant groups. PMID:16633496

  6. Polydatin induces bone marrow stromal cells migration by activation of ERK1/2.

    PubMed

    Chen, ZhenQiu; Wei, QiuShi; Hong, GuoJu; Chen, Da; Liang, Jiang; He, Wei; Chen, Mei Hui

    2016-08-01

    Bone marrow stromal cells (BMSCs) have proven to be useful for the treatment of numerous human diseases. However, the reparative ability of BMSCs is limited by their poor migration. Polydatin, widely used in traditional Chinese remedies, has proven to exert protective effects to BMSCs. However, little is known about its role in BMSCs migration. In this study, we studied the effects of polydatin on rat BMSCs migration using the scratch wound healing and transwell migration assays. Our results showed polydatin could promote BMSCs migration. Further experiments showed activation of ERK 1/2, but not JNK, was required for polydatin-induced BMSCs migration, suggesting that polydatin may promote BMSCs migration via the ERK 1/2 signaling pathways. Taken together, our results indicate that polydatin might be beneficial for stem cell replacement therapy by improving BMSCs migration. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Radionuclide concentration processes in marine organisms: A comprehensive review.

    PubMed

    Carvalho, Fernando P

    2018-06-01

    The first measurements made of artificial radionuclides released into the marine environment did reveal that radionuclides are concentrated by marine biological species. The need to report radionuclide accumulation in biota in different conditions and geographical areas prompted the use of concentration factors as a convenient way to describe the accumulation of radionuclides in biota relative to radionuclide concentrations in seawater. Later, concentration factors became a tool in modelling radionuclide distribution and transfer in aquatic environments and to predicting radioactivity in organisms. Many environmental parameters can modify the biokinetics of accumulation and elimination of radionuclides in marine biota, but concentration factors remained a convenient way to describe concentration processes of radioactive and stable isotopes in aquatic organisms. Revision of CF values is periodically undertaken by international organizations, such as the International Atomic Energy Agency (IAEA), to make updated information available to the international community. A brief commented review of radionuclide concentration processes and concentration factors in marine organisms is presented for key groups of radionuclides such as fission products, activation products, transuranium elements, and naturally-occurring radionuclides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The impact of economic factors on migration considerations among Icelandic specialist doctors: a cross-sectional study.

    PubMed

    Solberg, Ingunn Bjarnadóttir; Tómasson, Kristinn; Aasland, Olaf; Tyssen, Reidar

    2013-12-18

    Globalization has facilitated the employability of doctors almost anywhere in the world. In recent years, the migration of doctors seems to have increased. However, we lack studies on doctors' migration from developed countries. Because the economic recession experienced by many countries might have affected the migration of doctors, research on this topic is important for the retention of doctors. Iceland was hit hard by the economic recession in 2008. Therefore, we want to explore how many specialist doctors in Iceland have considered migrating and whether economic factors at work and in private life, such as extensive cost-containment initiatives at work and worries about personal finances, are related to doctors' migration considerations. In 2010, all doctors in Iceland registered with the Icelandic Medical Association were sent an electronic cross-sectional survey by email. The 467 specialists who participated in this study represent 55% of all specialist doctors working in Iceland. Information on doctors' contemplation of migration was available from responses to the question: "Have you considered moving and working abroad?" The predictor variables in our logistic regression model are perceived cost-containment initiatives at work, stress related to personal finances, experience of working abroad during vacations, job dissatisfaction, job position, age, and gender. Sixty-three per cent of Iceland's specialist doctors had considered relocation abroad, 4% were moving in the next year or two, and 33% had not considered relocating. Logistic regression analysis shows that, controlling for age, gender, job position, job satisfaction, and experience of working abroad during vacations, doctors' migration considerations were significantly affected by their experiences of cost-containment initiatives at work (odds ratio (OR) = 2.0, p < 0.01) and being stressed about personal finances (OR = 1.6, p < 0.001). Age, job satisfaction, and working abroad during vacations also had an effect, whereas job position did not. Economic factors affect whether specialist doctors in Iceland consider migration. More studies on the effect of economic recession on migration by doctors are needed.

  9. The impact of economic factors on migration considerations among Icelandic specialist doctors: a cross-sectional study

    PubMed Central

    2013-01-01

    Background Globalization has facilitated the employability of doctors almost anywhere in the world. In recent years, the migration of doctors seems to have increased. However, we lack studies on doctors’ migration from developed countries. Because the economic recession experienced by many countries might have affected the migration of doctors, research on this topic is important for the retention of doctors. Iceland was hit hard by the economic recession in 2008. Therefore, we want to explore how many specialist doctors in Iceland have considered migrating and whether economic factors at work and in private life, such as extensive cost-containment initiatives at work and worries about personal finances, are related to doctors’ migration considerations. Methods In 2010, all doctors in Iceland registered with the Icelandic Medical Association were sent an electronic cross-sectional survey by email. The 467 specialists who participated in this study represent 55% of all specialist doctors working in Iceland. Information on doctors’ contemplation of migration was available from responses to the question: “Have you considered moving and working abroad?” The predictor variables in our logistic regression model are perceived cost-containment initiatives at work, stress related to personal finances, experience of working abroad during vacations, job dissatisfaction, job position, age, and gender. Results Sixty-three per cent of Iceland’s specialist doctors had considered relocation abroad, 4% were moving in the next year or two, and 33% had not considered relocating. Logistic regression analysis shows that, controlling for age, gender, job position, job satisfaction, and experience of working abroad during vacations, doctors’ migration considerations were significantly affected by their experiences of cost-containment initiatives at work (odds ratio (OR) = 2.0, p < 0.01) and being stressed about personal finances (OR = 1.6, p < 0.001). Age, job satisfaction, and working abroad during vacations also had an effect, whereas job position did not. Conclusions Economic factors affect whether specialist doctors in Iceland consider migration. More studies on the effect of economic recession on migration by doctors are needed. PMID:24350577

  10. Toward a Mechanistic Source Term in Advanced Reactors: Characterization of Radionuclide Transport and Retention in a Sodium Cooled Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunett, Acacia J.; Bucknor, Matthew; Grabaskas, David

    A vital component of the U.S. reactor licensing process is an integrated safety analysis in which a source term representing the release of radionuclides during normal operation and accident sequences is analyzed. Historically, source term analyses have utilized bounding, deterministic assumptions regarding radionuclide release. However, advancements in technical capabilities and the knowledge state have enabled the development of more realistic and best-estimate retention and release models such that a mechanistic source term assessment can be expected to be a required component of future licensing of advanced reactors. Recently, as part of a Regulatory Technology Development Plan effort for sodium cooledmore » fast reactors (SFRs), Argonne National Laboratory has investigated the current state of knowledge of potential source terms in an SFR via an extensive review of previous domestic experiments, accidents, and operation. As part of this work, the significant sources and transport processes of radionuclides in an SFR have been identified and characterized. This effort examines all stages of release and source term evolution, beginning with release from the fuel pin and ending with retention in containment. Radionuclide sources considered in this effort include releases originating both in-vessel (e.g. in-core fuel, primary sodium, cover gas cleanup system, etc.) and ex-vessel (e.g. spent fuel storage, handling, and movement). Releases resulting from a primary sodium fire are also considered as a potential source. For each release group, dominant transport phenomena are identified and qualitatively discussed. The key product of this effort was the development of concise, inclusive diagrams that illustrate the release and retention mechanisms at a high level, where unique schematics have been developed for in-vessel, ex-vessel and sodium fire releases. This review effort has also found that despite the substantial range of phenomena affecting radionuclide release, the current state of knowledge is extensive, and in most areas may be sufficient. Several knowledge gaps were identified, such as uncertainty in release from molten fuel and availability of thermodynamic data for lanthanides and actinides in liquid sodium. However, the overall findings suggest that high retention rates can be expected within the fuel and primary sodium for all radionuclides other than noble gases.« less

  11. What is the prevalence of and associations with forced labour experiences among male migrants from Dolakha, Nepal? Findings from a cross-sectional study of returnee migrants

    PubMed Central

    Mak, Joelle; Abramsky, Tanya; Sijapati, Bandita; Kiss, Ligia; Zimmerman, Cathy

    2017-01-01

    Objectives Growing numbers of people are migrating outside their country for work, and many experience precarious conditions, which have been linked to poor physical and mental health. While international dialogue on human trafficking, forced labour and slavery increases, prevalence data of such experiences remain limited. Methods Men from Dolakha, Nepal, who had ever migrated outside of Nepal for work were interviewed on their experiences, from predeparture to return (n=194). Forced labour was assessed among those who returned within the past 10 years (n=140) using the International Labour Organization's forced labour dimensions: (1) unfree recruitment; (2) work and life under duress; and (3) impossibility to leave employer. Forced labour is positive if any one of the dimensions is positive. Results Participants had worked in India (34%), Malaysia (34%) and the Gulf Cooperation Council countries (29%), working in factories (29%), as labourers/porters (15%) or in skilled employment (12%). Among more recent returnees (n=140), 44% experienced unfree recruitment, 71% work and life under duress and 14% impossibility to leave employer. Overall, 73% experienced forced labour during their most recent labour migration. Forced labour was more prevalent among those who had taken loans for their migration (PR 1.23) and slightly less prevalent among those who had migrated more than once (PR 0.87); however the proportion of those who experienced forced labour was still high (67%). Age, destination and duration of stay were associated with only certain dimensions of forced labour. Conclusion Forced labour experiences were common during recruitment and at destination. Migrant workers need better advice on assessing agencies and brokers, and on accessing services at destinations. As labour migration from Nepal is not likely to reduce in the near future, interventions and policies at both source and destinations need to better address the challenges migrants face so they can achieve safer outcomes. PMID:28801409

  12. Radionuclide detection devices and associated methods

    DOEpatents

    Mann, Nicholas R [Rigby, ID; Lister, Tedd E [Idaho Falls, ID; Tranter, Troy J [Idaho Falls, ID

    2011-03-08

    Radionuclide detection devices comprise a fluid cell comprising a flow channel for a fluid stream. A radionuclide collector is positioned within the flow channel and configured to concentrate one or more radionuclides from the fluid stream onto at least a portion of the radionuclide collector. A scintillator for generating scintillation pulses responsive to an occurrence of a decay event is positioned proximate at least a portion of the radionuclide collector and adjacent to a detection system for detecting the scintillation pulses. Methods of selectively detecting a radionuclide are also provided.

  13. Simultaneous Tc-99m and I-123 dual-radionuclide imaging with a solid-state detector-based brain-SPECT system and energy-based scatter correction.

    PubMed

    Takeuchi, Wataru; Suzuki, Atsuro; Shiga, Tohru; Kubo, Naoki; Morimoto, Yuichi; Ueno, Yuichiro; Kobashi, Keiji; Umegaki, Kikuo; Tamaki, Nagara

    2016-12-01

    A brain single-photon emission computed tomography (SPECT) system using cadmium telluride (CdTe) solid-state detectors was previously developed. This CdTe-SPECT system is suitable for simultaneous dual-radionuclide imaging due to its fine energy resolution (6.6 %). However, the problems of down-scatter and low-energy tail due to the spectral characteristics of a pixelated solid-state detector should be addressed. The objective of this work was to develop a system for simultaneous Tc-99m and I-123 brain studies and evaluate its accuracy. A scatter correction method using five energy windows (FiveEWs) was developed. The windows are Tc-lower, Tc-main, shared sub-window of Tc-upper and I-lower, I-main, and I-upper. This FiveEW method uses pre-measured responses for primary gamma rays from each radionuclide to compensate for the overestimation of scatter by the triple-energy window method that is used. Two phantom experiments and a healthy volunteer experiment were conducted using the CdTe-SPECT system. A cylindrical phantom and a six-compartment phantom with five different mixtures of Tc-99m and I-123 and a cold one were scanned. The quantitative accuracy was evaluated using 18 regions of interest for each phantom. In the volunteer study, five healthy volunteers were injected with Tc-99m human serum albumin diethylene triamine pentaacetic acid (HSA-D) and scanned (single acquisition). They were then injected with I-123 N-isopropyl-4-iodoamphetamine hydrochloride (IMP) and scanned again (dual acquisition). The counts of the Tc-99m images for the single and dual acquisitions were compared. In the cylindrical phantom experiments, the percentage difference (PD) between the single and dual acquisitions was 5.7 ± 4.0 % (mean ± standard deviation). In the six-compartment phantom experiment, the PDs between measured and injected activity for Tc-99m and I-123 were 14.4 ± 11.0 and 2.3 ± 1.8 %, respectively. In the volunteer study, the PD between the single and dual acquisitions was 4.5 ± 3.4 %. This CdTe-SPECT system using the FiveEW method can provide accurate simultaneous dual-radionuclide imaging. A solid-state detector SPECT system using the FiveEW method will permit quantitative simultaneous Tc-99m and I-123 study to become clinically applicable.

  14. Potential Offsite Radiological Doses Estimated for the Proposed Divine Strake Experiment, Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ron Warren

    2006-12-01

    An assessment of the potential radiation dose that residents offsite of the Nevada Test Site (NTS) might receive from the proposed Divine Strake experiment was made to determine compliance with Subpart H of Part 61 of Title 40 of the Code of Federal Regulations, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities. The Divine Strake experiment, proposed by the Defense Threat Reduction Agency, consists of a detonation of 700 tons of heavy ammonium nitrate fuel oil-emulsion above the U16b Tunnel complex in Area 16 of the NTS. Both natural radionuclides suspended, and historicmore » fallout radionuclides resuspended from the detonation, have potential to be transported outside the NTS boundary by wind. They may, therefore, contribute radiological dose to the public. Subpart H states ''Emissions of radionuclides to the ambient air from Department of Energy facilities shall not exceed those amounts that would cause any member of the public to receive in any year an effective dose equivalent of 10 mrem/yr'' (Title 40 of the Code of Federal Regulations [CFR] 61.92) where mrem/yr is millirem per year. Furthermore, application for U.S. Environmental Protection Agency (EPA) approval of construction of a new source or modification of an existing source is required if the effective dose equivalent, caused by all emissions from the new construction or modification, is greater than or equal to 0.1 mrem/yr (40 CFR 61.96). In accordance with Section 61.93, a dose assessment was conducted with the computer model CAP88-PC, Version 3.0. In addition to this model, a dose assessment was also conducted by the National Atmospheric Release Advisory Center (NARAC) at the Lawrence Livermore National Laboratory. This modeling was conducted to obtain dose estimates from a model designed for acute releases and which addresses terrain effects and uses meteorology from multiple locations. Potential radiation dose to a hypothetical maximally exposed individual at the closest NTS boundary to the proposed Divine Strake experiment, as estimated by the CAP88-PC model, was 0.005 mrem with wind blowing directly towards that location. Boundary dose, as modeled by NARAC, ranged from about 0.006 to 0.007 mrem. Potential doses to actual offsite populated locations were generally two to five times lower still, or about 40 to 100 times lower then the 0.1 mrem level at which EPA approval is required pursuant to Section 61.96.« less

  15. The inflow of Cs-137 in soil with root litter and root exudates of Scots pine

    NASA Astrophysics Data System (ADS)

    Shcheglov, Alexey; Tsvetnova, Olga; Popova, Evgenia

    2017-04-01

    In the model experiment on evaluation of Cs-137 inflow in the soil with litter of roots and woody plants root exudates on the example of soil and water cultures of Scots pine (Pinus sylvestris L.) was shown, that through 45 days after the deposit Cs-137 solution on pine needles (specific activity of solution was 3.718*106 Bk) of the radionuclide in all components of model systems has increased significantly: needles, small branches and trunk by Cs-137 surface contamination during the experiment; roots as a result of the internal distribution of the radionuclide in the plant; soil and soil solution due to the of receipt Cs-137 in the composition of root exudates and root litter. Over 99% of the total reserve of Cs-137 accumulated in the components of the soil and water systems, accounted for bodies subjected to external pollution (needles and small branches) and <0.5% - on the soil / soil solution, haven't been subjected to surface contamination. At the same contamination of soil and soil solution by Cs-137 in the model experiment more than a> 99.9% was due to root exudates

  16. Studies of the mobility of uranium and thorium in Nevada Test Site tuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollenberg, H.A.; Flexser, S.; Smith, A.R.

    1991-06-01

    Hydro-geochemical processes must be understood if the movement of radionuclides away from a breached radioactive waste canister is to be modeled and predicted. In this respect, occurrences of uranium and thorium in hydrothermal systems are under investigation in tuff and in rhyolitic tuff that was heated to simulate the effects of introduction of radioactive waste. In these studies, high-resolution gamma spectrometry and fission-track radiography are coupled with observations of alteration mineralogy and thermal history to deduce the evidence of, or potential for movement of, U and Th in response to the thermal environment. Observations to date suggest that U wasmore » mobile in the vicinity of the heater but that localized reducing environments provided by Fe-Ti-Mn-oxide minerals concentrated U and thus attenuated its migration.« less

  17. Observations on the geology and geohydrology of the Chernobyl' nuclear accident site, Ukraine

    USGS Publications Warehouse

    Matzko, J.R.; Percious, D.J.; Rachlin, J.; Marples, D.R.

    1994-01-01

    The most highly contaminated surface areas from cesium-137 fallout from the April 1986 accident at the Chernobyl' nuclear power station in Ukraine occur within the 30-km radius evacuation zone set up around the station, and an 80-km lobe extending to the west-southwest. Lower levels of contamination extend 300 km to the west of the power station. The geology, the presence of surface water, a shallow water table, and leaky aquifers at depth make this an unfavorable environment for the long-term containment and storage of the radioactive debris. An understanding of the general geology and hydrology of the area is important to assess the environmental impact of this unintended waste storage site, and to evaluate the potential for radionuclide migration through the soil and rock and into subsurface aquifers and nearby rivers. -from Authors

  18. Armored Enzyme Nanoparticles for Remediation of Subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grate, Jay W.

    2005-09-01

    The remediation of subsurface contaminants is a critical problem for the Department of Energy, other government agencies, and our nation. Severe contamination of soil and groundwater exists at several DOE sites due to various methods of intentional and unintentional release. Given the difficulties involved in conventional removal or separation processes, it is vital to develop methods to transform contaminants and contaminated earth/water to reduce risks to human health and the environment. Transformation of the contaminants themselves may involve conversion to other immobile species that do not migrate into well water or surface waters, as is proposed for metals and radionuclides;more » or degradation to harmless molecules, as is desired for organic contaminants. Transformation of contaminated earth (as opposed to the contaminants themselves) may entail reductions in volume or release of bound contaminants for remediation.« less

  19. PCR detection of groundwater bacteria associated with colloidal transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz-Perez, P.; Stetzenbach, L.D.; Alvarez, A.J.

    1996-02-29

    Colloidal transport may increase the amount of contaminant material than that which could be transported by water flow alone. The role of colloids in groundwater contaminant transport is complicated and may involve many different processes, including sorption of elements onto colloidal particles, coagulation/dissolution, adsorption onto solid surfaces, filtration, and migration. Bacteria are known to concentrate minerals and influence the transport of compounds in aqueous environments and may also serve as organic colloids, thereby influencing subsurface transport of radionuclides and other contaminants. The initial phase of the project consisted of assembling a list of bacteria capable of sequestering or facilitating mineralmore » transport. The development and optimization of the PCR amplification assay for the detection of the organisms of interest, and the examination of regional groundwaters for those organisms, are presented for subsequent research.« less

  20. Radioactivities of Long Duration Exposure Facility (LDEF) materials: Baggage and bonanzas

    NASA Technical Reports Server (NTRS)

    Smith, Alan R.; Hurley, Donna L.

    1992-01-01

    Radioactivities in materials onboard the returned Long Duration Exposure Facility (LDEF) satellite were studied by a variety of techniques. Among the most powerful is low-background Ge-semiconductor detector gamma-ray spectrometry, illustrated here by results obtained at the Lawrence Berkeley Laboratory's (LBL) Low Background Facilities. The observed radioactivities are of two origins: those radionuclides produced by nuclear reactions with the radiation field in orbit, and radionuclides present initially as 'contaminants' in materials used for construction of the spacecraft and experimental assemblies. In the first category are experiment-related monitor foils and tomato seeds, and such spacecraft materials as aluminum, stainless steel, and titanium. In the second category are aluminum, beryllium, titanium, vanadium, and some special glasses.

  1. Commercial and PET radioisotope manufacturing with a medical cyclotron

    NASA Astrophysics Data System (ADS)

    Boothe, T. E.; McLeod, T. F.; Plitnikas, M.; Kinney, D.; Tavano, E.; Feijoo, Y.; Smith, P.; Szelecsényi, F.

    1993-06-01

    Mount Sinai has extensive experience in producing radionuclides for commercial sales and for incorporation into radiopharmaceuticals, including PET. Currently, an attempt is being made to supply radiochemicals to radiopharmaceutical manufacturers outside the hospital, to prepare radiopharmaceuticals for in-house use, and to prepare PET radiopharmaceuticals, such as 2-[F-18] FDG, for outside sales. This use for both commercial and PET manufacturing is atypical for a hospital-based cyclotron. To accomplish PET radiopharmaceutical sales, the hospital operates a nuclear pharmacy. A review of operational details for the past several years shows a continuing dependence on commercial sales which is reflected in research and developmental aspects and in staffing. Developmental efforts have centered primarily on radionuclide production, target development, and radiochemical processing optimization.

  2. What are Chinese nurses' experiences whilst working overseas? A narrative scoping review.

    PubMed

    Zhong, Yaping; McKenna, Lisa; Copnell, Beverley

    2017-09-01

    Transnational nurse migration has become an apparent attribute of the global nurse shortage and it is foreseeable that China will play an increasingly significant role in nurse exports. These nurses have unique cultural and professional needs throughout their journey of migration and in-depth analysis of Chinese migrant nurses' experiences is urgently required to manage and empower an ethnically diverse workforce. To synthesise Chinese migrant nurses' experiences by examining the findings of existing studies. Scoping review methods incorporating narrative synthesis were conducted. Arksey and O'Malley's five-stage scoping review framework was utilised to identify Chinese migrant nurses' experiences. 13 databases were searched, and 5009 articles were retrieved. After screening the titles and abstracts, 169 articles were assessed in full text for eligibility, and finally 22 articles plus 2 manually included ones, representing 19 discrete studies, were further analysed and synthesised with a three-step narrative synthesis. 13 qualitative studies, 5 quantitative studies and 1 mixed- methods study met inclusion criteria. Two main themes were identified. "Contexts and migration" comprised three subthemes: perceptions of nursing, original culture and nursing differences. "The self and migration" included four subthemes: initiating, transition, reality and future. This scoping review revealed the literature on Chinese migrant nurses and provided insight into their stories and circumstances. There were external factors which affected Chinese nurses' interpretations and choices. Throughout their migration journeys, they encountered various challenges and also successes. They responded with positive or negative behavioural and psychosocial changes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Multiple functional units in the preattentive segmentation of speech in Japanese: evidence from word illusions.

    PubMed

    Nakamura, Miyoko; Kolinsky, Régine

    2014-12-01

    We explored the functional units of speech segmentation in Japanese using dichotic presentation and a detection task requiring no intentional sublexical analysis. Indeed, illusory perception of a target word might result from preattentive migration of phonemes, morae, or syllables from one ear to the other. In Experiment I, Japanese listeners detected targets presented in hiragana and/or kanji. Phoneme migrations did occur, suggesting that orthography-independent sublexical constituents play some role in segmentation. However, syllable and especially mora migrations were more numerous. This pattern of results was not observed in French speakers (Experiment 2), suggesting that it reflects native segmentation in Japanese. To control for the intervention of kanji representations (many words are written in kanji, and one kanji often corresponds to one syllable), in Experiment 3, Japanese listeners were presented with target loanwords that can be written only in katakana. Again, phoneme migrations occurred, while the first mora and syllable led to similar rates of illusory percepts. No migration occurred for the second, "special" mora (/J/ or/N/), probably because this constitutes the latter part of a heavy syllable. Overall, these findings suggest that multiple units, such as morae, syllables, and even phonemes, function independently of orthographic knowledge in Japanese preattentive speech segmentation.

  4. Serial migration and its implications for the parent-child relationship: a retrospective analysis of the experiences of the children of Caribbean immigrants.

    PubMed

    Smith, Andrea; Lalonde, Richard N; Johnson, Simone

    2004-05-01

    This study addressed the potential impact of serial migration for parent-children relationships and for children's psychological well-being. The experience of being separated from their parents during childhood and reunited with them at a later time was retrospectively examined for 48 individuals. A series of measures (e.g., self-esteem, parental identification) associated with appraisals at critical time periods during serial migration (separation, reunion, current) revealed that serial migration can potentially disrupt parent-child bonding and unfavorably affect children's self-esteem and behavior. Time did not appear to be wholly effective in repairing rifts in the parent-child relationship. Risk factors for less successful reunions included lengthy separations and the addition of new members to the family unit in the child's absence. (c) 2004 APA

  5. Violence and reproductive health preceding flight from war: accounts from Somali born women in Sweden.

    PubMed

    Byrskog, Ulrika; Olsson, Pia; Essén, Birgitta; Allvin, Marie Klingberg

    2014-08-30

    Political violence and war are push factors for migration and social determinants of health among migrants. Somali migration to Sweden has increased threefold since 2004, and now comprises refugees with more than 20 years of war experiences. Health is influenced by earlier life experiences with adverse sexual and reproductive health, violence, and mental distress being linked. Adverse pregnancy outcomes are reported among Somali born refugees in high-income countries. The aim of this study was to explore experiences and perceptions on war, violence, and reproductive health before migration among Somali born women in Sweden. Qualitative semi-structured individual interviews were conducted with 17 Somali born refugee women of fertile age living in Sweden. Thematic analysis was applied. Before migration, widespread war-related violence in the community had created fear, separation, and interruption in daily life in Somalia, and power based restrictions limited access to reproductive health services. The lack of justice and support for women exposed to non-partner sexual violence or intimate partner violence reinforced the risk of shame, stigmatization, and silence. Social networks, stoicism, and faith constituted survival strategies in the context of war. Several factors reinforced non-disclosure of violence exposure among the Somali born women before migration. Therefore, violence-related illness might be overlooked in the health care system. Survival strategies shaped by war contain resources for resilience and enhancement of well-being and sexual and reproductive health and rights in receiving countries after migration.

  6. Source country perceptions, experiences, and recommendations regarding health workforce migration: a case study from the Philippines.

    PubMed

    Marcus, Kanchan; Quimson, Gabriella; Short, Stephanie D

    2014-10-31

    The Philippines continues to overproduce nurses for export. Little first-hand evidence exists from leading organisations in the Philippines concerning their experiences and perceptions in relation to Filipino nurse migration. What are their views about health workforce migration? This paper addresses this research gap by providing a source country perspective on Filipino nurse migration to Australia. Focus-group interviews were conducted with key informants from nine Filipino organisations in the Philippines by an Australian-Filipino research team. The organisations were purposively selected and contacted in person, by phone, and/or email. Qualitative thematic analysis was performed using a coding framework. Health workforce migration is perceived to have both positive and negative consequences. On the one hand, emigration offers a welcome opportunity for individual Filipino nurses to migrate abroad in order to achieve economic, professional, lifestyle, and social benefits. On the other, as senior and experienced nurses are attracted overseas, this results in the maldistribution of health workers particularly affecting rural health outcomes for people in developing countries. Problems such as 'volunteerism' also emerged in our study. In the context of the WHO (2010) Code of Practice on the International Recruitment of Health Personnel it is to be hoped that, in the future, government recruiters, managers, and nursing leaders can utilise these insights in designing recruitment, orientation, and support programmes for migrant nurses that are more sensitive to the experience of the Philippines' education and health sectors and their needs.

  7. Suggestions for planning a migration-monitoring network based on the experience of establishing and operating the maps program

    Treesearch

    David F. DeSante

    2005-01-01

    Based on the experience of creating and implementing the Monitoring Avian Productivity and Survivorship (MAPS) program, I suggest that, to be successful, a migration-monitoring network must: (1) provide strong justification for the data it proposes to collect; (2) provide direct links between those monitoring data and both research and management goals; (3) provide...

  8. Interaction of selenite with reduced Fe and/or S species: An XRD and XAS study.

    PubMed

    Finck, Nicolas; Dardenne, Kathy

    2016-05-01

    In this study, we investigated the interaction between selenite and either Fe((II))aq or S((-II))aq in solution, and the results were used to investigate the interaction between Se((IV))aq and FeS in suspension. The reaction products were characterized by a combination of methods (SEM, XRD and XAS) and the reaction mechanisms were identified. In a first experiment, Se((IV))aq was reduced to Se((0)) by interaction with Fe((II))aq which was oxidized to Fe((III)), but the reaction was only partial. Subsequently, some Fe((III)) produced akaganeite (β-FeOOH) and the release of proton during that reaction decreased the pH. The pH decrease changed the Se speciation in solution which hindered further Se((IV)) reduction by Fe((II))aq. In a second experiment, Se((IV))aq was quantitatively reduced to Se((0)) by S((-II))aq and the reaction was fast. Two sulfide species were needed to reduce one Se((IV)), and the observed pH increase was due to a proton consumption. For both experiments, experimental results are consistent with expectations based on the oxidation reduction potential of the various species. Upon interaction with FeS, Se((IV))aq was reduced to Se((0)) and minute amounts of pyrite were detected, a consequence of partial mackinawite oxidation at surface sulfur sites. These results are of prime importance with respect to safe deep disposal of nuclear waste which contains the long-lived radionuclide (79)Se. This study shows that after release of (79)Se((IV)) upon nuclear waste matrix corrosion, selenite can be reduced in the near field to low soluble Se((0)) by interaction with Fe((II))aq and/or S((-II))aq species. Because the solubility of Se((0)) species is significantly lower than that of Se((IV)), selenium will become much less (bio)available and its migration out of deep HLW repositories may be drastically hindered. Copyright © 2016. Published by Elsevier B.V.

  9. The Educational Problems of the Turkish Citizens Living in Switzerland in the Process of Adjustment to Europe

    ERIC Educational Resources Information Center

    Ari, Asim

    2007-01-01

    Every society experiences migration and influxes of immigrants. The most common reasons for migration include political and economic obligations as well as wishing access to better educational opportunities. Although the concept of migration is as old as human history, Turkish society encountered the concept after World War II. Two million Turkish…

  10. Transnational Experiences, Language Competences and Worldviews: Contrasting Language Policies in Two Recently Migrated Greek Families in Luxembourg

    ERIC Educational Resources Information Center

    Kirsch, Claudine; Gogonas, Nikolaos

    2018-01-01

    Against the backdrop of the ongoing crisis-led migration from Southern to Northwestern Europe, the present paper reports on a case study of two families who have recently migrated from Greece to Luxembourg. Luxembourg has a trilingual education system and many pupils of migrant background face difficulties on this account. Drawing on the framework…

  11. The Impact of International Teacher Migration on Schooling in Developing Countries--The Case of Southern Africa

    ERIC Educational Resources Information Center

    Appleton, Simon; Sives, Amanda; Morgan, W. John

    2006-01-01

    Whilst the migration of teachers has been a phenomenon for hundreds of years, the advent of "globalisation" has seen such migration return to prominence. This article focuses on the experiences of two developing countries in Southern Africa which have been on different ends of the process: South Africa as a net sender of teachers and…

  12. Migration of Data from One Library Management System to Another: A Case Study in India

    ERIC Educational Resources Information Center

    Matoria, Ram Kumar; Upadhyay, P. K.

    2005-01-01

    Purpose: To share the experiences gained during the migration of library data from one library management system (LibSys[TM]) to another (e-Granthalaya[TM]). Design/methodology/approach: The paper describes the step-by-step approach taken to migrate the existing library data to the new software. The paper also discusses the peculiarities of the…

  13. Migration, violence, and safety among migrant sex workers: a qualitative study in two Guatemalan communities.

    PubMed

    Rocha-Jiménez, Teresita; Brouwer, Kimberly C; Silverman, Jay G; Morales-Miranda, Sonia; Goldenberg, Shira M

    2016-09-01

    Despite reports of high levels of violence among women migrants in Central America, limited evidence exists regarding the health and safety of migrant sex workers in Central America. This study is based on 16 months of field research (November 2012-February 2014), including ethnographic fieldwork, in-depth interviews, and focus groups conducted with 52 internal and international migrant female sex workers in Tecún Umán and Quetzaltenango, Guatemala, key transit and destination communities for both international and internal migrants. The analysis explored migration-related determinants of susceptibility to violence experienced by migrant sex workers across different phases of migration. Violence in home communities and economic considerations were key drivers of migration. Unsafe transit experiences (eg undocumented border crossings) and negative interactions with authorities in destination settings (eg extortion) contributed to migrant sex workers' susceptibility to violence, while enhanced access to information on immigration policies and greater migration and sex work experience were found to enhance agency and resilience. Findings suggest the urgent need for actions that promote migrant sex workers' safety in communities of origin, transit, and destination, and programmes aimed at preventing and addressing human rights violations within the context of migration and sex work.

  14. [Thermodynamic forecasting of reagents composition for soils decontamination].

    PubMed

    Nikolaev, V P; Nikolaevskiĭ, V B; Chirkina, I V; Shcheglov, M Iu

    2009-01-01

    Based on thermodynamic studies, the authors conducted laboratory experiments on searching optimal composition of leaching reagents solution for soils decontamination, when contaminated with Cs-137, of activity coefficient for caesium sulfate microquantities in macrocomponents solutions. The method could be used for modelling the radionuclides phase equillibrium and relocations in soils.

  15. Wide Area Recovery and Resiliency Program (WARRP) Interim Clearance Strategy for Environments Contaminated with Cesium-137

    DTIC Science & Technology

    2012-07-01

    Goiania) and those containing 137Cs and other radionuclides ( Chernobyl ). Another group contains documents relevant to site survey 3 procedures...residents of the contaminated areas. Recovery experience from the Chernobyl incident have demonstrated that direct involvement of inhabitants and local

  16. Wide Area Recovery and Resiliency Program (WARRP) Interim Clearance Strategy for Environments Contaminated with Hazardous Chemicals

    DTIC Science & Technology

    2012-07-01

    on the cleanup of specific sites: those containing only cesium-137 (Goiania) and those containing 137Cs and other radionuclides ( Chernobyl ...targets and consider initiatives to enhance the quality of life of the residents of the contaminated areas. Recovery experience from the Chernobyl

  17. Influence of hydrological and geochemical processes on the transport of chelated metals and chromate in fractured shale bedrock

    NASA Astrophysics Data System (ADS)

    Jardine, P. M.; Mehlhorn, T. L.; Larsen, I. L.; Bailey, W. B.; Brooks, S. C.; Roh, Y.; Gwo, J. P.

    2002-03-01

    Field-scale processes governing the transport of chelated radionuclides in groundwater remain conceptually unclear for highly structured, heterogeneous environments. The objectives of this research were to provide an improved understanding and predictive capability of the hydrological and geochemical mechanisms that control the transport behavior of chelated radionuclides and metals in anoxic subsurface environments that are complicated by fracture flow and matrix diffusion. Our approach involved a long-term, steady-state natural gradient field experiment where nonreactive Br - and reactive 57Co(II)EDTA 2-, 109CdEDTA 2-, and 51Cr(VI) were injected into a fracture zone of a contaminated fractured shale bedrock. The spatial and temporal distribution of the tracer and solutes was monitored for 500 days using an array of groundwater sampling wells instrumented within the fast-flowing fracture regime and a slower flowing matrix regime. The tracers were preferentially transported along strike-parallel fractures coupled with the slow diffusion of significant tracer mass into the bedrock matrix. The chelated radionuclides and metals were significantly retarded by the solid phase with the mechanisms of retardation largely due to redox reactions and sorption coupled with mineral-induced chelate-radionuclide dissociation. The formation of significant Fe(III)EDTA - byproduct that accompanied the dissociation of the radionuclide-chelate complexes was believed to be the result of surface interactions with biotite which was the only Fe(III)-bearing mineral phase present in these Fe-reducing environments. These results counter current conceptual models that suggest chelated contaminants move conservatively through Fe-reducing environments since they are devoid of Fe-oxyhydroxides that are known to aggressively compete for chelates in oxic regimes. Modeling results further demonstrated that chelate-radionuclide dissociation reactions were most prevalent along fractures where accelerated weathering processes are expected to expose more primary minerals than the surrounding rock matrix. The findings of this study suggest that physical retardation mechanisms (i.e. diffusion) are dominant within the matrix regime, whereas geochemical retardation mechanisms are dominant within the fracture regime.

  18. WE-AB-204-12: Dosimetry at the Sub-Cellular Scale of Auger-Electron Emitter 99m-Tc in a Mouse Single Thyroid Follicle Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taborda, A; Benabdallah, N; Desbree, A

    2015-06-15

    Purpose: To perform a dosimetry study at the sub-cellular scale of Auger-electron emitter 99m-Tc using a mouse single thyroid cellular model to investigate the contribution of the 99m-Tc Auger-electrons to the absorbed dose and possible link to the thyroid stunning in in vivo experiments in mice, recently reported in literature. Methods: The simulation of S-values for Auger-electron emitting radionuclides was performed using both the recent MCNP6 software and the Geant4-DNA extension of the Geant4 toolkit. The dosimetric calculations were validated through comparison with results from literature, using a simple model of a single cell consisting of two concentric spheres ofmore » unit density water and for six Auger-electron emitting radionuclides. Furthermore, the S-values were calculated using a single thyroid follicle model for uniformly distributed 123-I and 125-I radionuclides and compared with published S-values. After validation, the simulation of the S-values was performed for the 99m-Tc radionuclide within the several mouse thyroid follicle cellular compartments, considering the radiative and non-radiative transitions of the 99m-Tc radiation spectrum. Results: The calculated S-values using MCNP6 are in good agreement with the results from literature, validating its use for the 99m-Tc S-values calculations. The most significant absorbed dose corresponds to the case where the radionuclide is uniformly distributed in the follicular cell’s nucleus, with a S-value of 7.8 mGy/disintegration, due mainly to the absorbed Auger-electrons. The results show that, at a sub-cellular scale, the emitted X-rays and gamma particles do not contribute significantly to the absorbed dose. Conclusion: In this work, MCNP6 was validated for dosimetric studies at the sub-cellular scale. It was shown that the contribution of the Auger-electrons to the absorbed dose is important at this scale compared to the emitted photons’ contribution and can’t be neglected. The obtained S-values of Auger-electron emitting 99m-Tc radionuclide will be presented and discussed.« less

  19. Effects of grain size, mineralogy, and acid-extractable grain coatings on the distribution of the fallout radionuclides 7Be, 10Be, 137Cs, and 210Pb in river sediment

    NASA Astrophysics Data System (ADS)

    Singleton, Adrian A.; Schmidt, Amanda H.; Bierman, Paul R.; Rood, Dylan H.; Neilson, Thomas B.; Greene, Emily Sophie; Bower, Jennifer A.; Perdrial, Nicolas

    2017-01-01

    Grain-size dependencies in fallout radionuclide activity have been attributed to either increase in specific surface area in finer grain sizes or differing mineralogical abundances in different grain sizes. Here, we consider a third possibility, that the concentration and composition of grain coatings, where fallout radionuclides reside, controls their activity in fluvial sediment. We evaluated these three possible explanations in two experiments: (1) we examined the effect of sediment grain size, mineralogy, and composition of the acid-extractable materials on the distribution of 7Be, 10Be, 137Cs, and unsupported 210Pb in detrital sediment samples collected from rivers in China and the United States, and (2) we periodically monitored 7Be, 137Cs, and 210Pb retention in samples of known composition exposed to natural fallout in Ohio, USA for 294 days. Acid-extractable materials (made up predominately of Fe, Mn, Al, and Ca from secondary minerals and grain coatings produced during pedogenesis) are positively related to the abundance of fallout radionuclides in our sediment samples. Grain-size dependency of fallout radionuclide concentrations was significant in detrital sediment samples, but not in samples exposed to fallout under controlled conditions. Mineralogy had a large effect on 7Be and 210Pb retention in samples exposed to fallout, suggesting that sieving sediments to a single grain size or using specific surface area-based correction terms may not completely control for preferential distribution of these nuclides. We conclude that time-dependent geochemical, pedogenic, and sedimentary processes together result in the observed differences in nuclide distribution between different grain sizes and substrate compositions. These findings likely explain variability of measured nuclide activities in river networks that exceeds the variability introduced by analytical techniques as well as spatial and temporal differences in erosion rates and processes. In short, we suggest that presence and amount of pedogenic grain coatings is more important than either specific surface area or surface charge in setting the distribution of fallout radionuclides.

  20. Effect of reducing groundwater on the retardation of redox-sensitive radionuclides

    PubMed Central

    Hu, QH; Zavarin, M; Rose, TP

    2008-01-01

    Laboratory batch sorption experiments were used to investigate variations in the retardation behavior of redox-sensitive radionuclides. Water-rock compositions were designed to simulate subsurface conditions at the Nevada Test Site (NTS), where a suite of radionuclides were deposited as a result of underground nuclear testing. Experimental redox conditions were controlled by varying the oxygen content inside an enclosed glove box and by adding reductants into the testing solutions. Under atmospheric (oxidizing) conditions, radionuclide distribution coefficients varied with the mineralogic composition of the sorbent and the water chemistry. Under reducing conditions, distribution coefficients showed marked increases for 99Tc (from 1.22 at oxidizing to 378 mL/g at mildly reducing conditions) and 237Np (an increase from 4.6 to 930 mL/g) in devitrified tuff, but much smaller variations in alluvium, carbonate rock, and zeolitic tuff. This effect was particularly important for 99Tc, which tends to be mobile under oxidizing conditions. A review of the literature suggests that iodine sorption should decrease under reducing conditions when I- is the predominant species; this was not consistently observed in batch tests. Overall, sorption of U to alluvium, devitrified tuff, and zeolitic tuff under atmospheric conditions was less than in the glove-box tests. However, the mildly reducing conditions achieved here were not likely to result in substantial U(VI) reduction to U(IV). Sorption of Pu was not affected by the decreasing Eh conditions achieved in this study, as the predominant sorbed Pu species in all conditions was expected to be the low-solubility and strongly sorbing Pu(OH)4. Depending on the aquifer lithology, the occurrence of reducing conditions along a groundwater flowpath could potentially contribute to the retardation of redox-sensitive radionuclides 99Tc and 237Np, which are commonly identified as long-term dose contributors in the risk assessment in various radionuclide environmental contamination scenarios. The implications for increased sorption of 99Tc and 237Np to devitrified tuff under reducing conditions are significant as the fractured devitrified tuff serves as important water flow path at the NTS and the horizon for a proposed repository to store high-level nuclear waste at Yucca Mountain. PMID:19077277

  1. The Outlook for Some Fission Products Utilization with the Aim to Immobilize Long-Lived Radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhitonov, Y.A.

    2008-07-01

    The prospects for development of nuclear power are intimately associated with solving the problem of safe management and removal from the biosphere of generated radioactive wastes. The most suitable material for fission products and actinides immobilization is the crystalline ceramics. By now numerous literature data are available concerning the synthesis of a large range of various materials with zirconium-based products. It worth mentioning that zirconium is only one of fission products accumulated in the fuel in large amounts. The development of new materials intended for HLW immobilization will allow increasing of radionuclides concentration in solidified product so providing costs reductionmore » at the stage of subsequent storage. At the same time the idea to use for synthesis of compounds, suitable as materials for long-term storage or final disposal of rad-wastes some fission products occurring in spent fuel in considerable amount and capable to form insoluble substances seems to be rather attractive. In authors opinion in the nearest future one can expect the occurrence of publications proposing the techniques allowing the use of 'reactor's zirconium, molybdenum or, perhaps, technetium as well, with the aim of preparing materials suitable for long-lived radionuclides storage or final disposal. The other element, which is generated in the reactor and worth mentioning, is palladium. The prospects for using palladium are defined not only by its higher generation in the reactor, but by a number of its chemical properties as well. It is evident that the use of natural palladium with the purpose of radionuclides immobilization is impossible due to its high cost and deficiency). In author's opinion such materials could be used as targets for long-lived radionuclides transmutation as well. The object of present work was the study on methods that could allow to use 'reactor' palladium with the aim of long-lived radionuclides such as I-129 and TUE immobilization. In the paper the results of experiments on synthesis of matrices with TUE oxides and PdI{sub 2} on palladium base are presented. (authors)« less

  2. Beryllium-7 and lead-210 chronometry of modern soil processes: The Linked Radionuclide aCcumulation model, LRC

    NASA Astrophysics Data System (ADS)

    Landis, Joshua D.; Renshaw, Carl E.; Kaste, James M.

    2016-05-01

    Soil systems are known to be repositories for atmospheric carbon and metal contaminants, but the complex processes that regulate the introduction, migration and fate of atmospheric elements in soils are poorly understood. This gap in knowledge is attributable, in part, to the lack of an established chronometer that is required for quantifying rates of relevant processes. Here we develop and test a framework for adapting atmospheric lead-210 chronometry (210Pb; half-life 22 years) to soil systems. We propose a new empirical model, the Linked Radionuclide aCcumulation model (LRC, aka "lark"), that incorporates measurements of beryllium-7 (7Be; half-life 54 days) to account for 210Pb penetration of the soil surface during initial deposition, a process which is endemic to soils but omitted from conventional 210Pb models (e.g., the Constant Rate of Supply, CRS model) and their application to sedimentary systems. We validate the LRC model using the 1963-1964 peak in bomb-fallout americium-241 (241Am; half-life of 432 years) as an independent, corroborating time marker. In three different soils we locate a sharp 241Am weapons horizon at disparate depths ranging from 2.5 to 6 cm, but with concordant ages averaging 1967 ± 4 via the LRC model. Similarly, at one site contaminated with mercury (HgT) we find that the LRC model is consistent with the recorded history of Hg emission. The close agreement of Pb, Am and Hg behavior demonstrated here suggests that organo-metallic colloid formation and migration incorporates many trace metals in universal soil processes and that these processes may be described quantitatively using atmospheric 210Pb chronometry. The 210Pb models evaluated here show that migration rates of soil colloids on the order of 1 mm yr-1 are typical, but also that these rates vary systematically with depth and are attributable to horizon-specific processes of leaf-litter decay, eluviation and illuviation. We thus interpret 210Pb models to quantify (i) exposure of the soil system to atmospheric aerosol deposition in the context of (ii) organic carbon assimilation, colloid production, and advection through the soil profile. The behavior of some other elements, such as Cs, diverges from the conservative colloid behavior exemplified by Pb and Am, and in these cases the value of empirical 210Pb chronometry models like LRC and CRS is as a comparator rather than as an absolute chronometer. We conclude that 210Pb chronometry is valuable for tracing colloidally-mediated transport of Pb and similarly-refractory metals, as well as the mobile pool of carbon in soils.

  3. Innovative Strategy For Long Term Monitoring Of Metal And Radionuclide Plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eddy-Dilek, Carol; Millings, Margaret R.; Looney, Brian B.

    2014-01-08

    Many government and private industry sites that were once contaminated with radioactive and chemical wastes cannot be cleaned up enough to permit unrestricted human access. The sites will require long term management, in some cases indefinitely, leaving site owners with the challenge of protecting human health and environmental quality at these "legacy" sites. Long-term monitoring of groundwater contamination is one of the largest projected costs in the life cycle of environmental management at the Savannah River Site, the larger DOE complex, and many large federal and private sites. There is a need to optimize the performance and manage the costmore » of long term surveillance and monitoring at their sites. Currently, SRNL is initiating a pilot field test using alternative protocols for long term monitoring of metals and radionuclides. A key component of the approach is that monitoring efforts are focused on measurement of low cost metrics related to hydrologic and chemical conditions that control contaminant migration. The strategy combines careful monitoring of hydrologic boundary conditions with measurement of master variables such as chemical surrogates along with a smaller number of standard well analyses. In plumes contaminated with metals, master variables control the chemistry of the groundwater system, and include redox variables (ORP, DO, chemicals), pH, specific conductivity, biological community (breakdown/decay products), and temperature. Significant changes in these variables will result in conditions whereby the plume may not be stable and therefore can be used to predict possible plume migration. Conversely, concentration measurements for all types of contaminants in groundwater are a lagging indicator plume movement - major changes contaminant concentrations indicate that contamination has migrated. An approach based on measurement of master variables and explicit monitoring of hydrologic boundary conditions combined with traditional metrics should lead to improved monitoring while simultaneously reducing costs. This paradigm is being tested at the SRS F-Area where an innovative passive remedial system is being monitored and evaluated over the long term prior to traditional regulatory closure. Contaminants being addressed at this site are uranium, strontium-90, iodine-129, and tritium. We believe that the proposed strategies will be more effective in early identification of potential risks; these strategies will also be cost effective because controlling variables are relatively simple to measure. These variables also directly reflect the evolution of the plume through time, so that the monitoring strategy can be modified as the plume 'ages'. This transformational long-term monitoring paradigm will generate large cost savings to DOE, other federal agencies and industry and will provide improved performance and leading indicators of environmental management performance.« less

  4. Caesium-rich micro-particles: A window into the meltdown events at the Fukushima Daiichi Nuclear Power Plant

    PubMed Central

    Furuki, Genki; Imoto, Junpei; Ochiai, Asumi; Yamasaki, Shinya; Nanba, Kenji; Ohnuki, Toshihiko; Grambow, Bernd; Ewing, Rodney C.; Utsunomiya, Satoshi

    2017-01-01

    The nuclear disaster at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March 2011 caused partial meltdowns of three reactors. During the meltdowns, a type of condensed particle, a caesium-rich micro-particle (CsMP), formed inside the reactors via unknown processes. Here we report the chemical and physical processes of CsMP formation inside the reactors during the meltdowns based on atomic-resolution electron microscopy of CsMPs discovered near the FDNPP. All of the CsMPs (with sizes of 2.0–3.4 μm) comprise SiO2 glass matrices and ~10-nm-sized Zn–Fe-oxide nanoparticles associated with a wide range of Cs concentrations (1.1–19 wt% Cs as Cs2O). Trace amounts of U are also associated with the Zn–Fe oxides. The nano-texture in the CsMPs records multiple reaction-process steps during meltdown in the severe FDNPP accident: Melted fuel (molten core)-concrete interactions (MCCIs), incorporating various airborne fission product nanoparticles, including CsOH and CsCl, proceeded via SiO2 condensation over aggregates of Zn-Fe oxide nanoparticles originating from the failure of the reactor pressure vessels. Still, CsMPs provide a mechanism by which volatile and low-volatility radionuclides such as U can reach the environment and should be considered in the migration model of Cs and radionuclides in the current environment surrounding the FDNPP. PMID:28198440

  5. Modeling and identifying the sources of radiocesium contamination in separate sewerage systems.

    PubMed

    Pratama, Mochamad Adhiraga; Yoneda, Minoru; Yamashiki, Yosuke; Shimada, Yoko; Matsui, Yasuto

    2018-05-01

    The Fukushima Dai-ichi nuclear power plant accident released radiocesium in large amounts. The released radionuclides contaminated much of the surrounding environment, including sewers in urban areas of Fukushima prefecture. In this study we attempted to identify and quantify the sources of radiocesium contamination in separate sewerage systems and developed a compartment model based on the Radionuclide Migration in Urban Environments and Drainage Systems (MUD) model. Measurements of the time-dependent radiocesium concentration in sewer sludge combined with meteorological, demographic, and radiocesium dietary intake data indicated that rainfall-derived inflow and infiltration (RDII) and human excretion were the chief contributors of radiocesium contamination in a separate sewerage system. The quantities of contamination derived from RDII and human excretion were calculated and used in the modified MUD model to simulate radiocesium contamination in sewers in three urban areas in Fukushima prefecture: Fukushima, Koriyama, and Nihonmatsu Cities. The Nash efficiency coefficient (0.88-0.92) and determination coefficient (0.89-0.93) calculated in an evaluation of our compartment model indicated that the model produced satisfactory results. We also used the model to estimate the total volume of sludge with radiocesium concentrations in excess of the clearance level, based on the number of months elapsed after the accident. Estimations by our model suggested that wastewater treatment plants (WWTPs) in Fukushima, Koriyama, and Nihonmatsu generated about 1,750,000m 3 of radioactive sludge in total, a level in good agreement with the real data. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Caesium-rich micro-particles: A window into the meltdown events at the Fukushima Daiichi Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Furuki, Genki; Imoto, Junpei; Ochiai, Asumi; Yamasaki, Shinya; Nanba, Kenji; Ohnuki, Toshihiko; Grambow, Bernd; Ewing, Rodney C.; Utsunomiya, Satoshi

    2017-02-01

    The nuclear disaster at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March 2011 caused partial meltdowns of three reactors. During the meltdowns, a type of condensed particle, a caesium-rich micro-particle (CsMP), formed inside the reactors via unknown processes. Here we report the chemical and physical processes of CsMP formation inside the reactors during the meltdowns based on atomic-resolution electron microscopy of CsMPs discovered near the FDNPP. All of the CsMPs (with sizes of 2.0-3.4 μm) comprise SiO2 glass matrices and ~10-nm-sized Zn-Fe-oxide nanoparticles associated with a wide range of Cs concentrations (1.1-19 wt% Cs as Cs2O). Trace amounts of U are also associated with the Zn-Fe oxides. The nano-texture in the CsMPs records multiple reaction-process steps during meltdown in the severe FDNPP accident: Melted fuel (molten core)-concrete interactions (MCCIs), incorporating various airborne fission product nanoparticles, including CsOH and CsCl, proceeded via SiO2 condensation over aggregates of Zn-Fe oxide nanoparticles originating from the failure of the reactor pressure vessels. Still, CsMPs provide a mechanism by which volatile and low-volatility radionuclides such as U can reach the environment and should be considered in the migration model of Cs and radionuclides in the current environment surrounding the FDNPP.

  7. Delineation of the Pahute Mesa–Oasis Valley groundwater basin, Nevada

    USGS Publications Warehouse

    Fenelon, Joseph M.; Halford, Keith J.; Moreo, Michael T.

    2016-01-22

    This report delineates the Pahute Mesa–Oasis Valley (PMOV) groundwater basin, where recharge occurs, moves downgradient, and discharges to Oasis Valley, Nevada. About 5,900 acre-feet of water discharges annually from Oasis Valley, an area of springs and seeps near the town of Beatty in southern Nevada. Radionuclides in groundwater beneath Pahute Mesa, an area of historical underground nuclear testing at the Nevada National Security Site, are believed to be migrating toward Oasis Valley. Delineating the boundary of the PMOV groundwater basin is necessary to adequately assess the potential for transport of radionuclides from Pahute Mesa to Oasis Valley.The PMOV contributing area is defined based on regional water-level contours, geologic controls, and knowledge of adjacent flow systems. The viability of this area as the contributing area to Oasis Valley and the absence of significant interbasin flow between the PMOV groundwater basin and adjacent basins are shown regionally and locally. Regional constraints on the location of the contributing area boundary and on the absence of interbasin groundwater flow are shown by balancing groundwater discharges in the PMOV groundwater basin and adjacent basins against available water from precipitation. Internal consistency for the delineated contributing area is shown by matching measured water levels, groundwater discharges, and transmissivities with simulated results from a single-layer, steady-state, groundwater-flow model. An alternative basin boundary extending farther north than the final boundary was rejected based on a poor chloride mass balance and a large imbalance in the northern area between preferred and simulated recharge.

  8. Caesium-rich micro-particles: A window into the meltdown events at the Fukushima Daiichi Nuclear Power Plant.

    PubMed

    Furuki, Genki; Imoto, Junpei; Ochiai, Asumi; Yamasaki, Shinya; Nanba, Kenji; Ohnuki, Toshihiko; Grambow, Bernd; Ewing, Rodney C; Utsunomiya, Satoshi

    2017-02-15

    The nuclear disaster at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March 2011 caused partial meltdowns of three reactors. During the meltdowns, a type of condensed particle, a caesium-rich micro-particle (CsMP), formed inside the reactors via unknown processes. Here we report the chemical and physical processes of CsMP formation inside the reactors during the meltdowns based on atomic-resolution electron microscopy of CsMPs discovered near the FDNPP. All of the CsMPs (with sizes of 2.0-3.4 μm) comprise SiO 2 glass matrices and ~10-nm-sized Zn-Fe-oxide nanoparticles associated with a wide range of Cs concentrations (1.1-19 wt% Cs as Cs 2 O). Trace amounts of U are also associated with the Zn-Fe oxides. The nano-texture in the CsMPs records multiple reaction-process steps during meltdown in the severe FDNPP accident: Melted fuel (molten core)-concrete interactions (MCCIs), incorporating various airborne fission product nanoparticles, including CsOH and CsCl, proceeded via SiO 2 condensation over aggregates of Zn-Fe oxide nanoparticles originating from the failure of the reactor pressure vessels. Still, CsMPs provide a mechanism by which volatile and low-volatility radionuclides such as U can reach the environment and should be considered in the migration model of Cs and radionuclides in the current environment surrounding the FDNPP.

  9. Migration Systems in Europe: Evidence From Harmonized Flow Data

    PubMed Central

    Kim, Keuntae; Raymer, James

    2014-01-01

    Empirical tests of migration systems theory require consistent and complete data on international migration flows. Publicly available data, however, represent an inconsistent and incomplete set of measurements obtained from a variety of national data collection systems. We overcome these obstacles by standardizing the available migration reports of sending and receiving countries in the European Union and Norway each year from 2003–2007 and by estimating the remaining missing flows. The resulting harmonized estimates are then used to test migration systems theory. First, locating thresholds in the size of flows over time, we identify three migration systems within the European Union and Norway. Second, examining the key determinants of flows with respect to the predictions of migration systems theory, our results highlight the importance of shared experiences of nation-state formation, geography, and accession status in the European Union. Our findings lend support to migration systems theory and demonstrate that knowledge of migration systems may improve the accuracy of migration forecasts toward managing the impacts of migration as a source of social change in Europe. PMID:22791267

  10. Ion binding compounds, radionuclide complexes, methods of making radionuclide complexes, methods of extracting radionuclides, and methods of delivering radionuclides to target locations

    DOEpatents

    Chen, Xiaoyuan; Wai, Chien M.; Fisher, Darrell R.

    2000-01-01

    The invention pertains to compounds for binding lanthanide ions and actinide ions. The invention further pertains to compounds for binding radionuclides, and to methods of making radionuclide complexes. Also, the invention pertains to methods of extracting radionuclides. Additionally, the invention pertains to methods of delivering radionuclides to target locations. In one aspect, the invention includes a compound comprising: a) a calix[n]arene group, wherein n is an integer greater than 3, the calix[n]arene group comprising an upper rim and a lower rim; b) at least one ionizable group attached to the lower rim; and c) an ion selected from the group consisting of lanthanide and actinide elements bound to the ionizable group. In another aspect, the invention includes a method of extracting a radionuclide, comprising: a) providing a sample comprising a radionuclide; b) providing a calix[n]arene compound in contact with the sample, wherein n is an integer greater than 3; and c) extracting radionuclide from the sample into the calix[n]arene compound. In yet another aspect, the invention includes a method of delivering a radionuclide to a target location, comprising: a) providing a calix[n]arene compound, wherein n is an integer greater than 3, the calix[n]arene compound comprising at least one ionizable group; b) providing a radionuclide bound to the calix[n]arene compound; and c) providing an antibody attached to the calix[n]arene compound, the antibody being specific for a material found at the target location.

  11. Identification of CSF fistulas by radionuclide counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Y.; Kunishio, K.; Sunami, N.

    1990-07-01

    A radionuclide counting method, performed with the patient prone and the neck flexed, was used successfully to diagnose CSF rhinorrhea in two patients. A normal radionuclide ratio (radionuclide counts in pledget/radionuclide counts in 1-ml blood sample) was obtained in 11 normal control subjects. Significance was determined to be a ratio greater than 0.37. Use of radionuclide counting method of determining CSF rhinorrhea is recommended when other methods have failed to locate a site of leakage or when posttraumatic meningitis suggests subclinical CSF rhinorrhea.

  12. Envisioning migration: Mathematics in both experimental analysis and modeling of cell behavior

    PubMed Central

    Zhang, Elizabeth R.; Wu, Lani F.; Altschuler, Steven J.

    2013-01-01

    The complex nature of cell migration highlights the power and challenges of applying mathematics to biological studies. Mathematics may be used to create model equations that recapitulate migration, which can predict phenomena not easily uncovered by experiments or intuition alone. Alternatively, mathematics may be applied to interpreting complex data sets with better resolution—potentially empowering scientists to discern subtle patterns amid the noise and heterogeneity typical of migrating cells. Iteration between these two methods is necessary in order to reveal connections within the cell migration signaling network, as well as to understand the behavior that arises from those connections. Here, we review recent quantitative analysis and mathematical modeling approaches to the cell migration problem. PMID:23660413

  13. Envisioning migration: mathematics in both experimental analysis and modeling of cell behavior.

    PubMed

    Zhang, Elizabeth R; Wu, Lani F; Altschuler, Steven J

    2013-10-01

    The complex nature of cell migration highlights the power and challenges of applying mathematics to biological studies. Mathematics may be used to create model equations that recapitulate migration, which can predict phenomena not easily uncovered by experiments or intuition alone. Alternatively, mathematics may be applied to interpreting complex data sets with better resolution--potentially empowering scientists to discern subtle patterns amid the noise and heterogeneity typical of migrating cells. Iteration between these two methods is necessary in order to reveal connections within the cell migration signaling network, as well as to understand the behavior that arises from those connections. Here, we review recent quantitative analysis and mathematical modeling approaches to the cell migration problem. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Natural and anthropogenic radionuclide activity concentrations in the New Zealand diet.

    PubMed

    Pearson, Andrew J; Gaw, Sally; Hermanspahn, Nikolaus; Glover, Chris N

    2016-01-01

    To support New Zealand's food safety monitoring regime, a survey was undertaken to establish radionuclide activity concentrations across the New Zealand diet. This survey was undertaken to better understand the radioactivity content of the modern diet and also to assess the suitability of the current use of milk as a sentinel for dietary radionuclide trends. Thirteen radionuclides were analysed in 40 common food commodities, including animal products, fruits, vegetables, cereal grains and seafood. Activity was detected for (137)Caesium, (90)Strontium and (131)Iodine. No other anthropogenic radionuclides were detected. Activity concentrations of the three natural radionuclides of Uranium and the daughter radionuclide (210)Polonium were detected in the majority of food sampled, with a large variation in magnitude. The maximum activity concentrations were detected in shellfish for all these radionuclides. Based on the established activity concentrations and ranges, the New Zealand diet contains activity concentrations of anthropogenic radionuclides far below the Codex Alimentarius guideline levels. Activity concentrations obtained for milk support its continued use as a sentinel for monitoring fallout radionuclides in terrestrial agriculture. The significant levels of natural and anthropogenic radionuclide activity concentrations detected in finfish and molluscs support undertaking further research to identify a suitable sentinel for New Zealand seafood monitoring. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Partial Melting of the Indarch (EH4) Meteorite : A Textural, Chemical and Phase Relations View of Melting and Melt Migration

    NASA Technical Reports Server (NTRS)

    McCoy, Timothy J.; Dickinson, Tamara L.; Lofgren, Gary E.

    2000-01-01

    To Test whether Aubrites can be formed by melting of enstatite Chondrites and to understand igneous processes at very low oxygen fugacities, we have conducted partial melting experiments on the Indarch (EH4) chondrite at 1000-1500 C. Silicate melting begins at 1000 C. Substantial melt migration occurs at 1300-1400 C and metal migrates out of the silicate change at 1450 C and approx. 50% silicate partial melting. As a group, our experiments contain three immiscible metallic melts 9Si-, and C-rich), two immiscible sulfide melts(Fe-and FeMgMnCa-rich) and Silicate melt. Our partial melting experiments on the Indarch (EH4) enstatite Chondrite suggest that igneous processes at low fO2 exhibit serveral unique features. The complete melting of sulfides at 1000 C suggest that aubritic sulfides are not relicts. Aubritic oldhamite may have crystallized from Ca and S complexed in the silicate melt. Significant metal-sulfide melt migration might occur at relatively low degrees of silicate partial melting. Substantial elemental exchange occurred between different melts (e.g., between sulfide and silicate, Si between silicate and metal), a feature not observed during experiments at higher fO2. This exchange may help explain the formation of aubrites from known enstatite chondrites.

  16. The 'global interconnectedness' of dentist migration: a qualitative study of the life-stories of international dental graduates in Australia.

    PubMed

    Balasubramanian, Madhan; Brennan, David S; Spencer, A John; Short, Stephanie D

    2015-05-01

    The migration of dentists is a major challenge contributing to the oral health system crisis in many countries. This paper explores the origins of the dentist migration problem through a study on international dental graduates, who had migrated to Australia. Life-stories of 49 international dental graduates from 22 countries were analysed in order to discern significant themes and patterns. We focused on their home country experience, including stories on early life and career choice; dental student life; professional life; social and political life; travels; and coming to Australia. Our participants exhibited a commitment to excellence in earlier stages of life and had cultivated a desire to learn more and be involved with the latest technology. Dentists from low- and middle-income countries were also disappointed by the lack of opportunity and were unhappy with the local ethos. Some pointed towards political unrest. Interestingly, participants also carried prior travel learnings and unforgettable memories contributing to their migration. Family members and peers had also influenced participants. These considerations were brought together in four themes explaining the desire to migrate: 'Being good at something', 'Feelings of being let down', 'A novel experience' and 'Influenced by someone'. Even if one of these four themes dominated the narrative, we found that more than one theme, however, coexisted for most participants. We refer to this worldview as 'Global interconnectedness', and identify the development of migration desire as a historical process, stimulated by a priori knowledge (and interactions) of people, place and things. This qualitative study has enriched our understanding on the complexity of the dental migration experience. It supports efforts to achieve greater technical co-operation in issues such as dental education, workforce surveillance and oral health service planning within the context of ongoing global efforts on health professional migration by the World Health Organization and member states. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine © The Author 2014; all rights reserved.

  17. Childbearing in crisis: war, migration and fertility in Angola.

    PubMed

    Avogo, Winfred; Agadjanian, Victor

    2008-09-01

    This study examines the short- and long-term effects of war-induced and war-unrelated migration on fertility outcomes using data from two peri-urban municipalities of Greater Luanda in Angola. In the short term, results from multi-level discrete-time logistic regression models indicate that net of other factors, war-unrelated migration is associated with a lower probability of birth than war-induced migration in a given year. Similar results are obtained when the effects of migration are lagged by a year. At the same time, the effects of war-triggered migration do not differ significantly from those of not migrating in a given year but are statistically significant when the effects of migration are lagged by a year. In the long term, the effects of migration experience on cumulative fertility are negligible and not statistically significant net of demographic and socioeconomic variables. Interpretations of the results are offered in the context of Angola and their broader implications are reflected on.

  18. Determination of In-situ Porosity and Investigation of Diffusion Processes at the Grimsel Test Site, Switzerland.

    NASA Astrophysics Data System (ADS)

    Biggin, C.; Ota, K.; Siittari-Kauppi, M.; Moeri, A.

    2004-12-01

    In the context of a repository for radioactive waste, 'matrix diffusion' is used to describe the process by which solute, flowing in distinct flow paths, penetrates the surrounding rock matrix. Diffusion into the matrix occurs in a connected system of pores or microfractures. Matrix diffusion provides a mechanism for greatly enlarging the area of rock surface in contact with advecting radionuclides, from that of the flow path surfaces (and infills), to a much larger portion of the bulk rock and increases the global pore volume which can retard radionuclides. In terms of a repository safety assessment, demonstration of a significant depth of diffusion-accessible pore space may result in a significant delay in the calculated release of any escaping radionuclides to the environment and a dramatic reduction in the resulting concentration released into the biosphere. For the last decade, Nagra has investigated in situ matrix diffusion at the Grimsel Test Site (GTS) in the Swiss Alps. The in situ investigations offer two distinct advantages to those performed in the lab, namely: 1. Lab-based determination of porosity and diffusivity can lead to an overestimation of matrix diffusion due to stress relief when the rock is sampled (which would overestimate the retardation in the geosphere) 2. Lab-based analysis usually examines small (cm scale) samples and cannot therefore account for any matrix heterogeneity over the hundreds or thousands of metres a typical flow path The in situ investigations described began with the Connected Porosity project, wherein a specially developed acrylic resin was injected into the rock matrix to fill the pore space and determine the depth of connected porosity. The resin was polymerised in situ and the entire rock mass removed by overcoring. The results indicated that lab-based porosity measurements may be two to three times higher than those obtained in situ. While the depth of accessible matrix from a water-conducting feature assumed in repository performance assessments is generally 1 to 10 cm, the results from the GTS in situ experiment suggested depths of several metres could be more appropriate. More recently, the Pore Space Geometry (PSG) experiment at the GTS has used a C-14 doped acrylic resin, combined with state-of-the-art digital beta autoradiography and fluorescence detection to examine a larger area of rock for determination of porosity and the degree of connected pore space. Analysis is currently ongoing and the key findings will be reported in this paper. Starting at the GTS in 2005, the Long-term Diffusion (LTD) project will investigate such processes over spatial and temporal scales more relevant to a repository than traditional lab-based experiments. In the framework of this experiment, long-term (10 to 50 years) in situ diffusion experiments and resin injection experiments are planned to verify current models for matrix diffusion as a radionuclide retardation process. This paper will discuss the findings of the first two experiments and their significance to repository safety assessments before discussing the strategy for the future in relation to the LTD project.

  19. Depth profiling of Pu, 241Am and 137Cs in soils from southern Belarus measured by ICP-MS and alpha and gamma spectrometry.

    PubMed

    Boulyga, Sergei F; Zoriy, Myroslav; Ketterer, Michael E; Becker, J Sabine

    2003-08-01

    The depth distribution of plutonium, americium, and 137Cs originating from the 1986 accident at the Chernobyl Nuclear Power Plant (NPP) was investigated in several soil profiles in the vicinity from Belarus. The vertical migration of transuranic elements in soils typical of the 30 km relocation area around Chernobyl NPP was studied using inductively coupled plasma mass spectrometry (ICP-MS), alpha spectrometry, and gamma spectrometry. Transuranic concentrations in upper soil layers ranged from 6 x 10(-12) g g(-1) to 6 x 10(-10) g g(-1) for plutonium and from 1.8 x 10(-13) g g(-1) to 1.6 x 10(-11) g g(-1) for americium. These concentrations correspond to specific activities of (239+240)Pu of 24-2400 Bq kg(-1) and specific activity of 241Am of 23-2000 Bq kg(-1), respectively. Transuranics in turf-podzol soil migrate slowly to the deeper soil layers, thus, 80-95%, of radionuclide inventories were present in the 0-3 cm intervals of turf-podzol soils collected in 1994. In peat-marsh soil migration processes occur more rapidly than in turf-podzol and the maximum concentrations are found beneath the soil surface (down to 3-6 cm). The depth distributions of Pu and Am are essentially identical for a given soil profile. (239+240)Pu/137Cs and 241Am/137Cs activity ratios vary by up to a factor of 5 at some sites while smaller variations in these ratios were observed at a site close to Chernobyl, suggesting that 137Cs is dominantly particle associated close to Chernobyl but volatile species of 137Cs are of relatively greater importance at the distant sites.

  20. Analysis of actinides in an ombrotrophic peat core - evidence of post-depositional migration of fallout radionuclides

    NASA Astrophysics Data System (ADS)

    Quinto, Francesca; Hrnecek, Erich; Krachler, Michael; Shotyk, William; Steier, Peter; Winkler, Stephan R.

    2013-04-01

    Plutonium (239Pu, 240Pu, 241Pu, 242Pu) and uranium (236U, 238U) isotopes were analyzed in an ombrotrophic peat core from the Black Forest, Germany, representing the last 80 years of atmospheric deposition. The reliable determination of these isotopes at ultra-trace levels was possible using ultra-clean laboratory procedures and accelerator mass spectrometry. The 240Pu/239Pu isotopic ratios are constant along the core with a mean value of 0.19 ±0.02 (N = 32). This result is consistent with the acknowledged average 240Pu/239Pu isotopic ratio from global fallout in the Northern Hemisphere. The global fallout origin of Pu is confirmed by the corresponding 241Pu/239Pu (0.0012 ±0.0005) and 242Pu/239Pu (0.004 ± 0.001) isotopic ratios. The identification of the Pu isotopic composition characteristic for global fallout in peat layers pre-dating the period of atmospheric atom bomb testing (AD 1956 - AD 1980) is a clear evidence of the migration of Pu downwards the peat profile. The maximum of global fallout derived 236U is detected in correspondence to the age/depth layer of maximum stratospheric fallout (AD 1963). This finding demonstrates that the 236U bomb peak can be successfully used as an independent chronological marker complementing the 210Pb dating of peat cores. The profiles of the global fallout derived 236U and 239Pu are compared with those of 137Cs and 241Am. As typical of ombrothrophic peat, the temporal fallout pattern of 137Cs is poorly retained. Similarly like for Pu, post-depositional migration of 241Am in peat layers preceding the era of atmospheric nuclear tests is observed.

  1. Shielding and activity estimator for template-based nuclide identification methods

    DOEpatents

    Nelson, Karl Einar

    2013-04-09

    According to one embodiment, a method for estimating an activity of one or more radio-nuclides includes receiving one or more templates, the one or more templates corresponding to one or more radio-nuclides which contribute to a probable solution, receiving one or more weighting factors, each weighting factor representing a contribution of one radio-nuclide to the probable solution, computing an effective areal density for each of the one more radio-nuclides, computing an effective atomic number (Z) for each of the one more radio-nuclides, computing an effective metric for each of the one or more radio-nuclides, and computing an estimated activity for each of the one or more radio-nuclides. In other embodiments, computer program products, systems, and other methods are presented for estimating an activity of one or more radio-nuclides.

  2. Dynamics of surface-migration: Electron-induced reaction of 1,2-dihaloethanes on Si(100)

    NASA Astrophysics Data System (ADS)

    Huang, Kai; MacLean, Oliver; Guo, Si Yue; McNab, Iain R.; Ning, Zhanyu; Wang, Chen-Guang; Ji, Wei; Polanyi, John C.

    2016-10-01

    Scanning Tunneling Microscopy was used to investigate the electron-induced reaction of 1,2-dibromoethane (DBE) and 1,2-dichloroethane (DCE) on Si(100).We observed a long-lived physisorbed molecular state of DBE at 75 K and of DCE at 110 K. As a result we were able to characterize by experiment and also by ab initio theory the dynamics of ethylene production in the electron-induced surface-reaction of these physisorbed species. For both DBE and DCE the ethylene product was observed to migrate across the surface. In the case of DBE the recoil of the ethylene favored the silicon rows, migrating by an average distance of 22 Å, and up to 100 Å. Trajectory calculations were performed for this electron-induced reaction, using an 'Impulsive Two-State' model involving an anionic excited state and a neutral ground-potential. The model agreed with experiment in reproducing both migration and desorption of the ethylene product. The computed migration exhibited a 'ballistic' launch and subsequent 'bounces', thereby accounting for the observed long-range migratory dynamics.

  3. Impact of migration on illness experience and help-seeking strategies of patients from Turkey and Bosnia in primary health care in Basel.

    PubMed

    Gilgen, D; Maeusezahl, D; Salis Gross, C; Battegay, E; Flubacher, P; Tanner, M; Weiss, M G; Hatz, C

    2005-09-01

    Migration, particularly among refugees and asylum seekers, poses many challenges to the health system of host countries. This study examined the impact of migration history on illness experience, its meaning and help-seeking strategies of migrant patients from Bosnia and Turkey with a range of common health problems in general practice in Basel, Switzerland. The Explanatory Model Interview Catalogue, a data collection instrument for cross-cultural research which combines epidemiological and ethnographic research approaches, was used in semi-structured one-to-one patient interviews. Bosnian patients (n=36) who had more traumatic migration experiences than Turkish/Kurdish (n=62) or Swiss internal migrants (n=48) reported a larger number of health problems than the other groups. Psychological distress was reported most frequently by all three groups in response to focussed queries, but spontaneously reported symptoms indicated the prominence of somatic, rather than psychological or psychosocial, problems. Among Bosnians, 78% identified traumatic migration experiences as a cause of their illness, in addition to a range of psychological and biomedical causes. Help-seeking strategies for the current illness included a wide range of treatments, such as basic medical care at private surgeries, outpatients department in hospitals as well as alternative medical treatments among all groups. Findings provide a useful guide to clinicians who work with migrants and should inform policy in medical care, information and health promotion for migrants in Switzerland as well as further education of health professionals on issues concerning migrants health.

  4. Floating Node Method and Virtual Crack Closure Technique for Modeling Matrix Cracking-Delamination Migration

    NASA Technical Reports Server (NTRS)

    DeCarvalho, Nelson V.; Chen, B. Y.; Pinho, Silvestre T.; Baiz, P. M.; Ratcliffe, James G.; Tay, T. E.

    2013-01-01

    A novel approach is proposed for high-fidelity modeling of progressive damage and failure in composite materials that combines the Floating Node Method (FNM) and the Virtual Crack Closure Technique (VCCT) to represent multiple interacting failure mechanisms in a mesh-independent fashion. In this study, the approach is applied to the modeling of delamination migration in cross-ply tape laminates. Delamination, matrix cracking, and migration are all modeled using fracture mechanics based failure and migration criteria. The methodology proposed shows very good qualitative and quantitative agreement with experiments.

  5. New to New York: Ecological and Psychological Predictors of Health Among Recently Arrived Young Adult Gay and Bisexual Urban Migrants.

    PubMed

    Pachankis, John E; Eldahan, Adam I; Golub, Sarit A

    2016-10-01

    Young gay and bisexual men might move to urban enclaves to escape homophobic environments and achieve greater sexual and social freedom, yet little is known about the health risks that these young migrants face. Drawing on recent qualitative depictions of gay and bisexual men's urban ecologies and psychological research on motivation and goal pursuit, we investigated migration-related motivations, experiences, health risks, and their associations among young gay and bisexual men in New York City. Gay and bisexual men (n = 273; ages 18-29) who had moved to New York City within the past 12 months completed an online survey regarding their hometowns, new urban experiences, migration motivations, and health risks. Not having a college degree, HIV infection, hometown stigma, within-US migration, and moving to outside a gay-dense neighborhood were associated with moving to escape stress; hometown structural stigma and domestic migration were associated with moving for opportunity. Migrating from larger US-based hometowns, having recently arrived, and moving for opportunity predicted HIV transmission risk. Social isolation predicted lower drug use but more mental health problems. Higher income predicted lower HIV and mental health risk but higher alcohol risk. Hometown interpersonal discrimination predicted all health risks, but hometown structural stigma protected against drug risk. Findings offer a comprehensive picture of young gay and bisexual male migrants' experiences and health risks and help build a theory of high-risk migration. Results can inform structural- and individual-level interventions to support the health of this sizeable and vulnerable segment of the urban population.

  6. Selected radionuclides important to low-level radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-11-01

    The purpose of this document is to provide information to state representatives and developers of low level radioactive waste (LLW) management facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the environment. Extensive surveys of available literature provided information for this report. Certain radionuclides may contribute significantly to the dose estimated during a radiological performance assessment analysis of an LLW disposal facility. Among these are the radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha emitting transuranics with half-lives greater than 5 years). Thismore » report discusses these radionuclides and other radionuclides that may be significant during a radiological performance assessment analysis of an LLW disposal facility. This report not only includes essential information on each radionuclide, but also incorporates waste and disposal information on the radionuclide, and behavior of the radionuclide in the environment and in the human body. Radionuclides addressed in this document include technetium-99, carbon-14, iodine-129, tritium, cesium-137, strontium-90, nickel-59, plutonium-241, nickel-63, niobium-94, cobalt-60, curium -42, americium-241, uranium-238, and neptunium-237.« less

  7. E-cadherin is required for cranial neural crest migration in Xenopus laevis.

    PubMed

    Huang, Chaolie; Kratzer, Marie-Claire; Wedlich, Doris; Kashef, Jubin

    2016-03-15

    The cranial neural crest (CNC) is a highly motile and multipotent embryonic cell population, which migrates directionally on defined routes throughout the embryo, contributing to facial structures including cartilage, bone and ganglia. Cadherin-mediated cell-cell adhesion is known to play a crucial role in the directional migration of CNC cells. However, migrating CNC co-express different cadherin subtypes, and their individual roles have yet to be fully explored. In previous studies, the expression of individual cadherin subtypes has been analysed using different methods with varying sensitivities, preventing the direct comparison of expression levels. Here, we provide the first comprehensive and comparative analysis of the expression of six cadherin superfamily members during different phases of CNC cell migration in Xenopus. By applying a quantitative RT-qPCR approach, we can determine the copy number and abundance of each expressed cadherin through different phases of CNC migration. Using this approach, we show for the first time expression of E-cadherin and XB/C-cadherin in CNC cells, adding them as two new members of cadherins co-expressed during CNC migration. Cadherin co-expression during CNC migration in Xenopus, in particular the constant expression of E-cadherin, contradicts the classical epithelial-mesenchymal transition (EMT) model postulating a switch in cadherin expression. Loss-of-function experiments further show that E-cadherin is required for proper CNC cell migration in vivo and also for cell protrusion formation in vitro. Knockdown of E-cadherin is not rescued by co-injection of other classical cadherins, pointing to a specific function of E-cadherin in mediating CNC cell migration. Finally, through reconstitution experiments with different E-cadherin deletion mutants in E-cadherin morphant embryos, we demonstrate that the extracellular domain, but not the cytoplasmic domain, of E-cadherin is sufficient to rescue CNC cell migration in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Applying heuristic inquiry to nurse migration from the UK to Australia.

    PubMed

    Vafeas, Caroline; Hendricks, Joyce

    2017-01-23

    Background Heuristic inquiry is a research approach that improves understanding of the essence of an experience. This qualitative method relies on researchers' ability to discover and interpret their own experience while exploring those of others. Aim To present a discussion of heuristic inquiry's methodology and its application to the experience of nurse migration. Discussion The researcher's commitment to the research is central to heuristic inquiry. It is immersive, reflective, reiterative and a personally-affecting method of gathering knowledge. Researchers are acknowledged as the only people who can validate the findings of the research by exploring their own experiences while also examining those of others with the same experiences to truly understand the phenomena being researched. This paper presents the ways in which the heuristic process guides this discovery in relation to traditional research steps. Conclusion Heuristic inquiry is an appropriate method for exploring nurses' experiences of migration because nurse researchers can tell their own stories and it brings understanding of themselves and the phenomenon as experienced by others. Implications for practice Although not a popular method in nursing research, heuristic inquiry offers a depth of exploration and understanding that may not be revealed by other methods.

  9. Sorption of radioactive contaminants by sediment from the Kara Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuhrmann, M.; Zhou, H.; Neiheisel, J.

    1995-02-01

    The purpose of this study is to quantify some of the parameters needed to perform near-field modeling of sites in the Kara Sea that were impacted by the disposal of radioactive waste. The parameters of interest are: the distribution coefficients (K{sub d}) for several important radionuclides, the mineralogy of the sediment, and the relationship of K{sub d} to liquid to solid ratio. Sediment from the Kara Sea (location: 73{degrees} 00` N, 58{degrees} 00` E) was sampled from a depth of 287 meters on August 23/24, 1992, during a joint Russian/Norwegian scientific cruise. Analysis of the material included mineralogy, grain sizemore » and total organic carbon. Uptake kinetics were determined for {sup 85}Sr, {sup 99}Tc, {sup 125}I, {sup 137}Cs, {sup 210}Pb, {sup 232}U, and {sup 241}Am and distribution coefficients (K{sub d}) were determined for these radionuclides using batch type experiments. Sorption isotherms were developed for {sup 85}Sr, {sup 99}Tc, and {sup 137}Cs to examine the effect that varying the concentration of a tracer has on the quantity of that tracer taken up by the solid. The effect of liquid to solid ratio on the uptake of contaminants was determined for {sup 99}Tc and {sup 137}Cs. In another set of experiments, the sediment was separated into four size fractions and uptake was determined for each fraction for {sup 85}Sr, {sup 99}Tc, and {sup 137}Cs. In addition, the sediment was analyzed to determine if it contains observable concentrations of anthropogenic radionuclides.« less

  10. [Radionuclide evaluation of the mucociliary function of the mucosa of the nasal cavity in chronic lung diseases].

    PubMed

    Kasatkin, Iu N; Kaganov, S Iu; Vyrenkova, N Iu; Kramer, E F; Rozinova, N N

    1987-02-01

    The authors presented their first experience of radionuclide assessment of the nasal mucosal transport (NMT) in 39 patients with chronic bronchopulmonary pathology (14 adults and 25 children) to detect patients among them with suspected syndrome of primary ciliary dyskinesia (SPCD). In 18 patients the test was positive excluding SPCD as a cause of a chronic inflammatory pulmonary process. In 21 patients NMT was absent, 2 of these patients had Kartagener's triad serving as a kind of model confirming the data on NMT. The authors proposed the method as a screening test due to its non-invasiveness and simplicity in patients with chronic inflammatory pulmonary diseases in order to detect among them patients with suspected SPCD for further examination using invasive methods.

  11. Preliminary Interpretation of a Radionuclide and Colloid Tracer Test in a Granodiorite Shear Zone at the Grimsel Test Site, Switzerland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimus, Paul W.

    2012-08-30

    In February and March 2012, a tracer test involving the injection of a radionuclide-colloid cocktail was conducted in the MI shear zone at the Grimsel Test Site, Switzerland, as part of the Colloids Formation and Migration (CFM) project. The colloids were derived from FEBEX bentonite, which is mined in Spain and is being considered as a potential waste package backfill in a Spanish nuclear waste repository. The tracer test, designated test 12-02 (second test in 2012), involved the injection of the tracer cocktail into borehole CFM 06.002i2 and extraction from the Pinkel surface packer at the main access tunnel wallmore » approximately 6.1 m from the injection interval. The test configuration is depicted in Figure 1. This configuration has been used in several conservative tracer tests and two colloid-homologue tracer tests since 2007, and it is will be employed in an upcoming test involving the emplacement of a radionuclide-doped bentonite plug into CFM 06.002i2 to evaluate the swelling and erosion of the bentonite and the transport of bentonite colloids and radionuclides from the source to the extraction point at the tunnel wall. Interpretive analyses of several of the previous tracer tests, from 09-01 through 12-02 were provided in two previous Used Fuel Disposition Program milestone reports (Arnold et al., 2011; Kersting et al., 2012). However, only the data for the conservative tracer Amino-G Acid was previously analyzed from test 12-02 because the other tracer data from this test were not available at the time. This report documents the first attempt to quantitatively analyze the radionuclide and colloid breakthrough curves from CFM test 12-02. This report was originally intended to also include an experimental assessment of colloid-facilitated transport of uranium by bentonite colloids in the Grimsel system, but this assessment was not conducted because it was reported by German collaborators at the Karlsruhe Institute of Technology (KIT) that neither uranium nor neptunium adsorbed appreciably to FEBEX bentonite colloids in Grimsel groundwater (Huber et al., 2011). The Grimsel groundwater has a relatively high pH of {approx}9, so the lack of uranium and neptunium adsorption to clay is not surprising given the tendency for these actinides to form very stable negative or neutrally-charged uranyl- or calcium-uranyl-carbonate complexes at these pH, particularly in a water that is effectively saturated with respect to calcite. It was also observed in testing conducted at LANL earlier in 2012 that uranium did not adsorb measurably to Grimsel granodiorite in a synthetic Grimsel groundwater at pH {approx}8.5 (Kersting et al., 2012). Thus, the planned experimental work was not pursued because all the available information clearly pointed to an expected result that uranium transport would not be facilitated by clay colloids in the Grimsel system.« less

  12. Harmonisation of standards for permissible radionuclide activity concentrations in foodstuffs in the long term after the Chernobyl accident.

    PubMed

    Balonov, M; Kashparov, V; Nikolaenko, A; Berkovskyy, V; Fesenko, S

    2018-06-01

    The article critically examines the practice of post-Chernobyl standardisation of radionuclide concentrations (mainly 137 Cs and 90 Sr) in food products (FPs) in the USSR and the successor countries of Belarus, Russia and Ukraine. Recommendations are given on potential harmonisation of these standards of radionuclide concentrations in FPs among the three countries, taking into account substantial international experience. We propose to reduce the number of product groups for standardisation purposes from the current amount of several dozens to three to five groups to optimise radiation control and increase the transparency of the process. We recommend five product groups for the standardisation of 137 Cs and three groups for 90 Sr in food in radiocontaminated areas. The values of standards for individual product groups are recommended to be set proportionally to the measured specific activity in each of these groups, which will reduce unreasonable food rejection. The standards might be set for the entire country, and could be also used to control imports from other countries as well as exports to other countries. The developed recommendations were transferred in 2015-2016 to the regulatory authorities of the three countries.

  13. Investigation of hydrodynamic behaviour of membranes using radiotracer techniques

    NASA Astrophysics Data System (ADS)

    Miskiewicz, A.; Zakrzewska-Trznadel, G.

    2013-05-01

    The aim of the work was to study membrane devices using short-lived radioisotopes like Ba-137m and Ga-68 as tracers. These radioisotopes were obtained from radionuclide generators: Cs-137/Ba-137m and Ge-68/Ga-68. The first radionuclide, namely Ba-137m with a half-life of 2.55 minutes was applied as a liquid phase tracer for studying hydrodynamic conditions inside the membrane apparatus. The membrane module with ceramic membranes was tested by using Ba-137m. The experiments showed that this radionuclide with a short half-life is a perfect tracer for liquid phase, whereas Ga-68 with longer half-life equal to 68 minutes was considered as a solid phase (bentonite) tracer. Ga-68 was used to gain more knowledge about the phenomena occurring in the membrane boundary layer. After kinetic studies of isotope adsorption into the carrier material, the growth rate of the deposit layer as well as deposit's thickness on the flat-sheet membrane were studied. The influence of such process parameters like pressure, linear velocity of liquid and feed concentration on formation of the bentonite layer on the membrane surface was studied.

  14. Evaluation of americium-241 toxicity influence on the microbial growth of organic wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takehiro Marumo, Julio; Padua Ferreira, Rafael Vicente de; Keiko Isiki, Vera Lucia

    2007-07-01

    Available in abstract form only. Full text of publication follows: Since the licenses for using radioactive sources in radioactive lightning rods were lifted by the Brazilian national nuclear authority, in 1989, the radioactive devices have been replaced by Franklin type and collected as radioactive waste. However, only 20 percent of the estimated total number of installed rods was delivered to Brazilian Nuclear Commission. This situation causes concern, due to, first, the possibility of the rods being disposed as domestic waste, and second, the americium, the most commonly employed radionuclide, is classified as a high-toxicity element. In the present study, Am-241more » migration experiments were performed by a lysimeter system, in order to evaluate the risk of contamination caused by radioactive lightning rods disposed as a common solid waste. Besides the risk evaluation, it is important to know the mechanism of the Am-241 release or retention in waste as well as its influence in the waste decomposition processes. Many factors are involved, but microorganisms present in the waste play an important role in its degradation, which control the physical and chemical processes. The objective of this work was to evaluate the Am-241 influence on the microbial population by counting number of cells in lysimeters leachate. Preliminary results suggest that americium may influence significantly the bacteria growth in organic waste, evidenced by culture under aerobiosis and an-aerobiosis and the antimicrobial resistance test. (authors)« less

  15. Interpreting the deposition and vertical migration characteristics of 137Cs in forest soil after the Fukushima Dai-ichi Nuclear Power Plant accident.

    PubMed

    Kang, Seongjoo; Yoneda, Minoru; Shimada, Yoko; Satta, Naoya; Fujita, Yasutaka; Shin, In Hwan

    2017-08-01

    We investigated the deposition and depth distributions of radiocesium in the Takizawa Research Forest, Iwate Prefecture, in order to understand the behavior of radionuclides released from the Fukushima Dai-ichi Nuclear Power Plant. The deposition distribution and vertical depth distribution of radiocesium in the soil were compared between topographically distinct parts of the forest where two different tree species grow. The results for all investigated locations show that almost 85% of the radiocesium has accumulated in the region of soil from the topmost organic layer to a soil depth of 0-4 cm. However, no activity was detected at depths greater than 20 cm. Analysis of the radiocesium deposition patterns in forest locations dominated by either coniferous or deciduous tree species suggests that radiocesium was sequestered and retained in higher concentrations in coniferous areas. The deposition data showed large spatial variability, reflecting the differences in tree species and topography. The variations in the measured 137 Cs concentrations reflected the variability in the characteristics of the forest floor environment and the heterogeneity of the initial ground-deposition of the Fukushima fallout. Sequential extraction experiments showed that most of the 137 Cs was present in an un-exchangeable form with weak mobility. Nevertheless, the post-vertical distribution of 137 Cs is expected to be governed by the percentage of exchangeable 137 Cs in the organic layer and the organic-rich upper soil horizons.

  16. Modeling Np and Pu transport with a surface complexation model and spatially variant sorption capacities: Implications for reactive transport modeling and performance assessments of nuclear waste disposal sites

    USGS Publications Warehouse

    Glynn, P.D.

    2003-01-01

    One-dimensional (1D) geochemical transport modeling is used to demonstrate the effects of speciation and sorption reactions on the ground-water transport of Np and Pu, two redox-sensitive elements. Earlier 1D simulations (Reardon, 1981) considered the kinetically limited dissolution of calcite and its effect on ion-exchange reactions (involving 90Sr, Ca, Na, Mg and K), and documented the spatial variation of a 90Sr partition coefficient under both transient and steady-state chemical conditions. In contrast, the simulations presented here assume local equilibrium for all reactions, and consider sorption on constant potential, rather than constant charge, surfaces. Reardon's (1981) seminal findings on the spatial and temporal variability of partitioning (of 90Sr) are reexamined and found partially caused by his assumption of a kinetically limited reaction. In the present work, sorption is assumed the predominant retardation process controlling Pu and Np transport, and is simulated using a diffuse-double-layer-surface-complexation (DDLSC) model. Transport simulations consider the infiltration of Np- and Pu-contaminated waters into an initially uncontaminated environment, followed by the cleanup of the resultant contamination with uncontaminated water. Simulations are conducted using different spatial distributions of sorption capacities (with the same total potential sorption capacity, but with different variances and spatial correlation structures). Results obtained differ markedly from those that would be obtained in transport simulations using constant Kd, Langmuir or Freundlich sorption models. When possible, simulation results (breakthrough curves) are fitted to a constant K d advection-dispersion transport model and compared. Functional differences often are great enough that they prevent a meaningful fit of the simulation results with a constant K d (or even a Langmuir or Freundlich) model, even in the case of Np, a weakly sorbed radionuclide under the simulation conditions. Functional behaviors that cannot be fit include concentration trend reversals and radionuclide desorption spikes. Other simulation results are fit successfully but the fitted parameters (Kd and dispersivity) vary significantly depending on simulation conditions (e.g. "infiltration" vs. "cleanup" conditions). Notably, an increase in the variance of the specified sorption capacities results in a marked increase in the dispersion of the radionuclides. The results presented have implications for the simulation of radionuclide migration in performance assessments of nuclear waste-disposal sites, for the future monitoring of those sites, and more generally for modeling contaminant transport in ground-water environments. ?? 2003 Published by Elsevier Science Ltd.

  17. Tracing time scales of fluid residence and migration in the crust (Invited)

    NASA Astrophysics Data System (ADS)

    Yokochi, R.; Sturchio, N. C.; Purtschert, R.; Jiang, W.; Lu, Z.; Müller, P.; Yang, G.; Kennedy, B. M.

    2013-12-01

    Crustal fluids (water, gas and oil) mediate chemical reactions, and they may transport, concentrate or disperse elements in the crust; the fluids are often valuable resources in their own right. In this context, determining the time scales of fluid transport and residence time is essential for understanding geochemical cycle of elements, as well as risk and resource management. Crustal fluids contain stable and radioactive noble gases indigenous to the fluid, which may be of magmatic or atmospheric origin of various ages. In addition, radiogenic and nucleogenic noble gases (both stable and radioactive) are continuously produced by the decay of U, Th and K and related nuclear reactions in the crust at known rates and in known relative proportions. They may be released from their production sites and incorporated into the fluid, acting as natural spikes to trace fluid flow. The concentrations of a noble gas isotope in a crustal fluid in a system devoid of phase separation or mixing varies as a function of decay time and supply from the production sites into the fluids. The release rate of noble gases from the production sites in minerals to the fluid phase may be determined uniquely through the studies of noble gas radionuclides (Yokochi et al., 2012), which is fundamental to the behavior of volatile elements in geochemistry. A pilot study of noble gas radionuclides in an active geothermal system was performed at Yellowstone National Park (Yokochi et al., 2013). Prior studies of the Yellowstone system using stable noble gas isotopes show that the thermal fluids contain a mixture of atmospheric, mantle, and crustal components. Noble gas radionuclide measurements provide new chronometric constraints regarding the subsurface residence times of Yellowstone thermal fluids. Upper limits on deep thermal fluid mean residence times, estimated from 39Ar/40Ar* ratios, range from 118 to 137 kyr for features in the Gibbon and Norris Geyser Basin areas, and are about 16 kyr in Lower Geyser Basin, with the key assumption that the fluid acquires its crustal component of Ar in Quaternary volcanic rock of the Yellowstone caldera. Krypton-81 isotopic abundances in the gas samples yield upper limits on residence time that are consistent with those obtained from 39Ar/40Ar* ratios. Young fluid components can also be determined by krypton-85 concentrations in the extracted gases. Better understanding of the production mechanisms of noble-gas radionuclides in reservoir rocks would significantly decrease the uncertainties in modeling fluid residence times.

  18. Migration impact on load balancing - an experience on Amoeba

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, W.; Socko, P.

    1996-12-31

    Load balancing has been extensive study by simulation, positive results were received in most of the researches. With the increase of the availability oftlistributed systems, a few experiments have been carried out on different systems. These experimental studies either depend on task initiation or task initiation plus task migration. In this paper, we present the results of an 0 study of load balancing using a centralizedpolicy to manage the load on a set of processors, which was carried out on an Amoeba system which consists of a set of 386s and linked by 10 Mbps Ethernet. The results on onemore » hand indicate the necessity of a load balancing facility for a distributed system. On the other hand, the results question the impact of using process migration to increase system performance under the configuration used in our experiments.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boggs, S. Jr.; Livermore, D.; Seitz, M.G.

    Dissolved humic substances (humic and fulvic acids) occur in surface waters and groundwaters in concentrations ranging from less than 1 mg(C)/L to more than 100 mg(C)/L. Humic substances are strong complexing agents for many trace metals in the environment and are also capable of forming stable soluble complexes or chelates with radionuclides. Concentrations of humic materials as low as 1 mg(C)/L can produce a detectable increase in the mobility of some actinide elements by forming soluble complexes that inhibit sorption of the radionuclides onto rock materials. The stability of trace metal- or radionuclide-organic complexes is commonly measured by an empiricallymore » determined conditional stability constant (K'), which is based on the ratio of complexed metal (radionuclide) in solution to the product concentration of uncomplexed metal and humic complexant. Larger values of stability constants indicate greater complex stability. The stability of radionuclide-organic complexes is affected both by concentration variables and envionmental factors. In general, complexing is favored by increased of radionuclide, increased pH, and decreased ionic strength. Actinide elements are generally most soluble in their higher oxidation states. Radionuclides can also form stable, insoluble complexes with humic materials that tend to reduce radionuclide mobility. These insoluble complexes may be radionuclide-humate colloids that subsequently precipitate from solution, or complexes of radionuclides and humic substances that sorb to clay minerals or other soil particulates strongly enough to immobilize the radionuclides. Colloid formation appears to be favored by increased radionuclide concentration and lowered pH; however, the conditions that favor formation of insoluble complexes that sorb to particulates are still poorly understood. 129 refs., 25 figs., 19 tabs.« less

  20. Migration, violence, and safety among migrant sex workers: A qualitative study in two Guatemalan communities

    PubMed Central

    Rocha-Jiménez, Teresita; Brouwer, Kimberly C.; Silverman, Jay G.; Morales-Miranda, Sonia

    2016-01-01

    Despite reports of high levels of violence among women migrants in Central America, limited evidence exists regarding the health and safety of migrant sex workers in Central America. This study is based on 16 months of field research (November 2012–February 2015), including ethnographic fieldwork, in-depth interviews, and focus groups conducted with 52 internal and international migrant female sex workers in Tecún Úman and Quetzaltenango, Guatemala, key transit and destination communities for both international and internal migrants. The analysis explored migration-related determinants of susceptibility to violence experienced by migrant sex workers across different phases of migration. Violence in home communities and economic considerations were key drivers of migration. Unsafe transit experiences (e.g., undocumented border crossings) and negative interactions with authorities in destination settings (e.g., extortion) contributed to migrant sex workers’ susceptibility to violence, while enhanced access to information on immigration policies and greater migration and sex work experience were found to enhance agency and resilience. Findings suggest an urgent need for actions that promote migrant sex workers’ safety in communities of origin, transit, and destination, and programmes aimed at preventing and addressing human rights violations within the context of migration and sex work. PMID:27439656

  1. Does migration affect the outcome of inpatient psychotherapy? Results from a retrospective cohort study.

    PubMed

    Wiborg, Jan F; Ben-Sliman, Eveline; Michalek, Silke; Tress, Wolgang; Joksimovic, Ljiljana

    2016-08-01

    Reliable data to determine whether migrant patients benefit sufficiently from evidence-based mental health interventions are scarce. Our aim was to examine the effect of migration on the outcome of inpatient psychotherapy. We conducted a retrospective cohort study and predicted the course of the global severity index of the Symptom Checklist 90 during therapy based on data from our routine clinical practice (N=542). We used mixed models for our analysis and included relevant clinical characteristics. One hundred and twenty-one patients of our sample had a history of migration which was consistently associated with more symptoms at baseline assessment. Patients with direct experiences of migration had the highest level of symptoms before therapy but also showed the largest decrease of symptoms during therapy (B=-0.09, SD=0.04, p=0.030). This interaction effect could be accounted for by our clinical variables. Patients with indirect experiences of migration did not differ from other patients in their level of improvement (B=-0.05, SD=0.04, p=0.149). According to our preliminary data, migration does not seem to negatively affect the outcome of inpatient psychotherapy. Limitations of these promising findings are discussed together with the strong need for more advanced studies in this area of research. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. TECHNOLOGIES FOR RADON AND RADIONUCLIDE REMOVAL

    EPA Science Inventory

    This paper provides a summary of the technologies that are currently being used to remove radionuclides from drinking water. The radionuclides that are featured are the radionuclides currently regulated by EPA; radium, radon and uranium. Tehnologies effective for removal of eac...

  3. Lunar and Planetary Science XXXV: Origin of Planetary Systems

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session titled Origin of Planetary Systems" included the following reports:Convective Cooling of Protoplanetary Disks and Rapid Giant Planet Formation; When Push Comes to Shove: Gap-opening, Disk Clearing and the In Situ Formation of Giant Planets; Late Injection of Radionuclides into Solar Nebula Analogs in Orion; Growth of Dust Particles and Accumulation of Centimeter-sized Objects in the Vicinity of a Pressure enhanced Region of a Solar Nebula; Fast, Repeatable Clumping of Solid Particles in Microgravity ; Chondrule Formation by Current Sheets in Protoplanetary Disks; Radial Migration of Phyllosilicates in the Solar Nebula; Accretion of the Outer Planets: Oligarchy or Monarchy?; Resonant Capture of Irregular Satellites by a Protoplanet ; On the Final Mass of Giant Planets ; Predicting the Atmospheric Composition of Extrasolar Giant Planets; Overturn of Unstably Stratified Fluids: Implications for the Early Evolution of Planetary Mantles; and The Evolution of an Impact-generated Partially-vaporized Circumplanetary Disk.

  4. Geoscience parameter data base handbook: granites and basalts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-12-01

    The Department of Energy has the responsibility for selecting and constructing Federal repositories for radioactive waste. The Nuclear Regulatory Commission must license such repositories prior to construction. The basic requirement in the geologic disposal of radioactive waste is stated as: placement in a geologic host whereby the radioactive waste is not in mechanical, thermal or chemical equilibrium with the object of preventing physical or chemical migration of radionuclides into the biosphere or hydrosphere in hazardous concentration (USGS, 1977). The object of this report is to document the known geologic parameters of large granite and basalt occurrences in the coterminous Unitedmore » States, for future evaluation in the selection and licensing of radioactive waste repositories. The description of the characteristics of certain potential igneous hosts has been limited to existing data pertaining to the general geologic character, geomechanics, and hydrology of identified occurrences. A description of the geochemistry is the subject of a separate report.« less

  5. Hydrothermal transformations in an aluminophosphate glass matrix containing simulators of high-level radioactive wastes

    NASA Astrophysics Data System (ADS)

    Yudintsev, S. V.; Mal'kovsky, V. I.; Mokhov, A. V.

    2016-05-01

    The interaction of aluminophosphate glass with water at 95°C for 35 days results in glass heterogenization and in the appearance of a gel layer and various phases. The leaching rate of elements is low owing to the formation of a protective layer on the glass surface. It is shown that over 80% of uranium leached from the glass matrix occurs as colloids below 450 nm in size characterized by high migration ability in the geological environment. To determine the composition of these colloids is a primary task for further studies. Water vapor is a crystallization factor for glasses. The conditions as such may appear even at early stages of glass storage because of the failure of seals on containers of high-level radioactive wastes. The examination of water resistance of crystallized matrices and determination of the fraction of radionuclide in colloids are also subjects for further studies.

  6. What is the prevalence of and associations with forced labour experiences among male migrants from Dolakha, Nepal? Findings from a cross-sectional study of returnee migrants.

    PubMed

    Mak, Joelle; Abramsky, Tanya; Sijapati, Bandita; Kiss, Ligia; Zimmerman, Cathy

    2017-08-11

    Growing numbers of people are migrating outside their country for work, and many experience precarious conditions, which have been linked to poor physical and mental health. While international dialogue on human trafficking, forced labour and slavery increases, prevalence data of such experiences remain limited. Men from Dolakha, Nepal, who had ever migrated outside of Nepal for work were interviewed on their experiences, from predeparture to return (n=194). Forced labour was assessed among those who returned within the past 10 years (n=140) using the International Labour Organization's forced labour dimensions: (1) unfree recruitment ; (2) work and life under duress ; and (3) impossibility to leave employer . Forced labour is positive if any one of the dimensions is positive. Participants had worked in India (34%), Malaysia (34%) and the Gulf Cooperation Council countries (29%), working in factories (29%), as labourers/porters (15%) or in skilled employment (12%). Among more recent returnees (n=140), 44% experienced unfree recruitment , 71% work and life under duress and 14% impossibility to leave employer . Overall, 73% experienced forced labour during their most recent labour migration.Forced labour was more prevalent among those who had taken loans for their migration (PR 1.23) and slightly less prevalent among those who had migrated more than once (PR 0.87); however the proportion of those who experienced forced labour was still high (67%). Age, destination and duration of stay were associated with only certain dimensions of forced labour. Forced labour experiences were common during recruitment and at destination. Migrant workers need better advice on assessing agencies and brokers, and on accessing services at destinations. As labour migration from Nepal is not likely to reduce in the near future, interventions and policies at both source and destinations need to better address the challenges migrants face so they can achieve safer outcomes. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Modeling Cell and Tumor-Metastasis Dosimetry with the Particle and Heavy Ion Transport Code System (PHITS) Software for Targeted Alpha-Particle Radionuclide Therapy.

    PubMed

    Lee, Dongyoul; Li, Mengshi; Bednarz, Bryan; Schultz, Michael K

    2018-06-26

    The use of targeted radionuclide therapy for cancer is on the rise. While beta-particle-emitting radionuclides have been extensively explored for targeted radionuclide therapy, alpha-particle-emitting radionuclides are emerging as effective alternatives. In this context, fundamental understanding of the interactions and dosimetry of these emitted particles with cells in the tumor microenvironment is critical to ascertaining the potential of alpha-particle-emitting radionuclides. One important parameter that can be used to assess these metrics is the S-value. In this study, we characterized several alpha-particle-emitting radionuclides (and their associated radionuclide progeny) regarding S-values in the cellular and tumor-metastasis environments. The Particle and Heavy Ion Transport code System (PHITS) was used to obtain S-values via Monte Carlo simulation for cell and tumor metastasis resulting from interactions with the alpha-particle-emitting radionuclides, lead-212 ( 212 Pb), actinium-225 ( 225 Ac) and bismuth-213 ( 213 Bi); these values were compared to the beta-particle-emitting radionuclides yttrium-90 ( 90 Y) and lutetium-177 ( 177 Lu) and an Auger-electron-emitting radionuclide indium-111 ( 111 In). The effect of cellular internalization on S-value was explored at increasing degree of internalization for each radionuclide. This aspect of S-value determination was further explored in a cell line-specific fashion for six different cancer cell lines based on the cell dimensions obtained by confocal microscopy. S-values from PHITS were in good agreement with MIRDcell S-values (cellular S-values) and the values found by Hindié et al. (tumor S-values). In the cellular model, 212 Pb and 213 Bi decay series produced S-values that were 50- to 120-fold higher than 177 Lu, while 225 Ac decay series analysis suggested S-values that were 240- to 520-fold higher than 177 Lu. S-values arising with 100% cellular internalization were two- to sixfold higher for the nucleus when compared to 0% internalization. The tumor dosimetry model defines the relative merit of radionuclides and suggests alpha particles may be effective for large tumors as well as small tumor metastases. These results from PHITS modeling substantiate emerging evidence that alpha-particle-emitting radionuclides may be an effective alternative to beta-particle-emitting radionuclides for targeted radionuclide therapy due to preferred dose-deposition profiles in the cellular and tumor metastasis context. These results further suggest that internalization of alpha-particle-emitting radionuclides via radiolabeled ligands may increase the relative biological effectiveness of radiotherapeutics.

  8. Climate Shocks and Migration: An Agent-Based Modeling Approach.

    PubMed

    Entwisle, Barbara; Williams, Nathalie E; Verdery, Ashton M; Rindfuss, Ronald R; Walsh, Stephen J; Malanson, George P; Mucha, Peter J; Frizzelle, Brian G; McDaniel, Philip M; Yao, Xiaozheng; Heumann, Benjamin W; Prasartkul, Pramote; Sawangdee, Yothin; Jampaklay, Aree

    2016-09-01

    This is a study of migration responses to climate shocks. We construct an agent-based model that incorporates dynamic linkages between demographic behaviors, such as migration, marriage, and births, and agriculture and land use, which depend on rainfall patterns. The rules and parameterization of our model are empirically derived from qualitative and quantitative analyses of a well-studied demographic field site, Nang Rong district, Northeast Thailand. With this model, we simulate patterns of migration under four weather regimes in a rice economy: 1) a reference, 'normal' scenario; 2) seven years of unusually wet weather; 3) seven years of unusually dry weather; and 4) seven years of extremely variable weather. Results show relatively small impacts on migration. Experiments with the model show that existing high migration rates and strong selection factors, which are unaffected by climate change, are likely responsible for the weak migration response.

  9. Climate Shocks and Migration: An Agent-Based Modeling Approach

    PubMed Central

    Entwisle, Barbara; Williams, Nathalie E.; Verdery, Ashton M.; Rindfuss, Ronald R.; Walsh, Stephen J.; Malanson, George P.; Mucha, Peter J.; Frizzelle, Brian G.; McDaniel, Philip M.; Yao, Xiaozheng; Heumann, Benjamin W.; Prasartkul, Pramote; Sawangdee, Yothin; Jampaklay, Aree

    2016-01-01

    This is a study of migration responses to climate shocks. We construct an agent-based model that incorporates dynamic linkages between demographic behaviors, such as migration, marriage, and births, and agriculture and land use, which depend on rainfall patterns. The rules and parameterization of our model are empirically derived from qualitative and quantitative analyses of a well-studied demographic field site, Nang Rong district, Northeast Thailand. With this model, we simulate patterns of migration under four weather regimes in a rice economy: 1) a reference, ‘normal’ scenario; 2) seven years of unusually wet weather; 3) seven years of unusually dry weather; and 4) seven years of extremely variable weather. Results show relatively small impacts on migration. Experiments with the model show that existing high migration rates and strong selection factors, which are unaffected by climate change, are likely responsible for the weak migration response. PMID:27594725

  10. Social learning of migratory performance

    USGS Publications Warehouse

    Mueller, Thomas; O'Hara, Robert B.; Converse, Sarah J.; Urbanek, Richard P.; Fagan, William F.

    2013-01-01

    Successful bird migration can depend on individual learning, social learning, and innate navigation programs. Using 8 years of data on migrating whooping cranes, we were able to partition genetic and socially learned aspects of migration. Specifically, we analyzed data from a reintroduced population wherein all birds were captive bred and artificially trained by ultralight aircraft on their first lifetime migration. For subsequent migrations, in which birds fly individually or in groups but without ultralight escort, we found evidence of long-term social learning, but no effect of genetic relatedness on migratory performance. Social learning from older birds reduced deviations from a straight-line path, with 7 years of experience yielding a 38% improvement in migratory accuracy.

  11. Gender and climate change-induced migration: proposing a framework for analysis

    NASA Astrophysics Data System (ADS)

    Chindarkar, Namrata

    2012-06-01

    This paper proposes frameworks to analyze the gender dimensions of climate change-induced migration. The experiences, needs and priorities of climate migrants will vary by gender and these differences need to be accounted for if policies are to be inclusive. Among the vulnerable groups, women are likely to be disproportionately affected due to climate change because on average women tend to be poorer, less educated, have a lower health status and have limited direct access to or ownership of natural resources. Both the process (actual movement) and the outcomes (rural-rural or rural-urban migration, out-migration mainly of men) of climate change-induced migration are also likely to be highly gendered.

  12. Philippine migration policy: dilemmas of a crisis.

    PubMed

    Battistella, G

    1999-04-01

    Philippine migration policy is traced from the early 1970s to the present. The main migration trends in the 1990s are described. An assessment is made of the efficacy and appropriateness of present migration policy in light of the economic crisis. A regional approach to migration policy is necessary in order to encourage placing migration as a greater priority on national agendas and in bilateral agreements. In the Philippines, migrants are considered better paid workers, which diminishes their importance as a legislative or program priority. Santo Tomas (1998) conducted an empirical assessment of migration policies in the Philippines, but refinement is needed. Although migration is a transnational experience, there is little dialogue and cooperation among countries. Philippine migration policy defines its role as an information resource for migrants. Policy shifted from labor export to migrant management in the public and private sectors. Predeparture information program studies are recommending a multi-stage process that would involve all appropriate parties. There is talk of including migration information in the education curriculum. There are a variety of agendas, competing interests, and information resources between migration networks and officiating agencies. The Asian financial crisis may have a mild impact, but there are still issues of reintegration, protection, and employment conditions

  13. Parental Migration and Education of Left-Behind Children: A Comparison of Two Settings

    PubMed Central

    Lu, Yao

    2014-01-01

    The out-migration of parents has become a common childhood experience worldwide. It can confer both economic benefits and social costs on children. Despite a growing literature, the circumstances under which children benefit or suffer from parental out-migration are not well understood. The present study examined how the relationship between parental out-migration and children’s education varies across migration streams (internal vs. international) and across 2 societies. Data are from the Mexican Family Life Survey (N = 5,719) and the Indonesian Family Life Survey (N = 2,938). The results showed that children left behind by international migrant parents are worse off in educational attainment than those living with both parents. Internal migration of parents plays a negative role in some cases, though often to a lesser degree than international migration. In addition, how the overall relationship between parental migration and education balances out varies by context: It is negative in Mexico but generally small in Indonesia. PMID:25284888

  14. Assays for in vitro monitoring of human airway smooth muscle (ASM) and human pulmonary arterial vascular smooth muscle (VSM) cell migration.

    PubMed

    Goncharova, Elena A; Goncharov, Dmitry A; Krymskaya, Vera P

    2006-01-01

    Migration of human pulmonary vascular smooth muscle (VSM) cells contributes to vascular remodeling in pulmonary arterial hypertension and atherosclerosis. Evidence also indicates that, in part, migration of airway smooth muscle (ASM) cells may contribute to airway remodeling associated with asthma. Here we describe migration of VSM and ASM cells in vitro using Transwell or Boyden chamber assays. Because dissecting signaling mechanisms regulating cell migration requires molecular approaches, our protocol also describes how to assess migration of transfected VSM and ASM cells. Transwell or Boyden chamber assays can be completed in approximately 8 h and include plating of serum-deprived VSM or ASM cell suspension on membrane precoated with collagen, migration of cells toward chemotactic gradient and visual (Transwell) or digital (Boyden chamber) analysis of membrane. Although the Transwell assay is easy, the Boyden chamber assay requires hands-on experience; however, both assays are reliable cell-based approaches providing valuable information on how chemotactic and inflammatory factors modulate VSM and ASM migration.

  15. Profilin1 activity in cerebellar granule neurons is required for radial migration in vivo

    PubMed Central

    Kullmann, Jan A; Wickertsheim, Ines; Minnerup, Lara; Costell, Mercedes; Friauf, Eckhard; Rust, Marco B

    2015-01-01

    Neuron migration defects are an important aspect of human neuropathies. The underlying molecular mechanisms of such migration defects are largely unknown. Actin dynamics has been recognized as an important determinant of neuronal migration, and we recently found that the actin-binding protein profilin1 is relevant for radial migration of cerebellar granule neurons (CGN). As the exploited brain-specific mutants lacked profilin1 in both neurons and glial cells, it remained unknown whether profilin1 activity in CGN is relevant for CGN migration in vivo. To test this, we capitalized on a transgenic mouse line that expresses a tamoxifen-inducible Cre variant in CGN, but no other cerebellar cell type. In these profilin1 mutants, the cell density was elevated in the molecular layer, and ectopic CGN occurred. Moreover, 5-bromo-2′-deoxyuridine tracing experiments revealed impaired CGN radial migration. Hence, our data demonstrate the cell autonomous role of profilin1 activity in CGN for radial migration. PMID:25495756

  16. Emission, transport, deposition, and re-suspension of radionuclides from Fukushima Dai-ichi Nuclear Power Plant in the atmosphere - Overview of 2-year investigations in Japan

    NASA Astrophysics Data System (ADS)

    Kita, Kazuyuki; Igarashi, Yasuhiro; Yoshida, Naohiro; Nakajima, Teruyuki

    2013-04-01

    Following a huge earthquake and tsunami in Eastern Japan on 11 March, 2011, the accident in Fukushima Dai-ichi Nuclear Power Plant (FDNPP) occurred to emit a large amount of artificial radionuclides to the environment. Soon after the FDNPP accident, many Japanese researchers, as well as researchers in other countries, started monitoring radionuclides in various environmental fields and/or model calculations to understand extent and magnitude of radioactive pollution. In this presentation, we overview these activities for the atmospheric radionuclides in Japan as followings: 1. Investigations to evaluate radionuclide emissions by explosions at FNDPP in March 2011 and to estimate the respiration dose of the radiation at this stage. 2. Investigations to evaluate atmospheric transport and deposition processes of atmospheric radionuclide to determine the extent of radionuclide pollution. -- Based on results of the regular and urgent monitoring results, as well as the mapping of the distribution of radionuclide s accumulated by the deposition to the ground, restoration of their time-dependent emission rates has been tried, and processes determining atmospheric concentration and deposition to the ground have been investigated by using the model calculations. 3. Monitoring of the atmospheric concentrations of radionuclide after the initial, surge phase of FNDPP accident. 4. Investigations to evaluate re-suspension of radionuclide from the ground, including the soil and the vegetation. -- Intensive monitoring of the atmospheric concentrations and deposition amount of radionuclide after the initial, surge phase of the accident enable us to evaluate emission history from FNDPP, atmospheric transport and deposition processes, chemical and physical characteristics of atmospheric radionuclide especially of radio cesium, and re-suspension processes which has become dominant process to supply radio cesium to the atmosphere recently.

  17. Glass fining experiments in zero gravity

    NASA Technical Reports Server (NTRS)

    Smith, H. D.

    1977-01-01

    Ground based experiments were conducted to demonstrate that thermal migration actually operated in glass melts. Thermal migration consistent with the theory was found in one experiment on a borax melt, i.e., there was an approximately linear relation between the bubble diameter and bubble velocity for a given temperature and temperature gradient. It also appeared that nearby bubbles were attracted to one another, which could greatly aid fining. Interpretation of these results was not possible because of complications arising from gravity, i.e., floating of the bubbles, circulation currents due to buoyancy-driven natural connection, and flow of the melt out from the cell.

  18. Radioecology

    NASA Astrophysics Data System (ADS)

    Steinnes, Eiliv

    2007-11-01

    Radioecology is the subject dealing with the behaviour of radioactive substances in nature and how they affect plants, animals, and humans. The text discusses radionuclides of natural origin and their doses to man, artificially produced radionuclides and their most important sources, pathways of radionuclides in the environment, and transfer of radionuclides in foodchains. The importance of chemical speciation on the mobility of radionuclides in radioecology is particularly emphasized. Some radioecological problems in Norway following the Chernobyl accident are briefly discussed.

  19. Carcinoid crisis induced by receptor radionuclide therapy with 90Y-DOTATOC in a case of liver metastases from bronchial neuroendocrine tumor (atypical carcinoid).

    PubMed

    Davì, M V; Bodei, L; Francia, G; Bartolomei, M; Oliani, C; Scilanga, L; Reghellin, D; Falconi, M; Paganelli, G; Lo Cascio, V; Ferdeghini, M

    2006-06-01

    SS receptors are overexpressed in many tumors, mainly of neuroendocrine origin, thus enabling the treatment with SS analogs. The clinical experience of receptor radionuclide therapy with the new analog [90Y-DOTA0-Tyr3 ]-octreotide [90Y-DOTATOC] has been developed over the last decade and is gaining a pivotal role in the therapeutic workout of these tumors. It is well known that some procedures performed in diagnostic and therapeutic management of endocrine tumors, such as agobiopsy and hepatic chemoembolization, can be associated with the occurrence of symptoms related to the release of vasoactive amines and/or hormonal peptides from tumor cell lysis. This is the first report of a severe carcinoid crisis developed after receptor radionuclide therapy with 90Y-DOTATOC administered in a patient affected by liver metastases from bronchial neuroendocrine tumor (atypical carcinoid). Despite protection with H1 receptor antagonists, octreotide and corticosteroids, few days after the therapy the patient complained of persistent flushing of the face and upper trunk, severe labial and periocular oedema, diarrhoea and loss of appetite. These symptoms increased and required new hospitalisation. The patient received iv infusion of octreotide associated with H1 and H2 receptor antagonists and corticosteroid therapy, which induced symptom remission within few days. The case here reported confirms that radionuclide therapy is highly effective in determining early rupture of metastatic tissue and also suggests that pre-medication should be implemented before the radiopeptide administration associated with a close monitoring of the patient in the following days.

  20. Mechanisms of thorium migration in a semiarid soil.

    PubMed

    Bednar, A J; Gent, D B; Gilmore, J R; Sturgis, T C; Larson, S L

    2004-01-01

    Thorium concentrations at Kirtland Air Force Base training sites in Albuquerque, NM, have been previously described; however, the mechanisms of thorium migration were not fully understood. This work describes the processes affecting thorium mobility in this semiarid soil, which has implications for future remedial action. Aqueous extraction and filtration experiments have demonstrated the colloidal nature of thorium in the soil, due in part to the low solubility of thorium oxide. Colloidal material was defined as that removed by a 0.22-microm or smaller filter after being filtered to nominally dissolved size (0.45 microm). Additionally, association of thorium with natural organic matter is suggested by micro- and ultrafiltration methods, and electrokinetic data, which indicate thorium migration as a negatively charged particle or anionic complex with organic matter. Soil fractionation and digestion experiments show a bimodal distribution of thorium in the largest and smallest size fractions, most likely associated with detrital plant material and inorganic oxide particles, respectively. Plant uptake studies suggest this could also be a mode of thorium migration as plants grown in thorium-containing soil had a higher thorium concentration than those in control soils. Soil erosion laboratory experiments with wind and surface water overflow were performed to determine bulk soil material movement as a possible mechanism of mobility. Information from these experiments is being used to determine viable soil stabilization techniques at the site to maintain a usable training facility with minimal environmental impact.

  1. Ecological carryover effects associated with partial migration in white perch (Morone americana) within the Hudson River Estuary

    NASA Astrophysics Data System (ADS)

    Gallagher, Brian K.; Piccoli, Philip M.; Secor, David H.

    2018-01-01

    Partial migration in complex life cycles allows environmental conditions experienced during one life-stage to interact with genetic thresholds and produce divergent spatial behaviors in the next stage. We evaluated partial migration over the entire life cycle of white perch, (Morone americana) within the Hudson River Estuary, combining otolith microchemistry, population demographics and environmental data analysis. Ecological carryover effects were used as a framework to test how environmental variation during the larval period influenced migration behaviors and growth characteristics in subsequent life-stages. Two annual cohorts of juveniles were classified based on whether they persisted in natal habitats (freshwater resident contingent) or dispersed into non-natal habitats (brackish water migratory contingent) as juveniles. The migratory contingent tended to hatch earlier and experience cooler temperatures as larvae, while the availability of zooplankton prey during the larval period appeared to influence growth dynamics before and after metamorphosis. Juvenile migration behaviors were reversible but usually persisted into adulthood. As juveniles, the consequences of partial migration on growth appeared to be modified by river flow, as demonstrated by the influence of a large storm event on feeding conditions in one of the study years. Migratory adults grew faster and attained larger maximum sizes, but may also experience higher rates of mortality. The interplay uncovered between life-stage transitions, conditional migration behaviors and habitat productivity throughout the life cycle shapes white perch population dynamics and will likely play an important role in responses to long-term environmental change.

  2. Vertical distribution of 137Cs in grassland soils disturbed by moles (Talpa europaea L.).

    PubMed

    Ramzaev, V; Barkovsky, A

    2018-04-01

    Activity of biota is one of the factors influencing vertical migration of radionuclides deposited from the atmosphere onto the ground surface. The goal of this work was to study the vertical distribution of 137 Cs in grassland soils disturbed by moles (Talpa europaea L.) in comparison with undisturbed grassland soils. Field observations and soil sampling were carried out in the areas of eight settlements in the Klintsovskiy, Krasnogorskiy and Novozybkovskiy districts of the Bryansk region, Russia in six years during the period 1999-2016. The study sites had been heavily contaminated by Chernobyl fallout in 1986. Activity of 137 Cs in soil samples was determined by γ-ray spectrometry. 137 Cs surface ground contamination levels at the studied plots (n = 17) ranged from 327 kBq m -2 to 2360 kBq m -2 with a mean of 1000 kBq m -2 and a median of 700 kBq m -2 . The position of the 137 Cs migration centre in the soil in 2010-2016 was significantly (the Mann-Whitney U test, P < .01) deeper at mole-disturbed plots (median = 5.99 cm or 6.64 g cm -2 , n = 6) compared to the undisturbed ones (median = 2.48 cm or 2.35 g cm -2 , n = 6). The 137 Cs migration rate at mole-disturbed plots (median = 0.26 g cm -2  y -1 , mean = 0.31 g cm -2  y -1 ) was significantly higher (by a factor of 3) than at undisturbed plots (median = 0.08 g cm -2  y -1 , mean = 0.10 g cm -2  y -1 ). The difference in the migration rates between the mole-disturbed and undisturbed plots (median = 0.18 g cm -2  y -1 , mean = 0.21 g cm -2  y -1 ) reasonably corresponded to the mass of soil that might be ejected by moles per unit area per year. The results of this study indicate that the burrowing activity of moles has increased vertical migration of Chernobyl-derived radiocaesium in the grassland soils. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Radiation Doses to Members of the U.S. Population from Ubiquitous Radionuclides in the Body: Part 1, Autopsy and In Vivo Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, David J.; Strom, Daniel J.

    This paper is part one of a three-part series investigating annual effective doses to residents of the United States from intakes of ubiquitous radionuclides, including radionuclides occurring naturally, radionuclides whose concentrations are technologically enhanced, and anthropogenic radionuclides. This series of papers explicitly excludes intakes from inhaling 222Rn, 220Rn, and their short-lived decay products; it also excludes intakes of radionuclides in occupational and medical settings. The goal of part one of this work was to review, summarize, and characterize all published and some unpublished data for U.S. residents on ubiquitous radionuclide concentrations in tissues and organs. Forty-five papers and reports weremore » obtained and their data reviewed, and three data sets were obtained via private communication. The 45 radionuclides of interest are the 238U series (14 nuclides), the actinium series (headed by 235U; 11 nuclides), and the 232Th series (11 nuclides); primordial radionuclides 87Rb and 40 K; cosmogenic and fallout radionuclides 14C and 3H; and purely anthropogenic radionuclides 137Cs-137mBa, 129I, and 90Sr-90Y. Measurements judged to be relevant were available for only 15 of these radionuclides: 238U, 235U, 234U, 232Th, 230Th, 228Th, 228Ra, 226Ra, 210Pb, 210Po, 137Cs, 87Rb, 40K, 14C, and 3H. Recent and relevant measurements were not available for 129I and 90Sr-90Y. A total of 11,714 radionuclide concentration measurements were found in one or more tissues or organs from 14 States. Data on age, sex, geographic locations, height, and weight of subjects were available only sporadically. Too often authors did not provide meaningful values of uncertainty of measurements so that variability in data sets is confounded with measurement uncertainty. The following papers detail how these shortcomings are overcome to achieve the goals of the three-part series.« less

  4. The atypical cadherin Celsr1 functions non-cell autonomously to block rostral migration of facial branchiomotor neurons in mice.

    PubMed

    Glasco, Derrick M; Pike, Whitney; Qu, Yibo; Reustle, Lindsay; Misra, Kamana; Di Bonito, Maria; Studer, Michele; Fritzsch, Bernd; Goffinet, André M; Tissir, Fadel; Chandrasekhar, Anand

    2016-09-01

    The caudal migration of facial branchiomotor (FBM) neurons from rhombomere (r) 4 to r6 in the hindbrain is an excellent model to study neuronal migration mechanisms. Although several Wnt/Planar Cell Polarity (PCP) components are required for FBM neuron migration, only Celsr1, an atypical cadherin, regulates the direction of migration in mice. In Celsr1 mutants, a subset of FBM neurons migrates rostrally instead of caudally. Interestingly, Celsr1 is not expressed in the migrating FBM neurons, but rather in the adjacent floor plate and adjoining ventricular zone. To evaluate the contribution of different expression domains to neuronal migration, we conditionally inactivated Celsr1 in specific cell types. Intriguingly, inactivation of Celsr1 in the ventricular zone of r3-r5, but not in the floor plate, leads to rostral migration of FBM neurons, greatly resembling the migration defect of Celsr1 mutants. Dye fill experiments indicate that the rostrally-migrated FBM neurons in Celsr1 mutants originate from the anterior margin of r4. These data suggest strongly that Celsr1 ensures that FBM neurons migrate caudally by suppressing molecular cues in the rostral hindbrain that can attract FBM neurons. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Radionuclide deposition control

    DOEpatents

    Brehm, William F.; McGuire, Joseph C.

    1980-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

  6. Behaviour and fluxes of natural radionuclides in the production process of a phosphoric acid plant.

    PubMed

    Bolívar, J P; Martín, J E; García-Tenorio, R; Pérez-Moreno, J P; Mas, J L

    2009-02-01

    In recent years there has been an increasing awareness of the occupational and public hazards of the radiological impact of non-nuclear industries which process materials containing naturally occurring radionuclides. These include the industries devoted to the production of phosphoric acid by treating sedimentary phosphate rocks enriched in radionuclides from the uranium series. With the aim of evaluating the radiological impact of a phosphoric acid factory located in the south-western Spain, the distribution and levels of radionuclides in the materials involved in its production process have been analysed. In this way, it is possible to asses the flows of radionuclides at each step and to locate those points where a possible radionuclide accumulation could be produced. A set of samples collected along the whole production process were analysed to determine their radionuclide content by both alpha-particle and gamma spectrometry techniques. The radionuclide fractionation steps and enrichment sources have been located, allowing the establishment of their mass (activity) balances per year.

  7. Therapeutic radionuclides in nuclear medicine: current and future prospects

    PubMed Central

    Yeong, Chai-Hong; Cheng, Mu-hua; Ng, Kwan-Hoong

    2014-01-01

    The potential use of radionuclides in therapy has been recognized for many decades. A number of radionuclides, such as iodine-131 (131I), phosphorous-32 (32P), strontium-90 (90Sr), and yttrium-90 (90Y), have been used successfully for the treatment of many benign and malignant disorders. Recently, the rapid growth of this branch of nuclear medicine has been stimulated by the introduction of a number of new radionuclides and radiopharmaceuticals for the treatment of metastatic bone pain and neuroendocrine and other malignant or non-malignant tumours. Today, the field of radionuclide therapy is enjoying an exciting phase and is poised for greater growth and development in the coming years. For example, in Asia, the high prevalence of thyroid and liver diseases has prompted many novel developments and clinical trials using targeted radionuclide therapy. This paper reviews the characteristics and clinical applications of the commonly available therapeutic radionuclides, as well as the problems and issues involved in translating novel radionuclides into clinical therapies. PMID:25294374

  8. [Symptoms, disease models and treatment experiences of patients in psychosomatic rehabilitation with and without a history of migration].

    PubMed

    Gruner, Andrea; Oster, Jörg; Müller, Gottfried; von Wietersheim, Jörn

    2012-01-01

    Previous studies have shown that psychosomatic rehabilitation treatments were less successful for patients with a migration background. These findings should be explored further with the help of interviews. The main aim of this study was to compare patients with and without a migration background with regards to social-demographic variables, disease model, symptoms, and the course and result of a psychosomatic rehabilitation treatment. 75 patients with and 75 without a migration background were analysed. Half-structured interviews were carried out at admission, discharge and three months after discharge from treatment. Patients with a migration background were "sicker" at the beginning of the rehabilitation. Especially men with a migration background benefit less from the treatment and often did not feel "at the right place" in the psychosomatic rehabilitation. Patients with a migration background have a more negative view of their work performance than patients without a migration background. Patient with a migration background should receive more information about psychosomatic disease models and different treatment methods prior to their rehabilitation therapy.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kautsky, Mark; Nguyen, Jason; Darr, Paul S.

    The Long-Term Surveillance and Maintenance Plan (LTSMP) for Amchitka details how the U.S. Department of Energy (DOE) intends to fulfill its mission to maintain protection of human health and the environment at and around the sites on Amchitka Island. The LTSMP calls for monitoring to be performed every 5 years, at least in the initial phase of the project. The purpose of the monitoring is to develop a baseline of activity concentrations for selected radionuclides in biota, water, and soil, both on Amchitka and at the reference location on Adak Island, approximately 322 km (200 miles) northeast of Amchitka. Datamore » compiled by the Consortium for Risk Evaluation with Stakeholder Participation (CRESP, 2006) are being included as part of the baseline data set. The specific biological, water, and sediment samples collected during the 2011 sampling event were developed through close coordination with the primary stakeholders, including the Alaska Department of Environmental Conservation, the Aleutian Pribilof Island Association, and the U.S. Fish and Wildlife Service (USFWS). Amchitka is managed by the USFWS as part of the Alaska Maritime National Wildlife Refuge. Two plans were developed to address specific needs of the biological- and the terrestrial-monitoring programs. Results from these monitoring programs will help determine whether the environment is being impacted by radionuclide migration and uptake, and if subsistence and commercial-catch seafood is safe for human consumption. The RESRAD-BIOTA code is being used to evaluate ecological health relative to the radionuclide levels determined from this sampling event. The samples were sent to three laboratories for analysis. With the exception of the seawater samples, most of the samples were sent to the Center for Accelerator Mass Spectrometry at the Lawrence Livermore National Laboratory. A smaller subset of rock-weed samples, Star reindeer lichen samples, and soil samples collected from beneath the lichen were sent to UAF for cesium-137 analysis. Marine sediment samples were also collected and sent to UAF for testing. The seawater samples were sent to the University of Miami Tritium Laboratory for enriched tritium analysis. Results from the seawater samples for tritium were received in September 2011. Results from the 2011 sampling are expected to be available on the LM web site in 2012. (authors)« less

  10. Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport

    NASA Astrophysics Data System (ADS)

    Annewandter, Robert

    2014-05-01

    The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced gas transport and subsequent soil gas sampling during On-Site inspections. Generally, gas transport has been widely studied with different numerical codes. However, gas transport of radioxenons and radioiodines in the post-detonation regime and their possible fractionation is still neglected in the open peer-reviewed literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the multiple isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radionuclides, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different mass diffusivities due to mass differences between the radionuclides. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures or highly conductive faults which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a so-called ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which is recognized by the oil industry as leading in Discrete Fracture-Matrix (DFM) simulations. It has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations, fracture propagation in fractured, porous media, and Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic differential equations by a complementary finite volume method. The parabolic and hyperbolic problem can be solved separately by operator-splitting. The resulting system of linear equations is solved by the algebraic multigrid library SAMG, developed at the Fraunhofer Institute for Algorithms and Scientific Computing, Germany. CSMP++ is developed at Montan University of Leoben, ETH Zuerich, Imperial College London and Heriot-Watt University in Edinburgh. This study examines barometric pumping-driven subsurface transport of Xe-135, Xe-133m, Xe-133, Xe-131m including I-131, I-133 and I-135 on arrival times and isotopic activity ratios. This work was funded by the CTBTO Research Award for Young Scientist and Engineers (2013).

  11. Sorption and diffusion of selenium oxyanions in granitic rock

    NASA Astrophysics Data System (ADS)

    Ikonen, Jussi; Voutilainen, Mikko; Söderlund, Mervi; Jokelainen, Lalli; Siitari-Kauppi, Marja; Martin, Andrew

    2016-09-01

    The processes controlling diffusion and sorption of radionuclides have been studied extensively in the laboratory, whereas, only a few in-situ experiments have been carried out in order to study in-situ diffusion over the long-term (several years). This is largely due to the fact that in-situ experiments are typically time consuming and cost intensive, and it is commonly accepted that laboratory scale tests are well-established approaches to characterizing the properties of geological media. In order to assess the relevance of laboratory experiments, the Swiss National Cooperative for Disposal of Radioactive Waste (Nagra) have been conducting extensive experiments in the Underground Rock Laboratory (URL) at the Grimsel Test Site (GTS) in order to study radionuclide transport and retention in-situ. One of the elements used in these experiments is non-radioactive selenium, as an analog for the radiotoxic isotope Se-79, which is present in radioactive waste. In this work, two laboratory through-diffusion experiments using selenium as a tracer were carried out in block (decimeter) scale rock specimens to support one of the ongoing radionuclide transport and retention in-situ experiment at the GTS mentioned above. The though-diffusion tests of selenium were performed under atmospheric conditions in both Kuru grey granite (KGG) and Grimsel granodiorite (GG). The decrease of selenium concentration in an inlet hole drilled into each of the rock samples and the breakthrough of selenium into sampling holes drilled around the inlet were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The effective diffusion (De) and distribution coefficients (Kd) of selenium were then determined from the changes of selenium concentration in the inlet and sampling holes using a Time-Domain Diffusion (TDD) simulations. In addition, Kd of selenium was measured by batch sorption experiments as a function of pH and Se concentration in atmospheric conditions and nitrogen atmosphere. The speciation of selenium was studied by HPLC-ICP-MS in simulated ground waters of each of the rock types. The Kd of selenium was found to be in the range of (6.2-7.0 ± 2.0) × 10- 3 m3/kg in crushed rock whereas the Kd obtained from block scale through diffusion experiment varied between (1.5 ± 0.3) × 10- 3 m3/kg and (1.0 ± 0.6) × 10- 4 m3/kg. The De of selenium was significantly higher for GG; De = (2.5 ± 1.5) × 10- 12 m2/s than for KGG; De = (7 ± 2) × 10- 13 m2/s due to the higher permeability of GG compared with KGG.

  12. Sorption and diffusion of selenium oxyanions in granitic rock.

    PubMed

    Ikonen, Jussi; Voutilainen, Mikko; Söderlund, Mervi; Jokelainen, Lalli; Siitari-Kauppi, Marja; Martin, Andrew

    2016-09-01

    The processes controlling diffusion and sorption of radionuclides have been studied extensively in the laboratory, whereas, only a few in-situ experiments have been carried out in order to study in-situ diffusion over the long-term (several years). This is largely due to the fact that in-situ experiments are typically time consuming and cost intensive, and it is commonly accepted that laboratory scale tests are well-established approaches to characterizing the properties of geological media. In order to assess the relevance of laboratory experiments, the Swiss National Cooperative for Disposal of Radioactive Waste (Nagra) have been conducting extensive experiments in the Underground Rock Laboratory (URL) at the Grimsel Test Site (GTS) in order to study radionuclide transport and retention in-situ. One of the elements used in these experiments is non-radioactive selenium, as an analog for the radiotoxic isotope Se-79, which is present in radioactive waste. In this work, two laboratory through-diffusion experiments using selenium as a tracer were carried out in block (decimeter) scale rock specimens to support one of the ongoing radionuclide transport and retention in-situ experiment at the GTS mentioned above. The though-diffusion tests of selenium were performed under atmospheric conditions in both Kuru grey granite (KGG) and Grimsel granodiorite (GG). The decrease of selenium concentration in an inlet hole drilled into each of the rock samples and the breakthrough of selenium into sampling holes drilled around the inlet were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The effective diffusion (De) and distribution coefficients (Kd) of selenium were then determined from the changes of selenium concentration in the inlet and sampling holes using a Time-Domain Diffusion (TDD) simulations. In addition, Kd of selenium was measured by batch sorption experiments as a function of pH and Se concentration in atmospheric conditions and nitrogen atmosphere. The speciation of selenium was studied by HPLC-ICP-MS in simulated ground waters of each of the rock types. The Kd of selenium was found to be in the range of (6.2-7.0±2.0)×10(-3)m(3)/kg in crushed rock whereas the Kd obtained from block scale through diffusion experiment varied between (1.5±0.3)×10(-3)m(3)/kg and (1.0±0.6)×10(-4)m(3)/kg. The De of selenium was significantly higher for GG; De=(2.5±1.5)×10(-12)m(2)/s than for KGG; De=(7±2)×10(-13)m(2)/s due to the higher permeability of GG compared with KGG. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The role of long distance migration in the rural renaissance, in gentrification, and in growth of the Sunbelt.

    PubMed

    Serow, W J

    1980-01-01

    The author "has examined trends in interstate migration during the 1970s for the four regions of the United States and, in particular, explored the relationship of this migration with nonmetropolitan expansion and the return to the city movement. The data show that the former trend is a very real one which has persisted throughout the decade and that population growth through interstate migration in nonmetropolitan America is, on balance, the result of nonblacks moving to the South from elsewhere in the nation. Except in the West, central cities continue to experience substantial losses of population through interstate migration. Interstate migration continues to be directed toward suburbs, and is especially vigorous in the West." Data are from the March 1975 and March 1979 Current Population Surveys. excerpt

  14. Establishing a pre-mining geochemical baseline at a uranium mine near Grand Canyon National Park, USA

    USGS Publications Warehouse

    Naftz, David L.; Walton-Day, Katherine

    2016-01-01

    During 2012, approximately 404,000 ha of Federal Land in northern Arizona was withdrawn from consideration of mineral extraction for a 20-year period to protect the Grand Canyon watershed from potentially adverse effects of U mineral exploration and development. The development, operation, and reclamation of the Canyon Mine during the withdrawal period provide an excellent field site to understand and document off-site migration of radionuclides within the withdrawal area. As part of the Department of Interior's (DOI's) study plan for the exclusion area, the objective of our study is to utilize pre-defined decision units (DUs) in areas within and surrounding the Canyon Mine to demonstrate how newly established incremental sampling methodologies (ISM) combined with multivariate statistical methods can be used to document a repeatable and statistically defensible measure of pre-mining baseline conditions in surface soils and stream sediment samples prior to ore extraction. During the survey in June 2013, the highest pre-mining 95% upper confidence level (UCL) concentrations with respect to As, Mo, U, and V were found in the triplicate samples collected from surface soils in the mine site DU designated as M1. Gamma activities were slightly elevated in soils within the M1 DU (up to 28 μR/h); however, off-site gamma activities in soil and stream-sediment samples were lower (< 6 to 12 μR/h). Hierarchical cluster analysis (HCA) was applied to 33 chemical constituents contained in the multivariate data generated from the analysis of triplicate samples collected in the soil and stream sediment DUs within and surrounding Canyon Mine. Most of the triplicate samples from individual DUs were grouped in the same dendrogram cluster when using a similarity value (SV) of 0.70 (unitless). Different group membership of triplicate samples from two of the four haul road DUs was likely the result of heterogeneity induced by non-native soil material introduced from the gravel road base or from vehicular traffic. Application of HCA and ISM will provide critical metrics to meet DOI's long-term goals for assessing off-site migration of radionuclides resulting from mining and reclamation in the current (2015) exclusion area associated within the Grand Canyon watershed and the associated national park.

  15. Does Specification Matter? Experiments with Simple Multiregional Probabilistic Population Projections

    PubMed Central

    Raymer, James; Abel, Guy J.; Rogers, Andrei

    2012-01-01

    Population projection models that introduce uncertainty are a growing subset of projection models in general. In this paper, we focus on the importance of decisions made with regard to the model specifications adopted. We compare the forecasts and prediction intervals associated with four simple regional population projection models: an overall growth rate model, a component model with net migration, a component model with in-migration and out-migration rates, and a multiregional model with destination-specific out-migration rates. Vector autoregressive models are used to forecast future rates of growth, birth, death, net migration, in-migration and out-migration, and destination-specific out-migration for the North, Midlands and South regions in England. They are also used to forecast different international migration measures. The base data represent a time series of annual data provided by the Office for National Statistics from 1976 to 2008. The results illustrate how both the forecasted subpopulation totals and the corresponding prediction intervals differ for the multiregional model in comparison to other simpler models, as well as for different assumptions about international migration. The paper ends end with a discussion of our results and possible directions for future research. PMID:23236221

  16. Correlates and contexts of U.S. injection drug initiation among undocumented Mexican migrant men who were deported from the United States

    PubMed Central

    Robertson, Angela M.; Lozada, Remedios; Pollini, Robin A.; Rangel, Gudelia; Ojeda, Victoria D.

    2012-01-01

    Preventing the onset of injection drug use is important in controlling the spread of HIV and other blood borne infections. Undocumented migrants in the United States face social, economic, and legal stressors that may contribute to substance abuse. Little is known about undocumented migrants’ drug abuse trajectories including injection initiation. To examine the correlates and contexts of U.S. injection initiation among undocumented migrants, we administered quantitative surveys (n=309) and qualitative interviews (n=23) on migration and drug abuse experiences to deported male injection drug users (IDUs) in Tijuana, Mexico. U.S. injection initiation was independently associated with ever using drugs in Mexico pre-migration, younger age at first U.S. migration, and U.S. incarceration. Participants’ qualitative interviews contextualized quantitative findings and demonstrated the significance of social contexts surrounding U.S. injection initiation experiences. HIV prevention programs may prevent/delay U.S. injection initiation by addressing socio-economic and migration-related stressors experienced by undocumented migrants. PMID:22246511

  17. The Role of Direct Current Electric Field-Guided Stem Cell Migration in Neural Regeneration.

    PubMed

    Yao, Li; Li, Yongchao

    2016-06-01

    Effective directional axonal growth and neural cell migration are crucial in the neural regeneration of the central nervous system (CNS). Endogenous currents have been detected in many developing nervous systems. Experiments have demonstrated that applied direct current (DC) electric fields (EFs) can guide axonal growth in vitro, and attempts have been made to enhance the regrowth of damaged spinal cord axons using DC EFs in in vivo experiments. Recent work has revealed that the migration of stem cells and stem cell-derived neural cells can be guided by DC EFs. These studies have raised the possibility that endogenous and applied DC EFs can be used to direct neural tissue regeneration. Although the mechanism of EF-directed axonal growth and cell migration has not been fully understood, studies have shown that the polarization of cell membrane proteins and the activation of intracellular signaling molecules are involved in the process. The application of EFs is a promising biotechnology for regeneration of the CNS.

  18. Navigation.

    PubMed

    Wiltschko, Roswitha

    2017-07-01

    Experiments with migrating birds displaced during autumn migration outside their normal migration corridor reveal two different navigational strategies: adult migrants compensate for the displacement, and head towards their traditional wintering areas, whereas young first-time migrants continue in their migratory direction. Young birds are guided to their still unknown goal by a genetically coded migration program that indicates duration and direction(s) of the migratory flight by controlling the amount of migratory restlessness and the compass course(s) with respect to the geomagnetic field and celestial rotation. Adult migrants that have already wintered and are familiar with the goal area approach the goal by true navigation, specifically heading towards it and changing their course correspondingly after displacement. During their first journey, young birds experience the distribution of potential navigational factors en route and in their winter home, which allows them to truly navigate on their next migrations. The navigational factors used appear to include magnetic intensity as a component in their multi-modal navigational 'map'; olfactory input is also involved, even if it is not yet entirely clear in what way. The mechanisms of migratory birds for true navigation over long distances appear to be in principle similar to those discussed for by homing pigeons.

  19. Correlation between surface topography and lubricant migration in steel sheets for the autobody manufacturing process

    NASA Astrophysics Data System (ADS)

    Benati, F.; Sacerdotti, F.; Griffiths, B. J.; Butler, C.; Karila, J. M.; Vermeulen, M.; Holtkamp, H.; Gatti, S.

    2002-05-01

    Material for the production of autobody panels is usually dispatched in the form of coils. Because of their weight, they tend to `compress' the lubricant applied for rust protection and some of it leaks from the coil. Those areas affected by lubricant starvation are known as `dry-spots' and are a cause of a number of product rejections during the subsequent forming operation. A test was deployed with the combined work of Ocas, CORUS IJmuiden and Renault that proved that surface topography controls, amongst other factors, affects lubricant migration. The test consists of compressing a stack of lubricated steel sheets at known pressure for a known time using different lubricants in different amounts. It was observed that, because of the `compression', the lubricant tends to migrate to the side of the sheet, and its migration was quantified using a Fischer Betascope MMS module. Analysis consisted of analysis of variance on several designs of experiments and subsequent correlation with surface topography 3D parameters. These experiments showed the importance of standard amplitude surface parameters and new closed area surface parameters to characterize lubricant migration under pressure.

  20. Collective cell migration without proliferation: density determines cell velocity and wave velocity

    NASA Astrophysics Data System (ADS)

    Tlili, Sham; Gauquelin, Estelle; Li, Brigitte; Cardoso, Olivier; Ladoux, Benoît; Delanoë-Ayari, Hélène; Graner, François

    2018-05-01

    Collective cell migration contributes to embryogenesis, wound healing and tumour metastasis. Cell monolayer migration experiments help in understanding what determines the movement of cells far from the leading edge. Inhibiting cell proliferation limits cell density increase and prevents jamming; we observe long-duration migration and quantify space-time characteristics of the velocity profile over large length scales and time scales. Velocity waves propagate backwards and their frequency depends only on cell density at the moving front. Both cell average velocity and wave velocity increase linearly with the cell effective radius regardless of the distance to the front. Inhibiting lamellipodia decreases cell velocity while waves either disappear or have a lower frequency. Our model combines conservation laws, monolayer mechanical properties and a phenomenological coupling between strain and polarity: advancing cells pull on their followers, which then become polarized. With reasonable values of parameters, this model agrees with several of our experimental observations. Together, our experiments and model disantangle the respective contributions of active velocity and of proliferation in monolayer migration, explain how cells maintain their polarity far from the moving front, and highlight the importance of strain-polarity coupling and density in long-range information propagation.

  1. Microstructural changes in a cementitious membrane due to the application of a DC electric field.

    PubMed

    Covelo, Alba; Diaz, Belen; Freire, Lorena; Novoa, X Ramon; Perez, M Consuelo

    2008-07-01

    The use of electromigration techniques to accelerate chloride ions motion is commonly employed to characterise the permeability of cementitious samples to chlorides, a relevant parameter in reinforced concrete corrosion. This paper is devoted to the study of microstructure's changes occurring in mortar samples when submitted to natural diffusion and migration experiments. The application of an electric field reduces testing time in about one order of magnitude with respect to natural diffusion experiments. Nevertheless, the final sample's microstructure differs in both tests. Impedance Spectroscopy is employed for real time monitoring of microstructural changes. During migration experiments the global impedance undergoes important increase in shorter period of time compared to natural diffusion tests. So, the forced motion of ions through the concrete membrane induces significant variations in the porous structure, as confirmed by Mercury Intrusion Porosimetry. After migration experiments, an important increase in the capillary pore size (10-100 nm) was detected. Conversely, no relevant variations are found after natural diffusion tests. Results presented in this work cast doubt on the significance of diffusion coefficient values obtained under accelerated conditions.

  2. Pre-migration Trauma Exposure and Psychological Distress for Asian American Immigrants: Linking the Pre- and Post-migration Contexts.

    PubMed

    Li, Miao; Anderson, James G

    2016-08-01

    Drawing on the life course perspective and the assumptive world theory, this paper examines whether pre-migration trauma exposure is associated with psychological distress through post-migration perceived discrimination for Asian American immigrants. The study is based on cross-sectional data from the National Latino and Asian American Study (N = 1639). Structural equation model is used to estimate the relationship between pre-migration trauma, post-migration perceived discrimination, and psychological distress. Additional models are estimated to explore possible variations across ethnic groups as well as across different types of pre-migration trauma experience. Pre-migration trauma exposure is associated with higher levels of psychological distress, both directly and indirectly through higher level of perceived discrimination, even after controlling for demographic/acculturative factors and post-migration trauma exposure. This pattern holds for the following sub-types of pre-migration trauma: political trauma, crime victimization, physical violence, accidental trauma, and relational trauma. Multi-group analyses show that this pattern holds for all Asian immigrant subgroups except the Vietnamese. Studies of immigrant mental health primarily focus on post-migration stressors. Few studies have considered the link between pre- and post-migration contexts in assessing mental health outcomes. The study illustrates the usefulness of bridging the pre- and post-migration context in identifying the mental health risks along the immigrant life course.

  3. Formation and modification of farm crops resistance in agrocoenoses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulyanenko, L.N.; Filipas, A.S.

    1993-12-31

    Experiments were conducted to determine the effects of chronic exposure to low doses of ionizing radiation to barley plants. The possible use of growth regulators for decreasing accumulation of major radionuclides was investigated. It was determined that treating the seeds with growth regulators before sowing decreased the radiocesium content in barley two to three fold.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paton, Ian

    The Rocky Flats Environmental Technology Site (RFETS) is a Department of Energy facility located approximately 16 miles northwest of Denver, Colorado. Processing and fabrication of nuclear weapons components occurred at Rocky Flats from 1952 through 1989. Operations at the Site included the use of several radionuclides, including plutonium-239/240 (Pu), americium-241 (Am), and various uranium (U) isotopes, as well as several types of chlorinated solvents. The historic operations resulted in legacy contamination, including contaminated facilities, process waste lines, buried wastes and surface soil contamination. Decontamination and removal of buildings at the site was completed in late 2005, culminating more than tenmore » years of active environmental remediation work. The Corrective Action Decision/Record of Decision was subsequently approved in 2006, signifying regulatory approval and closure of the site. The use of RFETS as a National Wildlife Refuge is scheduled to be in full operation by 2012. To develop a plan for remediating different types of radionuclide contaminants present in the RFETS environment required understanding the different environmental transport pathways for the various actinides. Developing this understanding was the primary objective of the Actinide Migration Evaluation (AME) project. Findings from the AME studies were used in the development of RFETS remediation strategies. The AME project focused on issues of actinide behavior and mobility in surface water, groundwater, air, soil and biota at RFETS. For the purposes of the AME studies, actinide elements addressed included Pu, Am, and U. The AME program, funded by DOE, brought together personnel with a broad range of relevant expertise in technical investigations. The AME advisory panel identified research investigations and approaches that could be used to solve issues related to actinide migration at the Site. An initial step of the AME was to develop a conceptual model to provide a qualitative description of the relationships among potential actinide sources and transport pathways at RFETS. One conceptual model was developed specifically for plutonium and americium, because of their similar geochemical and transport properties. A separate model was developed for uranium because of its different properties and mobility in the environment. These conceptual models were guidelines for quantitative analyses described in the RFETS Pathway Analysis Report, which used existing data from the literature as well as site-specific analyses, including field, laboratory and modeling studies to provide quantitative estimates of actinide migration in the RFETS environment. For pathways where more than one method was used to estimate offsite loads for a specific pathway, the method yielding the highest estimated off-site was used for comparison purposes. For all actinides studied, for pre-remediation conditions, air and surface water were identified to be the dominant transport mechanisms. The estimated annual airborne plutonium-239/240 load transported off site exceeded the surface water load by roughly a factor of 40. However, despite being the largest transport pathway, airborne radionuclide concentrations at the monitoring location with the highest measurements during the period studied were less than two percent of the allowable 10 milli-rem standard governing DOE facilities. Estimated actinide loads for other pathways were much less. Shallow groundwater was approximately two orders of magnitude lower, or 1/100 of the load conveyed in surface water. The estimated biological pathway load for plutonium was approximately five orders of magnitude less, or 1/100,000, of the load estimated for surface-water. The pathway analysis results were taken into consideration during subsequent remediation activities that occurred at the site. For example, when the 903 Pad area was remediated to address elevated concentrations of Pu and Am in the surface soil, portable tent structures were constructed to prevent wind and water erosion from occurring while remediation activities took place. Following remediation of the 903 Pad and surrounding area, coconut erosion blankets were installed to mitigate erosion effects while vegetation was reestablished [2]. These measures were effective tools to address the primary transport mechanisms identified, coupling the scientific understanding of the site with the remediation strategy.« less

  5. Gendered histories: garment production and migration in Mexico.

    PubMed

    Wilson, F

    1999-02-01

    Data gathered in Aguascalientes during the 1990s are used to analyze how the garment industry in Mexico has responded to economic recession and trade liberalization. In particular, the relationship between industrial change and gendered patterns of migration are explored. The author concludes that "migration over recent years has increasingly allowed working women the possibility of entering a transnational labour force and given them important labouring and living experiences on both sides of the border." excerpt

  6. Radionuclide removal by apatite

    DOE PAGES

    Rigali, Mark J.; Brady, Patrick V.; Moore, Robert C.

    2016-12-01

    In this study, a growing body of research supports widespread future reliance on apatite for radioactive waste cleanup. Apatite is a multi-functional radionuclide sorbent that lowers dissolved radionuclide concentrations by surface sorption, ion exchange, surface precipitation, and by providing phosphate to precipitate low-solubility radionuclide-containing minerals. Natural apatites are rich in trace elements, and apatite’s stability in the geologic record suggest that radionuclides incorporated into apatite, whether in a permeable reactive barrier or a waste form, are likely to remain isolated from the biosphere for long periods of time. Here we outline the mineralogic and surface origins of apatite-radionuclide reactivity andmore » show how apatites might be used to environmental advantage in the future.« less

  7. Adsorption of radionuclides on the monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Zhang, Zheng; Ouyang, Xiaoping

    2018-04-01

    How to remove radionuclides from radioactive wastewater has long been a difficult problem, especially in nuclear accidents. In this paper, the adsorption of radionuclides Cs, Sr, and Ba on the monolayer MoS2 was investigated by using the first principles calculation method. Through the calculation of adsorption energy and Hirshfeld charge of the radionuclides on the monolayer MoS2 at six adsorption sites, the results show that all of the radionuclides chemisorbed on the monolayer MoS2, and the adsorption strength of these three kinds of radionuclides on the monolayer MoS2 is Ba > Sr > Cs. This work might shed some light on the treatment of the radioactive wastewater.

  8. A Coincidence Signature Library for Multicoincidence Radionuclide Analysis Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Leon E.; Ellis, J E.; Valsan, Andrei B.

    Pacific Northwest National Laboratory (PNNL) is currently developing multicoincidence systems to perform trace radionuclide analysis at or near the sample collection point, for applications that include emergency response, nuclear forensics, and environmental monitoring. Quantifying radionuclide concentrations with these systems requires a library of accurate emission intensities for each detected signature, for all candidate radionuclides. To meet this need, a Coincidence Lookup Library (CLL) is being developed to calculate the emission intensities of coincident signatures from a user-specified radionuclide, or conversely, to determine the radionuclides that may be responsible for a specific detected coincident signature. The algorithms used to generate absolutemore » emission intensities and various query modes for our developmental CLL are described.« less

  9. Subsurface polarimetric migration imaging for full polarimetric ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Feng, Xuan; Yu, Yue; Liu, Cai; Fehler, Michael

    2015-08-01

    Polarization is a property of electromagnetic wave that generally refers to the locus of the electric field vector, which can be used to characterize surface properties by polarimetric radar. However, its use has been less common in the ground-penetrating radar (GPR) community. Full polarimetric GPR data include scattering matrices, by which the polarization properties can be extracted, at each survey point. Different components of the measured scattering matrix are sensitive to different types of subsurface objects, which offers a potential improvement in the detection ability of GPR. This paper develops a polarimetric migration imaging method. By merging the Pauli polarimetric decomposition technique with the Krichhoff migration equation, we develop a polarimetric migration algorithm, which can extract three migrated coefficients that are sensitive to different types of objects. Then fusing the three migrated coefficients, we can obtain subsurface colour-coded reconstructed object images, which can be employed to interpret both the geometrical information and the scattering mechanism of the subsurface objects. A 3-D full polarimetric GPR data set was acquired in a laboratory experiment and was used to test the method. In the laboratory experiment, four objects-a scatterer, a ball, a plate and a dihedral target-were buried in homogeneous dry sand under a flat ground surface. By merging the reconstructed image with polarization properties, we enhanced the subsurface image and improved the classification ability of GPR.

  10. The influence of social stigma and discriminatory experience on psychological distress and quality of life among rural-to-urban migrants in China.

    PubMed

    Wang, Bo; Li, Xiaoming; Stanton, Bonita; Fang, Xiaoyi

    2010-07-01

    The global literature has revealed a potential negative impact of social stigma on both physical and mental health among stigmatized individuals; however, the mechanisms through which social stigma affects the individual's quality of life and mental health are not well understood. This research simultaneously examines the relationships of several determinants and mediating factors of psychological distress and quality of life. Data were collected through a cross-sectional survey among 1006 adult (predominantly male) rural-to-urban migrants in 2004-2005 in Beijing, China. Participants reported on their perceived social stigma, discriminatory experiences in daily life, preparation for migration, discrepancy between expectation and reality, coping with stigma-related stress, psychological distress, and quality of life. Structural equation modeling was performed. We found that perceived social stigma and discriminatory experiences had direct negative effects on psychological distress and quality of life among rural-to-urban migrants. Expectation-reality discrepancy mediated the effects of perceived social stigma and discriminatory experiences on psychological distress and quality of life; coping mediated the effect of social stigma on quality of life. Psychological distress was associated with quality of life. Preparation prior to migration was positively related to coping skills, which were positively related to quality of life. We conclude that perceived social stigma and daily discriminatory experiences have a significant influence on psychological distress and quality of life among rural-to-urban migrants. Pre-migration training with a focus on establishment of effective coping skills and preparation of migration may be helpful to improve their quality of life and mental health.

  11. A Preliminary Performance Assessment for Salt Disposal of High-Level Nuclear Waste - 12173

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Joon H.; Clayton, Daniel; Jove-Colon, Carlos

    2012-07-01

    A salt repository is one of the four geologic media currently under study by the U.S. DOE Office of Nuclear Energy to support the development of a long-term strategy for geologic disposal of commercial used nuclear fuel (UNF) and high-level radioactive waste (HLW). The immediate goal of the generic salt repository study is to develop the necessary modeling tools to evaluate and improve the understanding of the repository system response and processes relevant to long-term disposal of UNF and HLW in a salt formation. The current phase of this study considers representative geologic settings and features adopted from previous studiesmore » for salt repository sites. For the reference scenario, the brine flow rates in the repository and underlying interbeds are very low, and transport of radionuclides in the transport pathways is dominated by diffusion and greatly retarded by sorption on the interbed filling materials. I-129 is the dominant annual dose contributor at the hypothetical accessible environment, but the calculated mean annual dose is negligibly small. For the human intrusion (or disturbed) scenario, the mean mass release rate and mean annual dose histories are very different from those for the reference scenario. Actinides including Pu-239, Pu-242 and Np-237 are major annual dose contributors, and the calculated peak mean annual dose is acceptably low. A performance assessment model for a generic salt repository has been developed incorporating, where applicable, representative geologic settings and features adopted from literature data for salt repository sites. The conceptual model and scenario for radionuclide release and transport from a salt repository were developed utilizing literature data. The salt GDS model was developed in a probabilistic analysis framework. The preliminary performance analysis for demonstration of model capability is for an isothermal condition at the ambient temperature for the near field. The capability demonstration emphasizes key attributes of a salt repository that are potentially important to the long-term safe disposal of UNF and HLW. The analysis presents and discusses the results showing repository responses to different radionuclide release scenarios (undisturbed and human intrusion). For the reference (or nominal or undisturbed) scenario, the brine flow rates in the repository and underlying interbeds are very low, and transport of radionuclides in the transport pathways is dominated by diffusion and greatly retarded by sorption on the interbed filling materials. I-129 (non-sorbing and unlimited solubility with a very long half-life) is the dominant annual dose contributor at the hypothetical accessible environment, but the calculated mean annual dose is negligibly small that there is no meaningful consequence for the repository performance. For the human intrusion (or disturbed) scenario analysis, the mean mass release rate and mean annual dose histories are very different from those for the reference scenario analysis. Compared to the reference scenario, the relative annual dose contributions by soluble, non-sorbing fission products, particularly I-129, are much lower than by actinides including Pu-239, Pu-242 and Np-237. The lower relative mean annual dose contributions by the fission product radionuclides are due to their lower total inventory available for release (i.e., up to five affected waste packages), and the higher mean annual doses by the actinides are the outcome of the direct release of the radionuclides into the overlying aquifer having high water flow rates, thereby resulting in an early arrival of higher concentrations of the radionuclides at the biosphere drinking water well prior to their significant decay. The salt GDS model analysis has also identified the following future recommendations and/or knowledge gaps to improve and enhance the confidence of the future repository performance analysis. - Repository thermal loading by UNF and HLW, and the effect on the engineered barrier and near-field performance. - Closure and consolidation of salt rocks by creep deformation under the influence of thermal perturbation, and the effect on the engineered barrier and near-field performance. - Brine migration and radionuclide transport under the influence of thermal perturbation in generic salt repository environment, and the effect on the engineered barrier and near-field performance and far-field performance. - Near-field geochemistry and radionuclide mobility in generic salt repository environment (high ionic strength brines, elevated temperatures and chemically reducing condition). - Degradation of engineer barrier components (waste package, waste canister, waste forms, etc.) in a generic salt repository environment (high ionic strength brines, elevated temperatures and chemically reducing condition). - Waste stream types and inventory estimates, particularly for reprocessing high-level waste. (authors)« less

  12. Chemistry of diagenetically altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broxton, D.E.; Warren, R.G.; Hagan, R.C.

    1986-10-01

    The chemistry of diagenetically altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nevada is described. These tuffs contain substantial amounts of zeolites that are highly sorptive of certain radionuclides. Because of their widespread distribution, the zeolitic tuffs could provide important barriers to radionuclide migration. Physical properties of these tuffs and of their constituent zeolites are influenced by their chemical compositions. This study defines the amount of chemical variability within diagenetically altered tuffs and within diagenetic minerals at Yucca Mountain. Zeolitic tuffs at Yucca Mountain formed by diagenetic alteration of rhyolitic vitric tuffs. Despite their similar starting compositions, thesemore » tuffs developed compositions that vary both vertically and laterally. Widespread chemical variations were the result of open-system chemical diagenesis in which chemical components of the tuffs were mobilized and redistributed by groundwaters. Alkalies, alkaline earths, and silica were the most mobile elements during diagenesis. The zeolitic tuffs can be divided into three compositional groups: (1) calcium- and magnesium-rich tuffs associated with relatively thin zones of alteration in the unsaturated zone; (2) tuffs in thick zones of alteration at and below the water table that grade laterally from sodic compositions on the western side of Yucca Mountain to calcic compositions on the eastern side; and (3) potassic tuffs at the north end of Yucca Mountain. Physical properties of tuffs and their consistuent zeolites at Yucca Mountain may be affected by variations in compositions. Properties important for assessment of repository performance include behavior and ion exchange.« less

  13. Soil gas 222Rn concentration in northern Germany and its relationship with geological subsurface structures.

    PubMed

    Künze, N; Koroleva, M; Reuther, C-D

    2013-01-01

    (222)Rn in soil gas activity was measured across the margins of two active salt diapirs in Schleswig-Holstein, northern Germany, in order to reveal the impact of halokinetic processes on the soil gas signal. Soil gas and soil sampling were carried out in springtime and summer 2011. The occurrence of elevated (222)Rn in soil gas concentrations in Schleswig-Holstein has been ascribed to radionuclide rich moraine boulder material deposits, but the contribution of subsurface structures has not been investigated so far. Reference samples were taken from a region known for its granitic moraine boulder deposits, resulting in (222)Rn in soil gas activity of 40 kBq/m(3). The values resulting from profile sampling across salt dome margins are of the order of twice the moraine boulder material reference values and exceed 100 kBq/m(3). The zones of elevated concentrations are consistent throughout time despite variations in magnitude. One soil gas profile recorded in this work expands parallel to a seismic profile and reveals multiple zones of elevated (222)Rn activities above a rising salt intrusion. The physical and chemical properties of salt have an impact on the processes influencing gas migration and surface near radionuclide accumulations. The rise of salt supports the breakup of rock components thus leading to enhanced emanation. This work provides a first approach regarding the halokinetic contribution to the (222)Rn in soil gas occurrence and a possible theoretical model which summarizes the relevant processes was developed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. 210Pb, 137Cs and 7Be in the sediments of coastal lakes on the polish coast: Implications for sedimentary processes.

    PubMed

    Woszczyk, Michał; Poręba, Grzegorz; Malinowski, Łukasz

    2017-04-01

    In this study we combined radioisotopes ( 210 Pb, 137 Cs and 7 Be) and hydrodynamic modeling to investigate sedimentary processes in three coastal lakes on the Polish Baltic coast. The research aimed at establishing the depth of sediment mixing and its effects on sediment geochemistry as well as showing the relationship between lake water salinity and radionuclide distribution in the sediment cores. We established that the intensity of mixing displayed appreciable variability throughout the lakes and the thickness of sediment mixing layer was between <2 and 22 cm. The mixing was primarily due to wind-induced waves. The vertical mixing was shown to shift sulfidation of the sediments towards deeper layers. We found that the distributions of radioisotopes, 137 Cs in particular, in the sediment cores from coastal lakes were strongly affected by the early diagenetic processes, which caused diffusive migration of radionuclides. The inventories of 210 Pb ex and 137 Cs in the lakes were positively related to salinity. The high inventories of both isotopes (3.2-10.9 kBq ·m -2 for 210 Pb ex and 3.0-6.0 kBq·m -2 for 137 Cs) in coastal lakes were explained by enhanced sedimentation within estuarine mixing zone and delivery of "additional" 210 Pb and 137 Cs to the lakes during saltwater ingressions. The results of this study have implications for the paleolimnology, sedimentology and biogeochemistry of coastal lakes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Migration from rural to urban habitat in Tropical Africa (1970-2000).

    PubMed

    Ankerl, G G

    1982-01-01

    Problems associated with rural-urban migration in Tropical Africa are examined, with particular reference to the experience of Ghana, Kenya, Nigeria, Tanzania, and Zaire. The problems examined include overurbanization, maldistribution of population, poor urban living conditions, population density, and traditional methods of construction.

  16. Noneconomic Determinants of Nonmigration: Sociological Considerations for Migration Theory

    ERIC Educational Resources Information Center

    Uhlenberg, Peter

    1973-01-01

    The experiences of 3 groups in the U.S. are examined: (1) the Negro movement from the South during 1860 to 1920; (2) the Japanese-American migration from internment camps during World War II; and (3) the exodus from Southern Appalachia between 1930 and 1960. (NQ)

  17. A voxel-based mouse for internal dose calculations using Monte Carlo simulations (MCNP).

    PubMed

    Bitar, A; Lisbona, A; Thedrez, P; Sai Maurel, C; Le Forestier, D; Barbet, J; Bardies, M

    2007-02-21

    Murine models are useful for targeted radiotherapy pre-clinical experiments. These models can help to assess the potential interest of new radiopharmaceuticals. In this study, we developed a voxel-based mouse for dosimetric estimates. A female nude mouse (30 g) was frozen and cut into slices. High-resolution digital photographs were taken directly on the frozen block after each section. Images were segmented manually. Monoenergetic photon or electron sources were simulated using the MCNP4c2 Monte Carlo code for each source organ, in order to give tables of S-factors (in Gy Bq-1 s-1) for all target organs. Results obtained from monoenergetic particles were then used to generate S-factors for several radionuclides of potential interest in targeted radiotherapy. Thirteen source and 25 target regions were considered in this study. For each source region, 16 photon and 16 electron energies were simulated. Absorbed fractions, specific absorbed fractions and S-factors were calculated for 16 radionuclides of interest for targeted radiotherapy. The results obtained generally agree well with data published previously. For electron energies ranging from 0.1 to 2.5 MeV, the self-absorbed fraction varies from 0.98 to 0.376 for the liver, and from 0.89 to 0.04 for the thyroid. Electrons cannot be considered as 'non-penetrating' radiation for energies above 0.5 MeV for mouse organs. This observation can be generalized to radionuclides: for example, the beta self-absorbed fraction for the thyroid was 0.616 for I-131; absorbed fractions for Y-90 for left kidney-to-left kidney and for left kidney-to-spleen were 0.486 and 0.058, respectively. Our voxel-based mouse allowed us to generate a dosimetric database for use in preclinical targeted radiotherapy experiments.

  18. Characteristics of secondary migration driving force of tight oil and its geologic effect: a case study of Jurassic in Central Sichuan Basin

    NASA Astrophysics Data System (ADS)

    Pang, Zhenglian; Tao, Shizhen; Zhang, Bin; Wu, Songtao; Yang, Jiajing; Chen, Ruiyin

    2017-04-01

    As the rising of its production, tight oil is becoming more and more important. Much research has been done about it. Some articles mention that buoyancy is ineffective for tight oil secondary migration, and abnormal pressure is the alternative. Others believe that overpressure caused hydrocarbon generation is the very force. Though opinions have been given, there are two inadequacies. Firstly, the points are lack of sufficient evidences. Mostly, they are only one or two sentences in the papers. Secondly, geologic effect of the change of driving force hasn't been discussed. In this context, analog experiments, physical property testing, mercury injection, and oil/source comparison were utilized to study 3 issues: origin and value of tight oil secondary migration resistance, values and effectiveness of different potential driving forces, and geologic effect of tight oil secondary migration driving force. Firstly, resistance values of tight reservoir were detected by analog experiments. The value of tight limestone is 15.8MPa, while tight sandstone is 10.7MPa. Tiny size of pores and throats in tight reservoir is the main reason causing huge resistances. Over 90% of pores and throats in tight reservoir are smaller than 1μm. They form huge capillary force when oil migrating through them. Secondly, maximum of buoyancy in study area was confirmed, 0.09MPa, too small to overcome the resistances. Meanwhile, production data suggests that tight oil distribution pattern is not controlled by buoyancy. Conversely, analog experiment proves that overpressure caused by hydrocarbon generation can reach 38MPa, large enough to be the driving force. This idea is also supported by positive correlation between output and source rock formation pressure. Thirdly, is the geologic effect of tight oil secondary migration resistance and driving force. Tight oil can migrate only as non-darcy flow due to huge resistances according to percolation experiments. It needs to overcome the starting pressure gradient. As a result, it migrated a much shorter distance compared with conventional petroleum, coincident with the result of oil/source comparison. The effect of driving force is that boundary of tight oil profitable area is controlled by source rock. This boundary in the study area is the line of hydrocarbon generating strength of 40×104t/km2. By confirming controlling factors of tight oil formation and their evaluation index, it is of great significance during tight oil exploration.

  19. Radiological risk assessment and biosphere modelling for radioactive waste disposal in Switzerland.

    PubMed

    Brennwald, M S; van Dorp, F

    2009-12-01

    Long-term safety assessments for geological disposal of radioactive waste in Switzerland involve the demonstration that the annual radiation dose to humans due to the potential release of radionuclides from the waste repository into the biosphere will not exceed the regulatory limit of 0.1 mSv. Here, we describe the simple but robust approach used by Nagra (Swiss National Cooperative for the Disposal of Radioactive Waste) to quantify the dose to humans as a result to time-dependent release of radionuclides from the geosphere into the biosphere. The model calculates the concentrations of radionuclides in different terrestrial and aquatic compartments of the surface environment. The fluxes of water and solids within the environment are the drivers for the exchange of radionuclides between these compartments. The calculated radionuclide concentrations in the biosphere are then used to estimate the radiation doses to humans due to various exposure paths (e.g. ingestion of radionuclides via drinking water and food, inhalation of radionuclides, external irradiation from radionuclides in soils). In this paper we also discuss recent new achievements and planned future work.

  20. Airborne radionuclides in the proglacial environment as indicators of sources and transfers of soil material.

    PubMed

    Łokas, Edyta; Wachniew, Przemysław; Jodłowski, Paweł; Gąsiorek, Michał

    2017-11-01

    A survey of artificial ( 137 Cs, 238 Pu, 239+240 Pu, 241 Am) and natural ( 226 Ra, 232 Th, 40 K, 210 Pb) radioactive isotopes in proglacial soils of an Arctic glacier have revealed high spatial variability of activity concentrations and inventories of the airborne radionuclides. Soil column 137 Cs inventories range from below the detection limit to nearly 120 kBq m -2 , this value significantly exceeding direct atmospheric deposition. This variability may result from the mixing of materials characterised by different contents of airborne radionuclides. The highest activity concentrations observed in the proglacial soils may result from the deposition of cryoconites, which have been shown to accumulate airborne radionuclides on the surface of glaciers. The role of cryoconites in radionuclide accumulation is supported by the concordant enrichment of the naturally occurring airborne 210 Pb in proglacial soil cores showing elevated levels of artificial radionuclides. The lithogenic radionuclides show less variability than the airborne radionuclides because their activity concentrations are controlled only by the mixing of material derived from the weathering of different parent rocks. Soil properties vary little within and between the profiles and there is no unequivocal relationship between them and the radionuclide contents. The inventories reflect the pathways and time variable inputs of soil material to particular sites of the proglacial zone. Lack of the airborne radionuclides reflects no deposition of material exposed to the atmosphere after the 1950s or its removal by erosion. Inventories above the direct atmospheric deposition indicate secondary deposition of radionuclide-bearing material. Very high inventories indicate sites where transport pathways of cryoconite material terminated. Copyright © 2017 Elsevier Ltd. All rights reserved.

Top