NASA Astrophysics Data System (ADS)
Onda, Yuichi; Kato, Hiroaki; Patin, Jeremy; Yoshimura, Kazuya; Tsujimura, Maki; Wakahara, Taeko; Fukushima, Takehiko
2013-04-01
Previous experiences such as Chernobyl Nuclear Power Plant accident have confirmed that fallout radionuclides on the ground surface migrate through natural environment including soils and rivers. Therefore, in order to estimate future changes in radionuclide deposition, migration process of radionuclides in forests, soils, ground water, rivers should be monitored. However, such comprehensive studies on migration through forests, soils, ground water and rivers have not been conducted so far. Here, we present the following comprehensive investigation was conducted to confirm migration of radionuclides through natural environment including soils and rivers. 1)Study on depth distribution of radiocaesium in soils within forests, fields, and grassland 2)Confirmation of radionuclide distribution and investigation on migration in forests 3)Study on radionuclide migration due to soil erosion under different land use 4)Measurement of radionuclides entrained from natural environment including forests and soils 5)Investigation on radionuclide migration through soil water, ground water, stream water, spring water under different land use 6)Study on paddy-to-river transfer of radionuclides through suspended sediments 7)Study on river-to-ocean transfer of radionuclides via suspended sediments 8)Confirmation of radionuclide deposition in ponds and reservoirs
NASA Astrophysics Data System (ADS)
Onda, Y.; Kato, H.; Fukushima, T.; Wakahara, T.; Kita, K.; Takahashi, Y.; Sakaguchi, A.; Tanaka, K.; Yamashiki, Y.; Yoshida, N.
2012-12-01
After the Fukushima Daiichi Nuclear Power Plant acciden, fallout radionuclides on the ground surface will transfer through geomorphic processes. Therefore, in order to estimate future changes in radionuclide deposition, migration process of radionuclides in forests, soils, ground water, rivers, and entrainment from trees and soils should be confirmed. We (FMWSE group) was funded by MEXT, Japanese government, and 1 year following monitoring has been conducted about 1 year. 1 Migration study of radionuclides in natural environment including forests and rivers 1) Study on depth distribution of radiocaesium in soils within forests, fields, and grassland. 2) Confirmation of radionuclide distribution and investigation on migration in forests. 3) Study on radionuclide migration due to soil erosion under different land use. 4) Measurement of radionuclides entrained from natural environment including forests and soils. 2 Migration study of radionuclides through hydrological cycle such as soil water, rivers, lakes and ponds, ground water. 1) Investigation on radionuclide migration through soil water, ground water, stream water, spring water under different land use. 2) Study on paddy-to-river transfer of radionuclides through suspended sediment. 3) Study on river-to-ocean transfer of radionuclides via suspended sediment. 4) Confirmation of radionuclide deposition in ponds and reservoirs. We will present how and where the fallout radionulides transfter through geomorphic processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clay A. Cooper; Ming Ye; Jenny Chapman
2005-10-01
The U.S. Department of Energy and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability gas reservoirs. The third and final project in the program, Project Rio Blanco, was conducted in Rio Blanco County, in northwestern Colorado. In this experiment, three 33-kiloton nuclear explosives were simultaneously detonated in a single emplacement well in the Mesaverde Group and Fort Union Formation, at depths of 1,780, 1,899, and 2,039 m below land surface on May 17, 1973. The objective of this work is to estimate lateral distances that tritium released frommore » the detonations may have traveled in the subsurface and evaluate the possible effect of postulated natural-gas development on radionuclide migration. Other radionuclides were considered in the analysis, but the majority occur in relatively immobile forms (such as nuclear melt glass). Of the radionuclides present in the gas phase, tritium dominates in terms of quantity of radioactivity in the long term and contribution to possible whole body exposure. One simulation is performed for {sup 85}Kr, the second most abundant gaseous radionuclide produced after tritium.« less
Hydrology and radionuclide migration program 1987 progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsh, K.V.
1991-03-01
This report presents results from the Lawrence Livermore National Laboratory's participation in the Hydrology and Radionuclide Migration Program at the Nevada Test Site (NTS) during the fiscal year 1987. The report discussed initial data from a new well (UE20n-1) drilled at the Cheshire site; presents a description of a proposed laboratory study of migration of colloids in fractured media; lists data collected during the drilling and initial sampling of UE20n-1; and describes a tentative proposal for work to be performed in FY88 by Lamont-Doherty Geological Observatory. Groundwater sampled from the new well at the Cheshire site contains tritium concentrations comparablemore » to those measured in previous years from locations above and within the Cheshire cavity. This presence of tritium, as well as several other radionuclides, in a well 100 m away from the cavity region indicates transport of radionuclides, validates a proposed model of the flow path, and provides data on rates of groundwater flow. Previous work at the Cheshire site has shown that radionuclides are transported by colloids through fractured media. However, we have no data that can be used for predictive modeling, and existing theories are not applicable. While physical transport mechanisms of sub-micrometer colloids to defined mineral surfaces are well known, predictions based on well-defined conditions differ from experimental observations by orders of magnitude. The U.C. Berkeley group has designed a laboratory experiment to quantify colloid retention and permeability alteration by the retained colloids.« less
Hydrologic resources management program and underground test area FY 1999 progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D K; Eaton, G F; Rose, T P
2000-07-01
This report presents the results from fiscal year (FY) 1999 technical studies conducted by Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area (UGTA) work-for-others project. This report is the latest in a series of annual reports published by LLNL to document the migration of radionuclides and controls of radionuclide movement at the Nevada Test Site. The FY 1999 studies highlighted in this report are: (1) Chapter 1 provides the results from flow-through leaching of nuclear melt glasses at 25 C and near-neutral pH using dilute bicarbonate groundwaters. (2) Chaptermore » 2 reports on a summary of the size and concentration of colloidal material in NTS groundwaters. (3) Chapter 3 discusses the collaboration between LLNL/ANCD (Analytical and Nuclear Chemistry Division) and the Center for Accelerator Mass Spectrometry (CAMS) to develop a technique for analyzing NTS groundwater for 99-Technicium ({sup 99}Tc) using accelerator mass spectrometry (AMS). Since {sup 99}Tc is conservative like tritium in groundwater systems, and is not sorbed to geologic material, it has the potential for being an important tool for radionuclide migration studies. (4) Chapter 4 presents the results of secondary ion mass spectrometry measurements of the in-situ distribution of radionuclides in zeolitized tuffs from cores taken adjacent to nuclear test cavities and chimneys. In-situ measurements provide insight to the distribution of specific radionuclides on a micro-scale, mineralogical controls of radionuclide sorption, and identification of migration pathways (i.e., matrix diffusion, fractures). (5) Chapter 5 outlines new analytical techniques developed in LLNL/ANCD to study hydrologic problems at the NTS using inductively coupled plasma mass spectrometry (ICP-MS). With costs for thermal-ionization mass spectrometry (TIMS) increasing relative to sample preparation time and facility support, ICP-MS technology provides a means for rapidly measuring dilute concentrations of radionuclides with precision and abundance sensitivity comparable to TIMS. (6) Chapter 6 provides results of a characterization study of alluvium collected from the U-1a complex approximately 300 meters below ground surface in Yucca Flat. The purpose of this investigation was to provide information on particle size, mineralogical context, the proportion of primary and secondary minerals, and the texture of the reactive surface area that could be used to accurately model radionuclide interactions within Nevada Test Site alluvial basins (i.e., Frenchman Flat and Yucca Flat).« less
Modeling radionuclide migration from underground nuclear explosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harp, Dylan Robert; Stauffer, Philip H.; Viswanathan, Hari S.
2017-03-06
The travel time of radionuclide gases to the ground surface in fracture rock depends on many complex factors. Numerical simulators are the most complete repositories of knowledge of the complex processes governing radionuclide gas migration to the ground surface allowing us to verify conceptualizations of physical processes against observations and forecast radionuclide gas travel times to the ground surface and isotopic ratios
Managing previously disposed waste to today's standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-01-01
A Radioactive Waste Management Complex (RWMC) was established at the Idaho National Engineering Laboratory (INEL) in 1952 for controlled disposal of radioactive waste generated at the INEL. Between 1954 and 1970 waste characterized by long lived, alpha emitting radionuclides from the Rocky Flats Plant was also buried at this site. Migration of radionuclides and other hazardous substances from the buried Migration of radionuclides and other hazardous substances from the buried waste has recently been detected. A Buried Waste Program (BWP) was established to manage cleanup of the buried waste. This program has four objectives: (1) determine contaminant sources, (2) determinemore » extent of contamination, (3) mitigate migration, and (4) recommend an alternative for long term management of the waste. Activities designed to meet these objectives have been under way since the inception of the program. The regulatory environment governing these activities is evolving. Pursuant to permitting activities under the Resource Conservation and Recovery Act (RCRA), the Department of Energy (DOE) and the Environmental Protection Agency (EPA) entered into a Consent Order Compliance Agreement (COCA) for cleanup of past practice disposal units at the INEL. Subsequent to identification of the RWMC as a release site, cleanup activities proceeded under dual regulatory coverage of RCRA and the Atomic Energy Act. DOE, EPA, and the State of Idaho are negotiating a RCRA/Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Interagency Agreement (IAG) for management of waste disposal sites at the INEL as a result of the November 1989 listing of the INEL on the National Priority List (NPL). Decision making for selection of cleanup technology will be conducted under the CERCLA process supplemented as required to meet the requirements of the National Environmental Policy Act (NEPA). 7 figs.« less
NASA Astrophysics Data System (ADS)
Shcheglov, Alexey; Tsvetnova, Ol'ga; Klyashtorin, Alexey
2013-04-01
Biogeochemical migration is a dominant factor of the radionuclide transport through the biosphere. In the early XX century, V.I. Vernadskii, a Russian scientist known, noted about a special role living things play in transport and accumulation of natural radionuclide in various environments. The role of biogeochemical processes in migration and redistribution of technogenic radionuclides is not less important. In Russia, V. M. Klechkovskii and N.V. Timofeev-Ressovskii showed some important biogeochemical aspects of radionuclide migration by the example of global fallout and Kyshtym accident. Their followers, R.M. Alexakhin, M.A. Naryshkin, N.V. Kulikov, F.A. Tikhomirov, E.B. Tyuryukanova, and others also contributed a lot to biogeochemistry of radionuclides. In the post-Chernobyl period, this area of knowledge received a lot of data that allowed building the radioactive element balance and flux estimation in various biogeochemical cycles [Shcheglov et al., 1999]. Regrettably, many of recent radioecological studies are only focused on specific radionuclide fluxes or pursue some applied tasks, missing the holistic approach. Most of the studies consider biogeochemical fluxes of radioactive isotopes in terms of either dose estimation or radionuclide migration rates in various food chains. However, to get a comprehensive picture and develop a reliable forecast of environmental, ecological, and social consequences of radioactive pollution in a vast contaminated area, it is necessary to investigate all the radionuclide fluxes associated with the biogeochemical cycles in affected ecosystems. We believe such an integrated approach would be useful to study long-term environmental consequences of the Fukushima accident as well. In our long-term research, we tried to characterize the flux dynamics of the Chernobyl-born radionuclides in the contaminated forest ecosystems and landscapes as a part of the integrated biogeochemical process. Our field studies were started in June of 1986 (less than two months after the accident) and have been continued up to now, focused on the most common forest ecosystems scattered over the contaminated areas of Russian Federation and Ukraine. A comprehensive analysis of the 137Cs and 90Sr biogeochemical fluxes shows that downward radionuclide fluxes (those directed from tree crowns to the soil) dominated over the upward fluxes (from the soil to forest vegetation) in the first years after the accident. Currently, the biological cycle in the contaminated ecosystems is a main factor impeding further vertical migration of long-lived radionuclides from upper soil layers to the ground water. The role of biota as a retardation factor depends on landscape type as well. In accumulative landscapes (with positive material balance), biota plays leading role in radionuclide retardation, while in eluvial landscapes (with the negative balance) soil absorbing complex serves as the dominant barrier for radionuclides leaching down the soil profile. The manifestation of both soil- and biota-driven factors depends on the radionuclide chemical speciation in the initial fallout. The latter factor is most important for 137Cs, yet less manifested for 90Sr. Among the biota components, fungi and forest vegetation are of particular importance for 137Cs and 90Sr accumulation, respectively. In summary, biogeochemical cycles of 137Cs and 90Sr in the investigated forest ecosystems serve as main factors impeding the radionuclide migration from the fallout to ground water. Larger-scale landscape factors determine the radionuclide flux intensity in the biogeochemical cycles and affect the radionuclide spatial variability in the contaminated biota components.
On the possible leakage of ET-RR1 liquid waste tank: hydrological and migration modes studies.
Mahmoud, N S; El-Hemamy, S T
2005-03-20
The first Egyptian (ET-RR1) research reactor has been in operation since 1961 at the Egyptian Atomic Energy Authority (EAEA) Inshas site. Therefore, at present, it faces a serious problem due to aging equipment, especially those directly in contact with the environment such as the underground settling tanks of nuclear and radioactive waste. The possible leakage of radionuclides from these aging tanks and their migration to the aquifer was studied using instantaneous release. This study was done based on the geological and hydrological characteristics of the site, which were obtained from the hydrogeological data of 25 wells previously drilled at the site of the reactor[1]. These data were used to calculate the trend of water levels, hydraulic gradient, and formulation of water table maps from 1993-2002. This information was utilized to determine water velocity in the unsaturated zone. Radionuclides released from the settling tank to the aquifer were screened according to the radionuclides that have high migration ability and high activity. The amount of fission and activation products of the burned fuels that contaminated the water content of the reactor pool were considered as 10% of the original spent fuel. The radionuclides considered in this case were H-3, Sr-90, Zr-93, Tc-99, Cd-113, Cs-135, Cs-137, Sm-151, Pu-238, Pu-240, Pu-241, and Am-241. The instantaneous release was analyzed by theoretical calculations, taking into consideration the migration mechanism of the various radionuclides through the soil space between the tank bottom and the aquifer. The migration mechanism through the unsaturated zone was considered depending on soil type, thickness of the unsaturated zone, water velocity, and other factors that are specific for each radionuclide, namely retardation factor, which is the function of the specific distribution coefficient of each radionuclide. This was considered collectively as delay time. Meanwhile, the mechanism of radionuclide migration during their passage in the water body of the aquifer was the main focus of this study. The degree of water pollution in the aquifer at a point of contact with the main water body of Ismailia Canal 1000 m from the reactor site was assessed for the instantaneous release by comparing the results obtained with the regulations of the standard limit of radionuclides in drinking water.
On The Possible Leakage of ET-RR1 Liquid Waste Tank: Hydrological and Migration Modes Studies
Mahmoud, N. S.; EL-Hemamy, S. T.
2005-01-01
The first Egyptian (ET-RR1) research reactor has been in operation since 1961 at the Egyptian Atomic Energy Authority (EAEA) Inshas site. Therefore, at present, it faces a serious problem due to aging equipment, especially those directly in contact with the environment such as the underground settling tanks of nuclear and radioactive waste. The possible leakage of radionuclides from these aging tanks and their migration to the aquifer was studied using instantaneous release.This study was done based on the geological and hydrological characteristics of the site, which were obtained from the hydrogeological data of 25 wells previously drilled at the site of the reactor[1]. These data were used to calculate the trend of water levels, hydraulic gradient, and formulation of water table maps from 1993–2002. This information was utilized to determine water velocity in the unsaturated zone.Radionuclides released from the settling tank to the aquifer were screened according to the radionuclides that have high migration ability and high activity. The amount of fission and activation products of the burned fuels that contaminated the water content of the reactor pool were considered as 10% of the original spent fuel. The radionuclides considered in this case were H-3, Sr-90, Zr-93, Tc-99, Cd-113, Cs-135, Cs-137, Sm-151, Pu-238, Pu-240, Pu-241, and Am-241.The instantaneous release was analyzed by theoretical calculations, taking into consideration the migration mechanism of the various radionuclides through the soil space between the tank bottom and the aquifer. The migration mechanism through the unsaturated zone was considered depending on soil type, thickness of the unsaturated zone, water velocity, and other factors that are specific for each radionuclide, namely retardation factor, which is the function of the specific distribution coefficient of each radionuclide. This was considered collectively as delay time. Meanwhile, the mechanism of radionuclide migration during their passage in the water body of the aquifer was the main focus of this study.The degree of water pollution in the aquifer at a point of contact with the main water body of Ismailia Canal 1000 m from the reactor site was assessed for the instantaneous release by comparing the results obtained with the regulations of the standard limit of radionuclides in drinking water[2,3]. PMID:15798884
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerlach, Robin; Peyton, Brent M.; Apel, William A.
2014-01-29
Various U. S. Department of Energy (DOE) low and medium-level radioactive waste sites contain mixtures of heavy metals, radionuclides and assorted organic materials. In addition, there are numerous sites around the world that are contaminated with a mixture of organic and inorganic contaminants. In most sites, over time, water infiltrates the wastes, and releases metals, radionuclides and other contaminants causing transport into the surrounding environment. We investigated the role of fermentative microorganisms in such sites that may control metal, radionuclide and organics migration from source zones. The project was initiated based on the following overarching hypothesis: Metals, radionuclides and othermore » contaminants can be mobilized by infiltration of water into waste storage sites. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These low molecular weight organic acids and alcohols can increase metal and radionuclide mobility by chelation (i.e., certain organic acids) or decrease mobility by stimulating respiratory metal reducing microorganisms. We demonstrated that fermentative organisms capable of affecting the fate of Cr6+, U6+ and trinitrotoluene can be isolated from organic-rich low level waste sites as well as from less organic rich subsurface environments. The mechanisms, pathways and extent of contaminant transformation depend on a variety of factors related to the type of organisms present, the aqueous chemistry as well as the geochemistry and mineralogy. This work provides observations and quantitative data across multiple scales that identify and predict the coupled effects of fermentative carbon and electron flow on the transport of radionuclides, heavy metals and organic contaminants in the subsurface; a primary concern of the DOE Environmental Remediation Science Division (ERSD) and Subsurface Geochemical Research (SBR) Program.« less
NASA Astrophysics Data System (ADS)
Korobova, Elena; Romanov, Sergey
2017-04-01
Specificity of radionuclide distribution in elementary landscape geochemical systems (ELGS) treated as local system of geochemically linked elementary terrestrial units (in toposequence: watershed-slope-closing depression), belongs to one of the less investigated but practically significant problems of current geochemistry. First measurements after the Chernobyl accident showed a considerable variation of Cs-137 distribution in all examined ELGS (Shcheglov et al, 2001; Romanov, 1989; Korobova, Korovaykov, 1990; Linnik, 2008). The results may be interpreted in frames of two alternative hypotheses: 1) irregularity of the initial contamination; 2) secondary redistribution of the initially regular level of fallout. But herewith only a disproof of the first hypothesis automatically justifies the second one. Factors responsible for initial irregularity of surface contamination included: 1) the presence of the so-called "hot" particles in the initial fallout; 2) interception of radionuclides by forest canopy; 3) irregular aerial particles deposition; 4) uneven initial precipitation. Basing on monitoring Cs-137 spatial distribution that has been performed since 2005, we demonstrate that the observed spatial irregularity in distribution of Cs-137 in ELGS reflects a purely secondary distribution of initial reserves of radionuclides in fallout matter due to its migration with water in local geochemical systems. This statement has some significant consequences. 1. Mechanism of migration of matter in ELGS is complicated and could not be reduced solely to a primitive moving from watershed to closing depression. 2. The control of migration of "labeled atoms" (Cs-137) permits to understand common mechanism of migration of water in all systems on the level of ELGS. 3. Understanding formation of the structure of contamination zones in ELGS permits to use mathematical model to solve the inverse problem of restoration of the initially equable level of their contamination. Performed study confirms that Cs-137 as a label helps to trace processes and patterns of chemical elements' migration on the level of ELGS that are numerously reproduced elsewhere in natural systems. The study is aimed at and believed to provide solution for a number of important problems related to generation and evolution of soil structure, spatial redistribution of fertilizers and pesticides, other important processes of matter redistribution on the level of local LGS. References Korobova E.M., Korovaykov P.A., 1990. Landscape and geochemical approach to drawing up a soil distribution profile for Chernobyl radionuclides in distant areas //Seminar "Comparative assessment of the environmental impact of radionuclides released during three major nuclear accidents: Kyshtum, Windscale, Chernobyl". V. 1. Luxembourg, 309-327. Linnik V.G., 2008. Landscape differentiation of technogenic radionuclides: geoinformation systems and models. Thesis. Moscow: Moscow State University, 42 p. Romanov S.L., 1989. Principles of formation of radionuclide dispersion and concentration fields // Abstracts of the All-Union Conference "Principles and methods of landscape geochemical studies of radionuclide migration". Moscow: Vernadsky Institute, p. 46. Shcheglov A.I., Tsvetnova O.B., KlyashtorinA.L., 2001. Biogeochemical migration of technogenic radionuclides in forest ecosystems. Moscow: Nauka, 235 p.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farfan, E
2009-11-19
The radioactive fallout from the Chernobyl Nuclear Power Plant (ChNPP) accident consisted of fuel and condensation components. An important radioecological task associated with the late phase of the accident is to evaluate the dynamics of radionuclide mobility in soils. Identification of the variability (or invariability) in the radionuclide transfer parameters makes it possible to (1) accurately predict migration patterns and biological availability of radionuclides and (2) evaluate long-term exposure trends for the population who may reoccupy the remediated abandoned areas. In 1986-1987, a number of experimental plots were established within various tracts of the fallout plume to assist with themore » determination of the long-term dynamics of radionuclide vertical migration in the soils. The transfer parameters for {sup 137}Cs, {sup 90}Sr, and {sup 239,240}Pu in the soil profile, as well as their ecological half-time of the radionuclide residence (T{sub 1/2}{sup ecol}) values in the upper 5-cm thick soil layers of different grasslands were estimated at various times since the accident. Migration characteristics in the grassland soils tend to decrease as follows: {sup 90}Sr > {sup 137}Cs {ge} {sup 239,240}Pu. It was found that the {sup 137}Cs absolute T{sub 1/2}{sup ecol} values are 3-7 times higher than its radioactive decay half-life value. Therefore, changes in the exposure dose resulting from the soil deposited {sup 137}Cs now depend only on its radioactive decay. The {sup 90}Sr T{sub 1/2}{sup ecol} values for the 21st year after the fallout tend to decrease, indicating an intensification of its migration capabilities. This trend appears consistent with a pool of mobile {sup 90}Sr forms that grows over time due to destruction of the fuel particles.« less
Shallow land burial of low-level radioactive wastes. A selected, annotated bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fore, C.S.; Vaughan, N.D.; Tappen, J.
1978-06-01
The data file was built to provide information support to DOE researchers in the field of low-level radioactive waste disposal and management. The scope of the data base emphasizes studies which deal with the ''old'' Manhattan sites, commercial disposal sites, and the specific parameters which affect the soil and geologic migration of radionuclides. Specialized data fields have been incorporated into the data base to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the ''Measured Radionuclides'' field, and specific parameters which affect the migration of these radionuclides are presented inmore » the ''Measured Parameters'' field. The 504 references are rated indicating applicability to shallow land burial technology and whether interpretation is required. Indexes are provided for author, geographic location, title, measured parameters, measured radionuclides, keywords, subject categories, and publication description. (DLC)« less
Research of Radionuclides Migrating in Porous Media Allowing for the "Solution-Rock" Interaction
NASA Astrophysics Data System (ADS)
Drozhko, E.; Aleksakhin, A. I.; Samsanova, L.; Kotchergina, N.; Zinin, A.
2001-12-01
Industrial solutions from the surface storage of liquid radioactive waste in Lake Karachay, near the Mayak Production Association in Russia, enter groundwaters through the reservoir loamy bed and have formed a contaminated groundwater plume. In order to predict radionuclide migration with the groundwater flow in porous unconsolidated rocks and to assess the protective mechanism of the natural environment, it is necessary to allow for the "solution-rock" physical and chemical interaction described by the distribution factor (Kd). In order to study radionuclide distribution in porous media, a numerical model was developed which models stontium-90 migration in a uniform unit of loams typical for the Karachay Lake bed. For the migration to be calculated, the results of the in situ and laboratory reasearch on strontium-90 sorption and desorption were used in the code, as well as strontium-90 dependance on sodium nitrate concentration in the solution. The code uses various models of the "solution-rock" interaction, taking into account both sorption/desorption and diffusion processes. Numerical research of strontium-90 migration resulted in data on strontium-90 distribution in solid and liquid phases of the porous loam unit over different time periods. Various models of the "solution-rock" interaction affecting strontium-90 migration are demonstrated.
Simulating Radionuclide Migrations of Low-level Wastes in Nearshore Environment
NASA Astrophysics Data System (ADS)
Lu, C. C.; Li, M. H.; Chen, J. S.; Yeh, G. T.
2016-12-01
Tunnel disposal into nearshore mountains was tentatively selected as one of final disposal sites for low-level wastes in Taiwan. Safety assessment on radionuclide migrations in far-filed may involve geosphere processes under coastal environments and into nearshore ocean. In this study the 3-D HYDROFEOCHE5.6 numerical model was used to perform simulations of groundwater flow and radionuclide transport with decay chains. Domain of interest on the surface includes nearby watersheds delineated by digital elevation models and nearshore seabed. As deep as 800 m below the surface and 400 m below sea bed were considered for simulations. The disposal site was located at 200m below the surface. Release rates of radionuclides from near-field was estimated by analytical solutions of radionuclide diffusion with decay out of engineered barriers. Far-field safety assessments were performed starting from the release of radionuclides out of engineered barriers to a time scale of 10,000 years. Sensitivity analyses of geosphere and transport parameters were performed to improve our understanding of safety on final disposal of low-level waste in nearshore environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onishi, Y.; Serne, R.J.; Arnold, E.M.
This report describes the results of a detailed literature review of radionuclide transport models applicable to rivers, estuaries, coastal waters, the Great Lakes, and impoundments. Some representatives sediment transport and water quality models were also reviewed to evaluate if they can be readily adapted to radionuclide transport modeling. The review showed that most available transport models were developed for dissolved radionuclide in rivers. These models include the mechanisms of advection, dispersion, and radionuclide decay. Since the models do not include sediment and radionuclide interactions, they are best suited for simulating short-term radionuclide migration where: (1) radionuclides have small distribution coefficients;more » (2) sediment concentrations in receiving water bodies are very low. Only 5 of the reviewed models include full sediment and radionuclide interactions: CHMSED developed by Fields; FETRA SERATRA, and TODAM developed by Onishi et al, and a model developed by Shull and Gloyna. The 5 models are applicable to cases where: (1) the distribution coefficient is large; (2) sediment concentrations are high; or (3) long-term migration and accumulation are under consideration. The report also discusses radionuclide absorption/desorption distribution ratios and addresses adsorption/desorption mechanisms and their controlling processes for 25 elements under surface water conditions. These elements are: Am, Sb, C, Ce, Cm, Co, Cr, Cs, Eu, I, Fe, Mn, Np, P, Pu, Pm, Ra, Ru, Sr, Tc, Th, {sup 3}H, U, Zn and Zr.« less
NASA Astrophysics Data System (ADS)
Jovanovic, L.; Kaldybaev, B.; Djenbaev, B.; Tilenbaev, A.
2012-04-01
Researches on radionuclides distribution in the soil-plants complex provide essential information in understanding human exposure to natural and technogenic sources of radiation. It is necessary in establishing regulation relating to radiation protection. The aim of this study was the radiochemical analysis of the content natural radionuclides 238U, 232Th,226Ra and technogenic radionuclides content (90Sr, 137Cs) in soils near Issyk-Kul lake (Kyrgyzstan). Results of radiochemical analyses have shown, that the concentrations of thorium-232 are fluctuating in the limits (11.7-84.1)-10-4% in the soils. The greatest concentration of thorium-232 has been found in the light chestnut soils. The content of uranium-238 in the soils near Issyk-Kul lake is fluctuating from 2.8 up to 12.7-10-4%. Radium-226 has more migration ability in comparison with other heavy natural radionuclides. According to our research the concentrations of radium-226 are fluctuating in the limits (9.4-43.0)-10-11%. The greatest concentration of radium-226 (43,0±2,8)-10-11% has been determined in the light chestnut soil. In connection with global migration of contaminating substances, including radioactive, the special attention is given long-lived radionuclides strontium-90 and caesium-137 in food-chains, and agroecosystems. Results of radiochemical analyses have shown, that specific activity of strontium-90 is fluctuating in the range of 2.9 up to 11.1 Bq/kg, and caesium-137 from 3.7 up to 14,3 Bq/kg in the soil of agroecosystems in the region of Issyk-Kul. In soil samples down to 1 meter we have observed vertical migration of these radionuclides, they were found to accumulate on the surface of soil horizon (0-5 cm) and their specific activity sharply decreases with depth. In addition in high-mountain pastures characterized by horizontal migration of cattle in profiles of soil, it was discovered that specific activity of radionuclides are lower on the slope than at the foot of the mountain. The content of natural radionuclides (238U, 232Th, 226Ra ) and technogenic radionuclides (90Sr, 137Cs) in the soils depend on many factors: the type and mechanical composition of soil, capacity of absorption, acidity, concentration of exchange forms of carbonates, organic substances. The radionuclides accumulation process in the plants depend on a specific accumulation ability of plants. During the researches it has been found that radionuclides accumulate in vegetative organs more than in reproductive parts of plants. According to the accumulation degrees of natural radionuclides plants taking place in the following decreasing series: sugar beet > potatoes > lucerne > clover > oats > perennial herbs > wheat > annual grass crops > barley > corn. Radiochemical analysis of the technogenic radionuclides in the plants has been determined that specific activity of strontium-90 is increased in leguminous plants (cobs of corn, lucerne) in comparison with other cultures. Caesium-137 is accumulated in beet roots, cobs of corn and lucerne. Key words: natural radionuclides, technogenic radionuclides, soil-plants complex, Issyk-Kul lake, Kyrgyzstan
NASA Astrophysics Data System (ADS)
Stonestrom, D. A.; Andraski, B. J.; Baker, R. J.; Luo, W.; Michel, R. L.
2005-05-01
Contaminant-transport processes are being investigated at the U.S. Geological Survey's Amargosa Desert Research Site (ADRS), adjacent to the Nation's first commercial disposal facility for low-level radioactive waste. Gases containing tritium and radiocarbon are migrating through a 110-m thick unsaturated zone from unlined trenches that received waste from 1962 to 1992. Information on plume dynamics comes from an array of shallow (<2 m) and two vertical arrays of deep (5-109 m) gas-sampling ports, plus ground-water monitoring wells. Migration is dominated by lateral transport in the upper 50 m of sediments. Radiological analyses require ex-situ wet-chemical techniques, because in-situ sensors for the radionuclides of interest do not exist. As at other LLRW-disposal facilities, radionuclides at the ADRS are mixed with varying amounts of volatile organic compounds (VOCs) and other substances. Halogenated-methanes, -ethanes, and -ethenes dominate the complex mixture of VOCs migrating from the disposal area. These compounds and their degradates provide a distinctive "fingerprint" of contamination originating from low-level radioactive waste. Carbon-dioxide and VOC anomalies provide indicator proxies for radionuclide contamination. Spatial and temporal patterns of co-disposed and byproduct constituents provide field-scale information about physical and biochemical processes involved in transport. Processes include reduction and biorespiration within trenches, and largely non-reactive, barometrically dispersed diffusion away from trenches.
Bunzl, K; Kracke, W; Schimmack, W
1992-03-01
The vertical activity distributions of fallout 238Pu, 239+240Pu, 241Am, 134Cs and 137Cs in a forest soil (Hapludult) were determined at several locations in a spruce stand separately according to their origin (global fallout or Chernobyl fallout). To determine the rate of migration of these radionuclides in each soil horizon, the observed depth profiles of the radionuclides were evaluated with a compartment model. In the top organic horizons (LOf1 and Of2), the migration rates for all radionuclides from both sources were above 0.5 cm per year. In the Oh horizon the migration rates observed for global fallout Pu, Am and Cs were similar (0.2-0.4 cm per year). Compared with Pu, however, the mobility of Am is slightly, but statistically significantly, enhanced. The highest rate in this layer was found for Chernobyl-derived radiocaesium (2 cm per year). In the layers of the mineral horizon (depth 0-2, 2-5 and 5-10 cm) the observed migration rates were very similar for global fallout Pu (0.08-0.7 cm per year) and Am (0.1-2 cm per year). In comparison, the migration rate of global fallout radiocaesium was about half in each layer. The highest rate was observed again for Chernobyl-derived radiocaesium (0.5-3 cm per year).
NASA Astrophysics Data System (ADS)
Korobova, Elena; Romanov, Sergey
2016-04-01
Distribution of artificial radionuclides in the environment has long been used successfully for revealing migration pathways of their stable analogues. Migration of water in natural conjugated elementary landscapes characterizing the system of top-slope-resulting depression, has a specific structure and the radionuclide tracer is inevitably reflecting it by specific sorption and exchange processes. Other important issues are the concentration levels and the difference in characteristic time of chemical element dispersion. Modern biosphere has acquired its sustainable structure within a long period of time and is formed by basic macroelements allowing the water soluble portion of elements functioning as activators of chemical exchange. Water migration is controlled by gravitation, climate and relief while fixation depends upon the parameters of surfaces and chemical composition. The resulting structure depends on specificity and duration of the process. The long-term redistribution of chemical elements in terrestrial environment has led to a distinct geochemical structure of conjugated landscapes with a specific geometry of redistribution and accumulation of chemical elements. Migration of the newly born anthropogenic radionuclides followed natural pathways in biosphere. The initial deposition of the Chernobyl's radionuclides within the elementary landscape-geochemical system was even by condition of aerial deposition. But further exchange process is controlled by the strength of fixation and migration ability of the carriers. Therefore patterns of spatial distribution of artificial radionuclides in natural landscapes are considerably different as compared to those of the long-term forming the basic structure of chemical fields in biosphere. Our monitoring of Cs-137 radial and lateral distribution in the test plots characterizing natural undisturbed conjugated elementary landscapes performed in the period from 2005 until now has revealed a stable and specifically polycentric structure of radiocesium distribution believed to reflect the character of radial and lateral water body migration and a high sensitivity of water distribution to surface parameters. This leads to an unusual wavy type of Cs-137 distribution down, along and across all the slopes examined for surface Cs-137 activity at every measured point. The finding is believed to have an important practical outcome allowing much more detailed evaluation of micronutrients distribution and optimization of their application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. L. Finnegan; K. S. Kung; B. A. Martinez
In this report the author describes his research in FY 1999 at the Nevada Test Site regarding the movement of radionuclides in groundwater. This work is funded by the US Department of Energy/Nevada Operations Office through their Defense Programs and Environmental Restorations divisions. Significant accomplishments include upgrading a spectrometer used to characterize groundwater colloids, acquisition of a probe to allow in situ measurement of groundwater parameters, and purchase of pumps for use in small-diameter access tubing. He collected water samples from a number of nuclear test sites during the past year. Samples from the chimney horizon at the Camembert sitemore » show that only volatile radionuclides are present there, as expected. Groundwater from the cavity region at the Cheshire site shows evidence of fission product leaching or desorption from melt glass or rock surfaces. Colloids present in this water were found to be remarkably stable during storage for many years. The colloid content of groundwater at the Cambric site and at UE-5n was found to be low relative to that in groundwater on Pahute Mesa. This, coupled with the apparent lack of groundwater flow in the alluvial rock at the Cambric site, suggests that radionuclide movement underground in this area is relatively minimal. He continued the yearly monitoring of the thermally hot cavity fluids at the Almendro site. He concludes this report by listing documents reviewed and presentations and publications generated by the program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohnuki, T.; Francis, A.; Kozai, N.
2010-04-01
We conducted a series of basic studies on the microbial accumulation of actinides to elucidate their migration behavior around backfill materials used in the geological disposal of radioactive wastes. We explored the interactions of U(VI) and Pu(VI) with Bacillus subtilis, kaolinite clay, and within a mixture of the two, directly analyzing their association with the bacterium in the mixture by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The accumulation of U by the mixture rose as the numbers of B. subtilis cells increased. Treating the kaolinite with potassium acetate (CH{sub 3}COOK) removed approximately 80% of the associated uraniummore » while only 65% was removed in the presence of B. subtilis. TEM-EDS analysis confirmed that most of the U taken from solution was associated with B. subtilis. XANES analyses revealed that the oxidation state of uranium associated with B. subtilis, kaolinite, and with the mixture containing both was U(VI). The amount of Pu sorbed by B. subtilis increased with time, but did not reach equilibrium in 48 h; in kaolinite alone, equilibrium was attained within 8 h. After 48 h, the oxidation state of Pu in the solutions exposed to B. subtilis and to the mixture had changed to Pu(V), whereas the oxidation state of the Pu associated with both was Pu(IV). In contrast, there was no change in the oxidation state of Pu in the solution nor on kaolinite after exposure to Pu(VI). SEM-EDS analysis indicated that most of the Pu in the mixture was associated with the bacteria. These results suggest that U(VI) and Pu(VI) preferentially are sorbed to bacterial cells in the presence of kaolinite clay, and that the mechanism of accumulation of U and Pu differs. U(VI) is sorbed directly to the bacterial cells, whereas Pu(VI) first is reduced to Pu(V) and then to Pu(IV), and the latter is associated with the cells. These results have important implications on the migrations of radionuclides around the repository sites of geological disposal. Microbial cells compete with clay colloids for radionuclides accumulation, and because of their higher affinity and larger size, the microbes accumulate radionuclides and migrate much slower than do the clay colloids. Additionally, biofilm coatings formed on the fractured rock surfaces also accumulate radionuclides, thereby retarding radionuclide migration.« less
Pacific bluefin tuna transport Fukushima-derived radionuclides from Japan to California
Madigan, Daniel J.; Baumann, Zofia; Fisher, Nicholas S.
2012-01-01
The Fukushima Dai-ichi release of radionuclides into ocean waters caused significant local and global concern regarding the spread of radioactive material. We report unequivocal evidence that Pacific bluefin tuna, Thunnus orientalis, transported Fukushima-derived radionuclides across the entire North Pacific Ocean. We measured γ-emitting radionuclides in California-caught tunas and found 134Cs (4.0 ± 1.4 Bq kg−1) and elevated 137Cs (6.3 ± 1.5 Bq kg−1) in 15 Pacific bluefin tuna sampled in August 2011. We found no 134Cs and background concentrations (∼1 Bq kg−1) of 137Cs in pre-Fukushima bluefin and post-Fukushima yellowfin tunas, ruling out elevated radiocesium uptake before 2011 or in California waters post-Fukushima. These findings indicate that Pacific bluefin tuna can rapidly transport radionuclides from a point source in Japan to distant ecoregions and demonstrate the importance of migratory animals as transport vectors of radionuclides. Other large, highly migratory marine animals make extensive use of waters around Japan, and these animals may also be transport vectors of Fukushima-derived radionuclides to distant regions of the North and South Pacific Oceans. These results reveal tools to trace migration origin (using the presence of 134Cs) and potentially migration timing (using 134Cs:137Cs ratios) in highly migratory marine species in the Pacific Ocean. PMID:22645346
Effects of groundwater on radionuclides buried at the Nevada Test Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, B.A.; Maestas, S.; Thompson, J.L.
A large fraction of the radioactive source from a nuclear test is confined to the cavity created by the event. A {open_quotes}melt glass{close_quotes} accumulates at the bottom of the cavity where the highest concentrations of refractory radionuclides (e.g., Zr-95, Eu-155, Pu-239) are found. Most of the movement of radionuclides underground at the Nevada Test Site occurs through the agency of moving groundwater. Results from samples that were taken from the cavity formed in 1981 by the underground test named Baseball indicate that radioactive materials have remained where they were deposited during the formation of the cavity and chimney. There maymore » not be a mechanism for radionuclides to migrate at this location due to small hydraulic gradients and a low hydraulic conductivity. The study done at this site offers further evidence that extensive migration of radioactive materials away from underground nuclear test sites does not occur in the absence of appreciable groundwater movement.« less
Landa, Edward R.
2004-01-01
Uranium mill tailings (UMT) are a high volume, low specific activity radioactive waste typically disposed in surface impoundments. This review focuses on research on UMT and related earth materials during the past decade relevant to the assessment of: (1) mineral hosts of radionuclides; (2) the use of soil analogs in predicting long-term fate of radionuclides; (3) microbial and diagenetic processes that may alter radionuclide mobility in the surficial environment; (4) waste-management technologies to limit radionuclide migration; and (5) the impact of UMT on biota.
Transport of Gas Phase Radionuclides in a Fractured, Low-Permeability Reservoir
NASA Astrophysics Data System (ADS)
Cooper, C. A.; Chapman, J.
2001-12-01
The U.S. Atomic Energy Commission (predecessor to the Department of Energy, DOE) oversaw a joint program between industry and government in the 1960s and 1970s to develop technology to enhance production from low-permeability gas reservoirs using nuclear stimulation rather than conventional means (e.g., hydraulic and/or acid fracturing). Project Rio Blanco, located in the Piceance Basin, Colorado, was the third experiment under the program. Three 30-kiloton nuclear explosives were placed in a 2134 m deep well at 1780, 1899, and 2039 m below the land surface and detonated in May 1973. Although the reservoir was extensively fractured, complications such as radionuclide contamination of the gas prevented production and subsequent development of the technology. Two-dimensional numerical simulations were conducted to identify the main transport processes that have occurred and are currently occurring in relation to the detonations, and to estimate the extent of contamination in the reservoir. Minor modifications were made to TOUGH2, the multiphase, multicomponent reservoir simulator developed at Lawrence Berkeley National Laboratories. The simulator allows the explicit incorporation of fractures, as well as heat transport, phase change, and first order radionuclide decay. For a fractured two-phase (liquid and gas) reservoir, the largest velocities are of gases through the fractures. In the gas phase, tritium and one isotope of krypton are the principle radionuclides of concern. However, in addition to existing as a fast pathway, fractures also permit matrix diffusion as a retardation mechanism. Another retardation mechanism is radionuclide decay. Simulations show that incorporation of fractures can significantly alter transport rates, and that radionuclides in the gas phase can preferentially migrate upward due to the downward gravity drainage of liquid water in the pores. This project was funded by the National Nuclear Security Administration, Nevada Operations Office, under DOE Contract no. DE-AC08-00NV13609.
Natural radionuclides in rocks and soils of the high-mountain regions of the Great Caucasus
NASA Astrophysics Data System (ADS)
Asvarova, T. A.; Abdulaeva, A. S.; Magomedov, M. A.
2012-06-01
The results of the radioecological survey in the high-mountain regions of the Great Caucasus at the heights from 2200 to 3800 m a.s.l. are considered. This survey encompassed the territories of Dagestan, Azerbaijan, Georgia, Chechnya, Northern Ossetia-Alania, Kabardino-Balkaria, Karachay-Cherkessia, and the Stavropol and Krasnodar regions. The natural γ background radiation in the studied regions is subjected to considerable fluctuations and varies from 6 to 40 μR/h. The major regularities of the migration of natural radionuclides 238U, 232Th, 226Ra, and 40K in soils in dependence on the particular environmental conditions (the initial concentration of the radionuclides in the parent material; the intensity of pedogenesis; the intensity of the vertical and horizontal migration; and the geographic, climatic, and landscape-geochemical factors) are discussed.
Raskosha, N G; Shuktova, I I
2015-01-01
The data on the migration capacity in soil and accumulation of 238Pu, 239, 240Pu, 137Cs and 90Sr by plants in the area of a peaceful nuclear explosion located in the taiga zone are presented. The influence of the soil parameters on the distribution and transformation forms of the radionuclides in the podzolic soil profile was studied. The major amounts of man-made radionuclides were found in the matter of the ground lip. The accumulation parameters of pollutants by plants were the highest for the leaves, young branches and conifer of trees.
Nanoparticles migration in fractured rocks and affects on contaminant migration
NASA Astrophysics Data System (ADS)
Missana, Tiziana; Garcia-Gutierrez, Miguel; Alonso, Ursula
2014-05-01
In previous studies, the transport behavior of artificial (gold and latex) and natural (smectite clay) colloids, within a planar fracture in crystalline rock, was analyzed. In order to better understand the effects of colloid size, shape and surface charge on nanoparticle migration and especially on filtration processes on natural rock surfaces, different clay colloids and oxide nanoparticles were selected and their transport studied as a function of the residence time. In all the cases, (a fraction of) the nanoparticles travelled in the fracture as fast as or faster than water (with a retardation factor, Rf ≤ 1) and the observed Rf, was related to the Taylor dispersion coefficient, accounting for colloid size, water velocity and fracture width. However, under most of the cases, in contrast to the behavior of a conservative tracer, colloids recovery was much lower than 100 %. Differences in recovery between different nanoparticles, under similar residence times, were analyzed. In order to evaluate the possible consequences, on contaminant migration, of the presence of nanoparticles in the system, transport tests were carried out with both colloids and sorbing radionuclides. The overall capacity for colloids of enhancing radionuclide migration in crystalline rock fractures is discussed. Acknowledgments: The research leading to these results received funding from EU FP7/2007-2011 grant agreement Nº 295487 (BELBAR, Bentonite Erosion: effects on the Long term performance of the engineered Barrier and Radionuclide Transport) and by the Spanish Government under the project NANOBAG (CTM2011-2797).
[On the effect of partial flooding on 137Cs and 90Sr in forest biogeocenosis].
Perevolotskaia, T V; Bulavik, I M; Perevolotskiĭ, A N
2009-01-01
The analysis was made on 137Cs and 90Sr distribution oak, pine and hornbeam plantations depending on different under soil water levels. Intensity of 137Cs and of 90Sr migration along the vertical layers of soils is determined by under soil water level at a specific sampling site. The closer under soil water to the surface of the soil, the lowest radionuclide contamination is in the upper soil levels and the highest radionuclide contamination is in the deeper layers. The "fast" and "slow" quasi diffusion coefficients for 137Cs and for 90Sr and their contribution to the total migration of radionuclide through vertical soil levels were determined. A decrease in 137Cs and increase in 90Sr transfer factors to the elements of overground phytomass as a result of under soil water level lowering was established.
NNSS Soils Monitoring: Plutonium Valley (CAU366) FY2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Julianne J.; Mizell, Steve A.; Nikolich, George
2013-01-01
The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events. Field measurements at the T-4 Atmospheric Test Site (CAU 370) suggest that radionuclide-contaminated soils may have migrated along a shallow ephemeral drainage that traverses the site (NNSA/NSO, 2009). (It is not entirely clear how contaminated soils got into their present location at the T-4more » Site, but flow to the channel has been redirected and the contamination does not appear to be migrating at present.) Aerial surveys in selected portions of the Nevada National Security Site (NNSS) also suggest that radionuclide-contaminated soils may be migrating along ephemeral channels in Areas 3, 8, 11, 18, and 25 (Colton, 1999). In Area 11, several low-level airborne surveys of the Plutonium Valley Dispersion Sites (CAU 366) show plumes of Americium 241 (Am-241) extending along ephemeral channels (Figure 1, marker numbers 5 and 6) below Corrective Action Site (CAS) 11-23-03 (marker number 3) and CAS 11 23-04 (marker number 4) (Colton, 1999). Plutonium Valley in Area 11 of the NNSS was selected for the study because of the aerial survey evidence suggesting downstream transport of radionuclide-contaminated soil. The aerial survey (Figure 1) shows a well defined finger of elevated radioactivity (marker number 5) extending to the southwest from the southernmost detonation site (marker number 4). This finger of contamination overlies a drainage channel mapped on the topographic base map used for presentation of the survey data suggesting surface runoff as a likely cause of the contaminated area. Additionally, instrumenting sites strongly suspected of conveying soil from areas of surface contamination offers the most efficient means to confirm that surface runoff may transport radioactive contamination as a result of ambient precipitation/runoff events. Closure plans being developed for the CAUs on the NNSS may include post-closure monitoring for possible release of radioactive contaminants. Determining the potential for transport of radionuclide-contaminated soils under ambient meteorological conditions will facilitate an appropriate closure design and post-closure monitoring program.« less
NASA Astrophysics Data System (ADS)
Beznosikov, V. A.; Lodygin, E. D.; Shuktomova, I. I.
2017-07-01
Specific activities of artificial (137Cs, 90Sr) and natural (40K, 232Th, 226Ra) radionuclides in background soils of southern and middle taiga of Komi Republic have been estimated with consideration for the landscape-geochemical features of the territory. It has been shown that their accumulation and migration in soils are determined by the following factors: position in relief, texture, and organic matter content. No anomalous zones with increased contents of radionuclides in soils have been revealed.
NASA Astrophysics Data System (ADS)
Weisbrod, N.; Tran, E. L.; Klein-BenDavid, O.; Teutsch, N.
2015-12-01
Geological disposal of high-level radioactive waste is the long term solution for the disposal of long lived radionuclides and spent fuel. However, some radionuclides might be released from these repositories into the subsurface as a result of leakage, which ultimately make their way into groundwater. Engineered bentonite barriers around nuclear waste repositories are generally considered sufficient to impede the transport of radionuclides from their source to the groundwater. However, colloidal-sized mobile bentonite particles ("carrier" colloids) originating from these barriers have come under investigation as a potential transport vector for radionuclides sorbed to them. As lanthanides are generally accepted to have the same chemical behaviors as their more toxic actinide counterparts, lanthanides are considered an acceptable substitute for research on radionuclide transportation. This study aims to evaluate the transport behaviors of lanthanides in colloid-facilitated transport through a fractured chalk matrix and under geochemical conditions representative the Negev desert, Israel. The migration of Ce both with and without colloidal particles was explored and compared to the migration of a conservative tracer (bromide) using a flow system constructed around a naturally fractured chalk core. Results suggest that mobility of Ce as a solute is negligible. In experiments conducted without bentonite colloids, the 1% of the Ce that was recovered migrated as "intrinsic" colloids in the form of carbonate precipitates. However, the total recovery of the Ce increased to 9% when it was injected into the core in the presence of bentonite colloids and 13% when both bentonite and precipitate colloids were injected. This indicates that lanthanides are essentially immobile in chalk as a solute but may be mobile as carbonate precipitates. Bentonite colloids, however, markedly increase the mobility of lanthanides through fractured chalk matrices.
Ion beam analyses of radionuclide migration in heterogeneous rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alonso, Ursula; Missana, Tiziana; Garcia-Gutierrez, Miguel
2013-07-18
The migration of radionuclides (RN) in the environment is a topic of general interest, for its implications on public health, and it is an issue for the long-term safety studies of deep geological repositories (DGR) for high-level radioactive waste. The role played by colloids on RN migration is also of great concern. Diffusion and sorption are fundamental mechanisms controlling RN migration in rocks and many experimental approaches are applied to determine transport parameters for low sorbing RN in homogeneous rocks. However, it is difficult to obtain relevant data for high sorbing RN or colloids, for which diffusion lengths are extremelymore » short, or within heterogeneous rocks, where transport might be different in different minerals. The ion beam techniques Rutherford Backscattering Spectrometry (RBS) and micro-Particle Induced X-Ray Emission ({mu}PIXE), rarely applied in the field, were selected for their micro-analytical potential to study RN diffusion and surface retention within heterogeneous rocks. Main achievements obtained during last 12 years are highlighted.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrew Wolfsberg; Lee Glascoe; Guoping Lu
Recent field studies have led to the discovery of trace quantities of plutonium originating from the BENHAM underground nuclear test in two groundwater observation wells on Pahute Mesa at the Nevada Test Site. These observation wells are located 1.3 km from the BENHAM underground nuclear test and approximately 300 m from the TYBO underground nuclear test. In addition to plutonium, several other conservative (e.g. tritium) and reactive (e.g. cesium) radionuclides were found in both observation wells. The highest radionuclide concentrations were found in a well sampling a welded tuff aquifer more than 500m above the BENHAM emplacement depth. These measurementsmore » have prompted additional investigations to ascertain the mechanisms, processes, and conditions affecting subsurface radionuclide transport in Pahute Mesa groundwater. This report describes an integrated modeling approach used to simulate groundwater flow, radionuclide source release, and radionuclide transport near the BENHAM and TYBO underground nuclear tests on Pahute Mesa. The components of the model include a flow model at a scale large enough to encompass many wells for calibration, a source-term model capable of predicting radionuclide releases to aquifers following complex processes associated with nonisothermal flow and glass dissolution, and site-scale transport models that consider migration of solutes and colloids in fractured volcanic rock. Although multiple modeling components contribute to the methodology presented in this report, they are coupled and yield results consistent with laboratory and field observations. Additionally, sensitivity analyses are conducted to provide insight into the relative importance of uncertainty ranges in the transport parameters.« less
Barraclough, Jack T.; Robertson, J.B.; Janzer, V.J.; Saindon, L.G.
1976-01-01
A study was made (1970-1974) to evaluate the geohydrologic and geochemical controls on subsurface migration of radionuclides from pits and trenches in the Idaho National Engineering Laboratory (INEL) solid waste burial ground and to determine the existence and extent of radionuclide migration from the burial ground. A total of about 1,700 sediment, rock, and water samples were collected from 10 observation wells drilled in and near the burial ground of Idaho National Engineering Laboratory, formerly the National Reactor Testing Station (NRTS). Within the burial ground area, the subsurface rocks are composed principally of basalt. Wind- and water-deposited sediments occur at the surface and in beds between the thicker basalt zones. Two principal sediment beds occur at about 110 feet and 240 feet below the land surface. The average thickness of the surficial sedimentary layer is about 15 feet while that of the two principal subsurface layers is 13 and 14 feet, respectively. The water table in the aquifer beneath the burial ground is at a depth of about 580 feet. Fission, activation, and transuranic elements were detected in some of the samples from the 110- and 240-foot sedimentary layers. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Jannik, G. T.; Ivanov, Y. A.; Kashparov, V. A.; Levchuk, S. E.; Bondarkov, M. D.; Maksymenko, A. M.; Farfan, E. B.; Marra, J. C.
2009-12-01
In 1986-1987, a set of experimental sites for studies of vertical migration of radionuclides released from the ChNPP was established in the ChNPP Exclusion Zone for various fallout plumes. The sites were selected considering local terrain and geo-chemical conditions, as well as physical and chemical characteristics of the fallout. The experimental sites included grasslands, and pre-Chernobyl cultivated meadows and croplands. Vertical migration of radionuclides in the ChNPP Exclusion Zone grasslands was evaluated. Parameters of 137Cs, 90Sr, and 239,240Pu transfer were calculated and the periods during which these radionuclides reach their ecological half-life in the upper 5 cm soil layer were estimated. Migration capabilities of these radionuclides in the grassland soils tend to decrease as follows: 90Sr >137Cs ≥ 239,240Pu. A significant retardation of the 137Cs vertical migration was shown in the grasslands long after the Chernobyl accident. During the 21st year after the fallout, average Tecol values for 137Cs (the period of time it takes in the environment for 137Cs to reach half the value of its original concentration in the upper 5 cm soil layer, regardless of physical decay) are as follows: 180 - 320 years for grassland containing automorphous mineral soils of a light granulometric composition; and 90 - 100 years for grassland containing hydromorphous organogenic soils. These values are significantly higher than those estimated for the period of 6-9 years after the fallout: 60 - 150 years and 11 - 20 years, respectively. The absolute 137Cs Tecol values are by factors of 3-7 higher than 137Cs radiological decay values long after the accident. Changes in the exposure dose resulting from the soil deposited 137Cs only depend on its radiological decay. This factor should necessarily be considered for development of predictive assessments, including dose exposures for the hypothetical population in case of their re-evacuation to the exclusion areas. The obtained results have to be considered for predictive assessments, including those for dose exposures for the hypothetical population in case of their re-evacuation to the exclusion areas if implementation and/or planning of remediation activities at the ChNPP Exclusion Zone are considered reasonable and appropriate.
Modeling Radionuclide Decay Chain Migration Using HYDROGEOCHEM
NASA Astrophysics Data System (ADS)
Lin, T. C.; Tsai, C. H.; Lai, K. H.; Chen, J. S.
2014-12-01
Nuclear technology has been employed for energy production for several decades. Although people receive many benefits from nuclear energy, there are inevitably environmental pollutions as well as human health threats posed by the radioactive materials releases from nuclear waste disposed in geological repositories or accidental releases of radionuclides from nuclear facilities. Theoretical studies have been undertaken to understand the transport of radionuclides in subsurface environments because that the radionuclide transport in groundwater is one of the main pathway in exposure scenarios for the intake of radionuclides. The radionuclide transport in groundwater can be predicted using analytical solution as well as numerical models. In this study, we simulate the transport of the radionuclide decay chain using HYDROGEOCHEM. The simulated results are verified against the analytical solution available in the literature. Excellent agreements between the numerical simulation and the analytical are observed for a wide spectrum of concentration. HYDROGECHEM is a useful tool assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.
Aidarkhanov, A O; Lukashenko, S N; Lyakhova, O N; Subbotin, S B; Yakovenko, Yu Yu; Genova, S V; Aidarkhanova, A K
2013-10-01
The Shagan River is the only surface watercourse within the former Semipalatinsk Test Site (STS). Research in the valley of the Shagan River was carried out to study the possible migration of artificial radionuclides with surface waters over considerable distances, with the possibility these radionuclides may have entered the Irtysh River. The investigations revealed that radioactive contamination of soil was primarily caused by the first underground nuclear test with soil outburst conducted at the "Balapan" site in Borehole 1004. The surface nuclear tests carried out at the "Experimental Field" site and global fallout made insignificant contributions to contamination. The most polluted is the area in the immediate vicinity of the "Atomic" Lake crater. Contamination at the site is spatial. The total area of contamination is limited to 10-12 km from the crater piles. The ratio of plutonium isotopes was useful to determine the source of soil contamination. There was virtual absence of artificial radionuclide migration with surface waters, and possible cross-border transfer of radionuclides with the waters of Shagan and Irtysh rivers was not confirmed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Geomorphic control of radionuclide diffusion in desert soils
Pelletier, J.D.; Harrington, C.D.; Whitney, J.W.; Cline, M.; DeLong, S.B.; Keating, G.; Ebert, T.K.
2005-01-01
Diffusion is a standard model for the vertical migration of radionuclides in soil profiles. Here we show that diffusivity values inferred from fallout 137CS profiles in soils on the Fortymile Wash alluvial fan, Nye County, Nevada, have a strong inverse correlation with the age of the geomorphic surface. This result suggests that radionuclide-bound particles are predominantly transported by infiltration rather than by bulk-mixing processes such as wetting/ drying, freeze/thaw, and bioturbation. Our results provide a preliminary basis for using soil-geomorphic mapping, point-based calibration data, and the diffusion model to predict radionuclide trans desert soils within a pedotransfer-function approach. Copyright 2005 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Altmann, S.; Tournassat, C.; Goutelard, F.; Parneix, J. C.; Gimmi, T.; Maes, N.
2009-04-01
One of the ‘pillars' supporting Safety Cases for deep geological disposal of radioactive waste in clayrock formations is the knowledge base regarding radionuclide (Rn) retention by sorption and diffusion-driven transport which is why the EC integrated project ‘Funmig' focused a major part of its effort on advancing understanding of these two macroscopic phenomena. This talk presents some of the main results of this four year effort (2005-2008). One of the keys to understanding diffusion-driven transport of anionic and cationic radionuclide species in clayrocks lies in a detailed understanding of the phenomena governing Rn total concentration and speciation (dissolved, adsorbed) in the different types of pore spaces present in highly-compacted masses of permanently charged clay minerals. Work carried out on a specifically synthesized montmorillonite (a model for the clay mineral fraction in clayrocks) led to development, and preliminary experimental validation, of a conceptually coherent set of theoretical models (molecular dynamics, electrostatic double layer, thermodynamic) describing dissolved ion and water solvent behavior in this material. This work, complemented by the existing state of the art, provides a sound theoretical basis for explaining such important phenomena as anion exclusion, cation exchange and the diffusion behavior of anions, weakly sorbing cations and water tracers. Concerning the behavior of strongly sorbing and/or redox-reactive radionuclides in clay systems, project research improved understanding of the nature of sorption reactions and sorbed species structure for key radioelements, or analogues (U, Se, Eu, Sm, Yb, Nd) on the basal surfaces and in the interlayers of synthetic or purified clay minerals. A probable mechanism for Se(IV) retention by reduction to Se° in Fe2+-containing clays was brought to light; this same process was also studied on the Callovo-Oxfordien clayrock targeted by the French radwaste management program. The migration of most radionuclides in clayrocks, in particular the actinides, is limited by their strong sorption on rock mineral surfaces. Much effort was devoted in Funmig to improving understanding of this process on the clayrocks being studied in the Swiss, Belgian and French radwaste management programs. Specific attention was focused on (i) elucidating the effect of dissolved organic matter on Am(III), Th(IV), Eu(III) sorption on clayrock surfaces and (ii) determining the link between Kd measured on dispersed rock systems and the Kd operant in intact rock volumes, i.e. during diffusion. Regarding the latter question, results indicate that Kd values for ‘dispersed' and ‘intact' materials are quite similar for certain elements (Na, Sr, Cs, Co). On the other hand, Kd values obtained by modeling results of diffusion experiments involving strongly sorbing elements as Cs, Co and Eu were always significantly smaller than those predicted based on sorption data measured in corresponding batch systems. This is an area where additional research is being planned. A major effort was devoted to improving understanding of the effects of small-scale (m to cm) clayrock structure and large-scale (dm to hm) mineralogical composition on radionuclide diffusion-retention. The program focusing on the small-scale produced a method for simulating the results of tracer diffusion in an intact rock based on the actual rock microstructure of the rock sample to be used in the diffusion experiment. This model was used to predict / inverse model the spatial distribution of highly sorbing tracers (Eu, Cu). This overall approach is also being used to understand how changes in mineralogical composition can affect the values of macroscopic diffusion parameters (De, tortuosity, anisiotropy). At a much larger scale, the results of (i) a geostatistical analysis of clayrock mineralogical variability and (ii) measurements of De and Kd dependence on mineralogy for Cs and Cl, were combined to create models of parameter variability at the formation scale. These models were used to evaluate the effects of formation scale heterogeneity on predictive modeling of radionuclide migration. Measurements and modeling of natural tracer profiles were also carried out in order to evaluate the diffusion characteristics at geological time and space scales.
Characterization of Discharge Areas of Radionuclides Originating From Nuclear Waste Repositories
NASA Astrophysics Data System (ADS)
Marklund, L.; Xu, S.; Worman, A.
2009-05-01
If leakages in nuclear waste repositories located in crystalline bedrock arise, radionuclides will reach the biosphere and cause a risk of radiological impact. The extent of the radiological impact depends on in which landscape elements the radionuclides emerge. In this study, we investigate if there are certain landscape elements that generally will act as discharge areas for radionuclides leaking from subsurface deposits. We also characterize the typical properties that distinguish these areas from others. In humid regions, landscape topography is the most important driving force for groundwater flow. Because groundwater is the main transporting agent for migrating radionuclides, the topography will determine the flowpaths of leaking radionuclides. How topography and heterogeneities in the subsurface affect the discharge distribution of the radionuclides is therefore an important scope of this study. To address these issues, we developed a 3-D transport model. Our analyses are based on site-specific data from two different areas in Sweden, Forsmark, Uppland, and Oskarshamn, Småland. The Swedish Nuclear Waste Management Company (SKB) has selected these two areas as candidate areas for a deep repository of nuclear waste and the areas are currently subject to site investigations. Our results suggest that there are hot-spots in the landscape i.e. areas with high probability of receiving large amounts of radionuclides from a leaking repository of nuclear waste. The hot-spots concentrate in the sea, streams, lakes and wetlands. All these elements are found at lower elevations in the landscape. This pattern is mostly determined by the landscape topography and the locations of fracture zones. There is a relationship between fracture zones and topography, and therefore the importance of the topography for the discharge area distribution is not contradicted by the heterogeneity in the bedrock. The varieties of landscape elements which have potential for receiving significant amounts of radionuclides are limited. To limit the radiological dose assessment, analyses should be focused to and more detailed in such landscape areas in which doses are expected to be high. Due to the similarities among deep groundwater discharge areas, one can make site-specific analyses of those areas, which have a broad applicability for migration of radionuclides originating from a nuclear waste repository.
[Trans-uranium elements in food products (review)].
Vasilenko, I Ia
1994-01-01
The data of Russian and foreign authors concerning of level environmental contamination and migration of transuranic elements in food chains, metabolism and biological danger of nuclides entering in human body with foods are reviewed. A level of radionuclide load of population and doses of radiation are discussed and the danger is estimated. The doses of radiation from radionuclide ingestion are lower than level of allowed radiation safety standards.
GIS Modelling of Radionuclide Transport from the Semipalatinsk Test Site
NASA Astrophysics Data System (ADS)
Balakay, L.; Zakarin, E.; Mahura, A.; Baklanov, A.; Sorensen, J. H.
2009-04-01
In this study, the software complex GIS-project MigRad (Migration of Radionuclide) was developed, tested and applied for the territory of the Semipalatinsk test site/ polygon (Republic of Kazakhstan), where since 1961, in total 348 underground nuclear explosions were conducted. The MigRad is oriented on integration of large volumes of different information (mapping, ground-based, and satellite-based survey): and also includes modeling on its base local redistribution of radionuclides by precipitation and surface waters and by long-range transport of radioactive aerosols. The existing thermal anomaly on territory of the polygon was investigated in details, and the object-oriented analysis was applied for the studied area. Employing the RUNOFF model, the simulation of radionuclides migration with surface waters was performed. Employing the DERMA model, the simulation of long-term atmospheric transport, dispersion and deposition patterns for cesium was conducted from 3 selected locations (Balapan, Delegen, and Experimental Field). Employing geoinformation technology, the mapping of the of the high temperature zones and epicenters of radioactive aerosols transport for the territory of the test site was carried out with post-processing and integration of modelling results into GIS environment. Contamination levels of pollution due to former nuclear explosions for population and environment of the surrounding polygon territories of Kazakhstan as well as adjacent countries were analyzed and evaluated. The MigRad was designed as instrument for comprehensive analysis of complex territorial processes influenced by former nuclear explosions on the territory of Semipalatinsk test site. It provides possibilities in detailed analyses for (i) extensive cartographic material, remote sensing, and field measurements data collected in different level databases; (ii) radionuclide migration with flows using accumulation and redistribution of soil particles; (iii) thermal anomalies caused by explosions and observed on the test site and adjacent territories, and (iv) long-range transport of radioactive aerosols with analysis of dynamics of spatial distribution, averaged and accumulated fields for concentration and deposition patterns.
A random walk model to simulate the atmospheric dispersion of radionuclide
NASA Astrophysics Data System (ADS)
Zhuo, Jun; Huang, Liuxing; Niu, Shengli; Xie, Honggang; Kuang, Feihong
2018-01-01
To investigate the atmospheric dispersion of radionuclide in large-medium scale, a numerical simulation method based on random walk model for radionuclide atmospheric dispersion was established in the paper. The route of radionuclide migration and concentration distribution of radionuclide can be calculated out by using the method with the real-time or historical meteorological fields. In the simulation, a plume of radionuclide is treated as a lot of particles independent of each other. The particles move randomly by the fluctuations of turbulence, and disperse, so as to enlarge the volume of the plume and dilute the concentration of radionuclide. The dispersion of the plume over time is described by the variance of the particles. Through statistical analysis, the relationships between variance of the particles and radionuclide dispersion characteristics can be derived. The main mechanisms considered in the physical model are: (1) advection of radionuclide by mean air motion, (2) mixing of radionuclide by atmospheric turbulence, (3) dry and wet deposition, (4) disintegration. A code named RADES was developed according the method. And then, the European Tracer Experiment (ETEX) in 1994 is simulated by the RADES and FLEXPART codes, the simulation results of the concentration distribution of tracer are in good agreement with the experimental data.
Radionuclide Retention in Concrete Wasteforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovaird, Chase C.; Jansik, Danielle P.; Wellman, Dawn M.
2011-09-30
Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate predictionmore » of radionuclide fate when the wasteforms come in contact with groundwater. The information present in the report provides data that (1) measures the effect of concrete wasteform properties likely to influence radionuclide migration; and (2) quantifies the rate of carbonation of concrete materials in a simulated vadose zone repository.« less
Radionuclide Incorporation and Long Term Performance of Apatite Waste Forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jianwei; Lian, Jie; Gao, Fei
2016-01-04
This project aims to combines state-of-the-art experimental and characterization techniques with atomistic simulations based on density functional theory (DFT) and molecular dynamics (MD) simulations. With an initial focus on long-lived I-129 and other radionuclides such as Cs, Sr in apatite structure, specific research objectives include the atomic scale understanding of: (1) incorporation behavior of the radionuclides and their effects on the crystal chemistry and phase stability; (2) stability and microstructure evolution of designed waste forms under coupled temperature and radiation environments; (3) incorporation and migration energetics of radionuclides and release behaviors as probed by DFT and molecular dynamics (MD) simulations;more » and (4) chemical durability as measured in dissolution experiments for long term performance evaluation and model validation.« less
NASA Astrophysics Data System (ADS)
Tran, E. L.; Teutsch, N.; Klein-BenDavid, O.; Weisbrod, N.
2017-12-01
When radionuclides are leaked into the subsurface due to engineered waste disposal container failure, the ultimate barrier to migration of radionuclides into local aquifers is sorption to the surrounding rock matrix and sediments, which often includes a bentonite backfill. The extent of this sorption is dependent on pH, ionic strength, surface area availability, radionuclide concentration, surface mineral composition, and solution chemistry. Colloidal-sized bentonite particles eroded from the backfill have been shown to facilitate the transport of radionuclides sorbed to them away from their source. Thus, sorption of radionuclides such as uranium and cesium to bentonite surfaces can be both a mobilization or retardation factor. Though numerous studies have been conducted to-date on sorption of radionuclides under low ionic strength and carbonate-poor conditions, there has been little research conducted on the behavior of radionuclides in high salinities and carbonate rich conditions typical of aquifers in the vicinity of some potential nuclear repositories. This study attempts to characterize the sorption properties of U(VI) and Cs to bentonite colloids under these conditions using controlled batch experiments. Results indicated that U(VI) undergoes little to no sorption to bentonite colloids in a high-salinity (TDS= 9000 mg/L) artificial groundwater. This lack of sorption was attributed to the formation of CaUO2(CO3)22- and Ca2UO2(CO3)3 aqueous ions which stabilize the UO22+ ions in solution. In contrast, Cs exhibited greater sorption, the extent to which was influenced greatly by the matrix water's ionic strength and the colloid concentration used. Surprisingly, when both U and Cs were together, the presence of U(VI) in solution decreased Cs sorption, possibly due to the formation of stabilizing CaUO2(CO3)22- anions. The implications of this research are that rather than undergoing colloid-facilitated transport, U(VI) is expected to migrate similarly to a conservative dissolved species under these conditions, and little retardation through sorption onto the surrounding rock matrix is predicted. Cs is expected to undergo more sorption, though U(VI) presence may have a mobilizing effect.
Stonestrom, David A.; Abraham, Jared D.; Andraski, Brian J.; Baker, Ronald J.; Mayers, C. Justin; Michel, Robert L.; Prudic, David E.; Striegl, Robert G.; Walvoord, Michelle Ann
2004-01-01
Contaminant-transport processes are being investigated at the U.S. Geological Survey’s Amargosa Desert Research Site (A DRS), adjacent to the Nation’s first commercial disposal facility for low-level radioactive waste. Gases containing tritium and radiocarbon are migrating through a 110-m thick unsaturated zone from unlined trenches that received waste from 1962 to 1992. Results relevant to long- term monitoring of radionuclides are summarized as follows. Contaminant plumes have unexpected histories and spatial configurations due to uncertainties in the: (1) geologic framework, (2) biochemical reactions involving waste components, (3) interactions between plume components and unsaturated-zone materials, (4) disposal practices, and (5) physical transport processes. Information on plume dynamics depends on ex-situ wet-chemical techniques because in-situ sensors for the radionuclides of interest do not exist. As at other radioactive-waste disposal facilities, radionuclides at the ADRS are mixed with varying amounts of volatile organic compounds (VOCs). Carbon-dioxide and VOC anomalies provide proxies for radioactive contamination. Contaminants in the unsaturated zone migrate along preferential pathways. Effective monitoring thus requires accurate geologic characterization. Direct- current electrical-resistivity imaging successfully mapped geologic units controlling preferential transport at the ADRS. Direct sampling of water from the unsaturated zone is complex and time consuming. Sampling plant water is an efficient alternative for mapping shallow tritium contamination.
Fast analysis of radionuclide decay chain migration
NASA Astrophysics Data System (ADS)
Chen, J. S.; Liang, C. P.; Liu, C. W.; Li, L.
2014-12-01
A novel tool for rapidly predicting the long-term plume behavior of an arbitrary length radionuclide decay chain is presented in this study. This fast tool is achieved based on generalized analytical solutions in compact format derived for a set of two-dimensional advection-dispersion equations coupled with sequential first-order decay reactions in groundwater system. The performance of the developed tool is evaluated by a numerical model using a Laplace transform finite difference scheme. The results of performance evaluation indicate that the developed model is robust and accurate. The developed model is then used to fast understand the transport behavior of a four-member radionuclide decay chain. Results show that the plume extents and concentration levels of any target radionuclide are very sensitive to longitudinal, transverse dispersion, decay rate constant and retardation factor. The developed model are useful tools for rapidly assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.
Bedinger, M.S.; Sargent, Kenneth A.; Reed, J.E.
1984-01-01
The U.S. Geological Survey's program for geologic and hydrologic evaluation of physiographic provinces to identify areas potentially suitable for locating repository sites for disposal of high-level nuclear wastes was announced to the Governors of the eight States in the Basin and Range Province on May 5, 1981. Representatives of Arizona, California, Idaho, New Mexico, Nevada, Oregon, Texas, and Utah, were invited to cooperate with the Federal Government in the evaluation process. Each Governor was requested to nominate an Earth scientist to represent the State in a province working group composed of State and U.S. Geological Survey representatives. This report, Part I of a three-part report, provides the background, introduction and scope of the study. This part also includes a discussion of geologic and hydrologic guidelines that will be used in the evaluation process and illustrates geohydrologic environments and the effect of individual factors in providing multiple natural barriers to radionuclide migration.Part II is a reconnaissance characterization of the geologic and hydrologic factors to be used in the initial screening of the Basin and Range Province. Part III will be the initial evaluation of the Province and will identify regions that appear suitable for further study.The plan for study of the Province includes a stepwise screening process by which successively smaller land units are considered in increasing detail. Each step involves characterization of the geology and hydrology and selection of subunits for more intensive characterization. Selection of subunits for further study is by evaluation of geologic and hydrologic conditions following a set of guidelines. By representation on the Province Working Group, the States participate in a consultation and review role in: (1) Establishing geologic and hydrologic guidelines, and (2) characterizing and evaluating the Province. The States also participate in compilation of geologic and hydrologic data used in characterizing the Province.The current (1983) needs for a high-level radioactive waste repository include: (1) Disposal in a mined repository; (2) retrievability of the waste for as much as 50 years; and (3) confidence of isolation of the waste from the accessible environment. Isolation of the waste needs to be assured using geologic and hydrologic conditions that: (1) Minimize risk of inadvertent future intrusions by man; (2) minimize the possibility of disturbance by processes that would expose the waste or increase its mobility; and (3) provide a system of natural barriers to the migration of waste by ground water. The guidelines adopted by the Province Working Group are designed to provide a standard with which these conditions can be compared.The guidelines can be grouped into four principal categories: (1) Potential host media, (2) ground-water conditions, (3) tectonic conditions, and. (4) occurrence of natural resources. Ideally the host medium constitutes the first natural barrier to migration of radionculides. The host medium ideally should be a rock type that prevents or retards dissolution and transport of radionuclides. Rocks in both the saturated and unsaturated zones may have desirable characteristics for host media. Rocks-other than the host-in the ground-water flow path from the repository ideally should be major barriers to radionuclide migration. Confining beds of low permeability might be present to retard the rate of flow between more permeable beds. Additionally, sorption of radionuclides by materials such as clays and zeolites in the flow path can further retard the flow of radionuclides by several orders of magnitude. Tectonic conditions in an area should not present a probable cause for exhumation or increased mobility of radioactive waste. Natural resources are a factor for consideration because of the problem of future human intrusion and exposure to radioactivity in the quest for minerals, oil, gas, water, and geothermal resources.The ultimate evaluation of the suitability of a geohydrologic environment for developing a mined repository needs to assess all geologic and hydrologic characteristics and their interaction in providing confidence that a geohydrologic environment will effectively isolate radionuclides from human access. Several hypothetical settings with typical geohydrologic conditions in the Basin and Range Province are used to illustrate the effect of multiple barriers in the isolation of radionuclides.
Filonova, A A; Seregin, V A
2014-01-01
For obtaining the integral information about the current radiation situation in the sea offshore waters of the temporary waste storage facility (TWSF) of the Northwest Center for Radioactive Waste Management "SevRAO" in the Andreeva Bay and in the settle Gremikha with a purpose of a comprehensive assessment of its condition there was performed radiation-ecological monitoring of the adjacent sea offshore waters of the TWSF. It was shown that in the territory of industrial sites of the TWSF as a result of industrial activity there are localized areas of pollution by man-made radionuclides. As a result of leaching of radionuclides by tidal stream, snowmelt and rainwater radioactive contamination extends beyond the territory of the sanitary protection zone and to the coastal sea offshore waters. To confirm the coastal pollution of the sea offshore waters the levels of mobility of 90Sr and 137Cs in environmental chains and bond strength of them with the soil and benthal deposits were clarified by determining with the method of detection of the forms of the presence of radionuclides in these media. There was established a high mobility of 137Cs and 90Sr in soils and benthal deposits (desorption coefficient (Kd) of 137Cs and 90Sr (in soils - 0.56 and 0.98), in the sediments - 0.82). The migration of radionuclides in environmental chains can lead to the contamination of the environment, including the sea offshore waters.
NASA Astrophysics Data System (ADS)
Boryta, J. R.; Wolfsberg, A. V.
2003-12-01
The Nevada Test Site (NTS) is the United States continental nuclear weapons testing site. The larger underground tests, including BENHAM and TYBO, were conducted at Pahute Mesa. The BENHAM test, conducted in 1968, was detonated 1.4 km below the surface and the TYBO test, conducted in 1975, was detonated at a depth of 765 m. Between 1996 and 1998, several radionuclides were discovered in trace concentrations in a monitoring well complex 273 m from TYBO and 1300 m from BENHAM. Previous studies associated with these measurements have focused primarily on a) plutonium discovered in the observation wells, which was identified through isotopic finger printing as originating at BENHAM, b) colloid-facilitated plutonium transport processes, and c) vertical convection in subsurface nuclear test collapse chimneys. In addition to plutonium, several other non-, weakly-, and strongly-sorbing radionuclides were discovered in trace concentrations in the observation wells, including tritium, carbon-14, chlorine-36, iodine-129, technetium-99, neptunium-237, strontium-90, cesium-137, americium-241, and europium-152,154,155. The range in retardation processes affecting these different radionuclides provides additional information for assessing groundwater solute transport model formulations. For all radionuclides, simulation results are most sensitive to the fracture porosity and fracture aperture. Additionally, for weakly sorbing Np, simulation results are highly sensitive to the matrix sorption coefficient. For strongly sorbing species, migration in the absence of colloids can only be simulated if fracture apertures are set very large, reducing the amount of diffusion that can occur. For these species, colloid-facilitated transport appears to be a more likely explanation for the measurements. This is corroborated with colloid-transport model simulations.
Arai, Takaomi
2014-01-01
The disabling of the Fukushima Daiichi Nuclear Power Plant (F1NPP) resulted in the release of radionuclides, including 134Cs and 137Cs, into the air and the ocean. The unpredicted nuclear accident is of global concern for human health and the ecosystem. Although investigations of radionuclides in environments were performed shortly after the accident started, the temporal and spatial impacts and fluctuations on the releasing radionuclides to natural environment remain unclear. I focused on salmon, which migrate from inland to the open ocean globally, to reveal the three-year (May 2011 to February 2014) fluctuations and accumulations of 134Cs and 137Cs from terrestrial to open ocean environments after the F1NPP accident. The 134Cs and 137Cs concentrations in six salmonids exhibited lower temporal variations for three years after the F1NPP accident, suggesting that these radionuclides are widely distributed and these radionuclides remain in the natural environment globally with less convergence. The accumulation patterns were significantly different among the different salmon species. Fluvial (freshwater residence) type salmons exhibited significantly higher accumulation in 134Cs (25.3-40.2 Bq kg(-1) in mean) and 137Cs (41.4-51.7 Bq kg(-1) in mean) than did the anadromous (sea-run) type salmons (0.64-8.03 Bq kg(-1) in mean 134Cs and 0.42-10.2 Bq kg(-1) in mean 137Cs) suggesting widespread contamination in terrestrial environments versus the coastal and open ocean environments. Salmonids are the most highly migratory animals and are characterised by their strong tendency to return home to their natal site for reproduction. Salmonids have a potential to be a good indicator as an effective monitoring animal.
The role of organic complexants and microparticulates in the facilitated transport of radionuclides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schilk, A.J.; Robertson, D.E.; Abel, K.H.
1996-12-01
This progress report describes the results of ongoing radiological and geochemical investigations of the mechanisms of radionuclide transport in groundwater at two low-level waste (LLW) disposal sites within the waste management area of the Chalk River Laboratories (CRL), Ontario, Canada. These sites, the Chemical Pit liquid disposal facility and the Waste Management Area C solid LLW disposal site, have provided valuable 30- to 40-year-old field locations for characterizing the migration of radionuclides and evaluating a number of recent site performance objectives for LLW disposal facilities. This information will aid the NRC and other federal, state, and local regulators, as wellmore » as LLW disposal site developers and waste generators, in maximizing the effectiveness of existing or projected LLW disposal facilities for isolating radionuclides from the general public and thereby improving the health and safety aspects of LLW disposal.« less
Ochs, M.; Davis, J.A.; Olin, M.; Payne, T.E.; Tweed, C.J.; Askarieh, M.M.; Altmann, S.
2006-01-01
For the safe final disposal and/or long-term storage of radioactive wastes, deep or near-surface underground repositories are being considered world-wide. A central safety feature is the prevention, or sufficient retardation, of radionuclide (RN) migration to the biosphere. To this end, radionuclide sorption is one of the most important processes. Decreasing the uncertainty in radionuclide sorption may contribute significantly to reducing the overall uncertainty of a performance assessment (PA). For PA, sorption is typically characterised by distribution coefficients (Kd values). The conditional nature of Kd requires different estimates of this parameter for each set of geochemical conditions of potential relevance in a RN's migration pathway. As it is not feasible to measure sorption for every set of conditions, the derivation of Kd for PA must rely on data derived from representative model systems. As a result, uncertainty in Kd is largely caused by the need to derive values for conditions not explicitly addressed in experiments. The recently concluded NEA Sorption Project [1] showed that thermodynamic sorption models (TSMs) are uniquely suited to derive K d as a function of conditions, because they allow a direct coupling of sorption with variable solution chemistry and mineralogy in a thermodynamic framework. The results of the project enable assessment of the suitability of various TSM approaches for PA-relevant applications as well as of the potential and limitations of TSMs to model RN sorption in complex systems. ?? by Oldenbourg Wissenschaftsverlag.
Radionuclide inventories for the F- and H-area seepage basin groundwater plumes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiergesell, Robert A; Kubilius, Walter P.
2016-05-01
Within the General Separations Areas (GSA) at the Savannah River Site (SRS), significant inventories of radionuclides exist within two major groundwater contamination plumes that are emanating from the F- and H-Area seepage basins. These radionuclides are moving slowly with groundwater migration, albeit more slowly due to interaction with the soil and aquifer matrix material. The purpose of this investigation is to quantify the activity of radionuclides associated with the pore water component of the groundwater plumes. The scope of this effort included evaluation of all groundwater sample analyses obtained from the wells that have been established by the Environmental Compliancemore » & Area Completion Projects (EC&ACP) Department at SRS to monitor groundwater contamination emanating from the F- and H-Area Seepage Basins. Using this data, generalized groundwater plume maps for the radionuclides that occur in elevated concentrations (Am-241, Cm-243/244, Cs-137, I-129, Ni-63, Ra-226/228, Sr-90, Tc-99, U-233/234, U-235 and U-238) were generated and utilized to calculate both the volume of contaminated groundwater and the representative concentration of each radionuclide associated with different plume concentration zones.« less
Advanced Polymer Technology for Containing and Immobilizing Strontium-90 in the Subsurface - 8361
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. Baker; G. Heath; C. Scott
2008-02-01
Many Department of Energy (DOE) sites, including Idaho and Hanford, have heavy metals and/or radionuclides (e.g. strontium-90) present that are strongly adsorbed in the vadose zone, but which nevertheless are propagating toward the water table. A key challenge for immobilization of these contaminants is bringing the chosen amendment or remediation technology into contact with the contaminated porous medium, while ensuring that contaminated water and colloids do not escape. This is particularly challenging when the subsurface geology is complex and highly heterogeneous, as is the case at many DOE sites. The Idaho National Laboratory (INL) in collaboration with the University ofmore » Texas at Austin (UT) has conducted research sponsored through the DOE Office of Environmental Management (EM) Advanced Remediation Technologies Phase I program that successfully demonstrated application of a novel, pH-triggered advanced polymer for creating a physical barrier that prevents heavy metals and radionuclides in vadose zone soil and soil-pore water from migrating to the groundwater. The focus of this paper is on the column and sandbox experiments conducted by researchers at the Idaho National Laboratory in support of the Phase I program objectives. Proof of these concepts provides a technology basis for confining or isolating a volume of contaminated groundwater, to be implemented in future investigations at the Vadose Zone Research Park (VZRP) at INL.« less
Santschi, P. H.; Xu, C.; Zhang, S.; ...
2017-03-09
Among the key environmental factors influencing the fate and transport of radionuclides in the environment is natural organic matter (NOM). While this has been known for decades, there still remains great uncertainty in predicting NOM-radionuclide interactions because of lack of understanding of radionuclide interactions with the specific organic moieties within NOM. Furthermore, radionuclide-NOM studies conducted using modelled organic compounds or elevated radionuclide concentrations provide compromised information related to true environmental conditions. Thus, sensitive techniques are required not only for the detection of radionuclides, and their different species, at ambient and/or far-field concentrations, but also for potential trace organic compounds thatmore » are chemically binding these radionuclides. GC-MS and AMS techniques developed in our lab are reviewed in this paper that aim to assess how two radionuclides, iodine and plutonium, form strong bonds with NOM by entirely different mechanisms; iodine tends to bind to aromatic functionalities, whereas plutonium binds to N-containing hydroxamate siderophores at ambient concentrations. While low-level measurements are a prerequisite for assessing iodine and plutonium migration at nuclear waste sites and as environmental tracers, it is necessary to determine their in-situ speciation, which ultimately controls their mobility and transport in natural environments. Finally and more importantly, advanced molecular-level instrumentation (e.g., nuclear magnetic resonance (NMR) and Fourier-transform ion cyclotron resonance coupled with electrospray ionization (ESI-FTICRMS) were applied to resolve either directly or indirectly the molecular environments in which the radionuclides are associated with the NOM.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santschi, P. H.; Xu, C.; Zhang, S.
Among the key environmental factors influencing the fate and transport of radionuclides in the environment is natural organic matter (NOM). While this has been known for decades, there still remains great uncertainty in predicting NOM-radionuclide interactions because of lack of understanding of radionuclide interactions with the specific organic moieties within NOM. Furthermore, radionuclide-NOM studies conducted using modelled organic compounds or elevated radionuclide concentrations provide compromised information related to true environmental conditions. Thus, sensitive techniques are required not only for the detection of radionuclides, and their different species, at ambient and/or far-field concentrations, but also for potential trace organic compounds thatmore » are chemically binding these radionuclides. GC-MS and AMS techniques developed in our lab are reviewed in this paper that aim to assess how two radionuclides, iodine and plutonium, form strong bonds with NOM by entirely different mechanisms; iodine tends to bind to aromatic functionalities, whereas plutonium binds to N-containing hydroxamate siderophores at ambient concentrations. While low-level measurements are a prerequisite for assessing iodine and plutonium migration at nuclear waste sites and as environmental tracers, it is necessary to determine their in-situ speciation, which ultimately controls their mobility and transport in natural environments. Finally and more importantly, advanced molecular-level instrumentation (e.g., nuclear magnetic resonance (NMR) and Fourier-transform ion cyclotron resonance coupled with electrospray ionization (ESI-FTICRMS) were applied to resolve either directly or indirectly the molecular environments in which the radionuclides are associated with the NOM.« less
Problems in shallow land disposal of solid low-level radioactive waste in the united states
Stevens, P.R.; DeBuchananne, G.D.
1976-01-01
Disposal of solid low-level wastes containing radionuclides by burial in shallow trenches was initiated during World War II at several sites as a method of protecting personnel from radiation and isolating the radionuclides from the hydrosphere and biosphere. Today, there are 11 principal shallow-land burial sites in the United States that contain a total of more than 1.4 million cubic meters of solid wastes contaminated with a wide variety of radionuclides. Criteria for burial sites have been few and generalized and have contained only minimal hydrogeologic considerations. Waste-management practices have included the burial of small quantities of long-lived radionuclides with large volumes of wastes contaminated with shorter-lived nuclides at the same site, thereby requiring an assurance of extremely long-time containment for the entire disposal site. Studies at 4 of the 11 sites have documented the migration of radionuclides. Other sites are being studied for evidence of containment failure. Conditions at the 4 sites are summarized. In each documented instance of containment failure, ground water has probably been the medium of transport. Migrating radionuclides that have been identified include90Sr,137Cs,106Ru,239Pu,125Sb,60Co, and3H. Shallow land burial of solid wastes containing radionuclides can be a viable practice only if a specific site satisfies adequate hydrogeologic criteria. Suggested hydrogeologic criteria and the types of hydrogeologic data necessary for an adequate evaluation of proposed burial sites are given. It is mandatory that a concomitant inventory and classification be made of the longevity, and the physical and chemical form of the waste nuclides to be buried, in order that the anticipated waste types can be matched to the containment capability of the proposed sites. Ongoing field investigations at existing sites will provide data needed to improve containment at these sites and help develop hydrogeologic criteria for new sites. These studies have necessitated the development of special drilling, sampling, well construction, and testing techniques. A recent development in borehole geophysical techniques is downhole spectral gammaray analysis which not only locates but identifies specific radionuclides in the subsurface. Field investigations are being supplemented by laboratory studies of the hydrochemistry of the transuranic elements, the kinetics of solid-liquid phase interactions, and the potential complexing of radionuclides with organic compounds and solvents which mobilize normally highly sorbable nuclides. Theoretical studies of digital predictive solute transport models are being implemented to assure their availability for application to problems and processes identified in the field and laboratory. ?? 1976 International Association of Engineering Geology.
Radionuclide Migration through Sediment and Concrete: 16 Years of Investigations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golovich, Elizabeth C.; Mattigod, Shas V.; Snyder, Michelle MV
The Waste Management Project provides safe, compliant, and cost-effective waste management services for the Hanford Site and the U.S. Department of Energy (DOE) complex. Part of these services includes safe disposal of low-level waste and mixed low-level waste at the Hanford Low-Level Waste Burial Grounds in accordance with the requirements of DOE Order 435.1, Radioactive Waste Management. To partially satisfy these requirements, performance assessment analyses were completed and approved. DOE Order 435.1 also requires continuing data collection to increase confidence in the critical assumptions used in these analyses to characterize the operational features of the disposal facility that are reliedmore » on to satisfy the performance objectives identified in the order. Cement-based solidification and stabilization is considered for hazardous waste disposal because it is easily done and cost-efficient. One critical assumption is that concrete will be used as a waste form or container material at the Hanford Site to control and minimize the release of radionuclide constituents in waste into the surrounding environment. Concrete encasement would contain and isolate the waste packages from the hydrologic environment and act as an intrusion barrier. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The radionuclides iodine-129, selenium-75, technetium-99, and uranium-238 have been identified as long-term dose contributors (Mann et al. 2001; Wood et al. 1995). Because of their anionic nature in aqueous solutions, these constituents of potential concern may be released from the encased concrete by mass flow and/or diffusion and migrate into the surrounding subsurface environment (Serne et al. 1989; 1992; 1993a, b; 1995). Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. Each of the test methods performed throughout the lifetime of the project has focused on different aspects of the concrete waste form weathering process. Diffusion of different analytes [technetium-99 (Tc-99), iodine-125 (I-125), stable iodine (I), uranium (U), and rhenium (Re)] has been quantified from experiments under both saturated and unsaturated conditions. The water-saturated conditions provide a conservative estimate of the concrete’s performance in situ, and the unsaturated conditions provide a more accurate estimate of the diffusion of contaminants from the concrete.« less
National low-level waste management program radionuclide report series, Volume 15: Uranium-238
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, J.P.
1995-09-01
This report, Volume 15 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of uranium-238 ({sup 238}U). The purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to state representatives and developers of low-level radioactive waste disposal facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the waste disposal facility environment. This report also includes discussions about waste types and forms in which {sup 238}U can be found, and {sup 238}U behavior in the environment and in the human body.
Primary calibrations of radionuclide solutions and sources for the EML quality assessment program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisenne, I.M.
1993-12-31
The quality assurance procedures established for the operation of the U.S. Department of Energy`s Environmental Measurements Laboratory (DOE-EML`s) Quality Assessment Program (QAP) are essentially the same as those that are in effect for any EML program involving radiometric measurements. All these programs have at their core the use of radionuclide standards for their instrument calibration. This paper focuses on EML`s approach to the acquisition, calibration and application of a wide range of radionuclide sources that are required to meet its programmatic needs.
Fismes, Joëlle; Echevarria, Guillaume; Leclerc-Cessac, Elisabeth; Morel, Jean Louis
2005-01-01
Knowledge of radionuclide or trace element retention and translocation to plants following an aerial contamination event, for example, sprinkling with contaminated water, is necessary for the evaluation of human exposure through consumption of contaminated vegetables. The fate of 63Ni and 109Cd in all plant parts of three different vegetables after wet deposition on leaves or on fruits was studied. Lettuce (Lactuca sativa L.), radish (Raphanus sativus L.), and bean (Phaseolus vulgaris L.) grown under controlled conditions in a growth chamber were contaminated with 63Ni and 109Cd either on leaves, by means of two different contamination methods (a single early contamination and a repetitive one), or on bean husks (third contamination method: a single contamination at a late stage). Spiked and nonspiked organs were harvested at maturity and radionuclide contents were measured. The fraction retained was on average 56% of the initially administered doses of 63Ni and 87% of 109Cd. The leaf-to-other organ translocation factor was considerably higher for 63Ni (on average 43% of retained radioactivity) than for 109Cd (8%). Nickel-63 migrated throughout the whole plant following foliar contamination, and mainly toward young leaves, seeds in formation, and sink organs, whereas 109Cd migrated to a much lesser extent and only to the organs that were closest to the spiked one, and not at all into fruit. After a fruit contamination event, both radionuclides were translocated into the seeds of spiked fruits. Radionuclide retention and translocation were not affected by plant species, but principally by the type of organ contaminated.
NASA Astrophysics Data System (ADS)
Wieland, E.; Bradbury, M. H.; van Loon, L.
2003-01-01
The migration of radionuclides within a repository for radioactive waste is retarded due to interaction with the engineered barrier system. Sorption processes play a decisive role in the retardation of radionuclides in the repository environment, and thus, the development of sorption data bases (SDBs) is an important task and an integral part of performance assessment. The methodology applied in the development of a SDB for the cementitious near-field of a repository for long-lived intermediate-level waste is presented in this study. The development of such a SDB requires knowledge of the chemical conditions of the near-field and information on the uptake process of radionuclides by hardened cement paste. The principles upon which the selection of the “best available” laboratory sorption values is based are outlined. The influence of cellulose degradation products, cement additives and cement-derived colloids on the sorption behaviour of radionuclides is addressed in conjunction with the development of the SDB.
Diffusion of Radionuclides in Concrete and Soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.
2012-04-25
One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Such concrete encasement would contain and isolate the waste packages from the hydrologic environment and would act as an intrusion barrier. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion and move into the surrounding subsurface environment. Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability ofmore » the surrounding soil to retard radionuclide migration. The objective of our study was to measure the diffusivity of Re, Tc and I in concrete containment and the surrounding vadose zone soil. Effects of carbonation, presence of metallic iron, and fracturing of concrete and the varying moisture contents in soil on the diffusivities of Tc and I were evaluated.« less
Phosphate-Mediated Remediation of Metals and Radionuclides
Martinez, Robert J.; Beazley, Melanie J.; Sobecky, Patricia A.
2014-01-01
Worldwide industrialization activities create vast amounts of organic and inorganic waste streams that frequently result in significant soil and groundwater contamination. Metals and radionuclides are of particular concern due to their mobility and long-term persistence in aquatic and terrestrial environments. As the global population increases, the demand for safe, contaminant-free soil and groundwater will increase as will the need for effective and inexpensive remediation strategies. Remediation strategies that include physical and chemical methods (i.e., abiotic) or biological activities have been shown to impede the migration of radionuclide and metal contaminants within soil and groundwater. However, abiotic remediation methods are oftenmore » too costly owing to the quantities and volumes of soils and/or groundwater requiring treatment. The in situ sequestration of metals and radionuclides mediated by biological activities associated with microbial phosphorus metabolism is a promising and less costly addition to our existing remediation methods. This review highlights the current strategies for abiotic and microbial phosphate-mediated techniques for uranium and metal remediation.« less
Assessing Natural Radionuclide Migration in the Legacy Tailings of Uranium Production
NASA Astrophysics Data System (ADS)
Bondarenko, G.; Koliabina, I.; Marinich, O.
2011-12-01
The former Prydniprovsky Chemical Plant in Dniprodzerzhynsk, Ukraine, processed uranium ore from 1949 until 1991. Multiple tailing ponds containing solid residual waste products from the uranium leaching and processing of uranium were accumulated along the Dnieper River, including the largest, adjacent to the Dnieper Reservoir, containing over 12 million tons of tailings. Samples for this study were selected from a core recovered from the Dnieper tailing pit in 2009, and used to assess radionuclide migration from tailing ponds. Samples were selected from different depths of the tailing pit core, analyzed for total radionuclide concentrations [Marinich et al., 2009], and successively leached using distilled water, followed by 1N ammonium acetate solution, and finally by 1N HCl solution. Leaching times were ~24 h at 15.17 °C. 238U, 230Th and 226Ra leachate activities were measured by γ-spectrometry with a Ge(Li) detector. 210Pb activity was measured using a SEB-01 scintillation β-spectrometer. Errors depended on measuring method, radionuclide, activity and exposure time: 238U, 11.9%; 230Th, 10.9%; 226Ra, 9.3%; 210Pb ~30%. The average total 238U activity in the tailing profile was 4 Bq/g. The concentration of 238U in the water leachates increased with depth from 14.5% (7-7.5 m), to 43% (11-11.5 m). The concentration of 238U in the acid leachates behaved similarly, increasing from 5.5 % to 15.5% with depth. While the total 230Th activity in increased from 30 Bq/g (7-7.5 m) to 540 Bq/g (11-11.5 m), the 230Th concentration in ammonium acetate leachates decreased from ˜15% to ˜1%. The concentration of 226Ra in all leachates was <1%, indicating that, under conditions of the Dnieper tailing pit, 226Ra is essentially immobile. The concentration of 210Pb in the leachates was as high as 10%. In general, the magnitude of mobile activity from the Dnieper tailing pit core samples decreases in the order 238U>230Th≥210Pb> 226Ra. Secular radioactive equilibrium in the 238U - 230Th - 226Ra - 210Pb decay chain, typical for closed systems, has been disturbed during selective chemical uranium extraction from the parent ore. We calculated the migration of 210Pb, assuming constant 226Ra activity. The results of these calculations show that over 50 years, ~18% of the initial (unknown) 210Pb(0) activity was removed. If we assume removal of 226Ra decay products will continue at the current level, we expect the future annual activity loss of 210Pb to be about 0.36% per year, or 0.072 Bq/g. Assuming the examined core sample is representative of all 12 million tons of tails, the total annual activity loss is estimated to be ~1012 Bq/year. These results allow us to conclude that the loss of activity from the tailing pit by water migration is mainly associated with the 226Ra decay products: 222Rn, 210Pb, 210Po.
Activity ratios, Dnieper tailings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glucksberg, Nadia; Peters, Jay
The Conceptual Site Model (CSM) is a powerful tool for understanding the link between contamination sources, cleanup objectives, and ultimate site reuse. The CSM describes the site setting, geology, hydrogeology, potential sources, release mechanisms and migration pathways of contaminants. The CSM is needed to understand the extent of contamination and how receptors may be exposed to both radiological and chemical constituents. A key component of the CSM that is often overlooked concerns how the regulatory requirements drive remediation and how each has to be integrated into the CSM to ensure that all stakeholder requirements are understood and addressed. This papermore » describes how the use of the CSM helped reach closure and reuse at two facilities in Connecticut that are pursuing termination of their Nuclear Regulatory Commission (NRC) license. The two facilities are the Combustion Engineering Site, located in Windsor, Connecticut, (CE Windsor Site) and the Connecticut Yankee Atomic Power Company, located in Haddam Neck, Connecticut (CYAPCO). The closure of each of these facilities is regulated by four agencies: - Nuclear Regulatory Commission (NRC) - which requires cleanup levels for radionuclides to be protective of public health; - US Environmental Protection Agency (USEPA) - which requires cleanup levels for chemicals to be protective of public health and the environment; - Connecticut Department of Environmental Protection (CTDEP) Bureau of Air Management, Radiation Division - which requires cleanup levels for radionuclides to be protective of public health; and - Connecticut Department of Environmental Protection (CTDEP) Bureau of Water Protection and Land Reuse - which requires cleanup levels for chemicals to be protective of public health and the environment. Some of the radionuclides at the CE Windsor Site are also regulated under the Formerly Utilized Site Remedial Action Program (FUSRAP) under the Army Corps of Engineers. The remainder of this paper presents the similarities and differences between the CSMs for these two sites and how each site used the CSM to reach closure. Although each of these site have unique histories and physical features, the CSM approach was used to understand the geology, hydrogeology, migration and exposure pathways, and regulatory requirements to successfully characterize and plan closure of the sites. A summary of how these attributes affected site closure is provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawloski, G A; Tompson, A F B; Carle, S F
The objectives of this report are to develop, summarize, and interpret a series of detailed unclassified simulations that forecast the nature and extent of radionuclide release and near-field migration in groundwater away from the CHESHIRE underground nuclear test at Pahute Mesa at the NTS over 1000 yrs. Collectively, these results are called the CHESHIRE Hydrologic Source Term (HST). The CHESHIRE underground nuclear test was one of 76 underground nuclear tests that were fired below or within 100 m of the water table between 1965 and 1992 in Areas 19 and 20 of the NTS. These areas now comprise the Pahutemore » Mesa Corrective Action Unit (CAU) for which a separate subregional scale flow and transport model is being developed by the UGTA Project to forecast the larger-scale migration of radionuclides from underground tests on Pahute Mesa. The current simulations are being developed, on one hand, to more fully understand the complex coupled processes involved in radionuclide migration, with a specific focus on the CHESHIRE test. While remaining unclassified, they are as site specific as possible and involve a level of modeling detail that is commensurate with the most fundamental processes, conservative assumptions, and representative data sets available. However, the simulation results are also being developed so that they may be simplified and interpreted for use as a source term boundary condition at the CHESHIRE location in the Pahute Mesa CAU model. In addition, the processes of simplification and interpretation will provide generalized insight as to how the source term behavior at other tests may be considered or otherwise represented in the Pahute Mesa CAU model.« less
Geochemical effects on the behavior of LLW radionuclides in soil/groundwater environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krupka, K.M.; Sterne, R.J.
1995-12-31
Assessing the migration potential of radionuclides leached from low-level radioactive waste (LLW) and decommissioning sites necessitates information on the effects of sorption and precipitation on the concentrations of dissolved radionuclides. Such an assessment requires that the geochemical processes of aqueous speciation, complexation, oxidation/reduction, and ion exchange be taken into account. The Pacific Northwest National Laboratory (PNNL) is providing technical support to the U.S. Nuclear Regulatory Commission (NRC) for defining the solubility and sorption behavior of radionuclides in soil/ground-water environments associated with engineered cementitious LLW disposal systems and decommissioning sites. Geochemical modeling is being used to predict solubility limits for radionuclidesmore » under geochemical conditions associated with these environments. The solubility limits are being used as maximum concentration limits in performance assessment calculations describing the release of contaminants from waste sources. Available data were compiled regarding the sorption potential of radionuclides onto {open_quotes}fresh{close_quotes} cement/concrete where the expected pH of the cement pore waters will equal to or exceed 10. Based on information gleaned from the literature, a list of preferred minimum distribution coefficients (Kd`s) was developed for these radionuclides. The K{sub d} values are specific to the chemical environments associated with the evolution of the compositions of cement/concrete pore waters.« less
Investigation of radionuclides and anthropic tracer migration in groundwater at the Chernobyl site
NASA Astrophysics Data System (ADS)
Le Gal La Salle, Corinnne; Simonucci, Caroline; Roux, Céline; Bugai, Dmitry; Aquilina, Luc; Fourré, Elise; Jean-Baptiste, Philippe; Labasque, Thierry; Michelot, Jean-Luc; Fifield, Keith; Team Aster Team; Van Meir, Nathalie; Kashparov, Valeriy; Diez, Olivier; Bassot, Sylvain; Lancelot, Joel
2013-04-01
Following the reactor 4 explosion of the Chernobyl Nuclear Power Plant (ChNPP), at least 1019 Bq of radionuclides (RN) were released in the environment. In order to protect workers and prevent further atmospheric RN dispersion in the area adjacent to the ChNPP, contaminated wastes including fuel particles, topsoil layer and forest remains were buried in approximately 800 shallow trenches in the sand formation in the Red Forest waste dump site [1]. No containment measures were taken, and since then RN have leaked to the unsaturated zone and to the groundwater. Since 1999, migration of RN in the vicinity of the trench 22 at Red Forest site has been investigated within the frame of the EPIC program carried out by IRSN in collaboration with UIAR and IGS [2, 3]. A plume of 90Sr was shown downgradient from the trench 22 with activites reaching 3750 Bq/L [2]. In 2008, further studies were initiated through the TRASSE research group, based on a collaboration between IRSN and CNRS. These programs aim at combining groundwater dating with RN migration monitoring studies in order to constrain RN transport models [3]. Groundwater residence time was investigated based on 3H/He and CFC. Both tracers led to ages ranging from modern (1-3 y) at 2 m depth below the groundwater table to significantly higher apparent ages of 50-60 y at 27 m below the groundwater table [3]. 36Cl/Cl ratios 2 to 4 orders of magnitude higher than the theoretical natural ratio are measured in groundwater. Similarly, SF6 shows concentrations as high as 1200 pptv while natural concentrations are in the order of 6-7 pptv. Based on apparent groundwater ages, both contaminations are linked to the Chernobyl explosion. Hence those tracers show excellent potential to constrain conservative and reactive transport, respectively. In contrast, 238U/235U ratio down gradient from trench 22 remains similar to the natural ratio. This suggests that either most of the U contained in the trench is in a non soluble form, associated with U-Zr matrix fuel particles [5] and/or that migration of U is limited due to redox processes and/or microbial activity. The above described experience of post-Chernobyl studies shows that a combined analysis of radionuclides, natural and anthropogenic tracers provides an efficient research tool to better understand and quantify contaminant transport processes in the geo-sphere. Similar approaches can be applied to the study transport of RN in the subsurface, issued from both, diffuse (contaminated watersheds) and point (damaged NPP and fuel storage units) radioactive sources produced by the Fukushima accident. References [1] Dzhepo S. P., Skalskyy A., 2002, In Chernobyl disaster and groundwater, Shestopalov, V., Ed. A.A. Balkema: Lisse, pp 25-70. [2] Dewiere L., Bugai D. et al., 2004, J. Environ. Radioactiv., 74, (1-3), 139-150. [3] Van Meir N., Bugaï, et al., 2009, in: Oughton, D.H., Kashparov, V. (Eds.), Radioactive Particles in the Environment. Springer Science+Business Media B.V., pp.197-208. [4] Le Gal La Salle C., Aquilina L., et al., 2012, Appl. Geochem., 27 1304-1319. [5] Kashparov V.A., Ahamdach N., et. al., 2004, J. Environ. Radioactiv., 72, 335-353.
Naftz, David L.; Ranalli, Anthony J.; Rowland, Ryan C.; Marston, Thomas M.
2011-01-01
In 2007, the Ute Mountain Ute Tribe requested that the U.S. Environmental Protection Agency and U.S. Geological Survey conduct an independent evaluation of potential offsite migration of radionuclides and selected trace elements associated with the ore storage and milling process at an active uranium mill site near White Mesa, Utah. Specific objectives of this study were (1) to determine recharge sources and residence times of groundwater surrounding the mill site, (2) to determine the current concentrations of uranium and associated trace elements in groundwater surrounding the mill site, (3) to differentiate natural and anthropogenic contaminant sources to groundwater resources surrounding the mill site, (4) to assess the solubility and potential for offsite transport of uranium-bearing minerals in groundwater surrounding the mill site, and (5) to use stream sediment and plant material samples from areas surrounding the mill site to identify potential areas of offsite contamination and likely contaminant sources.
Plutonium Particle Migration in the Shallow Vadose Zone: The Nevada Test Site as an Analog Site
NASA Astrophysics Data System (ADS)
Hunt, J. R.; Smith, D. K.
2004-12-01
The upper meter of the vadose zone in desert environments is the horizon where wastes have been released and human exposure is determined through dermal, inhalation, and food uptake pathways. This region is also characterized by numerous coupled processes that determine contaminant transport, including precipitation infiltration, evapotranspiration, daily and annual temperature cycling, dust resuspension, animal burrowing, and geochemical weathering reactions. While there is considerable interest in colloidal transport of minerals, pathogenic organisms, and contaminants in the vadose zone, there are limited field sites where the actual occurrence of contaminant migration can be quantified over the appropriate spatial and temporal scales of interest. At the US Department of Energy Nevada Test Site, there have been numerous releases of radionuclides since the 1950's that have become field-scale tracer tests. One series of tests was the four safety shots conducted in an alluvial valley of Area 11 in the 1950's. These experiments tested the ability of nuclear materials to survive chemical explosions without initiating fission reactions. Four above-ground tests were conducted and they released plutonium and uranium on the desert valley floor with only one of the tests undergoing some fission. Shortly after the tests, the sites were surveyed for radionuclide distribution on the land surface using aerial surveys and with depth. Additional studies were conducted in the 1970's to better understand the fate of plutonium in the desert that included studies of depth distribution and dust resuspension. More recently, plutonium particle distribution in the soil profile was detected using autoradiography. The results to date demonstrate the vertical migration of plutonium particles to depths in excess of 30 cm in this arid vadose zone. While plutonium migration at the Nevada Test Site has been and continues to be a concern, these field experiments have become analog sites for the release of radiological materials potentially important to consequence management investigations. In particular, these 50-year old experiments with long and detailed site investigations under relative undisturbed conditions offer insights into transport pathways that must be represented in simulation models that evaluate responses to radiological dispersal devices (RDDs). A compilation of the available site characterization data suggests additional experimental and modeling programs that can ultimately quantify the fate of contaminant particles released at the soil surface.
Colloid facilitated transport of lanthanides through discrete fractures in chalk
NASA Astrophysics Data System (ADS)
Tran, Emily; Klein Ben-David, Ofra; Teutsch, Nadya; Weisbrod, Noam
2015-04-01
Geological disposal of high-level radioactive waste is the internationally agreed-upon, long term solution for the disposal of long lived radionuclides and spent fuel. Eventually, corrosion of the waste canisters may lead to leakage of their hazardous contents, and the radionuclides can ultimately make their way into groundwater and pose a threat to the biosphere. Engineered bentonite barriers placed around nuclear waste repositories are generally considered sufficient to impede the transport of radionuclides from their storage location to the groundwater. However, colloidal-sized mobile bentonite particles eroding from these barriers have come under investigation as a potential transport vector for radionuclides sorbed to them. In addition, the presence of organic matter in groundwater has been shown to additionally facilitate the uptake of radionuclides by the clay colloids. This study aims to evaluate the transport behaviors of radionuclides in colloid-facilitated transport through a fractured chalk matrix and under geochemical conditions representative of the Negev desert, Israel. Lanthanides are considered an acceptable substitute to actinides for research on radionuclide transportation due to their similar chemical behavior. In this study, the migration of Ce both with and without colloidal particles was explored and compared to the migration of a conservative tracer (bromide). Tracer solutions containing known concentrations of Ce, bentonite colloids, humic acid and bromide were prepared in a matrix solution containing salt concentrations representative of that of the average rain water found in the Negev. These solutions were then injected into a flow system constructed around a naturally fractured chalk core. Samples were analyzed for Ce and Br using ICP-MS, and colloid concentrations were determined using spectrophotographic analysis. Breakthrough curves comparing the rates of transportation of each tracer were obtained, allowing for comparison of transport rates and calculation of overall tracer recovery. Preliminary results suggest that mobility of Ce as a solute is negligible, and in experiments conducted without bentonite colloids, the 2% of the Ce that was recovered during the experiments travelled as "intrinsic" colloids in the form of Ce2(CO3)3-6H2O precipitate. However, the total recovery of the Ce increased to 9% when it was injected into the core in the presence of bentonite colloids and 13% when both bentonite and the carbonate precipitate colloids were injected. In addition, the maximum relative concentration (C/C0) of the Ce in the samples from the experiments conducted without bentonite colloids is about 0.002, whereas that of the experiments conducted in the presence of bentonite colloids reaches almost 0.2. This indicates that colloid presence does indeed markedly increase the mobility of radionuclides through fractured chalk matrices and should therefore be considered in models representing transport of radionuclide waste originating from nuclear repositories.
Theodorakis, Christopher W.; Bickham, John W.; Lamb, Trip; Medica, Philip A.; Lyne, T. Barrett
2001-01-01
We examined effects of radionuclide exposure at two atomic blast sites on kangaroo rats (Dipodomys merriami) at the Nevada Test Site, Nevada, USA, using genotoxicity and population genetic analyses. We assessed chromosome damage by micronucleus and flow cytometric assays and genetic variation by randomly amplified polymorphic DNA (RAPD) and mitochondrial DNA (mtDNA) analyses. The RAPD analysis showed no population structure, but mtDNA exhibited differentiation among and within populations. Genotoxicity effects were not observed when all individuals were analyzed. However, individuals with mtDNA haplotypes unique to the contaminated sites had greater chromosomal damage than contaminated-site individuals with haplotypes shared with reference sites. When interpopulation comparisons used individuals with unique haplotypes, one contaminated site had greater levels of chromosome damage than one or both of the reference sites. We hypothesize that shared-haplotype individuals are potential migrants and that unique-haplotype individuals are potential long-term residents. A parsimony approach was used to estimate the minimum number of migration events necessary to explain the haplotype distributions on a phylogenetic tree. The observed predominance of migration events into the contaminated sites supported our migration hypothesis. We conclude the atomic blast sites are ecological sinks and that immigration masks the genotoxic effects of radiation on the resident populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabaskas, David; Bucknor, Matthew; Jerden, James
2016-02-01
The development of an accurate and defensible mechanistic source term will be vital for the future licensing efforts of metal fuel, pool-type sodium fast reactors. To assist in the creation of a comprehensive mechanistic source term, the current effort sought to estimate the release fraction of radionuclides from metal fuel pins to the primary sodium coolant during fuel pin failures at a variety of temperature conditions. These release estimates were based on the findings of an extensive literature search, which reviewed past experimentation and reactor fuel damage accidents. Data sources for each radionuclide of interest were reviewed to establish releasemore » fractions, along with possible release dependencies, and the corresponding uncertainty levels. Although the current knowledge base is substantial, and radionuclide release fractions were established for the elements deemed important for the determination of offsite consequences following a reactor accident, gaps were found pertaining to several radionuclides. First, there is uncertainty regarding the transport behavior of several radionuclides (iodine, barium, strontium, tellurium, and europium) during metal fuel irradiation to high burnup levels. The migration of these radionuclides within the fuel matrix and bond sodium region can greatly affect their release during pin failure incidents. Post-irradiation examination of existing high burnup metal fuel can likely resolve this knowledge gap. Second, data regarding the radionuclide release from molten high burnup metal fuel in sodium is sparse, which makes the assessment of radionuclide release from fuel melting accidents at high fuel burnup levels difficult. This gap could be addressed through fuel melting experimentation with samples from the existing high burnup metal fuel inventory.« less
Oak Ridge Reservation Annual Site environmental report summary for 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-09-01
This document presents a summary of the information collected for the Oak Ridge Reservation 1994 site environmental report. Topics discussed include: Oak Ridge Reservation mission; ecology; environmental laws; community participation; environmental restoration; waste management; radiation effects; chemical effects; risk to public; environmental monitoring; and radionuclide migration.
Fate and transport of radionuclides in soil-water environment. Review.
NASA Astrophysics Data System (ADS)
Konoplev, Aleksei
2017-04-01
The ease in which radionuclides move through the environment and are taken up by plants and animals is governed by their chemical forms and by site-specific environmental characteristics. The objective of this paper is to review basic mechanisms of the behavior of radiocesium and radiostrontium in the environment after the nuclear accident. Our understanding of radionuclide's speciation and migration processes seems to be adequate and explains similarities and differences of radiocesium (r-Cs) behavior in the environment after Fukushima and Chernobyl accidents. Climate and geographical conditions in Fukushima Prefecture of Japan and Chernobyl's near-field zone are obviously different. In particular, precipitation differs substantially, with the annual average for Fukushima being about 3 times higher than at Chernobyl. The landscapes and soils also differ significantly. What is more, the speciation of r-Cs in the releases was distinct (large fraction of radionuclides was deposited as fuel particles in 30-km zone around Chernobyl NPP, while in Fukushima radiocesium is mostly part of condensation particles including glassy hot particles). Radiocesium (r-Cs) in the environment is strongly bound to soil and sediment particles containing micaceous clay minerals (illite, vermiculite, etc.), which is associated with two basic processes - high selective reversible sorption and fixation. The r-Cs distribution coefficient Kd in Fukushima rivers was found to be 1-2 orders of magnitude higher than corresponding values for rivers and surface runoff of Chernobyl area. This is indicative of higher ability of Fukushima soils and sediments to bind r-Cs. Dissolved r-Cs wash-off for Fukushima river watersheds is essentially slower than those for Chernobyl. However, steeper slopes and higher precipitation in Fukushima area cause higher erosion and higher particulate r-Cs wash-off. For a comparable time after the accident the total r-Cs wash-off from contaminated catchments in Fukushima is up to one order of magnitude higher than in Chernobyl. Long-term dynamics of radionuclide concentrations in rivers is approached from the standpoint of basic mechanisms of radionuclide sorption-desorption, fixation, vertical migration in catchment soils. Corresponding semi-empirical models are presented and discussed. For the Chernobyl case, radiostrontium (r-Sr) was shown to be more mobile and moving faster in dissolved state with surface runoff and river water in comparison with r-Cs. Similar pattern was observed for Mayak area in South Ural (Russia), where r-Sr was traced up to 1500 km away from the release point migrating through Techa-Iset'-Tobol-Irtysh-Ob' river system. On the other hand, r-Cs bound to clay particles settles down in Techa river reservoirs and is transported with river water only insignificantly. For the first 3 years after the accident vertical migration of r-Cs in soils of Fukushima catchments was found to be faster than in Chernobyl due to higher air temperature, higher precipitation and higher biological activity in top soil. However, with time this process slows down because of higher r-Cs retardation in Fukushima soils. In Fukushima case, extreme floods during typhoons lead to substantial reduction in dose rate on floodplain areas due to sedimentation of relatively clean material and burial of contaminated top soil layer. In general, due to higher precipitation, higher temperatures and higher biological activities in soils, self-purification of the environment and natural attenuation in Fukushima is essentially faster than in Chernobyl area.
WORKSHOP ON DEVELOPMENT OF RADIONUCLIDE GETTERS FOR THE YUCCA MOUNTAIN WASTE REPOSITORY
DOE Office of Scientific and Technical Information (OSTI.GOV)
K.C. Holt
One of the important that the U.S. Department of Energy (DOE) is currently undertaking is the development of a high-level nuclear waste repository to be located at Yucca Mountain, Nevada. Concern is generated by the Yucca Mountain Project (YMP) is due to potential releases as groundwater contamination, as described in the Total System Performance Assessment (TSPA). The dose to an off-site individual using this groundwater for drinking and irrigation is dominated by four radionuclides: Tc-99, I-127, Np-237, and U-238. Ideally, this dose would be limited to a single radionuclide, U-238; in other words, YMP would resemble a uranium ore body,more » a common geologic feature in the Western U.S. For this reason and because of uncertainties in the behavior of Tc-99, I-127, and Np-237, it would be helpful to limit the amount of Tc, I, and Np leaving the repository, which would greatly increase the confidence in the long-term performance of YMP. An approach to limiting the migration of Tc, I, and Np that is complementary to the existing YMP repository design plans is to employ sequestering agents or ''getters'' for these radionuclides such that their migration is greatly hindered, thus decreasing the amount of radionuclide leaving the repository. Development of such getters presents a number of significant challenges. The getter must have a high affinity and high selectivity for the radionuclide in question since there is approximately a 20- to 50-fold excess of other fission products and a 1000-fold excess of uranium in addition to the ions present in the groundwater. An even greater challenge is that the getters must function over a period greater than the half-life of the radionuclide (greater than 5 half-lives would be ideal). Typically, materials with a high affinity for Tc, I, or Np are not sufficiently durable. For example, strong-base ion exchange resins have a very high affinity for TcO{sub 4}{sup -} but are not expected to be durable. On the other hand, durable materials, such as hydrotalcite, do not have sufficient affinity to be useful getters. Despite these problems, the great increase in the repository performance and corresponding decrease in uncertainty promised by a useful getter has generated significant interest in these materials. This report is the result a workshop sponsored by the Office of Civilian Radioactive Waste Management and Office of Science and Technology and International of the DOE to assess the state of research in this field.« less
21 CFR 892.5650 - Manual radionuclide applicator system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... system. (a) Identification. A manual radionuclide applicator system is a manually operated device... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Manual radionuclide applicator system. 892.5650... planning computer programs, and accessories. (b) Classification. Class I (general controls). The device is...
21 CFR 892.5650 - Manual radionuclide applicator system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... system. (a) Identification. A manual radionuclide applicator system is a manually operated device... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Manual radionuclide applicator system. 892.5650... planning computer programs, and accessories. (b) Classification. Class I (general controls). The device is...
21 CFR 892.5650 - Manual radionuclide applicator system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... system. (a) Identification. A manual radionuclide applicator system is a manually operated device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual radionuclide applicator system. 892.5650... planning computer programs, and accessories. (b) Classification. Class I (general controls). The device is...
21 CFR 892.5650 - Manual radionuclide applicator system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... system. (a) Identification. A manual radionuclide applicator system is a manually operated device... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Manual radionuclide applicator system. 892.5650... planning computer programs, and accessories. (b) Classification. Class I (general controls). The device is...
21 CFR 892.5650 - Manual radionuclide applicator system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... system. (a) Identification. A manual radionuclide applicator system is a manually operated device... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Manual radionuclide applicator system. 892.5650... planning computer programs, and accessories. (b) Classification. Class I (general controls). The device is...
Groundwater monitoring in the Savannah River Plant Low Level Waste Burial Ground
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlton, W.H.
1983-12-31
This document describes chemical mechanisms that may affect trace-level radionuclide migration through acidic sandy clay soils in a humid environment, and summarizes the extensive chemical and radiochemical analyses of the groundwater directly below the SRP Low-Level Waste (LLW) Burial Ground (643-G). Anomalies were identified in the chemistry of individual wells which appear to be related to small amounts of fission product activity that have reached the water table. The chemical properties which were statistically related to trace level transport of Cs-137 and Sr-90 were iron, potassium, sodium and calcium. Concentrations on the order of 100 ppM appear sufficient to affectmore » nuclide migration. Several complexation mechanisms for plutonium migration were investigated.« less
10 CFR 60.134 - Design of seals for shafts and boreholes.
Code of Federal Regulations, 2014 CFR
2014-01-01
... boreholes shall be designed so that following permanent closure they do not become pathways that compromise... pathway for groundwater to contact the waste packages or (2) For radionuclide migration through existing pathways. [48 FR 28222, June 21, 1983, as amended at 50 FR 29648, July 22, 1985] Design Criteria for the...
10 CFR 60.134 - Design of seals for shafts and boreholes.
Code of Federal Regulations, 2012 CFR
2012-01-01
... boreholes shall be designed so that following permanent closure they do not become pathways that compromise... pathway for groundwater to contact the waste packages or (2) For radionuclide migration through existing pathways. [48 FR 28222, June 21, 1983, as amended at 50 FR 29648, July 22, 1985] Design Criteria for the...
10 CFR 60.134 - Design of seals for shafts and boreholes.
Code of Federal Regulations, 2013 CFR
2013-01-01
... boreholes shall be designed so that following permanent closure they do not become pathways that compromise... pathway for groundwater to contact the waste packages or (2) For radionuclide migration through existing pathways. [48 FR 28222, June 21, 1983, as amended at 50 FR 29648, July 22, 1985] Design Criteria for the...
Trace levels of Fukushima disaster radionuclides in East Pacific albacore.
Neville, Delvan R; Phillips, A Jason; Brodeur, Richard D; Higley, Kathryn A
2014-05-06
The Fukushima Daiichi power station released several radionuclides into the Pacific following the March 2011 earthquake and tsunami. A total of 26 Pacific albacore (Thunnus alalunga) caught off the Pacific Northwest U.S. coast between 2008 and 2012 were analyzed for (137)Cs and Fukushima-attributed (134)Cs. Both 2011 (2 of 2) and several 2012 (10 of 17) edible tissue samples exhibited increased activity concentrations of (137)Cs (234-824 mBq/kg of wet weight) and (134)Cs (18.2-356 mBq/kg of wet weight). The remaining 2012 samples and all pre-Fukushima (2008-2009) samples possessed lower (137)Cs activity concentrations (103-272 mBq/kg of wet weight) with no detectable (134)Cs activity. Age, as indicated by fork length, was a strong predictor for both the presence and concentration of (134)Cs (p < 0.001). Notably, many migration-aged fish did not exhibit any (134)Cs, suggesting that they had not recently migrated near Japan. None of the tested samples would represent a significant change in annual radiation dose if consumed by humans.
Shielding and activity estimator for template-based nuclide identification methods
Nelson, Karl Einar
2013-04-09
According to one embodiment, a method for estimating an activity of one or more radio-nuclides includes receiving one or more templates, the one or more templates corresponding to one or more radio-nuclides which contribute to a probable solution, receiving one or more weighting factors, each weighting factor representing a contribution of one radio-nuclide to the probable solution, computing an effective areal density for each of the one more radio-nuclides, computing an effective atomic number (Z) for each of the one more radio-nuclides, computing an effective metric for each of the one or more radio-nuclides, and computing an estimated activity for each of the one or more radio-nuclides. In other embodiments, computer program products, systems, and other methods are presented for estimating an activity of one or more radio-nuclides.
Wang, Qidong; Song, Jinming; Li, Xuegang; Yuan, Huamao; Li, Ning; Cao, Lei
2016-10-01
Vertical profiles of environmental radionuclides ( 210 Pb, 137 Cs, 238 U, 232 Th, 226 Ra and 4 0 K) in a sediment core (Y1) of the Yellow River Estuary wetland were investigated to assess whether environmental evolutions in the coastal wetland could be recorded by the distributions of radionuclides. Based on 210 Pb and 137 Cs dating, the average sedimentation rate of core Y1 was estimated to be 1.0 cm y -1 . Vertical distributions of natural radionuclides ( 238 U, 232 Th, 226 Ra and 40 K) changed dramatically, reflecting great changes in sediment input. Concentrations of 238 U, 232 Th, 226 Ra and 40 K all had significant positive relationships with organic matter and clay content, but their distributions were determined by different factors. Factor analysis showed that 238 U was determined by the river sediment input while 226 Ra was mainly affected by the seawater erosion. Environmental changes such as river channel migrations and sediment discharge variations could always cause changes in the concentrations of radionuclides. High concentrations of 238 U and 226 Ra were consistent with high accretion rate. Frequent seawater intrusion decreased the concentration of 226 Ra significantly. The value of 238 U/ 226 Ra tended to be higher when the sedimentation rate was low and tide intrusion was frequent. In summary, environmental evolutions in the estuary coastal wetland could be recorded by the vertical profiles of natural radionuclides. Copyright © 2016 Elsevier Ltd. All rights reserved.
Smith, Sarah L; Boothman, Christopher; Williams, Heather A; Ellis, Beverly L; Wragg, Joanna; West, Julia M; Lloyd, Jonathan R
2017-01-01
Geological disposal of intermediate level radioactive waste in the UK is planned to involve the use of cementitious materials, facilitating the formation of an alkali-disturbed zone within the host rock. The biogeochemical processes that will occur in this environment, and the extent to which they will impact on radionuclide migration, are currently poorly understood. This study investigates the impact of biogeochemical processes on the mobility of the radionuclide technetium, in column experiments designed to be representative of aspects of the alkali-disturbed zone. Results indicate that microbial processes were capable of inhibiting 99m Tc migration through columns, and X-ray radiography demonstrated that extensive physical changes had occurred to the material within columns where microbiological activity had been stimulated. The utilisation of organic acids under highly alkaline conditions, generating H 2 and CO 2 , may represent a mechanism by which microbial processes may alter the hydraulic conductivity of a geological environment. Column sediments were dominated by obligately alkaliphilic H 2 -oxidising bacteria, suggesting that the enrichment of these bacteria may have occurred as a result of H 2 generation during organic acid metabolism. The results from these experiments show that microorganisms are able to carry out a number of processes under highly alkaline conditions that could potentially impact on the properties of the host rock surrounding a geological disposal facility for intermediate level radioactive waste. Copyright © 2016. Published by Elsevier B.V.
Monte, Luigi
2014-08-01
This work presents and discusses the results of an application of the contaminant migration models implemented in the decision support system MOIRA-PLUS to simulate the time behaviour of the concentrations of (137)Cs of Chernobyl origin in water and fish of the Baltic Sea. The results of the models were compared with the extensive sets of highly reliable empirical data of radionuclide contamination available from international databases and covering a period of, approximately, twenty years. The model application involved three main phases: a) the customisation performed by using hydrological, morphometric and water circulation data obtained from the literature; b) a blind test of the model results, in the sense that the models made use of default values of the migration parameters to predict the dynamics of the contaminant in the environmental components; and c) the adjustment of the model parameter values to improve the agreement of the predictions with the empirical data. The results of the blind test showed that the models successfully predicted the empirical contamination values within the expected range of uncertainty of the predictions (confidence level at 68% of approximately a factor 2). The parameter adjustment can be helpful for the assessment of the fluxes of water circulating among the main sub-basins of the Baltic Sea, substantiating the usefulness of radionuclides to trace the movement of masses of water in seas. Copyright © 2014 Elsevier Ltd. All rights reserved.
Batlle, J Vives I; Sweeck, L; Wannijn, J; Vandenhove, H
2016-10-01
The potential radiological impact of releases from a low-level radioactive waste (Category A waste) repository in Dessel, Belgium on the local fauna and flora was assessed under a reference scenario for gradual leaching. The potential impact situations for terrestrial and aquatic fauna and flora considered in this study were soil contamination due to irrigation with contaminated groundwater from a well at 70 m from the repository, contamination of the local wetlands receiving the highest radionuclide flux after migration through the aquifer and contamination of the local river receiving the highest radionuclide flux after migration through the aquifer. In addition, an exploratory study was carried out for biota residing in the groundwater. All impact assessments were performed using the Environmental Risk from Ionising Contaminants: Assessment and Management (ERICA) tool. For all scenarios considered, absorbed dose rates to biota were found to be well below the ERICA 10 μGy h -1 screening value. The highest dose rates were observed for the scenario where soil was irrigated with groundwater from the vicinity of the repository. For biota residing in the groundwater well, a few dose rates were slightly above the screening level but significantly below the dose rates at which the smallest effects are observed for those relevant species or groups of species. Given the conservative nature of the assessment, it can be concluded that manmade radionuclides deposited into the environment by the near surface disposal of category A waste at Dessel do not have a significant radiological impact to wildlife. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kautsky, Mark; Nguyen, Jason; Darr, Paul S.
The Long-Term Surveillance and Maintenance Plan (LTSMP) for Amchitka details how the U.S. Department of Energy (DOE) intends to fulfill its mission to maintain protection of human health and the environment at and around the sites on Amchitka Island. The LTSMP calls for monitoring to be performed every 5 years, at least in the initial phase of the project. The purpose of the monitoring is to develop a baseline of activity concentrations for selected radionuclides in biota, water, and soil, both on Amchitka and at the reference location on Adak Island, approximately 322 km (200 miles) northeast of Amchitka. Datamore » compiled by the Consortium for Risk Evaluation with Stakeholder Participation (CRESP, 2006) are being included as part of the baseline data set. The specific biological, water, and sediment samples collected during the 2011 sampling event were developed through close coordination with the primary stakeholders, including the Alaska Department of Environmental Conservation, the Aleutian Pribilof Island Association, and the U.S. Fish and Wildlife Service (USFWS). Amchitka is managed by the USFWS as part of the Alaska Maritime National Wildlife Refuge. Two plans were developed to address specific needs of the biological- and the terrestrial-monitoring programs. Results from these monitoring programs will help determine whether the environment is being impacted by radionuclide migration and uptake, and if subsistence and commercial-catch seafood is safe for human consumption. The RESRAD-BIOTA code is being used to evaluate ecological health relative to the radionuclide levels determined from this sampling event. The samples were sent to three laboratories for analysis. With the exception of the seawater samples, most of the samples were sent to the Center for Accelerator Mass Spectrometry at the Lawrence Livermore National Laboratory. A smaller subset of rock-weed samples, Star reindeer lichen samples, and soil samples collected from beneath the lichen were sent to UAF for cesium-137 analysis. Marine sediment samples were also collected and sent to UAF for testing. The seawater samples were sent to the University of Miami Tritium Laboratory for enriched tritium analysis. Results from the seawater samples for tritium were received in September 2011. Results from the 2011 sampling are expected to be available on the LM web site in 2012. (authors)« less
Booth, J.S.; Winters, W.J.; Poppe, L.J.; Neiheisel, J.; Dyer, R.S.
1989-01-01
A geotechnical and geological investigation of the Farallon Islands low-level radioactive waste (LLW) disposal area was conducted to qualitatively assess the host sediments' relative effectiveness as a barrier to radionuclide migration, to estimate the portion of the barrier that is in contact with the waste packages at the three primary disposal sites, and to provide a basic physical description of the sediments. Box cores recovered from within the general disposal area at depths of 500, 1000, and 1500 m were subcored to provide samples (~30 cm in length) for detailed descriptions, textural and mineralogical analyses, and a suite of geotechnical tests (index property, CRS consolidation, and CIU triaxial compression). -from Authors
VERTICAL MIGRATION OF RADIONUCLIDES IN THE VICINITY OF THE CHERNOBYL CONFINEMENT SHELTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farfan, E.; Jannik, T.; Marra, J.
2011-10-01
Studies on vertical migration of Chernobyl-origin radionuclides in the 5-km zone of the Chernobyl Nuclear Power Plant (ChNPP) in the area of the Red Forest experimental site were completed. Measurements were made by gamma spectrometric methods using high purity germanium (HPGe) detectors with beryllium windows. Alpha-emitting isotopes of plutonium were determined by the measurement of the x-rays from their uranium progeny. The presence of {sup 60}Co, {sup 134,137}Cs, {sup 154,155}Eu, and {sup 241}Am in all soil layers down to a depth of 30 cm was observed. The presence of {sup 137}Cs and {sup 241}Am were noted in the area containingmore » automorphous soils to a depth of 60 cm. In addition, the upper soil layers at the test site were found to contain {sup 243}Am and {sup 243}Cm. Over the past ten years, the {sup 241}Am/{sup 137}Cs ratio in soil at the experimental site has increased by a factor of 3.4, nearly twice as much as would be predicted based solely on radioactive decay. This may be due to 'fresh' fallout emanating from the ChNPP Confinement Shelter.« less
National low-level waste management program radionuclide report series, Volume 14: Americium-241
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winberg, M.R.; Garcia, R.S.
1995-09-01
This report, Volume 14 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of americium-241 ({sup 241}Am). This report also includes discussions about waste types and forms in which {sup 241}Am can be found and {sup 241}Am behavior in the environment and in the human body.
Evaluation of liners for a uranium-mill tailings disposal site: a status report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buelt, J.L.; Hale, V.Q.; Barnes, S.M.
1981-05-01
The United States Department of Energy is conducting a program designed to reclaim or stabilize inactive uranium-mill tailings sites. This report presents the status of the Liner Evaluation Program. The purpose of the study was to identify eight prospective lining materials or composites for laboratory testing. The evaluation was performed by 1) reviewing proposed regulatory requirements to define the material performance criteria; 2) reviewing published literature and communicating with industrial and government experts experienced with lining materials and techniques; and 3) characterizing the tailings at three of the sites for calcium concentration, a selection of anions, radionuclides, organic solvents, andmore » acidity levels. The eight materials selected for laboratory testing are: natural soil amended with sodium-saturated montmorillonite (Volclay); locally available clay in conjunction with an asphalt emulsion radon suppression cover; locally available clay in conjunction with a multibarrier radon suppression cover; rubberized asphalt membrane; hydraulic asphalt concrete; chlorosulfonated polyethylene (hypalon) or high-density polyethylene; bentonite, sand and gravel mixture; and catalytic airblown asphalt membrane. The materials will be exposed in test units now being constructed to conditions such as wet/dry cycles, temperature cycles, oxidative environments, ion-exchange elements, etc. The results of the tests will identify the best material for field study. The status report also presents the information gathered during the field studies at Grand Junction, Colorado. Two liners, a bentonite, sand and gravel mixture, and a catalytic airblown asphalt membrane, were installed in a prepared trench and covered with tailings. The liners were instrumented and are being monitored for migration of moisture, radionuclides, and hazardous chemicals. The two liner materials will also be subjected to accelerated laboratory tests for a comparative assessment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Nathalie A.; Neeway, James J.; Qafoku, Nikolla P.
2015-09-30
Assessments of waste form and disposal options start with the degradation of the waste forms and consequent mobilization of radionuclides. Long-term static tests, single-pass flow-through tests, and the pressurized unsaturated flow test are often employed to study the durability of potential waste forms and to help create models that predict their durability throughout the lifespan of the disposal site. These tests involve the corrosion of the material in the presence of various leachants, with different experimental designs yielding desired information about the behavior of the material. Though these tests have proved instrumental in elucidating various mechanisms responsible for material corrosion,more » the chemical environment to which the material is subject is often not representative of a potential radioactive waste repository where factors such as pH and leachant composition will be controlled by the near-field environment. Near-field materials include, but are not limited to, the original engineered barriers, their resulting corrosion products, backfill materials, and the natural host rock. For an accurate performance assessment of a nuclear waste repository, realistic waste corrosion experimental data ought to be modeled to allow for a better understanding of waste form corrosion mechanisms and the effect of immediate geochemical environment on these mechanisms. Additionally, the migration of radionuclides in the resulting chemical environment during and after waste form corrosion must be quantified and mechanisms responsible for migrations understood. The goal of this research was to understand the mechanisms responsible for waste form corrosion in the presence of relevant repository sediments to allow for accurate radionuclide migration quantifications. The rationale for this work is that a better understanding of waste form corrosion in relevant systems will enable increased reliance on waste form performance in repository environments and potentially decrease the need for expensive engineered barriers.Our current work aims are 1) quantifying and understanding the processes associated with glass alteration in contact with Fe-bearing materials; 2) quantifying and understanding the processes associated with glass alteration in presence of MgO (example of engineered barrier used in WIPP); 3) identifying glass alteration suppressants and the processes involved to reach glass alteration suppression; 4) quantifying and understanding the processes associated with Saltstone and Cast Stone (SRS and Hanford cementitious waste forms) in various representative groundwaters; 5) investigating positron annihilation as a new tool for the study of glass alteration; and 6) quantifying and understanding the processes associated with glass alteration under gamma irradiation.« less
Investigation of radionuclide distribution in soil particles in different landscapes
NASA Astrophysics Data System (ADS)
Shkinev, V. M.; Korobova, E. M.; Linnik, V. G.
2012-04-01
Russian and foreign publications have been analyzed for understanding the role of micro- and nano- particles in distribution and migration of technogenic elements in soils in different landscape conditions. A technique for application of various fractionation methods to separate and study -particles of different size down to micro- and nano-level has been developed. The dry sit method on the first stage of particle separation is recommend to be followed by the membrane filtration method. For obtaining more comprehensive information, combinations of fractionation technique should be chosen taking into account that (1) the efficiency of particles' separation using subsequent technique would be higher than using the preceding one; (2) separation methods should preferably be based on different principles (separation according size, density, charge etc.); (3) initial fractionation should separate particles according to their size, that makes possible to create an even scale for various samples. A study of distribution and balance of technogenic radionuclides' in soil particles of the size intervals 1.0—0.25, 0.25-0.1, 0.1-0.05, 0.05-0.01, 0.01-0.005, 0.005-0.001 and <0.001 mm in the Yenisey flood plain landscapes proved a significant role of both the particle size and the portion of contaminated fraction in contribution to the total radionuclide inventory in the soil layers. Contribution of the silt particles (0,05-0,01 mm) to Cs-137 contamination ranged from 26 to 33,8%, 45% maximum due to "optimal" combination of both factors. Clay fraction was responsible for approximately 30% of Cs-137 contained in soil horizons due to higher sorption capacity. Relatively high correlation between the activity of 152,154Eu and 60 and the content of silt and clay allowed suggesting their incorporation mainly in clay fraction. Selected experimental plots near the Kola NPP (northern taiga) were used to compare soil particles (fractions 140-71; 71-40 and < 40 µm) in their ability to concentrate technogenic radionuclides and heavy metals. Maximum radioactivity found in soil litter appeared to be related to the Chernobyl contamination. Concentration of s-137 was higher in small size fractions. Obtained results were considered to be useful for understanding of radionuclide migration in the environment and decision making on radioecological monitoring, rehabilitation and landuse in the contaminated areas.
NASA Astrophysics Data System (ADS)
Korobova, Elena; Romanov, Sergey
2013-04-01
Efficiency of landscape-geochemical approach was proved to be helpful in spatial and temporal evaluation of the Chernobyl radionuclide distribution in the environment. The peculiarity of such approach is in hierarchical consideration of factors responsible for radionuclide redistribution and behavior in a system of inter-incorporated landscape-geochemical structures of the local and regional scales with due regard to the density of the initial fallout and patterns of radionuclide migration in soil-water-plant systems. The approach has been applied in the studies of distribution of Cs-137, Sr-90 and some other radionuclides in soils and vegetation cover and in evaluation of contribution of the stable iodine supply in soils to spatial variation of risk of thyroid cancer in areas subjected to radioiodine contamination after the Chernobyl accident. The main feature of the proposed approach is simultaneous consideration of two types of spatial heterogeneities: firstly, the inhomogeneity of external radiation exposure due to a complex structure of the contamination field, and, secondly, the landscape geochemical heterogeneity of the affected area, so that the resultant effect of radionuclide impact could significantly vary in space. The main idea of risk assessment in this respect was to reproduce as accurately as possible the result of interference of two surfaces in the form of risk map. The approach, although it demands to overcome a number of methodological difficulties, allows to solve the problems associated with spatially adequate protection of the affected population and optimization of the use of contaminated areas. In general it can serve the basis for development of the idea of the two-level structure of modern radiobiogeochemical provinces formed by superposition of the natural geochemical structures and the fields of technogenic contamination accompanied by the corresponding peculiar and integral biological reactions.
An Experimental Study of Diffusivity of Technetium-99 in Hanford Vadose Zone Sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattigod, Shas V.; Bovaird, Chase C.; Wellman, Dawn M.
2012-11-01
One of the methods being considered at the Hanford site in Washington for safely disposing of low-level radioactive wastes (LLW) is to encase the waste in concrete and entomb the packages in the Hanford vadose zone sediments. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages with concrete. Any failure of the concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion andmore » move into the surrounding subsurface sediments. It is therefore necessary to conduct an assessment of the performance of the concrete encasement structure and the surrounding soil’s ability to retard radionuclide migration. The retardation factors for radionuclides contained in the waste packages can be determined from measurements of diffusion coefficients for these contaminants through concrete and fill material. Because of their anionic nature in aqueous solutions, the radionuclides, 99Tc and 129I were identified as long-term dose contributors in LLW. The leachability and/or diffusion of these radionuclide species must be measured in order to assess the long-term performance of waste grouts when contacted with vadose-zone porewater or groundwater. To measure the diffusivity, a set of experiments were conducted using 99Tc-spiked concrete (with 0 and 4% metallic iron additions) in contact with unsaturated soil half-cells that reflected the typical moisture contents of Hanford vadose zone sediments. The 99Tc diffusion profiles in the soil half cells were measured after a time lapse of ~1.9 yr. Using the concentration profiles, the 99Tc diffusivity coefficients were calculated based on Fick’s Second Law.« less
Smith, G M; Smith, K L; Kowe, R; Pérez-Sánchez, D; Thorne, M; Thiry, Y; Read, D; Molinero, J
2014-05-01
Decisions on permitting, controlling and monitoring releases of radioactivity into the environment rely on a great variety of factors. Important among these is the prospective assessment of radionuclide behavior in the environment, including migration and accumulation among and within specific environmental media, and the resulting environmental and human health impacts. Models and techniques to undertake such assessments have been developed over several decades based on knowledge of the ecosystems involved, as well as monitoring of previous radionuclide releases to the environment, laboratory experiments and other related research. This paper presents developments in the assessment of radiation doses and related research for some of the key radionuclides identified as of potential significance in the context of releases to the biosphere from disposal facilities for solid radioactive waste. Since releases to the biosphere from disposal facilities involve transfers from the geosphere to the biosphere, an important aspect is the combined effects of surface hydrology, near-surface hydrogeology and chemical gradients on speciation and radionuclide mobility in the zone in which the geosphere and biosphere overlap (herein described as the geosphere-biosphere subsystem). In turn, these aspects of the environment can be modified as a result of environmental change over the thousands of years that have to be considered in radioactive waste disposal safety assessments. Building on the experience from improved understanding of the behavior of the key radionuclides, this paper proceeds to describe development of a generic methodology for representing the processes and environmental changes that are characteristic of the interface between the geosphere and the biosphere. The information that is provided and the methodology that is described are based on international collaborative work implemented through the BIOPROTA forum, www.bioprota.org. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sequim Marine Research Laboratory routine environmental measurements during CY-1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fix, J.J.; Blumer, P.J.
1977-05-01
Beginning in 1976, a routine environmental program was established at the Marine Research Laboratory (MRL) at Sequim, Washington. The program is designed, primarily, to determine levels of radioactivity present in selected biota in Sequim Bay. The biota were selected because of their presence near the laboratory and their capacity to concentrate trace elements. Other samples were obtained to determine the radionuclides in Sequim Bay and laboratory drinking water, as well as the ambient radiation exposure levels and surface deposition of fallout radionuclides for the laboratory area. A summary of the analytical methods used is included. The present document includes datamore » obtained during CY 1976, the first year of the program. Radionuclides present in samples are attributed to fallout. Data are included on content of oil and Cu in seawater samples.« less
The NIST radioactivity measurement assurance program for the radiopharmaceutical industry.
Cessna, Jeffrey T; Golas, Daniel B
2012-09-01
The National Institute of Standards and Technology (NIST) maintains a program for the establishment and dissemination of activity measurement standards in nuclear medicine. These standards are disseminated through Standard Reference Materials (SRMs), Calibration Services, radionuclide calibrator settings, and the NIST Radioactivity Measurement Assurance Program (NRMAP, formerly the NEI/NIST MAP). The MAP for the radiopharmaceutical industry is described here. Consolidated results show that, for over 3600 comparisons, 96% of the participants' results differed from that of NIST by less than 10%, with 98% being less than 20%. Individual radionuclide results are presented from 214 to 439 comparisons, per radionuclide, for (67)Ga, (90)Y, (99m)Tc, (99)Mo, (111)In, (125)I, (131)I, and (201)Tl. The percentage of participants results within 10% of NIST ranges from 88% to 98%. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Pohlmann, K. F.; Zhu, J.; Ye, M.; Carroll, R. W.; Chapman, J. B.; Russell, C. E.; Shafer, D. S.
2006-12-01
Yucca Mountain (YM), Nevada has been recommended as a deep geological repository for the disposal of spent fuel and high-level radioactive waste. If YM is licensed as a repository by the Nuclear Regulatory Commission, it will be important to identify the potential for radionuclides to migrate from underground nuclear testing areas located on the Nevada Test Site (NTS) to the hydraulically downgradient repository area to ensure that monitoring does not incorrectly attribute repository failure to radionuclides originating from other sources. In this study, we use the Death Valley Regional Flow System (DVRFS) model developed by the U.S. Geological Survey to investigate potential groundwater migration pathways and associated travel times from the NTS to the proposed YM repository area. Using results from the calibrated DVRFS model and the particle tracking post-processing package MODPATH we modeled three-dimensional groundwater advective pathways in the NTS and YM region. Our study focuses on evaluating the potential for groundwater pathways between the NTS and YM withdrawal area and whether travel times for advective flow along these pathways coincide with the prospective monitoring time frame at the proposed repository. We include uncertainty in effective porosity as this is a critical variable in the determination of time for radionuclides to travel from the NTS region to the YM withdrawal area. Uncertainty in porosity is quantified through evaluation of existing site data and expert judgment and is incorporated in the model through Monte Carlo simulation. Since porosity information is limited for this region, the uncertainty is quite large and this is reflected in the results as a large range in simulated groundwater travel times.
Modelling of Tc migration in an un-oxidized fractured drill core from Äspö, Sweden
NASA Astrophysics Data System (ADS)
Huber, F. M.; Totskiy, Y.; Montoya Garcia, V.; Enzmann, F.; Trumm, M.; Wenka, A.; Geckeis, H.; Schaefer, T.
2015-12-01
The radionuclide retention of redox sensitive radionuclides (e.g. Pu, Np, U, Tc) in crystalline host rock greatly depends on the rock matrix and the rock redox capacity. Preservation of drill cores concerning oxidation is therefore of paramount importance to reliably predict the near-natural radionuclide retention properties. Here, experimental results of HTO and Tc laboratory migration experiments in a naturally single fractured Äspö un-oxidized drill core are modelled using two different 2D models. Both models employ geometrical information obtained by μ-computed tomography (μCT) scanning of the drill core. The models differ in geometrical complexity meaning the first model (PPM-MD) consists of a simple parallel plate with a porous matrix adjacent to the fracture whereas the second model (MPM) uses the mid-plane of the 3D fracture only (no porous matrix). Simulation results show that for higher flow rates (Peclet number > 1), the MPM satisfactorily describes the HTO breakthrough curves (BTC) whereas the PPM-MD model nicely reproduces the HTO BTC for small Pe numbers (<1). These findings clearly highlight the influence of fracture geometry/flow field complexity on solute transport for Pe numbers > 1 and the dominating effect of matrix diffusion for Peclet numbers < 1. Retention of Tc is modelled using a simple Kd-approach in case of the PPM-MD and including 1st order sorptive reduction/desorption kinetics in case of the MPM. Batch determined sorptive reduction/desorption kinetic rates and Kd values for Tc on non-oxidized Äspö diorite are used in the model and compared to best fit values. By this approach, the transferability of kinetic data concerning sorptive reduction determined in static batch experiments to dynamic transport experiments is examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimus, Paul William; Zavarin, Mavrik; Wang, Yifeng
2017-01-25
This report provides an overview of the current state of knowledge of colloid-facilitated radionuclide transport from a nuclear waste repository risk assessment perspective. It draws on work that has been conducted over the past 3 decades, although there is considerable emphasis given to work that has been performed over the past 3-5 years as part of the DOE Used Fuel Disposition Campaign. The timing of this report coincides with the completion of a 3-year DOE membership in the Colloids Formation and Migration (CFM) partnership, an international collaboration of scientists studying colloid-facilitated transport of radionuclides at both the laboratory and field-scalesmore » in a fractured crystalline granodiorite at the Grimsel Test Site in Switzerland. This Underground Research Laboratory has hosted the most extensive and carefully-controlled set of colloid-facilitated solute transport experiments that have ever been conducted in an in-situ setting, and a summary of the results to date from these efforts, as they relate to transport over long time and distance scales, is provided in Chapter 3 of this report.« less
Improving cancer treatment with cyclotron produced radionuclides. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, S.M.; Finn, R.D.
1993-11-01
This report describes our continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section will be employed in the Pharmacology and Immunology sections during the next year. The development of novel radionuclides and tracers is of course useful in and of itself, but their utility is greatly enhanced by the interaction with the immunologymore » and pharmacology components of the program.« less
Drifter-based estimate of the 5 year dispersal of Fukushima-derived radionuclides
NASA Astrophysics Data System (ADS)
Rypina, I. I.; Jayne, S. R.; Yoshida, S.; Macdonald, A. M.; Buesseler, K.
2014-11-01
Employing some 40 years of North Pacific drifter-track observations from the Global Drifter Program database, statistics defining the horizontal spread of radionuclides from Fukushima nuclear power plant into the Pacific Ocean are investigated over a time scale of 5 years. A novel two-iteration method is employed to make the best use of the available drifter data. Drifter-based predictions of the temporal progression of the leading edge of the radionuclide distribution are compared to observed radionuclide concentrations from research surveys occupied in 2012 and 2013. Good agreement between the drifter-based predictions and the observations is found.
THE EFFECT OF IONIZING RADIATION ON U6+ -PHASES
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Utsunomiya; R.C. Ewing
2005-07-07
U{sup 6+}-minerals commonly form during the alteration of uraninite and spent nuclear fuel under oxidizing conditions. By the incorporation of actinides and fissiogenic elements into their structures, U{sup 6+}-minerals may be important in retarding the migration of radionuclides released during corrosion of spent nuclear fuel. Thus, the stability and the structural transformation of the U{sup 6+}-minerals in radiation fields are of great interest.
NASA Astrophysics Data System (ADS)
Luo, S.; Ku, T.; Todd, V.; Murrell, M. T.; Dinsmoor, J. C.
2007-05-01
The Nopal I uranium ore deposit at Pena Blanca, Mexico, located at > 200 meters above the groundwater table, provides an ideal natural analog for quantifying the effectiveness of geological barrier for isolation of radioactive waste nuclides from reaching the human environments through ground water transport. To fulfill such natural analog studies, three wells (PB1, PB2, and PB3 respectively) were drilled at the site from the land surface down to the saturated groundwater zone and ground waters were collected from each of these wells through large- volume sampling/in-situ Mn-filter filtration for analyses of short-lived uranium/thorium-series radionuclides. Our measurements from PB1 show that the groundwater standing in the hole has much lower 222Rn activity than the freshly pumped groundwater. From this change in 222Rn activity, we estimate the residence time of groundwater in PB1 to be about 20 days. Our measurements also show that the activities of short-lived radioisotopes of Th (234Th), Ra (228Ra, 224Ra, 223Ra), Rn (222Rn), Pb (210Pb), and Po (210Po) in PB1, PB2, and PB3 are all significantly higher than those from the other wells near the Nopal I site. These high activities provide evidence for the enrichment of long-lived U and Ra isotopes in the groundwater as well as in the associated adsorbed phases on the fractured aquifer rocks underneath the ore deposit. Such enrichment suggests a rapid dissolution of U and Ra isotopes from the uranium ore deposit in the vadose zone and the subsequent migration to the groundwater underneath. A reactive transport model can be established to characterize the in-situ transport of radionuclides at the site. The observed change of 222Rn activity at PB1 also suggests that the measured high radioactivityies in ground waters from the site isare not an artifact of drilling operations. However, further studies are needed to assess if or to what extent the radionuclide migration is affected by the previous mining activities at the site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bungai, D.A.; Skalskij, A.S.; Dzhepo, S.P.
The `Red Forest` radioactive waste burials created during emergency clean-up activities at Chernobyl Nuclear Power Plant represent a serious source of radioactive contamination of the local ground water system with 9OSr concentration in ground water exceeding the drinking water standard by 3-4 orders of magnitude. In this paper we present results of our hydrogeological and radiological `Red Forest` site characterization studies, which allow us to estimate 9OSr subsurface migration parameters. We use then these parameters to assess long terrain radionuclide transport to groundwater and surface water, and to analyze associated health risks. Our analyses indicate that 9OSr transport via groundmore » water pathway from `Red Forest` burials to the adjacent Pripyat River is relatively insignificant due to slow release of 9OSr from the waste burials (less than 1% of inventory per year) and due to long enough ground water residence time in the subsurface, which allows substantial decay of the radioactive contaminant. Tins result and our previous analyses indicate, that though conditions of radioactive waste storage in burials do not satisfy Ukrainian regulation on radiation protection, health risks caused by radionuclide migration to ground water from `Red Forest` burials do not justify application of expensive countermeasures.« less
Nuclear Waste Package Mockups: A Study of In-situ Redox State
NASA Astrophysics Data System (ADS)
Helean, K.; Anderson, B.; Brady, P. V.
2006-05-01
The Yucca Mountain Repository (YMR), located in southern Nevada, is to be the first facility in the U.S. for the permanent disposal of high-level radioactive waste and spent nuclear fuels. Total system performance assessment(TSPA) has indicated that among the major radionuclides contributing to dose are Np, Tc, and I. These three radionuclides are mobile in most geochemical settings, and therefore sequestering them within the repository horizon is a priority for the Yucca Mountain Project (YMP). Corroding steel may offset radionuclide transport processes within the proposed waste packages at YMR by retaining radionuclides, creating locally reducing conditions, and reducing porosity. Ferrous iron has been shown to reduce UO22+ to UO2s, and some ferrous iron-bearing ion-exchange materials have been shown to adsorb radionuclides and heavy metals. Locally reducing conditions may lead to the reduction and subsequent immobilization of problematic dissolved species such as TcO4-, NpO2+, and UO22+ and can also inhibit corrosion of spent nuclear fuel. Water occluded during corrosion produces bulky corrosion products, and consequently less porosity is available for water and radionuclide transport. The focus of this study is on the nature of Yucca Mountain waste package corrosion products and their effects on local redox conditions, radionuclide transport, and porosity. In order to measure in-situ redox, six small-scale (1:40) waste package mockups were constructed using A516 and 316 stainless steel, the same materials as the proposed Yucca Mountain waste packages. The mockups are periodically injected with a simulated groundwater and the accumulated effluent and corrosion products are evaluated for their Fe(II)/Fe(III) content and mineralogy. Oxygen fugacities are then calculated and, thus, in-situ redox conditions are determined. Early results indicate that corrosion products are largely amorphous Fe-oxyhydroxides, goethite and magnetite. That information together with the measured Fe(II)/Fe(III) ratios in the mockup effluent constrain the oxygen fugacity to approximately 10-38 atm, many orders of magnitude below ambient. These results and their impact on radionuclide migration from YMR will be discussed.
Sequim Marine Research Laboratory routine environmental measurements during CY-1977
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fix, J.J.; Blumer, P.J.
1978-06-01
Beginning in 1976, a routine environmental program was established at the Marine Research Laboratory (MRL) at Sequim, Washington. The program is intended to demonstrate the negligible impact of current MRL operations on the surrounding environs and to provide baseline data through which any cumulative impact could be detected. The sampling frequency is greater during the first 2 years of the program to provide sufficient initial information to allow reliable estimates of observed radionuclide concentrations and to construct a long-term sampling program. The program is designed, primarily, to determine levels of radioactivity present in selected biota in Sequim Bay. The biotamore » were selected because of their presence near the laboratory and their capacity to concentrate trace elements. Other samples were obtained to determine the radionuclides in Sequim Bay and laboratory drinking water, as well as the ambient radiation exposure levels and surface deposition of fallout radionuclides for the laboratory area. Appendix A provides a summary of the analytical methods used. The present document includes data obtained during CY 1977 in addition to CY-1976 data published previously.« less
'Geo'chemical research: a key building block for nuclear waste disposal safety cases.
Altmann, Scott
2008-12-12
Disposal of high level radioactive waste in deep underground repositories has been chosen as solution by several countries. Because of the special status this type waste has in the public mind, national implementation programs typically mobilize massive R&D efforts, last decades and are subject to extremely detailed and critical social-political scrutiny. The culminating argument of each program is a 'Safety Case' for a specific disposal concept containing, among other elements, the results of performance assessment simulations whose object is to model the release of radionuclides to the biosphere. Public and political confidence in performance assessment results (which generally show that radionuclide release will always be at acceptable levels) is based on their confidence in the quality of the scientific understanding in the processes included in the performance assessment model, in particular those governing radionuclide speciation and mass transport in the geological host formation. Geochemistry constitutes a core area of research in this regard. Clay-mineral rich formations are the subjects of advanced radwaste programs in several countries (France, Belgium, Switzerland...), principally because of their very low permeabilities and demonstrated capacities to retard by sorption most radionuclides. Among the key processes which must be represented in performance assessment models are (i) radioelement speciation (redox state, speciation, reactions determining radionuclide solid-solution partitioning) and (ii) diffusion-driven transport. The safety case must therefore demonstrate a detailed understanding of the physical-chemical phenomena governing the effects of these two aspects, for each radionuclide, within the geological barrier system. A wide range of coordinated (and internationally collaborated) research has been, and is being, carried out in order to gain the detailed scientific understanding needed for constructing those parts of the Safety Case supporting how radionuclide transfer is represented in the performance assessment model. The objective here is to illustrate how geochemical research contributes to this process and, above all, to identify a certain number of subjects which should be treated in priority.
Hydrologic Resources Management Program and Underground Tests Area Project FY 2003 Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
J., B C; F., E G; K., E B
This report describes FY 2003 technical studies conducted by the Chemical Biology and Nuclear Science Division (CBND) at Lawrence Livermore National Laboratory (LLNL) in support of the Hydrologic Resources Management Program (HRMP) and the Underground Test Area (UGTA) Project. These programs are administered by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) through the Defense Programs and Environmental Restoration Divisions, respectively. HRMP-sponsored work is directed toward the responsible management of the natural resources at the Nevada Test Site (NTS), enabling its continued use as a staging area for strategic operations in support of national security.more » UGTA-funded work emphasizes the development of an integrated set of groundwater flow and contaminant transport models to predict the extent of radionuclide migration from underground nuclear testing areas at the NTS. The present report is organized on a topical basis and contains five chapters that reflect the range of technical work performed by LLNL-CBND during FY 2003. Although we have emphasized investigations that were led by CBND, we also participated in a variety of collaborative studies with other UGTA and HRMP contract organizations including the Energy and Environment Directorate at LLNL (LLNL-E&E), Los Alamos National Laboratory (LANL), the Desert Research Institute (DRI), the U.S. Geological Survey (USGS), Stoller-Navarro Joint Venture (SNJV), and Bechtel Nevada (BN).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyder, L.K.; Fore, C.S.; Vaughan, N.D.
This annotated bibliography of 705 references represents the first in a series to be published by the Ecological Sciences Information Center containing scientific, technical, economic, and regulatory information relevant to nuclear waste isolation. Most references discuss deep geologic disposal, with fewer studies of deep seabed disposal; space disposal is also included. The publication covers both domestic and foreign literature for the period 1954 to 1980. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Envirnmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Repository Design and Engineering; Transportation Technology;more » Waste Production; and Waste Treatment. Specialized data fields have been incorporated to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. When the author is not given, the corporate affiliation appears first. If these two levels of authorship are not given, the title of the document is used as the identifying level. Indexes are provided for author(s), keywords, subject category, title, geographic location, measured parameters, measured radionuclides, and publication description.« less
40 CFR 141.55 - Maximum contaminant level goals for radionuclides.
Code of Federal Regulations, 2013 CFR
2013-07-01
... radionuclides. 141.55 Section 141.55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level Goals and... and radium-228 Zero. 2. Gross alpha particle activity (excluding radon and uranium) Zero. 3. Beta...
40 CFR 141.55 - Maximum contaminant level goals for radionuclides.
Code of Federal Regulations, 2012 CFR
2012-07-01
... radionuclides. 141.55 Section 141.55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level Goals and... and radium-228 Zero. 2. Gross alpha particle activity (excluding radon and uranium) Zero. 3. Beta...
40 CFR 141.55 - Maximum contaminant level goals for radionuclides.
Code of Federal Regulations, 2014 CFR
2014-07-01
... radionuclides. 141.55 Section 141.55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level Goals and... and radium-228 Zero. 2. Gross alpha particle activity (excluding radon and uranium) Zero. 3. Beta...
ANIMAL INVESTIGATION PROGRAM 1978 ANNUAL REPORT: NEVADA TEST SITE AND VICINITY
Data are presented from the radioanalysis of tissues collected from cattle and wildlife that resided on or near the Nevada Test Site. Gamma-emitting radionuclides were detected infrequently with the exception of short-lived radionuclides found in samples from animals collected so...
40 CFR 141.55 - Maximum contaminant level goals for radionuclides.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Maximum contaminant level goals for... PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level Goals and Maximum Residual Disinfectant Level Goals § 141.55 Maximum contaminant level goals for radionuclides...
40 CFR 141.55 - Maximum contaminant level goals for radionuclides.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Maximum contaminant level goals for... PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level Goals and Maximum Residual Disinfectant Level Goals § 141.55 Maximum contaminant level goals for radionuclides...
Assessment of radionuclide databases in CAP88 mainframe version 1.0 and Windows-based version 3.0.
LaBone, Elizabeth D; Farfán, Eduardo B; Lee, Patricia L; Jannik, G Timothy; Donnelly, Elizabeth H; Foley, Trevor Q
2009-09-01
In this study the radionuclide databases for two versions of the Clean Air Act Assessment Package-1988 (CAP88) computer model were assessed in detail. CAP88 estimates radiation dose and the risk of health effects to human populations from radionuclide emissions to air. This program is used by several U.S. Department of Energy (DOE) facilities to comply with National Emission Standards for Hazardous Air Pollutants regulations. CAP88 Mainframe, referred to as version 1.0 on the U.S. Environmental Protection Agency Web site (http://www.epa.gov/radiation/assessment/CAP88/), was the very first CAP88 version released in 1988. Some DOE facilities including the Savannah River Site still employ this version (1.0) while others use the more user-friendly personal computer Windows-based version 3.0 released in December 2007. Version 1.0 uses the program RADRISK based on International Commission on Radiological Protection Publication 30 as its radionuclide database. Version 3.0 uses half-life, dose, and risk factor values based on Federal Guidance Report 13. Differences in these values could cause different results for the same input exposure data (same scenario), depending on which version of CAP88 is used. Consequently, the differences between the two versions are being assessed in detail at Savannah River National Laboratory. The version 1.0 and 3.0 database files contain 496 and 838 radionuclides, respectively, and though one would expect the newer version to include all the 496 radionuclides, 35 radionuclides are listed in version 1.0 that are not included in version 3.0. The majority of these has either extremely short or long half-lives or is no longer in production; however, some of the short-lived radionuclides might produce progeny of great interest at DOE sites. In addition, 122 radionuclides were found to have different half-lives in the two versions, with 21 over 3 percent different and 12 over 10 percent different.
Radionuclide migration: laboratory experiments with isolated fractures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rundberg, R.S.; Thompson, J.L.; Maestas, S.
Laboratory experiments examining flow and element migration in rocks containing isolated fractures have been initiated at the Los Alamos National Laboratory. Techniques are being developed to establish simple fracture flow systems which are appropriate to models using analytical solutions to the matrix diffusion-flow equations, such as those of I. Neretnieks [I. Neretnieks, Diffusion in the Rock Matrix: An Important Factor in Radionuclide Retardation? J. Geophys. Res. 85, 4379 (1980).] These experiments are intended to be intermediate steps toward larger scale field experiments where it may become more difficult to establish and control the parameters important to nuclide migration in fracturedmore » media. Laboratory experiments have been run on fractures ranging in size from 1 to 20 cm in length. The hydraulic flow in these fractures was studied to provide the effective apertures. The flows established in these fracture systems are similar to those in the granite fracture flow experiments of Witherspoon et al. [P.A. Witherspoon, J.S.Y. Wang, K. Iwai, and J.E. Gale, Validity of Cubic Law for Fluid Flow in a Deformable Rock Fracture, Lawrence Berkeley Laboratory report LBL-9557 (October 1979).] Traced solutions containing {sup 85}Sr and {sup 137}Cs were flowed through fractures in Climax Stock granite and welded tuff (Bullfrog and Tram members, Yucca Mountain, Nevada Test Site). The results of the elutions through granite agree with the matrix diffusion calculations based on independent measurements of K/sub d/. The results of the elutions through tuff, however, agree only if the K/sub d/ values used in the calculations are lower than the K/sub d/ values measured using a batch technique. This trend has been previously observed in chromatographic column experiments with tuff. 5 figures, 3 tables.« less
Konoplev, A; Golosov, V; Wakiyama, Y; Takase, T; Yoschenko, V; Yoshihara, T; Parenyuk, O; Cresswell, A; Ivanov, M; Carradine, M; Nanba, K; Onda, Y
2018-06-01
Processes of vertical and lateral migration lead to gradual reduction in contamination of catchment soil, particularly its top layer. The reduction can be considered as natural attenuation. This, in turn, results in a gradual decrease of radiocesium activity concentrations in the surface runoff and river water, in both dissolved and particulate forms. The purpose of this research is to study the dynamics of Fukushima-derived radiocesium in undisturbed soils and floodplain deposits exposed to erosion and sedimentation during floods. Combined observations of radiocesium vertical distribution in soil and sediment deposition on artificial lawn-grass mats on the Niida River floodplain allowed us to estimate both annual mean sediment accumulation rates and maximum sedimentation rates corresponding to an extreme flood event during Tropical Storm Etau, 6-11 September 2015. Dose rates were reduced considerably for floodplain sections with high sedimentation because the top soil layer with high radionuclide contamination was eroded and/or buried under cleaner fresh sediments produced mostly due to bank erosion and sediments movements. Rate constants of natural attenuation on the sites of the Takase River and floodplain of Niida River was found to be in range 0.2-0.4 year -1 . For the site in the lower reach of the Niida River, collimated shield dose readings from soil surfaces slightly increased during the period of observation from February to July 2016. Generally, due to more precipitation, steeper slopes, higher temperatures and increased biological activities in soils, self-purification of radioactive contamination in Fukushima associated with vertical and lateral radionuclide migration is faster than in Chernobyl. In many cases, monitored natural attenuation along with appropriate restrictions seems to be optimal option for water remediation in Fukushima contaminated areas. Copyright © 2017. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rockhold, Mark L.; White, Mark D.; Freeman, Eugene J.
This letter report documents initial numerical analyses conducted by PNNL to provide support for a feasibility study on decommissioning of the canyon buildings at Hanford. The 221-U facility is the first of the major canyon buildings to be decommissioned. The specific objective of this modeling effort was to provide estimates of potential rates of migration of residual contaminants out of the 221-U facility during the first 40 years after decommissioning. If minimal contaminant migration is predicted to occur from the facility during this time period, then the structure may be deemed to provide a level of groundwater protection that ismore » essentially equivalent to the liner and leachate collection systems that are required at conventional landfills. The STOMP code was used to simulate transport of selected radionuclides out of a canyon building, representative of the 221-U facility after decommissioning, for a period of 40 years. Simulation results indicate that none of the selected radionuclides that were modeled migrated beyond the concrete structure of the facility during the 40-year period of interest. Jacques (2001) identified other potential contaminants in the 221-U facility that were not modeled, however, including kerosene, phenol, and various metals. Modeling of these contaminants was beyond the scope of this preliminary effort due to increased complexity. Simulation results indicate that contaminant release from the canyon buildings will be diffusion controlled at early times. Advection is expected to become much more important at later times, after contaminants have diffused out of the facility and into the surrounding soil environment. After contaminants have diffused out of the facility, surface infiltration covers will become very important for mitigating further transport of contaminants in the underlying vadose zone and groundwater.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiergesell, R.A.; Phifer, M.A.
2013-07-01
An investigation was conducted to evaluate the radionuclide inventory within the Lower Three Runs (LTR) Integrator Operable Unit (IOU) at the U.S. Department of Energy's (DOE's) Savannah River Site (SRS). The scope of this effort included the analysis of previously existing sampling and analysis data as well as additional stream bed and flood plain sampling and analysis data acquired to delineate horizontal and vertical distributions of the radionuclide as part of the ongoing SRS environmental restoration program, and specifically for the LTR IOU program. While cesium-137 (Cs-137) is the most significant and abundant radionuclide associated with the LTR IOU itmore » is not the only radionuclide, hence the scope included evaluating all radionuclides present and includes an evaluation of inventory uncertainty for use in sensitivity and uncertainty analyses. The scope involved evaluation of the radionuclide inventory in the P-Reactor and R-Reactor cooling water effluent canal systems, PAR Pond (including Pond C) and the flood plain and stream sediment sections of LTR between the PAR Pond Dam and the Savannah River. The approach taken was to examine all of the available Sediment and Sediment/Soil analysis data available along the P- and R-Reactor cooling water re-circulation canal system, the ponds situated along those canal reaches and along the length of LTR below Par Pond dam. By breaking the IOU into a series of sub-components and sub-sections, the mass of contaminated material was estimated and a representative central concentration of each radionuclide was computed for each compartment. The radionuclide inventory associated with each sub-compartment was then aggregated to determine the total radionuclide inventory that represented the full LTR IOU. Of special interest was the inventory of Cs-137 due to its role in contributing to the potential dose to an offsite member of the public. The overall LTR IOU inventory of Cs-137 was determined to be 2.87 E+02 GBq, which is similar to two earlier estimates. This investigation provides an independent, ground-up estimate of Cs-137 inventory in LTR IOU utilizing the most recent field data. (authors)« less
The GENII System provides a state-of-the-art, fully documented set of programs for calculating radiation dose and risk from radionuclides released to the environment. The GENII-NESHAPs Edition can be utilized for assessing compliance with 40 CFR 61, Subparts H and I.
Improving cancer treatment with cyclotron produced radionuclides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, S.M. Finn, R.D.
1992-08-04
This report describes the author's continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program has 3 interactive components: Radiochemistry /Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section under the DOE grant during the 1989--1992 grant period, will be employed in the Pharmacology and Immunology sections of the DOE grant during the 1992--1995 grant period. The development of novel radionuclides and tracers is of course usefulmore » in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.« less
Defining modeling parameters for juniper trees assuming pleistocene-like conditions at the NTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarbox, S.R.; Cochran, J.R.
1994-12-31
This paper addresses part of Sandia National Laboratories` (SNL) efforts to assess the long-term performance of the Greater Confinement Disposal (GCD) facility located on the Nevada Test Site (NTS). Of issue is whether the GCD site complies with 40 CFR 191 standards set for transuranic (TRU) waste burial. SNL has developed a radionuclide transport model which can be used to assess TRU radionuclide movement away from the GCD facility. An earlier iteration of the model found that radionuclide uptake and release by plants is an important aspect of the system to consider. Currently, the shallow-rooted plants at the NTS domore » not pose a threat to the integrity of the GCD facility. However, the threat increases substantially it deeper-rooted woodland species migrate to the GCD facility, given a shift to a wetter climate. The model parameters discussed here will be included in the next model iteration which assumes a climate shift will provide for the growth of juniper trees at the GCD facility. Model parameters were developed using published data and wherever possible, data were taken from juniper and pinon-juniper studies that mirrored as many aspects of the GCD facility as possible.« less
Radionuclide Transport in Fracture-Granite Interface Zones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Q; Mori, A
In situ radionuclide migration experiments, followed by excavation and sample characterization, were conducted in a water-conducting shear zone at the Grimsel Test Site (GTS) in Switzerland to study diffusion paths of radionuclides in fractured granite. In this work, we employed a micro-scale mapping technique that interfaces laser ablation sampling with inductively coupled plasma-mass spectrometry (LA/ICP-MS) to measure the fine-scale (micron-range) distribution of actinides ({sup 234}U, {sup 235}U, and {sup 237}Np) in the fracture-granite interface zones. Long-lived {sup 234}U, {sup 235}U, and {sup 237}Np were detected in flow channels, as well as in the adjacent rock matrix, using the sensitive, feature-basedmore » mapping of the LA/ICP-MS technique. The injected sorbing actinides are mainly located within the advective flowing fractures and the immediately adjacent regions. The water-conducting fracture studied in this work is bounded on one side by mylonite and the other by granitic matrix regions. These actinides did not penetrate into the mylonite side as much as the relatively higher-porosity granite matrix, most likely due to the low porosity, hydraulic conductivity, and diffusivity of the fracture wall (a thickness of about 0.4 mm separates the mylonite region from the fracture) and the mylonite region itself. Overall, the maximum penetration depth detected with this technique for the more diffusive {sup 237}Np over the field experimental time scale of about 60 days was about 10 mm in the granitic matrix, illustrating the importance of matrix diffusion in retarding radionuclide transport from the advective fractures. Laboratory tests and numerical modeling of radionuclide diffusion into granitic matrix was conducted to complement and help interpret the field results. Measured apparent diffusivity of multiple tracers in granite provided consistent predictions for radionuclide transport in the fractured granitic rock.« less
Mass spectrometry of long-lived radionuclides
NASA Astrophysics Data System (ADS)
Becker, Johanna Sabine
2003-10-01
The capability of determining element concentrations at the trace and ultratrace level and isotope ratios is a main feature of inorganic mass spectrometry. The precise and accurate determination of isotope ratios of long-lived natural and artificial radionuclides is required, e.g. for their environmental monitoring and health control, for studying radionuclide migration, for age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, for quality assurance and determination of the burn-up of fuel material in a nuclear power plant, for reprocessing plants, nuclear material accounting and radioactive waste control. Inorganic mass spectrometry, especially inductively coupled plasma mass spectrometry (ICP-MS) as the most important inorganic mass spectrometric technique today, possesses excellent sensitivity, precision and good accuracy for isotope ratio measurements and practically no restriction with respect to the ionization potential of the element investigated—therefore, thermal ionization mass spectrometry (TIMS), which has been used as the dominant analytical technique for precise isotope ratio measurements of long-lived radionuclides for many decades, is being replaced increasingly by ICP-MS. In the last few years instrumental progress in improving figures of merit for the determination of isotope ratio measurements of long-lived radionuclides in ICP-MS has been achieved by the application of a multiple ion collector device (MC-ICP-MS) and the introduction of the collision cell interface in order to dissociate disturbing argon-based molecular ions, to reduce the kinetic energy of ions and neutralize the disturbing noble gas ions (e.g. of 129Xe + for the determination of 129I). The review describes the state of the art and the progress of different inorganic mass spectrometric techniques such as ICP-MS, laser ablation ICP-MS vs. TIMS, glow discharge mass spectrometry, secondary ion mass spectrometry, resonance ionization mass spectrometry and accelerator mass spectrometry for the determination of long-lived radionuclides in quite different materials.
Fujiwara, Takeshi; Saito, Takumi; Muroya, Yusa; Sawahata, Hiroyuki; Yamashita, Yuji; Nagasaki, Shinya; Okamoto, Koji; Takahashi, Hiroyuki; Uesaka, Mitsuru; Katsumura, Yosuke; Tanaka, Satoru
2012-11-01
The results of γ analyses of soil samples obtained from 50 locations in Fukushima prefecture on April 20, 2011, revealed the presence of a spectrum of radionuclides resulted from the accident of the Fukushima Dai-ichi nuclear power plant (FDNPP). The sum γ radioactivity concentration ranged in more than 3 orders of magnitude, depending on the sampling locations. The contamination of soils in the northwest of the FDNPP was considerable. The (131)I/(137)Cs activity ratios of the soil samples plotted as a function of the distance from the F1 NPPs exhibited three distinctive patterns. Such patterns would reflect not only the different deposition behaviors of these radionuclides, but also on the conditions of associated release events such as temperature and compositions and physicochemical forms of released radionuclides. The (136)Cs/(137)Cs activity ratio, on the other hand, was considered to only reflect the difference in isotopic compositions of source materials. Two locations close to the NPP in the northwest direction were found to be depleted in short-lived (136)Cs. This likely suggested the presence of distinct sources with different (136)Cs/(137)Cs isotopic ratios, although their details were unknown at present. Vertical γ activity profiles of (131)I and (137)Cs were also investigated, using 20-30 cm soil cores in several locations. About 70% or more of the radionuclides were present in the uppermost 2-cm regions. It was found that the profiles of (131)I/(137)Cs activity ratios showed maxima in the 2-4 cm regions, suggesting slightly larger migration of the former nuclide. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Samsanova, L.; Kotchergina, N. V.; Glinsky, M.; Zinin, A.; Ivanov, I.
2001-12-01
Industrial solutions from the surface storage of liquid radioactive wastes in Lake Karachay have been migrating in groundwaters for 50 years. Interaction of industrial solutions with fractured water-bearing rocks results in the formation of a plume body of contaminated rocks due to a partial retardation of the migrating radionuclides. In conducting research of the fractured rocks core samples from the wells located within the contaminated ground water plume, we have obtained empirical estimations of the retardation parameter (Sr-90 interphase distribution factor, Kd). To interpret the experimental data on Sr-90 Kd, a method of modeling of strontium-90 retardation by fractured rocks has been developed. The process of transient filtration for a flow fragment from Lake Karachay was reconstructed. Epignose modeling of the industrial solution's main flow migrating from Lake Karachay in south direction was performed. By solving the inverse tasks Kd of strontium-90 was estimated for the fractured rocks.
Radioactive characterization of phosphogypsum from Imbituba, Brazil.
Borges, Renata Coura; Ribeiro, Fernando Carlos Araujo; Lauria, Dejanira da Costa; Bernedo, Alfredo Victor Bellido
2013-12-01
This research aims to characterize the content of natural occurring radionuclides in phosphogypsum stacks at Imbituba, Santa Catarina state, Brazil. (226)Ra, (228)Ra, (40)K, (238)U and (232)Th were determined in PG, soils and sediment samples by gamma spectrometry using the hyper pure germanium detector and neutron activation. The migration of radionuclides in the phosphogypsum profile did not show the same behavior for all sampling sites. The mean activity concentration of (226)Ra was 95 Bq kg(-1), which is far below the limit recommended by the U.S. Environmental Agency (USEPA) for its application in agriculture (370 Bq kg(-1)) and the Brazilian Commission of Nuclear Energy Resolution 113 that established a reference level of 1000 Bq kg(-1) of (226)Ra or (228)Ra for the use of PG in agriculture as well as building materials. Copyright © 2013 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Monitoring frequency and compliance requirements for radionuclides in community water systems. 141.26 Section 141.26 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Monitoring and Analytical...
Effects of Containment on Radionuclide Releases from Underground Nuclear Explosions
NASA Astrophysics Data System (ADS)
Carrigan, C. R.; Sun, Y.
2016-12-01
Confirming the occurrence of an underground nuclear explosion can require capturing short-lived noble gas radioisotopes produced by the explosion, sometimes referred to as the "smoking gun" for nuclear explosion detection. It is well known that the radioisotopic distribution resulting from the detonation evolves with time in the explosion cavity. In effect, the explosion cavity or chimney behaves as a chemical reactor. As long as the parent and daughter radionuclides remain in a closed and well-mixed cavity, parameters, such as radioxenon isotopic ratios, can be calculated analytically from a decay-chain network model. When gases from the cavity migrate into the containment regime, consideration of a "leaky reactor" model is more appropriate. We consider several implications of such a leaky reactor model relevant to interpretations of gas samples from the subsurface during an on-site inspection that could potentially be carried out under the Comprehensive Nuclear Test Ban Treaty. Additionally, we have attempted to validate our leaky reactor model against atmospheric observations of radioactive xenon isotopes detected by radionuclide monitoring stations in Japan and Russia following the February 2013 DPRK underground nuclear explosion (Carrigan et al., 2016). While both model uncertainty and observational error are significant, our model of isotopic evolution appears to be in broad agreement with radionuclide observations, and for the first time links atmospheric measurements of radioxenon isotopic ratios to estimates of seismic yield. Carrigan et al., Scientific Reports 6, Article number: 23032 (2016) doi:10.1038/srep23032
Low-level radioactive waste technology: a selected, annotated bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fore, C.S.; Vaughan, N.D.; Hyder, L.K.
1980-10-01
This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinentmore » references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, S.M. Finn, R.D.
1992-08-04
This report describes the author`s continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program has 3 interactive components: Radiochemistry /Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section under the DOE grant during the 1989--1992 grant period, will be employed in the Pharmacology and Immunology sections of the DOE grant during the 1992--1995 grant period. The development of novel radionuclides and tracers is of course usefulmore » in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.« less
Colloid-facilitated radionuclide transport: a regulatory perspective
NASA Astrophysics Data System (ADS)
Dam, W. L.; Pickett, D. A.; Codell, R. B.; Nicholson, T. J.
2001-12-01
What hydrogeologic-geochemical-microbial conditions and processes affect migration of radionuclides sorbed onto microparticles or native colloid-sized radionuclide particles? The U.S. Nuclear Regulatory Commission (NRC) is responsible for protecting public health, safety, and the environment at numerous nuclear facilities including a potential high-level nuclear waste disposal site. To fulfill these obligations, NRC needs to understand the mechanisms controlling radionuclide release and transport and their importance to performance. The current focus of NRC staff reviews and technical interactions dealing with colloid-facilitated transport relates to the potential nuclear-waste repository at Yucca Mountain, Nevada. NRC staff performed bounding calculations to quantify radionuclide releases available for ground-water transport to potential receptors from a Yucca Mountain repository. Preliminary analyses suggest insignificant doses of plutonium and americium colloids could be derived from spent nuclear fuel. Using surface complexation models, NRC staff found that colloids can potentially lower actinide retardation factors by up to several orders of magnitude. Performance assessment calculations, in which colloidal transport of plutonium and americium was simulated by assuming no sorption or matrix diffusion, indicated no effect of colloids on human dose within the 10,000 year compliance period due largely to long waste-package lifetimes. NRC staff have identified information gaps and developed technical agreements with the U.S. Department of Energy (DOE) to ensure sufficient information will be presented in any potential future Yucca Mountain license application. DOE has agreed to identify which radionuclides could be transported via colloids, incorporate uncertainties in colloid formation, release and transport parameters, and conceptual models, and address the applicability of field data using synthetic microspheres as colloid analogs. NRC is currently investigating approaches to colloid modeling in order to help evaluate DOE's approach. One alternative approach uses DOE laboratory data to invoke kinetic controls on reversible radionuclide attachment to colloids. A kinetic approach in which desorption from colloids is slow may help assess whether DOE's instantaneous equilibrium approach for reversible attachment, as well as their application of irreversible attachment to only a small portion of the radionuclide inventory, are reasonable and conservative. An approach to examine microbial processes would also contribute to considerations of leaching of radionuclides and colloid formation. Reducing uncertainties in colloid transport processes should help in better understanding their importance to repository performance. This work is an independent product and does not necessarily reflect the views or regulatory position of the NRC. CNWRA participation was funded under contract No. NRC-02-97-009.
NASA Astrophysics Data System (ADS)
Bezhenar, Roman; Jung, Kyung Tae; Maderich, Vladimir; Willemsen, Stefan; de With, Govert; Qiao, Fangli
2015-04-01
A catastrophic earthquake and tsunami occurred on March 11, 2011 and severely damaged the Fukushima Daiichi Nuclear Power Plant (FDNPP) that resulted in an uncontrolled release of radioactivity into air and ocean. Around 80% of the radioactivity released due to the FDNPP accident in March-April 2011 was either directly discharged into the ocean or deposited onto the ocean surface from the atmosphere. A large amount of long-lived radionuclides (mainly Cs-137) were released into the environment. The concentration of radionuclides in the ocean reached a maximum in mid-April of 2011, and then gradually decreased. From 2011 the concentration of Cs-137 in water essentially fell except the area around the FDNPP where leaks of contaminated water are continued. However, in the bottom sediment high concentrations of Cs-137 were found in the first months after the accident and slowly decreased with time. Therefore, it should be expected that a time delay is found of sediment-bound radionuclides in marine organisms. For the modeling of radionuclide transfer from highly polluted bottom sediments to marine organisms the dynamical food chain model BURN-POSEIDON (Heling et al, 2002; Maderich et al., 2014) was extended. In this model marine organisms are grouped into a limited number of classes based on their trophic level and type of species. These include: phytoplankton, zooplankton, fishes (two types: piscivorous and non-piscivorous), crustaceans, and molluscs for pelagic food chain and bottom sediment invertebrates, demersal fishes and bottom predators for benthic food chain and whole water column predators feeding by pelagial and benthic fishes. Bottom invertebrates consume organic parts of bottom sediments with adsorbed radionuclides which then migrate through the food chain. All organisms take radionuclides directly from water as well as via food. In fishes where radioactivity is not homogeneously distributed over all tissues of the organism, it is assumed that radionuclide accumulates in a specific tissue called target tissue. This tissue (bone, flesh, stomach, and organs) controls the overall elimination rate of the nuclide in the organism. The model prediction for the coastal area around the FDNPP agree well with observations. In addition the effects from the Chernobyl accident on the Baltic Sea are modelled and these results also are in good agreement with available data. These results demonstrate the importance of the benthic food chain in long-term transfer of radionuclides from high polluted bottom sediments to the marine organisms. The developed model can be applied for different regions of the World Ocean.
The influence of physico-chemical properties of soils on the bioavailability of 65Zn
NASA Astrophysics Data System (ADS)
Kochetkov, Ilia; Anisimov, Vyacheslav
2014-05-01
Stability of soils to the effects of man-made origin pollutants is determined by their buffer capaci-ty (the ability to inactivate pollutants in a soil - soil solution - plant system). Soils are character-ized by the same types of stability as the ecosystem as a whole. Increased migration activity of pollutants is a symptom of ecological trouble, due to the soil transformation in an unstable state. Thus, the problem of the stability of soil is one of the fundamental problems of modern science. The aim of the study was to estimate the buffering capacity of soil as a key factor of their ecological and geochemical stability with respect to a relatively long-lived radionuclides 65Zn (T1/2 = 224 days), representing the radiological hazard in the location of nuclear facilities. There was proposed a method for scoring the buffering capacity of soils as for 65Zn contamination. It's based on dependence between the main physico-chemical soil properties and accumulation of the radionuclide in the aboveground plant parts (barley kind of "Zazersky-85"). The role of the considered indicators of soil health in the accumulation of radiozinc by plants was defined. The essence of this technique was to assess the contribution of individual characteristics of the soil condition, which play the most important role in the regulation of mobility (and bioavailability) of radionuclides, using the method of stepwise multiple regression analysis. For this aim representative sampling was compiled (from 20 soil types and varieties belonging to different climatic zones of the European part of the Russian Federation), thus providing a wide range of variation of the studied physical and chemical parameters, and also vegetation model experiments using 65Zn were held. On the basis of the conducted statistical analysis was revealed that the dominant contribution to the variation of the effective trait (accumulation coefficient of 65Zn) make: CaCO3 content, mobile iron (Tamm extract) and pH. As a result the studied soils were ranked according to the degree of resistance to pollution by 65Zn (ability to restrict migration ability of radionuclide in soil - plant system). It turned out that inactivating ability of soddy-carbonaceous soils (rendzina) more than 8 times higher than the same indicator for soddy-podzolic soils; 5 - 7 times for gray forest soils and chernozems; 1.5 times for the southern chernozems.
Migration of 137Cs in the soil of sloping semi-natural ecosystems in Northern Greece.
Arapis, G D; Karandinos, M G
2004-01-01
In the present study, the 137Cs concentration in the soil of sloping semi-natural ecosystems at four different regions of Western Macedonia in Greece was measured 10 years after the Chernobyl accident. These regions were highly polluted due to the deposition of radionuclides escaped during the accident. The concentrations of 137Cs measured were found to differ significantly among the four regions. The rates of both horizontal and vertical migration in the soil were also evaluated. The vertical migration velocity of 137Cs was found to range from 0.1 to 0.3 cm per year, in the most contaminated areas. Consequently, 10 years following the Chernobyl accident, the bulk of 137Cs deposited over the surface of the studied areas in Greece was found to be restricted in the upper 5 cm layer of soil. Regarding the horizontal migration, in most of the sampling sites, we did not detect any displacement or trend to movement of radiocaesium on the surface from the upper to the lower levels of the slopes. Instead, we recorded decreased concentrations of 137Cs with the decrease of altitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, W.
This report presents historical summaries of the research programs at the Nevada Applied Ecology Group (NAEG). NAEG was formed in 1970 as an outgrowth of the formation of the Office of Effects Evaluation and an anticipation by NV management of what was to become the National Environmental Policy Act. The objectives of the NAEG programs were: (1) delineate locations of contamination; (2) determine concentrations in ecosystem components; (3) quantify rates of movement among ecosystem components; and (4) evaluate potential dose from plutonium and other radionuclides.
U.S. EPA Superfund Program's Policy for Risk and Dose Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Stuart
2008-01-15
The Environmental Protection Agency (EPA) Office of Superfund Remediation and Technology Innovation (OSRTI) has primary responsibility for implementing the long-term (non-emergency) portion of a key U.S. law regulating cleanup: the Comprehensive Environmental Response, Compensation and Liability Act, CERCLA, nicknamed 'Superfund'. The purpose of the Superfund program is to protect human health and the environment over the long term from releases or potential releases of hazardous substances from abandoned or uncontrolled hazardous waste sites. The focus of this paper is on risk and dose assessment policies and tools for addressing radioactively contaminated sites by the Superfund program. EPA has almost completedmore » two risk assessment tools that are particularly relevant to decommissioning activities conducted under CERCLA authority. These are the: 1. Building Preliminary Remediation Goals for Radionuclides (BPRG) electronic calculator, and 2. Radionuclide Outdoor Surfaces Preliminary Remediation Goals (SPRG) electronic calculator. EPA developed the BPRG calculator to help standardize the evaluation and cleanup of radiologically contaminated buildings at which risk is being assessed for occupancy. BPRGs are radionuclide concentrations in dust, air and building materials that correspond to a specified level of human cancer risk. The intent of SPRG calculator is to address hard outside surfaces such as building slabs, outside building walls, sidewalks and roads. SPRGs are radionuclide concentrations in dust and hard outside surface materials. EPA is also developing the 'Radionuclide Ecological Benchmark' calculator. This calculator provides biota concentration guides (BCGs), also known as ecological screening benchmarks, for use in ecological risk assessments at CERCLA sites. This calculator is intended to develop ecological benchmarks as part of the EPA guidance 'Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments'. The calculator develops ecological benchmarks for ionizing radiation based on cell death only.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richmond, C.R.
1988-09-30
The traveler participated in the Workshop on the Transfer of Radionuclides to Livestock which was held at the Christ Church College-University of Oxford, September 5-8, 1988. The traveler was a member of the program committee that was made up of representatives from ten countries. In addition, the traveler presented a key invited paper entitled ''Transfer of Radionuclides to Animals --- An Historical Perspective of Work Done in the United States.'' The aim of the workshop was to review current information obtained from both observations and experimental studies on how various parameters can influence the mechanisms of transfer of radionuclides tomore » human food stuffs. These parameters include source and composition of the diet, chemical form of radionuclides, season, agricultural practices, species, strain, and age. The importance and application of countermeasures for reducing the transfer of radionuclides to food stuffs was also considered. The last session of the meeting included summaries and presentations by each session chairman. This was followed by a general discussion by the attendees that was most profitable and stimulating.« less
Terbium Radionuclides for Theranostics Applications: A Focus On MEDICIS-PROMED
NASA Astrophysics Data System (ADS)
Cavaier, R. Formento; Haddad, F.; Sounalet, T.; Stora, T.; Zahi, I.
A new facility, named CERN-MEDICIS, is under construction at CERN to produce radionuclides for medical applications. In parallel, the MEDICIS-PROMED, a Marie Sklodowska-Curie innovative training network of the Horizon 2020 European Commission's program, is being coordinated by CERN to train young scientists on the production and use of innovative radionuclides and develop a network of experts within Europe. One program within MEDICIS-PROMED is to determine the feasibility of producing innovative radioisotopes for theranostics using a commercial middle-sized high-current cyclotron and the mass separation technology developed at CERN-MEDICIS. This will allow the production of high specific activity radioisotopes not achievable with the common post-processing by chemical separation. Radioisotopes of scandium, copper, arsenic and terbium have been identified. Preliminary studies of activation yield and irradiation parameters optimization for the production of Tb-149 will be described.
NASA Astrophysics Data System (ADS)
Finn, R.; Plascjak, P.; Sheh, Y.; Yamashita, Y.; Yoshida, H.; Adams, R.; Simpson, N.; Larson, S.
1987-04-01
The Cyclotron staff at the National Institutes of Health is involved in a comprehensive radionuclide preparation program which culminates with the formulation of numerous requested short-lived radiopharmaceutical agents for clinical evaluation. The existence of two cyclotrons and the requests for cyclotron-produced radionuclides, principally short-lived positron-emitting ones, necessitates an efficient and cost-effective program. The clinical need for 15O labelled water exemplifies the modification and effective coupling of two supplied gas target systems without detriment to either individual product. 15O labeled oxygen, produced from the 14N(d,n) 15O nuclear reaction, is combined with the target gas for 11C labelled cyanide production through standard fittings to achieve the chemical oxidation. The system allows an "on-line" product of extremely high yield and excellent radionuclidic purity. The operational characteristics of the redesigned commercial cyclotron targetry system and the radiochemical considerations are presented.
Hydrogeologic studies at the USGS Amargosa Desert Research Site
Andraski, Brian J.; Stonestrom, David A.; Taylor, Emily M.
1998-01-01
In 1976, the U.S. Geological Survey (USGS) began studies of unsaturated-zone hydrology in the Amargosa Desert in support of the USGS Low-Level Radioactive Waste Program. In 1983, agreements with the Bureau of Land Management and the State of Nevada established two field study areas: a 16-ha area adjacent to a waste-burial facility 17 km south of Beatty and a 0.1-ha area about 3 km farther south (fig. 1A). The study areas are collectively known as the Amargosa Desert Research Site (ADRS). Investigations at the ADRS have provided long-term benchmark information about hydraulic characteristics and soil-water movement for undisturbed conditions and for simulated waste-site conditions in arid environments. In 1995, as a result of unexpectedly finding high concentrations of tritium and carbon-14 in the unsaturated zone beneath the ADRS, the scope of research was broadened to include the study of processes affecting radionuclide transport. The ADRS was incorporated into the USGS Toxic Substances Hydrology Program in 1997. Research at the site is a multidisciplinary, collaborative effort that involves scientists from the USGS, universities, research institutes, and national laboratories. The overall objective for research at the site is to improve understanding of and methods for characterizing mechanisms that control subsurface migration and fate of contaminants in arid environments.
Experimental system to displace radioisotopes from upper to deeper soil layers: chemical research
Cazzola, Pietro; Cena, Agostino; Ghignone, Stefano; Abete, Maria C; Andruetto, Sergio
2004-01-01
Background Radioisotopes are introduced into the environment following nuclear power plant accidents or nuclear weapons tests. The immobility of these radioactive elements in uppermost soil layers represents a problem for human health, since they can easily be incorporated in the food chain. Preventing their assimilation by plants may be a first step towards the total recovery of contaminated areas. Methods The possibility of displacing radionuclides from the most superficial soil layers and their subsequent stabilisation at lower levels were investigated in laboratory trials. An experimental system reproducing the environmental conditions of contaminated areas was designed in plastic columns. A radiopolluted soil sample was treated with solutions containing ions normally used in fertilisation (NO3-, NH4+, PO4--- and K+). Results Contaminated soils treated with an acid solution of ions NO3-, PO4--- and K+, undergo a reduction of radioactivity up to 35%, after a series of washes which simulate one year's rainfall. The capacity of the deepest soil layers to immobilize the radionuclides percolated from the superficial layers was also confirmed. Conclusion The migration of radionuclides towards deeper soil layers, following chemical treatments, and their subsequent stabilization reduces bioavailability in the uppermost soil horizon, preventing at the same time their transfer into the water-bearing stratum. PMID:15132749
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvalho, Fernando P.; Torres, Lubelia M.; Oliveira, Joao M.
2007-07-01
Uranium ore was extracted in the surroundings of Mangualde city, North of Portugal, in the mines of Cunha Baixa, Quinta do Bispo and Espinho until a few years ago. Mining waste, milling tailings and acid mine waters are the on site remains of this extractive activity. Environmental radioactivity measurements were performed in and around these sites in order to assess the dispersal of radionuclides from uranium mining waste and the spread of acidic waters resulting from the in situ uranium leaching with sulphuric acid. Results show migration of acid waters into groundwater around the Cunha Baixa mine. This groundwater ismore » tapped by irrigation wells in the agriculture area near the Cunha Baixa village. Water from wells displayed uranium ({sup 238}U) concentrations up to 19x10{sup 3} mBq L{sup -1} and sulphate ion concentrations up to 1070 mg L{sup -1}. These enhanced concentrations are positively correlated with low water pH, pointing to a common origin for radioactivity, dissolved sulphate, and acidity in underground mining works. Radionuclide concentrations were determined in horticulture and farm products from this area also and results suggest low soil to plant transfer of radionuclides and low food chain transfer of radionuclides to man. Analysis of aerosols in surface air showed re suspension of dust from mining and milling waste heaps. Therefore, it is recommended to maintain mine water treatment and to plan remediation of these mine sites in order to prevent waste dispersal in the environment. (authors)« less
Quinto, Francesca; Blechschmidt, Ingo; Garcia Perez, Carmen; Geckeis, Horst; Geyer, Frank; Golser, Robin; Huber, Florian; Lagos, Markus; Lanyon, Bill; Plaschke, Markus; Steier, Peter; Schäfer, Thorsten
2017-07-05
The multiactinide analysis with accelerator mass spectrometry (AMS) was applied to samples collected from the run 13-05 of the Colloid Formation and Migration (CFM) experiment at the Grimsel Test Site (GTS). In this in situ radionuclide tracer test, the environmental behavior of 233 U, 237 Np, 242 Pu, and 243 Am was investigated in a water conductive shear zone under conditions relevant for a nuclear waste repository in crystalline rock. The concentration of the actinides in the GTS groundwater was determined with AMS over 6 orders of magnitude from ∼15 pg/g down to ∼25 ag/g. Levels above 10 fg/g were investigated with both sector field inductively coupled plasma mass spectrometry (SF-ICPMS) and AMS. Agreement within a relative uncertainty of 50% was found for 237 Np, 242 Pu, and 243 Am concentrations determined with the two analytical methods. With the extreme sensitivity of AMS, the long-term release and retention of the actinides was investigated over 8 months in the tailing of the breakthrough curve of run 13-05 as well as in samples collected up to 22 months after. Furthermore, the evidence of masses 241 and 244 u in the CFM samples most probably representing 241 Am and 244 Pu employed in a previous tracer test demonstrated the analytical capability of AMS for in situ studies lasting more than a decade.
Separation of Long-Lived Fission Products Tc-99 and I-129 from Synthetic Effluents by Crown Ethers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paviet-Hartmann, P.; Hartmann, T.
2006-07-01
To minimize significantly the radio-toxic inventory of nuclear geological repositories to come as well as to reduce the potential of radionuclides migration and to minimize long-term exposure, the concept of partitioning and transmutation (P/T) of nuclear waste is currently discussed. Transmutation offers the possibility to convert radio-toxic radionuclides with long half-lives into radionuclides of shorter half-lives, less toxic isotopes, or even into stable isotopes. Besides the most prominent isotopes of neptunium, plutonium, americium, and curium, the long-lived fission products Tc-99 and I-129 (half-lives of 2.13 x 10{sup 5} years, and 1.57 x 10{sup 7} years, respectively) are promising candidates formore » transmutation in order to prevent their migration from a nuclear repository. Partitioning and transmutation of the most radio-toxic radionuclides will not only minimize the nuclear waste load but most importantly will significantly reduce the long-term radio-toxic hazard of nuclear waste repositories to come. Prior to the deployment of partitioning and transmutation, selective extraction techniques are required to separate the radionuclides of concern. Since the discovery of crown ethers by C. Pedersen, various applications of crown ethers have drawn much attention. Although liquid-liquid extraction of alkali and alkali earth metals by crown ethers has been extensively studied, little data is available on the extraction of Tc-99 and I-129 by crown ethers. The methods developed herein for the specific extraction of Tc-99 and I-129 provide recommendations in support of their selectively extraction from liquid radioactive waste streams, mainly ILW. We report data on the solvent extraction of Tc-99 and I-129 from synthetic effluents by six crown ethers of varying cavity dimensions and derivatization. To satisfy the needs of new extractant systems we are demonstrating that crown ether (CE) based systems have the potential to serve as selective extractants for the separation of these long lived radionuclides from high level nuclear waste (HLW), intermediate level nuclear waste (ILW), and low level nuclear waste (LLW) streams. The experimental results show that dibenzo-18-crown-6 (DB 18C6) is highly selective towards Tc-99, and dicyclohexano-18-crown-6 (DC18C6) is highly selective towards I-129. The nature of the diluent was examined and was shown to be the most influential variable in controlling the extraction coefficients of Tc-99 and I-129. Therefore the addition of polar diluent acetone to non-polar diluent toluene enhanced the distribution coefficient of Tc-99 (DTc) was by a factor of 30. For I-129, the best extraction yield was obtained after introducing tetrachloroethane. Through the process, by a single extraction step, 85 % to 95 % of Tc-99 was extracted from synthetic effluents, while 84 % to 88 % of I-129 was extracted from different acidic media. The extraction by crown ether is a fairly rapid process and the total preparation time of the chemical separation takes about 20 minutes for a batch of eight samples. (authors)« less
Watkins, B M; Smith, G M; Little, R H; Kessler, J
1999-04-01
Recent developments in performance standards for proposed high level radioactive waste disposal at Yucca Mountain suggest that health risk or dose rate limits will likely be part of future standards. Approaches to the development of biosphere modeling and dose assessments for Yucca Mountain have been relatively lacking in previous performance assessments due to the absence of such a requirement. This paper describes a practical methodology used to develop a biosphere model appropriate for calculating doses from use of well water by hypothetical individuals due to discharges of contaminated groundwater into a deep well. The biosphere model methodology, developed in parallel with the BIOMOVS II international study, allows a transparent recording of the decisions at each step, from the specification of the biosphere assessment context through to model development and analysis of results. A list of features, events, and processes relevant to Yucca Mountain was recorded and an interaction matrix developed to help identify relationships between them. Special consideration was given to critical/potential exposure group issues and approaches. The conceptual model of the biosphere system was then developed, based on the interaction matrix, to show how radionuclides migrate and accumulate in the biosphere media and result in potential exposure pathways. A mathematical dose assessment model was specified using the flexible AMBER software application, which allows users to construct their own compartment models. The starting point for the biosphere calculations was a unit flux of each radionuclide from the groundwater in the geosphere into the drinking water in the well. For each of the 26 radionuclides considered, the most significant exposure pathways for hypothetical individuals were identified. For 14 of the radionuclides, the primary exposure pathways were identified as consumption of various crops and animal products following assumed agricultural use of the contaminated water derived from the deep well. Inhalation of dust (11 radionuclides) and external irradiation (1 radionuclide) were also identified as significant exposure modes. Contribution to the total flux to dose conversion factor from the drinking water pathway for each radionuclide was also assessed and for most radionuclides was found to be less than 10% of the total flux to dose conversion factor summed across all pathways. Some of the uncertainties related to the results were considered. The biosphere modeling results have been applied within an EPRI Total Systems Performance Assessment of Yucca Mountain. Conclusions and recommendations for future performance assessments are provided.
LaSala, Albert Mario; Doty, Gene C.
1976-01-01
The geology and hydrology of radioactive solid waste burial grounds at the Hanford Reservation were investigated, using existing data, by the U.S. Geological Survey as part of the waste management plan of the Richland Operations Office of the Energy Research and Development Administration. The purpose of the investigation was to assist the operations office in characterizing the burial sites as to present environmental safety and as to their suitability for long-term storage (several thousand to tens of thousands of years) of radioactive sol id wastes. The burial ground sites fall into two classifications: (1) those on the low stream terraces adjacent to the Columbia River, mainly in the 100 Areas and 300 Area, and (2) those lying on the high terraces south of Gable Mountain in the 200 Areas. Evaluation of the suitability of the burial grounds for long-term storage was made almost entirely on hydrologic, geologic, and topographic criteria. Of greatest concern was the possibility that radionuclides might be leached from the buried wastes by infiltrating water and carried downward to the water table. The climate is semi-arid and the average annual precipitation is 6.4 inches at the Hanford Meteorological Station. However, the precipitation is seasonally distributed with about 50 percent occurring during the months of November, December, January, and February when evapotranspiration is negligible and conditions for infiltration are most favorable. None of the burial grounds are instrumented with monitoring devices that could be used to determine if radionuclides derived from them are reaching the water table. Burial grounds on the low stream terraces are mainly underlain by permeable materials and the water table lies at relatively shallow depths. Radionuclides conceivably could be leached from these burial grounds by percolating soil water, and radionuclides might reach the Columbia River in a relatively short time. These sites could also be inundated by erosion during a catastrophic flood. For these reasons, they are judged to be unsuited for long-term storage. Local conditions at several of these burial grounds are particularly unfavorable from the standpoint of safety. Depressions and swales at some burial grounds, such as numbers 4 and 5 in the 300 Area in which runoff can collect, enhance the possibility of water infiltrating through the buried wastes and transporting radionuclides to the water table. Also, during a high stage of the Columbia River, the water table conceivably could rise into burial grounds l and 2 of the 100 F Area. Most of the burial grounds on the low terraces contain either (1) reactor components and related equipment bearing activation products, principally cobalt-60, or (2) less hazardous radioactive materials such as uranium. The inventory of activation products in these burial grounds will decay to a safe level in a relatively short period of time (about 100 years), according to estimates made by C. D. Corbit, Douglas United Nuclear, Inc., 1969. The inventory of radionuclides is not considered by the ERDA staff to be complete, however. At these burial grounds containing activation products or less hazardous materials, investigations should be made of the radioactivity in soil and ground water beneath selected representative sites to verify that radionuclides are not migrating from the burial grounds. If migration is detected, field investigations should be made to determine the source or sources of the radionuclides and the desirability of removing the source wastes. Other burial grounds on the low terraces contain plutonium and fission products, which require long-term storage. Both the 300 WYE and the 300 North burial grounds are reported to contain plutonium in large quantities. Burial ground no. l in the 300 Area reportedly also contains plutonium. The inventory records of any other burial grounds on the low terraces suspected of containing plutonium should be reviewed to determine if pl
NASA Astrophysics Data System (ADS)
Madic, Charles; Bourges, Jacques; Dozol, Jean-François
1995-09-01
To reduce the long-term potential hazards associated with the management of nuclear wastes generated by nuclear fuel reprocessing, one alternative is the transmutation of long-lived radionuclides into short-lived radionuclides by nuclear means (P & T strategy). In this context, according to the law passed by the French Parliament on 30 December 1991, the CEA launched the SPIN program for the design of long-lived radionuclide separation and nuclear incineration processes. The research in progress to define separation processes focused mainly on the minor actinides (neptunium, americium and curium) and some fission products, like cesium and technetium. To separate these long-lived radionuclides, two strategies were developed. The first involves research on new operating conditions for improving the PUREX fuel reprocessing technology. This approach concerns the elements neptunium and technetium (iodine and zirconium can also be considered). The second strategy involves the design of new processes; DIAMEX for the co-extraction of minor actinides from the high-level liquid waste leaving the PUREX process, An(III)/Ln(III) separation using tripyridyltriazine derivatives or picolinamide extracting agents; SESAME for the selective separation of americium after its oxidation to Am(IV) or Am(VI) in the presence of a heteropolytungstate ligand, and Cs extraction using a new class of extracting agents, calixarenes, which exhibit exceptional Cs separation properties, especially in the presence of sodium ion. This lecture focuses on the latest achievements in these research areas.
A new code for modelling the near field diffusion releases from the final disposal of nuclear waste
NASA Astrophysics Data System (ADS)
Vopálka, D.; Vokál, A.
2003-01-01
The canisters with spent nuclear fuel produced during the operation of WWER reactors at the Czech power plants are planned, like in other countries, to be disposed of in an underground repository. Canisters will be surrounded by compacted bentonite that will retard the migration of safety-relevant radionuclides into the host rock. A new code that enables the modelling of the critical radionuclides transport from the canister through the bentonite layer in the cylindrical geometry was developed. The code enables to solve the diffusion equation for various types of initial and boundary conditions by means of the finite difference method and to take into account the non-linear shape of the sorption isotherm. A comparison of the code reported here with code PAGODA, which is based on analytical solution of the transport equation, was made for the actinide chain 4N+3 that includes 239Pu. A simple parametric study of the releases of 239Pu, 129I, and 14C into geosphere is discussed.
Quality assurance program plan for radionuclide airborne emissions monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boom, R.J.
1995-12-01
This Quality Assurance Program Plan identifies quality assurance program requirements and addresses the various Westinghouse Hanford Company organizations and their particular responsibilities in regards to sample and data handling of radiological airborne emissions. This Quality Assurance Program Plan is prepared in accordance with and to written requirements.
ERIC Educational Resources Information Center
Potgieter, Christo; Bredenkamp, Esther
2002-01-01
Presents general background information on migration in South Africa and its effect on education. Described a cross-cultural communication program that addresses creatively the outcomes of migration, including its theoretical model, an application, program operation for learners and educators, and challenges. Reviews lessons learned by migrant…
Review of present groundwater monitoring programs at the Nevada Test Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hershey, R.L.; Gillespie, D.
1993-09-01
Groundwater monitoring at the Nevada Test Site (NTS) is conducted to detect the presence of radionuclides produced by underground nuclear testing and to verify the quality and safety of groundwater supplies as required by the State of Nevada and federal regulations, and by U.S. Department of Energy (DOE) Orders. Groundwater is monitored at water-supply wells and at other boreholes and wells not specifically designed or located for traditional groundwater monitoring objectives. Different groundwater monitoring programs at the NTS are conducted by several DOE Nevada Operations Office (DOE/NV) contractors. Presently, these individual groundwater monitoring programs have not been assessed or administeredmore » under a comprehensive planning approach. Redundancy exists among the programs in both the sampling locations and the constituents analyzed. Also, sampling for certain radionuclides is conducted more frequently than required. The purpose of this report is to review the existing NTS groundwater monitoring programs and make recommendations for modifying the programs so a coordinated, streamlined, and comprehensive monitoring effort may be achieved by DOE/NV. This review will be accomplished in several steps. These include: summarizing the present knowledge of the hydrogeology of the NTS and the potential radionuclide source areas for groundwater contamination; reviewing the existing groundwater monitoring programs at the NTS; examining the rationale for monitoring and the constituents analyzed; reviewing the analytical methods used to quantify tritium activity; discussing monitoring network design criteria; and synthesizing the information presented and making recommendations based on the synthesis. This scope of work was requested by the DOE/NV Hydrologic Resources Management Program (HRMP) and satisfies the 1993 (fiscal year) HRMP Groundwater Monitoring Program Review task.« less
Nevada Test Site annual site environmental report for calendar year 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, S.C.; Townsend, Y.E.
1997-10-01
Monitoring and surveillance on and around the Nevada Test Site (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1996 indicated that operations on the NTS were conducted in compliance with applicable DOE, state, and federal regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of liquid effluents, or resuspension of soil was not detectable offsite, and exposure above background to members of the offsitemore » population was not measured by the offsite monitoring program. Using the US Environmental Protection Agency`s (EPA) Clean Air Package 1988 (CAP88)PC model and NTS radionuclide emissions and environmental monitoring data, the calculated effective dose equivalent (EDE) to the maximally exposed individual offsite would have been 0.11 mrem. This value is less than 2 percent of the federal dose limit prescribed for radionuclide air emissions. Any person receiving this dose would also have received 144 mrem from natural background radiation. There were no nonradiological releases to the offsite area. Hazardous wastes were shipped offsite to approved disposal facilities. Compliance with the various regulations stemming from the National Environmental Policy Act (NEPA) is being achieved and, where mandated, permits for air and water effluents and waste management have been obtained from the appropriate agencies. Cooperation with other agencies has resulted in seven different consent orders and agreements. Support facilities at off-NTS locations have complied with the requirements of air quality permits and state or local wastewater discharge and hazardous waste permits as mandated for each location.« less
GROUNDWATER REMEDIATION SOLUTIONS AT HANFORD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilmore, Tyler J.; Truex, Michael J.; Williams, Mark D.
2007-02-26
In 2006, Congress provided funding to the U. S. Department of Energy (DOE) to study new technologies that could be used to treat contamination from the Hanford Site that might impact the Columbia River. The contaminants of concern are primarily metals and radionuclides, which are byproducts of Hanford’s cold war mission to produce plutonium for atomic weapons. The DOE asked Pacific Northwest National Laboratory (PNNL) to consider this problem and develop approaches to address the contamination that threatens the river. DOE identified three high priority sites that had groundwater contamination migrating towards the Columbia river for remediation. The contaminants includedmore » strontium-90, uranium and chromium. Remediation techniques for metals and radionuclides focus primarily on altering the oxidation state of the contaminant chemically or biologically, isolating the contaminants from the environment through adsorption or encapsulation or concentrating the contaminants for removal. A natural systems approach was taken that uses a mass balance concept to frame the problem and determine the most appropriate remedial approach. This approach provides for a scientifically based remedial decision. The technologies selected to address these contaminants included an apatite adsorption barrier coupled with a phytoremediation to address the strontium-90 contamination, injection of polyphosphate into the subsurface to sequester uranium, and a bioremediation approach to reduce chromium contamination in the groundwater. The ability to provide scientifically based approaches is in large part due to work developed under previous DOE Office of Science and Office of Environmental Management projects. For example, the polyphosphate and the bioremediation techniques, were developed by PNNL under the EMSP and NABIR programs. Contaminated groundwater under the Hanford Site poses a potential risk to humans and the Columbia River. These new technologies holds great promise for effectively remediating the residual waste that threatens the environment.« less
[Microbiological Aspects of Radioactive Waste Storage].
Safonov, A V; Gorbunova, O A; German, K E; Zakharova, E V; Tregubova, V E; Ershov, B G; Nazina, T N
2015-01-01
The article gives information about the microorganisms inhabiting in surface storages of solid radioactive waste and deep disposal sites of liquid radioactive waste. It was shown that intensification of microbial processes can lead to significant changes in the chemical composition and physical state of the radioactive waste. It was concluded that the biogeochemical processes can have both a positive effect on the safety of radioactive waste storages (immobilization of RW macrocomponents, a decreased migration ability of radionuclides) and a negative one (biogenic gas production in subterranean formations and destruction of cement matrix).
Navarro, E; Roldán, C; Cervera, J; Ferrero, J L
1998-01-19
The radionuclides 137Cs, 134Cs and 90Sr have been measured in edible tissues and bones of migratory birds (song-thrushes, Turdus philomelos) from central and northern Europe and captured in the Comunidad Valenciana, Spain in the 1994 autumn-winter season. Eight years after the Chernobyl accident, extensive agricultural lands in Europe are still contaminated and this study shows that there was a transfer of radioactive isotopes to the captured migratory song-thrushes. The whole-body dose commitment to humans consuming these birds is estimated.
Methods for Estimating Physicochemical Properties of Inorganic Chemicals of Environmental Concern.
1984-06-01
atoms from a solid surface into an adjacent vapor phase. This effect has had significant implications for environmental pollution in the case of 210 ...for industrial 55 An um tt, i • purposes, 210 - polonium becomes unstable with respect to spontaneous migration through the air, leading to severe...1.6x10 s 8xlO- 210 -lead 210P 22 y 3.7x107 * 210 - polonium 210 -(5.30 14eV) 138 d 6.4x105 Po 91 AAfdr DL futt, imc Table 12. SELECTED RADIONUCLIDES WITH HALF
Managed Migration: The Caribbean Approach to Addressing Nursing Services Capacity
Salmon, Marla E; Yan, Jean; Hewitt, Hermi; Guisinger, Victoria
2007-01-01
Objective To (1) provide a contextual analysis of the Caribbean region with respect to forces shaping the current and emerging nursing workforce picture in the region; (2) discuss country-specific case(s) within the Caribbean; and (3) describe the Managed Migration Program as a potential framework for addressing regional and global nurse migration issues. Principal Findings The Caribbean is in the midst of a crisis of shortages of nurses with an average vacancy rate of 42 percent. Low pay, poor career prospects, and lack of education opportunities are among the reasons nurses resign. Many of these nurses look outside the region for job opportunities in the United Kingdom, Canada, the United States, and other countries. Compounding the situation is the lack of resources to train nurses to fill the vacancies. The Managed Migration Program of the Caribbean is a multilateral, cross-sector, multi-interventional, long-term strategy for developing and maintaining an adequate supply of nurses for the region. Conclusions The Managed Migration Program of the Caribbean has made progress in establishing regional support for addressing the nursing shortage crisis and developing a number of interesting initiatives such as training for export and temporary migration. Recommendations to move the Managed Migration Program of the Caribbean forward focus on advocacy, integration of the program into regional policy decisions, and integration of the program with regional health programming. PMID:17489919
Burger, Joanna; Gochfeld, Michael; Kosson, David S; Powers, Charles W; Friedlander, Barry; Eichelberger, John; Barnes, David; Duffy, Lawrence K; Jewett, Stephen C; Volz, Conrad D
2005-05-01
With the ending of the Cold War, the US Department of Energy is responsible for the remediation of radioactive waste and disposal of land no longer needed for nuclear material production or related national security missions. The task of characterizing the hazards and risks from radionuclides is necessary for assuring the protection of health of humans and the environment. This is a particularly daunting task for those sites that had underground testing of nuclear weapons, where the radioactive contamination is currently inaccessible. Herein we report on the development of a Science Plan to characterize the physical and biological marine environment around Amchitka Island in the Aleutian chain of Alaska, where three underground nuclear tests were conducted (1965-1971). Information on the ecology, geology, and current radionuclide levels in biota, water, and sediment is necessary for evaluating possible current contamination and to serve as a baseline for developing a plan to ensure human and ecosystem health in perpetuity. Other information required includes identifying the location of the salt water/fresh water interface where migration to the ocean might occur in the future and determining groundwater recharge balances, as well as assessing other physical/geological features of Amchitka near the test sites. The Science Plan is needed to address the confusing and conflicting information available to the public about radionuclide risks from underground nuclear blasts in the late 1960s and early 1970s, as well as the potential for volcanic or seismic activity to disrupt shot cavities or accelerate migration of radionuclides into the sea. Developing a Science Plan involved agreement among regulators and other stakeholders, assignment of the task to the Consortium for Risk Evaluation with Stakeholder Participation, and development of a consensus Science Plan that dealt with contentious scientific issues. Involvement of the regulators (State of Alaska), resource trustees (U S Fish and Wildlife Service), representatives of the Aleut and Pribilof Island communities, and other stakeholders was essential for plan development and approval, although this created tensions because of the different objectives of each group. The complicated process of developing a Science Plan involved iterations and interactions with multiple agencies and organizations, scientists in several disciplines, regulators, and the participation of Aleut people in their home communities, as well as the general public. The importance of including all parties in all phases of the development of the Science Plan was critical to its acceptance by a broad range of regulators, agencies, resource trustees, Aleutian/Pribilof communities, and other stakeholders.
Patterns of Cs-137 and Sr-90 distribution in conjugated landscape systems
NASA Astrophysics Data System (ADS)
Korobova, E.
2012-04-01
The main goal of the study was to reveal spatial patterns of 137Cs and 90Sr distribution in soils and plants of conjugated landscapes and to use 137Cs as a tracer for natural migration and accumulation processes in the environment. The studies were based on presumptions that: 1) the environment consisted of interrelated bio- and geochemical fields of hierarchical structure depending on the level and age of factors responsible for spatial distribution of chemical elements; 2)distribution of technogenic radionuclides in natural landscapes depended upon the location and type of the initial source and radionuclide involvement in natural pathways controlled by the state and mobility of the typomorphic elements and water migration. Case studies were undertaken in areas subjected to contamination after the Chernobyl accident and in the estuary zones of the Yenisey and Pechora rivers. First observations in the Chernobyl remote zone in 1987-1989 demonstrated relation between the dose rate, 137Cs, 134Cs, 144Ce, 106Ru, 125Sb in soil cover and the location of the measured plot in landscape toposequence. Later study of 137Cs and 90Sr concentration and speciation confirmed different patterns of their distribution dependent upon the radioisotope, soil features and vegetation cover corresponding to the local landscape and landuse structure. Certain patterns in distribution and migration of 137Cs and 90Sr in soils and local food chain were followed in private farms situated in different landscape position [1]. Detailed study of 137Cs activity in forested site with a pronounced relief 20 and 25 years after the Chernobyl accident showed its stable polycentric structure in soils, mosses and litter which was sensitive to meso- and micro-relief features [2]. Radionuclide contamination of the lower Yenisey and Pechora studied along meridian landscape transects proved both areas be subjected to global 137Cs pollution while the Yenisey floodplain received additional regional contamination transported by the river [3]. Local zones of enhanced 137Cs accumulation in soil samples and some plant species were found in island systems, and the Yenisey upper delta island in particular. Hydromica identified in samples was considered significant for 137Cs accumulation in floodplain soils. The distinct tendency of secondary redistribution of the global 137Cs fallout in soils due to wind and water transport and subsequent accumulation, 137Cs accumulation in topsoil and slightly over the permafrost table were characteristic for both catchments. Therefore 137Cs proved to be an effective isotope tracer for studying and mapping technogenic contamination and the recent processes of water and particulate mass transport on the global, regional and local scales. Obtained results may be useful for monitoring, eco-geochemical evaluation and regionalizing of the areas contaminated by artificial radionuclides. 1. Korobova E.M., Ermakov A., Linnik V., 1998. Applied Geochemistry 13, .7, 803-814. 2. E.M. Korobova, S.L. Romanov, 2009. Chemometrics and Intelligent Laboratory Systems 99, 1-8. 3. E.M. Korobova, N.G. Ukraintseva, V.V. Surkov, J.E. Brown, W. Standring and A.P. Borisov, 2009. Eds: Mattia N. Gallo, Marco N. Ferrari. River Pollution Research Progress. Nova Science Publishers, Inc. N-Y, 91-156.
NASA Astrophysics Data System (ADS)
Farfan, E. B.; Gashchak, S. P.; Makliuk, Y. A.; Maksymenko, A. M.; Bondarkov, M. D.; Jannik, G. T.; Marra, J. C.
2009-12-01
A widespread environmental contamination of the areas adjacent to the Chernobyl Nuclear Power Plant (ChNPP) site attracted a great deal of publicity to the biological consequences of the ChNPP catastrophe. However, only a few studies focused on a detailed analysis of radioactive contamination of the local wild fauna and most of them were published in Eastern European languages, making them poorly accessible for Western scientists. In addition, evaluation of this information appears difficult due to significant differences in raw data acquisition and analysis methodologies and final data presentation formats. Using an integrated approach to assessment of all available information, the International Radioecology Laboratory scientists showed that the ChNPP accident had increased the average values of the animals 137Cs and 90Sr contamination by a factor of thousands, followed by its decrease by a factor of tens, primarily resulting from a decrease in the biological accessibility of the radionuclides. However, this trend depended on many factors. Plant and bottom feeding fish species were the first to reach the maximum contamination levels. No data are available on other vertebrates, but it can be assumed that the same trend was true for all plant feeding animals and animals searching for food on the soil surface. The most significant decrease of the average values occurred during the first 3-5 years after the accident and it was the most pronounced for elks and plant and plankton feeding fish. Their diet included elements “alienated” from the major radionuclide inventory; for example, upper soil layers and bottom deposits where the fallout that had originally precipitated on plants, water and soils gradually migrated. Further radionuclide penetration into deeper layers of soils and its bonding with their mineral components intensified decontamination of the fauna. It took a while for the contamination of predatory fish and mammals (wolves) to reach the maximum followed by its similar slow decrease. Currently, these species are found to be the most contaminated. Species that are environmentally connected with soils or bottom deposits (terrestrial amphibians, rodents, burrowing animals, birds searching for food in soils and underlying layers and wild hogs) also show relatively high contamination levels. In general, by the mid 1990’s, fluctuations in 137Cs contamination primarily depended on seasonal changes in food patterns, physiology and migration for animal species and on all these factors plus seasonal changes of water temperature and flood patterns for fish species. An increase of 90Sr biological accessibility in soils affected its average accumulation. Currently, due to stabilization of environmental complexes and processes in the region, long-term profiles of radioactive contamination of vertebrate animals mostly indicate a gradual decay of radionuclides, with further changes in biological accessibility of radionuclides being practically unnoticeable due to significant seasonal and geographical fluctuations of the contamination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimus, Paul W.
2012-08-30
In February and March 2012, a tracer test involving the injection of a radionuclide-colloid cocktail was conducted in the MI shear zone at the Grimsel Test Site, Switzerland, as part of the Colloids Formation and Migration (CFM) project. The colloids were derived from FEBEX bentonite, which is mined in Spain and is being considered as a potential waste package backfill in a Spanish nuclear waste repository. The tracer test, designated test 12-02 (second test in 2012), involved the injection of the tracer cocktail into borehole CFM 06.002i2 and extraction from the Pinkel surface packer at the main access tunnel wallmore » approximately 6.1 m from the injection interval. The test configuration is depicted in Figure 1. This configuration has been used in several conservative tracer tests and two colloid-homologue tracer tests since 2007, and it is will be employed in an upcoming test involving the emplacement of a radionuclide-doped bentonite plug into CFM 06.002i2 to evaluate the swelling and erosion of the bentonite and the transport of bentonite colloids and radionuclides from the source to the extraction point at the tunnel wall. Interpretive analyses of several of the previous tracer tests, from 09-01 through 12-02 were provided in two previous Used Fuel Disposition Program milestone reports (Arnold et al., 2011; Kersting et al., 2012). However, only the data for the conservative tracer Amino-G Acid was previously analyzed from test 12-02 because the other tracer data from this test were not available at the time. This report documents the first attempt to quantitatively analyze the radionuclide and colloid breakthrough curves from CFM test 12-02. This report was originally intended to also include an experimental assessment of colloid-facilitated transport of uranium by bentonite colloids in the Grimsel system, but this assessment was not conducted because it was reported by German collaborators at the Karlsruhe Institute of Technology (KIT) that neither uranium nor neptunium adsorbed appreciably to FEBEX bentonite colloids in Grimsel groundwater (Huber et al., 2011). The Grimsel groundwater has a relatively high pH of {approx}9, so the lack of uranium and neptunium adsorption to clay is not surprising given the tendency for these actinides to form very stable negative or neutrally-charged uranyl- or calcium-uranyl-carbonate complexes at these pH, particularly in a water that is effectively saturated with respect to calcite. It was also observed in testing conducted at LANL earlier in 2012 that uranium did not adsorb measurably to Grimsel granodiorite in a synthetic Grimsel groundwater at pH {approx}8.5 (Kersting et al., 2012). Thus, the planned experimental work was not pursued because all the available information clearly pointed to an expected result that uranium transport would not be facilitated by clay colloids in the Grimsel system.« less
The behavior of U- and Th-series nuclides in groundwater
Porcelli, D.; Swarzenski, P.W.
2003-01-01
Groundwater has long been an active area of research driven by its importance both as a societal resource and as a component in the global hydrological cycle. Key issues in groundwater research include inferring rates of transport of chemical constituents, determining the ages of groundwater, and tracing water masses using chemical fingerprints. While information on the trace elements pertinent to these topics can be obtained from aquifer tests using experimentally introduced tracers, and from laboratory experiments on aquifer materials, these studies are necessarily limited in time and space. Regional studies of aquifers can focus on greater scales and time periods, but must contend with greater complexities and variations. In this regard, the isotopic systematics of the naturally occurring radionuclides in the U- and Th- decay series have been invaluable in investigating aquifer behavior of U, Th, and Ra. These nuclides are present in all groundwaters and are each represented by several isotopes with very different half-lives, so that processes occurring over a range of time-scales can be studied (Table 1⇓). Within the host aquifer minerals, the radionuclides in each decay series are generally expected to be in secular equilibrium and so have equal activities (see Bourdon et al. 2003). In contrast, these nuclides exhibit strong relative fractionations within the surrounding groundwaters that reflect contrasting behavior during release into the water and during interaction with the surrounding host aquifer rocks. Radionuclide data can be used, within the framework of models of the processes involved, to obtain quantitative assessments of radionuclide release from aquifer rocks and groundwater migration rates. The isotopic variations that are generated also have the potential for providing fingerprints for groundwaters from specific aquifer environments, and have even been explored as a means for calculating groundwater ages.
Merk, Rainer
2012-02-01
This study depicts a theoretical experiment in which the radionuclide transport through the porous material of a landfill consisting of concrete rubble (e.g., from the decommissioning of nuclear power plants) and the subsequent migration through the vadose zone and aquifer to a model well is calculated by means of the software HYDRUS-1D (Simunek et al., 2008). The radionuclides originally contained within the rubble become dissolved due to leaching caused by infiltrated rainwater. The resulting well-water contamination (in Bq/L) is calculated numerically as a function of time and location and compared with the outcome of a simplified analytic model for the groundwater pathway published by the IAEA (2005). Identical model parameters are considered. The main objective of the present work is to evaluate the predictive capacity of the more simple IAEA model using HYDRUS-1D as a reference. For most of the radionuclides considered (e.g., ¹²⁹I, and ²³⁹Pu), results from applying the IAEA model were found to be comparable to results from the more elaborate HYDRUS modeling, provided the underlying parameter values are comparable. However, the IAEA model appears to underestimate the effects resulting from, for example, high nuclide mobility, short half-life, or short-term variations in the water infiltration. The present results indicate that the IAEA model is suited for screening calculations and general recommendation purposes. However, the analysis of a specific site should be accompanied by detailed HYDRUS computer simulations. In all models considered, the calculation outcome largely depends on the choice of the sorption parameter K(d). Copyright © 2011 Elsevier Ltd. All rights reserved.
Benbow, Steven J; Rivett, Michael O; Chittenden, Neil; Herbert, Alan W; Watson, Sarah; Williams, Steve J; Norris, Simon
2014-10-15
A safety case for the disposal of Intermediate Level (radioactive) Waste (ILW) in a deep geological disposal facility (GDF) requires consideration of the potential for waste-derived light non-aqueous phase liquid (LNAPL) to migrate under positive buoyancy from disposed waste packages. Were entrainment of waste-derived radionuclides in LNAPL to occur, such migration could result in a shorter overall travel time to environmental or human receptors than radionuclide migration solely associated with the movement of groundwater. This paper provides a contribution to the assessment of this issue through multiphase-flow numerical modelling underpinned by a review of the UK's ILW inventory and literature to define the nature of the associated ILW LNAPL source term. Examination has been at the waste package-local GDF environment scale to determine whether proposed disposal of ILW would lead to significant likelihood of LNAPL migration, both from waste packages and from a GDF vault into the local host rock. Our review and numerical modelling support the proposition that the release of a discrete free phase LNAPL from ILW would not present a significant challenge to the safety case even with conservative approximations. 'As-disposed' LNAPL emplaced with the waste is not expected to pose a significant issue. 'Secondary LNAPL' generated in situ within the disposed ILW, arising from the decomposition of plastics, in particular PVC (polyvinyl chloride), could form the predominant LNAPL source term. Released high molecular weight phthalate plasticizers are judged to be the primary LNAPL potentially generated. These are expected to have low buoyancy-based mobility due to their very low density contrast with water and high viscosity. Due to the inherent uncertainties, significant conservatisms were adopted within the numerical modelling approach, including: the simulation of a deliberately high organic material--PVC content wastestream (2D03) within an annular grouted waste package vulnerable to LNAPL release; upper bound inventory estimates of LNAPLs; incorporating the lack of any hydraulic resistance of the package vent; the lack of any degradation of dissolved LNAPL; and, significantly, the small threshold displacement pressure assumed at which LNAPL is able to enter initially water-saturated pores. Initial scoping calculations on the latter suggested that the rate at which LNAPL is able to migrate from a waste package is likely to be very small and insignificant for likely representative displacement pressure data: this represents a key result. Adopting a conservative displacement pressure, however, allowed the effect of other features and processes in the system to be assessed. High LNAPL viscosity together with low density contrast with water reduces LNAPL migration potential. Migration to the host rock is less likely if waste package vent fluxes are small, solubility limits are high and path lengths through the backfill are short. The capacity of the system to dissolve all of the free LNAPL will, however, depend on groundwater availability. Even with the conservatisms invoked, the overall conclusion of model simulations of intact and compromised (cracked or corroded) waste packages, for a range of realistic ILW LNAPL scenarios, is that it is unlikely that significant LNAPL would be able to migrate from the waste packages and even more unlikely it would be sufficiently persistent to reach the host rock immediately beyond the GDF. Copyright © 2014. Published by Elsevier B.V.
Tran, Emily; Klein Ben-David, Ofra; Teutch, Nadya; Weisbrod, Noam
2016-09-01
Colloid facilitated transport of radionuclides has been implicated as a major transport vector for leaked nuclear waste in the subsurface. Sorption of radionuclides onto mobile carrier colloids such as bentonite and humic acid often accelerates their transport through saturated rock fractures. Here, we employ column studies to investigate the impact of intrinsic, bentonite and humic acid colloids on the transport and recovery of Ce(III) through a fractured chalk core. Ce(III) recovery where either bentonite or humic colloids were added was 7.7-26.9% Ce for all experiments. Greater Ce(III) recovery was observed when both types of carrier colloids were present (25.4-37.4%). When only bentonite colloids were present, Ce(III) appeared to be fractionated between chemical sorption to the bentonite colloid surfaces and heteroaggregation of bentonite colloids with intrinsic carbonate colloids, precipitated naturally in solution. However, scanning electron microscope (SEM) images and colloid stability experiments reveal that in suspensions of humic acid colloids, colloid-facilitated Ce(III) migration results only from the latter attachment mechanism rather than from chemical sorption. This observed heteroaggregation of different colloid types may be an important factor to consider when predicting potential mobility of leaked radionuclides from geological repositories for spent fuel located in carbonate rocks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tracing long-term vadose zone processes at the Nevada Test Site, USA
Hunt, James R.; Tompson, Andrew F. B.
2010-01-01
The nuclear weapons testing programme of the USA has released radionuclides to the subsurface at the Nevada Test Site. One of these tests has been used to study the hydrological transport of radionuclides for over 25 years in groundwater and the deep unsaturated zone. Ten years after the weapon’s test, a 16 year groundwater pumping experiment was initiated to study the mobility of radionuclides from that test in an alluvial aquifer. The continuously pumped groundwater was released into an unlined ditch where some of the water infiltrated into the 200 m deep vadose zone. The pumped groundwater had well-characterized tritium activities that were utilized to trace water migration in the shallow and deep vadose zones. Within the near-surface vadose zone, tritium levels in the soil water are modelled by a simple one-dimensional, analytical wetting front model. In the case of the near-surface soils at the Cambric Ditch experimental site, water flow and salt accumulation appear to be dominated by rooted vegetation, a mechanism not included within the wetting front model. Simulation results from a two-dimensional vadose groundwater flow model illustrate the dominance of vertical flow in the vadose zone and the recharge of the aquifer with the pumped groundwater. The long-time series of hydrological data provides opportunities to understand contaminant transport processes better in the vadose zone with an appropriate level of modelling. PMID:21785525
Technical basis for internal dosimetry at Hanford
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.
1991-07-01
The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ({sup 58}Co, {sup 60}Co, {sup 54}Mn, and {sup 59}Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78more » refs., 35 figs., 115 tabs.« less
Technical basis for internal dosimetry at Hanford
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.
1989-04-01
The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products (/sup 58/Co, /sup 60/Co, /sup 54/Mn, and /sup 59/Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64more » refs., 42 figs., 118 tabs.« less
Industrial scale-plant for HLW partitioning in Russia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzekun, E.G.; Glagolenko, Y.V.; Drojko, E.G.
1996-12-31
Radiochemical plant of PA <> at Ozersk, which was come on line in December 1948 originally for weapon plutonium production and reoriented on the reprocessing of spent fuel, till now keeps on storage HLW of the military program. Application of the vitrification method since 1986 has not essentially reduced HLW volumes. So, as of September 1, 1995 vitrification installations had been processed 9590 m{sup 3} HLW and 235 MCi of radionuclides was included in glass. However only 1100 m{sup 3} and 20.5 MCi is part of waste of the military program. The reason is the fact, that the technology andmore » equipment of vitrification were developed for current waste of Purex-process, for which low contents of corrosion-dangerous impurity to materials of vitrification installation is characteristic of. With reference to HLW, which are growing at PA <> in the course of weapon plutonium production, the program of Science-Research Works includes the following main directions of work. Development of technology and equipment of installations for immobilising HLW with high contents of impurity into a solid form at induction melter. Application of High-temperature Adsorption Method for sorption of radionuclides from HLW on silica gel. Application of Partitioning Method of radionuclides from HLW, based on extraction cesium and strontium into cobalt dicarbollyde or crown-ethers, but also on recovery of cesium radionuclides by sorption on inorganic sorbents. In this paper the results of work on creation of first industrial scale-plant for partitioning HLW by the extraction and sorption methods are reported.« less
Kato, Mihoko; Sternberg, Paul W
2009-12-01
Cell migration is a common event during organogenesis, yet little is known about how migration is temporally coordinated with organ development. We are investigating stage-specific programs of cell migration using the linker cell (LC), a migratory cell crucial for male gonadogenesis of C. elegans. During the L3 and L4 larval stages of wild-type males, the LC undergoes changes in its position along the migratory route, in transcriptional regulation of the unc-5 netrin receptor and zmp-1 zinc matrix metalloprotease, and in cell morphology. We have identified the tailless homolog nhr-67 as a cell-autonomous, stage-specific regulator of timing in LC migration programs. In nhr-67-deficient animals, each of the L3 and L4 stage changes is either severely delayed or never occurs, yet LC development before the early L3 stage or after the mid-L4 stage occurs with normal timing. We propose that there is a basal migration program utilized throughout LC migration that is modified by stage-specific regulators such as nhr-67.
Daniels, Jeffrey I; Chapman, Jenny B
2013-05-01
The Project Rulison underground nuclear test was a proof-of-concept experiment that was conducted under the Plowshare Program in 1969 in the Williams Fork Formation of the Piceance Basin in west-central Colorado. Today, commercial production of natural gas is possible from low permeability, natural gas bearing formations like that of the Williams Fork Formation using modern hydraulic fracturing techniques. With natural gas exploration and production active in the Project Rulison area, this human health risk assessment was performed in order to add a human health perspective for site stewardship. Tritium (H) is the radionuclide of concern with respect to potential induced migration from the test cavity leading to subsequent exposure during gas-flaring activities. This analysis assumes gas flaring would occur for up to 30 d and produce atmospheric H activity concentrations either as low as 2.2 × 10 Bq m (6 × 10 pCi m) from the minimum detectable activity concentration in produced water or as high as 20.7 Bq m (560 pCi m), which equals the highest atmospheric measurement reported during gas-flaring operations conducted at the time of Project Rulison. The lifetime morbidity (fatal and nonfatal) cancer risks calculated for adults (residents and workers) and children (residents) from inhalation and dermal exposures to such activity concentrations are all below 1 × 10 and considered de minimis. The implications for monitoring production water for conforming health-protective, risk-based action levels also are examined.
Radionuclide Migation Project 1984 progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buddemeier, R.W.; Isherwood, D.
1985-04-01
The report discusses the hydrogeologic settings and histories of studies associated with the Cheshire (U20n), Cambric (U5e), Nash (UE2ce), Bilby (U3cn), Bourbon (U7n), and Faultless (UC1) Events. Radionuclide and some chemical data are presented for water samples from cavity or chimney wells associated with the Cheshire, Cambric, and Bilby Events, and from satellite wells at the Cambric, Nash, Bibly, Bourbon, and Faultless Event sites. The report also gives the results of studies of specific sampling or analytical methodologies. These studies demonstrated that the apparent migration of /sup 155/Eu is an artfact of spectrometric misidentification of gamma- and x-ray peaks frommore » other constituents. A potential problem with atmospheric contamination of samples collected with evacuated thief samples was also identified. Ultrafiltration techniques were applied to some of the Cheshire cavity samples collected, and preliminary results suggest that substantial amounts of activity may be associated with colloidal particles in the size range of 0.006 to 0.45 ..mu..m. A study has begun of the recharge of effluent water from RNM-2S (Cambric satellite well) into the desert floor as a result of nine years of continuous pumping. This report gives the initial results of unsaturated zone studies showing the propagation of moisture and tritium fronts through the shallow soil. Geochemical modeling of the behavior of ruthenium and technetium was carried out, with particular emphasis on the identification of ionic species that would be potentially mobile under NTS ground-water conditions. The report compares the results with observations of ruthenium migration to the Cambric satellite well.« less
Tereshchenko, N N; Gulin, S B; Proskurnin, V Yu
2018-08-01
Distribution of 239,240 Pu in abiotic components (water and bottom sediment) of the Black Sea ecosystems was studied during the post-Chernobyl period at different offshore and near-shore locations. The trends of these radionuclides accumulation by sediments were analyzed. The spatial-temporal changes in the 239,240 Pu distribution as well as effective half-life for these radionuclides in the Black Sea surface water in deep-sea area are presented. The estimations of the average annual removal fluxes of the 239,240 Pu into the bottom sediments were obtained. The Black Sea sediments were characterized by a higher 239,240 Pu concentration factor (C f ≈ n·10 4 -n·10 6 ) and radiocapacity factor (F( 239,240 Pu) was about 99.9% on the shelf, 94.5-99.1% on deep-sea basin for silty and 94.6-98.9% on the shelf for sandy bottom sediments) as compared with C f and F for 137 Cs and 90 Sr. Silty bottom sediments play the role of 239,240 Pu main depot in the Black Sea ecosystem. The studied radioecological characteristics of Pu allowed us to define the type of plutonium biogeochemical behavior in the Black Sea as a pedotropic one. The results of this complex radioecological monitoring of 239+240 Pu contamination in the Black Sea and their analysis makes it possible to understand the plutonium redistribution pathways which will enable to carry out the tracing of its migration within the ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Influence of Intrinsic Colloid Formation on Migration of Cerium through Fractured Carbonate Rock.
Tran, Emily L; Klein-BenDavid, Ofra; Teutsch, Nadya; Weisbrod, Noam
2015-11-17
Migration of colloids may facilitate the transport of radionuclides leaked from near surface waste sites and geological repositories. Intrinsic colloids are favorably formed by precipitation with carbonates in bicarbonate-rich environments, and their migration may be enhanced through fractured bedrock. The mobility of Ce(III) as an intrinsic colloid was studied in an artificial rainwater solution through a natural discrete chalk fracture. The results indicate that at variable injection concentrations (between 1 and 30 mg/L), nearly all of the recovered Ce takes the form of an intrinsic colloid of >0.45 μm diameter, including in those experiments in which the inlet solution was first filtered via 0.45 μm. In all experiments, these intrinsic colloids reached their maximum relative concentrations prior to that of the Br conservative tracer. Total Ce recovery from experiments using 0.45 μm filtered inlet solutions was only about 0.1%, and colloids of >0.45 μm constituted the majority of recovered Ce. About 1% of Ce was recovered when colloids of >0.45 μm were injected, indicating the enhanced mobility and recovery of Ce in the presence of bicarbonate.
Inventory and vertical migration of 90Sr fallout and 137Cs/90Sr ratio in Spanish mainland soils.
Herranz, M; Romero, L M; Idoeta, R; Olondo, C; Valiño, F; Legarda, F
2011-11-01
In this paper the inventory of (90)Sr in 34 points distributed along the Spanish peninsular territory is presented. Obtained values range between 173 Bq/m(2) and 2047 Bq/m(2). From these data set and those (137)Cs data obtained in a previous work the (137)Cs/(90)Sr activity ratio has been established, laying this value between 0.9 and 3.6. Also the migration depth of both radionuclides has been analysed obtaining for (137)Cs an average value 57% lower than that obtained for (90)Sr. Additionally, this paper presents the results obtained in 11 sampling points in which the activity vertical profile has been measured. These profiles have been analysed to state the behaviour of strontium in soils and after, by using a convective-diffusive model, the parameters of the model which governs the vertical migration of (90)Sr in the soil, v (apparent convection velocity) and D (apparent diffusion coefficient) have been evaluated. Mean values obtained are 0.20 cm/year and 3.67 cm(2)/year, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.
An overview of measurements of radionuclides in foods of the Comunidad Valenciana (Spain)
NASA Astrophysics Data System (ADS)
Ballesteros, L.; Ortiz, J.; Gallardo, S.; Martorell, S.
2015-11-01
Environmental radioactivity monitoring includes the determination of radionuclides in foods since they are an important way of intake of radionuclides to the human organism. Moreover, knowledge of the levels of radionuclides in foodstuffs will inform about the environmental radioactivity background permitting to control possible contamination due to human activity, such as agriculture activity, nuclear power plants or other radioactive facilities. The Environmental Radioactivity Laboratory (LRA) at the Universitat Politècnica de València (UPV) performs measurements on representative foods from all over the Comunidad Valenciana (CV). Those measurements are part of several monitoring programs promoted by the Generalitat Valenciana. A total of 2200 samples of fruits, cereals, vegetables, milk, meat, eggs and fish coming from markets, agricultural cooperatives or small producers have been analyzed. A gamma-ray spectrometry analysis has been performed in all samples. It has been detected 40K in all samples, 7Be in some of them. Radiochemical separation of 90Sr has been carried out in some of the samples collected, mainly orange and lettuce. Samples of lettuce and chard collected following Fukushima Nuclear Power Plant (NPP) accident present activity concentration of 131I (0.10-1.51 Bq kg-1). In this paper, a review of the data obtained at the 1991-2013 period in the framework of the development of the Environmental monitoring program is presented.
Distribution coefficients (Kd's) for use in risk assessment models of the Kara Sea.
Carroll, J; Boisson, F; Teyssie, J L; King, S E; Krosshavn, M; Carroll, M L; Fowler, S W; Povinec, P P; Baxter, M S
1999-07-01
As a prerequisite for most evaluations of radionuclide transport pathways in marine systems, it is necessary to obtain basic information on the sorption potential of contaminants onto particulate matter. Kd values for use in modeling radionuclide dispersion in the Kara Sea have been determined as part of several international programs addressing the problem of radioactive debris residing in Arctic Seas. Field and laboratory Kd experiments were conducted for the following radionuclides associated with nuclear waste: americium, europium, plutonium, cobalt, cesium and strontium. Emphasis has been placed on two regions in the Kara Sea: (i) the Novaya Zemlya Trough (NZT) and (ii) the mixing zones of the Ob and Yenisey Rivers (RMZ). Short-term batch Kd experiments were performed at-sea on ambient water column samples and on samples prepared both at-sea and in the laboratory by mixing filtered bottom water with small amounts of surficial bottom sediments (particle concentrations in samples = 1-30 mg/l). Within both regions, Kd values for individual radionuclides vary over two to three orders of magnitude. The relative particle affinities for radionuclides in the two regions are americium approximately equal to europium > plutonium > cobalt > cesium > strontium. The values determined in this study agree with minimum values given in the IAEA Technical Report [IAEA, 1985. Sediment Kd's and Concentration Factors for Radionuclides in the Marine Environment. Technical Report No. 247. International Atomic Energy Agency, Vienna.]. Given the importance of Kd's in assessments of critical transport pathways for radionuclide contaminants, we recommend that Kd ranges of values for specific elements rather than single mean values be incorporated into model simulations of radionuclide dispersion.
Electromagnetic mixed waste processing system for asbestos decontamination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasevich, R.S.; Vaux, W.; Ulerich, N.
The overall objective of this three-phase program is to develop an integrated process for treating asbestos-containing material that is contaminated with radioactive and hazardous constituents. The integrated process will attempt to minimize processing and disposal costs. The objectives of Phase 1 were to establish the technical feasibility of asbestos decomposition, inorganic radionuclide nd heavy metal removal, and organic volatilization. Phase 1 resulted in the successful bench-scale demonstration of the elements required to develop a mixed waste treatment process for asbestos-containing material (ACM) contaminated with radioactive metals, heavy metals, and organics. Using the Phase 1 data, a conceptual process was developed.more » The Phase 2 program, currently in progress, is developing an integrated system design for ACM waste processing. The Phase 3 program will target demonstration of the mixed waste processing system at a DOE facility. The electromagnetic mixed waste processing system employs patented technologies to convert DOE asbestos to a non-hazardous, radionuclide-free, stable waste. The dry, contaminated asbestos is initially heated with radiofrequency energy to remove organic volatiles. Second,the radionuclides are removed by solvent extraction coupled with ion exchange solution treatment. Third, the ABCOV method converts the asbestos to an amorphous silica suspension at low temperature (100{degrees}C). Finally the amorphous silica is solidified for disposal.« less
Non-Operational Property Evaluation for the Hanford Site River Corridor - 12409
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowe, John; Aly, Alaa
2012-07-01
The Hanford Site River Corridor consists of the former reactor areas of the 100 Areas and the former industrial (fuel processing) area in the 300 Area. Most of the waste sites are located close to the decommissioned reactors or former industrial facilities along the Columbia River. Most of the surface area of the River Corridor consists of land with little or no subsurface infrastructure or indication of past or present releases of hazardous constituents, and is referred to as non-operational property or non-operational area. Multiple lines of evidence have been developed to assess identified fate and transport mechanisms and tomore » evaluate the potential magnitude and significance of waste site-related contaminants in the non-operational area. Predictive modeling was used for determining the likelihood of locating waste sites and evaluating the distribution of radionuclides in soil based on available soil concentration data and aerial radiological surveys. The results of this evaluation indicated: 1) With the exception of stack emissions, transport pathways associated with waste site contaminants are unlikely to result in dispersion of contaminants in soil away from operational areas, 2) Stack emissions that may have been associated with Hanford Site operations generally emitted short-lived and/or gaseous radionuclides, and (3) the likelihood of detecting elevated radionuclide concentrations or other waste sites in non-operational area soils is very small. The overall conclusions from the NPE evaluation of the River Corridor are: - With the exception of stack emissions to the air, transport pathways associated with waste site contaminants are unlikely to result in dispersion of contaminants in soil away from operational areas. While pathways such as windblown dust, overland transport and biointrusion have the potential for dispersing waste site contaminants, the resulting transport is unlikely to result in substantial contamination in non-operational areas. - Stack emissions that may have been associated with Hanford Site operations generally emitted short-lived and/or gaseous radionuclides; these radionuclides either would have decayed and would be undetectable in soil, or likely would not have deposited onto Hanford Site soils. A small fraction of the total historical emissions consisted of long-lived particulate radionuclides, which could have deposited onto the soil. Soil monitoring studies conducted as part of surveillance and monitoring programs do not indicate a build-up of radionuclide concentrations in soil, which might indicate potential deposition impacts from stack emissions. Aerial radiological surveys of the Hanford Site, while effective in detecting gamma-emitting nuclides, also do not indicate deposition patterns in soil from stack emissions. - The surveillance and monitoring programs also have verified that the limited occurrence of biointrusion observed in the River Corridor has not resulted in a spread of contamination into the non-operational areas. - Monitoring of radionuclides in ambient air conducted as part of the surveillance and monitoring programs generally show a low and declining trend of detected concentrations in air. Monitoring of radionuclides in soil and vegetation correspondingly show declining trends in concentrations, particularly for nuclides with short half lives (Cs-137, Co-60 and Sr-90). - Statistical analysis of the geographical distribution of waste sites based on man -made features and topography describes the likely locations of waste sites in the River Corridor. The results from this analysis reinforce the findings from the Orphan Site Evaluation program, which has systematically identified any remaining waste sites within the River Corridor. - Statistical analysis of the distribution of radionuclide concentrations observable from aerial surveys has confirmed that the likelihood of detecting elevated radionuclide concentrations in non-operational area soils is very small; the occurrences and locations where potentially elevated concentrations may be found are discussed below. In addition, statistical analysis showed that there is a relatively high probability (>50%) that concentrations of Cs-137 higher than background (3.9 Bq/kg or 1.05 pCi/g) are located outside of the operational portion of the 100-BC, 100-K, and 100-N Areas. This observation is based on modeled concentrations in soil derived from aerial radiography data. However, the extent is limited to a few meters from the respective facilities fence lines or known operational activities. Evaluation of the extent of contamination is being conducted as part of the RI process for each decision area. No unanticipated waste sites were identified either from the OSE program or statistical analysis of waste site proximity to known features. Based on the evaluation of these multiple lines of evidence, the likelihood of identifying waste sites or contaminant dispersal from Hanford site operations into non-operational areas can be considered very small. (authors)« less
A Kosloff/Basal method, 3D migration program implemented on the CYBER 205 supercomputer
NASA Technical Reports Server (NTRS)
Pyle, L. D.; Wheat, S. R.
1984-01-01
Conventional finite difference migration has relied on approximations to the acoustic wave equation which allow energy to propagate only downwards. Although generally reliable, such approaches usually do not yield an accurate migration for geological structures with strong lateral velocity variations or with steeply dipping reflectors. An earlier study by D. Kosloff and E. Baysal (Migration with the Full Acoustic Wave Equation) examined an alternative approach based on the full acoustic wave equation. The 2D, Fourier type algorithm which was developed was tested by Kosloff and Baysal against synthetic data and against physical model data. The results indicated that such a scheme gives accurate migration for complicated structures. This paper describes the development and testing of a vectorized, 3D migration program for the CYBER 205 using the Kosloff/Baysal method. The program can accept as many as 65,536 zero offset (stacked) traces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vance, J.N.; Holderness, J.H.; James, D.W.
1992-12-01
Waste stream scaling factors based on sampling programs are vulnerable to one or more of the following factors: sample representativeness, analytic accuracy, and measurement sensitivity. As an alternative to sample analyses or as a verification of the sampling results, this project proposes the use of the RADSOURCE code, which accounts for the release of fuel-source radionuclides. Once the release rates of these nuclides from fuel are known, the code develops scaling factors for waste streams based on easily measured Cobalt-60 (Co-60) and Cesium-137 (Cs-137). The project team developed mathematical models to account for the appearance rate of 10CFR61 radionuclides inmore » reactor coolant. They based these models on the chemistry and nuclear physics of the radionuclides involved. Next, they incorporated the models into a computer code that calculates plant waste stream scaling factors based on reactor coolant gamma- isotopic data. Finally, the team performed special sampling at 17 reactors to validate the models in the RADSOURCE code.« less
A Training Manual for Nuclear Medicine Technologists.
ERIC Educational Resources Information Center
Simmons, Guy H.; Alexander, George W.
This manual was prepared for a training program in Nuclear Medicine Technology at the University of Cincinnati. Instructional materials for students enrolled in these courses in the training program include: Nuclear Physics and Instrumentation, Radionuclide Measurements, Radiation Protection, and Tracer Methodology and Radiopharmaceuticals. (CS)
Hanford internal dosimetry program manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.
1989-10-01
This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jewett, J.R.
1997-09-17
In a geological repository for long-lived radioactive wastes, such as actinides and certain fission products, most of the stored radionuclides remain immobile in the particular geological formation. If any of these could possibly become mobile, only trace concentrations of a few radionuclides would result. Nevertheless, with an inventory in the repository of many tonnes of transuranic elements, the amounts that could disperse cannot be neglected. A critical assessment of the chemical behavior of these nuclides, especially their migration properties in the aquifer system around the repository site, is mandatory for analysis of the long-term safety. The chemistry requited for thismore » includes many geochemical multicomponent reactions that are so far only partially understood and [which] therefore can be quantified only incompletely. A few of these reactions have been discussed in this paper based on present knowledge. If a comprehensive discussion of the subject is impossible because of this [lack of information], then an attempt to emphasize the importance of the predominant geochemical reactions of the transuranic elements in various aquifer systems should be made.« less
Modeling of transport phenomena in concrete porous media.
Plecas, Ilija
2014-02-01
Two fundamental concerns must be addressed when attempting to isolate low-level waste in a disposal facility on land. The first concern is isolating the waste from water, or hydrologic isolation. The second is preventing movement of the radionuclides out of the disposal facility, or radionuclide migration. Particularly, we have investigated here the latter modified scenario. To assess the safety for disposal of radioactive waste-concrete composition, the leakage of 60Co from a waste composite into a surrounding fluid has been studied. Leakage tests were carried out by the original method, developed at the Vinča Institute. Transport phenomena involved in the leaching of a radioactive material from a cement composite matrix are investigated using three methods based on theoretical equations. These are: the diffusion equation for a plane source: an equation for diffusion coupled to a first-order equation, and an empirical method employing a polynomial equation. The results presented in this paper are from a 25-y mortar and concrete testing project that will influence the design choices for radioactive waste packaging for a future Serbian radioactive waste disposal center.
Consequences of electroplated targets on radiopharmaceutical preparations
NASA Astrophysics Data System (ADS)
Finn, R. D.; Tirelli, S.; Sheh, Y.; Knott, A.; Gelbard, A. S.; Larson, S. M.; Dahl, J. R.
1991-05-01
The staff of the cyclotron facility at Memorial Sloan-Kettering Cancer Center is involved in a comprehensive radionuclide preparation program which culminates with the formulation of numerous requested short-lived, positron-emitting radiopharmaceutical agents for clinical investigation. Both the produced radionuclide as well as the final radiolabeled compound are subjected to stringent quality control standards including assays for radiochemical and chemical purity. The subtle chemical consequences resulting from the irradiation of a nickel-plated target for 13N production serve to emphasize some of these potential technical difficulties.
Zhao, P; Tinnacher, R M; Zavarin, M; Kersting, A B
2014-11-01
A high sensitivity analytical method for (237)Np analysis was developed and applied to groundwater samples from the Nevada National Security Site (NNSS) using short-lived (239)Np as a yield tracer and HR magnetic sector ICP-MS. The (237)Np concentrations in the vicinity of the Almendro, Cambric, Dalhart, Cheshire, and Chancellor underground nuclear test locations range from <4 × 10(-4) to 2.6 mBq/L (6 × 10(-17)-4.2 × 10(-13) mol/L). All measured (237)Np concentrations are well below the drinking water maximum contaminant level for alpha emitters identified by the U.S. EPA (560 mBq/L). Nevertheless, (237)Np remains an important indicator for radionuclide transport rates at the NNSS. Retardation factor ratios were used to compare the mobility of (237)Np to that of other radionuclides. The results suggest that (237)Np is less mobile than tritium and other non-sorbing radionuclides ((14)C, (36)Cl, (99)Tc and (129)I) as expected. Surprisingly, (237)Np and plutonium ((239,240)Pu) retardation factors are very similar. It is possible that Np(IV) exists under mildly reducing groundwater conditions and exhibits a retardation behavior that is comparable to Pu(IV). Independent of the underlying process, (237)Np is migrating downgradient from NNSS underground nuclear tests at very low but measureable concentrations. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Bernhardsson, C; Rääf, C L; Mattsson, S
2015-11-01
Radionuclides from the 1986 Chernobyl accident were released and dispersed during a limited period of time, but under widely varying weather conditions. As a result, there was a high geographical variation in the deposited radioactive fallout per unit area over Europe, depending on the released composition of fission products and the weather during the 10 days of releases. If the plume from Chernobyl coincided with rain, then the radionuclides were unevenly distributed on the ground. However, large variations in the initial fallout also occurred locally or even on a meter scale. Over the ensuing years the initial deposition may have been altered further by different weathering processes or human activities such as agriculture, gardening, and decontamination measures. Using measurements taken more than two decades after the accident, we report on the inhomogeneous distribution of the ground deposition of the fission product (137)Cs and its influence on the dose rate 1 m above ground, on both large and small scales (10ths of km(2) - 1 m(2)), in the Gomel-Bryansk area close to the border between Belarus and Russia. The dose rate from the deposition was observed to vary by one order of magnitude depending on the size of the area considered, whether human processes were applied to the surface or not, and on location specific properties (e.g. radionuclide migration in soil). Copyright © 2015 Elsevier Ltd. All rights reserved.
Anigstein, Robert; Olsher, Richard H; Loomis, Donald A; Ansari, Armin
2016-12-01
The detonation of a radiological dispersion device or other radiological incidents could result in widespread releases of radioactive materials and intakes of radionuclides by affected individuals. Transportable radiation monitoring instruments could be used to measure radiation from gamma-emitting radionuclides in the body for triaging individuals and assigning priorities to their bioassay samples for in vitro assessments. The present study derived sets of calibration factors for four instruments: the Ludlum Model 44-2 gamma scintillator, a survey meter containing a 2.54 × 2.54-cm NaI(Tl) crystal; the Captus 3000 thyroid uptake probe, which contains a 5.08 × 5.08-cm NaI(Tl) crystal; the Transportable Portal Monitor Model TPM-903B, which contains two 3.81 × 7.62 × 182.9-cm polyvinyltoluene plastic scintillators; and a generic instrument, such as an ionization chamber, that measures exposure rates. The calibration factors enable these instruments to be used for assessing inhaled or ingested intakes of any of four radionuclides: Co, I, Cs, and Ir. The derivations used biokinetic models embodied in the DCAL computer software system developed by the Oak Ridge National Laboratory and Monte Carlo simulations using the MCNPX radiation transport code. The three physical instruments were represented by MCNP models that were developed previously. The affected individuals comprised children of five ages who were represented by the revised Oak Ridge National Laboratory pediatric phantoms, and adult men and adult women represented by the Adult Reference Computational Phantoms described in Publication 110 of the International Commission on Radiological Protection. These calibration factors can be used to calculate intakes; the intakes can be converted to committed doses by the use of tabulated dose coefficients. These calibration factors also constitute input data to the ICAT computer program, an interactive Microsoft Windows-based software package that estimates intakes of radionuclides and cumulative and committed effective doses, based on measurements made with these instruments. This program constitutes a convenient tool for assessing intakes and doses without consulting tabulated calibration factors and dose coefficients.
Anigstein, Robert; Olsher, Richard H.; Loomis, Donald A.; Ansari, Armin
2017-01-01
The detonation of a radiological dispersion device or other radiological incidents could result in widespread releases of radioactive materials and intakes of radionuclides by affected individuals. Transportable radiation monitoring instruments could be used to measure radiation from gamma-emitting radionuclides in the body for triaging individuals and assigning priorities to their bioassay samples for in vitro assessments. The present study derived sets of calibration factors for four instruments: the Ludlum Model 44-2 gamma scintillator, a survey meter containing a 2.54 × 2.54-cm NaI(Tl) crystal; the Captus 3000 thyroid uptake probe, which contains a 5.08 × 5.08-cm NaI(Tl) crystal; the Transportable Portal Monitor Model TPM-903B, which contains two 3.81 × 7.62 × 182.9-cm polyvinyltoluene plastic scintillators; and a generic instrument, such as an ionization chamber, that measures exposure rates. The calibration factors enable these instruments to be used for assessing inhaled or ingested intakes of any of four radionuclides: 60Co, 131I, 137Cs, and 192Ir. The derivations used biokinetic models embodied in the DCAL computer software system developed by the Oak Ridge National Laboratory and Monte Carlo simulations using the MCNPX radiation transport code. The three physical instruments were represented by MCNP models that were developed previously. The affected individuals comprised children of five ages who were represented by the revised Oak Ridge National Laboratory pediatric phantoms, and adult men and adult women represented by the Adult Reference Computational Phantoms described in Publication 110 of the International Commission on Radiological Protection. These calibration factors can be used to calculate intakes; the intakes can be converted to committed doses by the use of tabulated dose coefficients. These calibration factors also constitute input data to the ICAT computer program, an interactive Microsoft Windows-based software package that estimates intakes of radionuclides and cumulative and committed effective doses, based on measurements made with these instruments. This program constitutes a convenient tool for assessing intakes and doses without consulting tabulated calibration factors and dose coefficients. PMID:27798478
NASA Astrophysics Data System (ADS)
Kolmykova, Lyudmila; Korobova, Elena; Ryzhenko, Boris
2015-04-01
Water is one of the main natural agents providing chemical elements' migration in the environment and food chains. In our opinion a study of spatial variation of the essential trace elements in local drinking water is worth considering as the factor that may contribute to variation of the health risk in areas contaminated by radionuclides and radioiodine in particular. Radioiodine was proved to increase the risk of thyroid cancer among children who lived in areas contaminated during the Chernobyl accident. It was also shown that low stable iodine status of the contaminated area and population also contributed to the risk of this disease in case of radionuclide contamination. The goal of the study was to investigate chemical composition of the drinking water in rural settlements of the Bryansk oblast' subjected to radioiodine contamination and to evaluate speciation of stable I and Se on the basis of their total concentration and chemical composition of the real water samples with the help of thermodynamic modelling. Water samples were collected from different aquifers discharging at different depths (dug wells, local private bore holes and water pipes) in rural settlements located in areas with contrasting soil iodine status. Thermodynamic modelling was performed using original software (HCh code of Y.Shvarov, Moscow State University, RUSSIA) incorporating the measured pH, Corg and elements' concentration values. Performed modelling showed possibility of formation of complex CaI+ ion in aqueous phase, I sorption by goethite and transfer of Se to solid phase as FeSe in the observed pH-Eh conditions. It helped to identify environmental conditions providing high I and Se mobility and their depletion from natural waters. Both the experimental data and modeling showed that I and Se migration and deficiency in natural water is closely connected to pH, Eh conditions and the concentration of typomorphic chemical elements (Ca, Mg, Fe) defining the class of water migration in landscapes (according Perel'man, 1975). Obtained data will be used for evaluation of contribution of I and Se status of drinking water to the risk of thyroid diseases among local population.
NASA Astrophysics Data System (ADS)
Nenko, Christina; Linnik, Vitaliy; Volkova, Nadezhda
2015-04-01
Significant part of Russian Federation was contaminated by 137Cs radionuclides due to Chernobyl disaster in 1986. South-western part of Bryansk region has suffered the most. Study area (the central part of Bryansk region, Polesye and high plains landscapes) is situated outside the officially specified zone of contamination with contamination levels under 1 Ci / km2. Nevertheless, such contamination levels (which are 20 times greater than levels of global fallout) require particular attention as it may contain a threat of the land use and the health of population, living within the territory. Radioactive contamination within the model area was formed as a result of a "dry" deposition from the atmosphere. Consequently, the initial contamination of soil by isotopes 137Cs, unlike the western part of the Bryansk region, was spread relatively equally. The main part of 137Cs (up to 90%) in natural landscapes is contained in the top 5 cm of soil, which itself creates danger of biogeochemical migration from soil to plants. In agricultural landscapes under cultivation 137Cs is uniformly spread within a 20 cm layer of soil and can also come from soil to plants grown in the fields. The area of radioactive contamination that was formed during the period of deposition (late April - early May 1986), is exposed to the processes of secondary redistribution. It is influenced by several factors as topography, vegetation type, proportion of arable soils, soil humidity, soil texture etc. In the presented study there was evaluated the impact of these factors on the secondary redistribution of 137Cs. Sustainable development of agricultural production in the contaminated territories requires managing a number of measures to reduce radiation risks to the population. Regarding this point the greatest threat may be represented by milk production, as well as picking berries and mushrooms. Planning of the sustainable use of the territory requires an evaluation of contamination levels within the existing agricultural lands. For this purpose, geographic information system (GIS) of the territory was created. It contains following layers: aero-gamma spectrometry data with interval of 100 m; soil types (scale 1: 50,000); relief (SRTM data); schematic map of agricultural lands and forests. The analysis of the secondary redistribution of radionuclides was conducted for the radio-ecological zoning of the territory, as well as the stock of 137Cs was calculated according to types of land use. It made it possible to evaluate the contamination of milk (using transfer coefficients "soil-plant-milk") for different natural landscapes. Evaluation of factors of radionuclides' migration in landscape also allows to predict possible trends in distribution of contamination and to develop recommendations regarding the future use of the territory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakovec, P.; Kranjec, I.; Fettich, J.J.
1985-01-01
Coinciding left bundle-branch block and Wolff-Parkinson-White syndrome type B, a very rare electrocardiographic occurrence, was found in a patient with dilated cardiomyopathy. Electrophysiologic study revealed eccentric retrograde atrial activation during ventricular pacing, suggesting right-sided accessory pathway. At programmed atrial pacing, effective refractory period of the accessory pathway was 310 ms; at shorter pacing coupling intervals, normal atrioventricular conduction with left bundle-branch block was seen. Left bundle-branch block was seen also with His bundle pacing. Radionuclide phase imaging demonstrated right ventricular phase advance and left ventricular phase delay; both right and left ventricular phase images revealed broad phase distribution histograms. Combinedmore » electrophysiologic and radionuclide investigations are useful to disclose complex conduction abnormalities and their mechanical correlates.« less
NASA Astrophysics Data System (ADS)
Naftz, D. L.; Walton-Day, K. E.; Fuller, C.; Dam, W. L.; Briggs, M. A.; Snyder, T.
2015-12-01
Legacy uranium (U) mining and processing activities have resulted in soil and water contamination on Federal, state, and tribal lands in the western United States. Sites include legacy mill sites associated with U extraction now managed by the Department of Energy and thousands of waste dumps associated with U exploration, mining, and processing. Recently (2012), over 400,000 hectares of federally managed land in northern Arizona was withdrawn from consideration of mining for a 20-year period to protect the Grand Canyon watershed from potentially adverse effects of U mineral exploration and development. Ore from active and recently active U mines in the Colorado Plateau, the Henry Mountains Complex, and the Arizona Strip is transported to the only currently (2015) active conventional mill site in the western United States, located in Utah. Previous and ongoing U.S. Geological Survey assessments to examine U mobility at a variety of legacy and active sites associated with ore exploration, extraction, and processing will be presented as field-scale examples. Topics associated with site investigations will include: (1) offsite migration of radionuclides associated with the operation of the White Mesa U mill; (2) long-term contaminant transport from legacy U waste dumps on Bureau of Land Management regulated land in Utah; (3) application of incremental soil sampling techniques to determine pre- and post-mining radionuclide levels associated with planned and operating U mines in northern Arizona; (4) application of fiber optic digital temperature sensing equipment to identify areas where shallow groundwater containing elevated U levels may be discharging to a river adjacent to a reclaimed mill site in central Wyoming; and (5) field-scale manipulation of groundwater chemistry to limit U migration from a legacy upgrader site in southeastern Utah.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wellman, Dawn M.; Parker, Kent E.; Powers, Laura
2008-07-31
Assessing long-term performance of Category 3 cement wasteforms and accurate prediction for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e. sorption or precipitation). A set of sediment-concrete half-cell diffusion experiments was conducted under unsaturated conditions (4% and 7% by weight moisture content) using carbonated and non-carbonated concrete-soil half-cells. Results indicate the behavior of rhenium and iodine release was comparable within a given half-cell test. Diffusivity in soil is a function of moisture content; a 3% increase in moisture content affords a one to two order of magnitude increase in diffusivity. Release of iodine and rheniummore » was 1 to 3 orders of magnitude less from non-carbonated, relative to carbonated, concrete monoliths. Inclusion of iron in non-carbonate monoliths resulted in the lowest concrete diffusivity values for both iodine and rhenium. This suggests that in the presence of iron, iodine and rhenium are converted to reduced species, which are less soluble and better retained within the concrete monolith. The release of iodine and rhenium was greatest from iron-bearing, carbonated concrete monoliths, suggesting carbonation negates the effect of iron on the retention of iodine and rhenium within concrete monoliths. This is likely due to enhanced formation of microcracks in the presence of iron, which provide preferential paths for contaminant migration. Although the release of iodine and rhenium were greatest from carbonated concrete monoliths containing iron, the migration of iodine and rhenium within a given half-cell is dependent on the moisture content, soil diffusivity, and diffusing species.« less
Cuevas, Jaime; Ruiz, Ana Isabel; Fernández, Raúl
2018-02-21
Clay and cement are known nano-colloids originating from natural processes or traditional materials technology. Currently, they are used together as part of the engineered barrier system (EBS) to isolate high-level nuclear waste (HLW) metallic containers in deep geological repositories (DGR). The EBS should prevent radionuclide (RN) migration into the biosphere until the canisters fail, which is not expected for approximately 10 3 years. The interactions of cementitious materials with bentonite swelling clay have been the scope of our research team at the Autonomous University of Madrid (UAM) with participation in several European Union (EU) projects from 1998 up to now. Here, we describe the mineral and chemical nature and microstructure of the alteration rim generated by the contact between concrete and bentonite. Its ability to buffer the surrounding chemical environment may have potential for further protection against RN migration. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Logical Framework for Service Migration Based Survivability
2016-06-24
platforms; Service Migration Strategy Fuzzy Inference System Knowledge Base Fuzzy rules representing domain expert knowledge about implications of...service migration strategy. Our approach uses expert knowledge as linguistic reasoning rules and takes service programs damage assessment, service...programs complexity, and available network capability as input. The fuzzy inference system includes four components as shown in Figure 5: (1) a knowledge
Space-Time Dependent Transport, Activation, and Dose Rates for Radioactivated Fluids.
NASA Astrophysics Data System (ADS)
Gavazza, Sergio
Two methods are developed to calculate the space - and time-dependent mass transport of radionuclides, their production and decay, and the associated dose rates generated from the radioactivated fluids flowing through pipes. The work couples space- and time-dependent phenomena, treated as only space- or time-dependent in the open literature. The transport and activation methodology (TAM) is used to numerically calculate space- and time-dependent transport and activation of radionuclides in fluids flowing through pipes exposed to radiation fields, and volumetric radioactive sources created by radionuclide motions. The computer program Radionuclide Activation and Transport in Pipe (RNATPA1) performs the numerical calculations required in TAM. The gamma ray dose methodology (GAM) is used to numerically calculate space- and time-dependent gamma ray dose equivalent rates from the volumetric radioactive sources determined by TAM. The computer program Gamma Ray Dose Equivalent Rate (GRDOSER) performs the numerical calculations required in GAM. The scope of conditions considered by TAM and GAM herein include (a) laminar flow in straight pipe, (b)recirculating flow schemes, (c) time-independent fluid velocity distributions, (d) space-dependent monoenergetic neutron flux distribution, (e) space- and time-dependent activation process of a single parent nuclide and transport and decay of a single daughter radionuclide, and (f) assessment of space- and time-dependent gamma ray dose rates, outside the pipe, generated by the space- and time-dependent source term distributions inside of it. The methodologies, however, can be easily extended to include all the situations of interest for solving the phenomena addressed in this dissertation. A comparison is made from results obtained by the described calculational procedures with analytical expressions. The physics of the problems addressed by the new technique and the increased accuracy versus non -space and time-dependent methods are presented. The value of the methods is also discussed. It has been demonstrated that TAM and GAM can be used to enhance the understanding of the space- and time-dependent mass transport of radionuclides, their production and decay, and the associated dose rates related to radioactivated fluids flowing through pipes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paton, Ian
The Rocky Flats Environmental Technology Site (RFETS) is a Department of Energy facility located approximately 16 miles northwest of Denver, Colorado. Processing and fabrication of nuclear weapons components occurred at Rocky Flats from 1952 through 1989. Operations at the Site included the use of several radionuclides, including plutonium-239/240 (Pu), americium-241 (Am), and various uranium (U) isotopes, as well as several types of chlorinated solvents. The historic operations resulted in legacy contamination, including contaminated facilities, process waste lines, buried wastes and surface soil contamination. Decontamination and removal of buildings at the site was completed in late 2005, culminating more than tenmore » years of active environmental remediation work. The Corrective Action Decision/Record of Decision was subsequently approved in 2006, signifying regulatory approval and closure of the site. The use of RFETS as a National Wildlife Refuge is scheduled to be in full operation by 2012. To develop a plan for remediating different types of radionuclide contaminants present in the RFETS environment required understanding the different environmental transport pathways for the various actinides. Developing this understanding was the primary objective of the Actinide Migration Evaluation (AME) project. Findings from the AME studies were used in the development of RFETS remediation strategies. The AME project focused on issues of actinide behavior and mobility in surface water, groundwater, air, soil and biota at RFETS. For the purposes of the AME studies, actinide elements addressed included Pu, Am, and U. The AME program, funded by DOE, brought together personnel with a broad range of relevant expertise in technical investigations. The AME advisory panel identified research investigations and approaches that could be used to solve issues related to actinide migration at the Site. An initial step of the AME was to develop a conceptual model to provide a qualitative description of the relationships among potential actinide sources and transport pathways at RFETS. One conceptual model was developed specifically for plutonium and americium, because of their similar geochemical and transport properties. A separate model was developed for uranium because of its different properties and mobility in the environment. These conceptual models were guidelines for quantitative analyses described in the RFETS Pathway Analysis Report, which used existing data from the literature as well as site-specific analyses, including field, laboratory and modeling studies to provide quantitative estimates of actinide migration in the RFETS environment. For pathways where more than one method was used to estimate offsite loads for a specific pathway, the method yielding the highest estimated off-site was used for comparison purposes. For all actinides studied, for pre-remediation conditions, air and surface water were identified to be the dominant transport mechanisms. The estimated annual airborne plutonium-239/240 load transported off site exceeded the surface water load by roughly a factor of 40. However, despite being the largest transport pathway, airborne radionuclide concentrations at the monitoring location with the highest measurements during the period studied were less than two percent of the allowable 10 milli-rem standard governing DOE facilities. Estimated actinide loads for other pathways were much less. Shallow groundwater was approximately two orders of magnitude lower, or 1/100 of the load conveyed in surface water. The estimated biological pathway load for plutonium was approximately five orders of magnitude less, or 1/100,000, of the load estimated for surface-water. The pathway analysis results were taken into consideration during subsequent remediation activities that occurred at the site. For example, when the 903 Pad area was remediated to address elevated concentrations of Pu and Am in the surface soil, portable tent structures were constructed to prevent wind and water erosion from occurring while remediation activities took place. Following remediation of the 903 Pad and surrounding area, coconut erosion blankets were installed to mitigate erosion effects while vegetation was reestablished [2]. These measures were effective tools to address the primary transport mechanisms identified, coupling the scientific understanding of the site with the remediation strategy.« less
The Texas A&M Radioisotope Production and Radiochemistry Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akabani, Gamal
The main motivation of the project at Texas A&M University was to carry out the production of critically needed radioisotopes used in medicine for diagnostic and therapy, and to establish an academic program in radionuclide production and separation methods. After a lengthy battle with the Texas A&M University Radiation Safety Office, the Texas Department of State Health Services granted us a license for the production of radionuclides in July 2015, allowing us to work in earnest in our project objectives. Experiments began immediately after licensing, and we started the assembly and testing of our target systems. There were four analytical/theoreticalmore » projects and two experimental target systems. These were for At-211 production and for Zn- 62/Cu-62 production. The theoretical projects were related to the production of Mo-99/Tc-99m using (a) a subcritical aqueous target system and (b) production of Tc-99m from accelerator-generated Mo-99 utilizing a photon-neutron interaction with enriched Mo-100 targets. The two experimental projects were the development of targetry systems and production of At-211 and Zn-62/Cu-62 generator. The targetry system for At-211 has been tested and production of At-211 is chronic depending of availability of beam time at the cyclotron. The installation and testing of the targetry system for the production of Zn-62/Cu-62 has not been finalized. A description of the systems is described. The academic program in radionuclide production and separation methods was initiated in the fall of 2011; due to the lack of a radiochemistry laboratory, it was suspended. We expect to re-start the academic program at the Texas A&M Institute for Preclinical Studies under the Molecular Imaging Program.« less
The Texas A&M Radioisotope Production and Radiochemistry Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akabani, Gamal
The main motivation of the project at Texas A&M University was to carry out the production of critically needed radioisotopes used in medicine for diagnostics and therapy, and to establish an academic program in radionuclide production and separation methods. After a lengthy battle with the Texas A&M University Radiation Safety Office, the Texas Department of State Health Services granted us a license for the production of radionuclides in July 2015, allowing us to work in earnest in our project objectives. Experiments began immediately after licensing, and we started the assembly and testing of our target systems. There were four analytical/theoreticalmore » projects and two experimental target systems. These were for At-211 production and for Zn-62/Cu-62 production. The theoretical projects were related to the production of Mo-99/Tc-99m using a) a subcritical aqueous target system and b) production of Tc-99m from accelerator-generated Mo-99 utilizing a photon-neutron interaction with enriched Mo-100 targets. The two experimental projects were the development of targetry systems and production of At-211 and Zn-62/Cu-62 generator. The targetry system for At-211 has been tested and production of At-211 is chronic depending of availability of beam time at the cyclotron. The installation and testing of the targetry system for the production of Zn-62/Cu-62 has not been finalized. A description of the systems is described. The academic program in radionuclide production and separation methods was initiated in the fall of 2011 and, due to the lack of a radiochemistry laboratory, it was suspended. We expect to re-start the academic program at the Texas A&M Institute for Preclinical Studies under the Molecular Imaging Program.« less
State policies and internal migration in Asia.
Oberai, A S
1981-01-01
The objective of this discussion is to identify policies and programs in Asia that are explicitly or implicitly designed to influence migration, to investigate why they were adopted and how far they have actually been implemented, and to assess their direct and indirect consequences. For study purposes, policies and programs are classified according to whether they prohibit or reverse migration, redirect or channel migration to specific rural or urban locations, reduce the total volume of migration, or encourage or discourage urban in-migration. Discussion of each type of policy is accompanied by a description of its rationale and implementation mechanism, examples of countries in Asia that have recourse to it, and its intended or actual effect on migration. Several countries in Asia have taken direct measures to reverse the flow of migration and to stop or discourage migration to urban areas. These measures have included administrative and legal controls, police registration, and direct "rustication" programs to remove urban inhabitants to the countryside. The availability of public land has prompted many Asian countries to adopt schemes that have been labeled resettlement, transmigration, colonization, or land development. These schemes have been designed to realize 1 or more of the following objectives: to provide land and income to the landless; increase agricultural production; correct spatial imbalances in the distribution of population; or exploit frontier lands for reasons of national security. 1 of the basic goals of decentralized industrialization and regional development policies has been the reduction of interregional disparities and the redirection of migrations from large metropolitan areas to smaller and medium sized towns. To encourage industry to move to small urban locations initial infrastructure investments, tax benefits, and other incentives have been offered. Policies to reduce the overall volume of migration have frequently included rural development programs, the primary purpose of which is to retain potential migrants in the rural areas, and preferential policies for natives with a view toward discouraging interregional migration. The explicit goal of rural development strategies is often to slow rural-urban migration. Slowly the attitude towards migrant squatters and slum dwellers is changing from punitive to more tolerant. Several measures have been taken to accommodate migrants in urban areas and to promote their welfare.
47 CFR 27.1233 - Reimbursement costs of transitioning.
Code of Federal Regulations, 2014 CFR
2014-10-01
... nanoseconds for analog operations over any individual six megahertz MBS channel. (b) Migration of Video... migration, a program track must contain EBS programming that complies with § 27.1203 (b) and (c). (ii) The...
47 CFR 27.1233 - Reimbursement costs of transitioning.
Code of Federal Regulations, 2013 CFR
2013-10-01
... nanoseconds for analog operations over any individual six megahertz MBS channel. (b) Migration of Video... migration, a program track must contain EBS programming that complies with § 27.1203 (b) and (c). (ii) The...
Fukushima derived radiocesium in subsistence-consumed northern fur seal and wild celery
Ruedig, Elizabeth; Duncan, Colleen; Dickerson, Bobette; ...
2015-11-28
In July 2014, our investigative team traveled to St. Paul Island, Alaska to measure concentrations of radiocesium in wild-caught food products, primarily northern fur seal (Callorhinus ursinus). The 2011 Fukushima Daiichi Nuclear Power Plant accident released radiocesium into the atmosphere and into the western Pacific Ocean; other investigators have detected Fukushima-derived radionuclides in a variety of marine products harvested off the western coast of North America. We tested two subsistence-consumed food products from St. Paul Island, Alaska for Fukushima-derived radionuclides: 54 northern fur seal, and nine putchki (wild celery, Angelica lucida) plants. Individual northern fur seal samples were below minimummore » detectable activity concentrations of 137Cs and 134Cs, but when composited, northern fur seal tissues tested positive for trace quantities of both isotopes. Radiocesium was detected at an activity concentration of 37.2 mBq 134Cs kg -1 f.w. (95% CI: 35.9–38.5) and 141.2 mBq 137Cs kg -1f.w. (95% CI: 135.5–146.8). The measured isotopic ratio, decay-corrected to the date of harvest, was 0.26 (95% CI: 0.25–0.28). The Fukushima nuclear accident released 134Cs and 137Cs in roughly equal quantities, but by the date of harvest in July 2014, this ratio was 0.2774, indicating that this population of seals has been exposed to small quantities of Fukushima-derived radiocesium. Activity concentrations of both 134Cs and 137Cs in putchki were below detection limits, even for composited samples. Northern fur seal is known to migrate between coastal Alaska and Japan and the trace 134Cs in northern fur seal tissue suggests that the population under study had been minimally exposed Fukushima-derived radionuclides. Despite this inference, the radionuclide quantities detected are small and no impact is expected as a result of the measured radiation exposure, either in northern fur seal or human populations consuming this species.« less
Fukushima derived radiocesium in subsistence-consumed northern fur seal and wild celery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruedig, Elizabeth; Duncan, Colleen; Dickerson, Bobette
In July 2014, our investigative team traveled to St. Paul Island, Alaska to measure concentrations of radiocesium in wild-caught food products, primarily northern fur seal (Callorhinus ursinus). The 2011 Fukushima Daiichi Nuclear Power Plant accident released radiocesium into the atmosphere and into the western Pacific Ocean; other investigators have detected Fukushima-derived radionuclides in a variety of marine products harvested off the western coast of North America. We tested two subsistence-consumed food products from St. Paul Island, Alaska for Fukushima-derived radionuclides: 54 northern fur seal, and nine putchki (wild celery, Angelica lucida) plants. Individual northern fur seal samples were below minimummore » detectable activity concentrations of 137Cs and 134Cs, but when composited, northern fur seal tissues tested positive for trace quantities of both isotopes. Radiocesium was detected at an activity concentration of 37.2 mBq 134Cs kg -1 f.w. (95% CI: 35.9–38.5) and 141.2 mBq 137Cs kg -1f.w. (95% CI: 135.5–146.8). The measured isotopic ratio, decay-corrected to the date of harvest, was 0.26 (95% CI: 0.25–0.28). The Fukushima nuclear accident released 134Cs and 137Cs in roughly equal quantities, but by the date of harvest in July 2014, this ratio was 0.2774, indicating that this population of seals has been exposed to small quantities of Fukushima-derived radiocesium. Activity concentrations of both 134Cs and 137Cs in putchki were below detection limits, even for composited samples. Northern fur seal is known to migrate between coastal Alaska and Japan and the trace 134Cs in northern fur seal tissue suggests that the population under study had been minimally exposed Fukushima-derived radionuclides. Despite this inference, the radionuclide quantities detected are small and no impact is expected as a result of the measured radiation exposure, either in northern fur seal or human populations consuming this species.« less
Fukushima derived radiocesium in subsistence-consumed northern fur seal and wild celery.
Ruedig, Elizabeth; Duncan, Colleen; Dickerson, Bobette; Williams, Michael; Gelatt, Thomas; Bell, Justin; Johnson, Thomas E
2016-02-01
In July 2014, our investigative team traveled to St. Paul Island, Alaska to measure concentrations of radiocesium in wild-caught food products, primarily northern fur seal (Callorhinus ursinus). The 2011 Fukushima Daiichi Nuclear Power Plant accident released radiocesium into the atmosphere and into the western Pacific Ocean; other investigators have detected Fukushima-derived radionuclides in a variety of marine products harvested off the western coast of North America. We tested two subsistence-consumed food products from St. Paul Island, Alaska for Fukushima-derived radionuclides: 54 northern fur seal, and nine putchki (wild celery, Angelica lucida) plants. Individual northern fur seal samples were below minimum detectable activity concentrations of (137)Cs and (134)Cs, but when composited, northern fur seal tissues tested positive for trace quantities of both isotopes. Radiocesium was detected at an activity concentration of 37.2 mBq (134)Cs kg(-1) f.w. (95% CI: 35.9-38.5) and 141.2 mBq (137)Cs kg(-1) f.w. (95% CI: 135.5-146.8). The measured isotopic ratio, decay-corrected to the date of harvest, was 0.26 (95% CI: 0.25-0.28). The Fukushima nuclear accident released (134)Cs and (137)Cs in roughly equal quantities, but by the date of harvest in July 2014, this ratio was 0.2774, indicating that this population of seals has been exposed to small quantities of Fukushima-derived radiocesium. Activity concentrations of both (134)Cs and (137)Cs in putchki were below detection limits, even for composited samples. Northern fur seal is known to migrate between coastal Alaska and Japan and the trace (134)Cs in northern fur seal tissue suggests that the population under study had been minimally exposed Fukushima-derived radionuclides. Despite this inference, the radionuclide quantities detected are small and no impact is expected as a result of the measured radiation exposure, either in northern fur seal or human populations consuming this species. Published by Elsevier Ltd.
Contaminated groundwater characterization at the Chalk River Laboratories, Ontario, Canada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schilk, A.J.; Robertson, D.E.; Thomas, C.W.
1993-03-01
The licensing requirements for the disposal of low-level radioactive waste (10 CFR 61) specify the performance objectives and technical requisites for federal and commercial land disposal facilities, the ultimate goal of which is to contain the buried wastes so that the general population is adequately protected from harmful exposure to any released radioactive materials. A major concern in the operation of existing and projected waste disposal sites is subterranean radionuclide transport by saturated or unsaturated flow, which could lead to the contamination of groundwater systems as well as uptake by the surrounding biosphere, thereby directly exposing the general public tomore » such materials. Radionuclide transport in groundwater has been observed at numerous commercial and federal waste disposal sites [including several locations within the waste management area of Chalk River Laboratories (CRL)], yet the physico-chemical processes that lead to such migration are still not completely understood. In an attempt to assist in the characterization of these processes, an intensive study was initiated at CRL to identify and quantify the mobile radionuclide species originating from three separate disposal sites: (a) the Chemical Pit, which has received aqueous wastes containing various radioisotopes, acids, alkalis, complexing agents and salts since 1956, (b) the Reactor Pit, which has received low-level aqueous wastes from a reactor rod storage bay since 1956, and (c) the Waste Management Area C, a thirty-year-old series of trenches that contains contaminated solid wastes from CRL and various regional medical facilities. Water samples were drawn downgradient from each of the above sites and passed through a series of filters and ion-exchange resins to retain any particulate and dissolved or colloidal radionuclide species, which were subsequently identified and quantified via radiochemical separations and gamma spectroscopy. These groundwaters were also analyzed for anions, trace metals, Eh, pH, alkalinity and dissolved oxygen.« less
Lee, Sang Bong; Lee, Ho Won; Singh, Thoudam Debraj; Li, Yinghua; Kim, Sang Kyoon; Cho, Sung Jin; Lee, Sang-Woo; Jeong, Shin Young; Ahn, Byeong-Cheol; Choi, Sangil; Lee, In-Kyu; Lim, Dong-Kwon; Lee, Jaetae; Jeon, Yong Hyun
2017-01-01
Reliable and sensitive imaging tools are required to track macrophage migration and provide a better understating of their biological roles in various diseases. Here, we demonstrate the possibility of radioactive iodide-embedded gold nanoparticles (RIe-AuNPs) as a cell tracker for nuclear medicine imaging. To demonstrate this utility, we monitored macrophage migration to carrageenan-induced sites of acute inflammation in living subjects and visualized the effects of anti-inflammatory agents on this process. Macrophage labeling with RIe-AuNPs did not alter their biological functions such as cell proliferation, phenotype marker expression, or phagocytic activity. In vivo imaging with positron-emission tomography revealed the migration of labeled macrophages to carrageenan-induced inflammation lesions 3 h after transfer, with highest recruitment at 6 h and a slight decline of radioactive signal at 24 h; these findings were highly consistent with the data of a bio-distribution study. Treatment with dexamethasone (an anti-inflammation drug) or GSK5182 (an ERRγ inverse agonist) hindered macrophage recruitment to the inflamed sites. Our findings suggest that a cell tracking strategy utilizing RIe-AuNPs will likely be highly useful in research related to macrophage-related disease and cell-based therapies. PMID:28382164
Biotesting of radioactively contaminated forest soils using barley-based bioassay
NASA Astrophysics Data System (ADS)
Mel'nikova, T. V.; Polyakova, L. P.; Oudalova, A. A.
2017-01-01
Findings from radioactivity and phytotoxicity study are presented for soils from nine study-sites of the Klintsovsky Forestry located in the Bryansk region that were radioactively contaminated after the Chernobyl accident. According to the bioassay based on barley as test-species, stimulating effect of the soils analyzed is revealed for biological indexes of the length of barley roots and sprouts. From data on 137Cs specific activities in soils and plant biomass, the migration potential of radionuclide in the "soil-plant" system is assessed as a transfer factor. With correlation analysis, an impact of 137Cs in soil on the biological characteristics of barley is estimated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, G.W.; August, R.A.; King, S.E.
1996-01-14
This progress report covers field work and laboratory analysis efforts for quantifying the environmental threat of radioactive waste released in the Arctic seas adjacent to the former Soviet Union and for studying the various transport mechanisms by which this radioactivity could effect populations of the U.S. and other countries bordering the Arctic. We obtained water, sediment, biological samples and oceanographic data from several cruises to the Kara Sea and adjacent waters and conducted detailed laboratory analyses of the samples for radionuclides and physical biological properties. In addition, we obtained water and sediment samples and conducted on site low level radionuclidemore » analysis on the Angara, Yenisey River system which drains a major part of the Siberian industrial heartland and empties into the Kara Sea. We report on radionuclide concentrations, on radionuclide transport and scrubbing by sediments, on adsorption by suspended particles, on transport by surface and benthic boundary layer currents, on the effects of benthic and demersal organisms, on studies of long term monitoring in the Arctic, and on an interlaboratory calibration for radionuclide analysis.« less
Radionuclide concentrations in underground waters of Mururoa and Fangataufa Atolls.
Mulsow, S; Coquery, M; Dovlete, C; Gastaud, J; Ikeuchi, Y; Pham, M K; Povinec, P P
1999-09-30
In 1997 an expedition to Mururoa and Fangataufa Atolls was carried out to sample underground waters from cavity-chimneys and carbonate monitoring wells. The aim of this study was to determine the prevailing concentration and distribution status of radionuclides. Elemental analysis of interstitial waters was carried out in the water fraction as well as in particles collected at 11 underground monitoring wells. 238Pu, 239,240Pu, 241Am, 137Cs, 90Sr, 3H, 125Sb, 155Eu and 60Co were analyzed in both fractions by alpha-, beta- and gamma-spectrometry. Measurements showed that at 60% of the sites, pH and Eh seemed to be related to tidal cycles; in contrast HTO was constant during the sampling time. Interstitial waters from carbonates and transition zones shared similar chemical composition that were not different from that of the surrounding seawater. Waters collected from basalt cavities left after nuclear tests, (Aristee and Ceto) have a different chemical signature characterized by a deficiency in Mg, K and SO4 as well as enrichment in Sr, Si, Al and Cl compared to the rest of the stations. Radionuclide concentrations present in both, water and particulate fractions, were significantly higher at Ceto and Aristee than at any other monitoring wells, except for Fuseau and Mitre monitoring wells (Fangataufa) where values similar to Ceto were found (e.g. 239,240Pu: > 20 mBq g-1). Considering that Pu isotopes showed high Kd values compared to non-sorbing radionuclides such as 3H, 90Sr and 137Cs it is very unlikely that migration from cavities to monitoring wells accounts for the concentration of Pu isotopes and Am at Fuseau 30 and Mitre 27. Perhaps the contact of lagoon waters with the well before sealing could be a possible source of the transuranics found at these sites. The 238Pu/239,240Pu ratios measured in the particles were similar to that of the lagoon (0.38), thus supporting this hypothesis. The fact that transuranics were found only in the particle fraction, in the water (colloids included) these radionuclides were below detection limits, may be accounted for the conspicuous quantity of iron oxy-hydroxides present in the particulate fraction that under the appropriate redox conditions may be interacting selectively with elements in solution (scavenging) resulting in the enhanced transuranic signal. While transuranics have been found in places of their origin, radionuclides with low Kd values (3H, 90Sr, 137Cs) have already been transported to monitoring wells, as well as to the atolls' lagoons and the open ocean.
Philippine migration policy: dilemmas of a crisis.
Battistella, G
1999-04-01
Philippine migration policy is traced from the early 1970s to the present. The main migration trends in the 1990s are described. An assessment is made of the efficacy and appropriateness of present migration policy in light of the economic crisis. A regional approach to migration policy is necessary in order to encourage placing migration as a greater priority on national agendas and in bilateral agreements. In the Philippines, migrants are considered better paid workers, which diminishes their importance as a legislative or program priority. Santo Tomas (1998) conducted an empirical assessment of migration policies in the Philippines, but refinement is needed. Although migration is a transnational experience, there is little dialogue and cooperation among countries. Philippine migration policy defines its role as an information resource for migrants. Policy shifted from labor export to migrant management in the public and private sectors. Predeparture information program studies are recommending a multi-stage process that would involve all appropriate parties. There is talk of including migration information in the education curriculum. There are a variety of agendas, competing interests, and information resources between migration networks and officiating agencies. The Asian financial crisis may have a mild impact, but there are still issues of reintegration, protection, and employment conditions
Nanofiber Nerve Guide for Peripheral Nerve Repair and Regeneration
2014-01-01
observing cell migration using live - cell imaging microscopy, and analyzing cell migration with our MATLAB-based programs. Our studies...are then pipetted into the chamber and their path of migration is observed using a live - cell imaging microscope (Fig. 6d). Utilizing this migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giaquinta, D.M.; Soderholm, L.; Yuchs, S.E.
1997-08-01
A successful solution to the problem of disposal and permanent storage of water soluble radioactive species must address two issues: exclusion of the radionuclides from the environment and the prevention of leaching from the storage media into the environment. Immobilization of radionuclides in clay minerals has been studied. In addition to the use of clays as potential waste forms, information about the interactions of radionuclides with clays and how such interactions affect their speciations is crucial for successful modeling of actinide-migration. X-ray absorption spectroscopy (XAS) is used to determine the uranium speciation in exchanged and surface-modified clays. The XAS datamore » from uranyl-loaded bentonite clay are compared with those obtained after the particle surfaces have been coated with alkylsilanes. These silane films, which render the surface of the clay hydrophobic, are added in order to minimize the ability of external water to exchange with the water in the clay interlayer, thereby decreasing the release rate of the exchanged-uranium species. Mild hydrothermal conditions are used in an effort to mimic potential geologic conditions that may occur during long-term radioactive waste storage. The XAS spectra indicate that the uranyl monomer species remain unchanged in most samples, except in those samples that were both coated with an alkylsilane and hydrothermally treated. When the clay was coated with an organic film, formed by the acidic deposition of octadecyltrimethoxysilane, hydrothermal treatment results in the formation of aggregated uranium species in which the uranium is reduced from U{sup VI} to U{sup IV}.« less
Schwantes, Jon M; Orton, Christopher R; Clark, Richard A
2012-08-21
Researchers evaluated radionuclide measurements of environmental samples taken from the Fukushima Daiichi nuclear facility and reported on the Tokyo Electric Power Co. Website following the 2011 tsunami-initiated catastrophe. This effort identified Units 1 and 3 as the major source of radioactive contamination to the surface soil near the facility. Radionuclide trends identified in the soils suggested that: (1) chemical volatility driven by temperature and reduction potential within the vented reactors' primary containment vessels dictated the extent of release of radiation; (2) all coolant had likely evaporated by the time of venting; and (3) physical migration through the fuel matrix and across the cladding wall were minimally effective at containing volatile species, suggesting damage to fuel bundles was extensive. Plutonium isotopic ratios and their distance from the source indicated that the damaged reactors were the major contributor of plutonium to surface soil at the source, decreasing rapidly with distance from the facility. Two independent evaluations estimated the fraction of the total plutonium inventory released to the environment relative to cesium from venting Units 1 and 3 to be ∼0.002-0.004%. This study suggests significant volatile radionuclides within the spent fuel at the time of venting, but not as yet observed and reported within environmental samples, as potential analytes of concern for future environmental surveys around the site. The majority of the reactor inventories of isotopes of less volatile elements like Pu, Nb, and Sr were likely contained within the damaged reactors during venting.
1988 environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millard, G.; Yeager, G.; Phelan, J.
1989-05-01
Sandia National Laboratories (SNL), Albuquerque is located south of Albuquerque on Kirtland Air Force Base. Because radionuclides are potentially released in small quantities from its research activities, SNL, Albuquerque has a continuing environmental monitoring program which analyzes for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. A total of 5.23 curies of argon-41 were released as a result of SNL, Albuquerque operations in 1988. The albuquerque population received an estimated 0.04 person-rem from airborne radioactive releases, whereas it received greater than 44,500 person-rem from naturally occurring radionuclides. A nonradioactive effluent monitoring program at SNL,more » Albuquerque includes groundwater, stormwater and sewage monitoring. Results indicate that the groundwater has not been impacted by the chemical waste landfill. Preliminary testing of stormwater showed that no pollutants were above minimum detectable levels. A program to investigate potential remedial action sites has been started. 47 refs., 12 figs., 19 tabs.« less
Hernsdorf, Alex W; Amano, Yuki; Miyakawa, Kazuya; Ise, Kotaro; Suzuki, Yohey; Anantharaman, Karthik; Probst, Alexander; Burstein, David; Thomas, Brian C; Banfield, Jillian F
2017-08-01
Geological sequestration in deep underground repositories is the prevailing proposed route for radioactive waste disposal. After the disposal of radioactive waste in the subsurface, H 2 may be produced by corrosion of steel and, ultimately, radionuclides will be exposed to the surrounding environment. To evaluate the potential for microbial activities to impact disposal systems, we explored the microbial community structure and metabolic functions of a sediment-hosted ecosystem at the Horonobe Underground Research Laboratory, Hokkaido, Japan. Overall, we found that the ecosystem hosted organisms from diverse lineages, including many from the phyla that lack isolated representatives. The majority of organisms can metabolize H 2 , often via oxidative [NiFe] hydrogenases or electron-bifurcating [FeFe] hydrogenases that enable ferredoxin-based pathways, including the ion motive Rnf complex. Many organisms implicated in H 2 metabolism are also predicted to catalyze carbon, nitrogen, iron and sulfur transformations. Notably, iron-based metabolism is predicted in a novel lineage of Actinobacteria and in a putative methane-oxidizing ANME-2d archaeon. We infer an ecological model that links microorganisms to sediment-derived resources and predict potential impacts of microbial activity on H 2 consumption and retardation of radionuclide migration.
Organic matter and containment of uranium and fissiogenic isotopes at the Oklo natural reactors
Nagy, B.; Gauthier-Lafaye, F.; Holliger, P.; Davis, D.W.; Mossman, D.J.; Leventhal, J.S.; Rigali, M.J.; Parnell, J.
1991-01-01
SOME of the Precambrian natural fission reactors at Oklo in Gabon contain abundant organic matter1,2, part of which was liquefied at the time of criticality and subsequently converted to a graphitic solid3,4. The liquid organic matter helps to reduce U(VI) to U(IV) from aqueous solutions, resulting in the precipitation of uraninite5. It is known that in the prevailing reactor environments, precipitated uraninite grains incorporated fission products. We report here observations which show that these uraninite crystals were held immobile within the resolidified, graphitic bitumen. Unlike water-soluble (humic) organic matter, the graphitic bituminous organics at Oklo thus enhanced radionu-clide containment. Uraninite encased in solid graphitic matter in the organic-rich reactor zones lost virtually no fissiogenic lan-thanide isotopes. The first major episode of uranium and lead migration was caused by the intrusion of a swarm of adjacent dolerite dykes about 1,100 Myr after the reactors went critical. Our results from Oklo imply that the use of organic, hydrophobic solids such as graphitic bitumen as a means of immobilizing radionuclides in pretreated nuclear waste warrants further investigation. ?? 1991 Nature Publishing Group.
Classification of the Inventory of Spent Sealed Sources at INSHAS Storage Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Adham, K.; Geleel, M.A.; Mahmoud, N.S.
2006-07-01
The Egyptian Atomic Energy Authority (EAEA) is responsible for the recovery, transportation, conditioning, storage and disposal of all unwanted spent sealed radioactive sources (SSSs) in Egypt. Because of radioactive decay, damage, misuse or changing technical conditions, approximately 600 unwanted SSSs are now in storage at the EAEA's Hot-Laboratories Center in INSHAS. For the safe recovery, transportation, conditioning and storage of these unwanted SSSs the EAEA uses an International Atomic Energy Agency's (IAEA's) categorization system. The IAEA system classifies sealed radioactive sources (SRSs) into five categories based on potential risks to current workers and the public. This IAEA system allows Membermore » States like Egypt to apply a graded approach to the management of SRSs and SSSs. With over 600 unwanted SSSs already in storage, the EAEA is planned to dispose unwanted SSSs in near surface vault structures with solidified low- and intermediate-level radioactive wastes. The IAEA's categorization system is not designed to protect future populations from the possible long-term migration of radioactive wastes from a disposal system. This paper presents the basis of a second categorization system, designed to protect the public in Egypt from radioactive wastes that may migrate from a near-surface disposal facility. Assuming a release of radionuclides from the near-surface vaults 150 years after disposal and consumption of contaminated groundwater at the 150 m fence-line, this classification systems ranks SSSs into two groups: Those appropriate for near-surface disposal and those SSSs requiring greater isolation. Intermediate depth borehole disposal is proposed for those SSSs requiring greater isolation. Assistance with intermediate-depth borehole disposal is being provided by the Integrated Management Program for Radioactive Sealed Sources (IMPRSS) and by the IAEA through a Technical Cooperation Project. IMPRSS is a joint Egyptian / U.S. program that is greatly improving the cradle-to-grave management of SRSs and SSSs in Egypt. As a component of IMPRSS, Sandia National Laboratories is transferring knowledge to the Egyptian counterparts from implementation of the Greater Confinement Disposal boreholes in the U.S. (authors)« less
21 CFR 892.5700 - Remote controlled radionuclide applicator system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... source into the body or to the surface of the body for radiation therapy. This generic type of device may include patient and equipment supports, component parts, treatment planning computer programs, and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begovich, C.L.; Eckerman, K.F.; Schlatter, E.C.
1981-08-01
The DARTAB computer code combines radionuclide environmental exposure data with dosimetric and health effects data to generate tabulations of the predicted impact of radioactive airborne effluents. DARTAB is independent of the environmental transport code used to generate the environmental exposure data and the codes used to produce the dosimetric and health effects data. Therefore human dose and risk calculations need not be added to every environmental transport code. Options are included in DARTAB to permit the user to request tabulations by various topics (e.g., cancer site, exposure pathway, etc.) to facilitate characterization of the human health impacts of the effluents.more » The DARTAB code was written at ORNL for the US Environmental Protection Agency, Office of Radiation Programs.« less
New Catalytic DNA Biosensors for Radionuclides and Metal ion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi Lu
2008-03-01
We aim to develop new DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides, such as uranium, technetium, and plutonium, and metal contaminants, such as lead, chromium, and mercury. The sensors will be highly sensitive and selective. They will be applied to on-site, real-time assessment of concentration, speciation, and stability of the individual contaminants before and during bioremediation, and for long-term monitoring of DOE contaminated sites. To achieve this goal, we have employed a combinatorial method called “in vitro selection” to search from a large DNA library (~ 1015 different molecules) for catalytic DNA molecules that are highly specificmore » for radionuclides or other metal ions through intricate 3-dimensional interactions as in metalloproteins. Comprehensive biochemical and biophysical studies have been performed on the selected DNA molecules. The findings from these studies have helped to elucidate fundamental principles for designing effective sensors for radionuclides and metal ions. Based on the study, the DNA have been converted to fluorescent or colorimetric sensors by attaching to it fluorescent donor/acceptor pairs or gold nanoparticles, with 11 part-per-trillion detection limit (for uranium) and over million fold selectivity (over other radionuclides and metal ions tested). Practical application of the biosensors for samples from the Environmental Remediation Sciences Program (ERSP) Field Research Center (FRC) at Oak Ridge has also been demonstrated.« less
1980-11-20
PROGRAMS TO CONTROL ENVIRONMENTAL CONTAMINATION FROM PAST ACTIVITIES. * THEN, I WILL PRESENT OUR MAJOR PROGRAM TO IMtPLEMENT WITHIN THE DEPARTMENT OF...OF DOD’S HAZARDOUS WASTE DISPOSAL PROGRAM AND OUR PROGRAM TO ABATE MIGRATION OF CONTAMINANTS FROM DEFENSE INSTALLATIONS. THE INTENSE QUESTIONS FROM THE...INDUSTRY AND MOST OF THE GOVERNMENT. SINCE 1975, DEFENSE HAS HAD ITS INSTALLATION RESTORATION PROGRAM TO ASSESS AND CONTROL ANY POSSIBLE MIGRATION OF
Modeling the potential radionuclide transport by the Ob and Yenisey Rivers to the Kara Sea.
Paluszkiewicz, T; Hibler, L F; Richmond, M C; Bradley, D J; Thomas, S A
2001-01-01
A major portion of the former Soviet Union (FSU) nuclear program is located in the West Siberian Basin. Among the many nuclear facilities are three production reactors and the spent nuclear fuel reprocessing sites, Mayak, Tomsk-7, and Krasnoyarsk-26, which together are probably responsible for the majority of the radioactive contamination found in the Ob and Yenisey River systems that feed into the Arctic Ocean through the Kara Sea. This manuscript describes ongoing research to estimate radionuclide fluxes to the Kara Sea from these river systems. Our approach is to apply a hierarchy of simple models that use existing and forthcoming data to quantify the transport and fate of radionuclide contaminants via various environmental pathways. We present an initial quantification of the contaminant inventory, hydrology, meteorology, and sedimentology of the Ob River system and preliminary conclusions from portions of the Ob River model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutton, Rick
2013-10-01
Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 14-16, 2013, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location CER #1 Black Sulphur. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods.
CASTEAUR: a simple tool to assess the transfer of radionuclides in waterways.
Beaugelin-Seiller, K; Boyer, P; Garnier-Laplace, J; Adam, C
2002-10-01
The CASTEAUR project proposes a simplified tool to assess the transfer of radionuclides between and in the main biotic and abiotic components of the freshwater ecosystem. Applied to phenomenological modeling, various hypotheses simplify the transfer equations, which, when programmed under Excel, can be readily dispatched and used. CASTEAUR can be used as an assessment tool for impact studies of accidental release as well as "routine" release. This code is currently being tested on the Rhone River, downstream from a nuclear reprocessing plant. The first results are reported to illustrate the possibilities offered by CASTEAUR.
NASA Astrophysics Data System (ADS)
Hodges, R.; Findlay, R.; Kautsky, M.
2009-12-01
On January 19, 1968 the Atomic Energy Commission detonated a 200-1000 kt nuclear device at a depth of 975 meters at CNTA, approximately 100 miles north of the Nevada Test Site. Details of the detonation remain classified, including the specific yield and the size of the resultant cavity. Therefore, using the rough, generic relationships between yield and cavity size, yield and depth of burial, and cancelling out yield, leads to an estimated cavity radius of 100 meters for this detonation in the volcanic section. A collapse chimney subsequently formed that extended several hundred meters above the detonation into the overlying alluvium. The detonation reactivated several faults at the site and created a 2 km2 graben at the surface. The radionuclides in the detonation zone are a potential source of groundwater contamination. The most permeable unit near the detonation zone through which transport might occur is believed to be a densely welded tuff unit (DWT) below the detonation level. A three-well monitoring network was designed using a numerical model, and data were collected from the wells for comparison with model predictions. The head data from the wells were not in agreement with those predicted by the model, and the model was not validated. In a positive finding for radionuclide containment, aquifer test results from the new wells indicate that the DWT is less permeable than previously expected and suggest that the contaminant boundary developed from the model is likely conservative for predicting transport within the volcanic section. The overlying alluvial aquifer is not believed to be a migration pathway for significant quantities of radionuclides, though it is the most likely pathway to potential receptors in that it is the primary groundwater source in the area. To enhance the CNTA monitoring network, two new alluvial wells were installed in 2009, downgradient (east-southeast and south-southeast) of the detonation. The dual-completion alluvial wells were designed to not only monitor for radionuclides but also to determine if a southeast-bounding graben fault acts as a flow barrier. A seismic survey was conducted to optimally locate the wells with respect to the fault. The survey imaged the water table and showed offsets of the water table reflector at numerous faults; some of the faults were known and others had not been previously recognized. Water levels from the new alluvial wells and piezometers compare well with existing well data and support the conjecture that the southeast-bounding graben fault is a flow barrier. Over the last five years, a monitoring network at CNTA has been developed that monitors both the most likely migration pathway and the most likely pathway to potential receptors. The site investigation processes discussed here have also identified factors that affect groundwater flow at the site, and the methods employed can be used in similar hydrogeologic environments.
Social Justice and Mobility in Coastal Louisiana, USA.
Colten, Craig E; Simms, Jessica R Z; Grismore, Audrey A; Hemmerling, Scott A
2018-02-01
Louisiana faces extensive coastal land loss which threatens the livelihoods of marginalized populations. These groups have endured extreme disruptive events in the past and have survived in the region by relying on several resilient practices, including mobility. Facing environmental changes that will be wrought by deliberate coastal restoration programs, elderly residents are resisting migration while younger residents continue a decades-long inland migration. Interviews and historical records illustrate a complex intersection of resilient practices and environmental migration. The process underway conflicts to some extent with prevailing concepts in environmental migration most notably deviating from established migration patterns. In terms of social justice, selective out-migration of younger adults leaves a more vulnerable population behind, but also provides a supplementary source of income and social links to inland locales. Organized resistance to restoration projects represents a social justice response to programs that threaten the resource-based livelihoods of coastal residents while offering protection to safer inland urban residents.
40 CFR 61.127 - Exemption from the reporting and testing requirements of 40 CFR 61.10.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radionuclide Emissions From Elemental Phosphorus Plants § 61.127...
Kossert, K; Cassette, Ph; Carles, A Grau; Jörg, G; Gostomski, Christroph Lierse V; Nähle, O; Wolf, Ch
2014-05-01
The triple-to-double coincidence ratio (TDCR) method is frequently used to measure the activity of radionuclides decaying by pure β emission or electron capture (EC). Some radionuclides with more complex decays have also been studied, but accurate calculations of decay branches which are accompanied by many coincident γ transitions have not yet been investigated. This paper describes recent extensions of the model to make efficiency computations for more complex decay schemes possible. In particular, the MICELLE2 program that applies a stochastic approach of the free parameter model was extended. With an improved code, efficiencies for β(-), β(+) and EC branches with up to seven coincident γ transitions can be calculated. Moreover, a new parametrization for the computation of electron stopping powers has been implemented to compute the ionization quenching function of 10 commercial scintillation cocktails. In order to demonstrate the capabilities of the TDCR method, the following radionuclides are discussed: (166m)Ho (complex β(-)/γ), (59)Fe (complex β(-)/γ), (64)Cu (β(-), β(+), EC and EC/γ) and (229)Th in equilibrium with its progenies (decay chain with many α, β and complex β(-)/γ transitions). © 2013 Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruskauff, Greg; Marutzky, Sam
Model evaluation focused solely on the PIN STRIPE and MILK SHAKE underground nuclear tests’ contaminant boundaries (CBs) because they had the largest extent, uncertainty, and potential consequences. The CAMBRIC radionuclide migration experiment also had a relatively large CB, but because it was constrained by transport data (notably Well UE-5n), there was little uncertainty, and radioactive decay reduced concentrations before much migration could occur. Each evaluation target and the associated data-collection activity were assessed in turn to determine whether the new data support, or demonstrate conservatism of, the CB forecasts. The modeling team—in this case, the same team that developed themore » Frenchman Flat geologic, source term, and groundwater flow and transport models—analyzed the new data and presented the results to a PER committee. Existing site understanding and its representation in numerical groundwater flow and transport models was evaluated in light of the new data and the ability to proceed to the CR stage of long-term monitoring and institutional control.« less
Rural development and urban migration: can we keep them down on the farm?
Rhoda, R
1983-01-01
This study tests the hypothesis that rural development projects and programs reduce rural-urban migration. The author presents various factors in the social theories of migration, including those relating to origin and destination, intervening obstacles such as distance, and personal factors. 3 economic models of migration are the human capital or cost-benefit approach, the expected income model, and the intersectoral linkage model. Empirical studies of migration indicate that: 1) rural areas with high rates of out-migration tend to have high population densities or high ratios of labor to arable land, 2) distance inhibits migration, 3) rural-urban migration is positively correlated with family income level, and 4) selectivity differences in socioeconomic status between migrants and nonmigrants often are grouped into development packages which might include irrigation, new varieties of seed, subsidized credit, increased extension, and improved marketing arrangements. The migration impacts of some of these efforts are described: 1) land reform usually is expected to slow rural out-migration because it normally increases labor utilization in rural areas, but this is a limited effect, 2) migration effects of the Green Revolution technology are mainly in rural-rural migration, and 3) agricultural mechanization may stimulate rural-urban migration in the long run. Development of rural social services migh have various effects on rural-urban migration. Better rural education, which improves the chances of urban employment, will stimulate rural-urban migration, while successful rural family planning programs will have a negative effect in the long run as there will be reduced population pressure on arable land. Better rural health services might reduce the incentive for rural-urban migration as well. It is suggested that governments reconsider policies which rely on rural development to curb rural-urban migration and alleviate problems of urban poverty and underemployment.
Initial Radionuclide Inventories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, H
The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only. Bounding waste stream information and data were collected that capture probable limits. For commercially generated waste, this analysis considers alternative waste stream projections to bound the characteristics of wastes likely to be encountered using arrival scenarios that potentially impact the commercial spent nuclearmore » fuel (CSNF) waste stream. For TSPA-LA, this radionuclide inventory analysis considers U.S. Department of Energy (DOE) high-level radioactive waste (DHLW) glass and two types of spent nuclear fuel (SNF): CSNF and DOE-owned (DSNF). These wastes are placed in two groups of waste packages: the CSNF waste package and the codisposal waste package (CDSP), which are designated to contain DHLW glass and DSNF, or DHLW glass only. The radionuclide inventory for naval SNF is provided separately in the classified ''Naval Nuclear Propulsion Program Technical Support Document'' for the License Application. As noted previously, the radionuclide inventory data presented here is intended only for TSPA-LA postclosure calculations. It is not applicable to preclosure safety calculations. Safe storage, transportation, and ultimate disposal of these wastes require safety analyses to support the design and licensing of repository equipment and facilities. These analyses will require radionuclide inventories to represent the radioactive source term that must be accommodated during handling, storage and disposition of these wastes. This analysis uses the best available information to identify the radionuclide inventory that is expected at the last year of last emplacement, currently identified as 2030 and 2033, depending on the type of waste. TSPA-LA uses the results of this analysis to decay the inventory to the year of repository closure projected for the year of 2060.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.
2011-08-31
One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Such concrete encasement would contain and isolate the waste packages from the hydrologic environment and would act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expectedmore » to have a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed, and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion and move into the surrounding subsurface environment. Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. The retardation factors for radionuclides contained in the waste packages can be determined from measurements of diffusion coefficients for these contaminants through concrete and fill material. Some of the mobilization scenarios include (1) potential leaching of waste form before permanent closure cover is installed; (2) after the cover installation, long-term diffusion of radionuclides from concrete waste form into surrounding fill material; (3) diffusion of radionuclides from contaminated soils into adjoining concrete encasement and clean fill material. Additionally, the rate of diffusion of radionuclides may be affected by the formation of structural cracks in concrete, the carbonation of the buried waste form, and any potential effect of metallic iron (in the form of rebars) on the mobility of radionuclides. The radionuclides iodine-129 ({sup 129}I), technetium-99 ({sup 99}Tc), and uranium-238 ({sup 238}U) are identified as long-term dose contributors in Category 3 waste (Mann et al. 2001; Wood et al. 1995). Because of their anionic nature in aqueous solutions, {sup 129}I, {sup 99}Tc, and carbonate-complexed {sup 238}U may readily leach into the subsurface environment (Serne et al. 1989, 1992a, b, 1993, and 1995). The leachability and/or diffusion of radionuclide species must be measured to assess the long-term performance of waste grouts when contacted with vadose-zone pore water or groundwater. Although significant research has been conducted on the design and performance of cementitious waste forms, the current protocol conducted to assess radionuclide stability within these waste forms has been limited to the Toxicity Characteristic Leaching Procedure, Method 1311 Federal Registry (EPA 1992) and ANSI/ANS-16.1 leach test (ANSI 1986). These tests evaluate the performance under water-saturated conditions and do not evaluate the performance of cementitious waste forms within the context of waste repositories which are located within water-deficient vadose zones. Moreover, these tests assess only the diffusion of radionuclides from concrete waste forms and neglect evaluating the mechanisms of retention, stability of the waste form, and formation of secondary phases during weathering, which may serve as long-term secondary hosts for immobilization of radionuclides. The results of recent investigations conducted under arid and semi-arid conditions (Al-Khayat et al. 2002; Garrabrants et al. 2002; Garrabrants and Kosson 2003; Garrabrants et al. 2004; Gervais et al. 2004; Sanchez et al. 2002; Sanchez et al. 2003) provide valuable information suggesting structural and chemical changes to concrete waste forms which may affect contaminant containment and waste form performance. However, continued research is necessitated by the need to understand: the mechanism of contaminant release; the significance of contaminant release pathways; how waste form performance is affected by the full range of environmental conditions within the disposal facility; the process of waste form aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of waste form aging on chemical, physical, and radiological properties, and the associated impact on contaminant release. Recent reviews conducted by the National Academies of Science recognized the efficacy of cementitious materials for waste isolation, but further noted the significant shortcomings in our current understanding and testing protocol for evaluating the performance of various formulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Robert W.; Fujita, Yoshiko; Ferris, F. Grant
2003-06-15
Radionuclide and metal contaminants such as 90Sr are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory). In situ containment and stabilization of these contaminants is a cost-effective treatment strategy. However, implementing in situ containment and stabilization approaches requires definition of the mechanisms that control contaminant sequestration. We are investigating the in situ immobilization of radionuclides or contaminant metals (e.g., 90Sr) by their facilitated co-precipitation with calcium carbonate in groundwater and vadose zonemore » systems. Our facilitated approach, shown schematically in Figure 1, relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity. Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface urea hydrolyzing microorganisms. Because the precipitation process tends to be irreversible and many western aquifers are saturated with respect to calcite, the coprecipitated metals and radionuclides will be effectively removed from the aqueous phase over the long-term. Another advantage of the ureolysis approach is that the ammonium ions produced by the reaction can exchange with radionuclides sorbed to subsurface minerals, thereby enhancing the availability of the radionuclides for re-capture in a more stable solid phase (co-precipitation rather than adsorption).« less
Flood and Fire Monitoring and Forecasting Within the Chornobyl Exclusion Zone
NASA Astrophysics Data System (ADS)
Los, Victor
2001-03-01
Taking into consideration that radioactivity from the contaminating elements of the Chernobyl Exclusion Zone (CEZ) amounts to a huge number, one of the most urgent tasks, at present, is the resolution of problems related to secondary radioactive contamination caused by floods and fires. These factors may lead to critical consequences. For instance, if radioactive contaminants migrate into the water system, namely into the Dnipro River, a threat arises to more than 20 million inhabitants of Ukraine. Additionally, fires in the CEZ potentially could cause contaminants to be dispersed into the air and to migrate in the atmosphere for long distances. The elements of information support system for administrative decision-making to respond to the appearances and consequences of forest fires and floods in contaminated areas of the CEZ have been developed. The system proposes: using Earth Remote Sensing (R/S) data for timely detection of forest fires; integration by Geographic Information System (GIS) of mathematical models for radionuclide migration by air in order to forecast radiological consequences of forest fires; forecasting and assessing flood consequences by means of spatial analysis of GIS and R/S; and development of a system for dissemination of information. This project was performed within the framework of USAID Cooperative Agreement #121-A-00-98-00615-00, dedicated to the establishment of the Ukrainian Land and Resource Management Center.
76 FR 45794 - Public Water System Supervision Program Revision for the State of Louisiana
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-01
..., Filter Backwash Recycling Rule, Long Term 1 Enhanced Surface Water Treatment Rule, Radionuclides Rule... Register at 72 FR 57782 on October 10, 2007. Louisiana has adopted the Public Notification Rule, Filter...
40 CFR 61.120 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radionuclide Emissions From Elemental Phosphorus Plants § 61.120 Applicability. The provisions of this subpart are applicable to owners...
40 CFR 61.124 - Recordkeeping requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 61.124 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radionuclide Emissions From Elemental Phosphorus Plants § 61.124 Recordkeeping requirements. The owner or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radionuclide Emissions From Elemental Phosphorus Plants § 61.121 Definitions. (a) Elemental phosphorus plant or plant means any facility...
Environmental degradation and migration: the U.S.-Mexico case study.
1998-01-01
This article provides a detailed account of the conclusions and policy recommendations of a study of environmental degradation and migration between the US and Mexico. Key recommendations and findings were included in the official US Congressional Commission on Immigration Reform report (September 1997). The Congressional report urges Congress to consider environment and development root causes of migration in establishing foreign policies with Mexico and other countries. It appears that the root cause of Mexican migration is rural land degradation or desertification. The study suggests feasible solutions, and not additional border security and employment-related sanctions. The US has the technology and expertise to facilitate programs that address environmental and development issues in targeted and integrated ways. The recommendations serve as a framework for policy reform and debate on rural development and agricultural productivity. Mexican states should be targeted that are new migration-sending states with extensive poverty and soil erosion problems and well-established migration states. Environment, population, and migration are all housed in the Global Affairs Office in the US Department of State, but there is little program integration. The USAID bureaucracy separates agricultural and environmental programs. Solutions include, for example, reducing the costs of remittances from the US to Mexico, conducting research on integrated solutions, and contributing to improved land and water management practices, forest management and land tenure, and the competitiveness of smallholders.
Development a computer codes to couple PWR-GALE output and PC-CREAM input
NASA Astrophysics Data System (ADS)
Kuntjoro, S.; Budi Setiawan, M.; Nursinta Adi, W.; Deswandri; Sunaryo, G. R.
2018-02-01
Radionuclide dispersion analysis is part of an important reactor safety analysis. From the analysis it can be obtained the amount of doses received by radiation workers and communities around nuclear reactor. The radionuclide dispersion analysis under normal operating conditions is carried out using the PC-CREAM code, and it requires input data such as source term and population distribution. Input data is derived from the output of another program that is PWR-GALE and written Population Distribution data in certain format. Compiling inputs for PC-CREAM programs manually requires high accuracy, as it involves large amounts of data in certain formats and often errors in compiling inputs manually. To minimize errors in input generation, than it is make coupling program for PWR-GALE and PC-CREAM programs and a program for writing population distribution according to the PC-CREAM input format. This work was conducted to create the coupling programming between PWR-GALE output and PC-CREAM input and programming to written population data in the required formats. Programming is done by using Python programming language which has advantages of multiplatform, object-oriented and interactive. The result of this work is software for coupling data of source term and written population distribution data. So that input to PC-CREAM program can be done easily and avoid formatting errors. Programming sourceterm coupling program PWR-GALE and PC-CREAM is completed, so that the creation of PC-CREAM inputs in souceterm and distribution data can be done easily and according to the desired format.
Peyre, Elise; Silva, Carla G; Nguyen, Laurent
2015-01-01
During embryogenesis, cortical interneurons are generated by ventral progenitors located in the ganglionic eminences of the telencephalon. They travel along multiple tangential paths to populate the cortical wall. As they reach this structure they undergo intracortical dispersion to settle in their final destination. At the cellular level, migrating interneurons are highly polarized cells that extend and retract processes using dynamic remodeling of microtubule and actin cytoskeleton. Different levels of molecular regulation contribute to interneuron migration. These include: (1) Extrinsic guidance cues distributed along migratory streams that are sensed and integrated by migrating interneurons; (2) Intrinsic genetic programs driven by specific transcription factors that grant specification and set the timing of migration for different subtypes of interneurons; (3) Adhesion molecules and cytoskeletal elements/regulators that transduce molecular signalings into coherent movement. These levels of molecular regulation must be properly integrated by interneurons to allow their migration in the cortex. The aim of this review is to summarize our current knowledge of the interplay between microenvironmental signals and cell autonomous programs that drive cortical interneuron porduction, tangential migration, and intergration in the developing cerebral cortex.
40 CFR 61.122 - Emission standard.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ambient air from all calciners and nodulizing kilns at an elemental phosphorus plant shall not exceed a....122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radionuclide...
40 CFR 61.123 - Emission testing.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radionuclide Emissions From Elemental Phosphorus Plants § 61.123 Emission testing. (a) Each owner or operator of an elemental phosphorus...
40 CFR 61.126 - Monitoring of operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 61.126 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radionuclide Emissions From Elemental Phosphorus Plants § 61.126 Monitoring of operations. (a) The owner or...
Assessing and reducing hydrogeologic model uncertainty
USDA-ARS?s Scientific Manuscript database
NRC is sponsoring research that couples model abstraction techniques with model uncertainty assessment methods. Insights and information from this program will be useful in decision making by NRC staff, licensees and stakeholders in their assessment of subsurface radionuclide transport. All analytic...
Movement between Mexico and Canada: Analysis of a New Migration Stream
Massey, Douglas; Brown, Amelia E.
2011-01-01
In this analysis we use data from the Mexican Migration Project to contrast processes of Mexican migration to Canada and the United States. All migrants to Canada entered through the Seasonal Agricultural Worker Program and consistent with program criteria, migration there is strongly predicted by marital status and number of dependents, yielding a migrant population that is made up of males of prime labor-force age who are married and have multiple children at home. In contrast, the vast majority of migrants to the United States are undocumented and thus self-selected without regard to marital status or parenthood. Migration to the United States is strongly predicted by age, and migration probabilities display the age curve classically associated with labor migration. Within countries of destination, migrants to Canada enjoy superior labor market outcomes compared with those to the United States, with higher wages and more compact work schedules that yield higher earnings and shorter periods away from families compared with undocumented migrants to the United States. Labor migration to Canada also tends to operate as a circular flow with considerable repeat migration whereas undocumented migrants to the United States do not come and go so regularly, as crossing the Mexico-U.S. border has become increasingly difficult and costly. PMID:24347678
NASA Astrophysics Data System (ADS)
Linnik, Vitaly; Nenko, Kristina; Sokolov, Alexander; Saveliev, Anatoly
2015-04-01
In the result of Chernobyl disaster on 26 April 1986 many regions of Ukraine, Belarus and Russia were contaminated by radionuclides. Vast areas of farmlands and woodlands were contaminated in Russia. The deposited radionuclides continue to cause concern about the possible contamination of food (in particular, mushrooms and berries). But the radioactive materials are also an ideal marker for understanding of hillslope processes in natural and seminatural landscapes. Model area chosen for the research (Opolje landscapes located in the central part of the Bryansk region) is characterized by relatively low levels of Cs-137 contamination. It just 4-33 times higher than global fallout which was equal 1,75 kBq/m2 in 1986 . According the results of air gamma survey (grid size: 100 m x100 m), which was done in 1993, it was explicitly to identify that the processes of Cs-137 lateral migration took place due to nearly fourfold increase of Cs-137 in the lower slope in comparison with the surface of the watershed during a seven-year period after Chernobyl accident. Erosion processes which define Cs-137 pattern in the lowest part of hillslope depend upon such parameters as slope, hillslope forms, vegetation, land use and the roads, which intersect a streamline. GIS-modeling of Cs-137 was carried out in SAGA software. The spatial modeling resolution was equal 100x100 m according the air-gamma data. SRTM data was resampled to a grid 100x100 m. Erosion rates were the highest on the slope of southern exposure. There the processes of lateral migration are more intensive and observed within the entire slope. The main contribution in receipt of Cs-137 to floodplain on the northern slopes comes only from the lower part of the slope and gullies and ravines network. We have used geo-information modeling techniques and some kind of interpolation and statistical models to predict or understand forming of Cs-137 spatial patterns and trends in soil erosion. To study the role of some geomorphological parameters in the Cs-137 redistribution we apply different mathematical models. We have identified the main trend (dependence on the X, Y coordinate) and contribution of such geomorphological parameters as concave and convex profiles, slope and others. Thus, the use of fallout radionuclides, measured with air-gamma survey, can complement our concept about Cs-137 secondary redistribution due the erosion processes which controlled by numerous of landscape factors.
Chung, Kun Ho; Choi, Sang Do; Choi, Geun Sik; Kang, Mun Ja
2013-11-01
A modular automated radionuclide separator for (99)Tc (MARS Tc-99) has been developed for the rapid and reproducible separation of technetium in groundwater samples. The control software of MARS Tc-99 was developed in the LabView programming language. An automated radiochemical method for separating (99)Tc was developed and validated by the purification of (99m)Tc tracer solution eluted from a commercial (99)Mo/(99m)Tc generator. The chemical recovery and analytical time for this radiochemical method were found to be 96 ± 2% and 81 min, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Verification of EPA's " Preliminary remediation goals for radionuclides" (PRG) electronic calculator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stagich, B. H.
The U.S. Environmental Protection Agency (EPA) requested an external, independent verification study of their “Preliminary Remediation Goals for Radionuclides” (PRG) electronic calculator. The calculator provides information on establishing PRGs for radionuclides at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites with radioactive contamination (Verification Study Charge, Background). These risk-based PRGs set concentration limits using carcinogenic toxicity values under specific exposure conditions (PRG User’s Guide, Section 1). The purpose of this verification study is to ascertain that the computer codes has no inherit numerical problems with obtaining solutions as well as to ensure that the equations are programmed correctly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick Matthews
2011-07-01
Corrective Action Unit 106 comprises the four corrective action sites (CASs) listed below: • 05-20-02, Evaporation Pond • 05-23-05, Atmospheric Test Site - Able • 05-45-04, 306 GZ Rad Contaminated Area • 05-45-05, 307 GZ Rad Contaminated Area These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viablemore » CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 19, 2010, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 106. The presence and nature of contamination at CAU 106 will be evaluated based on information collected from a field investigation. The CAU includes land areas impacted by the release of radionuclides from groundwater pumping during the Radionuclide Migration study program (CAS 05-20-02), a weapons-related airdrop test (CAS 05-23-05), and unknown support activities at two sites (CAS 05-45-04 and CAS 05-45-05). The presence and nature of contamination from surface-deposited radiological contamination from CAS 05-23-05, Atmospheric Test Site - Able, and other types of releases (such as migration and excavation as well as any potential releases discovered during the investigation) from the remaining three CASs will be evaluated using soil samples collected from the locations most likely containing contamination, if present. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the corrective action investigation for CAU 106 includes the following activities: • Conduct radiological surveys. • Collect and submit environmental samples for laboratory analysis to determine internal dose rates and the presence of contaminants of concern. • If contaminants of concern are present, collect additional samples to define the extent of the contamination and determine the area where the total effective dose at the site exceeds final action levels (i.e., corrective action boundary). • Collect samples of investigation-derived waste, as needed, for waste management purposes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter
2007-01-01
Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-formmore » leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.« less
Migration monitoring in shorebirds and landbirds: commonalities and differences
Susan K. Skagen; Jonathan Bart
2005-01-01
Several aspects of a developing program to monitor shorebirds in the western hemisphere are pertinent to migration monitoring of landbirds. Goals of the Program for Regional and International Shorebird Monitoring (PRISM) include estimating population size and population trends of 74 species, sub-species and distinct populations of North American shorebirds, monitoring...
The USEPA has developed a technology transfer handbook for the EMPACt BirdCast bird migration monitoring project. The document is essentially a "How-To" Handbook that addresses the planning and implementation steps that were needed to develop, operate and maintain a program simil...
NASA Astrophysics Data System (ADS)
Schaefer, T.; Blechschmidt, I.; Bouby, M.; Buechner, S.; Brendlé, J.; Geckeis, H.; Kupcik, T.; Goetz, R.; Hauser, W.; Heck, S.; Huber, F. M.; Lagos, M.; Martin, A. J.
2013-12-01
The influence of colloidal/nano-scale phases on the radionuclide (RNs) solubility and migration behavior is still one of the uncertainties in repository safety assessment [1]. Within the Colloid Formation and Migration (CFM) project at the Grimsel Test Site (GTS Switzerland) a huge geo-technical effort was taken to isolate hydraulically a shear-zone from the artificially introduced hydraulic gradient due to the tunnel construction. The construction is a combination of polymer resin impregnation of the tunnel surface and a steel torus to seal the tunnel surface. Natural outflow points of the MI shear zone were localized prior to the construction and sealed by surface packers. This design gives the opportunity to adjust the flow velocity in the fracture. After optimization of the experimental setup and injection procedure through a number of conservative tracer tests a license was granted in January 2012 by the Swiss regulator (BAG) to perform the first radionuclide tracer test under these low-flow conditions. The injection cocktail of 2.25L volume consisted of 101.4 × 2.5 mg/L montmorillonite clay colloids, whereas 8.9 × 0.4mg/L were present as synthetic montmorillonite with structural incorporated Ni. For details on the structural characterization of the Ni-montmorillonite phyllosilicate, see [2]. Beside the colloids and the conservative tracer Amino-G (1646 × 8ppb) the radioisotopes Na-22, Ba-133, Cs-137, Th-232, Np-237, Pu-242 and Am-243 were injected. The trivalent and tetravalent actinides were quantitatively associated with the colloids present as well as a part of the Cs, whereas Np(V) and Na are not bentonite colloid bond. For on-site colloid analysis a mobile Laser- Induced Breakdown Detection (LIBD) system similar to the one used in the CRR experiments [3] was transferred to Grimsel and installed in-line at the 'Pinkel' outlet to directly monitor the mobile colloid fraction throughout the experiment. The conservative tracer Amino-G was recovered quantitatively and for the weakly sorbing tracers analyzed by γ-spectrometry recoveries for Na-22, Cs-137 and Ba-133 of 64%, 10% and 1%, respectively, were found. The clay colloid recovery determined by LIBD and HR-ICP-MS analyzing Al and Ni as structural components of the clay particles provided 48-52%. For the initial quantitatively colloid associated actinides Am(III) and Pu(IV) a recovery of 21-22% and 30-35%, respectively, could be determined. Np recovery is significantly reduced to ~4 %, which hints to a kinetic controlled Np(V) reduction. The data obtained so far clearly show the mobility of bentonite derived montmorillonite colloids under near-natural flow conditions in the MI shear zone of the Grimsel Test Site [4]. The experimental data will be discussed in detail in the presentation. [1] T. Schäfer, et al. Appl. Geochem., 27 (2012) 390-403. [2] Reinholdt, et al., Nanomaterials, 3 (2013) 48-69. [3] H. Geckeis, et al., Radiochim. Acta, 92 (2004) 765-774. [4] www.grimsel.com
Radioactive waste handling and disposal at King Faisal Specialist Hospital and Research Centre.
Al-Haj, Abdalla N; Lobriguito, Aida M; Al Anazi, Ibrahim
2012-08-01
King Faisal Specialist Hospital & Research Centre (KFSHRC) is the largest specialized medical center in Saudi Arabia. It performs highly specialized diagnostic imaging procedures with the use of various radionuclides required by sophisticated dual imaging systems. As a leading institution in cancer research, KFSHRC uses both long-lived and short-lived radionuclides. KFSHRC established the first cyclotron facility in the Middle East, which solved the in-house high demand for radionuclides and the difficulty in importing them. As both user and producer of high standard radiopharmaceuticals, KFSHRC generates large volumes of low and high level radioactive wastes. An old and small radioactive facility that was used for storage of radioactive waste was replaced with a bigger warehouse provided with facilities that will reduce radiation exposure of the staff, members of the public, and of the environment in the framework of "as low as reasonably achievable." The experiences and the effectiveness of the radiation protection program on handling and storage of radioactive wastes are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foley, R.D.; Brown, K.S.
1992-10-01
At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at the former ALCOA New Kensington Works, Pine and Ninth Streets, New Kensington, Pennsylvania. The survey was performed on November 12, 1991. The purpose of the survey was to determine whether the property was contaminated with radioactive residues, principally, as a result of work done for the Manhattan Engineer District in 1944. The survey included a gamma scan of three bays inside Building 18; measurement of direct alpha and beta-gamma levels in the same area; and collection of amore » dust sample for radionuclide analysis from the center of each bay. Results of the survey demonstrated no radionuclide concentrations or radiation measurements in excess of the DOE Formerly Utilized Sites Remedial Action Program guidelines for uranium. The radionuclide distributions were not significantly different from typical background levels in the Pittsburgh, Pennsylvania area.« less
An international model validation exercise on radionuclide transfer and doses to freshwater biota.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yankovich, T. L.; Vives i Batlle, J.; Vives-Lynch, S.
2010-06-09
Under the International Atomic Energy Agency (IAEA)'s EMRAS (Environmental Modelling for Radiation Safety) program, activity concentrations of {sup 60}Co, {sup 90}Sr, {sup 137}Cs and {sup 3}H in Perch Lake at Atomic Energy of Canada Limited's Chalk River Laboratories site were predicted, in freshwater primary producers, invertebrates, fishes, herpetofauna and mammals using eleven modelling approaches. Comparison of predicted radionuclide concentrations in the different species types with measured values highlighted a number of areas where additional work and understanding is required to improve the predictions of radionuclide transfer. For some species, the differences could be explained by ecological factors such as trophicmore » level or the influence of stable analogues. Model predictions were relatively poor for mammalian species and herpetofauna compared with measured values, partly due to a lack of relevant data. In addition, concentration ratios are sometimes under-predicted when derived from experiments performed under controlled laboratory conditions representative of conditions in other water bodies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jannik, Tim; Stagich, Brooke
The U.S. Environmental Protection Agency (EPA) requested an external, independent verification study of their updated “Preliminary Remediation Goals for Radionuclides” (PRG) electronic calculator. The calculator provides PRGs for radionuclides that are used as a screening tool at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and Resource Conservation and Recovery Act (RCRA) sites. These risk-based PRGs establish concentration limits under specific exposure scenarios. The purpose of this verification study is to determine that the calculator has no inherit numerical problems with obtaining solutions as well as to ensure that the equations are programmed correctly. There are 167 equations used inmore » the calculator. To verify the calculator, all equations for each of seven receptor types (resident, construction worker, outdoor and indoor worker, recreator, farmer, and composite worker) were hand calculated using the default parameters. The same four radionuclides (Am-241, Co-60, H-3, and Pu-238) were used for each calculation for consistency throughout.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, S.M.; Finn, R.D.
1995-07-17
This research continues the long term goals of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. This program fits into the nuclear medicine component of DOE`s mission, which is aimed at enhancing the beneficial applications of radiation, radionuclides, and stable isotopes in the diagnosis, study and treatment of human diseases. The grant includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology/Immunology; and Imaging Physics. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Section under the DOE grant during the 1992--1995more » will be employed in the Pharmacology/Immunology component in the period 1996--1999. Imaging Physics resolves relevant imaging related physics issues that arise during the experimentation that results. In addition to the basic research mission, this project also provides a basis for training of research scientists in radiochemistry, immunology, bioengineering and imaging physics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hershey, Ronald; Cablk, Mary; LeFebre, Karen
2013-08-01
Atmospheric tests and other experiments with nuclear materials were conducted on the Frenchman Flat playa at the Nevada National Security Site, Nye County, Nevada; residual radionuclides are known to exist in Frenchman Flat playa soils. Although the playa is typically dry, extended periods of winter precipitation or large single-event rainstorms can inundate the playa. When Frenchman Flat playa is inundated, residual radionuclides on the typically dry playa surface may become submerged, allowing water-soil interactions that could provide a mechanism for transport of radionuclides away from known areas of contamination. The potential for radionuclide transport by occasional inundation of the Frenchmanmore » Flat playa was examined using geographic information systems and satellite imagery to delineate the timing and areal extent of inundation; collecting water samples during inundation and analyzing them for chemical and isotopic content; characterizing suspended/precipitated materials and archived soil samples; modeling water-soil geochemical reactions; and modeling the mobility of select radionuclides under aqueous conditions. The physical transport of radionuclides by water was not evaluated in this study. Frenchman Flat playa was inundated with precipitation during two consecutive winters in 2009-2010 and 2010-2011. Inundation allowed for collection of multiple water samples through time as the areal extent of inundation changed and ultimately receded. During these two winters, precipitation records from a weather station in Frenchman Flat (Well 5b) provided information that was used in combination with geographic information systems, Landsat imagery, and image processing techniques to identify and quantify the areal extent of inundation. After inundation, water on the playa disappeared quickly, for example, between January 25, 2011 and February 10, 2011, a period of 16 days, 92 percent of the areal extent of inundation receded (2,062,800 m2). Water sampling provided valuable information about chemical processes occurring during inundation as the water disappeared. Important observations from water-chemistry analyses included: 1) total dissolved solids (TDS) and chloride ion (Cl-) concentrations were very low (TDS: < 200 mg/L and Cl-: < 3.0 mg/L, respectively) for all water samples regardless of time or areal extent; 2) all dissolved constituents were at concentrations well below what might be expected for evaporating shallow surface waters on a playa, even when 98 to 99 percent of the water had disappeared; 3) the amount of evaporation for the last water samples collected at the end of inundation, estimated with the stable isotopic ratios δ2H or δ18O, was approximately 60 percent; and 4) water samples analyzed by gamma spectroscopy did not show any man-made radioactivity; however, the short scanning time (24 hours) and relative chemical diluteness of the water samples (TDS ranged between 39 and 190 mg/L) may have contributed to none being detected. Additionally, any low-energy beta emitting radionuclides would not have been detected by gamma spectroscopy. From these observations, it was apparent that a significant portion of water on the playa did not evaporate, but rather infiltrated into the subsurface (approximately 40 percent). Consistent with this water chemistry-based conclusion is particle-size analysis of two archived Frenchman Flat playa soils samples, which showed low clay content in the near surface soil that also suggested infiltration. Infiltration of water from the playa during inundation into the subsurface does not necessarily imply that groundwater recharge is occurring, but it does provide a mechanism for moving residual radionuclides downward into the subsurface of Frenchman Flat playa. Water-mineral geochemical reactions were modeled so that changes in the water chemistry could be identified and the extent of reactions quantified. Geochemical modeling showed that evaporation; equilibrium with atmospheric carbon dioxide and calcite; dissolution of sodium chloride, gypsum, and composite volcanic glass; and precipitation of composite clay and quartz represented changes in water as it disappeared from the playa. This modeling provided an understanding of the water-soil geochemical environment, which was then used to evaluate the potential mobility of residual radionuclides into the playa soils by water. Because there is no information on the chemical forms of anthropogenic radionuclides in Frenchman Flat playa soil, it was assumed that soil radionuclides go into solution when the playa is inundated. In mobility modeling, a select group of radionuclides were allowed to sorb onto, or exchange with, playa soil minerals to evaluate the likelihood that the radionuclides would be removed from water during playa inundation. Radionuclide mobility modeling suggested that there would be minimal sorption or exchange of several important radionuclides (uranium, cesium, and technetium) with playa minerals such that they may be mobile in water when the playa is inundated and could infiltrate into the subsurface. Mobility modeling also showed that plutonium may be much less mobile because of sorption onto calcite, but the amount of reactive surface area of playa soil calcite is highly uncertain. Plutonium is also known to sorb onto colloidal particles suspended in water, suspended colloidal particles will move with the water, providing a mechanism to redistribute plutonium when Frenchman Flat playa is inundated. Water chemistry, stable isotopes, and geochemical modeling showed that residual radionuclides in Frenchman Flat playa soils could be mobilized in water when the playa is inundated with precipitation. Also, there is potential for these radionuclides to infiltrate into the subsurface with water. As a result of the information obtained both during this study and the conclusions drawn from it, additional data collection, investigation, and modeling are recommended. Specifically: sampling the playa soil to search for evidence of surface-water infiltration and the presence of radionuclides; developing a preliminary unsaturated flow and transport model to guide soil sampling; characterizing the chemical forms of radionuclides on the playa surface and any radionuclides that might have migrated into the subsurface; and, refining the unsaturated flow and transport model with data obtained from sampling and analysis of soil samples to guide any future sampling, development of remediation strategies, and defining risk-based boundaries for Frenchman Flat playa.« less
Theodorakopoulos, Nicolas; Février, Laureline; Barakat, Mohamed; Ortet, Philippe; Christen, Richard; Piette, Laurie; Levchuk, Sviatoslav; Beaugelin-Seiller, Karine; Sergeant, Claire; Berthomieu, Catherine; Chapon, Virginie
2017-08-01
After the Chernobyl nuclear power plant accident in 1986, contaminated soils, vegetation from the Red Forest and other radioactive debris were buried within trenches. In this area, trench T22 has long been a pilot site for the study of radionuclide migration in soil. Here, we used 454 pyrosequencing of 16S rRNA genes to obtain a comprehensive view of the bacterial and archaeal diversity in soils collected inside and in the vicinity of the trench T22 and to investigate the impact of radioactive waste disposal on prokaryotic communities. A remarkably high abundance of Chloroflexi and AD3 was detected in all soil samples from this area. Our statistical analysis revealed profound changes in community composition at the phylum and OTUs levels and higher diversity in the trench soils as compared to the outside. Our results demonstrate that the total absorbed dose rate by cell and, to a lesser extent the organic matter content of the trench, are the principal variables influencing prokaryotic assemblages. We identified specific phylotypes affiliated to the phyla Crenarchaeota, Acidobacteria, AD3, Chloroflexi, Proteobacteria, Verrucomicrobia and WPS-2, which were unique for the trench soils. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Hernsdorf, Alex W; Amano, Yuki; Miyakawa, Kazuya; Ise, Kotaro; Suzuki, Yohey; Anantharaman, Karthik; Probst, Alexander; Burstein, David; Thomas, Brian C; Banfield, Jillian F
2017-01-01
Geological sequestration in deep underground repositories is the prevailing proposed route for radioactive waste disposal. After the disposal of radioactive waste in the subsurface, H2 may be produced by corrosion of steel and, ultimately, radionuclides will be exposed to the surrounding environment. To evaluate the potential for microbial activities to impact disposal systems, we explored the microbial community structure and metabolic functions of a sediment-hosted ecosystem at the Horonobe Underground Research Laboratory, Hokkaido, Japan. Overall, we found that the ecosystem hosted organisms from diverse lineages, including many from the phyla that lack isolated representatives. The majority of organisms can metabolize H2, often via oxidative [NiFe] hydrogenases or electron-bifurcating [FeFe] hydrogenases that enable ferredoxin-based pathways, including the ion motive Rnf complex. Many organisms implicated in H2 metabolism are also predicted to catalyze carbon, nitrogen, iron and sulfur transformations. Notably, iron-based metabolism is predicted in a novel lineage of Actinobacteria and in a putative methane-oxidizing ANME-2d archaeon. We infer an ecological model that links microorganisms to sediment-derived resources and predict potential impacts of microbial activity on H2 consumption and retardation of radionuclide migration. PMID:28350393
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-06-01
The study subject of this meeting was the adsorption and desorption of radionuclides on geologic media under repository conditions. This volume contans eight papers. Separate abstracts were prepared for all eight papers. (DLC)
40 CFR 61.125 - Test methods and procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 61.125 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radionuclide Emissions From Elemental Phosphorus Plants § 61.125 Test methods and procedures. (a) Each owner or...
ERIC Educational Resources Information Center
School Science Review, 1982
1982-01-01
Discusses dice model of exponential radionuclide decay; glancing and collinear perfectly elastic collisions; digital capacitance meter; use of top pan balance in physics; microcomputer calculation of gradient of straight line (includes complete Commodore PET computer program); Fresnel lenses; low-voltage radiant heater; Wheatssone's bridge used as…
Konzen, Kevin; Brey, Richard
2012-05-01
²²²Rn (radon) and ²²⁰Rn (thoron) progeny are known to interfere with determining the presence of long-lived transuranic radionuclides, such as plutonium and americium, and require from several hours up to several days for conclusive results. Methods are proposed that should expedite the analysis of air samples for determining the amount of transuranic radionuclides present using low-resolution alpha spectroscopy systems available from typical alpha continuous air monitors (CAMs) with multi-channel analyzer (MCA) capabilities. An alpha spectra simulation program was developed in Microsoft Excel visual basic that employed the use of Monte Carlo numerical methods and serial-decay differential equations that resembled actual spectra. Transuranic radionuclides were able to be quantified with statistical certainty by applying peak fitting equations using the method of least squares. Initial favorable results were achieved when samples containing radon progeny were decayed 15 to 30 min, and samples containing both radon and thoron progeny were decayed at least 60 min. The effort indicates that timely decisions can be made when determining transuranic activity using available alpha CAMs with alpha spectroscopy capabilities for counting retrospective air samples if accompanied by analyses that consider the characteristics of serial decay.
Simulation of internal contamination screening with dose rate meters
NASA Astrophysics Data System (ADS)
Fonseca, T. C. F.; Mendes, B. M.; Hunt, J. G.
2017-11-01
Assessing the intake of radionuclides after an accident in a nuclear power plant or after the intentional release of radionuclides in public places allows dose calculations and triage actions to be carried out for members of the public and for emergency response teams. Gamma emitters in the lung, thyroid or the whole body may be detected and quantified by making dose rate measurements at the surface of the internally contaminated person. In an accident scenario, quick measurements made with readily available portable equipment are a key factor for success. In this paper, the Monte Carlo program Visual Monte Carlo (VMC) and MCNPx code are used in conjunction with voxel phantoms to calculate the dose rate at the surface of a contaminated person due to internally deposited radionuclides. A whole body contamination with 137Cs and a thyroid contamination with 131I were simulated and the calibration factors in kBq per μSv/h were calculated. The calculated calibration factors were compared with real data obtained from the Goiania accident in the case of 137Cs and the Chernobyl accident in terms of the 131I. The close comparison of the calculated and real measurements indicates that the method may be applied to other radionuclides. Minimum detectable activities are discussed.
Olfert, M. Rose
2015-01-01
The inter-provincial migration patterns of family physicians in Canada show that some provinces like Newfoundland and Saskatchewan experience persistent net out-migration, while others, including Ontario and British Columbia, are destinations more often than origins of migrants. Governments in provinces exhibiting net out-migration have responded with a number of incentive and recruitment programs. In this study, we investigate the determinants of the stated interprovincial migration intentions of 3,995 rural and urban family physicians in the 2010 wave of the National Physician Survey. We consider a range of physician characteristics, community attributes and working conditions. We find that in the intention to move, higher compensation has a modest effect, while the community characteristics have a consistently important influence. Our results suggest that policy and program designers should acknowledge the critical role of community-level living and working conditions in their family physician recruitment and retention efforts. PMID:26742116
Matsumoto, Masaki; Yamanaka, Tsuneyasu; Hayakawa, Nobuhiro; Iwai, Satoshi; Sugiura, Nobuyuki
2015-03-01
This paper describes the Basic Radionuclide vAlue for Internal Dosimetry (BRAID) code, which was developed to calculate the time-dependent activity distribution in each organ and tissue characterised by the biokinetic compartmental models provided by the International Commission on Radiological Protection (ICRP). Translocation from one compartment to the next is taken to be governed by first-order kinetics, which is formulated by the first-order differential equations. In the source program of this code, the conservation equations are solved for the mass balance that describes the transfer of a radionuclide between compartments. This code is applicable to the evaluation of the radioactivity of nuclides in an organ or tissue without modification of the source program. It is also possible to handle easily the cases of the revision of the biokinetic model or the application of a uniquely defined model by a user, because this code is designed so that all information on the biokinetic model structure is imported from an input file. The sample calculations are performed with the ICRP model, and the results are compared with the analytic solutions using simple models. It is suggested that this code provides sufficient result for the dose estimation and interpretation of monitoring data. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Schug, Christina; Sievert, Wolfgang; Urnauer, Sarah; Müller, Andrea Maria; Schmohl, Kathrin Alexandra; Wechselberger, Alexandra; Schwenk, Nathalie; Lauber, Kirsten; Schwaiger, Markus; Multhoff, Gabriele; Wagner, Ernst; Nelson, Peter J; Spitzweg, Christine
2018-05-04
The tumor-homing properties of mesenchymal stem cells (MSC) have led to their development as delivery vehicles for the targeted delivery of therapeutic genes such as the sodium iodide symporter (NIS) to solid tumors. External beam radiation therapy (EBRT) may represent an ideal setting for the application of engineered MSC-based gene therapy as tumor irradiation may enhance MSC recruitment into irradiated tumors through the increased production of select factors linked to MSC migration. In the present study, the irradiation of human liver cancer cells (HuH7) (1-10 Gy) showed a strong dose-dependent increase in steady state mRNA levels of CXCL8, CXCL12/SDF-1, FGF2, PDGFβ, TGFβ1, TSP-1 and VEGF (0-48 h), which was verified for most factors at the protein level (after 48 h). Radiation effects on directed MSC migration was tested in vitro using a live cell tracking migration assay and supernatants from control and irradiated HuH7 cells. A robust increase in mean forward migration index (yFMI), mean center of mass (yCoM) and mean directionality of MSCs towards supernatants was seen from irradiated as compared to nonirradiated tumor cells. Transferability of this effect to other tumor sources was demonstrated using the human breast adenocarcinoma cell line (MDA-MB-231), which showed a similar behavior to radiation as seen with HuH7 cells in qPCR and migration assay. To evaluate this in a more physiologic in vivo setting, subcutaneously growing HuH7 xenograft tumors were irradiated with 0, 2 or 5 Gy followed by CMV-NIS-MSC application 24 h later. Tumoral iodide uptake was monitored using 123I-scintigraphy. The results showed increased tumor-specific dose-dependent accumulation of radioiodide in irradiated tumors. Our results demonstrate that EBRT enhances the migratory capacity of MSCs and may thus increase the therapeutic efficacy of MSC-mediated NIS radionuclide therapy.
ERIC Educational Resources Information Center
Portes, Alejandro
1974-01-01
Examines the wetback migration, and legal migration from Mexico which have had a vigorous resurgence in the years following the termination of the bracero program in 1964: the migrants, their methods and the making of the structural forces promoting and sustaining this migration do not conform to commonly held beliefs. (Author/JM)
DITTY - a computer program for calculating population dose integrated over ten thousand years
DOE Office of Scientific and Technical Information (OSTI.GOV)
Napier, B.A.; Peloquin, R.A.; Strenge, D.L.
The computer program DITTY (Dose Integrated Over Ten Thousand Years) was developed to determine the collective dose from long term nuclear waste disposal sites resulting from the ground-water pathways. DITTY estimates the time integral of collective dose over a ten-thousand-year period for time-variant radionuclide releases to surface waters, wells, or the atmosphere. This document includes the following information on DITTY: a description of the mathematical models, program designs, data file requirements, input preparation, output interpretations, sample problems, and program-generated diagnostic messages.
ERIC Educational Resources Information Center
Papademetriou, Demetrios G.; Yale-Loehr, Stephen
The Carnegie Endowment's International Migration Policy Program convened a study group to review and develop alternative approaches to the way foreign workers gain access to the United States through the employment-based immigration stream. This study, a product of that effort, focuses on the selection of people admitted under work-related…
ERIC Educational Resources Information Center
Tartakovsky, Eugene
2009-01-01
This article investigates the cultural identities of adolescent immigrants in the pre-migration period and during the first 3 years after immigration. The target population consists of high-school Jewish adolescents from Russia and Ukraine participating in an Israeli immigration program. In this program, Jewish adolescents immigrate to Israel…
CEM V based special cementitious materials investigated by means of SANS method. Preliminary results
NASA Astrophysics Data System (ADS)
Dragolici, A. C.; Balasoiu, M.; Orelovich, O. L.; Ionascu, L.; Nicu, M.; Soloviov, D. V.; Kuklin, A. I.; Lizunov, E. I.; Dragolici, F.
2017-05-01
The management of the radioactive waste assume the conditioning in a cement matrix as an embedding, stable, disposal material. Cement matrix is the first and most important engineering barrier against the migration in the environment of the radionuclides contained in the waste packages. Knowing how the microstructure develops is therefore desirable in order to assess the compatibility of radioactive streams with cement and predict waste form performance during storage and disposal. For conditioning wastes containing radioactive aluminum new formulas of low basicity cements, using coatings as a barrier between the metal and the conditioning environment or introducing a corrosion inhibitor in the matrix system are required. Preliminary microstructure investigation of such improved CEM V based cement matrix is reported.
NASA Astrophysics Data System (ADS)
Voitsekhovych, Oleg; Laptev, Genadiy; Kanivets, Vladimir; Konoplev, Alexey
2013-04-01
Near 27 year passed after the Chernobyl Accident, and the experience gained to study radionuclide behavior in the aquatic systems and to mitigate water contamination are still pose of interest for scientists, society and regulatory austerities. There are different aspects of radionuclide transport in the environment were studied since the Chernobyl fallout in 1986 covered the river catchments, wetlands, river, lakes/reservoirs and reached the Black Sea. The monitoring time series data set and also data on the radionuclides behavior studies in the water bodies (river, lakes and the Black Sea) are available now in Ukraine and other affected countries. Its causation analyses, considering the main geochemical, physical and chemical and hydrological process, governing by radionuclide mobility and transport on the way from the initially contaminated catchments, through the river-reservoir hydrological system to the Black Sea can help in better understanding of the main factors governing be the radionuclide behavior in the environment. Radionuclide washout and its hydrological transport are determined speciation of radionuclides as well as soil types and hydrological mode and also geochemistry and landscape conditions at the affected areas. Mobility and bioavailability of radionuclides are determined by ratio of radionuclide chemical forms in fallout and site-specific environmental characteristics determining rates of leaching, fixation/remobilization as well as sorption-desorption of mobile fraction (its solid-liquid distribution). In many cases the natural attenuation processes governing by the above mentioned processes supported by water flow transportation and sedimentation played the key role in self-rehabilitation of the aquatic ecosystems. The models developed during post-Chernobyl decade and process parameters studies can help in monitoring and remediation programs planed for Fukusima Daichi affected watersheds areas as well. Some most important monitoring data collection results and experience gained during post-Chernobyl decades at the Dnieper River aquatic system are presented (catchments, river and reservoirs). This experience show that only information on radionuclide deposition levels is not enough for accurate predictions on radionuclide wash-out and transport in the hydrological systems. Data on speciation in fallout, rates of transformation processes and site-specific environmental characteristics determining these rates are needed. Information on radionuclide chemical forms, their transformation in other words mobility and bioavailability should be taken into account when rehabilitation and decontamination strategies are developed on local or regional scale. Number of inadequate water protection measures carried out during initial post-accidental period took place because lack of preparedness, data and decision making support tools were in use, Environmental radiation monitoring network has not been developed and huge impact of social stressing and inadequate risk perception took place. Many experimental data, models developed and experience for safe management at the contaminated watersheds and water bodies can be useful and in particular those, who dealing with consequences of Fucusima accident 2011. The paper gives extended overview and describes experience of authors in justification and evaluation of the remedial actions applied after Chernobyl accident with focus on most important lessons learned and potentially utilized in future.
Peyre, Elise; Silva, Carla G.; Nguyen, Laurent
2015-01-01
During embryogenesis, cortical interneurons are generated by ventral progenitors located in the ganglionic eminences of the telencephalon. They travel along multiple tangential paths to populate the cortical wall. As they reach this structure they undergo intracortical dispersion to settle in their final destination. At the cellular level, migrating interneurons are highly polarized cells that extend and retract processes using dynamic remodeling of microtubule and actin cytoskeleton. Different levels of molecular regulation contribute to interneuron migration. These include: (1) Extrinsic guidance cues distributed along migratory streams that are sensed and integrated by migrating interneurons; (2) Intrinsic genetic programs driven by specific transcription factors that grant specification and set the timing of migration for different subtypes of interneurons; (3) Adhesion molecules and cytoskeletal elements/regulators that transduce molecular signalings into coherent movement. These levels of molecular regulation must be properly integrated by interneurons to allow their migration in the cortex. The aim of this review is to summarize our current knowledge of the interplay between microenvironmental signals and cell autonomous programs that drive cortical interneuron porduction, tangential migration, and intergration in the developing cerebral cortex. PMID:25926769
When Art Therapy Migrates: The Acculturation Challenge of Sojourner Art Therapists
ERIC Educational Resources Information Center
Gomez Carlier, Natalia; Salom, Andree
2012-01-01
This article examines the phenomenon of the art therapy profession's recent migration to one country and the resulting acculturation process for the sojourner practitioner, the country of origin, and the profession itself. For their training, art therapists in Colombia must migrate to study at established international programs, bringing back…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, T. B.
2013-02-26
Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Integrated Salt Disposition Program (ISDP) Batch 6 processing. As part of this qualification work, SRNL performed an Actinide Removal Process (ARP) test. From this test, the residual monosodium titanate (MST) was analyzed for radionuclide uptake. The results of these analyses are reported and are within historical precedent.
MEETING THE IMPACT OF SOCIO-ECONOMIC CHANGE THROUGH SCHOOL PROGRAM INNOVATIONS IN RURAL AREAS.
ERIC Educational Resources Information Center
ESTES, NOLAN
THE RURAL TO URBAN MIGRATION SEEMS TO BE PARTICULARLY ATTRACTIVE TO TWO TYPES OF PEOPLE--(1) BRIGHT YOUNG MEN AND WOMEN, AND (2) POORLY TRAINED YOUTH SEEKING BETTER LABOR MARKETS. IF THIS "BRAIN DRAIN" AND MIGRATION FLOW IS TO BE STEMMED, IT WILL BE NECESSARY TO PROVIDE AN IMPROVED RURAL EDUCATIONAL PROGRAM. WHILE SEVERAL NEEDS HAVE BEEN…
Motorized Migrations: the Future or Mere Fantasy?
Ellis, D.H.; Sladen, William J. L.; Lishman, W.A.; Clegg, K.R.; Duff, J.W.; Gee, G.F.; Lewis, J.C.
2003-01-01
In 15 experiments from 1993-2002, we led cranes, geese, or swans on their first southward migration with either ultralight aircraft or vehicles on the ground. These experiments reveal that large birds can be readily trained to follow and most will return north (and south) in subsequent migrations unassisted. These techniques can now be used to teach birds new (or forgotten) migration paths. Although we are constantly improving our training techniques, we now have an operational program that can be broadly applied to those species where juveniles learn migration routes from their parents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frenzel, E.; Arnold, D.; Wershofen, H.
1996-06-01
A method for determination of radionuclide concentrations in air aerosol samples collected by the high volume aerosol sampler ASS-500 was elaborated. The aerosol sampling station ASS-500 is a Stand alone, all-weather proofed instrument. It is designed for representative sampling of airborne radionuclides from ground level air at a height of about 1.5 m above ground level. The ASS-500 station enables continuous air monitoring both normal and emergency Situations. The collection of aerosols on the Petrianov FPP-15-1.5 type filter out of an air volume of about 100,000 m{sup 3} (sampling period 1 wk) or of about 250,000 m{sup 3} (sampling periodmore » 3 wk) admits accurate spectrometric low level measurements of natural and artificial radionuclides. The achieved detection limit is 0.5 {mu}Bq m{sup -3} and 0.2 {mu}Bq m{sup -3} for {sup 137}Cs, respectively. A new developed air flow Meter system allows to enhance the collected air volume to about 150,000 m{sup 3} per week and lowers the detection limit to <0.4 {mu}Bq m{sup -3} for {sup 137}Cs for weekly collected aerosol samples. In Poland the CLOR uses 9 Stations ASS-500 at different sites as atmospheric radioactivity control system. On the basis of spectrometric measurements of natural and artificial radionuclides in the collected aerosol samples at the different sites, CLOR establishes a weekly report about the radiological situation at Poland for responsible authorities. The very low achievable detection limit of the Station ASS-500 due 10 the high air flow fate and the long possible sampling period were the key argument for other government radiation protection authorities in Europe to introduce the Station ASS-500 into their low level radionuclide atmospheric monitoring programs (Austria, Belarus, France, Germany, Iceland, Spain, Switzerland, Ukraine).« less
Delayed signatures of underground nuclear explosions
Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; Ruddle, David G.; Wagoner, Jeffrey L.; Myers, Katherine B. L.; Emer, Dudley F.; Drellack, Sigmund L.; Chipman, Veraun D.
2016-01-01
Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. We observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). Our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates. PMID:26979288
Delayed signatures of underground nuclear explosions
NASA Astrophysics Data System (ADS)
Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; Ruddle, David G.; Wagoner, Jeffrey L.; Myers, Katherine B. L.; Emer, Dudley F.; Drellack, Sigmund L.; Chipman, Veraun D.
2016-03-01
Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. We observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). Our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates.
Delayed signatures of underground nuclear explosions.
Carrigan, Charles R; Sun, Yunwei; Hunter, Steven L; Ruddle, David G; Wagoner, Jeffrey L; Myers, Katherine B L; Emer, Dudley F; Drellack, Sigmund L; Chipman, Veraun D
2016-03-16
Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. We observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People's Republic of Korea (DPRK). Our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates.
78 FR 20625 - Spent Nuclear Fuel Management at the Savannah River Site
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-05
... processing is a chemical separations process that involves dissolving spent fuel in nitric acid and... Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact... chemical properties, and radionuclide inventory. The fuel groups and the seven technologies that could be...
1990-01-01
Migration 5-7 5.2.3 Contaminant Persistence 5-8 5.2.4 Contaminant Mobility and Migration 5-9 5.2.4.1 Contaminant Migration in Surface Water 5-9...of Contaminant 5-11 5.3.2 Potential Routes of Migration 5-11 5.3.3 Contaminant Persistence 5-12 5.3.4 Contaminant Mobility and Migration 5-13 5.3.4.1...Contaminant Mobility and Migration in Soil 5-18 5.6 CONTAMINANT FATE AND TRANSPORT 5-18 AT SITE 10 5.6.1 Summary of Contaminants 5-18 5.6.2 Potential Routes
Efficient Process Migration for Parallel Processing on Non-Dedicated Networks of Workstations
NASA Technical Reports Server (NTRS)
Chanchio, Kasidit; Sun, Xian-He
1996-01-01
This paper presents the design and preliminary implementation of MpPVM, a software system that supports process migration for PVM application programs in a non-dedicated heterogeneous computing environment. New concepts of migration point as well as migration point analysis and necessary data analysis are introduced. In MpPVM, process migrations occur only at previously inserted migration points. Migration point analysis determines appropriate locations to insert migration points; whereas, necessary data analysis provides a minimum set of variables to be transferred at each migration pint. A new methodology to perform reliable point-to-point data communications in a migration environment is also discussed. Finally, a preliminary implementation of MpPVM and its experimental results are presented, showing the correctness and promising performance of our process migration mechanism in a scalable non-dedicated heterogeneous computing environment. While MpPVM is developed on top of PVM, the process migration methodology introduced in this study is general and can be applied to any distributed software environment.
Mou, Haizhen; Olfert, M Rose
2015-11-01
The inter-provincial migration patterns of family physicians in canada show that some provinces like newfoundland and saskatchewan experience persistent net out-migration, while others, including ontario and british columbia, are destinations more often than origins of migrants. Governments in provinces exhibiting net out-migration have responded with a number of incentive and recruitment programs. In this study, we investigate the determinants of the stated interprovincial migration intentions of 3,995 rural and urban family physicians in the 2010 wave of the national physician survey. We consider a range of physician characteristics, community attributes and working conditions. We find that in the intention to move, higher compensation has a modest effect, while the community characteristics have a consistently important influence. Our results suggest that policy and program designers should acknowledge the critical role of community-level living and working conditions in their family physician recruitment and retention efforts. Copyright © 2015 Longwoods Publishing.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-17
... footnoted).'' c. Third column, the title, ``Table 4J.--Out-Migration Adjustment-- FY 2010 (April 1, 2010 through September 30, 2010)'' is corrected to read ``Table 4J.--(Abbreviated) Out-Migration Adjustment for... corrected to read as follows: Table 4J--(Abbreviated) Out-Migration Adjustment for Acute Care Hospitals--FY...
ERIC Educational Resources Information Center
Smale, Melinda
In order to indicate potential income-generating programs for women, 67 women in the river region and selected sites in the Assaba and the Guidimakha were interviewed in 1980 to illuminate effects of the 1970s-80s drought and male migration on Mauritanian women. Hypotheses were based on the drought causing unprecedented disruption to Mauritanian…
David F. DeSante
2005-01-01
Based on the experience of creating and implementing the Monitoring Avian Productivity and Survivorship (MAPS) program, I suggest that, to be successful, a migration-monitoring network must: (1) provide strong justification for the data it proposes to collect; (2) provide direct links between those monitoring data and both research and management goals; (3) provide...
Methods of separating short half-life radionuclides from a mixture of radionuclides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bray, L.A.; Ryan, J.L.
1998-09-15
The present invention is a method of obtaining a radionuclide product selected from the group consisting of {sup 223}Ra and {sup 225}Ac, from a radionuclide ``cow`` of {sup 227}Ac or {sup 229}Th respectively. The method comprises the steps of (a) permitting ingrowth of at least one radionuclide daughter from said radionuclide ``cow`` forming an ingrown mixture; (b) insuring that the ingrown mixture is a nitric acid ingrown mixture; (c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the ``cow`` from at least one radionuclide daughter; (d) insuring that the at leastmore » one radionuclide daughter contains the radionuclide product; (e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and (f) recycling the at least one radionuclide daughter by adding it to the ``cow``. In one embodiment the radionuclide ``cow`` is the {sup 227}Ac, the at least one daughter radionuclide is a {sup 227}Th and the product radionuclide is the {sup 223}Ra and the first nitrate form ion exchange column passes the {sup 227}Ac and retains the {sup 227}Th. In another embodiment the radionuclide ``cow`` is the {sup 229}Th, the at least one daughter radionuclide is a {sup 225}Ra and said product radionuclide is the {sup 225}Ac and the {sup 225}Ac and nitrate form ion exchange column retains the {sup 229}Th and passes the {sup 225}Ra/Ac. 8 figs.« less
Methods of separating short half-life radionuclides from a mixture of radionuclides
Bray, Lane A.; Ryan, Jack L.
1998-01-01
The present invention is a method of obtaining a radionuclide product selected from the group consisting of .sup.223 Ra and .sup.225 Ac, from a radionuclide "cow" of .sup.227 Ac or .sup.229 Th respectively. The method comprises the steps of a) permitting ingrowth of at least one radionuclide daughter from said radionuclide "cow" forming an ingrown mixture; b) insuring that the ingrown mixture is a nitric acid ingrown mixture; c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the "cow" from at least one radionuclide daughter; d) insuring that the at least one radionuclide daughter contains the radionuclide product; e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and f) recycling the at least one radionuclide daughter by adding it to the "cow". In one embodiment the radionuclide "cow" is the .sup.227 Ac, the at least one daughter radionuclide is a .sup.227 Th and the product radionuclide is the .sup.223 Ra and the first nitrate form ion exchange column passes the .sup.227 Ac and retains the .sup.227 Th. In another embodiment the radionuclide "cow"is the .sup.229 Th, the at least one daughter radionuclide is a .sup.225 Ra and said product radionuclide is the .sup.225 Ac and the .sup.225 Ac and nitrate form ion exchange column retains the .sup.229 Th and passes the .sup.225 Ra/Ac.
Methods of separating short half-life radionuclides from a mixture of radionuclides
Bray, L.A.; Ryan, J.L.
1998-09-15
The present invention is a method of obtaining a radionuclide product selected from the group consisting of {sup 223}Ra and {sup 225}Ac, from a radionuclide ``cow`` of {sup 227}Ac or {sup 229}Th respectively. The method comprises the steps of (a) permitting ingrowth of at least one radionuclide daughter from said radionuclide ``cow`` forming an ingrown mixture; (b) insuring that the ingrown mixture is a nitric acid ingrown mixture; (c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the ``cow`` from at least one radionuclide daughter; (d) insuring that the at least one radionuclide daughter contains the radionuclide product; (e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and (f) recycling the at least one radionuclide daughter by adding it to the ``cow``. In one embodiment the radionuclide ``cow`` is the {sup 227}Ac, the at least one daughter radionuclide is a {sup 227}Th and the product radionuclide is the {sup 223}Ra and the first nitrate form ion exchange column passes the {sup 227}Ac and retains the {sup 227}Th. In another embodiment the radionuclide ``cow`` is the {sup 229}Th, the at least one daughter radionuclide is a {sup 225}Ra and said product radionuclide is the {sup 225}Ac and the {sup 225}Ac and nitrate form ion exchange column retains the {sup 229}Th and passes the {sup 225}Ra/Ac. 8 figs.
NASA Astrophysics Data System (ADS)
Simones, M. P.; Reinig, M. L.; Loyalka, S. K.
2014-05-01
Release of fission products from nuclear fuel in accidents is an issue of major concern in nuclear reactor safety, and there is considerable room for development of improved models, supported by experiments, as one needs to understand and elucidate role of various phenomena and parameters. The VEGA (Verification Experiments of radionuclides Gas/Aerosol release) program on several irradiated nuclear fuels investigated the release rates of radionuclides and results demonstrated that the release rates of radionuclides from all nuclear fuels tested decreased with increasing external gas pressure surrounding the fuel. Hidaka et al. (2004-2011) accounted for this pressure effect by developing a 2-stage diffusion model describing the transport of radionuclides in porous nuclear fuel. We have extended this 2-stage diffusion model to account for mutual binary gas diffusion in the open pores as well as to introduce the appropriate parameters to cover the slip flow regime (0.01 ⩽ Kn ⩽ 0.1). While we have directed our numerical efforts toward the simulation of the VEGA experiments and assessments of differences from the results of Hidaka et al., the model and the techniques reported here are of larger interest as these would aid in modeling of diffusion in general (e.g. in graphite and other nuclear materials of interest).
Amchitka Island, Alaska, special sampling project 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Nevada Operations Office
2000-06-28
This 1997 special sampling project represents a special radiobiological sampling effort to augment the 1996 Long-Term Hydrological Monitoring Program (LTHMP) for Amchitka Island in Alaska. Lying in the western portion of the Aleutian Islands arc, near the International Date Line, Amchitka Island is one of the southernmost islands of the Rat Island Chain. Between 1965 and 1971, the U.S. Atomic Energy Commission conducted three underground nuclear tests on Amchitka Island. In 1996, Greenpeace collected biota samples and speculated that several long-lived, man-made radionuclides detected (i.e., americium-241, plutonium-239 and -240, beryllium-7, and cesium-137) leaked into the surface environment from underground cavitiesmore » created during the testing. The nuclides of interest are detected at extremely low concentrations throughout the environment. The objectives of this special sampling project were to scientifically refute the Greenpeace conclusions that the underground cavities were leaking contaminants to the surface. This was achieved by first confirming the presence of these radionuclides in the Amchitka Island surface environment and, second, if the radionuclides were present, determining if the source is the underground cavity or worldwide fallout. This special sampling and analysis determined that the only nonfallout-related radionuclide detected was a low level of tritium from the Long Shot test, which had been previously documented. The tritium contamination is monitored and continues a decreasing trend due to radioactive decay and dilution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Streets, W.E.
As the need for rapid and more accurate determinations of gamma-emitting radionuclides in environmental and mixed waste samples grows, there is continued interest in the development of theoretical tools to eliminate the need for some laboratory analyses and to enhance the quality of information from necessary analyses. In gamma spectrometry the use of theoretical self-absorption coefficients (SACs) can eliminate the need to determine the SAC empirically by counting a known source through each sample. This empirical approach requires extra counting time and introduces another source of counting error, which must be included in the calculation of results. The empirical determinationmore » of SACs is routinely used when the nuclides of interest are specified; theoretical determination of the SAC can enhance the information for the analysis of true unknowns, where there may be no prior knowledge about radionuclides present in a sample. Determination of an exact SAC does require knowledge about the total composition of a sample. In support of the Department of Energy`s (DOE) Environmental Survey Program, the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory developed theoretical self-absorption models to estimate SACs for the determination of non-specified radionuclides in samples of unknown, widely-varying, compositions. Subsequently, another SAC model, in a different counting geometry and for specified nuclides, was developed for another application. These two models are now used routinely for the determination of gamma-emitting radionuclides in a wide variety of environmental and mixed waste samples.« less
Determination of radionuclides in foods from Minsk, Belarus, from Chernobyl to the present
NASA Astrophysics Data System (ADS)
Baratta, E. J.
2003-01-01
The U.S. Food and Drug Administration (FDA) are responsible for the wholesomeness of the food supply in the United States (US). The FDA has been monitoring the food supply in the United States for radioactivity since 1961, because of the Fallout generated by above the ground testing in the early 60’s. This Radionuclide in Foods Program is maintained to allow the FDA to respond to any nuclear emergency that may affect the food supply. The Three Mile Island incident in 1979 was one of these. In 1986 the Chernobyl incident occurred. As a result, the FDA began extensive monitoring of imported foods, especially those from Europe. One of its sister agencies has personnel in the areas effected by the latter incident and requested that the FDA analyze selected food samples from these places. Since that time, they have requested on a periodic basis, selected food samples be analysed. One such city was Minsk in Belarus. This paper will discuss the radionuclides of interest such as iodine-131, cesium-134/137, strontium-90, ruthenium-106 and other short-lived ones. It will discuss the types of foods sampled and the methodology used in determining the concentrations found in these items. The results will be compared to the permissible levels allowed in the US. In addition it will show the lower limits of detection for each of the radionuclides of interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, Yook C.; Rodean, H.C.; Anspaugh, L.R.
The Nevada Applied Ecology Group (NAEG) Model of transport and dose for transuranic radionuclides was modified and expanded for the analysis of radionuclides other than pure alpha-emitters. Doses from internal and external exposures were estimated for the inventories and soil distributions of the individual radionuclides quantified in Areas 2 and 4 of the Nevada Test Site (NTS). We found that the dose equivalents via inhalation to liver, lungs, bone marrow, and bone surface from the plutonium isotopes and /sup 241/Am, those via ingestion to bone marrow and bone surfaces from /sup 90/Sr, and those via ingestion to all the targetmore » organs from /sup 137/Cs were the highest from internal exposures. The effective dose equivalents from /sup 137/Cs, /sup 152/Eu, and /sup 154/Eu were the highest from the external exposures. The /sup 60/Co, /sup 152/Eu, /sup 154/Eu, and /sup 155/Eu dose estimates for external exposures greatly exceeded those for internal exposures. The /sup 60/Co, /sup 90/Sr, and /sup 137/Cs dose equivalents from internal exposures were underestimated due to the adoption of some of the foodchain parameter values originally selected for /sup 239/Pu. Nonetheless, the ingestion pathway contributed significantly to the dose estimates for /sup 90/Sr and /sup 137/Cs, but contributed very much less than external exposures to the dose estimates for /sup 60/Co. Therefore, the use of more appropriate values would not alter the identification of important radionuclides, pathways, target organs, and exposure modes in this analysis. 19 refs., 13 figs., 12 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egli, J.; Amrhein, N.; Andres, R.
In the framework of a CEC-research program in radiation protection, the uptake and subsequent translocation of radionuclides in potato plants is studied. Results from these studies will be used to further refine computational models applied in calculating doses and in decision making after a potential nuclear fallout. Potatoes are an important staple food crop in western European countries. Foliar absorption of radionuclides plays a major role for the contamination of agricultural products during the first vegetation period after a nuclear fallout. This study aims at investigating the influence of the time-point of contamination on crop radionuclide content. Three groups ofmore » potato plants were of contaminated with an aqueous solution {sup 134}CsCl at three different time-points: Group A: First leaves were fully developed. Group B: Immediately before onset of flowering (4 weeks after group A). Group C: Onset of senescence (8 weeks after group A). Plants were harvested 7, 14, 21, and 28 days after each contamination, and after full tuber development. The distribution of {sup 134}Cs within the plants was studied in three compartments: contaminated part, newly grown part, and subterranean part (roots and tubers). A steady translocation of {sup 134}CS from the contaminated parts into the other parts of the plants was observed in all three groups. The highest radionuclide content of the crop was observed in group B, i.e. in fully developed plants: 58 {+-} 3% (n = 4) of the originally applied radioactivity was found in the tubers. This experiment clearly identified the beginning of tuber formation to be the most critical time for a foliar contamination. These results serve as an important experimental verification of parameters used in computational radioecological models of radionuclide transport through the biosphere.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlsen, O.
1988-03-01
A mathematic model for evaluation of absorbed dose in radionuclide renography has been developed and programmed for automatic calculation in the computer. Input data to the model are readily available from the results of the renography and, hence, the method described is suitable for individual dose determinations in adults. Apart from the situation with very considerable outflow obstructions (/sup 131/I)OIH single probe renography involves a 15-20 times smaller dose to radiation sensitive organs than (/sup 123/I)OIH gamma camera renography. Further, the latter examination results in a 2-10 times smaller dose than (/sup 99m/Tc)DTPA gamma camera renography under normal outflow conditions.more » Absorbed renal dose is large, approximately 70 mGy, in the three renographies in the borderline case with total outflow obstructions. For comparison, i.v. pyelography, which is the x-ray examination often used instead of radionuclide renography, involves an absorbed dose to ovaries 10-1000 times larger than in radionuclide renography« less
Lee, UkJae; Bae, Jun Woo; Kim, Hee Reyoung
2017-11-01
This study presents a real-time measurement-based rapid radiation distribution visualization system for radionuclide recognition, which can quickly scan a contaminated environment. The system combines a portable detector with a digital map and a program for quick data treatment. Radiation information at the measurement location is transferred between a detector and a laptop. It includes environmental and artificial components, specific radionuclides, and total radionuclides. After scanning the area, the radiation distributions are comprehensively displayed in 2D and 3D maps corresponding to the measured area, all in a few tens of seconds. The proposed method was verified using the standard 137 Cs and 60 Co sources. The gamma radiation distribution of the areas measured in Ulsan city, which included non-destructive testing and radioisotope treatment facilities, hospitals, transportation spots, and residential and commercial areas, showed that Ulsan city has maintained safe levels of radiation. The system performed well. In addition, it was found that this system could detect unexpected hot spots quickly in affected environments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-07-01
... your agency's migration of ETS; (b) Ensure that you have internal policies and procedures in place to..., with agency-wide migration to ETS completed no later than September 30, 2006; (c) Establish a plan that... deployed. This plan must include your migration plan and schedule which must be submitted by March 31, 2004...
Code of Federal Regulations, 2014 CFR
2014-07-01
... your agency's migration of ETS; (b) Ensure that you have internal policies and procedures in place to..., with agency-wide migration to ETS completed no later than September 30, 2006; (c) Establish a plan that... deployed. This plan must include your migration plan and schedule which must be submitted by March 31, 2004...
Code of Federal Regulations, 2013 CFR
2013-07-01
... your agency's migration of ETS; (b) Ensure that you have internal policies and procedures in place to..., with agency-wide migration to ETS completed no later than September 30, 2006; (c) Establish a plan that... deployed. This plan must include your migration plan and schedule which must be submitted by March 31, 2004...
Code of Federal Regulations, 2011 CFR
2011-07-01
... your agency's migration of ETS; (b) Ensure that you have internal policies and procedures in place to..., with agency-wide migration to ETS completed no later than September 30, 2006; (c) Establish a plan that... deployed. This plan must include your migration plan and schedule which must be submitted by March 31, 2004...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-17
... the out-migration adjustment values presented in the May 4, 2010 FY 2011 IPPS/LTCH PPS proposed rule and that the out-migration adjustment values in revised Table 4J are based on corrected wage data as... 31049 through 31057 in Table 4J.--Proposed Out-Migration Adjustment for Acute Care Hospitals--FY 2011...
2012-07-01
Goiania) and those containing 137Cs and other radionuclides ( Chernobyl ). Another group contains documents relevant to site survey 3 procedures...residents of the contaminated areas. Recovery experience from the Chernobyl incident have demonstrated that direct involvement of inhabitants and local
2012-07-01
on the cleanup of specific sites: those containing only cesium-137 (Goiania) and those containing 137Cs and other radionuclides ( Chernobyl ...targets and consider initiatives to enhance the quality of life of the residents of the contaminated areas. Recovery experience from the Chernobyl
NASA Astrophysics Data System (ADS)
Zalutsky, M. R.
Radionuclide therapy utilizes unsealed sources of radionuclides as a treatment for cancer or other pathological conditions such as rheumatoid arthritis. Radionuclides that decay by the emission of β and α particles, as well as those that emit Auger electrons, have been used for this purpose. In this chapter, radiochemical aspects of radionuclide therapy, including criteria for radionuclide selection, radionuclide production, radiolabeling chemistry, and radiation dosimetry are discussed.
Method and apparatus for separating radionuclides from non-radionuclides
Harp, Richard J.
1990-01-01
In an apparatus for separating radionuclides from non-radionuclides in a mixture of nuclear waste, a vessel is provided wherein the mixture is heated to a temperature greater than the temperature of vaporization for the non-radionuclides but less than the temperature of vaporization for the radionuclides. Consequently the non-radionuclides are vaporized while the non-radionuclides remain the solid or liquid state. The non-radionuclide vapors are withdrawn from the vessel and condensed to produce a flow of condensate. When this flow decreases the heat is reduced to prevent temperature spikes which might otherwise vaporize the radionuclides. The vessel is removed and capped with the radioactive components of the apparatus and multiple batches of the radionuclide residue disposed therein. Thus the vessel ultimately provides a burial vehicle for all of the radioactive components of the process.
Salami, Bukola
2016-06-01
Despite the links between health human resources policy, immigration policy, and education policy, silos persist in the policy-making process that complicate the professional integration of internationally educated nurses in Canada. Drawing on the literature on nurse migration to Canada through the Live-in Caregiver Program, this paper sheds light on the contradictions between immigration and health human resources policy and their effect on the integration of internationally educated nurses in Canada. The analysis reveals a series of paradoxes within and across immigration and health human resources policy that affect the process of professional integration of this group of health professionals into the nursing workforce in Canada. I will further link the discussion to the recently implemented Caregiver Program, which provides a unique pathway for healthcare workers, including nurses, to migrate to Canada. Given recent introduction of the Canadian Caregiver Program, major policy implications include the need to bridge the gap between health human resources policy and immigration policy to ensure the maximum integration of migrant nurses in Canada.
Performance-assessment progress for the Rozan low-level waste disposal facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smietanski, L.; Mitrega, J.; Frankowski, Z.
1995-12-31
The paper presents a condensed progress report on the performance assessment of Poland`s low-level waste disposal facility which is operating since 1961. The Rozan repository is of near-surface type with facilities which are the concrete fortifications built about 1910. Site characterization activities supplied information on regional geology, geohydrology, climatic and hydrologic conditions and terrain surface evolution due to geodynamic processes. Field surveys enabled to decode lithological, hydrogeological and geochemical site specific conditions. From the laboratory tests the data on groundwater chemistry and soil geochemical and hydraulic characteristics were obtained. The site geohydrologic main vulnerable element is the upmost directly endangeredmore » unconfined aquifer which is perched in relation to the region-wide hydraulic system. Heterogeneity of this system reflects in a wide range of hydraulic conductivity and thickness variations. It strongly affects velocity and flow directions. The chemistry of groundwater is unstable due to large sensitivity to external impacts. Modeling of the migration of the critical long-lived radionuclides Tc-99, U-238 and Pu-239 showed that the nearly 20 m thick unsaturated zone plays crucial role as an effective protective barrier. These radionuclides constitute minor part of the total inventory. Modeling of the development of the H-3 plume pointed out the role the macrodispersion plays in the unsaturated zone beneath the repository.« less
Mobile fission and activation products in nuclear waste disposal
NASA Astrophysics Data System (ADS)
Grambow, Bernd
2008-12-01
When disposing nuclear waste in clay formations it is expected that the most radiotoxic elements like Pu, Np or Am move only a few centimetres to meters before they decay. Only a few radionuclides are able to reach the biosphere and contribute to their long-term exposure risks, mainly anionic species like I129, Cl36, Se79 and in some cases C14 and Tc99, whatever the scenario considered. The recent OECD/NEA cosponsored international MOFAP workshop focussed on transport and chemical behaviour of these less toxic radionuclides. New research themes have been addressed, such as how to make use of molecular level information for the understanding of the problem of migration at large distances. Diffusion studies need to face mineralogical heterogeneities over tens to hundreds of meters. Diffusion rates are very low since the clay rock pores are so small (few nm) that electrostatic repulsion limits the space available for anion diffusion (anion exclusion). The large volume of traversed rock will provide so many retention sites that despite weak retention, even certain of these "mobile" nuclides may show significant retardation. However, the question how to measure reliably very low retention parameters has been posed. An important issue is whether redox states or organic/inorganic speciation change from their initial state at the moment of release from the waste during long term contact with surfaces, hydrogen saturated environments, etc.
Mobile fission and activation products in nuclear waste disposal.
Grambow, Bernd
2008-12-12
When disposing nuclear waste in clay formations it is expected that the most radiotoxic elements like Pu, Np or Am move only a few centimetres to meters before they decay. Only a few radionuclides are able to reach the biosphere and contribute to their long-term exposure risks, mainly anionic species like I129, Cl36, Se79 and in some cases C14 and Tc99, whatever the scenario considered. The recent OECD/NEA cosponsored international MOFAP workshop focussed on transport and chemical behaviour of these less toxic radionuclides. New research themes have been addressed, such as how to make use of molecular level information for the understanding of the problem of migration at large distances. Diffusion studies need to face mineralogical heterogeneities over tens to hundreds of meters. Diffusion rates are very low since the clay rock pores are so small (few nm) that electrostatic repulsion limits the space available for anion diffusion (anion exclusion). The large volume of traversed rock will provide so many retention sites that despite weak retention, even certain of these "mobile" nuclides may show significant retardation. However, the question how to measure reliably very low retention parameters has been posed. An important issue is whether redox states or organic/inorganic speciation change from their initial state at the moment of release from the waste during long term contact with surfaces, hydrogen saturated environments, etc.
Zhao, P.; Tinnacher, R. M.; Zavarin, M.; ...
2014-11-01
A high sensitivity analytical method for 237Np analysis was developed and applied to groundwater samples from the Nevada National Security Site (NNSS) using short-lived 239Np as a yield tracer and HR magnetic sector ICP-MS. The 237Np concentrations in the vicinity of the Almendro, Cambric, Dalhart, Cheshire, and Chancellor underground nuclear test locations range from <4 × 10 -4 to 2.6 mBq/L (6 × 10 -17–4.2 × 10 -13 mol/L). All measured 237Np concentrations are well below the drinking water maximum contaminant level for alpha emitters identified by the U.S. EPA (560 mBq/L). Nevertheless, 237Np remains an important indicator for radionuclidemore » transport rates at the NNSS. Retardation factor ratios were used to compare the mobility of 237Np to that of other radionuclides. The results suggest that 237Np is less mobile than tritium and other non-sorbing radionuclides ( 14C, 36Cl, 99Tc and 129I) as expected. Surprisingly, 237Np and plutonium ( 239,240Pu) retardation factors are very similar. It is possible that Np(IV) exists under mildly reducing groundwater conditions and exhibits a retardation behavior that is comparable to Pu(IV). Independent of the underlying process, 237Np is migrating downgradient from NNSS underground nuclear tests at very low but measureable concentrations.« less
NASA Astrophysics Data System (ADS)
Latynova, N. E.
2010-03-01
The spatial-temporal features of the radioactive contamination of terrestrial ecosystem components caused by the deterioration of the multibarrier protection of regional radioactive waste storages of the State Research Center of the Russian Federation-Leipunskii Institute of Physics and Power Engineering at the input of radionuclides into the soil and ground water were studied. The composition of the radioactive contamination was determined, and the hydrological and geochemical processes resulting in the formation of large radioactive sources were described. The natural features of the radioactive waste storage areas favoring the entry of 90Sr, 137Cs, and 226Ra into the soils and their inclusion in the biological turnover were characterized. The directions of the horizontal migration of 90Sr, 137Cs, and 226Ra and the sites of their accumulation within the superaquatic and aquatic landscapes of a near-terrace depression were studied; the factors of the 90Sr accumulation in plants and cockles were calculated. The results of the studies expand the theoretical concepts of the mechanisms, processes, and factors controlling the behavior of radionuclides at the deterioration of the multibarrier protection of radioactive waste storages. The presented experimental data can be used for solving practical problems related to environmental protection in the areas of industrial nuclear complexes.
Reinoso-Maset, Estela; Worsfold, Paul J; Keith-Roach, Miranda J
2013-05-01
Sorption processes play a key role in controlling radionuclide migration through subsurface environments and can be affected by the presence of anthropogenic organic complexing agents found at contaminated sites. The effect of these complexing agents on radionuclide-solid phase interactions is not well known. Therefore the aim of this study was to examine the processes by which EDTA, NTA and picolinate affect the sorption kinetics and equilibria of Cs(+), Sr(2+) and UO2(2+) onto natural sand. The caesium sorption rate and equilibrium were unaffected by the complexing agents. Strontium however showed greater interaction with EDTA and NTA in the presence of desorbed matrix cations than geochemical modelling predicted, with SrNTA(-) enhancing sorption and SrEDTA(2-) showing lower sorption than Sr(2+). Complexing agents reduced UO2(2+) sorption to silica and enhanced the sorption rate in the natural sand system. Elevated concentrations of picolinate reduced the sorption of Sr(2+) and increased the sorption rate of UO2(2+), demonstrating the potential importance of this complexing agent. These experiments provide a direct comparison of the sorption behaviour of Cs(+), Sr(2+) and UO2(2+)onto natural sand and an assessment of the relative effects of EDTA, NTA and picolinate on the selected elements. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nguyen, H. L.; de Fouquet, C.; Courbet, C.; Simonucci, C. A.
2016-12-01
The effects of spatial variability of hydraulic parameters and initial groundwater plume localization on the possible extent of groundwater pollution plumes have already been broadly studied. However, only a few studies, such as Kjeldsen et al. (1995), take into account the effect of source term spatial variability. We explore this question with the 90Sr migration modeling from a shallow waste burial located in the Chernobyl Exclusion Zone to the underlying sand aquifer. Our work is based upon groundwater sampled once or twice a year since 1995 until 2015 from about 60 piezometers and more than 3,000 137Cs soil activity measurements. These measurements were taken in 1999 from one of the trenches dug after the explosion of the Chernobyl nuclear power plant, the so-called "T22 Trench", where radioactive waste was buried in 1987. The geostatistical analysis of 137Cs activity data in soils from Bugai et al. (2005) is first reconsidered to delimit the trench borders using georadar data as a covariable and to perform geostatistical simulations in order to evaluate the uncertainties of this inventory. 90Sr activity in soils is derived from 137Cs/154Eu and 90Sr/154Eu activity ratios in Chernobyl hot fuel particles (Bugai et al., 2003). Meanwhile, a coupled 1D non saturated/3D saturated transient transport model is constructed under the MELODIE software (IRSN, 2009). The previous 90Sr transport model developed by Bugai et al. (2012) did not take into account the effect of water table fluctuations highlighted by Van Meir et al. (2007) which may cause some discrepancies between model predictions and field observations. They are thus reproduced on a 1D vertical non saturated model. The equiprobable radionuclide localization maps produced by the geostatistical simulations are selected to illustrate different heterogeneities in the radionuclide inventory and are implemented in the 1D model. The obtained activity fluxes from all the 1D vertical models are then injected in a 3D saturated transient model to assess the extent of the radionuclide plume in the groundwater and its most likely evolution over time by taking into account uncertainties associated with the source term spatial variability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noshkin, V.E.
1997-12-01
Surface sediment samples were collected during 1979 from 87 locations in the lagoon at Bikini Atoll. The collections were made to better define the concentrations and distribution of long-lived radionuclides associated with the bottom material and to show what modifications occurred to the composition of the surface sediment from the nuclear testing program conducted by the United States at the Atoll between 1946 and 1958. This is the last of three reports on Bikini sediment studies. In this report, we discuss the concentrations and inventories of the residual long-lived gamma-emitting radionuclides in sediments from the lagoon. The gamma-emitting radionuclides detectedmore » most frequently in sediments collected in 1979, in addition to Americium-241 ({sup 241}Am) (discussed in the second report of this series), included Cesium-137 ({sup 137}Cs), Bismuth-207 ({sup 207}Bi), Europium-155 ({sup 155}Eu), and Cobalt-60 ({sup 60}Co). Other man-made, gamma-emitting radionuclides such as Europium-152,154 ({sup 152,154}Eu), Antimony-125 ({sup 125}Sb), and Rhodium-101,102m ({sup 101,102m}Rh) were occasionally measured above detection limits in sediments near test site locations. The mean inventories for {sup 137}Cs, {sup 207}Ei, {sup 155}Eu, and {sup 60}Co in the surface 4 cm of the lagoon sediment to be 1.7, 0.56, 7.76, and 0.74 TBq, respectively. By June 1997, radioactive decay would reduce these values to 1.1, 0.38, 0.62, and 0.07 TBq, respectively. Some additional loss results from a combination of different processes that continuously mobilize and return some amount of the radionuclides to the water column. The water and dissolved constituents are removed from the lagoon through channels and exchange with the surface waters of the north equatorial Pacific Ocean. Highest levels of these radionuclides are found in surface deposits lagoonward of the Bravo Crater. Lowest concentrations and inventories are associated with sediment lagoonward of the eastern reef. The quantities in the 0-4 cm surface layer are estimated to be less than 35% of the total inventory to depth in the sediment column.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, Mary Ann; Poston, Ted M.; Fritz, Brad G.
2011-07-29
Environmental monitoring is conducted on the U.S. Department of Energy (DOE) Hanford Site to comply with DOE Orders and federal and state regulations. Major objectives of the monitoring are to characterize contaminant levels in the environment and to determine site contributions to the contaminant inventory. This report focuses on surface soil and perennial vegetation samples collected between 1971 and 2008 as part of the Pacific Northwest National Laboratory Surface Environmental Surveillance Project performed under contract to DOE. Areas sampled under this program are located on the Hanford Site but outside facility boundaries and on public lands surrounding the Hanford Site.more » Additional samples were collected during the past 8 years under DOE projects that evaluated parcels of land for radiological release. These data were included because the same sampling methodology and analytical laboratory were used for the projects. The spatial and temporal trends of six radionuclides collected over a 38-year period were evaluated. The radionuclides----cobalt-60, cesium-137, strontium-90, plutonium-238, plutonium-239/240, and uranium (reported either as uranium-238 or total uranium)----were selected because they persist in the environment and are still being monitored routinely and reported in Hanford Site environmental reports. All these radionuclides were associated with plutonium production and waste management of activities occurring on the site. Other sources include fallout from atmospheric testing of nuclear weapons, which ended in 1980, and the Chernobyl explosion in 1986. Uranium is also a natural component of the soil. This assessment of soil and vegetation data provides important information on the distribution of radionuclides in areas adjacent to industrial areas, established perimeter locations and buffer areas, and more offsite nearby and distant locations. The concentrations reflect a tendency for detection of some radionuclides close to where they were utilized onsite, but as one moves to unindustrialized areas on the site, surrounding buffer areas and perimeter location into the more distant sites, concentrations of these radionuclides approach background and cannot be distinguished from fallout activity. More importantly, concentrations in soil and vegetation samples did not exceed environmental benchmark concentrations, and associated exposure to human and ecological receptors were well below levels that are demonstratively hazardous to human health and the environment.« less
Vulnerable to HIV / AIDS. Migration.
Fernandez, I
1998-01-01
This special report discusses the impact of globalization, patterns of migration in Southeast Asia, gender issues in migration, the links between migration and HIV/AIDS, and spatial mobility and social networks. Migrants are particularly marginalized in countries that blame migrants for transmission of infectious and communicable diseases and other social ills. Effective control of HIV/AIDS among migrant and native populations requires a multisectoral approach. Programs should critically review the privatization of health care services and challenge economic models that polarize the rich and the poor, men and women, North and South, and migrant and native. Programs should recognize the equality between locals and migrants in receipt of health services. Countermeasures should have input from migrants in order to reduce the conditions that increase vulnerability to HIV/AIDS. Gender-oriented research is needed to understand women's role in migration. Rapid assessment has obscured the human dimension of migrants' vulnerability to HIV. Condom promotion is not enough. Migration is a major consequence of globalization, which holds the promise, real or imagined, of prosperity for all. Mass migration can be fueled by explosive regional developments. In Southeast Asia, migration has been part of the process of economic development. The potential to emigrate increases with greater per capita income. "Tiger" economies have been labor importers. Safe sex is not practiced in many Asian countries because risk is not taken seriously. Migrants tend to be used as economic tools, without consideration of social adjustment and sex behavior among singles.
NASA Astrophysics Data System (ADS)
Pham, H. V.; Parashar, R.; Sund, N. L.; Pohlmann, K.
2017-12-01
Pahute Mesa, located in the north-western region of the Nevada National Security Site, is an area where numerous underground nuclear tests were conducted. The mesa contains several fractured aquifers that can potentially provide high permeability pathways for migration of radionuclides away from testing locations. The BULLION Forced-Gradient Experiment (FGE) conducted on Pahute Mesa injected and pumped solute and colloid tracers from a system of three wells for obtaining site-specific information about the transport of radionuclides in fractured rock aquifers. This study aims to develop reliable three-dimensional discrete fracture network (DFN) models to simulate the BULLION FGE as a means for computing realistic ranges of important parameters describing fractured rock. Multiple conceptual DFN models were developed using dfnWorks, a parallelized computational suite developed by Los Alamos National Laboratory, to simulate flow and conservative particle movement in subsurface fractured rocks downgradient from the BULLION test. The model domain is 100x200x100 m and includes the three tracer-test wells of the BULLION FGE and the Pahute Mesa Lava-flow aquifer. The model scenarios considered differ from each other in terms of boundary conditions and fracture density. For each conceptual model, a number of statistically equivalent fracture network realizations were generated using data from fracture characterization studies. We adopt the covariance matrix adaptation-evolution strategy (CMA-ES) as a global local stochastic derivative-free optimization method to calibrate the DFN models using groundwater levels and tracer breakthrough data obtained from the three wells. Models of fracture apertures based on fracture type and size are proposed and the values of apertures in each model are estimated during model calibration. The ranges of fracture aperture values resulting from this study are expected to enhance understanding of radionuclide transport in fractured rocks and support development of improved large-scale flow and transport models for Pahute Mesa.
NASA Astrophysics Data System (ADS)
Allard, T.; Fourdrin, C.; Calas, G.
2007-05-01
Understanding the processes controlling migrations of radioelements at the Earth's surface is an important issue for the long-term safety assessment of high level nuclear waste repositories (HLNWR). Evidence of past occurrence and transfer of radionuclides can be found using radiation-induced defects in minerals. Clay minerals are particularly relevant because of their widespread occurrence at the Earth's surface and their finely divided nature which provides high contact area with radioactive fluids. Owing to its sensitivity to radiations, kaolinite can be used as natural, in situ dosimeter. Kaolinite is known to contain radiation-induced defects which are detected by Electron Paramagnetic Resonance. They are differentiated by their nature, their production kinetics and their thermal stability. One of these defects is stable at the scale of geological periods and provides a record of past radionuclide occurrence. Based on artificial irradiations, a methodology has been subsequently proposed to determine paleodose cumulated by kaolinite since its formation. The paleodose can be used to derive equivalent radioelement concentrations, provided that the age of kaolinite formation can be constrained. This allows quantitative reconstruction of past transfers of radioelements in natural systems. An example is given for the Nopal I U-deposit (Chihuahua, Mexico), hosted in hydrothermally altered volcanic tufs and considered as analogue of the Yucca Mountain site. The paleodoses experienced by kaolinites were determined from the concentration of defects and dosimetry parameters of experimental irradiations. Using few geochemical assumption, a equivalent U-content responsible for defects in kaolinite was calculated from the paleodose, a dose rate balance and model ages of kaolinites constrained by tectonic phases. In a former study, the ages were assumptions derived from regional tectonic events. In thepresent study, ages of mineralization events are measured from U systematics. The corresponding results reveal past accumulation of uranium in the mineralized zone and past leaching in the fissure network of the present barren rock. Geochemical implications for HLNWR will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onishi, Yasuo
Four JAEA researchers visited PNNL for two weeks in February, 2013 to learn the PNNL-developed, unsteady, one-dimensional, river model, TODAM and the PNNL-developed, time-dependent, three dimensional, coastal water model, FLESCOT. These codes predict sediment and contaminant concentrations by accounting sediment-radionuclide interactions, e.g., adsorption/desorption and transport-deposition-resuspension of sediment-sorbed radionuclides. The objective of the river and coastal water modeling is to simulate • 134Cs and 137Cs migration in Fukushima rivers and the coastal water, and • their accumulation in the river and ocean bed along the Fukushima coast. Forecasting the future cesium behavior in the river and coastal water under various scenariosmore » would enable JAEA to assess the effectiveness of various on-land remediation activities and if required, possible river and coastal water clean-up operations to reduce the contamination of the river and coastal water, agricultural products, fish and other aquatic biota. PNNL presented the following during the JAEA visit to PNNL: • TODAM and FLESCOT’s theories and mathematical formulations • TODAM and FLESCOT model structures • Past TODAM and FLESCOT applications • Demonstrating these two codes' capabilities by applying them to simple hypothetical river and coastal water cases. • Initial application of TODAM to the Ukedo River in Fukushima and JAEA researchers' participation in its modeling. PNNL also presented the relevant topics relevant to Fukushima environmental assessment and remediation, including • PNNL molecular modeling and EMSL computer facilities • Cesium adsorption/desorption characteristics • Experiences of connecting molecular science research results to macro model applications to the environment • EMSL tour • Hanford Site road tour. PNNL and JAEA also developed future course of actions for joint research projects on the Fukushima environmental and remediation assessments.« less
Boggs, Mark A.; Jiao, Yongqin; Dai, Zurong; ...
2016-09-30
Safe and effective nuclear waste disposal, as well as accidental radionuclide releases, necessitates our understanding of the fate of radionuclides in the environment, including their interaction with microorganisms. We examined the sorption of Pu(IV) and Pu(V) toPseudomonassp. strain EPS-1W, an aerobic bacterium isolated from plutonium (Pu) contaminated groundwater collected in the United States at the Nevada National Security Site (NNSS), Nevada. We compared Pu sorption to cells with and without bound extracellular polymeric substances (EPS). Wild type cells with intact EPS sorbed Pu(V) more effectively than cells with EPS removed. In contrast, cells with and without EPS showed the samemore » sorption affinity for Pu(IV).In vitroexperiments with extracted EPS revealed rapid reduction of Pu(V) to Pu(IV). Transmission Electron Microscopy indicated that 2-3 nm nanocrystalline Pu(IV)O 2formed on cells equilibrated with high concentrations of Pu(IV) but not Pu(V). Thus, EPS, while facilitating Pu(V) reduction, inhibit the formation of nanocrystalline Pu(IV) precipitates. ImportanceOur results indicate that EPS are an effective reductant for Pu(V) and sorbent for Pu(IV), and may impact Pu redox cycling and mobility in the environment. Additionally, the resulting Pu morphology associated with EPS will depend on the concentration and initial Pu oxidation state. While our results are not directly applicable to the Pu transport situation at the NNSS, the results suggest that, in general, stationary microorganisms and biofilms will tend to limit the migration of Pu and provide an important Pu retardation mechanism in the environment. In a broader sense, our results along with a growing body of literature highlight the important role of microorganisms as producers of redox-active organic ligands and therefore as modulators of radionuclide redox transformations and complexation in the subsurface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boggs, Mark A.; Jiao, Yongqin; Dai, Zurong
Safe and effective nuclear waste disposal, as well as accidental radionuclide releases, necessitates our understanding of the fate of radionuclides in the environment, including their interaction with microorganisms. We examined the sorption of Pu(IV) and Pu(V) toPseudomonassp. strain EPS-1W, an aerobic bacterium isolated from plutonium (Pu) contaminated groundwater collected in the United States at the Nevada National Security Site (NNSS), Nevada. We compared Pu sorption to cells with and without bound extracellular polymeric substances (EPS). Wild type cells with intact EPS sorbed Pu(V) more effectively than cells with EPS removed. In contrast, cells with and without EPS showed the samemore » sorption affinity for Pu(IV).In vitroexperiments with extracted EPS revealed rapid reduction of Pu(V) to Pu(IV). Transmission Electron Microscopy indicated that 2-3 nm nanocrystalline Pu(IV)O 2formed on cells equilibrated with high concentrations of Pu(IV) but not Pu(V). Thus, EPS, while facilitating Pu(V) reduction, inhibit the formation of nanocrystalline Pu(IV) precipitates. ImportanceOur results indicate that EPS are an effective reductant for Pu(V) and sorbent for Pu(IV), and may impact Pu redox cycling and mobility in the environment. Additionally, the resulting Pu morphology associated with EPS will depend on the concentration and initial Pu oxidation state. While our results are not directly applicable to the Pu transport situation at the NNSS, the results suggest that, in general, stationary microorganisms and biofilms will tend to limit the migration of Pu and provide an important Pu retardation mechanism in the environment. In a broader sense, our results along with a growing body of literature highlight the important role of microorganisms as producers of redox-active organic ligands and therefore as modulators of radionuclide redox transformations and complexation in the subsurface.« less
ERIC Educational Resources Information Center
Group of Eight (NJ1), 2010
2010-01-01
The Group of Eight (Go8) applauds the government's intention to comprehensively reform the skilled migration program, and it welcomes the opportunity to submit this response to the General Skilled Migration (GSM) Points Test Discussion Paper. The Go8 has argued for some time that it is inappropriate to link international education to the skilled…
Children’s welfare and short term migration from rural India
Coffey, Diane
2013-01-01
Few papers in the literature provide quantitative analysis of the difficult circumstances faced by children of short-term labour migrants. This paper uses new survey data from rural northwest India to study both children who migrate and those left behind. It finds that, unlike in other contexts, children who migrate rarely work when they accompany adult migrants. Additionally, this paper reports a robust, previously unquantified negative relationship between children’s migration and educational outcomes and investments. It calls for further research about externalities of migration for children and suggests that expansion of a large public employment program might help these children. PMID:24049212
A Continuous Method for Gene Flow
Palczewski, Michal; Beerli, Peter
2013-01-01
Most modern population genetics inference methods are based on the coalescence framework. Methods that allow estimating parameters of structured populations commonly insert migration events into the genealogies. For these methods the calculation of the coalescence probability density of a genealogy requires a product over all time periods between events. Data sets that contain populations with high rates of gene flow among them require an enormous number of calculations. A new method, transition probability-structured coalescence (TPSC), replaces the discrete migration events with probability statements. Because the speed of calculation is independent of the amount of gene flow, this method allows calculating the coalescence densities efficiently. The current implementation of TPSC uses an approximation simplifying the interaction among lineages. Simulations and coverage comparisons of TPSC vs. MIGRATE show that TPSC allows estimation of high migration rates more precisely, but because of the approximation the estimation of low migration rates is biased. The implementation of TPSC into programs that calculate quantities on phylogenetic tree structures is straightforward, so the TPSC approach will facilitate more general inferences in many computer programs. PMID:23666937
Ramzaev, Valery; Mishine, Arkady; Basalaeva, Larisa; Brown, Justin
2007-01-01
Strontium-90 activity concentrations in surface soils and areal deposition densities have been studied at a site contaminated by an accidental release to atmosphere from the underground nuclear explosion "Kraton-3" conducted near the Polar Circle (65.9 degrees N, 112.3 degrees E) within the territory of the former USSR in 1978. In 2001-2002, the ground surface contamination at 14 plots studied ranged from 20 to 15 000 kBq m(-2), which significantly exceeds the value of 0.44 kBq m(-2) deduced for three background plots. The zone with substantial radiostrontium contamination extends, at least, 2.5 km in a north-easterly direction from the borehole. The average (137)Cs/(90)Sr ratio in the ground contamination originated from the "Kraton-3" fallout was estimated to be 0.55, which is significantly different from the ratio of 2.05 evaluated for background plots contaminated mostly from global fallout. Although vertical migration of (90)Sr in all undisturbed soil profiles studied is more rapid than that for (137)Cs, the depth of percolation of both radionuclides into the ground is mostly limited to the top 10-20 cm, which may be explained, primarily, by permafrost conditions. The horizontal migration rate of radiostrontium in the aqueous phase exceeds the radiocaesium migration rate by many times. This phenomenon seems to be a reason for the significant enrichment of the soil surface layers by radiostrontium at some sites, with variations occurring in accordance with small-scale irregularities of landscape.
Outward Migration of Giant Planets in Orbital Resonance
NASA Astrophysics Data System (ADS)
D'Angelo, G.; Marzari, F.
2013-05-01
A pair of giant planets interacting with a gaseous disk may be subject to convergent orbital migration and become locked into a mean motion resonance. If the orbits are close enough, the tidal gaps produced by the planets in the disk may overlap. This represents a necessary condition to activate the outward migration of the pair. However, a number of other conditions must also be realized in order for this mechanism to operate. We have studied how disk properties, such as turbulence viscosity, temperature, surface density gradient, mass, and age, may affect the outcome of the outward migration process. We have also investigated the implications on this mechanism of the planets' gas accretion. If the pair resembles Jupiter and Saturn, the 3:2 orbital resonance may drive them outward until they reach stalling radii for migration, which are within ~10 AU of the star for disks representative of the early proto-solar nebula. However, planet post-formation conditions in the disk indicate that such planets become typically locked in the 1:2 orbital resonance, which does not lead to outward migration. Planet growth via gas accretion tends to alter the planets' mass-ratio and/or the disk accretion rate toward the star, reducing or inhibiting outward migration. Support from NASA Outer Planets Research Program and NASA Origins of Solar Systems Program is gratefully acknowledged.
Actinide geochemistry: from the molecular level to the real system.
Geckeis, Horst; Rabung, Thomas
2008-12-12
Geochemical processes leading to either mobilization or retention of radionuclides in an aquifer system are significantly influenced by their interaction with rock, sediment and colloid surfaces. Therefore, a sound safety assessment of nuclear waste disposal requires the elucidation and quantification of those processes. State-of-the-art analytical techniques as e.g. laser- and X-ray spectroscopy are increasingly applied to study solid-liquid interface reactions to obtain molecular level speciation insight. We have studied the sorption of trivalent lanthanides and actinides onto aluminium oxides, hydroxides and purified clay minerals by the time-resolved laser fluorescence spectroscopy and X-ray-absorption spectroscopy. Chemical constitution and structure of surface bound actinides are proposed based on spectroscopic information. Open questions still remain with regard to the exact nature of mineral surface ligands and the mineral/water interface. Similarities of spectroscopic data obtained for M(III) sorbed onto gamma-alumina, and clay minerals suggest the formation of very comparable inner-sphere surface complexes such as S-O-An(III)(OH)x(2-x)(H2O)5-x at pH > 5. Those speciation data are found consistent with those predicted by surface complexation modelling. The applicability of data obtained for pure mineral phases to actinide sorption onto heterogeneously composed natural clay rock is examined by experiments and by geochemical modelling. Good agreement of experiment and model calculations is found for U(VI) and trivalent actinide/lanthanide sorption to natural clay rock. The agreement of spectroscopy, geochemical modelling and batch experiments with natural rock samples and purified minerals increases the reliability in model predictions. The assessment of colloid borne actinide migration observed in various laboratory and field studies calls for detailed information on actinide-colloid interaction. Kinetic stabilization of colloid bound actinides can be due to inclusion into inorganic colloid matrix or by macromolecular rearrangement in case of organic, humic/fulvic like colloids. Only a combination of spectroscopy, microscopy and classical batch sorption experiments can help to elucidate the actinide-colloid interaction mechanisms and thus contribute to the assessment of colloids for radionuclide migration.
76 FR 19176 - Notice of Public Meeting on FY 2012 Refugee Admissions Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-06
... attend this meeting must notify the Bureau of Population, Refugees, and Migration at telephone (202) 453... Secretary, Bureau of Population, Refugees, and Migration, Department of State. [FR Doc. 2011-8174 Filed 4-5...
West Valley demonstration project: Implementation of the kerosene mitigation plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blickwedehl, R.R.; Goodman, J.; Valenti, P.J.
1987-05-01
An aggressive program was implemented to mitigate the migration of radioactive kerosene believed to have originated from the West Valley NRC-Licensed Disposal Area (NDA) disposal trenches designated as SH-10 and SH-11 (Special Holes 10 and 11). This report provides a historical background of the events leading to the migration problem, the results of a detailed investigation to determine the location and source of the kerosene migration, the remediation plan to mitigate the migration, and the actions taken to successfully stabilize the kerosene. 7 refs., 19 figs., 1 tab.
NASA Astrophysics Data System (ADS)
Pereira, Wagner de S.; Kelecom, Alphonse; Py Júnior, Delcy de Azevedo
2008-08-01
The uranium mining at Caetité (Uranium Concentrate Unit—URA) is in its operational phase. Aiming to estimate the radiological environmental impact of the URA, a monitoring program is underway. In order to preserve the biota of the deleterious effects from radiation and to act in a pro-active way as expected from a licensing body, the present work aims to use an environmental protection methodology based on the calculation of absorbed dose rate in biota. Thus, selected target organism was the Tilapia fish (Tilapia nilotica, Linnaeus, 1758) and the radionuclides were: uranium (U-238), thorium (Th-232), radium (Ra-226 and Ra-228) and lead (Pb-210). As, in Brazil there are no radiation exposure limits adopted for biota the value proposed by the Department of Energy (DOE) of the United States of 3.5×103 μGy y-1 has been used. The derived absorbed dose rate calculated for Tilapia was 2.51×100 μGy y-1, that is less than 0.1% of the dose limit established by DOE. The critical radionuclide was Ra-226, with 56% of the absorbed dose rate, followed by U-238 with 34% and Th-232 with 9%. This value of 0.1% of the limit allows to state that, in the operational conditions analyzed, natural radionuclides do not represent a radiological problem to biota.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereira, Wagner de S; Universidade Federal Fluminense, Programa de Pos-graduacao em Biologia Marinha; Kelecom, Alphonse
2008-08-07
The uranium mining at Caetite (Uranium Concentrate Unit--URA) is in its operational phase. Aiming to estimate the radiological environmental impact of the URA, a monitoring program is underway. In order to preserve the biota of the deleterious effects from radiation and to act in a pro-active way as expected from a licensing body, the present work aims to use an environmental protection methodology based on the calculation of absorbed dose rate in biota. Thus, selected target organism was the Tilapia fish (Tilapia nilotica, Linnaeus, 1758) and the radionuclides were: uranium (U-238), thorium (Th-232), radium (Ra-226 and Ra-228) and lead (Pb-210).more » As, in Brazil there are no radiation exposure limits adopted for biota the value proposed by the Department of Energy (DOE) of the United States of 3.5x10{sup 3} {mu}Gy y{sup -1} has been used. The derived absorbed dose rate calculated for Tilapia was 2.51x10{sup 0} {mu}Gy y{sup -1}, that is less than 0.1% of the dose limit established by DOE. The critical radionuclide was Ra-226, with 56% of the absorbed dose rate, followed by U-238 with 34% and Th-232 with 9%. This value of 0.1% of the limit allows to state that, in the operational conditions analyzed, natural radionuclides do not represent a radiological problem to biota.« less
Code of Federal Regulations, 2010 CFR
2010-10-01
... radionuclide values, and for the listing of radionuclides on shipping papers and labels. (a) For individual... given in the table in § 173.436. (b) For individual radionuclides which are not listed in the tables in.... (d) Mixtures of radionuclides whose identities and respective activities are known must conform to...
Code of Federal Regulations, 2011 CFR
2011-10-01
... radionuclide values, and for the listing of radionuclides on shipping papers and labels. (a) For individual... given in the table in § 173.436. (b) For individual radionuclides which are not listed in the tables in.... (d) Mixtures of radionuclides whose identities and respective activities are known must conform to...
Code of Federal Regulations, 2013 CFR
2013-10-01
... radionuclide values, and for the listing of radionuclides on shipping papers and labels. (a) For individual... given in the table in § 173.436. (b) For individual radionuclides which are not listed in the tables in.... (d) Mixtures of radionuclides whose identities and respective activities are known must conform to...
Code of Federal Regulations, 2012 CFR
2012-10-01
... radionuclide values, and for the listing of radionuclides on shipping papers and labels. (a) For individual... given in the table in § 173.436. (b) For individual radionuclides which are not listed in the tables in.... (d) Mixtures of radionuclides whose identities and respective activities are known must conform to...
2011-01-01
Background Tuberculosis (TB) in migrants is an ongoing challenge in several low TB incidence countries since a large proportion of TB in these countries occurs in migrants from high incidence countries. To meet these challenges, several countries utilize TB screening programs. The programs attempt to identify and treat those with active and/or infectious stages of the disease. In addition, screening is used to identify and manage those with latent or inactive disease after arrival. Between nations, considerable variation exists in the methods used in migration-associated TB screening. The present study aimed to compare the TB immigration medical examination requirements in selected countries of high immigration and low TB incidence rates. Methods Descriptive study of immigration TB screening programs Results 16 out of 18 eligible countries responded to the written standardized survey and phone interview. Comparisons in specific areas of TB immigration screening programs included authorities responsible for TB screening, the primary objectives of the TB screening program, the yield of detection of active TB disease, screening details and aspects of follow up for inactive pulmonary TB. No two countries had the same approach to TB screening among migrants. Important differences, common practices, common problems, evidence or lack of evidence for program specifics were noted. Conclusions In spite of common goals, there is great diversity in the processes and practices designed to mitigate the impact of migration-associated TB among nations that screen migrants for the disease. The long-term goal in decreasing migration-related introduction of TB from high to low incidence countries remains diminishing the prevalence of the disease in those high incidence locations. In the meantime, existing or planned migration screening programs for TB can be made more efficient and evidenced based. Cooperation among countries doing research in the areas outlined in this study should facilitate the development of improved screening programs. PMID:21205318
Automated analysis of cell migration and nuclear envelope rupture in confined environments.
Elacqua, Joshua J; McGregor, Alexandra L; Lammerding, Jan
2018-01-01
Recent in vitro and in vivo studies have highlighted the importance of the cell nucleus in governing migration through confined environments. Microfluidic devices that mimic the narrow interstitial spaces of tissues have emerged as important tools to study cellular dynamics during confined migration, including the consequences of nuclear deformation and nuclear envelope rupture. However, while image acquisition can be automated on motorized microscopes, the analysis of the corresponding time-lapse sequences for nuclear transit through the pores and events such as nuclear envelope rupture currently requires manual analysis. In addition to being highly time-consuming, such manual analysis is susceptible to person-to-person variability. Studies that compare large numbers of cell types and conditions therefore require automated image analysis to achieve sufficiently high throughput. Here, we present an automated image analysis program to register microfluidic constrictions and perform image segmentation to detect individual cell nuclei. The MATLAB program tracks nuclear migration over time and records constriction-transit events, transit times, transit success rates, and nuclear envelope rupture. Such automation reduces the time required to analyze migration experiments from weeks to hours, and removes the variability that arises from different human analysts. Comparison with manual analysis confirmed that both constriction transit and nuclear envelope rupture were detected correctly and reliably, and the automated analysis results closely matched a manual analysis gold standard. Applying the program to specific biological examples, we demonstrate its ability to detect differences in nuclear transit time between cells with different levels of the nuclear envelope proteins lamin A/C, which govern nuclear deformability, and to detect an increase in nuclear envelope rupture duration in cells in which CHMP7, a protein involved in nuclear envelope repair, had been depleted. The program thus presents a versatile tool for the study of confined migration and its effect on the cell nucleus.
NASA Astrophysics Data System (ADS)
Bai, Hailong; Montési, Laurent G. J.; Behn, Mark D.
2017-01-01
MeltMigrator is a MATLAB®-based melt migration software developed to process three-dimensional mantle temperature and velocity data from user-supplied numerical models of mid-ocean ridges, calculate melt production and melt migration trajectories in the mantle, estimate melt flux along plate boundaries, and predict crustal thickness distribution on the seafloor. MeltMigrator is also capable of calculating compositional evolution depending on the choice of petrologic melting model. Programmed in modules, MeltMigrator is highly customizable and can be expanded to a wide range of applications. We have applied it to complex mid-ocean ridge model settings, including transform faults, oblique segments, ridge migration, asymmetrical spreading, background mantle flow, and ridge-plume interaction. In this technical report, we include an example application to a segmented mid-ocean ridge. MeltMigrator is available as a supplement to this paper, and it is also available from GitHub and the University of Maryland Geodynamics Group website.
77 FR 19408 - Notice of Public Meeting on FY 2013 U.S. Refugee Admissions Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-30
... to attend this meeting must notify the Bureau of Population, Refugees, and Migration at telephone... Population, Refugees, and Migration, Department of State. [FR Doc. 2012-7700 Filed 3-29-12; 8:45 am] BILLING...
Reverse time migration: A seismic processing application on the connection machine
NASA Technical Reports Server (NTRS)
Fiebrich, Rolf-Dieter
1987-01-01
The implementation of a reverse time migration algorithm on the Connection Machine, a massively parallel computer is described. Essential architectural features of this machine as well as programming concepts are presented. The data structures and parallel operations for the implementation of the reverse time migration algorithm are described. The algorithm matches the Connection Machine architecture closely and executes almost at the peak performance of this machine.
Investigation of the radiological impact on the coastal environment surrounding a fertilizer plant.
El Samad, O; Aoun, M; Nsouli, B; Khalaf, G; Hamze, M
2014-07-01
This investigation was carried out in order to assess the marine environmental radioactive pollution and the radiological impact caused by a large production plant of phosphate fertilizer, located in the Lebanese coastal zone. Natural radionuclides ((238)U, (235)U, (232)Th, (226)Ra, (210)Po, (210)Pb, (40)K) and anthropogenic (137)Cs were measured by alpha and gamma spectrometry in seawater, sediment, biota and coastal soil samples collected from the area impacted by this industry. The limited environmental monitoring program within 2 km of the plant indicates localized contamination with radionuclides of the uranium decay chain mainly due to the transport, the storage of raw materials and the free release of phosphogypsum waste. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutton, Rick
2012-12-01
Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 9-10, 2012, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outsidemore » the site boundaries have not been affected by project-related contaminants.« less
Transverse section radionuclide scanning system
Kuhl, David E.; Edwards, Roy Q.
1976-01-01
This invention provides a transverse section radionuclide scanning system for high-sensitivity quantification of brain radioactivity in cross-section picture format in order to permit accurate assessment of regional brain function localized in three-dimensions. High sensitivity crucially depends on overcoming the heretofore known raster type scanning, which requires back and forth detector movement involving dead-time or partial enclosure of the scan field. Accordingly, this invention provides a detector array having no back and forth movement by interlaced detectors that enclose the scan field and rotate as an integral unit around one axis of rotation in a slip ring that continuously transmits the detector data by means of laser emitting diodes, with the advantages that increased amounts of data can be continuously collected, processed and displayed with increased sensitivity according to a suitable computer program.
Rio Blanco, Colorado, Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2009
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-12-21
The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rio Blanco, Colorado, Site, for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 13 and 14, 2009. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectroscopy and tritium using the conventional and enriched methods.
Efficiency of a borehole seal by means of pre-compacted bentonite blocks
NASA Astrophysics Data System (ADS)
Van Geet, M.; Volckaert, G.; Bastiaens, W.; Maes, N.; Weetjens, E.; Sillen, X.; Vallejan, B.; Gens, A.
The backfilling and sealing of shafts and galleries is an essential part of the design of underground repositories for high-level radioactive waste. Part of the EC funded project RESEAL studied the feasibility of sealing off a borehole in plastic Boom Clay by means of pre-compacted bentonite blocks. Two bentonites, namely the FoCa and Serrata clay, have been used. Based on laboratory tests, the bentonite blocks had an initial dry density of about 1.8 g/cm 3 to obtain a swelling pressure of about 4.4 MPa, corresponding to the in situ lithostatic stress, at full saturation. The set-up was equipped with several sensors to follow-up the behaviour of the seal and the surrounding host rock during hydration. Full saturation was reached after five months and was mainly reached by natural hydration. Swelling pressure was lower than originally foreseen due to the slow reconsolidation of the host rock. Later on, the efficiency of the seal with respect to water, gas and radionuclide migration was tested. The in situ measured permeability of the seals was about 5 × 10 -13 m/s. A gas breakthrough experiment did not show any preferential gas migration through the seal. No evidences of a preferential pathway could be detected from 125I tracer test results.
Delayed signatures of underground nuclear explosions
Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; ...
2016-03-16
Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. Here, we observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be anmore » indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). In conclusion, our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates.« less
Temporary vs. Permanent Sub-slab Ports: A Comparative ...
Vapor intrusion (VI) is the migration of subsurface vapors, including radon and volatile organic compounds (VOCs), from the subsurface to indoor air. The VI exposure pathway extends from the contaminant source, which can be impacted soil, non-aqueous phase liquid, or contaminated groundwater, to indoor air-exposure points. Therefore, contaminated matrices may include groundwater, soil, soil gas, and indoor air. VOC contaminants of concern typically include halogenated solvents such as trichloroethene, tetrachloroethene, and chloroform, as well as petroleum hydrocarbons, such as the aromatic VOCs benzene, toluene, and xylenes. Radon is a colorless radioactive gas that is released by radioactive decay of radionuclides in rock and soil that migrate into homes through VI in a similar fashion to VOCs. This project focused on the performance of permanent versus temporary sub-slab sampling ports for the determination of VI of halogenated VOCs and radon into an unoccupied house. VOC and radon concentrations measured simultaneously in soil gas using collocated temporary and permanent ports appeared to be independent of the type of port. The variability between collocated temporary and permanent ports was much less than the spatial variability between different locations within a single residential duplex. The agreement of the majority of VOC and radon concentrations, 0–36% relative percent difference, and 2–19% relative standard deviation respectively, of each sub-sl
Radionuclide concentration processes in marine organisms: A comprehensive review.
Carvalho, Fernando P
2018-06-01
The first measurements made of artificial radionuclides released into the marine environment did reveal that radionuclides are concentrated by marine biological species. The need to report radionuclide accumulation in biota in different conditions and geographical areas prompted the use of concentration factors as a convenient way to describe the accumulation of radionuclides in biota relative to radionuclide concentrations in seawater. Later, concentration factors became a tool in modelling radionuclide distribution and transfer in aquatic environments and to predicting radioactivity in organisms. Many environmental parameters can modify the biokinetics of accumulation and elimination of radionuclides in marine biota, but concentration factors remained a convenient way to describe concentration processes of radioactive and stable isotopes in aquatic organisms. Revision of CF values is periodically undertaken by international organizations, such as the International Atomic Energy Agency (IAEA), to make updated information available to the international community. A brief commented review of radionuclide concentration processes and concentration factors in marine organisms is presented for key groups of radionuclides such as fission products, activation products, transuranium elements, and naturally-occurring radionuclides. Copyright © 2017 Elsevier Ltd. All rights reserved.
Devane, P A; Horne, J G; Foley, G; Stanley, J
2017-10-01
This paper describes the methodology, validation and reliability of a new computer-assisted method which uses models of the patient's bones and the components to measure their migration and polyethylene wear from radiographs after total hip arthroplasty (THA). Models of the patient's acetabular and femoral component obtained from the manufacturer and models of the patient's pelvis and femur built from a single computed tomography (CT) scan, are used by a computer program to measure the migration of the components and the penetration of the femoral head from anteroposterior and lateral radiographs taken at follow-up visits. The program simulates the radiographic setup and matches the position and orientation of the models to outlines of the pelvis, the acetabular and femoral component, and femur on radiographs. Changes in position and orientation reflect the migration of the components and the penetration of the femoral head. Validation was performed using radiographs of phantoms simulating known migration and penetration, and the clinical feasibility of measuring migration was assessed in two patients. Migration of the acetabular and femoral components can be measured with limits of agreement (LOA) of 0.37 mm and 0.33 mm, respectively. Penetration of the femoral head can be measured with LOA of 0.161 mm. The migration of components and polyethylene wear can be measured without needing specialised radiographs. Accurate measurement may allow earlier prediction of failure after THA. Cite this article: Bone Joint J 2017;99-B:1290-7. ©2017 The British Editorial Society of Bone & Joint Surgery.
Radionuclide detection devices and associated methods
Mann, Nicholas R [Rigby, ID; Lister, Tedd E [Idaho Falls, ID; Tranter, Troy J [Idaho Falls, ID
2011-03-08
Radionuclide detection devices comprise a fluid cell comprising a flow channel for a fluid stream. A radionuclide collector is positioned within the flow channel and configured to concentrate one or more radionuclides from the fluid stream onto at least a portion of the radionuclide collector. A scintillator for generating scintillation pulses responsive to an occurrence of a decay event is positioned proximate at least a portion of the radionuclide collector and adjacent to a detection system for detecting the scintillation pulses. Methods of selectively detecting a radionuclide are also provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawkes, Lynnette A.; Martinson, Rick D.; Absolon, Randall F.
1993-05-01
The seaward migration of salmonid smolts was monitored by the National marine Fisheries Service (NMFS) at two sites on the Columbia River in 1992. The NMFS Smolt Monitoring Project is part of a larger Smolt Monitoring Program to index Columbia Basin juvenile salmonied stocks. It is coordinated by the Fish Passage Center (FPC) for the Columbia Basin Fish and Wildlife Agencies and Tribes. Its purpose is to facilitate fish passage through reservoirs and at dams by providing FPC with timely smolt migration data used for flow and spill management. Data is also used for travel time, migration timing and relativemore » run size magnitude analysis. This program is carried out under the auspices of the Northwest Power Planning Council Fish and Wildlife Program and is funded by the Bonneville Power Administration (BPA). Sampling sites were John Day and Bonneville Dams under the 1992 Smolt Monitoring Program. All pertinent fish capture, condition, brand recovery, and flow data, were reported daily to FPC. These data were incorporated into the FPC`s Fish Passage Data System (FPDS).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplan, D.; Powell, B.; Barber, K.
The SRNL Radiological Field Lysimeter Experiment (RadFLEx) is a one-of-a-kind test bed facility designed to study radionuclide geochemical processes in the Savannah River Site (SRS) vadose zone at a larger spatial scale (from grams to tens of kilograms of sediment) and temporal scale (from months to decade) than is readily afforded through laboratory studies. RadFLEx is a decade-long project that was initiated on July 5, 2012 and is funded by six different sources. The objective of this status report is as follows: 1) to report findings to date that have an impact on SRS performance assessment (PA) calculations, and 2)more » to provide performance metrics of the RadFLEx program. The PA results are focused on measurements of transport parameters, such as distribution coefficients (Kd values), solubility, and unsaturated flow values. As this is an interim report, additional information from subsequent research may influence our interpretation of current results. Research related to basic understanding of radionuclide geochemistry in these vadose zone soils and other source terms are not described here but are referenced for the interested reader.« less
Crystalline and Crystalline International Disposal Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viswanathan, Hari S.; Chu, Shaoping; Dittrich, Timothy M.
This report presents the results of work conducted between September 2015 and July 2016 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program. Los Alamos focused on two main activities during this period: Discrete fracture network (DFN) modeling to describe flow and radionuclide transport in complex fracture networks that are typical of crystalline rock environments, and a comprehensive interpretation of three different colloid-facilitated radionuclide transport experiments conducted in a fractured granodiorite at the Grimsel Test Site in Switzerland betweenmore » 2002 and 2013. Chapter 1 presents the results of the DFN work and is divided into three main sections: (1) we show results of our recent study on the correlation between fracture size and fracture transmissivity (2) we present an analysis and visualization prototype using the concept of a flow topology graph for characterization of discrete fracture networks, and (3) we describe the Crystalline International work in support of the Swedish Task Force. Chapter 2 presents interpretation of the colloidfacilitated radionuclide transport experiments in the crystalline rock at the Grimsel Test Site.« less
Performance testing of radiobioassay laboratories: In vivo measurements, Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacLellan, J.A.; Traub, R.J.; Olsen, P.C.
1990-04-01
A study of two rounds of in vivo laboratory performance testing was undertaken by Pacific Northwest Laboratory (PNL) to determine the appropriateness of the in vivo performance criteria of draft American National Standards Institute (ANSI) standard ANSI N13.3, Performance Criteria for Bioassay.'' The draft standard provides guidance to in vivo counting facilities regarding the sensitivity, precision, and accuracy of measurements for certain categories of commonly assayed radionuclides and critical regions of the body. This report concludes the testing program by presenting the results of the Round Two testing. Testing involved two types of measurements: chest counting for radionuclide detection inmore » the lung, and whole body counting for detection of uniformly distributed material. Each type of measurement was further divided into radionuclide categories as defined in the draft standard. The appropriateness of the draft standard criteria by measuring a laboratory's ability to attain them were judged by the results of both round One and Round Two testing. The testing determined that performance criteria are set at attainable levels, and the majority of in vivo monitoring facilities passed the criteria when complete results were submitted. 18 refs., 18 figs., 15 tabs.« less
Studies of the mobility of uranium and thorium in Nevada Test Site tuff
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wollenberg, H.A.; Flexser, S.; Smith, A.R.
1991-06-01
Hydro-geochemical processes must be understood if the movement of radionuclides away from a breached radioactive waste canister is to be modeled and predicted. In this respect, occurrences of uranium and thorium in hydrothermal systems are under investigation in tuff and in rhyolitic tuff that was heated to simulate the effects of introduction of radioactive waste. In these studies, high-resolution gamma spectrometry and fission-track radiography are coupled with observations of alteration mineralogy and thermal history to deduce the evidence of, or potential for movement of, U and Th in response to the thermal environment. Observations to date suggest that U wasmore » mobile in the vicinity of the heater but that localized reducing environments provided by Fe-Ti-Mn-oxide minerals concentrated U and thus attenuated its migration.« less
Observations on the geology and geohydrology of the Chernobyl' nuclear accident site, Ukraine
Matzko, J.R.; Percious, D.J.; Rachlin, J.; Marples, D.R.
1994-01-01
The most highly contaminated surface areas from cesium-137 fallout from the April 1986 accident at the Chernobyl' nuclear power station in Ukraine occur within the 30-km radius evacuation zone set up around the station, and an 80-km lobe extending to the west-southwest. Lower levels of contamination extend 300 km to the west of the power station. The geology, the presence of surface water, a shallow water table, and leaky aquifers at depth make this an unfavorable environment for the long-term containment and storage of the radioactive debris. An understanding of the general geology and hydrology of the area is important to assess the environmental impact of this unintended waste storage site, and to evaluate the potential for radionuclide migration through the soil and rock and into subsurface aquifers and nearby rivers. -from Authors
Armored Enzyme Nanoparticles for Remediation of Subsurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grate, Jay W.
2005-09-01
The remediation of subsurface contaminants is a critical problem for the Department of Energy, other government agencies, and our nation. Severe contamination of soil and groundwater exists at several DOE sites due to various methods of intentional and unintentional release. Given the difficulties involved in conventional removal or separation processes, it is vital to develop methods to transform contaminants and contaminated earth/water to reduce risks to human health and the environment. Transformation of the contaminants themselves may involve conversion to other immobile species that do not migrate into well water or surface waters, as is proposed for metals and radionuclides;more » or degradation to harmless molecules, as is desired for organic contaminants. Transformation of contaminated earth (as opposed to the contaminants themselves) may entail reductions in volume or release of bound contaminants for remediation.« less
PCR detection of groundwater bacteria associated with colloidal transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cruz-Perez, P.; Stetzenbach, L.D.; Alvarez, A.J.
1996-02-29
Colloidal transport may increase the amount of contaminant material than that which could be transported by water flow alone. The role of colloids in groundwater contaminant transport is complicated and may involve many different processes, including sorption of elements onto colloidal particles, coagulation/dissolution, adsorption onto solid surfaces, filtration, and migration. Bacteria are known to concentrate minerals and influence the transport of compounds in aqueous environments and may also serve as organic colloids, thereby influencing subsurface transport of radionuclides and other contaminants. The initial phase of the project consisted of assembling a list of bacteria capable of sequestering or facilitating mineralmore » transport. The development and optimization of the PCR amplification assay for the detection of the organisms of interest, and the examination of regional groundwaters for those organisms, are presented for subsequent research.« less
NASA Astrophysics Data System (ADS)
Siirila-Woodburn, Erica R.; Steefel, Carl I.; Williams, Kenneth H.; Birkholzer, Jens T.
2018-03-01
The effects of land use and land cover (LULC) change on environmental systems across the land surface's "critical zone" are highly uncertain, often making prediction and risk management decision difficult. In a series of numerical experiments with an integrated hydrologic model, overland flow generation is quantified for both present day and forest thinning scenarios. A typhoon storm event in a watershed near the Fukushima Dai-ichi Nuclear Power Plant is used as an example application in which the interplay between LULC change and overland flow generation is important given that sediment-bound radionuclides may cause secondary contamination via surface water transport. Results illustrate the nonlinearity of the integrated system spanning from the deep groundwater to the atmosphere, and provide quantitative tools when determining the tradeoffs of different risk-mitigation strategies.
Social learning of migratory performance
Mueller, Thomas; O'Hara, Robert B.; Converse, Sarah J.; Urbanek, Richard P.; Fagan, William F.
2013-01-01
Successful bird migration can depend on individual learning, social learning, and innate navigation programs. Using 8 years of data on migrating whooping cranes, we were able to partition genetic and socially learned aspects of migration. Specifically, we analyzed data from a reintroduced population wherein all birds were captive bred and artificially trained by ultralight aircraft on their first lifetime migration. For subsequent migrations, in which birds fly individually or in groups but without ultralight escort, we found evidence of long-term social learning, but no effect of genetic relatedness on migratory performance. Social learning from older birds reduced deviations from a straight-line path, with 7 years of experience yielding a 38% improvement in migratory accuracy.
ERIC Educational Resources Information Center
Pacheco, Angel M.; And Others
In order to explore some of the changes and stresses connected with migration and return migration, a study was conducted among migrants returning from the United States mainland to Puerto Rico. The sample consisted of 75 adolescents participating in a Bilingual Education program in Puerto Rico. Data were collected using Psychological Distance…
2009-11-01
The Influence of Physical Forces on Progenitor Cell Migration, Proliferation and Differentiation in Fracture Repair PRINCIPAL INVESTIGATOR...REPORT TYPE Final 3. DATES COVERED (From - To) 11/1/05 – 10/31/09 4. TITLE AND SUBTITLE The Influence of Physical Forces on Progenitor Cell Migration...SUPPLEMENTARY NOTES 14. ABSTRACT The goal of this program is to investigate the influence of controlled mechanical stimulation on the behavior of
NASA Astrophysics Data System (ADS)
Dunagan, S. C.; Herrick, C. G.; Lee, M. Y.
2008-12-01
The Waste Isolation Pilot Plant (WIPP) is located at a depth of 655 m in bedded salt in southeastern New Mexico and is operated by the U.S. Department of Energy as a deep underground disposal facility for transuranic (TRU) waste. The WIPP must comply with the EPA's environmental regulations that require a probabilistic risk analysis of releases of radionuclides due to inadvertent human intrusion into the repository at some time during the 10,000-year regulatory period. Sandia National Laboratories conducts performance assessments (PAs) of the WIPP using a system of computer codes representing the evolution of underground repository and emplaced TRU waste in order to demonstrate compliance. One of the important features modeled in a PA is the disturbed rock zone (DRZ) surrounding the emplacement rooms in the repository. The extent and permeability of DRZ play a significant role in the potential radionuclide release scenarios. We evaluated the phenomena occurring in the repository that affect the DRZ and their potential effects on the extent and permeability of the DRZ. Furthermore, we examined the DRZ's role in determining the performance of the repository. Pressure in the completely sealed repository will be increased by creep closure of the salt and degradation of TRU waste contents by microbial activity in the repository. An increased pressure in the repository will reduce the extent and permeability of the DRZ. The reduced DRZ extent and permeability will decrease the amount of brine that is available to interact with the waste. Furthermore, the potential for radionuclide release from the repository is dependent on the amount of brine that enters the repository. As a result of these coupled biological-geomechanical-geochemical phenomena, the extent and permeability of the DRZ has a significant impact on the potential radionuclide releases from the repository and, in turn, the repository performance. Sandia is a multi program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04- 94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S. Department of Energy.
75 FR 20031 - Notice of Public Meeting on FY 2011 Refugee Admissions Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-16
... must notify the Bureau of Population, Refugees, and Migration at telephone (202) 663-1006 by 5 p.m. on..., Refugees, and Migration, Department of State. [FR Doc. 2010-8785 Filed 4-15-10; 8:45 am] BILLING CODE 4710...
Using the High-Level Based Program Interface to Facilitate the Large Scale Scientific Computing
Shang, Yizi; Shang, Ling; Gao, Chuanchang; Lu, Guiming; Ye, Yuntao; Jia, Dongdong
2014-01-01
This paper is to make further research on facilitating the large-scale scientific computing on the grid and the desktop grid platform. The related issues include the programming method, the overhead of the high-level program interface based middleware, and the data anticipate migration. The block based Gauss Jordan algorithm as a real example of large-scale scientific computing is used to evaluate those issues presented above. The results show that the high-level based program interface makes the complex scientific applications on large-scale scientific platform easier, though a little overhead is unavoidable. Also, the data anticipation migration mechanism can improve the efficiency of the platform which needs to process big data based scientific applications. PMID:24574931
NASA Astrophysics Data System (ADS)
Landis, Joshua D.; Renshaw, Carl E.; Kaste, James M.
2016-05-01
Soil systems are known to be repositories for atmospheric carbon and metal contaminants, but the complex processes that regulate the introduction, migration and fate of atmospheric elements in soils are poorly understood. This gap in knowledge is attributable, in part, to the lack of an established chronometer that is required for quantifying rates of relevant processes. Here we develop and test a framework for adapting atmospheric lead-210 chronometry (210Pb; half-life 22 years) to soil systems. We propose a new empirical model, the Linked Radionuclide aCcumulation model (LRC, aka "lark"), that incorporates measurements of beryllium-7 (7Be; half-life 54 days) to account for 210Pb penetration of the soil surface during initial deposition, a process which is endemic to soils but omitted from conventional 210Pb models (e.g., the Constant Rate of Supply, CRS model) and their application to sedimentary systems. We validate the LRC model using the 1963-1964 peak in bomb-fallout americium-241 (241Am; half-life of 432 years) as an independent, corroborating time marker. In three different soils we locate a sharp 241Am weapons horizon at disparate depths ranging from 2.5 to 6 cm, but with concordant ages averaging 1967 ± 4 via the LRC model. Similarly, at one site contaminated with mercury (HgT) we find that the LRC model is consistent with the recorded history of Hg emission. The close agreement of Pb, Am and Hg behavior demonstrated here suggests that organo-metallic colloid formation and migration incorporates many trace metals in universal soil processes and that these processes may be described quantitatively using atmospheric 210Pb chronometry. The 210Pb models evaluated here show that migration rates of soil colloids on the order of 1 mm yr-1 are typical, but also that these rates vary systematically with depth and are attributable to horizon-specific processes of leaf-litter decay, eluviation and illuviation. We thus interpret 210Pb models to quantify (i) exposure of the soil system to atmospheric aerosol deposition in the context of (ii) organic carbon assimilation, colloid production, and advection through the soil profile. The behavior of some other elements, such as Cs, diverges from the conservative colloid behavior exemplified by Pb and Am, and in these cases the value of empirical 210Pb chronometry models like LRC and CRS is as a comparator rather than as an absolute chronometer. We conclude that 210Pb chronometry is valuable for tracing colloidally-mediated transport of Pb and similarly-refractory metals, as well as the mobile pool of carbon in soils.
Innovative Strategy For Long Term Monitoring Of Metal And Radionuclide Plumes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eddy-Dilek, Carol; Millings, Margaret R.; Looney, Brian B.
2014-01-08
Many government and private industry sites that were once contaminated with radioactive and chemical wastes cannot be cleaned up enough to permit unrestricted human access. The sites will require long term management, in some cases indefinitely, leaving site owners with the challenge of protecting human health and environmental quality at these "legacy" sites. Long-term monitoring of groundwater contamination is one of the largest projected costs in the life cycle of environmental management at the Savannah River Site, the larger DOE complex, and many large federal and private sites. There is a need to optimize the performance and manage the costmore » of long term surveillance and monitoring at their sites. Currently, SRNL is initiating a pilot field test using alternative protocols for long term monitoring of metals and radionuclides. A key component of the approach is that monitoring efforts are focused on measurement of low cost metrics related to hydrologic and chemical conditions that control contaminant migration. The strategy combines careful monitoring of hydrologic boundary conditions with measurement of master variables such as chemical surrogates along with a smaller number of standard well analyses. In plumes contaminated with metals, master variables control the chemistry of the groundwater system, and include redox variables (ORP, DO, chemicals), pH, specific conductivity, biological community (breakdown/decay products), and temperature. Significant changes in these variables will result in conditions whereby the plume may not be stable and therefore can be used to predict possible plume migration. Conversely, concentration measurements for all types of contaminants in groundwater are a lagging indicator plume movement - major changes contaminant concentrations indicate that contamination has migrated. An approach based on measurement of master variables and explicit monitoring of hydrologic boundary conditions combined with traditional metrics should lead to improved monitoring while simultaneously reducing costs. This paradigm is being tested at the SRS F-Area where an innovative passive remedial system is being monitored and evaluated over the long term prior to traditional regulatory closure. Contaminants being addressed at this site are uranium, strontium-90, iodine-129, and tritium. We believe that the proposed strategies will be more effective in early identification of potential risks; these strategies will also be cost effective because controlling variables are relatively simple to measure. These variables also directly reflect the evolution of the plume through time, so that the monitoring strategy can be modified as the plume 'ages'. This transformational long-term monitoring paradigm will generate large cost savings to DOE, other federal agencies and industry and will provide improved performance and leading indicators of environmental management performance.« less
The Marshall Islands Data Management Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoker, A.C.; Conrado, C.L.
1995-09-01
This report is a resource document of the methods and procedures used currently in the Data Management Program of the Marshall Islands Dose Assessment and Radioecology Project. Since 1973, over 60,000 environmental samples have been collected. Our program includes relational database design, programming and maintenance; sample and information management; sample tracking; quality control; and data entry, evaluation and reduction. The usefulness of scientific databases involves careful planning in order to fulfill the requirements of any large research program. Compilation of scientific results requires consolidation of information from several databases, and incorporation of new information as it is generated. The successmore » in combining and organizing all radionuclide analysis, sample information and statistical results into a readily accessible form, is critical to our project.« less
Furuki, Genki; Imoto, Junpei; Ochiai, Asumi; Yamasaki, Shinya; Nanba, Kenji; Ohnuki, Toshihiko; Grambow, Bernd; Ewing, Rodney C.; Utsunomiya, Satoshi
2017-01-01
The nuclear disaster at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March 2011 caused partial meltdowns of three reactors. During the meltdowns, a type of condensed particle, a caesium-rich micro-particle (CsMP), formed inside the reactors via unknown processes. Here we report the chemical and physical processes of CsMP formation inside the reactors during the meltdowns based on atomic-resolution electron microscopy of CsMPs discovered near the FDNPP. All of the CsMPs (with sizes of 2.0–3.4 μm) comprise SiO2 glass matrices and ~10-nm-sized Zn–Fe-oxide nanoparticles associated with a wide range of Cs concentrations (1.1–19 wt% Cs as Cs2O). Trace amounts of U are also associated with the Zn–Fe oxides. The nano-texture in the CsMPs records multiple reaction-process steps during meltdown in the severe FDNPP accident: Melted fuel (molten core)-concrete interactions (MCCIs), incorporating various airborne fission product nanoparticles, including CsOH and CsCl, proceeded via SiO2 condensation over aggregates of Zn-Fe oxide nanoparticles originating from the failure of the reactor pressure vessels. Still, CsMPs provide a mechanism by which volatile and low-volatility radionuclides such as U can reach the environment and should be considered in the migration model of Cs and radionuclides in the current environment surrounding the FDNPP. PMID:28198440
Modeling and identifying the sources of radiocesium contamination in separate sewerage systems.
Pratama, Mochamad Adhiraga; Yoneda, Minoru; Yamashiki, Yosuke; Shimada, Yoko; Matsui, Yasuto
2018-05-01
The Fukushima Dai-ichi nuclear power plant accident released radiocesium in large amounts. The released radionuclides contaminated much of the surrounding environment, including sewers in urban areas of Fukushima prefecture. In this study we attempted to identify and quantify the sources of radiocesium contamination in separate sewerage systems and developed a compartment model based on the Radionuclide Migration in Urban Environments and Drainage Systems (MUD) model. Measurements of the time-dependent radiocesium concentration in sewer sludge combined with meteorological, demographic, and radiocesium dietary intake data indicated that rainfall-derived inflow and infiltration (RDII) and human excretion were the chief contributors of radiocesium contamination in a separate sewerage system. The quantities of contamination derived from RDII and human excretion were calculated and used in the modified MUD model to simulate radiocesium contamination in sewers in three urban areas in Fukushima prefecture: Fukushima, Koriyama, and Nihonmatsu Cities. The Nash efficiency coefficient (0.88-0.92) and determination coefficient (0.89-0.93) calculated in an evaluation of our compartment model indicated that the model produced satisfactory results. We also used the model to estimate the total volume of sludge with radiocesium concentrations in excess of the clearance level, based on the number of months elapsed after the accident. Estimations by our model suggested that wastewater treatment plants (WWTPs) in Fukushima, Koriyama, and Nihonmatsu generated about 1,750,000m 3 of radioactive sludge in total, a level in good agreement with the real data. Copyright © 2017 Elsevier B.V. All rights reserved.
Štamberg, K; Palágyi, Š; Videnská, K; Havlová, V
The transport of 3 H + (as HTO) and 36 Cl - (as Na 36 Cl) was investigated in the dynamic system, i.e., in the columns filled with crushed pure granite and fracture infill of various grain sizes. The aim of column experiments was to determine important transport parameter, such as the retardation, respectively distribution coefficients, Peclet numbers and hydrodynamic dispersion coefficients. Furthermore, the research was focused to quantification of the effect of grain size on migration of studied radionuclides. The experimental breakthrough curves were fitted by a model based on the erfc-function, assuming a linear reversible equilibrium sorption/desorption isotherm, and the above mentioned transport parameters were determined. The results showed that influence of grain size on sorption of 3 H + and 36 Cl - was negligible. Retardation and distribution coefficients of both tracers converged to one and zero, respectively, in case of all fractions of crushed granite and infill material. Generally, the presumed ion exclusion of 36 Cl in anionic form was proved under given conditions, only very weak one seems to exist in a case of infill material. In principal, both radionuclides behaved as non-sorbing, conservative tracers. On the other hand, the influence of grain size on Peclet numbers value and on dispersion coefficient was observed for both crystalline materials, namely in agreement with theoretical suppositions that the values of Peclet numbers decrease with increasing grain size and values of dispersion coefficient increase.
NASA Astrophysics Data System (ADS)
Furuki, Genki; Imoto, Junpei; Ochiai, Asumi; Yamasaki, Shinya; Nanba, Kenji; Ohnuki, Toshihiko; Grambow, Bernd; Ewing, Rodney C.; Utsunomiya, Satoshi
2017-02-01
The nuclear disaster at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March 2011 caused partial meltdowns of three reactors. During the meltdowns, a type of condensed particle, a caesium-rich micro-particle (CsMP), formed inside the reactors via unknown processes. Here we report the chemical and physical processes of CsMP formation inside the reactors during the meltdowns based on atomic-resolution electron microscopy of CsMPs discovered near the FDNPP. All of the CsMPs (with sizes of 2.0-3.4 μm) comprise SiO2 glass matrices and ~10-nm-sized Zn-Fe-oxide nanoparticles associated with a wide range of Cs concentrations (1.1-19 wt% Cs as Cs2O). Trace amounts of U are also associated with the Zn-Fe oxides. The nano-texture in the CsMPs records multiple reaction-process steps during meltdown in the severe FDNPP accident: Melted fuel (molten core)-concrete interactions (MCCIs), incorporating various airborne fission product nanoparticles, including CsOH and CsCl, proceeded via SiO2 condensation over aggregates of Zn-Fe oxide nanoparticles originating from the failure of the reactor pressure vessels. Still, CsMPs provide a mechanism by which volatile and low-volatility radionuclides such as U can reach the environment and should be considered in the migration model of Cs and radionuclides in the current environment surrounding the FDNPP.
Delineation of the Pahute Mesa–Oasis Valley groundwater basin, Nevada
Fenelon, Joseph M.; Halford, Keith J.; Moreo, Michael T.
2016-01-22
This report delineates the Pahute Mesa–Oasis Valley (PMOV) groundwater basin, where recharge occurs, moves downgradient, and discharges to Oasis Valley, Nevada. About 5,900 acre-feet of water discharges annually from Oasis Valley, an area of springs and seeps near the town of Beatty in southern Nevada. Radionuclides in groundwater beneath Pahute Mesa, an area of historical underground nuclear testing at the Nevada National Security Site, are believed to be migrating toward Oasis Valley. Delineating the boundary of the PMOV groundwater basin is necessary to adequately assess the potential for transport of radionuclides from Pahute Mesa to Oasis Valley.The PMOV contributing area is defined based on regional water-level contours, geologic controls, and knowledge of adjacent flow systems. The viability of this area as the contributing area to Oasis Valley and the absence of significant interbasin flow between the PMOV groundwater basin and adjacent basins are shown regionally and locally. Regional constraints on the location of the contributing area boundary and on the absence of interbasin groundwater flow are shown by balancing groundwater discharges in the PMOV groundwater basin and adjacent basins against available water from precipitation. Internal consistency for the delineated contributing area is shown by matching measured water levels, groundwater discharges, and transmissivities with simulated results from a single-layer, steady-state, groundwater-flow model. An alternative basin boundary extending farther north than the final boundary was rejected based on a poor chloride mass balance and a large imbalance in the northern area between preferred and simulated recharge.
Furuki, Genki; Imoto, Junpei; Ochiai, Asumi; Yamasaki, Shinya; Nanba, Kenji; Ohnuki, Toshihiko; Grambow, Bernd; Ewing, Rodney C; Utsunomiya, Satoshi
2017-02-15
The nuclear disaster at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March 2011 caused partial meltdowns of three reactors. During the meltdowns, a type of condensed particle, a caesium-rich micro-particle (CsMP), formed inside the reactors via unknown processes. Here we report the chemical and physical processes of CsMP formation inside the reactors during the meltdowns based on atomic-resolution electron microscopy of CsMPs discovered near the FDNPP. All of the CsMPs (with sizes of 2.0-3.4 μm) comprise SiO 2 glass matrices and ~10-nm-sized Zn-Fe-oxide nanoparticles associated with a wide range of Cs concentrations (1.1-19 wt% Cs as Cs 2 O). Trace amounts of U are also associated with the Zn-Fe oxides. The nano-texture in the CsMPs records multiple reaction-process steps during meltdown in the severe FDNPP accident: Melted fuel (molten core)-concrete interactions (MCCIs), incorporating various airborne fission product nanoparticles, including CsOH and CsCl, proceeded via SiO 2 condensation over aggregates of Zn-Fe oxide nanoparticles originating from the failure of the reactor pressure vessels. Still, CsMPs provide a mechanism by which volatile and low-volatility radionuclides such as U can reach the environment and should be considered in the migration model of Cs and radionuclides in the current environment surrounding the FDNPP.
Rural migration in Nevada: Lincoln County. Phase 1, 1992--1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soden, D.L.; Carns, D.E.; Mosser, D.
1993-12-31
The principal objective of this project was to develop insight into the scope of migration of working age Nevadans out of their county of birth; including the collection of data on their skill levels, desire to out or in-migrate, interactions between families of migratory persons, and the impact that the proposed high-level nuclear waste repository at Yucca mountain might have on their individual, and collective, decisions to migrate and return. The initial phase of this project reported here was conducted in 1992 and 1993 in Lincoln County, Nevada, one of the counties designated as ``affected`` by the proposed repository program.more » The findings suggest that a serious out-migration problem exists in Lincoln County, and that the Yucca mountain project will likely affect decisions relating to migration patterns in the future.« less
Migration in India: Education and Outreach for Street Children.
ERIC Educational Resources Information Center
Saini, Asha; Vakil, Shernavaz
2002-01-01
Details causes of migration in India and situations children find themselves in, and how these situations complicate the provision of education. Examines the impact on children's physical, psychosocial, and intellectual growth, and evaluates intervention measures, including a program for street children. Provides recommendations for addressing…
Chen, Xiaoyuan; Wai, Chien M.; Fisher, Darrell R.
2000-01-01
The invention pertains to compounds for binding lanthanide ions and actinide ions. The invention further pertains to compounds for binding radionuclides, and to methods of making radionuclide complexes. Also, the invention pertains to methods of extracting radionuclides. Additionally, the invention pertains to methods of delivering radionuclides to target locations. In one aspect, the invention includes a compound comprising: a) a calix[n]arene group, wherein n is an integer greater than 3, the calix[n]arene group comprising an upper rim and a lower rim; b) at least one ionizable group attached to the lower rim; and c) an ion selected from the group consisting of lanthanide and actinide elements bound to the ionizable group. In another aspect, the invention includes a method of extracting a radionuclide, comprising: a) providing a sample comprising a radionuclide; b) providing a calix[n]arene compound in contact with the sample, wherein n is an integer greater than 3; and c) extracting radionuclide from the sample into the calix[n]arene compound. In yet another aspect, the invention includes a method of delivering a radionuclide to a target location, comprising: a) providing a calix[n]arene compound, wherein n is an integer greater than 3, the calix[n]arene compound comprising at least one ionizable group; b) providing a radionuclide bound to the calix[n]arene compound; and c) providing an antibody attached to the calix[n]arene compound, the antibody being specific for a material found at the target location.
IMGui-A Desktop GUI Application for Isolation with Migration Analyses.
Knoblauch, Jared; Sethuraman, Arun; Hey, Jody
2017-02-01
The Isolation with Migration (IM) programs (e.g., IMa2) have been utilized extensively by evolutionary biologists for model-based inference of demographic parameters including effective population sizes, migration rates, and divergence times. Here, we describe a graphical user interface for the latest IM program. IMGui provides a comprehensive set of tools for performing demographic analyses, tracking progress of runs, and visualizing results. Developed using node. js and the Electron framework, IMGui is an application that runs on any desktop operating system, and is available for download at https://github.com/jaredgk/IMgui-electron-packages. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Identification of CSF fistulas by radionuclide counting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Y.; Kunishio, K.; Sunami, N.
1990-07-01
A radionuclide counting method, performed with the patient prone and the neck flexed, was used successfully to diagnose CSF rhinorrhea in two patients. A normal radionuclide ratio (radionuclide counts in pledget/radionuclide counts in 1-ml blood sample) was obtained in 11 normal control subjects. Significance was determined to be a ratio greater than 0.37. Use of radionuclide counting method of determining CSF rhinorrhea is recommended when other methods have failed to locate a site of leakage or when posttraumatic meningitis suggests subclinical CSF rhinorrhea.
Natural and anthropogenic radionuclide activity concentrations in the New Zealand diet.
Pearson, Andrew J; Gaw, Sally; Hermanspahn, Nikolaus; Glover, Chris N
2016-01-01
To support New Zealand's food safety monitoring regime, a survey was undertaken to establish radionuclide activity concentrations across the New Zealand diet. This survey was undertaken to better understand the radioactivity content of the modern diet and also to assess the suitability of the current use of milk as a sentinel for dietary radionuclide trends. Thirteen radionuclides were analysed in 40 common food commodities, including animal products, fruits, vegetables, cereal grains and seafood. Activity was detected for (137)Caesium, (90)Strontium and (131)Iodine. No other anthropogenic radionuclides were detected. Activity concentrations of the three natural radionuclides of Uranium and the daughter radionuclide (210)Polonium were detected in the majority of food sampled, with a large variation in magnitude. The maximum activity concentrations were detected in shellfish for all these radionuclides. Based on the established activity concentrations and ranges, the New Zealand diet contains activity concentrations of anthropogenic radionuclides far below the Codex Alimentarius guideline levels. Activity concentrations obtained for milk support its continued use as a sentinel for monitoring fallout radionuclides in terrestrial agriculture. The significant levels of natural and anthropogenic radionuclide activity concentrations detected in finfish and molluscs support undertaking further research to identify a suitable sentinel for New Zealand seafood monitoring. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Naturally Occurring Radioactive Materials (NORM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, P.
1997-02-01
This paper discusses the broad problems presented by Naturally Occuring Radioactive Materials (NORM). Technologically Enhanced naturally occuring radioactive material includes any radionuclides whose physical, chemical, radiological properties or radionuclide concentration have been altered from their natural state. With regard to NORM in particular, radioactive contamination is radioactive material in an undesired location. This is a concern in a range of industries: petroleum; uranium mining; phosphorus and phosphates; fertilizers; fossil fuels; forestry products; water treatment; metal mining and processing; geothermal energy. The author discusses in more detail the problem in the petroleum industry, including the isotopes of concern, the hazards theymore » present, the contamination which they cause, ways to dispose of contaminated materials, and regulatory issues. He points out there are three key programs to reduce legal exposure and problems due to these contaminants: waste minimization; NORM assesment (surveys); NORM compliance (training).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heath, G R
1975-07-01
During 10 days in the vicinity of 33$sup 0$20'N, 151$sup 0$00'W (MPG-2 area), three near-bottom current meters were deployed, the bathymetry and subbottom acoustic structure of the surrounding seafloor were determined, and sediment cores were collected for studies of artificial radionuclide distribution, geotechnical properties, geochemical properties, and to identify the character of shallow acoustic reflectors. Large volume water samples for artificial radionuclide studies and suspended sediment were also collected. These samples and data will supplement earlier material to be used in the evaluation of the central North Pacific as a potential site for the ultimate disposal of high-level reactor wastes.more » (auth)« less
Boulyga, Sergei F; Zoriy, Myroslav; Ketterer, Michael E; Becker, J Sabine
2003-08-01
The depth distribution of plutonium, americium, and 137Cs originating from the 1986 accident at the Chernobyl Nuclear Power Plant (NPP) was investigated in several soil profiles in the vicinity from Belarus. The vertical migration of transuranic elements in soils typical of the 30 km relocation area around Chernobyl NPP was studied using inductively coupled plasma mass spectrometry (ICP-MS), alpha spectrometry, and gamma spectrometry. Transuranic concentrations in upper soil layers ranged from 6 x 10(-12) g g(-1) to 6 x 10(-10) g g(-1) for plutonium and from 1.8 x 10(-13) g g(-1) to 1.6 x 10(-11) g g(-1) for americium. These concentrations correspond to specific activities of (239+240)Pu of 24-2400 Bq kg(-1) and specific activity of 241Am of 23-2000 Bq kg(-1), respectively. Transuranics in turf-podzol soil migrate slowly to the deeper soil layers, thus, 80-95%, of radionuclide inventories were present in the 0-3 cm intervals of turf-podzol soils collected in 1994. In peat-marsh soil migration processes occur more rapidly than in turf-podzol and the maximum concentrations are found beneath the soil surface (down to 3-6 cm). The depth distributions of Pu and Am are essentially identical for a given soil profile. (239+240)Pu/137Cs and 241Am/137Cs activity ratios vary by up to a factor of 5 at some sites while smaller variations in these ratios were observed at a site close to Chernobyl, suggesting that 137Cs is dominantly particle associated close to Chernobyl but volatile species of 137Cs are of relatively greater importance at the distant sites.
NASA Astrophysics Data System (ADS)
Quinto, Francesca; Hrnecek, Erich; Krachler, Michael; Shotyk, William; Steier, Peter; Winkler, Stephan R.
2013-04-01
Plutonium (239Pu, 240Pu, 241Pu, 242Pu) and uranium (236U, 238U) isotopes were analyzed in an ombrotrophic peat core from the Black Forest, Germany, representing the last 80 years of atmospheric deposition. The reliable determination of these isotopes at ultra-trace levels was possible using ultra-clean laboratory procedures and accelerator mass spectrometry. The 240Pu/239Pu isotopic ratios are constant along the core with a mean value of 0.19 ±0.02 (N = 32). This result is consistent with the acknowledged average 240Pu/239Pu isotopic ratio from global fallout in the Northern Hemisphere. The global fallout origin of Pu is confirmed by the corresponding 241Pu/239Pu (0.0012 ±0.0005) and 242Pu/239Pu (0.004 ± 0.001) isotopic ratios. The identification of the Pu isotopic composition characteristic for global fallout in peat layers pre-dating the period of atmospheric atom bomb testing (AD 1956 - AD 1980) is a clear evidence of the migration of Pu downwards the peat profile. The maximum of global fallout derived 236U is detected in correspondence to the age/depth layer of maximum stratospheric fallout (AD 1963). This finding demonstrates that the 236U bomb peak can be successfully used as an independent chronological marker complementing the 210Pb dating of peat cores. The profiles of the global fallout derived 236U and 239Pu are compared with those of 137Cs and 241Am. As typical of ombrothrophic peat, the temporal fallout pattern of 137Cs is poorly retained. Similarly like for Pu, post-depositional migration of 241Am in peat layers preceding the era of atmospheric nuclear tests is observed.
CIRMIS Data system. Volume 2. Program listings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrichs, D.R.
1980-01-01
The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologicmore » systems, model the transport of released radionuclides through the hydrologic systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. The various input parameters required in the analysis are compiled in data systems. The data are organized and prepared by various input subroutines for utilization by the hydraulic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required.The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System is a storage and retrieval system for model input and output data, including graphical interpretation and display. This is the second of four volumes of the description of the CIRMIS Data System.« less
International Talent Flow and Careers: An Australasian Perspective
ERIC Educational Resources Information Center
Inkson, Kerr; Carr, Stuart C.
2004-01-01
The phenomenon of migration makes many careers international, and globalisation has accelerated the process. This paper reports on a program of studies, now labelled "talent flow," conducted in New Zealand with a view to increasing understanding of migration and its relationship to careers. Initial studies considered the phenomenon of…
Installation Restoration Program Records Search for Dobbins Air Force Base, Georgia
1982-04-01
migation Death to irond water ____________ lift ogaeiitation 1 . Subsurface flow_____I a _____________ Direct aess W 4round water______ j Submrs(10 x actr...potential pathways, surface water migation , flooding, and ground-water * migration. Select the highest rating, and proceed to C. f 1. Surface water migration
Global Migration: The Need for Culturally Competent School Psychologists
ERIC Educational Resources Information Center
Vega, Desireé; Lasser, Jon; Plotts, Cynthia
2015-01-01
Never before have more children lived away from their home countries. Given the unique social, emotional, and academic needs of children who have migrated, school psychologists must be well prepared to meet these growing demands. Consequently, school psychology training programs must invest in the preparation of culturally competent future school…
Reactive transport modeling in fractured rock: A state-of-the-science review
NASA Astrophysics Data System (ADS)
MacQuarrie, Kerry T. B.; Mayer, K. Ulrich
2005-10-01
The field of reactive transport modeling has expanded significantly in the past two decades and has assisted in resolving many issues in Earth Sciences. Numerical models allow for detailed examination of coupled transport and reactions, or more general investigation of controlling processes over geologic time scales. Reactive transport models serve to provide guidance in field data collection and, in particular, enable researchers to link modeling and hydrogeochemical studies. In this state-of-science review, the key objectives were to examine the applicability of reactive transport codes for exploring issues of redox stability to depths of several hundreds of meters in sparsely fractured crystalline rock, with a focus on the Canadian Shield setting. A conceptual model of oxygen ingress and redox buffering, within a Shield environment at time and space scales relevant to nuclear waste repository performance, is developed through a review of previous research. This conceptual model describes geochemical and biological processes and mechanisms materially important to understanding redox buffering capacity and radionuclide mobility in the far-field. Consistent with this model, reactive transport codes should ideally be capable of simulating the effects of changing recharge water compositions as a result of long-term climate change, and fracture-matrix interactions that may govern water-rock interaction. Other aspects influencing the suitability of reactive transport codes include the treatment of various reaction and transport time scales, the ability to apply equilibrium or kinetic formulations simultaneously, the need to capture feedback between water-rock interactions and porosity-permeability changes, and the representation of fractured crystalline rock environments as discrete fracture or dual continuum media. A review of modern multicomponent reactive transport codes indicates a relatively high-level of maturity. Within the Yucca Mountain nuclear waste disposal program, reactive transport codes of varying complexity have been applied to investigate the migration of radionuclides and the geochemical evolution of host rock around the planned disposal facility. Through appropriate near- and far-field application of dual continuum codes, this example demonstrates how reactive transport models have been applied to assist in constraining historic water infiltration rates, interpreting the sealing of flow paths due to mineral precipitation, and investigating post-closure geochemical monitoring strategies. Natural analogue modeling studies, although few in number, are also of key importance as they allow the comparison of model results with hydrogeochemical and paleohydrogeological data over geologic time scales.
Selected radionuclides important to low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-11-01
The purpose of this document is to provide information to state representatives and developers of low level radioactive waste (LLW) management facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the environment. Extensive surveys of available literature provided information for this report. Certain radionuclides may contribute significantly to the dose estimated during a radiological performance assessment analysis of an LLW disposal facility. Among these are the radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha emitting transuranics with half-lives greater than 5 years). Thismore » report discusses these radionuclides and other radionuclides that may be significant during a radiological performance assessment analysis of an LLW disposal facility. This report not only includes essential information on each radionuclide, but also incorporates waste and disposal information on the radionuclide, and behavior of the radionuclide in the environment and in the human body. Radionuclides addressed in this document include technetium-99, carbon-14, iodine-129, tritium, cesium-137, strontium-90, nickel-59, plutonium-241, nickel-63, niobium-94, cobalt-60, curium -42, americium-241, uranium-238, and neptunium-237.« less
Rock Island Dam Smolt Monitoring; 1994-1995 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truscott, Keith B.; Fielder, Paul C.
1995-10-01
Downstream migrating salmon and steelhead trout (Oncorhynchus spp.) smolts were monitored at the Rock Island Dam bypass trap from April 1 - August 31, 1954. This was the tenth consecutive year that the bypass trap was monitored. Data collected included: (1) number of fish caught by species, (2) number of adipose clipped and/or Passive Integrated Transponder (PIT) tagged fish caught by species, (3) daily average riverflow, (4) daily average powerhouse No. 1 and No. 2 flows and daily average spill. These data were transmitted to the Fish Passage Center, which manages the Smolt Monitoring Program throughout the Columbia River Basin.more » The Smolt Monitoring Program is used to manage the {open_quotes}water budget{close_quotes}, releasing upstream reservoir water storage allocated to supplement river flows to enhance survival of downstream migrating juvenile salmonids. The Rock Island Dam trapping facility collected 37,795 downstream migrating salmonids in 1994. Collected fish included 4 yearling and 4 sub-yearling chinook salmon (O. tshawytscha) that had been previously PIT tagged to help determine migration rates. Additionally, 1,132 sub-yearling chinook, 4,185 yearling chinook, 6,627 steelhead, (O. mykiss) and 422 sockeye (O. nerka) with clipped adipose fins were collected. The middle 80% of the 1994 spring migration (excluding sub-yearling chinooks) passed Rock Island Dam during a 34 day period, April 25 - May 28. Passage rates of chinook and steelhead smolts released from hatcheries and the downstream migration timing of all salmonids are presented. The spring migration timing of juvenile salmonids is strongly influenced by hatchery releases above Rock Island Dam.« less
Glynn, P.D.
2003-01-01
One-dimensional (1D) geochemical transport modeling is used to demonstrate the effects of speciation and sorption reactions on the ground-water transport of Np and Pu, two redox-sensitive elements. Earlier 1D simulations (Reardon, 1981) considered the kinetically limited dissolution of calcite and its effect on ion-exchange reactions (involving 90Sr, Ca, Na, Mg and K), and documented the spatial variation of a 90Sr partition coefficient under both transient and steady-state chemical conditions. In contrast, the simulations presented here assume local equilibrium for all reactions, and consider sorption on constant potential, rather than constant charge, surfaces. Reardon's (1981) seminal findings on the spatial and temporal variability of partitioning (of 90Sr) are reexamined and found partially caused by his assumption of a kinetically limited reaction. In the present work, sorption is assumed the predominant retardation process controlling Pu and Np transport, and is simulated using a diffuse-double-layer-surface-complexation (DDLSC) model. Transport simulations consider the infiltration of Np- and Pu-contaminated waters into an initially uncontaminated environment, followed by the cleanup of the resultant contamination with uncontaminated water. Simulations are conducted using different spatial distributions of sorption capacities (with the same total potential sorption capacity, but with different variances and spatial correlation structures). Results obtained differ markedly from those that would be obtained in transport simulations using constant Kd, Langmuir or Freundlich sorption models. When possible, simulation results (breakthrough curves) are fitted to a constant K d advection-dispersion transport model and compared. Functional differences often are great enough that they prevent a meaningful fit of the simulation results with a constant K d (or even a Langmuir or Freundlich) model, even in the case of Np, a weakly sorbed radionuclide under the simulation conditions. Functional behaviors that cannot be fit include concentration trend reversals and radionuclide desorption spikes. Other simulation results are fit successfully but the fitted parameters (Kd and dispersivity) vary significantly depending on simulation conditions (e.g. "infiltration" vs. "cleanup" conditions). Notably, an increase in the variance of the specified sorption capacities results in a marked increase in the dispersion of the radionuclides. The results presented have implications for the simulation of radionuclide migration in performance assessments of nuclear waste-disposal sites, for the future monitoring of those sites, and more generally for modeling contaminant transport in ground-water environments. ?? 2003 Published by Elsevier Science Ltd.
Tracing time scales of fluid residence and migration in the crust (Invited)
NASA Astrophysics Data System (ADS)
Yokochi, R.; Sturchio, N. C.; Purtschert, R.; Jiang, W.; Lu, Z.; Müller, P.; Yang, G.; Kennedy, B. M.
2013-12-01
Crustal fluids (water, gas and oil) mediate chemical reactions, and they may transport, concentrate or disperse elements in the crust; the fluids are often valuable resources in their own right. In this context, determining the time scales of fluid transport and residence time is essential for understanding geochemical cycle of elements, as well as risk and resource management. Crustal fluids contain stable and radioactive noble gases indigenous to the fluid, which may be of magmatic or atmospheric origin of various ages. In addition, radiogenic and nucleogenic noble gases (both stable and radioactive) are continuously produced by the decay of U, Th and K and related nuclear reactions in the crust at known rates and in known relative proportions. They may be released from their production sites and incorporated into the fluid, acting as natural spikes to trace fluid flow. The concentrations of a noble gas isotope in a crustal fluid in a system devoid of phase separation or mixing varies as a function of decay time and supply from the production sites into the fluids. The release rate of noble gases from the production sites in minerals to the fluid phase may be determined uniquely through the studies of noble gas radionuclides (Yokochi et al., 2012), which is fundamental to the behavior of volatile elements in geochemistry. A pilot study of noble gas radionuclides in an active geothermal system was performed at Yellowstone National Park (Yokochi et al., 2013). Prior studies of the Yellowstone system using stable noble gas isotopes show that the thermal fluids contain a mixture of atmospheric, mantle, and crustal components. Noble gas radionuclide measurements provide new chronometric constraints regarding the subsurface residence times of Yellowstone thermal fluids. Upper limits on deep thermal fluid mean residence times, estimated from 39Ar/40Ar* ratios, range from 118 to 137 kyr for features in the Gibbon and Norris Geyser Basin areas, and are about 16 kyr in Lower Geyser Basin, with the key assumption that the fluid acquires its crustal component of Ar in Quaternary volcanic rock of the Yellowstone caldera. Krypton-81 isotopic abundances in the gas samples yield upper limits on residence time that are consistent with those obtained from 39Ar/40Ar* ratios. Young fluid components can also be determined by krypton-85 concentrations in the extracted gases. Better understanding of the production mechanisms of noble-gas radionuclides in reservoir rocks would significantly decrease the uncertainties in modeling fluid residence times.
Optimization of interneuron function by direct coupling of cell migration and axonal targeting.
Lim, Lynette; Pakan, Janelle M P; Selten, Martijn M; Marques-Smith, André; Llorca, Alfredo; Bae, Sung Eun; Rochefort, Nathalie L; Marín, Oscar
2018-06-18
Neural circuit assembly relies on the precise synchronization of developmental processes, such as cell migration and axon targeting, but the cell-autonomous mechanisms coordinating these events remain largely unknown. Here we found that different classes of interneurons use distinct routes of migration to reach the embryonic cerebral cortex. Somatostatin-expressing interneurons that migrate through the marginal zone develop into Martinotti cells, one of the most distinctive classes of cortical interneurons. For these cells, migration through the marginal zone is linked to the development of their characteristic layer 1 axonal arborization. Altering the normal migratory route of Martinotti cells by conditional deletion of Mafb-a gene that is preferentially expressed by these cells-cell-autonomously disrupts axonal development and impairs the function of these cells in vivo. Our results suggest that migration and axon targeting programs are coupled to optimize the assembly of inhibitory circuits in the cerebral cortex.
Undocumented migration in response to climate change
Riosmena, Fernando; Hunter, Lori M.; Runfola, Daniel M.
2016-01-01
In the face of climate change induced economic uncertainty, households may employ migration as an adaptation strategy to diversify their livelihood portfolio through remittances. However, it is unclear whether such climate migration will be documented or undocumented. In this study we combine detailed migration histories with daily temperature and precipitation information for 214 weather stations to investigate whether climate change more strongly impacts undocumented or documented migration from 68 rural Mexican municipalities to the U.S. during the years 1986–1999. We employ two measures of climate change, the warm spell duration index (WSDI) and the precipitation during extremely wet days (R99PTOT). Results from multi-level event-history models demonstrate that climate-related international migration from rural Mexico was predominantly undocumented. We conclude that programs to facilitate climate change adaptation in rural Mexico may be more effective in reducing undocumented border crossings than increased border fortification. PMID:27570840
Undocumented migration in response to climate change.
Nawrotzki, Raphael J; Riosmena, Fernando; Hunter, Lori M; Runfola, Daniel M
In the face of climate change induced economic uncertainty, households may employ migration as an adaptation strategy to diversify their livelihood portfolio through remittances. However, it is unclear whether such climate migration will be documented or undocumented. In this study we combine detailed migration histories with daily temperature and precipitation information for 214 weather stations to investigate whether climate change more strongly impacts undocumented or documented migration from 68 rural Mexican municipalities to the U.S. during the years 1986-1999. We employ two measures of climate change, the warm spell duration index ( WSDI ) and the precipitation during extremely wet days ( R99PTOT ). Results from multi-level event-history models demonstrate that climate-related international migration from rural Mexico was predominantly undocumented. We conclude that programs to facilitate climate change adaptation in rural Mexico may be more effective in reducing undocumented border crossings than increased border fortification.
Manent, Jean-Bernard; Wang, Yu; Chang, YoonJeung; Paramasivam, Murugan; LoTurco, Joseph J
2009-01-01
Disorders of neuronal migration can lead to malformations of the cerebral neocortex that greatly increase the risk of seizures. It remains untested whether malformations caused by disorders in neuronal migration can be reduced by reactivating cellular migration, and whether such repair can decrease seizure risk. Here we show, in a rat model of subcortical band heterotopia (SBH) generated by in utero RNAi of Dcx, that aberrantly positioned neurons can be stimulated to migrate by re-expressing Dcx after birth. Re-starting migration in this way both reduces neocortical malformations and restores neuronal patterning. We find further that the capacity to reduce SBH has a critical period in early postnatal development. Moreover, intervention after birth reduces convulsant-induced seizure threshold to levels similar to that of malformation-free controls. These results suggest that disorders of neuronal migration may be eventually treatable by re-engaging developmental programs both to reduce the size of cortical malformations and to reduce seizure risk. PMID:19098909
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boggs, S. Jr.; Livermore, D.; Seitz, M.G.
Dissolved humic substances (humic and fulvic acids) occur in surface waters and groundwaters in concentrations ranging from less than 1 mg(C)/L to more than 100 mg(C)/L. Humic substances are strong complexing agents for many trace metals in the environment and are also capable of forming stable soluble complexes or chelates with radionuclides. Concentrations of humic materials as low as 1 mg(C)/L can produce a detectable increase in the mobility of some actinide elements by forming soluble complexes that inhibit sorption of the radionuclides onto rock materials. The stability of trace metal- or radionuclide-organic complexes is commonly measured by an empiricallymore » determined conditional stability constant (K'), which is based on the ratio of complexed metal (radionuclide) in solution to the product concentration of uncomplexed metal and humic complexant. Larger values of stability constants indicate greater complex stability. The stability of radionuclide-organic complexes is affected both by concentration variables and envionmental factors. In general, complexing is favored by increased of radionuclide, increased pH, and decreased ionic strength. Actinide elements are generally most soluble in their higher oxidation states. Radionuclides can also form stable, insoluble complexes with humic materials that tend to reduce radionuclide mobility. These insoluble complexes may be radionuclide-humate colloids that subsequently precipitate from solution, or complexes of radionuclides and humic substances that sorb to clay minerals or other soil particulates strongly enough to immobilize the radionuclides. Colloid formation appears to be favored by increased radionuclide concentration and lowered pH; however, the conditions that favor formation of insoluble complexes that sorb to particulates are still poorly understood. 129 refs., 25 figs., 19 tabs.« less
TECHNOLOGIES FOR RADON AND RADIONUCLIDE REMOVAL
This paper provides a summary of the technologies that are currently being used to remove radionuclides from drinking water. The radionuclides that are featured are the radionuclides currently regulated by EPA; radium, radon and uranium. Tehnologies effective for removal of eac...
Lunar and Planetary Science XXXV: Origin of Planetary Systems
NASA Technical Reports Server (NTRS)
2004-01-01
The session titled Origin of Planetary Systems" included the following reports:Convective Cooling of Protoplanetary Disks and Rapid Giant Planet Formation; When Push Comes to Shove: Gap-opening, Disk Clearing and the In Situ Formation of Giant Planets; Late Injection of Radionuclides into Solar Nebula Analogs in Orion; Growth of Dust Particles and Accumulation of Centimeter-sized Objects in the Vicinity of a Pressure enhanced Region of a Solar Nebula; Fast, Repeatable Clumping of Solid Particles in Microgravity ; Chondrule Formation by Current Sheets in Protoplanetary Disks; Radial Migration of Phyllosilicates in the Solar Nebula; Accretion of the Outer Planets: Oligarchy or Monarchy?; Resonant Capture of Irregular Satellites by a Protoplanet ; On the Final Mass of Giant Planets ; Predicting the Atmospheric Composition of Extrasolar Giant Planets; Overturn of Unstably Stratified Fluids: Implications for the Early Evolution of Planetary Mantles; and The Evolution of an Impact-generated Partially-vaporized Circumplanetary Disk.
Geoscience parameter data base handbook: granites and basalts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-12-01
The Department of Energy has the responsibility for selecting and constructing Federal repositories for radioactive waste. The Nuclear Regulatory Commission must license such repositories prior to construction. The basic requirement in the geologic disposal of radioactive waste is stated as: placement in a geologic host whereby the radioactive waste is not in mechanical, thermal or chemical equilibrium with the object of preventing physical or chemical migration of radionuclides into the biosphere or hydrosphere in hazardous concentration (USGS, 1977). The object of this report is to document the known geologic parameters of large granite and basalt occurrences in the coterminous Unitedmore » States, for future evaluation in the selection and licensing of radioactive waste repositories. The description of the characteristics of certain potential igneous hosts has been limited to existing data pertaining to the general geologic character, geomechanics, and hydrology of identified occurrences. A description of the geochemistry is the subject of a separate report.« less
NASA Astrophysics Data System (ADS)
Yudintsev, S. V.; Mal'kovsky, V. I.; Mokhov, A. V.
2016-05-01
The interaction of aluminophosphate glass with water at 95°C for 35 days results in glass heterogenization and in the appearance of a gel layer and various phases. The leaching rate of elements is low owing to the formation of a protective layer on the glass surface. It is shown that over 80% of uranium leached from the glass matrix occurs as colloids below 450 nm in size characterized by high migration ability in the geological environment. To determine the composition of these colloids is a primary task for further studies. Water vapor is a crystallization factor for glasses. The conditions as such may appear even at early stages of glass storage because of the failure of seals on containers of high-level radioactive wastes. The examination of water resistance of crystallized matrices and determination of the fraction of radionuclide in colloids are also subjects for further studies.
Lee, Dongyoul; Li, Mengshi; Bednarz, Bryan; Schultz, Michael K
2018-06-26
The use of targeted radionuclide therapy for cancer is on the rise. While beta-particle-emitting radionuclides have been extensively explored for targeted radionuclide therapy, alpha-particle-emitting radionuclides are emerging as effective alternatives. In this context, fundamental understanding of the interactions and dosimetry of these emitted particles with cells in the tumor microenvironment is critical to ascertaining the potential of alpha-particle-emitting radionuclides. One important parameter that can be used to assess these metrics is the S-value. In this study, we characterized several alpha-particle-emitting radionuclides (and their associated radionuclide progeny) regarding S-values in the cellular and tumor-metastasis environments. The Particle and Heavy Ion Transport code System (PHITS) was used to obtain S-values via Monte Carlo simulation for cell and tumor metastasis resulting from interactions with the alpha-particle-emitting radionuclides, lead-212 ( 212 Pb), actinium-225 ( 225 Ac) and bismuth-213 ( 213 Bi); these values were compared to the beta-particle-emitting radionuclides yttrium-90 ( 90 Y) and lutetium-177 ( 177 Lu) and an Auger-electron-emitting radionuclide indium-111 ( 111 In). The effect of cellular internalization on S-value was explored at increasing degree of internalization for each radionuclide. This aspect of S-value determination was further explored in a cell line-specific fashion for six different cancer cell lines based on the cell dimensions obtained by confocal microscopy. S-values from PHITS were in good agreement with MIRDcell S-values (cellular S-values) and the values found by Hindié et al. (tumor S-values). In the cellular model, 212 Pb and 213 Bi decay series produced S-values that were 50- to 120-fold higher than 177 Lu, while 225 Ac decay series analysis suggested S-values that were 240- to 520-fold higher than 177 Lu. S-values arising with 100% cellular internalization were two- to sixfold higher for the nucleus when compared to 0% internalization. The tumor dosimetry model defines the relative merit of radionuclides and suggests alpha particles may be effective for large tumors as well as small tumor metastases. These results from PHITS modeling substantiate emerging evidence that alpha-particle-emitting radionuclides may be an effective alternative to beta-particle-emitting radionuclides for targeted radionuclide therapy due to preferred dose-deposition profiles in the cellular and tumor metastasis context. These results further suggest that internalization of alpha-particle-emitting radionuclides via radiolabeled ligands may increase the relative biological effectiveness of radiotherapeutics.
The Bracero Program: A History of Foreign Contract Labor in California.
ERIC Educational Resources Information Center
Verdugo, Naomi
1981-01-01
Briefly describes the history of Mexican migration to the United States; analyzes the impact--its benefits and drawbacks--of the Bracero Program (Mexican National Program) on the agricultural industry (especially in California), the U.S. economy and the braceros themselves; considers the althernatives to the Bracero Program. (Author)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aponte, C.I.
F and H Tank Farms generate supernate and sludge contaminated Low-Level Waste. The waste is collected, characterized, and packaged for disposal. Before the waste can be disposed of, however, it must be properly characterized. Since the radionuclide distribution in typical supernate is well known, its characterization is relatively straight forward and requires minimal effort. Non-routine waste, including potentially sludge contaminated, requires much more effort to effectively characterize. The radionuclide distribution must be determined. In some cases the waste can be contaminated by various sludge transfers with unique radionuclide distributions. In these cases, the characterization can require an extensive effort. Evenmore » after an extensive characterization effort, the container must still be prepared for shipping. Therefore a significant amount of time may elapse from the time the waste is generated until the time of disposal. During the time it is possible for a tornado or high wind scenario to occur. The purpose of this report is to determine the effect of a tornado on potential sludge contaminated waste, or Transuranic (TRU) waste in B-25s [large storage containers], to evaluate the potential impact on F and H Tank Farms, and to help establish a B-25 control program for tornado events.« less
Northern Marshall Islands radiological survey: sampling and analysis summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robison, W.L.; Conrado, C.L.; Eagle, R.J.
1981-07-23
A radiological survey was conducted in the Northern Marshall Islands to document reamining external gamma exposures from nuclear tests conducted at Enewetak and Bikini Atolls. An additional program was later included to obtain terrestrial and marine samples for radiological dose assessment for current or potential atoll inhabitants. This report is the first of a series summarizing the results from the terrestrial and marine surveys. The sample collection and processing procedures and the general survey methodology are discussed; a summary of the collected samples and radionuclide analyses is presented. Over 5400 samples were collected from the 12 atolls and 2 islandsmore » and prepared for analysis including 3093 soil, 961 vegetation, 153 animal, 965 fish composite samples (average of 30 fish per sample), 101 clam, 50 lagoon water, 15 cistern water, 17 groundwater, and 85 lagoon sediment samples. A complete breakdown by sample type, atoll, and island is given here. The total number of analyses by radionuclide are 8840 for /sup 241/Am, 6569 for /sup 137/Cs, 4535 for /sup 239 +240/Pu, 4431 for /sup 90/Sr, 1146 for /sup 238/Pu, 269 for /sup 241/Pu, and 114 each for /sup 239/Pu and /sup 240/Pu. A complete breakdown by sample category, atoll or island, and radionuclide is also included.« less
Proceedings from the Workshop on Phytoremediation of Inorganic Contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. T. Brown; G. Matthern; A. Glenn
The Metals and Radionuclides Product Line of the US Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) is responsible for the development of technologies and systems that reduce the risk and cost of remediation of radionuclide and hazardous metal contamination in soils and groundwater. The rapid and efficient remediation of these sites and the areas surrounding them represents a technological challenge. Phytoremediation, the use of living plants to cleanup contaminated soils, sediments, surface water and groundwater, is an emerging technology that may be applicable to the problem. The use of phytoremediation to cleanup organic contamination is widely accepted andmore » is being implemented at numerous sites. This workshop was held to initiate a discussion in the scientific community about whether phytoremediation is applicable to inorganic contaminants, such as metals and radionuclides, across the DOE complex. The Workshop on Phytoremediation of Inorganic Contaminants was held at Argonne National Laboratory from November 30 through December 2, 1999. The purpose of the workshop was to provide SCFA and the DOE Environmental Restoration Program with an understanding of the status of phytoremediation as a potential remediation technology for DOE sites. The workshop was expected to identify data gaps, technologies ready for demonstration and deployment, and to provide a set of recommendations for the further development of these technologies.« less
Environmental Releases for Calendar Year 2001
DOE Office of Scientific and Technical Information (OSTI.GOV)
DYEKMAN, D L
2002-08-01
This report fulfills the annual reporting requirements of US Department of Energy (DOE) Order 5400.1, General Environmental Protection Program. The report contains tabular data summaries on air emissions and liquid effluents released to the environment as well as nonroutine releases during calendar year (CY) 2001. These releases, bearing radioactive and hazardous substances, were from Bechtel Hanford, Inc. (BHI), CH2M HILL Hanford Group, Inc. (CHG), and Fluor Hanford (FH) managed facilities and activities. These data were obtained from direct sampling and analysis and from estimates based upon approved release factors. This report further serves as a supplemental resource to the Hanfordmore » Site Environmental Report (HSER PNNL-13910), published by the Pacific Northwest National Laboratory. HSER includes a yearly accounting of the impacts on the surrounding populace and environment from major activities at the Hanford Site. HSER also summarizes the regulatory compliance status of the Hanford Site. Tables ES-1 through ES-5 display comprehensive data summaries of CY2001 air emission and liquid effluent releases. The data displayed in these tables compiles the following: Radionuclide air emissions; Nonradioactive air emissions; Radionuclides in liquid effluents discharged to ground; Total volumes and flow rates of radioactive liquid effluents discharged to ground; and Radionuclides discharged to the Columbia River.« less
Estimation of internal exposure to 99Mo in nuclear medicine patients.
Silva, I C O A; Lucena, E A; Souza, W O; Dantas, A L A; Dantas, B M
2010-05-10
(99m)Tc is the most widely used radionuclide in nuclear medicine. It is obtained by elution of (99)Mo-(99m)Tc generators. Depending on the quality of the generator and its integrity, (99)Mo may be extracted from the column during the elution process, becoming a radionuclidic impurity in the (99m)Tc eluate. This fact would impart an unnecessary dose to the patients submitted to diagnostic procedures. The aim of this work is to evaluate (99)Mo incorporation and internal effective doses in nuclear medicine patients through bioassay techniques, providing information on the metabolism of molybdenum in humans. A methodology based on in vivo and in vitro measurements was developed. In vivo measurements were performed with a NaI detector installed in the IRD WBC. Urine samples were analysed with a HPGe at the IRD bioassay laboratory. Patients showed detectable activities of (99)Mo in whole body and urine. Results were interpreted with AIDE software. Estimated incorporation was compared to predicted values based on ICRP model. Effective doses were in the order of micro sieverts. Results suggest the need to implement a routine quality control program of radionuclidic impurity of (99)Mo in (99m)Tc eluates to be conducted by radiopharmacy laboratories of nuclear medicine centers.
Curbing Migration of Talent in Africa: Initiatives for Collaborative Action
ERIC Educational Resources Information Center
Keino, Leah C.; Van Wyk, Ria; Hendrich, Suzanne; Phye, Gary; Thompson, Ann
2005-01-01
In an effort to address migration of talent from sub-Saharan Africa, a number of higher education institutions are attempting to strengthen or develop graduate programs in several areas. These institutions see the potential for emerging digital technologies to provide new and exciting opportunities for collaboration with Western institutions.…
Importing the Poor: Welfare Magnetism and Cross-Border Welfare Migration
ERIC Educational Resources Information Center
Journal of Human Resources, 2005
2005-01-01
A study of the welfare programs in two counties bordering different states along with comparative welfare expenditure in interior counties tests the theory that Aid for Families with Dependent Children (AFDC) recipients migrate to counties which have a higher per capita welfare budget. Research shows that border counties with a $100 differential…
Mesa, Matthew G.; Weiland, Lisa K.; Christiansen, Helena E.
2016-01-01
We compiled and summarized previous sources of data and research results related to the presence, numbers, and migration timing characteristics of juvenile (eyed macropthalmia) and larval (ammocoetes) Pacific lamprey Entosphenus tridentatus, in the Columbia River basin (CRB). Included were data from various screw trap collections, data from historic fyke net studies, catch records of lampreys at JBS facilities, turbine cooling water strainer collections, and information on the occurrence of lampreys in the diets of avian and piscine predators. We identified key data gaps and uncertainties that should be addressed in a juvenile lamprey passage research program. The goal of this work was to summarize information from disparate sources so that managers can use it to prioritize and guide future research and monitoring efforts related to the downstream migration of juvenile Pacific lamprey within the CRB. A common finding in all datasets was the high level of variation observed for CRB lamprey in numbers present, timing and spatial distribution. This will make developing monitoring programs to accurately characterize lamprey migrations and passage more challenging. Primary data gaps centered around our uncertainty on the numbers of juvenile and larval present in the system which affects the ability to assign risk to passage conditions and prioritize management actions. Recommendations include developing standardized monitoring methods, such as at juvenile bypass systems (JBS’s), to better document numbers and timing of lamprey migrations at dams, and use biotelemetry tracking techniques to estimate survival potentials for different migration histories.
NASA Astrophysics Data System (ADS)
Kita, Kazuyuki; Igarashi, Yasuhiro; Yoshida, Naohiro; Nakajima, Teruyuki
2013-04-01
Following a huge earthquake and tsunami in Eastern Japan on 11 March, 2011, the accident in Fukushima Dai-ichi Nuclear Power Plant (FDNPP) occurred to emit a large amount of artificial radionuclides to the environment. Soon after the FDNPP accident, many Japanese researchers, as well as researchers in other countries, started monitoring radionuclides in various environmental fields and/or model calculations to understand extent and magnitude of radioactive pollution. In this presentation, we overview these activities for the atmospheric radionuclides in Japan as followings: 1. Investigations to evaluate radionuclide emissions by explosions at FNDPP in March 2011 and to estimate the respiration dose of the radiation at this stage. 2. Investigations to evaluate atmospheric transport and deposition processes of atmospheric radionuclide to determine the extent of radionuclide pollution. -- Based on results of the regular and urgent monitoring results, as well as the mapping of the distribution of radionuclide s accumulated by the deposition to the ground, restoration of their time-dependent emission rates has been tried, and processes determining atmospheric concentration and deposition to the ground have been investigated by using the model calculations. 3. Monitoring of the atmospheric concentrations of radionuclide after the initial, surge phase of FNDPP accident. 4. Investigations to evaluate re-suspension of radionuclide from the ground, including the soil and the vegetation. -- Intensive monitoring of the atmospheric concentrations and deposition amount of radionuclide after the initial, surge phase of the accident enable us to evaluate emission history from FNDPP, atmospheric transport and deposition processes, chemical and physical characteristics of atmospheric radionuclide especially of radio cesium, and re-suspension processes which has become dominant process to supply radio cesium to the atmosphere recently.
NASA Astrophysics Data System (ADS)
Steinnes, Eiliv
2007-11-01
Radioecology is the subject dealing with the behaviour of radioactive substances in nature and how they affect plants, animals, and humans. The text discusses radionuclides of natural origin and their doses to man, artificially produced radionuclides and their most important sources, pathways of radionuclides in the environment, and transfer of radionuclides in foodchains. The importance of chemical speciation on the mobility of radionuclides in radioecology is particularly emphasized. Some radioecological problems in Norway following the Chernobyl accident are briefly discussed.
Vertical distribution of 137Cs in grassland soils disturbed by moles (Talpa europaea L.).
Ramzaev, V; Barkovsky, A
2018-04-01
Activity of biota is one of the factors influencing vertical migration of radionuclides deposited from the atmosphere onto the ground surface. The goal of this work was to study the vertical distribution of 137 Cs in grassland soils disturbed by moles (Talpa europaea L.) in comparison with undisturbed grassland soils. Field observations and soil sampling were carried out in the areas of eight settlements in the Klintsovskiy, Krasnogorskiy and Novozybkovskiy districts of the Bryansk region, Russia in six years during the period 1999-2016. The study sites had been heavily contaminated by Chernobyl fallout in 1986. Activity of 137 Cs in soil samples was determined by γ-ray spectrometry. 137 Cs surface ground contamination levels at the studied plots (n = 17) ranged from 327 kBq m -2 to 2360 kBq m -2 with a mean of 1000 kBq m -2 and a median of 700 kBq m -2 . The position of the 137 Cs migration centre in the soil in 2010-2016 was significantly (the Mann-Whitney U test, P < .01) deeper at mole-disturbed plots (median = 5.99 cm or 6.64 g cm -2 , n = 6) compared to the undisturbed ones (median = 2.48 cm or 2.35 g cm -2 , n = 6). The 137 Cs migration rate at mole-disturbed plots (median = 0.26 g cm -2 y -1 , mean = 0.31 g cm -2 y -1 ) was significantly higher (by a factor of 3) than at undisturbed plots (median = 0.08 g cm -2 y -1 , mean = 0.10 g cm -2 y -1 ). The difference in the migration rates between the mole-disturbed and undisturbed plots (median = 0.18 g cm -2 y -1 , mean = 0.21 g cm -2 y -1 ) reasonably corresponded to the mass of soil that might be ejected by moles per unit area per year. The results of this study indicate that the burrowing activity of moles has increased vertical migration of Chernobyl-derived radiocaesium in the grassland soils. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, David J.; Strom, Daniel J.
This paper is part one of a three-part series investigating annual effective doses to residents of the United States from intakes of ubiquitous radionuclides, including radionuclides occurring naturally, radionuclides whose concentrations are technologically enhanced, and anthropogenic radionuclides. This series of papers explicitly excludes intakes from inhaling 222Rn, 220Rn, and their short-lived decay products; it also excludes intakes of radionuclides in occupational and medical settings. The goal of part one of this work was to review, summarize, and characterize all published and some unpublished data for U.S. residents on ubiquitous radionuclide concentrations in tissues and organs. Forty-five papers and reports weremore » obtained and their data reviewed, and three data sets were obtained via private communication. The 45 radionuclides of interest are the 238U series (14 nuclides), the actinium series (headed by 235U; 11 nuclides), and the 232Th series (11 nuclides); primordial radionuclides 87Rb and 40 K; cosmogenic and fallout radionuclides 14C and 3H; and purely anthropogenic radionuclides 137Cs-137mBa, 129I, and 90Sr-90Y. Measurements judged to be relevant were available for only 15 of these radionuclides: 238U, 235U, 234U, 232Th, 230Th, 228Th, 228Ra, 226Ra, 210Pb, 210Po, 137Cs, 87Rb, 40K, 14C, and 3H. Recent and relevant measurements were not available for 129I and 90Sr-90Y. A total of 11,714 radionuclide concentration measurements were found in one or more tissues or organs from 14 States. Data on age, sex, geographic locations, height, and weight of subjects were available only sporadically. Too often authors did not provide meaningful values of uncertainty of measurements so that variability in data sets is confounded with measurement uncertainty. The following papers detail how these shortcomings are overcome to achieve the goals of the three-part series.« less
Webb, R.H.; Rink, G.R.; Favor, B.O.
1987-01-01
The concentrations of gross alpha radioactivity minus uranium equaled or exceeded 15 picoCuries/L (pCi/L) in five of 14 wells sampled. The concentration of radium-226 plus radium-228 exceeded the primary water quality standard of 5 pCi/L in one well. The concentration of uranium exceeded a recommended limit of 0.035 mg/L in two wells. Perennial grass and sediment samples had low concentrations of radionuclides. The concentration of trace elements in the sediment samples was not unusual. Water quality of surface water in the Puerco River at Chambers varied as a function of the suspended sediment concentration. Concentrations of total gross alpha radiation fluctuated from 12 to 11,200 pCi/L. Concentrations of total gross beta radiation fluctuated from 45 to 4,500 pCi/L. (Author 's abstract)
Wei, H; Bai, J
1997-01-01
This article discusses patterns of female migration out of Gansu province in China and the causes of women's problems in migration. China is initiating a relocation project for moving 200,000 people from poverty areas in central south Gansu province to the Shule River Basin in Jiuquan Prefecture of Gansu. The study provides findings from a migrant survey. Destination and origin areas differed in educational attainment. Occupations varied by gender. The ratio of men to women in all salaried occupations varied between origin and destination areas. 96.41% in the origin areas and 55.31% in the destination areas were women farmers. During 1985-90, 50,902 persons moved to destination areas, of which 24,181 (47.51%) were female. Women's movements were related to marriage and family reunification. Men migrated due to job transfers or employment and business opportunities. About 610,000 people were interested in migrating to the Shule River Valley. 46.67% of female migrants in the destination area indicated that they had no say in decision making concerning the move; in the origin areas only 32.02% had no say. Female migrants in the destination area arrived 3-9 years ago. Women in the destination area had more skills than women in origin areas. "Finding a way out" was the major reason for migration in both destination and origin areas. Origin areas had more migrants who moved due to landlessness. 26.67% of women returned for visits to the origin areas. Few men or women participated in premigration programs; but, following migration, 63% of women and 86% of men were attracted to education programs. Most desired technical programs. Many women suffered from low educational status, low employment, premature marriage, and early childbearing. These problems were due to a backward economy, traditional values, women's personal characteristics, excessive childbearing, reforms, and the market economy.
Radionuclide deposition control
Brehm, William F.; McGuire, Joseph C.
1980-01-01
The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.
Behaviour and fluxes of natural radionuclides in the production process of a phosphoric acid plant.
Bolívar, J P; Martín, J E; García-Tenorio, R; Pérez-Moreno, J P; Mas, J L
2009-02-01
In recent years there has been an increasing awareness of the occupational and public hazards of the radiological impact of non-nuclear industries which process materials containing naturally occurring radionuclides. These include the industries devoted to the production of phosphoric acid by treating sedimentary phosphate rocks enriched in radionuclides from the uranium series. With the aim of evaluating the radiological impact of a phosphoric acid factory located in the south-western Spain, the distribution and levels of radionuclides in the materials involved in its production process have been analysed. In this way, it is possible to asses the flows of radionuclides at each step and to locate those points where a possible radionuclide accumulation could be produced. A set of samples collected along the whole production process were analysed to determine their radionuclide content by both alpha-particle and gamma spectrometry techniques. The radionuclide fractionation steps and enrichment sources have been located, allowing the establishment of their mass (activity) balances per year.
Therapeutic radionuclides in nuclear medicine: current and future prospects
Yeong, Chai-Hong; Cheng, Mu-hua; Ng, Kwan-Hoong
2014-01-01
The potential use of radionuclides in therapy has been recognized for many decades. A number of radionuclides, such as iodine-131 (131I), phosphorous-32 (32P), strontium-90 (90Sr), and yttrium-90 (90Y), have been used successfully for the treatment of many benign and malignant disorders. Recently, the rapid growth of this branch of nuclear medicine has been stimulated by the introduction of a number of new radionuclides and radiopharmaceuticals for the treatment of metastatic bone pain and neuroendocrine and other malignant or non-malignant tumours. Today, the field of radionuclide therapy is enjoying an exciting phase and is poised for greater growth and development in the coming years. For example, in Asia, the high prevalence of thyroid and liver diseases has prompted many novel developments and clinical trials using targeted radionuclide therapy. This paper reviews the characteristics and clinical applications of the commonly available therapeutic radionuclides, as well as the problems and issues involved in translating novel radionuclides into clinical therapies. PMID:25294374
Center for the Advancement of Health
... Cancer Care Kellogg Health Scholars Program KP Burch Leadership Program Diversity Data Place, Migration & Health Network * The Center for Advancing Health was a nonprofit organization founded in 1992, supported by individuals and foundations ...
Hillary Chapman; Heather Johnson
2005-01-01
The Shorebird Sister Schools Program (SSSP) is an internet-based environmental education program that provides a forum for students, biologists, and shorebird enthusiasts to track shorebird migration and share observations along flyways. The program?s vision is to engage public participation in the conservation of shorebirds and their wetland, grassland, and shoreline...
Comparison of radionuclide levels in soil, sagebrush, plant litter, cryptogams, and small mammals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landeen, D.S.
1994-09-01
Soil, sagebrush, plant litter, cryptogam, and small mammal samples were collected and analyzed for cesium-137, strontium-90, plutonium-238, plutonium 239/240, technetium-99, and iodine-129 from 1981 to 1986 at the US Department of Energy Hanford Site in southeastern Washington State as part of site characterization and environmental monitoring activities. Samples were collected on the 200 Areas Plateau, downwind from ongoing waste management activities. Plant litter, cryptogams, and small mammals are media that are not routinely utilized in monitoring or characterization efforts for determination of radionuclide concentrations. Studies at Hanford, other US Department of Energy sites, and in eastern Europe have indicated thatmore » plant litter and cryptogams may serve as effective ``natural`` monitors of air quality. Plant litter in this study consists of fallen leaves from sagebrush and ``cryptogams`` describes that portion of the soil crust composed of mosses, lichens, algae, and fungi. Comparisons of cesium-137 and strontium-90 concentrations in the soil, sagebrush, litter, and cryptogams revealed significantly higher (p<0.05) levels in plant litter and cryptogams. Technetium-99 values were the highest in sagebrush and litter. Plutonium-238 and 239/40 and iodine-129 concentrations never exceeded 0.8 pCi/gm in all media. No evidence of any significant amounts of any radionuclides being incorporated into the small mammal community was discovered. The data indicate that plant litter and cryptogams may be better, indicators of environmental quality than soil or vegetation samples. Augmenting a monitoring program with samples of litter and cryptogams may provide a more accurate representation of radionuclide environmental uptake and/or contamination levels in surrounding ecosystems. The results of this study may be applied directly to other radioecological monitoring conducted at other nuclear sites and to the monitoring of other pollutants.« less
Miyahira, Andrea K; Pienta, Kenneth J; Morris, Michael J; Bander, Neil H; Baum, Richard P; Fendler, Wolfgang P; Goeckeler, William; Gorin, Michael A; Hennekes, Hartwig; Pomper, Martin G; Sartor, Oliver; Tagawa, Scott T; Williams, Scott; Soule, Howard R
2018-05-01
The Prostate Cancer Foundation (PCF) convened a PSMA-Directed Radionuclide Scientific Working Group on November 14, 2017, at Weill Cornell Medicine, New York, NY. The meeting was attended by 35 global investigators with expertise in prostate cancer biology, radionuclide therapy, molecular imaging, prostate-specific membrane antigen (PSMA)-targeted agents, drug development, and prostate cancer clinical trials. The goal of this meeting was to discuss the potential for using PSMA-targeted radionuclide agents for the treatment of advanced prostate cancer and to define the studies and clinical trials necessary for validating and optimizing the use of these agents. Several major topic areas were discussed including the overview of PSMA biology, lessons and applications of PSMA-targeted PET imaging, the nuances of designing PSMA-targeted radionuclide agents, clinical experiences with PSMA-targeted radionuclides, PCF-funded projects to accelerate PSMA-targeted radionuclide therapy, and barriers to the use of radionuclide treatments in widespread clinical practice. This article reviews the major topics discussed at the meeting with the goal of promoting research that will validate and optimize the use of PSMA-targeted radionuclide therapies for the treatment of advanced prostate cancer. © 2018 Wiley Periodicals, Inc.
Radionuclide speciation in effluent from La Hague reprocessing plant in France.
Salbu, B; Skipperud, L; Germain, P; Guéguéniat, P; Strand, P; Lind, O C; Christensen, G
2003-09-01
Effluent from the La Hague nuclear fuel reprocessing plant was mixed with seawater in order to investigate the fate of the various radionuclides. Thus, a major objective of the present work is to characterize the effluent from La Hague reprocessing plant and to study how the radionuclide speciation changes with time when discharged into the marine environment. Discharges from the La Hague nuclear reprocessing plant represent an important source of artificially produced radionuclides to the North Sea. The transport, distribution, and biological uptake of radionuclides in the marine environment depends, however, on the physicochemical forms of radionuclides in the discharged effluents and on transformation processes that occur after entering the coastal waters. Information of these processes is needed to understand the transport and long-term distribution of the radionuclides. In the present work, a weekly discharged effluent from the nuclear fuel reprocessing plant at Cap La Hague in France was mixed with coastal water and fractionated with respect to particle size and charged species using ultra centrifugation and hollow fiber ultrafiltration with on line ion exchange. The size distribution pattern of gamma-emitting radionuclides was followed during a 62-h period after mixing the effluent with seawater. 54Mn was present as particulate material in the effluent, while other investigated radionuclides were discharged in a more mobile form or were mobilized after mixing with sea water (e.g., 60Co) and can be transported long distances in the sea. Sediments can act as a sink for less mobile discharged radionuclides (Skipperud et al. 2000). A kinetic model experiment was performed to provide information of the time-dependent distribution coefficients, Kd (t). The retention of the effluent radionuclides in sediments was surprisingly low (Kd 20-50), and the sediments acted as a poor sink for the released radionuclides. Due to the presence of non-reacting radionuclide species in the effluent, a major fraction of the radionuclides, such as Cs-isotopes, 106Ru and 125Sb, in the effluent will be subjected to marine transport to the Northern Seas (i.e., the North Sea, Norwegian Sea and the Barents Sea). The La Hague effluent may, therefore, contribute to enriched levels of radionuclides found in the English Channel, including 90Sr, 60Co and Pu-isotopes, and also 106Ru and 125Sb.
Naftz, David L.; Walton-Day, Katherine
2016-01-01
During 2012, approximately 404,000 ha of Federal Land in northern Arizona was withdrawn from consideration of mineral extraction for a 20-year period to protect the Grand Canyon watershed from potentially adverse effects of U mineral exploration and development. The development, operation, and reclamation of the Canyon Mine during the withdrawal period provide an excellent field site to understand and document off-site migration of radionuclides within the withdrawal area. As part of the Department of Interior's (DOI's) study plan for the exclusion area, the objective of our study is to utilize pre-defined decision units (DUs) in areas within and surrounding the Canyon Mine to demonstrate how newly established incremental sampling methodologies (ISM) combined with multivariate statistical methods can be used to document a repeatable and statistically defensible measure of pre-mining baseline conditions in surface soils and stream sediment samples prior to ore extraction. During the survey in June 2013, the highest pre-mining 95% upper confidence level (UCL) concentrations with respect to As, Mo, U, and V were found in the triplicate samples collected from surface soils in the mine site DU designated as M1. Gamma activities were slightly elevated in soils within the M1 DU (up to 28 μR/h); however, off-site gamma activities in soil and stream-sediment samples were lower (< 6 to 12 μR/h). Hierarchical cluster analysis (HCA) was applied to 33 chemical constituents contained in the multivariate data generated from the analysis of triplicate samples collected in the soil and stream sediment DUs within and surrounding Canyon Mine. Most of the triplicate samples from individual DUs were grouped in the same dendrogram cluster when using a similarity value (SV) of 0.70 (unitless). Different group membership of triplicate samples from two of the four haul road DUs was likely the result of heterogeneity induced by non-native soil material introduced from the gravel road base or from vehicular traffic. Application of HCA and ISM will provide critical metrics to meet DOI's long-term goals for assessing off-site migration of radionuclides resulting from mining and reclamation in the current (2015) exclusion area associated within the Grand Canyon watershed and the associated national park.
Adult Education and Community Development in the West of Ireland.
ERIC Educational Resources Information Center
O'Cinneide, Micheal S.
1987-01-01
Describes adult educational program by University College Galway in rural West Ireland, following significant out-migration of young people. Aim is to encourage development initiatives, community participation, and self help. Program includes lectures, seminars, and class projects. Program's successes noted. (Author/TES)
Statistical analysis of DOE EML QAP data from 1982 to 1998.
Mizanur Rahman, G M; Isenhour, T L; Larget, B; Greenlaw, P D
2001-01-01
The historical database from the Environmental Measurements Laboratory's Quality Assessment Program from 1982 to 1998 has been analyzed to determine control limits for future performance evaluations of the different laboratories contracted to the U.S. Department of Energy. Seventy-three radionuclides in four different matrices (air filter, soil, vegetation, and water) were analyzed. The evaluation criteria were established based on a z-score calculation.
2014-11-01
Prostate-Specific Membrane Antigen ( PSMA ) and Hepsin PRINCIPAL INVESTIGATOR: Youngjoo Byun, Ph. D. CONTRACTING ORGANIZATION: Korea...Simultaneous Targeting Prostate-Specific Membrane Antigen ( PSMA ) and Hepsin 5b. GRANT NUMBER W81XWH-10-1-0189 5c. PROGRAM ELEMENT NUMBER 6...heterobivalent conjugates of PSMA /hepsin-binding ligands labeled with optical dyes or radionuclides. The sensitivity and accuracy of prostate cancer
Berger, Joel; Cain, Steven L; Cheng, Ellen; Dratch, Peter; Ellison, Kevin; Francis, John; Frost, Herbert C; Gende, Scott; Groves, Craig; Karesh, William A; Leslie, Elaine; Machlis, Gary; Medellin, Rodrigo A; Noss, Reed F; Redford, Kent H; Soukup, Michael; Wilcove, David; Zack, Steve
2014-02-01
Public agencies sometimes seek outside guidance when capacity to achieve their mission is limited. Through a cooperative agreement and collaborations with the U.S. National Park Service (NPS), we developed recommendations for a conservation program for migratory species. Although NPS manages ∼ 36 million hectares of land and water in 401 units, there is no centralized program to conserve wild animals reliant on NPS units that also migrate hundreds to thousands of kilometers beyond parks. Migrations are imperiled by habitat destruction, unsustainable harvest, climate change, and other impediments. A successful program to counter these challenges requires public support, national and international outreach, and flourishing migrant populations. We recommended two initial steps. First, in the short term, launch or build on a suite of projects for high-profile migratory species that can serve as proof to demonstrate the centrality of NPS units to conservation at different scales. Second, over the longer term, build new capacity to conserve migratory species. Capacity building will entail increasing the limited knowledge among park staff about how and where species or populations migrate, conditions that enable migration, and identifying species' needs and resolving them both within and beyond parks. Building capacity will also require ensuring that park superintendents and staff at all levels support conservation beyond statutory borders. Until additional diverse stakeholders and a broader American public realize what can be lost and do more to protect it and engage more with land management agencies to implement actions that facilitate conservation, long distance migrations are increasingly likely to become phenomena of the past. © 2014 Society for Conservation Biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gosnell, Thomas B.; Chavez, Joseph R.; Rowland, Mark S.
2014-02-26
RadID is a new gamma-ray spectrum analysis program for rapid screening of HPGe gamma-ray data to reveal the presence of radionuclide signatures. It is an autonomous, rule-based heuristic system that can identify well over 200 radioactive sources with particular interest in uranium and plutonium characteristics. It executes in about one second. RadID does not require knowledge of the detector efficiency, the source-to-detector distance, or the geometry of the inspected radiation source—including any shielding. In this first of a three-document series we sketch the RadID program’s origin, its minimal requirements, the user experience, and the program operation.
Bridge Programs « Coast Guard Maritime Commons
network migration impact on maritime distress and safety services Editor's note: This post was updated our blog post. Inmarsat announced that it will migrate Inmarsat-C, Mini C, and Fleet77 used for Global meeting in Washington, DC, Jan. 7-11, 2018. This post offers a condensed version of his remarks, which
Coordinating Council. Eighth Meeting: Using the Internet
NASA Technical Reports Server (NTRS)
1992-01-01
This NASA Scientific and Technical Information Program Coordinating Council meeting theme was entitled 'Using Internet'. Individual topics included STI LAN migration, NSF and NREN (National Science Foundation and the National Research and Education Network), and the New NASA Headquarters LAN. Discussions are recorded for each topic and visuals are provided for STI LAN migration and NSI - NASA Science Internet.
Cryogenic Control System Migration and Developments towards the UNICOS CERN Standard at INFN
NASA Astrophysics Data System (ADS)
Modanese, Paolo; Calore, Andrea; Contran, Tiziano; Friso, Alessandro; Pengo, Marco; Canella, Stefania; Burioli, Sergio; Gallese, Benedetto; Inglese, Vitaliano; Pezzetti, Marco; Pengo, Ruggero
The cryogenic control systems at Laboratori Nazionali di Legnaro (LNL) are undergoing an important and radical modernization, allowing all the plants controls and supervision systems to be renewed in a homogeneous way towards the CERN-UNICOS standard. Before the UNICOS migration project started there were as many as 7 different types of PLC and 7 different types of SCADA, each one requiring its own particular programming language. In these conditions, even a simple modification and/or integration on the program or on the supervision, required the intervention of a system integrator company, specialized in its specific control system. Furthermore it implied that the operators have to be trained to learn the different types of control systems. The CERN-UNICOS invented for LHC [1] has been chosen due to its reliability and planned to run and be maintained for decades on. The complete migration is part of an agreement between CERN and INFN.
Radionuclide removal by apatite
Rigali, Mark J.; Brady, Patrick V.; Moore, Robert C.
2016-12-01
In this study, a growing body of research supports widespread future reliance on apatite for radioactive waste cleanup. Apatite is a multi-functional radionuclide sorbent that lowers dissolved radionuclide concentrations by surface sorption, ion exchange, surface precipitation, and by providing phosphate to precipitate low-solubility radionuclide-containing minerals. Natural apatites are rich in trace elements, and apatite’s stability in the geologic record suggest that radionuclides incorporated into apatite, whether in a permeable reactive barrier or a waste form, are likely to remain isolated from the biosphere for long periods of time. Here we outline the mineralogic and surface origins of apatite-radionuclide reactivity andmore » show how apatites might be used to environmental advantage in the future.« less
Adsorption of radionuclides on the monolayer MoS2
NASA Astrophysics Data System (ADS)
Zhao, Qiang; Zhang, Zheng; Ouyang, Xiaoping
2018-04-01
How to remove radionuclides from radioactive wastewater has long been a difficult problem, especially in nuclear accidents. In this paper, the adsorption of radionuclides Cs, Sr, and Ba on the monolayer MoS2 was investigated by using the first principles calculation method. Through the calculation of adsorption energy and Hirshfeld charge of the radionuclides on the monolayer MoS2 at six adsorption sites, the results show that all of the radionuclides chemisorbed on the monolayer MoS2, and the adsorption strength of these three kinds of radionuclides on the monolayer MoS2 is Ba > Sr > Cs. This work might shed some light on the treatment of the radioactive wastewater.
A Coincidence Signature Library for Multicoincidence Radionuclide Analysis Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Leon E.; Ellis, J E.; Valsan, Andrei B.
Pacific Northwest National Laboratory (PNNL) is currently developing multicoincidence systems to perform trace radionuclide analysis at or near the sample collection point, for applications that include emergency response, nuclear forensics, and environmental monitoring. Quantifying radionuclide concentrations with these systems requires a library of accurate emission intensities for each detected signature, for all candidate radionuclides. To meet this need, a Coincidence Lookup Library (CLL) is being developed to calculate the emission intensities of coincident signatures from a user-specified radionuclide, or conversely, to determine the radionuclides that may be responsible for a specific detected coincident signature. The algorithms used to generate absolutemore » emission intensities and various query modes for our developmental CLL are described.« less
US Department of Energy Nevada Operations Office annual site environmental report: 1993. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, S.C.; Glines, W.M.; Townsend, Y.E.
1994-09-01
Monitoring and surveillance on and around the Nevada Test Site (NTS) by DOE contractors and NTS user organizations during 1993 indicated that operations on the NTS were conducted in compliance with applicable federal and DOE guidelines, i.e., the dose the maximally exposed offsite individual could have received was less than 0.04 percent of the 10 mrem per year guide for air exposure. No nuclear tests were conducted due to the moratorium. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around themore » NTS indicated that airborne radioactivity from diffusion, evaporation of effluents, or resuspension was not detectable offsite, and no measurable net exposure to members of the offsite population was detected through the offsite dosimetry program. Using the CAP88-PC model and NTS radionuclide emissions data, the calculated effective dose equivalent to the maximally exposed individual offsite would have been 0.004 mrem. Any person receiving this dose would also have received 97 mrem from natural background radiation. There were no nonradiological releases to the offsite area. Hazardous wastes were shipped offsite to approved disposal facilities. Compliance with the various regulations stemming from the National Environmental Policy Act is being achieved and, where mandated, permits for air and water discharges and waste management have been obtained from the appropriate agencies. Support facilities at off-NTS locations compiled with the requirements of air quality permits and state or local wastewater discharge and hazardous waste permits.« less
A Preliminary Performance Assessment for Salt Disposal of High-Level Nuclear Waste - 12173
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Joon H.; Clayton, Daniel; Jove-Colon, Carlos
2012-07-01
A salt repository is one of the four geologic media currently under study by the U.S. DOE Office of Nuclear Energy to support the development of a long-term strategy for geologic disposal of commercial used nuclear fuel (UNF) and high-level radioactive waste (HLW). The immediate goal of the generic salt repository study is to develop the necessary modeling tools to evaluate and improve the understanding of the repository system response and processes relevant to long-term disposal of UNF and HLW in a salt formation. The current phase of this study considers representative geologic settings and features adopted from previous studiesmore » for salt repository sites. For the reference scenario, the brine flow rates in the repository and underlying interbeds are very low, and transport of radionuclides in the transport pathways is dominated by diffusion and greatly retarded by sorption on the interbed filling materials. I-129 is the dominant annual dose contributor at the hypothetical accessible environment, but the calculated mean annual dose is negligibly small. For the human intrusion (or disturbed) scenario, the mean mass release rate and mean annual dose histories are very different from those for the reference scenario. Actinides including Pu-239, Pu-242 and Np-237 are major annual dose contributors, and the calculated peak mean annual dose is acceptably low. A performance assessment model for a generic salt repository has been developed incorporating, where applicable, representative geologic settings and features adopted from literature data for salt repository sites. The conceptual model and scenario for radionuclide release and transport from a salt repository were developed utilizing literature data. The salt GDS model was developed in a probabilistic analysis framework. The preliminary performance analysis for demonstration of model capability is for an isothermal condition at the ambient temperature for the near field. The capability demonstration emphasizes key attributes of a salt repository that are potentially important to the long-term safe disposal of UNF and HLW. The analysis presents and discusses the results showing repository responses to different radionuclide release scenarios (undisturbed and human intrusion). For the reference (or nominal or undisturbed) scenario, the brine flow rates in the repository and underlying interbeds are very low, and transport of radionuclides in the transport pathways is dominated by diffusion and greatly retarded by sorption on the interbed filling materials. I-129 (non-sorbing and unlimited solubility with a very long half-life) is the dominant annual dose contributor at the hypothetical accessible environment, but the calculated mean annual dose is negligibly small that there is no meaningful consequence for the repository performance. For the human intrusion (or disturbed) scenario analysis, the mean mass release rate and mean annual dose histories are very different from those for the reference scenario analysis. Compared to the reference scenario, the relative annual dose contributions by soluble, non-sorbing fission products, particularly I-129, are much lower than by actinides including Pu-239, Pu-242 and Np-237. The lower relative mean annual dose contributions by the fission product radionuclides are due to their lower total inventory available for release (i.e., up to five affected waste packages), and the higher mean annual doses by the actinides are the outcome of the direct release of the radionuclides into the overlying aquifer having high water flow rates, thereby resulting in an early arrival of higher concentrations of the radionuclides at the biosphere drinking water well prior to their significant decay. The salt GDS model analysis has also identified the following future recommendations and/or knowledge gaps to improve and enhance the confidence of the future repository performance analysis. - Repository thermal loading by UNF and HLW, and the effect on the engineered barrier and near-field performance. - Closure and consolidation of salt rocks by creep deformation under the influence of thermal perturbation, and the effect on the engineered barrier and near-field performance. - Brine migration and radionuclide transport under the influence of thermal perturbation in generic salt repository environment, and the effect on the engineered barrier and near-field performance and far-field performance. - Near-field geochemistry and radionuclide mobility in generic salt repository environment (high ionic strength brines, elevated temperatures and chemically reducing condition). - Degradation of engineer barrier components (waste package, waste canister, waste forms, etc.) in a generic salt repository environment (high ionic strength brines, elevated temperatures and chemically reducing condition). - Waste stream types and inventory estimates, particularly for reprocessing high-level waste. (authors)« less
Zhang, Xiao; Rhoads, Natalie; Rangel, Maria Gudelia; Hovell, Melbourne F; Magis-Rodriguez, Carlos; Sipan, Carol L; Gonzalez-Fagoaga, J Eduardo; Martínez-Donate, Ana P
2017-03-01
HIV risk among Mexican migrants varies across migration phases (pre-departure, transit, destination, interception, and return), but there is limited knowledge about specific sexual behaviors, characteristics of sexual partners, and sexual contexts at different migration stages. To fill the gap, we used data from a cross-sectional population-based survey conducted in Tijuana, Mexico. Information on migration phase and last sexual encounter was collected from 1219 male migrants. Our findings suggest that compared to pre-departure migrants, repeat migrants returning from communities of origin were more likely to have sex with male partners, use substances before sex, and not use condoms; migrants in the transit phase in the Mexican border were more likely to have sex with casual partners and sex workers; and migrants in the interception phase were more likely to engage in anal sex and use substances before sex. Sexual behaviors, partners, and contexts vary significantly among migrants at different migration phases. Tailored HIV prevention programs targeting Mexican migrants need to be developed and implemented at all migration phases.
Zhang, Xiao; Rhoads, Natalie; Rangel, Maria Gudelia; Hovell, Melbourne F.; Magis-Rodriguez, Carlos; Sipan, Carol L.; Gonzalez-Fagoaga, J. Eduardo; Martínez-Donate, Ana P.
2018-01-01
HIV risk among Mexican migrants varies across migration phases (pre-departure, transit, destination, interception, and return), but there is limited knowledge about specific sexual behaviors, characteristics of sexual partners, and sexual contexts at different migration stages. To fill the gap, we used data from a cross-sectional population-based survey conducted in Tijuana, Mexico. Information on migration phase and last sexual encounter was collected from 1,219 male migrants. Our findings suggested that compared to pre-departure migrants, repeat migrants returning from communities of origin were more likely to have sex with male partners, use substances before sex, and not use condoms; migrants with a recent stay in the Mexican border were more likely to have sex with casual partners and sex workers; and migrants in the interception phase were more likely to engage in anal sex and use substances before sex. Sexual behaviors, partners, and contexts vary significantly among migrants at different migration phases. Tailored HIV prevention programs targeting Mexican migrants need to be developed and implemented at all migration phases. PMID:27888370
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broxton, D.E.; Warren, R.G.; Hagan, R.C.
1986-10-01
The chemistry of diagenetically altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nevada is described. These tuffs contain substantial amounts of zeolites that are highly sorptive of certain radionuclides. Because of their widespread distribution, the zeolitic tuffs could provide important barriers to radionuclide migration. Physical properties of these tuffs and of their constituent zeolites are influenced by their chemical compositions. This study defines the amount of chemical variability within diagenetically altered tuffs and within diagenetic minerals at Yucca Mountain. Zeolitic tuffs at Yucca Mountain formed by diagenetic alteration of rhyolitic vitric tuffs. Despite their similar starting compositions, thesemore » tuffs developed compositions that vary both vertically and laterally. Widespread chemical variations were the result of open-system chemical diagenesis in which chemical components of the tuffs were mobilized and redistributed by groundwaters. Alkalies, alkaline earths, and silica were the most mobile elements during diagenesis. The zeolitic tuffs can be divided into three compositional groups: (1) calcium- and magnesium-rich tuffs associated with relatively thin zones of alteration in the unsaturated zone; (2) tuffs in thick zones of alteration at and below the water table that grade laterally from sodic compositions on the western side of Yucca Mountain to calcic compositions on the eastern side; and (3) potassic tuffs at the north end of Yucca Mountain. Physical properties of tuffs and their consistuent zeolites at Yucca Mountain may be affected by variations in compositions. Properties important for assessment of repository performance include behavior and ion exchange.« less
NASA Astrophysics Data System (ADS)
Annewandter, R.; Kalinowksi, M. B.
2009-04-01
An underground nuclear explosion injects radionuclids in the surrounding host rock creating an initial radionuclid distribution. In the case of fractured permeable media, cyclical changes in atmospheric pressure can draw gaseous species upwards to the surface, establishing a ratcheting pump effect. The resulting advective transport is orders of magnitude more significant than transport by molecular diffusion. In the 1990s the US Department of Energy funded the socalled Non-Proliferation Experiment conducted by the Lawrence Livermore National Laboratory to investigate this barometric pumping effect for verifying compliance with respect to the Comprehensive Nuclear Test Ban Treaty. A chemical explosive of approximately 1 kt TNT-equivalent has been detonated in a cavity located 390 m deep in the Rainier Mesa (Nevada Test Site) in which two tracer gases were emplaced. Within this experiment SF6 was first detected in soil gas samples taken near fault zones after 50 days and 3He after 325 days. For this paper a locally one-dimensional dual-porosity model for flow along the fracture and within the permeable matrix was used after Nilson and Lie (1990). Seepage of gases and diffusion of tracers between fracture and matrix are accounted. The advective flow along the fracture and within the matrix block is based on the FRAM filtering remedy and methodology of Chapman. The resulting system of equations is solved by an implicit non-iterative algorithm. Results on time of arrival and subsurface concentration levels for the CTBT-relevant xenons will be presented.
Künze, N; Koroleva, M; Reuther, C-D
2013-01-01
(222)Rn in soil gas activity was measured across the margins of two active salt diapirs in Schleswig-Holstein, northern Germany, in order to reveal the impact of halokinetic processes on the soil gas signal. Soil gas and soil sampling were carried out in springtime and summer 2011. The occurrence of elevated (222)Rn in soil gas concentrations in Schleswig-Holstein has been ascribed to radionuclide rich moraine boulder material deposits, but the contribution of subsurface structures has not been investigated so far. Reference samples were taken from a region known for its granitic moraine boulder deposits, resulting in (222)Rn in soil gas activity of 40 kBq/m(3). The values resulting from profile sampling across salt dome margins are of the order of twice the moraine boulder material reference values and exceed 100 kBq/m(3). The zones of elevated concentrations are consistent throughout time despite variations in magnitude. One soil gas profile recorded in this work expands parallel to a seismic profile and reveals multiple zones of elevated (222)Rn activities above a rising salt intrusion. The physical and chemical properties of salt have an impact on the processes influencing gas migration and surface near radionuclide accumulations. The rise of salt supports the breakup of rock components thus leading to enhanced emanation. This work provides a first approach regarding the halokinetic contribution to the (222)Rn in soil gas occurrence and a possible theoretical model which summarizes the relevant processes was developed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Woszczyk, Michał; Poręba, Grzegorz; Malinowski, Łukasz
2017-04-01
In this study we combined radioisotopes ( 210 Pb, 137 Cs and 7 Be) and hydrodynamic modeling to investigate sedimentary processes in three coastal lakes on the Polish Baltic coast. The research aimed at establishing the depth of sediment mixing and its effects on sediment geochemistry as well as showing the relationship between lake water salinity and radionuclide distribution in the sediment cores. We established that the intensity of mixing displayed appreciable variability throughout the lakes and the thickness of sediment mixing layer was between <2 and 22 cm. The mixing was primarily due to wind-induced waves. The vertical mixing was shown to shift sulfidation of the sediments towards deeper layers. We found that the distributions of radioisotopes, 137 Cs in particular, in the sediment cores from coastal lakes were strongly affected by the early diagenetic processes, which caused diffusive migration of radionuclides. The inventories of 210 Pb ex and 137 Cs in the lakes were positively related to salinity. The high inventories of both isotopes (3.2-10.9 kBq ·m -2 for 210 Pb ex and 3.0-6.0 kBq·m -2 for 137 Cs) in coastal lakes were explained by enhanced sedimentation within estuarine mixing zone and delivery of "additional" 210 Pb and 137 Cs to the lakes during saltwater ingressions. The results of this study have implications for the paleolimnology, sedimentology and biogeochemistry of coastal lakes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Parkhurst, David L.; Kipp, Kenneth L.; Charlton, Scott R.
2010-01-01
The computer program PHAST (PHREEQC And HST3D) simulates multicomponent, reactive solute transport in three-dimensional saturated groundwater flow systems. PHAST is a versatile groundwater flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. Major enhancements in PHAST Version 2 allow spatial data to be defined in a combination of map and grid coordinate systems, independent of a specific model grid (without node-by-node input). At run time, aquifer properties are interpolated from the spatial data to the model grid; regridding requires only redefinition of the grid without modification of the spatial data. PHAST is applicable to the study of natural and contaminated groundwater systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock/water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, or density-dependent flow. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux (specified-flux), and leaky (head-dependent) conditions, as well as the special cases of rivers, drains, and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association or Pitzer specific interaction thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, ion exchange sites, surface complexation sites, solid solutions, and gases; and (3) kinetic reactions with rates that are a function of solution composition. The aqueous model (elements, chemical reactions, and equilibrium constants), minerals, exchangers, surfaces, gases, kinetic reactants, and rate expressions may be defined or modified by the user. A number of options are available to save results of simulations to output files. The data may be saved in three formats: a format suitable for viewing with a text editor; a format suitable for exporting to spreadsheets and postprocessing programs; and in Hierarchical Data Format (HDF), which is a compressed binary format. Data in the HDF file can be visualized on Windows computers with the program Model Viewer and extracted with the utility program PHASTHDF; both programs are distributed with PHAST.
Radiological risk assessment and biosphere modelling for radioactive waste disposal in Switzerland.
Brennwald, M S; van Dorp, F
2009-12-01
Long-term safety assessments for geological disposal of radioactive waste in Switzerland involve the demonstration that the annual radiation dose to humans due to the potential release of radionuclides from the waste repository into the biosphere will not exceed the regulatory limit of 0.1 mSv. Here, we describe the simple but robust approach used by Nagra (Swiss National Cooperative for the Disposal of Radioactive Waste) to quantify the dose to humans as a result to time-dependent release of radionuclides from the geosphere into the biosphere. The model calculates the concentrations of radionuclides in different terrestrial and aquatic compartments of the surface environment. The fluxes of water and solids within the environment are the drivers for the exchange of radionuclides between these compartments. The calculated radionuclide concentrations in the biosphere are then used to estimate the radiation doses to humans due to various exposure paths (e.g. ingestion of radionuclides via drinking water and food, inhalation of radionuclides, external irradiation from radionuclides in soils). In this paper we also discuss recent new achievements and planned future work.
NASA Astrophysics Data System (ADS)
Bonniwell, Everett C.; Matisoff, Gerald; Whiting, Peter J.
1999-02-01
Targeting of erosion and pollution control programs is much more effective if the time for fine particles to be transported through a watershed, the travel distance, the proportions of old and new sediment in suspension, and the rate of erosion of the landscape can be estimated. In this paper we present a novel technique for tracing suspended sediment in a mountain stream using fallout radionuclides sorbed to sediment. Atmospherically-delivered 7Be, 210Pb, and 137Cs accumulate in the snowpack, are released with its melting and sorb to fine particulates, a portion of which are carried downslope into stream channels. The half-life of cosmogenic 7Be is short (53.4 days), thus, sediment residing on the stream bed should contain little of the radionuclide. The different signatures of newly delivered sediment from the landscape with its 7Be tag and older untagged sediment from the channel is the basis for the tracing. The total flux of such radionuclides, compared to the inventory in the soil, permits estimates of the rates of erosion of the landscape. Fine suspended particulates in the Gold Fork River, ID, are transported downstream through the drainage in one or more steps having lengths of tens of kilometers. Length of the step decreases from about 60 km near the peak of the hydrograph to about 12 km near baseflow. The percent of sediment in suspension that is `new' (i.e., recently delivered from the landscape) ranges from 96 to 12%. The remaining sediment is resuspended older channel sediment. Residence times for particulates range from 1.6 days, early in the hydrograph at the upper site, to 103 days late in the hydrograph at the lowest elevation location. Rates of erosion of fine sediment calculated from the flux of radionuclides average 0.0023 cm/year. The long distance transport of fine particles suggests that delivery through the Gold Fork drainage to the basin outlet is fairly rapid once particles reach the channel and perhaps is also rapid in similar and smaller basins.
Migration Experiences of Foreign Educated Nurses: A Systematic Review of the Literature.
Moyce, Sally; Lash, Rebecca; de Leon Siantz, Mary Lou
2016-03-01
Global nurse migration has a recognized impact on host and source countries, but the lived experience of foreign educated nurses is an important aspect of the success of this migration. A systematic review of the literature was conducted to understand the lived migration and acculturation experiences of foreign educated nurses. A systematic review of the literature, based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, was conducted. Primary research articles or secondary analyses were selected based on keyword and citation-based searches (n = 44). Nurses' experiences included migration and licensing barriers, difficulty with communication, racism and discrimination, skill underutilization, acculturation, and the role of the family. Barriers encountered in host countries may impede acculturation and successful nursing practice, resulting in circular migration and poor patient safety outcomes. Social support systems and cultural orientation programs can mitigate the impacts of social isolation and racism. Addressing common barriers can help minimize deskilling and allow safe and effective transitions to host countries. © The Author(s) 2015.
[Maintenance treatment in opioid-dependent patients with migration background].
Bald, L K; Schouler-Ocak, M; Penka, S; Schoofs, N; Häbel, T; Bermpohl, F; Gutwinski, S
2016-05-01
No regional analyses regarding opioid-dependent patients in maintenance treatment with a migration background have so far been performed in German-speaking countries. This study examined patients with and without a migration background regarding socioeconomic parameters, characteristics of dependency and attitude towards opiate maintenance treatment (OMT). From May to October 2011 patients in OMT from all of the 20 psychiatry clinics and 110 physician practices in Berlin with a licence to provide OMT were included in this analysis. Out of the 986 participating patients, 956 gave information on migration background and of these, 204 (21.3 %) originated from a country other than Germany. Compared to patients without a migration background, their participation in a maintenance program was significantly shorter and they more often expressed a desire to end OMT and wanted a limited duration of OMT. The differences regarding duration of OMT and the wish to end OMT can reflect a stronger desire for abstinence and a different attitude towards maintenance treatment of patients with a migration background.
Transparent process migration: Design alternatives and the Sprite implementation
NASA Technical Reports Server (NTRS)
Douglis, Fred; Ousterhout, John
1991-01-01
The Sprite operating system allows executing processes to be moved between hosts at any time. We use this process migration mechanism to offload work onto idle machines, and also to evict migrated processes when idle workstations are reclaimed by their owners. Sprite's migration mechanism provides a high degree of transparency both for migrated processes and for users. Idle machines are identified, and eviction is invoked, automatically by daemon processes. On Sprite it takes up to a few hundred milliseconds on SPARCstation 1 workstations to perform a remote exec, while evictions typically occur in a few seconds. The pmake program uses remote invocation to invoke tasks concurrently. Compilations commonly obtain speedup factors in the range of three to six; they are limited primarily by contention for centralized resources such as file servers. CPU-bound tasks such as simulations can make more effective use of idle hosts, obtaining as much as eight-fold speedup over a period of hours. Process migration has been in regular service for over two years.
On the occurrence of false positives in tests of migration under an isolation with migration model
Hey, Jody; Chung, Yujin; Sethuraman, Arun
2015-01-01
The population genetic study of divergence is often done using a Bayesian genealogy sampler, like those implemented in IMa2 and related programs, and these analyses frequently include a likelihood-ratio test of the null hypothesis of no migration between populations. Cruickshank and Hahn (2014, Molecular Ecology, 23, 3133–3157) recently reported a high rate of false positive test results with IMa2 for data simulated with small numbers of loci under models with no migration and recent splitting times. We confirm these findings and discover that they are caused by a failure of the assumptions underlying likelihood ratio tests that arises when using marginal likelihoods for a subset of model parameters. We also show that for small data sets, with little divergence between samples from two populations, an excellent fit can often be found by a model with a low migration rate and recent splitting time and a model with a high migration rate and a deep splitting time. PMID:26456794
Łokas, Edyta; Wachniew, Przemysław; Jodłowski, Paweł; Gąsiorek, Michał
2017-11-01
A survey of artificial ( 137 Cs, 238 Pu, 239+240 Pu, 241 Am) and natural ( 226 Ra, 232 Th, 40 K, 210 Pb) radioactive isotopes in proglacial soils of an Arctic glacier have revealed high spatial variability of activity concentrations and inventories of the airborne radionuclides. Soil column 137 Cs inventories range from below the detection limit to nearly 120 kBq m -2 , this value significantly exceeding direct atmospheric deposition. This variability may result from the mixing of materials characterised by different contents of airborne radionuclides. The highest activity concentrations observed in the proglacial soils may result from the deposition of cryoconites, which have been shown to accumulate airborne radionuclides on the surface of glaciers. The role of cryoconites in radionuclide accumulation is supported by the concordant enrichment of the naturally occurring airborne 210 Pb in proglacial soil cores showing elevated levels of artificial radionuclides. The lithogenic radionuclides show less variability than the airborne radionuclides because their activity concentrations are controlled only by the mixing of material derived from the weathering of different parent rocks. Soil properties vary little within and between the profiles and there is no unequivocal relationship between them and the radionuclide contents. The inventories reflect the pathways and time variable inputs of soil material to particular sites of the proglacial zone. Lack of the airborne radionuclides reflects no deposition of material exposed to the atmosphere after the 1950s or its removal by erosion. Inventories above the direct atmospheric deposition indicate secondary deposition of radionuclide-bearing material. Very high inventories indicate sites where transport pathways of cryoconite material terminated. Copyright © 2017 Elsevier Ltd. All rights reserved.
The study of equivalent dose of uranium in long bean (V. U. Sesquipedalis) and the effect on human
NASA Astrophysics Data System (ADS)
Rashid, Nur Shahidah Abdul; Yoshandi, Tengku Mohammad; Majid, Sukiman Sarmania Amran Ab.; Mohamed, Faizal; Siong, Khoo Kok
2016-01-01
In the case of accidental release of Uranium-238 (238U) radionuclides in a nuclear facility or in the environment, internal contamination by either acute or chronic exposure has the potential to induce both radiological and chemical toxic effects. A study was conducted to estimate the 238U radionuclide concentration in the long beans using Induced Coupled Mass Plasma-Spectrometry (ICP-MS). 238U radionuclide is a naturally occurring radioactive material that can be found in soil and can be transferred to the long bean (Vigna unguiculata subsp. Sesquapedalis) directly or indirectly via water or air. Kidney and liver are the major sites of deposition of 238U radionuclide. The obtained dose exposed in the liver and kidney is used to assess the safety level for public intake of 238U radionuclide from the consumption of long beans. The concentration of 238U radionuclide measured in long bean samples was 0.0226 ± 0.0009 mg/kg. Total activity of 238U radionuclide was 0.0044 ± 0.0002 Bq/day with the daily intake of 0.3545 ± 0.0143 µg/day and the annual committed effective dose due to ingestion of 238U radionuclide in long beans was 0.2230 ± 0.0087 µSv/year. The committed equivalent dose of 238U radionuclide from the assessment in the liver and kidney are 0.4198 ± 0.0165 nSv and 10.9335 ± 0.4288 nSv. The risk of cancer of 238U radionuclide was determined to be (86.0466 ± 3.3748) × 10-9. Thus, the results concluded that 238U radionuclide in local long beans was in the permitted level and safe to consume without posing any significant radiological threat to population.
Reliability of Current Biokinetic and Dosimetric Models for Radionuclides: A Pilot Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leggett, Richard Wayne; Eckerman, Keith F; Meck, Robert A.
2008-10-01
This report describes the results of a pilot study of the reliability of the biokinetic and dosimetric models currently used by the U.S. Nuclear Regulatory Commission (NRC) as predictors of dose per unit internal or external exposure to radionuclides. The study examines the feasibility of critically evaluating the accuracy of these models for a comprehensive set of radionuclides of concern to the NRC. Each critical evaluation would include: identification of discrepancies between the models and current databases; characterization of uncertainties in model predictions of dose per unit intake or unit external exposure; characterization of variability in dose per unit intakemore » or unit external exposure; and evaluation of prospects for development of more accurate models. Uncertainty refers here to the level of knowledge of a central value for a population, and variability refers to quantitative differences between different members of a population. This pilot study provides a critical assessment of models for selected radionuclides representing different levels of knowledge of dose per unit exposure. The main conclusions of this study are as follows: (1) To optimize the use of available NRC resources, the full study should focus on radionuclides most frequently encountered in the workplace or environment. A list of 50 radionuclides is proposed. (2) The reliability of a dose coefficient for inhalation or ingestion of a radionuclide (i.e., an estimate of dose per unit intake) may depend strongly on the specific application. Multiple characterizations of the uncertainty in a dose coefficient for inhalation or ingestion of a radionuclide may be needed for different forms of the radionuclide and different levels of information of that form available to the dose analyst. (3) A meaningful characterization of variability in dose per unit intake of a radionuclide requires detailed information on the biokinetics of the radionuclide and hence is not feasible for many infrequently studied radionuclides. (4) The biokinetics of a radionuclide in the human body typically represents the greatest source of uncertainty or variability in dose per unit intake. (5) Characterization of uncertainty in dose per unit exposure is generally a more straightforward problem for external exposure than for intake of a radionuclide. (6) For many radionuclides the most important outcome of a large-scale critical evaluation of databases and biokinetic models for radionuclides is expected to be the improvement of current models. Many of the current models do not fully or accurately reflect available radiobiological or physiological information, either because the models are outdated or because they were based on selective or uncritical use of data or inadequate model structures. In such cases the models should be replaced with physiologically realistic models that incorporate a wider spectrum of information.« less
Structuring a risk-based bioassay program for uranium usage in university laboratories
NASA Astrophysics Data System (ADS)
Dawson, Johnne Talia
Bioassay programs are integral in a radiation safety program. They are used as a method of determining whether individuals working with radioactive material have been exposed and have received a resulting dose. For radionuclides that are not found in nature, determining an exposure is straightforward. However, for a naturally occurring radionuclide like uranium, it is not as straightforward to determine whether a dose is the result of an occupational exposure. The purpose of this project is to address this issue within the University of Nevada, Las Vegas's (UNLV) bioassay program. This project consisted of two components that studied the effectiveness of a bioassay program in determining the dose for an acute inhalation of uranium. The first component of the plan addresses the creation of excretion curves, utilizing MATLAB that would allow UNLV to be able to determine at what time an inhalation dose can be attributed to. The excretion curves were based on the ICRP 30 lung model, as well as the Annual Limit Intake (ALI) values located in the Nuclear Regulatory Commission's 10CFR20 which is based on ICRP 30 (International Commission on Radiological Protection). The excretion curves would allow UNLV to be able to conduct in-house investigations of inhalation doses without solely depending on outside investigations and sources. The second component of the project focused on the creation of a risk based bioassay program to be utilized by UNLV that would take into account bioassay frequency that depended on the individual. Determining the risk based bioassay program required the use of baseline variance in order to minimize the investigation of false positives among those individuals who undergo bioassays for uranium work. The proposed program was compared against an evaluation limit of 10 mrem per quarter, an investigational limit of 125 mrem per quarter, and the federal/state requirement of 1.25 rem per quarter. It was determined that a bioassay program whose bioassay frequency varies per person, depending on the chemical class of material being worked with, in conjunction with continuous air monitoring can sufficiently meet ALARA standards.
Measurement of radionuclides in waste packages
Brodzinski, R.L.; Perkins, R.W.; Rieck, H.G.; Wogman, N.A.
1984-09-12
A method is described for non-destructively assaying the radionuclide content of solid waste in a sealed container by analysis of the waste's gamma-ray spectrum and neutron emissions. Some radionuclides are measured by characteristic photopeaks in the gamma-ray spectrum; transuranic nuclides are measured by neutron emission rate; other radionuclides are measured by correlation with those already measured.
Measurement of radionuclides in waste packages
Brodzinski, Ronald L.; Perkins, Richard W.; Rieck, Henry G.; Wogman, Ned A.
1986-01-01
A method is described for non-destructively assaying the radionuclide content of solid waste in a sealed container by analysis of the waste's gamma-ray spectrum and neutron emissions. Some radionuclides are measured by characteristic photopeaks in the gamma-ray spectrum; transuranic nuclides are measured by neutron emission rate; other radionuclides are measured by correlation with those already measured.
Mobile detection system to evaluate reactive hyperemia using radionuclide plethysmography.
Harel, François; Ngo, Quam; Finnerty, Vincent; Hernandez, Edgar; Khairy, Paul; Dupuis, Jocelyn
2007-08-01
We validated a novel mobile detection system to evaluate reactive hyperemia using the radionuclide plethysmography technique. Twenty-six subjects underwent simultaneously radionuclide plethysmography with strain gauge plethysmography. Strain gauge and radionuclide methods showed excellent reproducibility with intraclass correlation coefficients of 0.96 and 0.89 respectively. There was also a good correlation of flows between the two methods during reactive hyperemia (r = 0.87). We conclude that radionuclide plethysmography using this mobile detection system is a non-invasive alternative to assess forearm blood flow and its dynamic variations during reactive hyperemia.
NASA Astrophysics Data System (ADS)
Kadyrzhanov, K. K.; Khazhekber, S.; Lukashenko, S. N.; Solodukhin, V. P.; Kazachevskiy, I. V.; Poznyak, V. L.; Knyazev, B. B.; Rofer, Ch.
2003-01-01
Data on the spatial distribution of radionuclides (241Am, 239Pu, 137Cs and 152Eu) formed during nuclear explosions of different types near P2 SNTS test site are presented. Radionuclide contamination induced by the explosions varies in the concentrations of individual radionuclides, their proportions and species. Examination of the variations is a crucial task to plan remediation activities as well as those aimed at decrease of radiation risk for population and prevention of repeated contamination. Concentrations of 241Am and 239+240Pu that are the most toxic radionuclides in the area lie in hundred thousands of Bqkg-1. The most contaminated areas are classified by the radionuclide concentration, ratio and form present in soil.
Radionuclides in drinking water: the recent legislative requirements of the European Union.
Grande, Sveva; Risica, Serena
2015-03-01
In November 2013, a new EURATOM Directive was issued on the protection of public health from the radionuclide content in drinking water. After introducing the contents of the Directive, the paper analyses the hypotheses about drinking water ingestion adopted in documents of international and national organizations and the data obtained from national/regional surveys. Starting from the Directive's parametric value for the Indicative Dose, some examples of derived activity concentrations of radionuclides in drinking water are reported for some age classes and three exposure situations, namely, (i) artificial radionuclides due to routine water release from nuclear power facilities, (ii) artificial radionuclides from nuclear medicine procedures, and (iii) naturally occurring radionuclides in drinking water or resulting from existing or past NORM industrial activities.
Martinez-Donate, Ana P; Hovell, Melbourne F; Rangel, Maria Gudelia; Zhang, Xiao; Sipan, Carol L; Magis-Rodriguez, Carlos; Gonzalez-Fagoaga, J Eduardo
2015-03-01
We conducted a probability-based survey of migrant flows traveling across the Mexico-US border, and we estimated HIV infection rates, risk behaviors, and contextual factors for migrants representing 5 distinct migration phases. Our results suggest that the influence of migration is not uniform across genders or risk factors. By considering the predeparture, transit, and interception phases of the migration process, our findings complement previous studies on HIV among Mexican migrants conducted at the destination and return phases. Monitoring HIV risk among this vulnerable transnational population is critical for better understanding patterns of risk at different points of the migration process and for informing the development of protection policies and programs.
The transformation of southern agriculture and the migration of blacks and whites, 1930-1940.
Fligstein, N
1983-01-01
The causes of the migration of both blacks and whites from the U.S. South between 1930 and 1940 are examined. The author challenges the hypothesis that the root cause of this migration was the mechanization of agriculture and suggests that the primary cause was the crisis in cotton farming that occurred during the depression of the 1930s. "Large farm owners secured aid from the federal government in the form of agricultural subsidy payments. In response to this program, they reduced their cotton acreage, bought tractors, and displaced their tenants. This transformation drastically reduced the need for tenant labor and brought about the large-scale migrations. Regression analyses of relevant data confirm this interpretation." excerpt
Martinez-Donate, Ana P.; Hovell, Melbourne F.; Rangel, Maria Gudelia; Zhang, Xiao; Sipan, Carol L.; Magis-Rodriguez, Carlos; Gonzalez-Fagoaga, J. Eduardo
2015-01-01
We conducted a probability-based survey of migrant flows traveling across the Mexico–US border, and we estimated HIV infection rates, risk behaviors, and contextual factors for migrants representing 5 distinct migration phases. Our results suggest that the influence of migration is not uniform across genders or risk factors. By considering the predeparture, transit, and interception phases of the migration process, our findings complement previous studies on HIV among Mexican migrants conducted at the destination and return phases. Monitoring HIV risk among this vulnerable transnational population is critical for better understanding patterns of risk at different points of the migration process and for informing the development of protection policies and programs. PMID:25602882
ERIC Educational Resources Information Center
Welsch, David M.; Zimmer, David M.
2012-01-01
This paper examines the competitive effects of a unique school choice program implemented in the late 1990s, Wisconsin's open enrollment program, which allows families to send their children to schools outside their home district. In contrast to other school choice programs, districts not only face negative consequences from losing students and…
Migrant Education Binational Program.
ERIC Educational Resources Information Center
Dolson, David P.; Villasenor, Gildardo
The Binational Program promotes the continuity of education for approximately 45,000 students who migrate between Mexico and the United States each year, a pattern related to their parents' work as migrant agricultural laborers. Begun in California, the program now encompasses approximately 10 U.S. and 32 Mexican states (including the Federal…
NASA Astrophysics Data System (ADS)
Rastogi, Richa; Srivastava, Abhishek; Khonde, Kiran; Sirasala, Kirannmayi M.; Londhe, Ashutosh; Chavhan, Hitesh
2015-07-01
This paper presents an efficient parallel 3D Kirchhoff depth migration algorithm suitable for current class of multicore architecture. The fundamental Kirchhoff depth migration algorithm exhibits inherent parallelism however, when it comes to 3D data migration, as the data size increases the resource requirement of the algorithm also increases. This challenges its practical implementation even on current generation high performance computing systems. Therefore a smart parallelization approach is essential to handle 3D data for migration. The most compute intensive part of Kirchhoff depth migration algorithm is the calculation of traveltime tables due to its resource requirements such as memory/storage and I/O. In the current research work, we target this area and develop a competent parallel algorithm for post and prestack 3D Kirchhoff depth migration, using hybrid MPI+OpenMP programming techniques. We introduce a concept of flexi-depth iterations while depth migrating data in parallel imaging space, using optimized traveltime table computations. This concept provides flexibility to the algorithm by migrating data in a number of depth iterations, which depends upon the available node memory and the size of data to be migrated during runtime. Furthermore, it minimizes the requirements of storage, I/O and inter-node communication, thus making it advantageous over the conventional parallelization approaches. The developed parallel algorithm is demonstrated and analysed on Yuva II, a PARAM series of supercomputers. Optimization, performance and scalability experiment results along with the migration outcome show the effectiveness of the parallel algorithm.
Radionuclide labeled lymphocytes for therapeutic use
Srivastava, Suresh C.; Fawwaz, Rashid A.; Richards, Powell
1985-01-01
Lymphocytes labelled with .beta.-emitting radionuclides are therapeutically useful, particularly for lymphoid ablation. They are prepared by incubation of the lymphocytes with the selected radionuclide-oxine complex.
Radionuclide labeled lymphocytes for therapeutic use
Srivastava, S.C.; Fawwaz, R.A.; Richards, P.
1983-05-03
Lymphocytes labelled with ..beta..-emitting radionuclides are therapeutically useful, particularly for lymphoid ablation. They are prepared by incubation of the lymphocytes with the selected radionuclide-oxine complex.
Effects of agricultural development policies on migration in peninsular Malaysia.
Baydar, N; White, M J; Simkins, C; Babakol, O
1990-02-01
State planning plays a central role in Malaysia's social and economic development. The government's rural development policies are designed to promote agricultural incomes and help counterbalance ethnic inequalities. The Federal Land Development Authority (FELDA) implements one of the internationally most successful land development and resettlement programs. In this article, we quantify the impact of FELDA settlements on local out-migration rates, linking macro and micro approaches and using data from the Malaysian Family Life Survey, national censuses, and other sources. A model of instantaneous migration rates specifies an individual's migration rate as a function of individual-level sociodemographic characteristics, the level of urbanization of the origin and destination, and the extent of rural development at the district of current residence. Our results show that in the late 1960s and early 1970s, the existence of rural development centers in a district reduced the levels of out-migration to pre-1965 levels.
Religiosity and Migration Aspirations among Mexican Youth.
Hoffman, Steven; Marsiglia, Flavio Francisco; Ayers, Stephanie L
2015-02-01
International migration has become an important topic of discussion from a policy and humanitarian perspective. Part of the debate includes a renewed interest in understanding the factors that influence decisions about migration to the US among Mexican youth still residing in their country of origin. The purpose of this study was to advance knowledge specifically about internal and external religiosity and their influence on youths' migration aspirations. The data for this study were collected in 2007 from students enrolled in an alternative high school program located in the state of Guanajuato, Mexico. The findings indicated that as external religiosity increases, the desire to work or live in the USA decreases. Furthermore, as internal religiosity increases, the desire to work or live in the USA and plans to migrate increase. The results are interpreted and discussed in light of previous research on religious and cultural norm adherence.
Microbeam Investigations of Presolar and Early Solar System Materials
NASA Technical Reports Server (NTRS)
Huss, Gary R.
2005-01-01
This grant provided three years of funding for my Cosmochemistry research program at Arizona State University. This research resulted in 11 peer-reviewed papers in six Journals and 35 abstracts to 11 Conferences and Workshops (see list below). My original proposal listed three main areas of research: 1) Studies of presolar grains; 2) Studies of short-lived radionuclides and; 3) Investigations of nebular processes and the origin of chondritic components.
1988-08-01
availability and bioaccumulation of heavy metals, petroleum hydrocarbons , synthetic organic compounds, and radionuclides in sediments. Specific...toxins, petroleum pollution, noise, removal of colonized hard substrate, and ~~addition of new hard substrate. Using this information, in addition to...the disturbance. 16. Sedimentation and/or removal of substrate in areas adjacent to structures may affect benthic resources such as mollusc beds
Krypton-85 Powered Lights for Airfield Application.
1981-11-01
Department of Energy.(DOE), and eight lights were fabricated for testing by actual observation under airfield conditions. Light is produced in the units...concepts of radionuclide-powered lights, the R&D program carried out, and fabrication constraints involved in the production of the experimental...visible light has been known for many years. Early use of radium mixed with zinc sulfide phosphors provided self-illuminated clock dials. The military has