Science.gov

Sample records for radionuclide molecular imaging

  1. Recent Advances in Molecular Image-Guided Cancer Radionuclide Therapy.

    PubMed

    Gao, Duo; Sun, Xianlei; Gao, Liquan; Liu, Zhaofei

    2015-01-01

    Cancer-targeted radionuclide therapy is a promising approach for the treatment of a wide variety of malignancies, especially those resistant to conventional therapies. However, to improve the use of targeted radionuclide therapy for the management of cancer patients, the in vivo behaviors, dosimetry, and efficacy of radiotherapeutic agents need to be well characterized and monitored. Molecular imaging, which is a powerful tool for the noninvasive characterization and quantification of biological processes in living subjects at the cellular and molecular levels, plays an important role in the guidance of cancer radionuclide therapy. In this review, we introduce the radiotherapeutics for cancer-targeted therapy and summarize the most recent evidence supporting the use of molecular imaging to guide cancer radionuclide therapy.

  2. Recent Advances of Radionuclide-based Molecular Imaging of Atherosclerosis

    PubMed Central

    Kazuma, Soraya M.; Sultan, Deborah; Zhao, Yongfeng; Detering, Lisa; You, Meng; Luehmann, Hannah P.; Abdalla, Dulcineia S.P.; Liu, Yongjian

    2015-01-01

    Atherosclerosis is a systemic disease characterized by the development of multifocal plaque lesions within vessel walls and extending into the vascular lumen. The disease takes decades to develop symptomatic lesions, affording opportunities for accurate detection of plaque progression, analysis of risk factors responsible for clinical events, and planning personalized treatment. Of the available molecular imaging modalities, radionuclide-based imaging strategies have been favored due to their sensitivity, quantitative detection and pathways for translational research. This review summarizes recent advances of radiolabeled small molecules, peptides, antibodies and nanoparticles for atherosclerotic plaque imaging during disease progression. PMID:26369676

  3. Radionuclide bone imaging

    SciTech Connect

    Bassett, L.W.; Gold, R.H.; Webber, M.M.

    1981-12-01

    Radionuclide bone imaging of the skeleton, now well established as the most important diagnostic procedure in detecting bone metastases, is also a reliable method for the evaluation of the progression or regression of metastatic bone disease. The article concentrates on the technetium-99m agents and the value of these agents in the widespread application of low-dose radioisotope scanning in such bone diseases as metastasis, osteomyelitis, trauma, osteonecrosis, and other abnormal skeletal conditions.

  4. Osteopetrosis: radiological & radionuclide imaging.

    PubMed

    Sit, Cherry; Agrawal, Kanhaiyalal; Fogelman, Ignac; Gnanasegaran, Gopinath

    2015-01-01

    Osteopetrosis is a rare inherited bone disease where bones harden and become abnormally dense. While the diagnosis is clinical, it also greatly relies on appearance of the skeleton radiographically. X-ray, radionuclide bone scintigraphy and magnetic resonance imaging have been reported to identify characteristics of osteopetrosis. We present an interesting case of a 59-year-old man with a history of bilateral hip fractures. He underwent (99m)Tc-methylene diphosphonate whole body scan supplemented with single-photon emission computed tomography/computed tomography of spine, which showed increased uptake in the humeri, tibiae and femora, which were in keeping with osteopetrosis.

  5. Radionuclide salivary gland imaging

    SciTech Connect

    Mishkin, F.S.

    1981-10-01

    Salivary gland imaging with 99mTc as pertechnetate provides functional information concerning trapping and excretion of the parotid and submandibular glands. Anatomic information gained often adds little to clinical evaluation. On the other hand, functional information may detect subclinical involvement, which correlates well with biopsy of the minor labial salivary glands. Salivary gland abnormalities in systemic disease such as sarcoidosis, rheumatoid arthritis, lupus erythematosus, and other collagenvascular disorders may be detected before they result in the clinical manifestaions of Sjoegren's syndrome. Such glands, after initially demonstrating increased trapping in the acute phase, tend to have decreased trapping and failure to discharge pertechnetate in response to an appropriate physiologic stimulus. Increased uptake of gallium-67 citrate often accompanies these findings. Inflammatory parotitis can be suspected when increased perfusion is evident on radionuclide angiography with any agent. The ability of the salivary gland image to detect and categorize mass lesions, which result in focal areas of diminished activity such as tumors, cysts, and most other masses, is disappointing, while its ability to detect and categorize Warthin's tumor, which concentrates pertechnetate, is much more valuable, although not specific.

  6. Radionuclide Imaging Applications in Cardiomyopathies and Heart Failure.

    PubMed

    Harinstein, Matthew E; Soman, Prem

    2016-03-01

    Multiple epidemiological factors including population aging and improved survival after acute coronary syndromes have contributed to a heart failure (HF) prevalence in the USA in epidemic proportions. In the absence of transplantation, HF remains a progressive disease with poor prognosis. The structural and functional abnormalities of the myocardium in HF can be assessed by various radionuclide imaging techniques. Radionuclide imaging may be uniquely suited to address several important clinical questions in HF such as identifying etiology and guiding the selection of patients for coronary revascularization. Newer approaches such as autonomic innervation imaging, phase analysis for synchrony assessment, and other molecular imaging techniques continue to expand the applications of radionuclide imaging in HF. In this manuscript, we review established and evolving applications of radionuclide imaging for the diagnosis, risk stratification, and management of HF. PMID:26841785

  7. Treatment planning for molecular targeted radionuclide therapy.

    PubMed

    Siantar, Christine Hartmann; Vetter, Kai; DeNardo, Gerald L; DeNardo, Sally J

    2002-06-01

    Molecular targeted radionuclide therapy promises to expand the usefulness of radiation to successfully treat widespread cancer. The unique properties of radioactive tags make it possible to plan treatments by predicting the radiation absorbed dose to both tumors and normal organs, using a pre-treatment test dose of radiopharmaceutical. This requires a combination of quantitative, high-resolution, radiation-detection hardware and computerized dose-estimation software, and would ideally include biological dose-response data in order to translate radiation absorbed dose into biological effects. Data derived from conventional (external beam) radiation therapy suggests that accurate assessment of the radiation absorbed dose in dose-limiting normal organs could substantially improve the observed clinical response for current agents used in a myeloablative regimen, enabling higher levels of tumor control at lower tumor-to-normal tissue therapeutic indices. Treatment planning based on current radiation detection and simulations technology is sufficient to impact on clinical response. The incorporation of new imaging methods, combined with patient-specific radiation transport simulations, promises to provide unprecedented levels of resolution and quantitative accuracy, which are likely to increase the impact of treatment planning in targeted radionuclide therapy. PMID:12136519

  8. Real time cardiac radionuclide imaging

    SciTech Connect

    Jarkewicz, G.G.

    1986-04-29

    A data acquisition system is described for use in radionuclide cardiac imaging of a patient having been administered a myocardium specific radionuclide, comprising: (a) means for monitoring the electrical activity of the heart; (b) first temporary storage means for accumulating respective pages of data corresponding to nuclear events during each cardiac cycle; (c) means, responsive to the means for monitoring, for determining the time duration of each successive cardiac cycle; (d) means for comparing each determined duration of a cardiac cycle with a preselected time duration range; (e) second temporary storage means; and (f) means for conditionally transferring pages of data from the first temporary storage means to the second temporary storage means if the measured duration associated with each page has predetermined correspondence with the preselected duration range, whereby pages of data having the predetermined correspondence may be collated into a quasi-real time study, while pages of data having different correspondence with the preselected time duration range are discarded from the study.

  9. Radionuclide imaging of the urinary tract

    SciTech Connect

    Velchik, M.G.

    1985-11-01

    This article describes the role of nuclear medicine in the evaluation of the genitourinary tract. The technical aspects of radionuclide imaging (radiopharmaceuticals, radiation dosimetry, instrumentation, and method) are briefly presented, and each of the indications for renal scintigraphy--including the evaluation of differential renal function, hypertension, obstruction, renal transplants, masses, trauma, congenital anomalies, vesicoureteral reflux, and infection--are discussed. The relative advantages and disadvantages of radionuclide imaging with respect to alternative radiographic examinations (such as intravenous urography, ultrasonography, CT, angiography, and magnetic resonance imaging) are emphasized wherever applicable. 136 references.

  10. Radionuclide imaging of abomasal emptying in sheep.

    PubMed

    Nicholson, T; Stockdale, H R; Critchley, M; Grime, J S; Jones, R S; Maltby, P

    1997-01-01

    A liquid radionuclide tracer was administered to nine sheep in order to visualise the abomasum with a gamma camera computer system. The aim was to develop a method of studying gastric emptying, with minimal surgical intervention. Oral administration of the tracer gave good images of the whole complex stomach, but quantifying abomasal emptying was not possible because of the superimposition of the stomach compartments. When the reticular groove reflex was stimulated with oral copper sulphate the radionuclide bypassed the reticulorumen, allowing quantitative analysis of abomasal activity. However, the repeatability of the reflex activation was low. Radionuclide administered directly into the abomasum produced good images of abomasal outflow and provided digital data which were analysed quantitatively. A wide range of emptying rates was observed, generally with a stepped pattern.

  11. Imaging Transgene Expression with Radionuclide Imaging Technologies1

    PubMed Central

    Gambhir, SS; Herschman, HR; Cherry, SR; Barrio, JR; Satyamurthy, N; Toyokuni, T; Phelps, ME; Larson, SM; Balaton, J; Finn, R; Sadelain, M; Tjuvajev, J

    2000-01-01

    Abstract A variety of imaging technologies are being investigated as tools for studying gene expression in living subjects. Noninvasive, repetitive and quantitative imaging of gene expression will help both to facilitate human gene therapy trials and to allow for the study of animal models of molecular and cellular therapy. Radionuclide approaches using single photon emission computed tomography (SPECT) and positron emission tomography (PET) are the most mature of the current imaging technologies and offer many advantages for imaging gene expression compared to optical and magnetic resonance imaging (MRI)-based approaches. These advantages include relatively high sensitivity, full quantitative capability (for PET), and the ability to extend small animal assays directly into clinical human applications. We describe a PET scanner (micro PET) designed specifically for studies of small animals. We review “marker/reporter gene” imaging approaches using the herpes simplex type 1 virus thymidine kinase (HSV1-tk) and the dopamine type 2 receptor (D2R) genes. We describe and contrast several radiolabeled probes that can be used with the HSV1-tk reporter gene both for SPECT and for PET imaging. We also describe the advantages/disadvantages of each of the assays developed and discuss future animal and human applications. PMID:10933072

  12. Application of Monte Carlo Methods in Molecular Targeted Radionuclide Therapy

    SciTech Connect

    Hartmann Siantar, C; Descalle, M-A; DeNardo, G L; Nigg, D W

    2002-02-19

    Targeted radionuclide therapy promises to expand the role of radiation beyond the treatment of localized tumors. This novel form of therapy targets metastatic cancers by combining radioactive isotopes with tumor-seeking molecules such as monoclonal antibodies and custom-designed synthetic agents. Ultimately, like conventional radiotherapy, the effectiveness of targeted radionuclide therapy is limited by the maximum dose that can be given to a critical, normal tissue, such as bone marrow, kidneys, and lungs. Because radionuclide therapy relies on biological delivery of radiation, its optimization and characterization are necessarily different than for conventional radiation therapy. We have initiated the development of a new, Monte Carlo transport-based treatment planning system for molecular targeted radiation therapy as part of the MINERVA treatment planning system. This system calculates patient-specific radiation dose estimates using a set of computed tomography scans to describe the 3D patient anatomy, combined with 2D (planar image) and 3D (SPECT, or single photon emission computed tomography) to describe the time-dependent radiation source. The accuracy of such a dose calculation is limited primarily by the accuracy of the initial radiation source distribution, overlaid on the patient's anatomy. This presentation provides an overview of MINERVA functionality for molecular targeted radiation therapy, and describes early validation and implementation results of Monte Carlo simulations.

  13. Imaging the inside of a tumour: a review of radionuclide imaging and theranostics targeting intracellular epitopes.

    PubMed

    Cornelissen, Bart

    2014-04-01

    Molecular imaging of tumour tissue focusses mainly on extracellular epitopes such as tumour angiogenesis or signal transduction receptors expressed on the cell membrane. However, most biological processes that define tumour phenotype occur within the cell. In this mini-review, an overview is given of the various techniques to interrogate intracellular events using molecular imaging with radiolabelled compounds. Additionally, similar targeting techniques can be employed for radionuclide therapy using Auger electron emitters, and recent advances in Auger electron therapy are discussed.

  14. Optimizing diagnosis in Parkinson's disease: Radionuclide imaging.

    PubMed

    Arena, Julieta E; Stoessl, A Jon

    2016-01-01

    Parkinson's disease (PD) and other disorders characterized by basal ganglia dysfunction are often associated with limited structural imaging changes that might assist in the clinical or research setting. Radionuclide imaging has been used to assess characteristic functional changes. Presynaptic dopaminergic dysfunction in PD can be revealed through the imaging of different steps in the process of dopamine synthesis and storage: L-aromatic amino acid decarboxylase (AADC) activity, Vesicular Monoamine Transporter type 2 (VMAT2) binding or its reuptake via the dopamine transporter (DAT). Postsynaptic dopamine dysfunction can also be studied with a variety of different tracers that primarily assess D2-like dopamine receptor availability. The function of other neurotransmitters such as norepinephrine, serotonin and acetylcholine can be imaged as well, giving important information about the underlying pathophysiologic process of PD and its complications. The imaging of metabolic activity and pathologic changes has also provided great advances in the field. Together, these techniques have allowed for a better understanding of PD, may be of aid for differentiating PD from other forms of parkinsonism and will undoubtedly be useful for the establishment of new therapeutic targets.

  15. Radionuclide Imaging of Musculoskeletal Infection: A Review.

    PubMed

    Palestro, Christopher J

    2016-09-01

    There are numerous imaging tests for diagnosing musculoskeletal infection. Radiographs are routinely performed, because even when not diagnostic, they provide an anatomic overview of the region of interest that could influence subsequent procedure selection and interpretation. MRI is sensitive and provides superb anatomic detail. Bone scintigraphy accurately diagnoses osteomyelitis in bones not affected by underlying conditions. (67)Ga is used primarily for spondylodiskitis. Although in vitro labeled leukocyte imaging is the radionuclide test of choice for complicating osteomyelitis such as diabetic pedal osteomyelitis and prosthetic joint infection, it is not useful for spondylodiskitis. Antigranulocyte antibodies and antibody fragments have limitations and are not widely available. (111)In-biotin is useful for spondylodiskitis. Radiolabeled synthetic fragments of the antimicrobial peptide ubiquicidin are promising infection-specific agents. (18)F-FDG is the radiopharmaceutical of choice for spondylodiskitis. Its role in diabetic pedal osteomyelitis and prosthetic joint infection is not established. Preliminary data suggest (68)Ga may be useful in musculoskeletal infection. (124)I-fialuridine initially showed promise as an infection-specific radiopharmaceutical, but subsequent investigations were disappointing. The development of PET/CT and SPECT/CT imaging systems, which combine anatomic and functional imaging, has revolutionized diagnostic imaging. These hybrid systems are redefining the diagnostic workup of patients with suspected or known infection and inflammation by improving diagnostic accuracy and influencing patient management. PMID:27390160

  16. Targeted molecular imaging in oncology.

    PubMed

    Yang, David J; Kim, E Edmund; Inoue, Tomio

    2006-01-01

    Improvement of scintigraphic tumor imaging is extensively determined by the development of more tumor specific radiopharmaceuticals. Thus, to improve the differential diagnosis, prognosis, planning and monitoring of cancer treatment, several functional pharmaceuticals have been developed. Application of molecular targets for cancer imaging, therapy and prevention using generator-produced isotopes is the major focus of ongoing research projects. Radionuclide imaging modalities (positron emission tomography, PET; single photon emission computed tomography, SPECT) are diagnostic cross-sectional imaging techniques that map the location and concentration of radionuclide-labeled radiotracers. 99mTc- and 68Ga-labeled agents using ethylenedicysteine (EC) as a chelator were synthesized and their potential uses to assess tumor targets were evaluated. 99mTc (t1/2 = 6 hr, 140 keV) is used for SPECT and 68Ga (t1/2 = 68 min, 511 keV) for PET. Molecular targets labeled with Tc-99m and Ga-68 can be utilized for prediction of therapeutic response, monitoring tumor response to treatment and differential diagnosis. Molecular targets for oncological research in (1) cell apoptosis, (2) gene and nucleic acid-based approach, (3) angiogenesis (4) tumor hypoxia, and (5) metabolic imaging are discussed. Numerous imaging ligands in these categories have been developed and evaluated in animals and humans. Molecular targets were imaged and their potential to redirect optimal cancer diagnosis and therapeutics were demonstrated. PMID:16485568

  17. Somatostatin Receptor Based Imaging and Radionuclide Therapy

    PubMed Central

    Zhang, Hong

    2015-01-01

    Somatostatin (SST) receptors (SSTRs) belong to the typical 7-transmembrane domain family of G-protein-coupled receptors. Five distinct subtypes (termed SSTR1-5) have been identified, with SSTR2 showing the highest affinity for natural SST and synthetic SST analogs. Most neuroendocrine tumors (NETs) have high expression levels of SSTRs, which opens the possibility for tumor imaging and therapy with radiolabeled SST analogs. A number of tracers have been developed for the diagnosis, staging, and treatment of NETs with impressive results, which facilitates the applications of human SSTR subtype 2 (hSSTr2) reporter gene based imaging and therapy in SSTR negative or weakly positive tumors to provide a novel approach for the management of tumors. The hSSTr2 gene can act as not only a reporter gene for in vivo imaging, but also a therapeutic gene for local radionuclide therapy. Even a second therapeutic gene can be transfected into the same tumor cells together with hSSTr2 reporter gene to obtain a synergistic therapeutic effect. However, additional preclinical and especially translational and clinical researches are needed to confirm the value of hSSTr2 reporter gene based imaging and therapy in tumors. PMID:25879040

  18. New Trends in Radionuclide Myocardial Perfusion Imaging

    PubMed Central

    Hung, Guang-Uei; Wang, Yuh-Feng; Su, Hung-Yi; Hsieh, Te-Chun; Ko, Chi-Lun; Yen, Ruoh-Fang

    2016-01-01

    Radionuclide myocardial perfusion imaging (MPI) with single photon emission computed tomography (SPECT) has been widely used clinically as one of the major functional imaging modalities for patients with coronary artery disease (CAD) for decades. Ample evidence has supported the use of MPI as a useful and important tool in the diagnosis, risk stratification and treatment planning for CAD. Although popular in the United States, MPI has become the most frequently used imaging modality among all nuclear medicine tests in Taiwan. However, it should be acknowledged that MPI SPECT does have its limitations. These include false-positive results due to certain artifacts, false-negative due to balanced ischemia, complexity and adverse reaction arising from current pharmacological stressors, time consuming nature of the imaging procedure, no blood flow quantitation and relatively high radiation exposure. The purpose of this article was to review the recent trends in nuclear cardiology, including the utilization of positron emission tomography (PET) for MPI, new stressor, new SPECT camera with higher resolution and higher sensitivity, dynamic SPECT protocol for blood flow quantitation, new software of phase analysis for evaluation of LV dyssynchrony, and measures utilized for reducing radiation exposure of MPI. PMID:27122946

  19. Radionuclide imaging of soft tissue neoplasms

    SciTech Connect

    Chew, F.S.; Hudson, T.M.; Enneking, W.F.

    1981-10-01

    Two classes of radiopharmaceuticals may be used for imaging tumors of the musculoskeletal system. The first is comprised of soft tissue or tumor specific agents such as gallium-67, bleomycin, and radionuclide-labeled antibodies, which may be useful for detecting and localizing these tumors. The other class of tracer is comprised of those with avidity for bone. The 99mTc-labeled-phosphate skeletal imaging compounds have been found to localize in a variety of soft tissue lesions, including benign and malignant tumors. In 1972, Enneking began to include bone scans in the preoperative evaluation of soft tissue masses. Later, he and his associates reported that these scans were useful in planning operative treatment of sarcomas by detecting involvement of bone by the tumors. Nearly all malignant soft tissue tumors take up bone-seeking radiopharmaceuticals, and bone involvement was indicated in two-thirds of the scans we reviewed. About half of benign soft tissue lesions had normal scans, but the other half showed uptake within the lesion and a few also showed bone involvement. Careful, thorough imaging technique is essential to proper evaluation. Multiple, high-resolution static gamma camera images in different projections are necessary to adequately demonstrate the presence or absence of soft tissue abnormality and to define the precise relationship of the tumor to the adjacent bone.

  20. Radionuclide imaging and treatment of thyroid cancer.

    PubMed

    Wang, Xiu Juan; Li, XianFeng; Ren, Yuan

    2016-01-01

    Over the past decades, the diagnostic methods and therapeutic tools for thyroid cancer (TC) have been greatly improved. In addition to the classical method of ingestion of radioactive iodine-131 (I131) and subsequent I123 and I124 positron emission tomography (PET) in therapy and examination, I124 PET-based 3-dimensional imaging, Ga68-labeled [1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid]-1-NaI(3)-octreotide (DOTANOC) PET/computed tomography (CT), Tc99m tetrofosmin, pre-targeted radioimmunotherapy, and peptide receptor radionuclide therapy have all been used clinically. These novel methods are useful in diagnosis and therapy of TC, but also have unavoidable adverse effects. In this review, we will discuss the development of nuclear medicine in TC examination and treatment. PMID:27100499

  1. Method for image reconstruction of moving radionuclide source distribution

    DOEpatents

    Stolin, Alexander V.; McKisson, John E.; Lee, Seung Joon; Smith, Mark Frederick

    2012-12-18

    A method for image reconstruction of moving radionuclide distributions. Its particular embodiment is for single photon emission computed tomography (SPECT) imaging of awake animals, though its techniques are general enough to be applied to other moving radionuclide distributions as well. The invention eliminates motion and blurring artifacts for image reconstructions of moving source distributions. This opens new avenues in the area of small animal brain imaging with radiotracers, which can now be performed without the perturbing influences of anesthesia or physical restraint on the biological system.

  2. Oncogene mRNA Imaging with Radionuclide-PNA-Peptides

    SciTech Connect

    Wickstrom, Eric

    2008-03-19

    New cancer gene hybridization probes to carry radionuclides were made. Noninvasive technetium-99m gamma imaging of CCND1 cancer gene activity in human breast cancer tumors in mice was demonstrated, followed by noninvasive technetium-99m imaging of MYC cancer gene activity. Noninvasive imaging of CCND1 cancer gene activity in human breast cancer tumors in mice was demonstrated with a positron-emitting copper-64 probe, followed by noninvasive positron imaging of IRS1 cancer gene activity.

  3. Molecular imaging in oncology

    PubMed Central

    Dzik-Jurasz, A S K

    2004-01-01

    Cancer is a genetic disease that manifests in loss of normal cellular homeostatic mechanisms. The biology and therapeutic modulation of neoplasia occurs at the molecular level. An understanding of these molecular processes is therefore required to develop novel prognostic and early biomarkers of response. In addition to clinical applications, increased impetus for the development of such technologies has been catalysed by pharmaceutical companies investing in the development of molecular therapies. The discipline of molecular imaging therefore aims to image these important molecular processes in vivo. Molecular processes, however, operate at short length scales and concentrations typically beyond the resolution of clinical imaging. Solving these issues will be a challenge to imaging research. The successful implementations of molecular imaging in man will only be realised by the close co-operation amongst molecular biologists, chemists and the imaging scientists. PMID:18250026

  4. Osmotic blood-brain barrier disruption: CT and radionuclide imaging

    SciTech Connect

    Roman-Goldstein, S.; Clunie, D.A.; Stevens, J.; Hogan, R.; Monard, J.; Ramsey, F.; Neuwelt, E.A.

    1994-03-01

    The purpose of this study was to compare CT and radionuclide imaging of osmotic blood-brain barrier disruption, and to develop a quantitative method for imaging osmotic blood-brain barrier disruption and to see if iopamidol could be safety given intravenously in conjunction with blood-brain barrier disruption. Forty-five blood-brain barrier disruption procedures were imaged with CT and radionuclide scans. The scans were evaluated with visual and quantitative scales. Patients were observed for adverse effects after blood-brain barrier disruption. There was a 4% rate of seizures in this study. There was good agreement between visual CT and radionuclide grading systems. Quantitative disruption did not add useful information to visual interpretations. Nonionic iodine-based contrast medium has a lower incidence of seizures when injected intravenously in conjunction with osmotic blood-brain barrier disruption than ionic contrast material. Contrast-enhanced CT is the preferred method to image disruption because it has better spatial resolution than radionuclide techniques. 34 refs., 4 figs., 6 tabs.

  5. Hybrid Imaging for Patient-Specific Dosimetry in Radionuclide Therapy.

    PubMed

    Ljungberg, Michael; Gleisner, Katarina Sjögreen

    2015-01-01

    Radionuclide therapy aims to treat malignant diseases by systemic administration of radiopharmaceuticals, often using carrier molecules such as peptides and antibodies. The radionuclides used emit electrons or alpha particles as a consequence of radioactive decay, thus leading to local energy deposition. Administration to individual patients can be tailored with regards to the risk of toxicity in normal organs by using absorbed dose planning. The scintillation camera, employed in planar imaging or single-photon emission computed tomography (SPECT), generates images of the spatially and temporally varying activity distribution. Recent commercially available combined SPECT and computed tomography (CT) systems have dramatically increased the possibility of performing accurate dose planning by using the CT information in several steps of the dose-planning calculation chain. This paper discusses the dosimetry chain used for individual absorbed-dose planning and highlights the areas where hybrid imaging makes significant contributions. PMID:26854156

  6. Applications of Molecular Imaging

    PubMed Central

    Galbán, Craig; Galbán, Stefanie; Van Dort, Marcian; Luker, Gary D.; Bhojani, Mahaveer S.; Rehemtualla, Alnawaz; Ross, Brian D.

    2015-01-01

    Today molecular imaging technologies play a central role in clinical oncology. The use of imaging techniques in early cancer detection, treatment response and new therapy development is steadily growing and has already significantly impacted clinical management of cancer. In this chapter we will overview three different molecular imaging technologies used for the understanding of disease biomarkers, drug development, or monitoring therapeutic outcome. They are (1) optical imaging (bioluminescence and fluorescence imaging) (2) magnetic resonance imaging (MRI), and (3) nuclear imaging (e.g, single photon emission computed tomography (SPECT) and positron emission tomography (PET)). We will review the use of molecular reporters of biological processes (e.g. apoptosis and protein kinase activity) for high throughput drug screening and new cancer therapies, diffusion MRI as a biomarker for early treatment response and PET and SPECT radioligands in oncology. PMID:21075334

  7. In vivo Molecular Imaging and Radionuclide (131I) Therapy of Human Nasopharyngeal Carcinoma Cells Transfected with a Lentivirus Expressing Sodium Iodide Symporter

    PubMed Central

    Shi, Shuo; Zhang, Min; Guo, Rui; Miao, Ying; Hu, Jiajia; Xi, Yun; Li, Biao

    2015-01-01

    Introduction Despite recent improvements in the survival rates for nasopharyngeal carcinoma (NPC), novel treatment strategies are required to improve distant metastasis-free survival. The sodium iodine symporter (NIS) gene has been applied for in vivo imaging and cancer therapy. In this study, we examined the potential of NIS gene therapy as a therapeutic approach in NPC by performing non-invasive imaging using 125I and 131I therapy in vivo. Methods We constructed a lentiviral vector expressing NIS and enhanced green fluorescent protein (EGFP) under the control of the human elongation factor-1α (EF1α) promoter, and stably transfected the vector into CNE-2Z NPC cells to create CNE-2Z-NIS cells. CNE-2Z and CNE-2Z-NIS tumor xenografts were established in nude mice; 125I uptake, accumulation and efflux were measured using micro-SPECT/CT imaging; the therapeutic effects of treatment with 131I were assessed over 25 days by measuring tumor volume and immunohistochemical staining of the excised tumors. Results qPCR, immunofluorescence and Western blotting confirmed that CNE-2Z-NIS cells expressed high levels of NIS mRNA and protein. CNE-2Z-NIS cells and xenografts took up and accumulated significantly more 125I than CNE-2Z cells and xenografts. In vitro, 131I significantly reduced the clonogenic survival of CNE-2Z-NIS cells. In vivo, 131I effectively inhibited the growth of CNE-2Z-NIS xenografts. At the end of 131I therapy, CNE-2Z-NIS xenograft tumor cells expressed higher levels of NIS and caspase-3 and lower levels of Ki-67. Conclusion Lentiviruses effectively delivered and mediated long-lasting expression of NIS in CNE-2Z cells which enabled uptake and accumulation of radioisotopes and provided a significant therapeutic effect in an in vivo model of NPC. NIS-mediated radioiodine treatment merits further investigation as a potentially effective, low toxicity therapeutic strategy for NPC. PMID:25621996

  8. Interventional Molecular Imaging.

    PubMed

    Solomon, Stephen B; Cornelis, Francois

    2016-04-01

    Although molecular imaging has had a dramatic impact on diagnostic imaging, it has only recently begun to be integrated into interventional procedures. Its significant impact is attributed to its ability to provide noninvasive, physiologic information that supplements conventional morphologic imaging. The four major interventional opportunities for molecular imaging are, first, to provide guidance to localize a target; second, to provide tissue analysis to confirm that the target has been reached; third, to provide in-room, posttherapy assessment; and fourth, to deliver targeted therapeutics. With improved understanding and application of(18)F-FDG, as well as the addition of new molecular probes beyond(18)F-FDG, the future holds significant promise for the expansion of molecular imaging into the realm of interventional procedures. PMID:26912443

  9. Molecular Imaging of the Kidneys

    PubMed Central

    Szabo, Zsolt; Alachkar, Nada; Xia, Jinsong; Mathews, William B.; Rabb, Hamid

    2010-01-01

    Radionuclide imaging of the kidneys with gamma cameras involves the use of labeled molecules seeking functionally critical molecular mechanisms in order to detect the pathophysiology of the diseased kidneys and achieve an early, sensitive and accurate diagnosis. The most recent imaging technology, PET, permits quantitative imaging of the kidney at a spatial resolution appropriate for the organ. H215O, 82RbCl, and [64Cu] ETS are the most important radiopharmaceuticals for measuring renal blood flow. The renin angiotensin system is the most important regulator of renal blood flow; this role is being interrogated by detecting angiotensin receptor subtype AT1R using in vivo PET imaging. Membrane organic anion transporters are important for the function of the tubular epithelium; therefore, Tc-99m MAG3 as well as some novel radiopharmaceuticals such as copper-64 labeled mono oxo-tetraazamacrocyclic ligands have been utilized for molecular renal imaging. Additionally, other radioligands that interact with the organic cation transporters or peptide transporters have developed. Focusing on early detection of kidney injury at the molecular level is an evolving field of great significance. Potential imaging targets are the kidney injury molecule- 1 (KIM-1) that is highly expressed in kidney injury and renal cancer but not in normal kidneys. While pelvic clearance, in addition to parenchymal transport, is an important measure in obstructive nephropathy, techniques that focus on upregulated molecules in response to tissue stress resulted from obstruction will be of great implication. Monocyte chemoattractant protein -1 (MCP-1) is a well-suited molecule in this case. The greatest advances in molecular imaging of the kidneys have been recently achieved in detecting renal cancer. In addition to the ubiquitous [18F]FDG, other radioligands such as [11C]acetate and anti-[18F]FACBC have emerged. Radioimmuno-imaging with [124I]G250 could lead to radioimmunotherapy for renal cancer

  10. Approaches to reducing radiation dose from radionuclide myocardial perfusion imaging.

    PubMed

    Dorbala, Sharmila; Blankstein, Ron; Skali, Hicham; Park, Mi-Ae; Fantony, Jolene; Mauceri, Charles; Semer, James; Moore, Stephen C; Di Carli, Marcelo F

    2015-04-01

    Radionuclide myocardial perfusion imaging (MPI) plays a vital role in the evaluation and management of patients with coronary artery disease. However, because of a steep growth in MPI in the mid 2000s, concerns about inappropriate use of MPI and imaging-related radiation exposure increased. In response, the professional societies developed appropriate-use criteria for MPI. Simultaneously, novel technology, image-reconstruction software for traditional scanners, and dedicated cardiac scanners emerged and facilitated the performance of MPI with low-dose and ultra-low-dose radiotracers. This paper provides a practical approach to performing low-radiation-dose MPI using traditional and novel technologies. PMID:25766891

  11. Gallium-67 radionuclide imaging in acute pyelonephritis

    SciTech Connect

    Mendez, G.; Morillo, G.; Alonso, M.; Isikoff, M.B.

    1980-01-01

    The symptoms and clinical course of patients with acute pyelonephritis are variable; likewise, urinalysis, blood cultures, and excretory urography may be normal or equivocal. The ability of gallium-67 to accumulate in areas of active inflammation was useful in the diagnosis of acute pyelonephritis in 12 cases. A multiplane tomographic scanner was used for imaging four of these patients. Initial experience with this scanner is also discussed.

  12. EDITORIAL: Molecular Imaging Technology

    NASA Astrophysics Data System (ADS)

    Asai, Keisuke; Okamoto, Koji

    2006-06-01

    'Molecular Imaging Technology' focuses on image-based techniques using nanoscale molecules as sensor probes to measure spatial variations of various species (molecular oxygen, singlet oxygen, carbon dioxide, nitric monoxide, etc) and physical properties (pressure, temperature, skin friction, velocity, mechanical stress, etc). This special feature, starting on page 1237, contains selected papers from The International Workshop on Molecular Imaging for Interdisciplinary Research, sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan, which was held at the Sendai Mediatheque, Sendai, Japan, on 8 9 November 2004. The workshop was held as a sequel to the MOSAIC International Workshop that was held in Tokyo in 2003, to summarize the outcome of the 'MOSAIC Project', a five-year interdisciplinary project supported by Techno-Infrastructure Program, the Special Coordination Fund for Promotion of Science Technology to develop molecular sensor technology for aero-thermodynamic research. The workshop focused on molecular imaging technology and its applications to interdisciplinary research areas. More than 110 people attended this workshop from various research fields such as aerospace engineering, automotive engineering, radiotechnology, fluid dynamics, bio-science/engineering and medical engineering. The purpose of this workshop is to stimulate intermixing of these interdisciplinary fields for further development of molecular sensor and imaging technology. It is our pleasure to publish the seven papers selected from our workshop as a special feature in Measurement and Science Technology. We will be happy if this issue inspires people to explore the future direction of molecular imaging technology for interdisciplinary research.

  13. Radionuclide cerebral perfusion imaging: Normal pattern

    SciTech Connect

    Goldsmith, S.J.; Stritzke, P.; Losonczy, M.; Vallabhajosula, S.; Holan, V.; DaCosta, M.; Muzinic, M.

    1991-12-31

    Regional cerebral perfusion imaging using a new class of {sup 99m}Tc and {sup 123}I labeled compounds which traverse the blood brain barrier and SPECT imaging technology provides an opportunity to assess this physiologic phenomenon during normal cerebral function and as a manifestation of disease in the central nervous system disease. These applications pose a challenge to the nuclear medicine physician for several reasons: (a) the complex and somewhat unfamiliar functional anatomy, (b) the marked regional differences in regional cerebral perfusion at rest, (c) the lack of understanding of the effect of variations in ambient conditions on regional cerebral perfusion. The difficulties in interpretation are augmented by the display itself. There is frequently no difficulty in differentiating between gray and white matter. However, the frequently used {open_quotes}hot body{close_quotes} color maps, introduce a good deal of contrast, producing displays with apparent interruption in regional cortical perfusion whereas black and white displays provide minimal contrast in the regional cortical activity. The authors sought to define how much variation in regional cerebral perfusion is {open_quotes}allowed{close_quotes} under controlled conditions, to establish a basis to interpret if changes in the environment, psychological interventions, or disease states are accompanied by a measurable change. 2 figs., 1 tab.

  14. Diagnosis of adrenal tumors with radionuclide imaging

    SciTech Connect

    Beierwaltes, W.H.; Sisson, J.C.; Shapiro, B.

    1984-01-01

    The development of radiolabeled cholesterols in 1969 as precursors of adrenocortical steroid production allowed the first noninvasive imaging of the adrenal cortices. FDA-NDA approval in 1984 should allow routine use of these agents in most hospitals. NP-59 is most commonly used in the diagnosis and management of Cushing syndrome; the second most common use is in the diagnosis of primary aldosteronism. It is also helpful in the differential diagnosis of adrenal and ovarian hyperandrogenism and hirsutism, and is the only noninvasive method of detecting unilateral adrenocortical hypofunction. The newest and most popular use is in the differential diagnosis of asymptomatic masses in the region of the adrenal gland discovered incidentally with CT scan (incidentalomas). In this situation, the NP-59 scan can define whether the tumor is in the adrenal gland and if it is functional or nonfunctional. The authors believe that, in the future, radiolabeled enzyme inhibitors might offer better diagnostic imaging of the adrenal cortex, although these agents will probably not be available for routine use for some time. The development of a radioiodinated guanethidine analog, /sup 131/I-MIBG, has allowed differentiation of normal adrenal medullary function from bilateral adrenal medullary hyperplasia before the development of hypertension or tachycardia, diagnostic increases in plasma or urinary catecholamines, or abnormal CT scans. The search for a pheochromocytoma should begin with /sup 131/I-MIBG scintigraphy. While over 90% of primary pheochromocytomas occur in the abdomen, neither a survey of the abdomen nor the finding of a single tumor should conclude the search.

  15. Small Animal Radionuclide Imaging With Focusing Gamma-Ray Optics

    SciTech Connect

    Hill, R; Decker, T; Epstein, M; Ziock, K; Pivovaroff, M J; Craig, W W; Jernigan, J G; Barber, W B; Christensen, F E; Funk, T; Hailey, C J; Hasegawa, B H; Taylor, C

    2004-02-27

    Significant effort currently is being devoted to the development of noninvasive imaging systems that allow in vivo assessment of biological and biomolecular interactions in mice and other small animals. While physiological function in small animals can be localized and imaged using conventional radionuclide imaging techniques such as single-photon emission tomography (SPECT) and positron emission tomography (PET), these techniques inherently are limited to spatial resolutions of 1-2 mm. For this reason, we are developing a small animal radionuclide imaging system (SARIS) using grazing incidence optics to focus gamma-rays emitted by {sup 125}I and other radiopharmaceuticals. We have developed a prototype optic with sufficient accuracy and precision to focus the 27.5 keV photons from {sup 125}I onto a high-resolution imaging detector. Experimental measurements from the prototype have demonstrated that the optic can focus X-rays from a microfocus X-ray tube to a spot having physical dimensions (approximately 1500 microns half-power diameter) consistent with those predicted by theory. Our theoretical and numerical analysis also indicate that an optic can be designed and build that ultimately can achieve 100 {micro}m spatial resolution with sufficient efficiency to perform in vivo single photon emission imaging studies in small animal.

  16. Radionuclide imaging of the biliary tract

    SciTech Connect

    Henry, R.E.; Daly, M.J.

    1981-01-01

    Cholescintigraphy with technetium-labeled biliary agents has great value in evaluation of the patient with suspected acute cholecystitis. Visualization of the gall bladder virtually excludes acute cholecystitis and obstruction of the cystic duct. Nonvisualization of the gall bladder, however, is not specific for acute cholecystitis and may also occur in some patients with chronic cholecystitis or pancreatitis. Interpretation of gall bladder nonvisualization, therefore, must be correlated with the clinical presentation. Biliary tract imaging is also useful in evaluation of some focal abnormalities within the liver, neonatal jaundice, detection of bile leaks or bile reflux, and biliary-enteric shunts. The role of technetium-labeled biliary agents in the evaluation of patients with jaundice is less clear. Excretion of tracer into the gut excludes complete biliary tract obstruction, but the test may be nonconclusive at higher serum bilirubin levels. If persistent common bile duct activity is observed with delayed excretion into the gut, the diagnosis of partial obstruction may be made, but this procedure will be inconclusive if the common bile duct is not visualized and/or significant hepatocellular disease is present. Ultrasonography and abdominal CT are the preferred tools for the diagnosis of biliary tract obstruction at present, but newer biliary tract agents which achieve better hepatic extraction and greater bile concentration at high serum bilirubin levels may improve the diagnostic efficacy of cholescintigraphy.

  17. Sequential radionuclide bone imaging in avascular pediatric hip conditions

    SciTech Connect

    Minikel, J.; Sty, J.; Simons, G.

    1983-05-01

    Radionuclide bone imaging was performed on six patients with various hip conditions. Initial bone images revealed diminished uptake of isotope /sup 99m/Tc-MDP in the capital femoral epiphysis. Following therapeutic intervention, repeat bone scans revealed normal uptake of /sup 99m/Tc-MDP in the capital femoral epiphysis. Subsequent radiographs revealed that avascular necrosis had not occurred. There are two types of avascularity: the potentially reversible, and the irreversible. Attempts should be made toward early recognition of the potentially reversible avascular insult. With early recognition, surgical reconstruction prior to osteophyte death may result in revascularization. If this can be accomplished, avascular necrosis can be avoided.

  18. Cerenkov imaging - a new modality for molecular imaging

    PubMed Central

    Thorek, Daniel LJ; Robertson, Robbie; Bacchus, Wassifa A; Hahn, Jaeseung; Rothberg, Julie; Beattie, Bradley J; Grimm, Jan

    2012-01-01

    Cerenkov luminescence imaging (CLI) is an emerging hybrid modality that utilizes the light emission from many commonly used medical isotopes. Cerenkov radiation (CR) is produced when charged particles travel through a dielectric medium faster than the speed of light in that medium. First described in detail nearly 100 years ago, CR has only recently applied for biomedical imaging purposes. The modality is of considerable interest as it enables the use of widespread luminescence imaging equipment to visualize clinical diagnostic (all PET radioisotopes) and many therapeutic radionuclides. The amount of light detected in CLI applications is significantly lower than other that in other optical imaging techniques such as bioluminescence and fluorescence. However, significant advantages include the use of approved radiotracers and lack of an incident light source, resulting in high signal to background ratios. As well, multiple subjects may be imaged concurrently (up to 5 in common bioluminescent equipment), conferring both cost and time benefits. This review summarizes the field of Cerenkov luminescence imaging to date. Applications of CLI discussed include intraoperative radionuclide-guided surgery, monitoring of therapeutic efficacy, tomographic optical imaging capabilities, and the ability to perform multiplexed imaging using fluorophores excited by the Cerenkov radiation. While technical challenges still exist, Cerenkov imaging has materialized as an important molecular imaging modality. PMID:23133811

  19. Role of radionuclide imaging in the diagnosis of acute osteomyelitis

    SciTech Connect

    Demopulos, G.A.; Bleck, E.E.; McDougall, I.R.

    1988-09-01

    Over the last decade, the role of nuclear medicine studies in the diagnosis of acute osteomyelitis has been discussed in depth in the literature. Yet, the respective roles played in this setting by each of the commonly used radionuclide studies often are confusing. In an attempt to develop a cogent diagnostic strategy, we reviewed the literature published within the last 12 years pertaining to the use of radiophosphate bone scintigraphy as well as gallium and indium WBC imaging in the diagnosis of this condition. Based on our findings, we propose an alternative approach to the evaluation of a patient with suspected acute osteomyelitis. 63 references.

  20. Three-phase radionuclide bone imaging in sports medicine

    SciTech Connect

    Rupani, H.D.; Holder, L.E.; Espinola, D.A.; Engin, S.I.

    1985-07-01

    Three-phase radionuclide bone (TPB) imaging was performed on 238 patients with sports-related injuries. A wide variety of lesions was encountered, but the most frequent lesions seen were stress fractures of the lower part of the leg at the junction of the middle and distal thirds of the posterior tibial cortex (42 of 79 lesions). There were no differences in the type, location, or distribution of lesions between males and females or between competitive and noncompetitive athletes. In 110 cases, bone stress lesions were often diagnosed when radiographs were normal, whereas subacute or chronic soft-tissue abnormalities had few specific scintigraphic features. TPB imaging provides significant early diagnostic information about bone stress lesions. Normal examination results (53 cases) exclude underlying osseous pathologic conditions.

  1. Photoacoustic molecular imaging

    NASA Astrophysics Data System (ADS)

    Kiser, William L., Jr.; Reinecke, Daniel; DeGrado, Timothy; Bhattacharyya, Sibaprasad; Kruger, Robert A.

    2007-02-01

    It is well documented that photoacoustic imaging has the capability to differentiate tissue based on the spectral characteristics of tissue in the optical regime. The imaging depth in tissue exceeds standard optical imaging techniques, and systems can be designed to achieve excellent spatial resolution. A natural extension of imaging the intrinsic optical contrast of tissue is to demonstrate the ability of photoacoustic imaging to detect contrast agents based on optically absorbing dyes that exhibit well defined absorption peaks in the infrared. The ultimate goal of this project is to implement molecular imaging, in which Herceptin TM, a monoclonal antibody that is used as a therapeutic agent in breast cancer patients that over express the HER2 gene, is labeled with an IR absorbing dye, and the resulting in vivo bio-distribution is mapped using multi-spectral, infrared stimulation and subsequent photoacoustic detection. To lay the groundwork for this goal and establish system sensitivity, images were collected in tissue mimicking phantoms to determine maximum detection depth and minimum detectable concentration of Indocyanine Green (ICG), a common IR absorbing dye, for a single angle photoacoustic acquisition. A breast mimicking phantom was constructed and spectra were also collected for hemoglobin and methanol. An imaging schema was developed that made it possible to separate the ICG from the other tissue mimicking components in a multiple component phantom. We present the results of these experiments and define the path forward for the detection of dye labeled Herceptin TM in cell cultures and mice models.

  2. False-positive radionuclide hepatobiliary imaging following cystic duct stone removal

    SciTech Connect

    Zagoria, R.J.; Cowan, R.J.; Dyer, R.B.; Herrera, M.

    1989-03-01

    The authors report a case in which a radionuclide hepatobiliary image was falsely indicative of cystic duct obstruction in a patient with an indwelling cholecystostomy tube and an externalized gallbladder-duodenal stent. Cystic duct patency was demonstrated radiographically shortly before and after the radionuclide study. The authors recommend that cystic duct obstruction indicated by a radionuclide hepatobiliary image be confirmed by another means if a cholecystostomy tube is present, or if the patient recently has undergone percutaneous gallbladder or cystic duct manipulations.

  3. Hematogenous pyogenic vertebral osteomyelitis: diagnostic value of radionuclide bone imaging

    SciTech Connect

    Adatepe, M.H.; Powell, O.M.; Isaacs, G.H.; Nichols, K.; Cefola, R.

    1986-11-01

    Hematogenous pyogenic vertebral osteomyelitis (HPVO) continues to be a diagnostic problem for clinicians due to nonspecific presentation of the disease (1,2). We reviewed our experience of the last 10 years to determine the diagnostic usefulness of radionuclide bone studies in this disease. We found 15 patients whose primary diagnosis was HPVO. Of the 15 patients, 12 had (99mTc)MDP bone scans which were all positive. Five of the 12 patients had positive (/sup 67/Ga)citrate scans and one patient with chronic active HPVO had negative /sup 67/Ga and (/sup 111/In)WBC bone images. At the same time, three patients' spine x-rays and one patient's CT scan of the vertebra were normal. Additionally, in three patients spine x-rays were interpreted as consistent with degenerative joint disease that contributed to the delay of the diagnosis. We conclude that when HPVO is suspected an abnormal (99mTc)MDP bone image increases the probability of the disease, even if the x-rays and CT scans of the spine are normal. An abnormal /sup 67/Ga image following an abnormal 99mTc bone image increases the specificity of the diagnosis. Normal (99mTc)MDP and (/sup 67/Ga)citrate bone images of the vertebra virtually exclude the diagnosis of HPVO.

  4. Radionuclide Imaging of Neurohormonal System of the Heart

    PubMed Central

    Chen, Xinyu; Werner, Rudolf A.; Javadi, Mehrbod S.; Maya, Yoshifumi; Decker, Michael; Lapa, Constantin; Herrmann, Ken; Higuchi, Takahiro

    2015-01-01

    Heart failure is one of the growing causes of death especially in developed countries due to longer life expectancy. Although many pharmacological and instrumental therapeutic approaches have been introduced for prevention and treatment of heart failure, there are still limitations and challenges. Nuclear cardiology has experienced rapid growth in the last few decades, in particular the application of single photon emission computed tomography (SPECT) and positron emission tomography (PET), which allow non-invasive functional assessment of cardiac condition including neurohormonal systems involved in heart failure; its application has dramatically improved the capacity for fundamental research and clinical diagnosis. In this article, we review the current status of applying radionuclide technology in non-invasive imaging of neurohormonal system in the heart, especially focusing on the tracers that are currently available. A short discussion about disadvantages and perspectives is also included. PMID:25825596

  5. Correlation of diagnostic ultrasound and radionuclide imaging in scrotal disease

    SciTech Connect

    Chen, D.C.P.; Holder, L.E.; Kaplan, G.N.

    1984-01-01

    A retrospective study was performed to evaluate the usefulness of scrotal ultrasound imaging (SU) and radionuclide scrotal imaging (RSI) in 43 patients (pts), age: 16-75. Twenty-two of them complained of scrotal pain; 18 had a scrotal mass; and 4 had a history of trauma. The final diagnoses were conformed by surgery (n = 21) and long-term follow-up (n = 22) and included 4 late phase and 1 early testicular torsion (TT), 11 acute epididymitis (AE), 4 subacute epididymitis (SE), 5 malignant tumors, 3 testicular atrophy, 2 intratesticular hematomas, 10 hydroceles or other cystic lesions, and miscellaneous. In pts with scrotal pain, 3/4 with late phase TT were correctly diagnosed, while one pt with early TT and 11/15 with AE or SE were not diagnosed by SU. All of them were correctly diagnosed with RSI except one with scrotal cyst. SU was able to separate cystic masses (n = 10) from solid masses (n = 6), but cannot separate malignant from benign lesions. SU was excellent in detecting 19 hydroceles and 2 intratesticular hematomas, while 3 lesions < 1 cm. were not seen in RSI. The authors concluded that SU is useful in pts with scrotal mass to separate solid from cystic lesions. However, SU is unable to differentiate the acute epididymitis from early testicular torsion. In pts with acute scrotal pain, SU is not helpful and RSI should still be the first study performed.

  6. Radiolabeled Adenoviral Sub-unit Proteins for Molecular Imaging and Therapeutic Applications in Oncology

    SciTech Connect

    Srivastava, S.; Meinken, G.; Springer, K. Awasthi, V.; Freimuth, P.

    2004-10-06

    The objective of this project was to develop and optimize new ligand systems, based on adenoviral vectors (intact adenovirus, adeno-viral fiber protein, and the knob protein), for delivering suitable radionuclides into tumor cells for molecular imaging and combined gene/radionuclide therapy of cancer.

  7. Time-resolved molecular imaging

    NASA Astrophysics Data System (ADS)

    Xu, Junliang; Blaga, Cosmin I.; Agostini, Pierre; DiMauro, Louis F.

    2016-06-01

    Time-resolved molecular imaging is a frontier of ultrafast optical science and physical chemistry. In this article, we review present and future key spectroscopic and microscopic techniques for ultrafast imaging of molecular dynamics and show their differences and connections. The advent of femtosecond lasers and free electron x-ray lasers bring us closer to this goal, which eventually will extend our knowledge about molecular dynamics to the attosecond time domain.

  8. Targeted radionuclide and fluorescence dual-modality imaging of cancer: preclinical advances and clinical translation.

    PubMed

    Lütje, S; Rijpkema, M; Helfrich, W; Oyen, W J G; Boerman, O C

    2014-12-01

    In oncology, sensitive and reliable detection tumor tissue is crucial to prevent recurrences and to improve surgical outcome. Currently, extensive research is focused on the use of radionuclides as well as fluorophores to provide real-time guidance during surgery to aid the surgeon in the identification of malignant tissue. Particularly, dual-modality approaches combining radionuclide and near-infrared fluorescence (NIRF) imaging have shown promising results in preclinical studies. Radionuclide imaging allows sensitive intra-operative localization of tumor lesions using a gamma probe, whereas NIRF imaging allows more accurate real-time tumor delineation. Consequently, both radionuclide and NIRF imaging might complement each other, and dual-modality image-guided surgery may overcome limitations of the currently used single-modality imaging techniques. In this review, a comprehensive overview on recent preclinical advances in tumor-targeted radionuclide and fluorescence dual-modality imaging is provided. Subsequently, the clinical applicability of dual-modality image-guided surgery is discussed.

  9. Molecular imaging in ovarian cancer.

    PubMed

    Reyners, A K L; Broekman, K E; Glaudemans, A W J M; Brouwers, A H; Arts, H J G; van der Zee, A G J; de Vries, E G E; Jalving, M

    2016-04-01

    Ovarian cancer has a high mortality and novel-targeted treatment strategies have not resulted in breakthroughs for this disease. Insight into the molecular characteristics of ovarian tumors may improve diagnosis and selection of patients for treatment with targeted therapies. A potential way to achieve this is by means of molecular imaging. Generic tumor processes, such as glucose metabolism ((18)F-fluorodeoxyglucose) and DNA synthesis ((18)F-fluorodeoxythymidine), can be visualized non-invasively. More specific targets, such as hormone receptors, growth factor receptors, growth factors and targets of immunotherapy, can also be visualized. Molecular imaging can capture data on intra-patient tumor heterogeneity and is of potential value for individualized, target-guided treatment selection. Early changes in molecular characteristics during therapy may serve as early predictors of response. In this review, we describe the current knowledge on molecular imaging in the diagnosis and as an upfront or early predictive biomarker in patients with ovarian cancer. PMID:27141066

  10. Isonitrile radionuclide complexes for labelling and imaging agents

    SciTech Connect

    Jones, A.G.; Abrams, M.J.; Davison, A.

    1984-06-05

    A coordination complex of an isonitrile ligand and radionuclide such as Tc, Ru, Co, Pt, Fe, Os, Ir, W, Re, Cr, Mo, Mn, Ni, Rh, Pd, Nb and Ta, is useful as a diagnostic agent for labelling liposomes or vesicles, and selected living cells containing lipid membranes, such as blood clots, myocardial tissue, gall bladder tissue, etc.

  11. Isonitrile radionuclide complexes for labelling and imaging agents

    DOEpatents

    Jones, Alun G.; Davison, Alan; Abrams, Michael J.

    1984-06-04

    A coordination complex of an isonitrile ligand and radionuclide such as Tc, Ru, Co, Pt, Fe, Os, Ir, W, Re, Cr, Mo, Mn, Ni, Rh, Pd, Nb and Ta, is useful as a diagnostic agent for labelling liposomes or vesicles, and selected living cells containing lipid membranes, such as blood clots, myocardial tissue, gall bladder tissue, etc.

  12. Radionuclide hepatobiliary imaging: nonvisualization of the gallbladder secondary to prolonged fasting

    SciTech Connect

    Larsen, M.J.; Klingensmith, W.C. III; Kuni, C.C.

    1982-11-01

    Radionuclide hepatobiliary imaging demonstrated nonvisualization of the gallbladder in four patients who were studied after fasting from 14 hr to 12 days. Two patients subsequently had normal gallbladders at autopsy, and two gave normal gallbladder visualization on repeat imaging studies after fasts of 2 to 3 hr. These findings suggest that prolonged fasting may be a cause for nonvisualization of a normal gallbladder.

  13. Synthetic copolymer kit for radionuclide blood-pool imaging

    SciTech Connect

    Bogdanov, A.A. Jr.; Callahan, R.J.; Wilkinson, R.A.

    1994-11-01

    A synthetic blood pool imaging agent labeled with {sup 99m}Tc is reported. The agent, methoxypolyethylene glycolpoly-L-Iysyl-diethylenetriaminepentaacetate monoamide was synthesized from a covalent graft copolymer of methoxypolyethylene glycol succinate (molecular weight 5.1 kD) with subsequent modification of the product with diethylenetriamineacetyl residues. The polymer was formulated into a kit that contained Sn(II) and sodium acetate for radiolabeling with {sup 99m}Tc. Biodistribution studies were performed in rats. Blood-pool imaging and blood clearance determination was carried out in rabbits and in a rhesus monkey. The {sup 99m}Tc-labeled agent [specific activity greater than 3.7 GBq/mg; radiochemical purity more than 98% by thin-layer and high-performance liquid chromatography (HPLC)] demonstrated remarkable stability in solution (pH 5.5-6.5) with no radioactive products of degradation detectable by HPLC even at 24 hr postlabeling. The agent exhibited prolonged circulation in the blood with a half-life of 31.5 hr in rabbits. Bio-distribution in rats showed a lack of substantial accumulation of the agent in the reticuloendothelial system. Sequential acquisitions were performed in a rhesus monkey. The {sup 99m}Tc-labeled polymer kit was compared with the {sup 99m}Tc-red blood cells (RBCs) labeled in vitro. Both methods produced similar heart-to-lung ratios. The ratios remained essentially unchanged for up to 15 hr postinjection. The {sup 99m}Tc-labeled methaxypolyethylene glycol-poly-L-lysyl-diethylenetriamine pentaacetate monoamide is an attractive alternative to radiolabeled RBCs for blood pool imaging applications. 33 refs., 7 figs.

  14. Molecular imaging using PET for breast cancer.

    PubMed

    Kurihara, Hiroaki; Shimizu, Chikako; Miyakita, Yasuji; Yoshida, Masayuki; Hamada, Akinobu; Kanayama, Yousuke; Yonemori, Kan; Hashimoto, Jun; Tani, Hitomi; Kodaira, Makoto; Yunokawa, Mayu; Yamamoto, Harukaze; Watanabe, Yasuyoshi; Fujiwara, Yasuhiro; Tamura, Kenji

    2016-01-01

    Molecular imaging can visualize the biological processes at the molecular and cellular levels in vivo using certain tracers for specific molecular targets. Molecular imaging of breast cancer can be performed with various imaging modalities, however, positron emission tomography (PET) is a sensitive and non-invasive molecular imaging technology and this review will focus on PET molecular imaging of breast cancer, such as FDG-PET, FLT-PET, hormone receptor PET, and anti-HER2 PET.

  15. Sequential radionuclide imaging during paracorporeal left ventricular support.

    PubMed

    Sweet, S E; Sussman, H A; Ryan, T J; Bernhard, W F; Berger, R L

    1980-09-01

    A paracorporeal left ventricular to ascending aorta assist device (LVAD) was utilized in four patients with refractory cardiogenic shock following cardiac surgery. Hemodynamic stabilization was achieved in all four patients, two of whom were subsequently discharged from the hospital and continue to do well one year later. A technique is described for obtaining radionuclide ejection fractions (EFs) during temporary LVAD interruption. The EFs appeared to be predictive of eventual unassisted ventricular function and possibly of patient survival.

  16. Molecular SPECT Imaging: An Overview

    PubMed Central

    Khalil, Magdy M.; Tremoleda, Jordi L.; Bayomy, Tamer B.; Gsell, Willy

    2011-01-01

    Molecular imaging has witnessed a tremendous change over the last decade. Growing interest and emphasis are placed on this specialized technology represented by developing new scanners, pharmaceutical drugs, diagnostic agents, new therapeutic regimens, and ultimately, significant improvement of patient health care. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) have their signature on paving the way to molecular diagnostics and personalized medicine. The former will be the topic of the current paper where the authors address the current position of the molecular SPECT imaging among other imaging techniques, describing strengths and weaknesses, differences between SPECT and PET, and focusing on different SPECT designs and detection systems. Radiopharmaceutical compounds of clinical as well-preclinical interest have also been reviewed. Moreover, the last section covers several application, of μSPECT imaging in many areas of disease detection and diagnosis. PMID:21603240

  17. Design and Development of Molecular Imaging Probes

    PubMed Central

    Chen, Kai; Chen, Xiaoyuan

    2013-01-01

    Molecular imaging, the visualization, characterization and measurement of biological processes at the cellular, subcellular level, or even molecular level in living subjects, has rapidly gained importance in the dawning era of personalized medicine. Molecular imaging takes advantage of the traditional diagnostic imaging techniques and introduces molecular imaging probes to determine the expression of indicative molecular markers at different stages of diseases and disorders. As a key component of molecular imaging, molecular imaging probe must be able to specifically reach the target of interest in vivo while retaining long enough to be detected. A desirable molecular imaging probe with clinical translation potential is expected to have unique characteristics. Therefore, design and development of molecular imaging probe is frequently a challenging endeavor for medicinal chemists. This review summarizes the general principles of molecular imaging probe design and some fundamental strategies of molecular imaging probe development with a number of illustrative examples. PMID:20388106

  18. Molecular Imaging of Ovarian Cancer

    PubMed Central

    Sharma, Sai Kiran; Nemieboka, Brandon; Sala, Evis; Lewis, Jason S.; Zeglis, Brian M.

    2016-01-01

    Ovarian cancer is the most lethal gynecologic malignancy and the fifth leading cause of cancer-related death in women. Over the past decade, medical imaging has played an increasingly valuable role in the diagnosis, staging, and treatment planning of the disease. In this “Focus on Molecular Imaging” review, we seek to provide a brief yet informative survey of the current state of the molecular imaging of ovarian cancer. The article is divided into sections according to modality, covering recent advances in the MR, PET, SPECT, ultrasound, and optical imaging of ovarian cancer. Although primary emphasis is given to clinical studies, preclinical investigations that are particularly innovative and promising are discussed as well. Ultimately, we are hopeful that the combination of technologic innovations, novel imaging probes, and further integration of imaging into clinical protocols will lead to significant improvements in the survival rate for ovarian cancer. PMID:27127223

  19. Molecular imaging with terahertz waves.

    PubMed

    Oh, Seung Jae; Choi, Jihye; Maeng, Inhee; Park, Jae Yeon; Lee, Kwangyeol; Huh, Yong-Min; Suh, Jin-Suck; Haam, Seungjoo; Son, Joo-Hiuk

    2011-02-28

    We demonstrate a highly sensitive THz molecular imaging (TMI) technique involving differential modulation of surface plasmons induced on nanoparticles and obtain target specific in vivo images of cancers. This technique can detect quantities of gold nanoparticles as small as 15 µM in vivo. A comparison of TMI images with near infrared absorption images shows the superior sensitivity of TMI. Furthermore, the quantification property of TMI is excellent, being linearly proportional to the concentration of nanoparticles. The target specificity issue is also addressed at the ex vivo and cell levels. The high thermal sensitivity of TMI can help extend photonic-based photothermal molecular imaging researches from the in vitro level to the in vivo level. The TMI technique can be used for monitoring drug delivery processes and for early cancer diagnosis.

  20. Comparison of radionuclide imaging and ultrasonography of the liver.

    PubMed

    Elyaderani, M K; Gabriele, O F

    1983-01-01

    Radionuclide liver scans and gray scale ultrasonography of the liver were compared in 456 patients with various abnormalities including normal variants, jaundice, abscesses, and metastatic diseases. In general the better resolution of sonography detected smaller and deeper focal lesions than nuclide scans, but nuclide studies were more informative in hepatocellular disorders. Nuclide studies frequently demonstrated lesions that could be further delineated by sonography as either cystic or solid. This ability was of particular significance in isolated liver lesions found during metastatic surveys. PMID:6823576

  1. Optical molecular imaging in PDT

    NASA Astrophysics Data System (ADS)

    Mitra, Soumya; Snyder, John W.; Foster, Thomas H.

    2007-02-01

    Motivated by recent successes in fluorescence imaging of whole mount tissue preparations and by rapid progress in the fields of molecular imaging and molecular biology, we are exploring a number of applications of optical fluorescence imaging in superficial murine tumor models in vivo. Imaging the PDT-induced expression of the heat shock protein 70 (HSP70) in cells and in vivo is accomplished using stably transfected EMT6 cells in which the gene for GFP is under the control of the HSP70 promoter. These cells readily form solid tumors in BALB/c mice, enabling the direct imaging of the extent and time course of the activation of this promoter, with each mouse serving as its own control. Imaging of similarly transfected EMT6 cells with a HIF-1α/GFP fusion protein vector enables visualization of HIF-1α translocation to the nucleus. Recently, we have accomplished fluorescent labeling of surface antigens in vivo using intratumor and intravenous injection of fluorophore-conjugated antibodies. Injection of deep-red fluorophore-conjugated-anti-CD31 enables confocal fluorescence imaging of the tumor vasculature to depths of at least 100 microns. With the vessels rendered fluorescent in this way, a number of interesting studies become possible in the living mouse, including the direct visualization of photosensitizer distribution from perfused vessels. Using the appropriate fluorophore-conjugated antibodies, we have also been able to image infiltrating granulocytes in EMT6 tumors in response to PDT in vivo.

  2. Nanobody: The “Magic Bullet” for Molecular Imaging?

    PubMed Central

    Chakravarty, Rubel; Goel, Shreya; Cai, Weibo

    2014-01-01

    Molecular imaging involves the non-invasive investigation of biological processes in vivo at the cellular and molecular level, which can play diverse roles in better understanding and treatment of various diseases. Recently, single domain antigen-binding fragments known as 'nanobodies' were bioengineered and tested for molecular imaging applications. Small molecular size (~15 kDa) and suitable configuration of the complementarity determining regions (CDRs) of nanobodies offer many desirable features suitable for imaging applications, such as rapid targeting and fast blood clearance, high solubility, high stability, easy cloning, modular nature, and the capability of binding to cavities and difficult-to-access antigens. Using nanobody-based probes, several imaging techniques such as radionuclide-based, optical and ultrasound have been employed for visualization of target expression in various disease models. This review summarizes the recent developments in the use of nanobody-based probes for molecular imaging applications. The preclinical data reported to date are quite promising, and it is expected that nanobody-based molecular imaging agents will play an important role in the diagnosis and management of various diseases. PMID:24578722

  3. Evaluation of lesion detectability and crosstalk correction methods in dual radionuclide imaging

    SciTech Connect

    Ivanovic, M.; Esser, P.D.; Weber, D.A.

    1994-05-01

    Crosstalk components (XC) present in one or both energy windows (EWs) in dual radionuclide images can influence the detectability of cold defects and overestimate areas of hyperperfusion. Changes in lesion contrast due to the presence of crosstalk photons and correction methods were evaluated for combinations of radionuclides. Monte Carlo simulations of SPECT and planar imaging of a brain phantom containing 10 lesions ranging in size from 1 to 12 cm{sup 2} were run for Tc-99m, Xe-133, Tl-201 and I-123. Simulations of the gray and white matter compartments and lesions were run individually to allow greater flexibility in evaluating different radionuclide uptake distributions. Simulations of image acquisition at 15 EWs, corresponding to the baseline settings and EWs commonly used for imaging all four radionuclides, were recorded for each radionuclide. The system energy resolution (ER) was set at 1% intervals between 6 and 14%. XCs were calculated for: (1) Tc and I with 4:1 activity ratio (AR) of Tc/I; (2) Tc and Tl with a 5:1 AR and (3) Tc and Xe with a 2:1 and 4:1 AR. Cold defects of 10 to 60% with Xe, Tl and I were seen as 3 to 45% defects due to XC from Tc when similar distribution and defect size were assumed for both radionuclides. Large changes in lesion contrast were observed when multiple lesions with increased (hyperperfused regions) and decreased activity were used in the same study especially if cold lesions on Xe, Tl and I images, appear as regions with increased activity uptake on the Tc study. Image contrast improved when images recorded in the 100-110 keV EW were used to estimate and correct for Tc XC in the Xe- and Tl-studies; 10-60% defects were seen as defect of 6-55%. The study shows that large changes in lesion contrast and detectability due to XC can be corrected using a third EW in dual radionuclide imaging of Tc-Xe and Tc-Tl.

  4. Molecular Imaging of Plaque Vulnerability

    PubMed Central

    Tavakoli, Sina; Vashist, Aseem; Sadeghi, Mehran M.

    2014-01-01

    Over the past decade significant progress has been made in the development of novel imaging strategies focusing on the biology of the vessel wall for identification of vulnerable plaques. While the majority of these studies are still in the preclinical stage, few techniques (e.g., 18F-FDG and 18F-NaF PET imaging) have already been evaluated in clinical studies with promising results. Here, we will briefly review the pathobiology of atherosclerosis and discuss molecular imaging strategies that have been developed to target these events, with an emphasis on mechanisms that are associated with atherosclerotic plaque vulnerability. PMID:25124827

  5. Physiological considerations in radionuclide imaging of the penis during impotence therapy

    SciTech Connect

    Chaudhuri, T.K.; Fink, S.; Burger, R.H.; Netto, I.C.; Palmer, J.D. )

    1989-01-01

    The increased use of intracorporeal drugs in the treatment of impotence has advanced our understanding of erectile physiology. Radionuclide imaging of the penis (nuclear penogram) has provided clinicians with a noninvasive, objective measure of blood flow and blood pool changes during erection and with assistance in the quantitative documentation of therapeutic effect. 39 references.

  6. Molecular imaging in cervical cancer.

    PubMed

    Khan, Sairah R; Rockall, Andrea G; Barwick, Tara D

    2016-06-01

    Despite the development of screening and of a vaccine, cervix cancer is a major cause of cancer death in young women worldwide. A third of women treated for the disease will recur, almost inevitably leading to death. Functional imaging has the potential to stratify patients at higher risk of poor response or relapse by improved delineation of disease extent and tumor characteristics. A number of molecular imaging biomarkers have been shown to predict outcome at baseline and/or early during therapy in cervical cancer. In future this could help tailor the treatment plan which could include selection of patients for close follow up, adjuvant therapy or trial entry for novel agents or adaptive clinical trials. The use of molecular imaging techniques, FDG PET/CT and functional MRI, in staging and response assessment of cervical cancer is reviewed. PMID:26859085

  7. New Strategies for 0.5 mm Resolution, High Sensitivity, Multi- Radionuclide Imaging

    SciTech Connect

    Levin, Craig S.

    2015-02-28

    This project constitutes a 0.5-millimeter resolution radionuclide detector system built from CZT. (1) A novel dual-crystal photon detector module design with cross-strip electrode patterns was developed; (2) The module mechanical assembly was built; (3) A data acquisition (DAQ) chain for the module was produced; (4) A software tool was developed to incorporate novel time and energy measurement calibration techniques. (5) A small multi-detector prototype of the radionuclide imaging system was built from this module for system-level characterizations.

  8. Nuclear molecular imaging with nanoparticles: radiochemistry, applications and translation

    PubMed Central

    Abou, D S; Pickett, J E

    2015-01-01

    Molecular imaging provides considerable insight into biological processes for greater understanding of health and disease. Numerous advances in medical physics, chemistry and biology have driven the growth of this field in the past two decades. With exquisite sensitivity, depth of detection and potential for theranostics, radioactive imaging approaches have played a major role in the emergence of molecular imaging. At the same time, developments in materials science, characterization and synthesis have led to explosive progress in the nanoparticle (NP) sciences. NPs are generally defined as particles with a diameter in the nanometre size range. Unique physical, chemical and biological properties arise at this scale, stimulating interest for applications as diverse as energy production and storage, chemical catalysis and electronics. In biomedicine, NPs have generated perhaps the greatest attention. These materials directly interface with life at the subcellular scale of nucleic acids, membranes and proteins. In this review, we will detail the advances made in combining radioactive imaging and NPs. First, we provide an overview of the NP platforms and their properties. This is followed by a look at methods for radiolabelling NPs with gamma-emitting radionuclides for use in single photon emission CT and planar scintigraphy. Next, utilization of positron-emitting radionuclides for positron emission tomography is considered. Finally, recent advances for multimodal nuclear imaging with NPs and efforts for clinical translation and ongoing trials are discussed. PMID:26133075

  9. Cancer Stratification by Molecular Imaging

    PubMed Central

    Weber, Justus; Haberkorn, Uwe; Mier, Walter

    2015-01-01

    The lack of specificity of traditional cytotoxic drugs has triggered the development of anticancer agents that selectively address specific molecular targets. An intrinsic property of these specialized drugs is their limited applicability for specific patient subgroups. Consequently, the generation of information about tumor characteristics is the key to exploit the potential of these drugs. Currently, cancer stratification relies on three approaches: Gene expression analysis and cancer proteomics, immunohistochemistry and molecular imaging. In order to enable the precise localization of functionally expressed targets, molecular imaging combines highly selective biomarkers and intense signal sources. Thus, cancer stratification and localization are performed simultaneously. Many cancer types are characterized by altered receptor expression, such as somatostatin receptors, folate receptors or Her2 (human epidermal growth factor receptor 2). Similar correlations are also known for a multitude of transporters, such as glucose transporters, amino acid transporters or hNIS (human sodium iodide symporter), as well as cell specific proteins, such as the prostate specific membrane antigen, integrins, and CD20. This review provides a comprehensive description of the methods, targets and agents used in molecular imaging, to outline their application for cancer stratification. Emphasis is placed on radiotracers which are used to identify altered expression patterns of cancer associated markers. PMID:25749472

  10. Stress injuries of the pars interarticularis: Radiologic classification and indications for radionuclide imaging

    SciTech Connect

    Pennell, R.; Maurer, A.R.; Bonakdarpour, A.

    1984-01-01

    Lumbar spine radiographs and radionuclide images were compared and correlated with clinical histories of 20 athletes with low back pain. Radiographs were classified as: Normal (Type 0); showing a healing stress fracture (an irregular lucent line) with sclerosis (Type I); as an evolving or healed stress injury with either sclerosis, narrowing, or demineralization (Type II); and as a chronic fracture showing a large lucency with well-defined margins classically referred to as spondylolysis (Type III). Patients were grouped clinically on the basis of their pain: acute onset (Group A, n = 7), acute superimposed on chronic (Group B, n = 9), and chronic pain without an acute event (Group C, n = 4). Radiographic abnormalities were present in 95% (19/20) of the patients and radionuclide studies were positive in 60% (12/20). Scintigraphy was positive most often with Type I pars abnormalities (77%, 10/13) and negative most often with Type III abnormalities (91%, 11/12). Of all positive scintigraphy 12/14 (86%) were in pts in Groups A and B (acute symptoms). The authors' findings support theories that radiographic pars abnormalities exist which correspond to stages in the healing of stress induced fractures. With acute symptoms radionuclide imaging need not be obtained if a Type I radiographic abnormality is seen. Radionuclide imaging is indicated with either Type 0, II or III radiographs to confirm or rule out recent stress injury.

  11. Molecular Imaging with Theranostic Nanoparticles

    PubMed Central

    Jokerst, Jesse V.; Gambhir, Sanjiv S.

    2011-01-01

    Conspectus Nanoparticles offer diagnostic and therapeutic capabilities impossible with small molecules or micro-scale tools. As molecular biology merges with medical imaging to form the field of molecular imaging, nanoparticle imaging is increasingly common with both therapeutic and diagnostic applications. The term theranostic indicates technology with concurrent and complementary diagnostic and therapeutic capabilities. When performed with sub-micron materials, the field may be termed theranostic nanomedicine. Although nanoparticles have been FDA-approved for clinical use as transport vehicles for nearly 15 years, full translation of their theranostic potential is incomplete. Still, remarkable successes with nanoparticles have been realized in the areas of drug delivery and magnetic resonance imaging. Emerging applications include image-guided resection, optical/photoacoustic imaging in vivo, contrast-enhanced ultrasound, and thermoablative therapy. Diagnosis with nanoparticles in molecular imaging involves correlating signal to a phenotype. The disease’s size, stage, and biochemical signature can be gleaned from the location and intensity of nanoparticle signal emanating from a living subject. Therapy with NP uses the image for resection or delivery of small molecule or RNA thererapeutic. Ablation of the affected area is also possible via heat or radioactivity. The ideal theranostic NP: (1) selectively and rapidly accumulates in diseased tissue, (2) reports biochemical and morphological characteristics of the area, (3) delivers a non-invasive therapeutic, and (4) is safe and biodegrades with non-toxic byproducts. Above is a schematic of such a system which contains a central imaging core (yellow) surrounded by small molecule therapeutics (red). The system targets via ligands such as IgG (pink) and is protected from immune scavengers by a cloak of protective polymer (green). While no nanoparticle has achieved all of the above features, many NPs do fulfill one

  12. Molecular, Functional, and Structural Imaging of Major Depressive Disorder.

    PubMed

    Zhang, Kai; Zhu, Yunqi; Zhu, Yuankai; Wu, Shuang; Liu, Hao; Zhang, Wei; Xu, Caiyun; Zhang, Hong; Hayashi, Takuya; Tian, Mei

    2016-06-01

    Major depressive disorder (MDD) is a significant cause of morbidity and mortality worldwide, correlating with genetic susceptibility and environmental risk factors. Molecular, functional, and structural imaging approaches have been increasingly used to detect neurobiological changes, analyze neurochemical correlates, and parse pathophysiological mechanisms underlying MDD. We reviewed recent neuroimaging publications on MDD in terms of molecular, functional, and structural alterations as detected mainly by magnetic resonance imaging (MRI) and positron emission tomography. Altered structure and function of brain regions involved in the cognitive control of affective state have been demonstrated. An abnormal default mode network, as revealed by resting-state functional MRI, is likely associated with aberrant metabolic and serotonergic function revealed by radionuclide imaging. Further multi-modal investigations are essential to clarify the characteristics of the cortical network and serotonergic system associated with behavioral and genetic variations in MDD. PMID:27142698

  13. Molecular Imaging of Retinal Disease

    PubMed Central

    Capozzi, Megan E.; Gordon, Andrew Y.; Penn, John S.

    2013-01-01

    Abstract Imaging of the eye plays an important role in ocular therapeutic discovery and evaluation in preclinical models and patients. Advances in ophthalmic imaging instrumentation have enabled visualization of the retina at an unprecedented resolution. These developments have contributed toward early detection of the disease, monitoring of disease progression, and assessment of the therapeutic response. These powerful technologies are being further harnessed for clinical applications by configuring instrumentation to detect disease biomarkers in the retina. These biomarkers can be detected either by measuring the intrinsic imaging contrast in tissue, or by the engineering of targeted injectable contrast agents for imaging of the retina at the cellular and molecular level. Such approaches have promise in providing a window on dynamic disease processes in the retina such as inflammation and apoptosis, enabling translation of biomarkers identified in preclinical and clinical studies into useful diagnostic targets. We discuss recently reported and emerging imaging strategies for visualizing diverse cell types and molecular mediators of the retina in vivo during health and disease, and the potential for clinical translation of these approaches. PMID:23421501

  14. Radionuclide imaging of the liver in human fascioliasis

    SciTech Connect

    Rivera, J.V.; Bermudez, R.H.

    1984-08-01

    The clinical, laboratory, and scintigraphic findings in four cases of human fascioliasis are described. Acute onset of fever, abdominal pain, and weight loss in a person who has ingested watercress constitutes the clinical syndrome often seen. Eosinophilia and alteration in liver function tests, particularly alkaline phosphatase are frequent. Tc-99m sulfur colloid images showed hepatomegaly in four patients, focal defects in two, splenomegaly in three, and increased splenic uptake in two. Gallium citrate (Ga 67) images show increased uptake in the focal lesions in two of two. Sonographic imaging showed focal lucent abnormality in one of three. Liver biopsy findings were nonspecific. The differential diagnosis from other invasive parasitic diseases is discussed. A possible role of hepatic imaging in the evaluation of fascioliasis is suggested.

  15. Molecular imaging and therapy targeting copper metabolism in hepatocellular carcinoma.

    PubMed

    Wachsmann, Jason; Peng, Fangyu

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Significant efforts have been devoted to identify new biomarkers for molecular imaging and targeted therapy of HCC. Copper is a nutritional metal required for the function of numerous enzymatic molecules in the metabolic pathways of human cells. Emerging evidence suggests that copper plays a role in cell proliferation and angiogenesis. Increased accumulation of copper ions was detected in tissue samples of HCC and many other cancers in humans. Altered copper metabolism is a new biomarker for molecular cancer imaging with position emission tomography (PET) using radioactive copper as a tracer. It has been reported that extrahepatic mouse hepatoma or HCC xenografts can be localized with PET using copper-64 chloride as a tracer, suggesting that copper metabolism is a new biomarker for the detection of HCC metastasis in areas of low physiological copper uptake. In addition to copper modulation therapy with copper chelators, short-interference RNA specific for human copper transporter 1 (hCtr1) may be used to suppress growth of HCC by blocking increased copper uptake mediated by hCtr1. Furthermore, altered copper metabolism is a promising target for radionuclide therapy of HCC using therapeutic copper radionuclides. Copper metabolism has potential as a new theranostic biomarker for molecular imaging as well as targeted therapy of HCC. PMID:26755872

  16. Molecular imaging and therapy targeting copper metabolism in hepatocellular carcinoma

    PubMed Central

    Wachsmann, Jason; Peng, Fangyu

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Significant efforts have been devoted to identify new biomarkers for molecular imaging and targeted therapy of HCC. Copper is a nutritional metal required for the function of numerous enzymatic molecules in the metabolic pathways of human cells. Emerging evidence suggests that copper plays a role in cell proliferation and angiogenesis. Increased accumulation of copper ions was detected in tissue samples of HCC and many other cancers in humans. Altered copper metabolism is a new biomarker for molecular cancer imaging with position emission tomography (PET) using radioactive copper as a tracer. It has been reported that extrahepatic mouse hepatoma or HCC xenografts can be localized with PET using copper-64 chloride as a tracer, suggesting that copper metabolism is a new biomarker for the detection of HCC metastasis in areas of low physiological copper uptake. In addition to copper modulation therapy with copper chelators, short-interference RNA specific for human copper transporter 1 (hCtr1) may be used to suppress growth of HCC by blocking increased copper uptake mediated by hCtr1. Furthermore, altered copper metabolism is a promising target for radionuclide therapy of HCC using therapeutic copper radionuclides. Copper metabolism has potential as a new theranostic biomarker for molecular imaging as well as targeted therapy of HCC. PMID:26755872

  17. Need for routine delayed radionuclide hepatobiliary imaging in patients with intercurrent disease

    SciTech Connect

    Drane, W.E.; Nelp, W.B.; Rudd, T.G.

    1984-06-01

    A retrospective review was made of all radionuclide hepatobiliary studies performed in a major trauma center over a 27-month period and correlated with the patients' clinical course. In a population of 42 patients (27 of whom were on total parenteral nutrition (TPN)) who had severe intercurrent illness (primarily trauma), and an additional 18 patients who had hepatocellular dysfunction, hepatobiliary imaging confirmed a patent cystic duct in 43 of 60 patients (72%). Of 17 patients who had nonvisualization of the gallbladder, four had surgically proved acute cholecystitis. The presence of gallstones, wall thickening, or sludge on sonograms did not correlate with cystic duct patency, and was not specific for acute cholecystitis. Though gallbladder function is compromised in the population with severe intercurrent disease, radionuclide hepatobiliary imaging is still valuable; it can confirm a patent systic duct in at least 72% of patients if routine imaging is continued for up to 24 hours.

  18. Advances in multimodality molecular imaging

    PubMed Central

    Zaidi, Habib; Prasad, Rameshwar

    2009-01-01

    Multimodality molecular imaging using high resolution positron emission tomography (PET) combined with other modalities is now playing a pivotal role in basic and clinical research. The introduction of combined PET/CT systems in clinical setting has revolutionized the practice of diagnostic imaging. The complementarity between the intrinsically aligned anatomic (CT) and functional or metabolic (PET) information provided in a “one-stop shop” and the possibility to use CT images for attenuation correction of the PET data has been the driving force behind the success of this technology. On the other hand, combining PET with Magnetic Resonance Imaging (MRI) in a single gantry is technically more challenging owing to the strong magnetic fields. Nevertheless, significant progress has been made resulting in the design of few preclinical PET systems and one human prototype dedicated for simultaneous PET/MR brain imaging. This paper discusses recent advances in PET instrumentation and the advantages and challenges of multimodality imaging systems. Future opportunities and the challenges facing the adoption of multimodality imaging instrumentation will also be addressed. PMID:20098557

  19. Pitfalls and Limitations of Radionuclide Renal Imaging in Adults.

    PubMed

    Keramida, Georgia; James, Jacqueline M; Prescott, Mary C; Peters, Adrien Michael

    2015-09-01

    To understand pitfalls and limitations in adult renography, it is necessary to understand firstly the physiology of the kidney, especially the magnitude and control of renal blood flow, glomerular filtration rate and tubular fluid flow rate, and secondly the pharmacokinetics and renal handling of the three most often used tracers, Tc-99m-mercaptoacetyltriglycine (MAG3), Tc-99m-diethylene triamine pentaacetic acid (DTPA) and Tc-99m-dimercaptosuccinic acid (DMSA). The kidneys may be imaged dynamically with Tc-99m-MAG3 or Tc-99m-DTPA, with or without diuretic challenge, or by static imaging with Tc-99m-DMSA. Protocols are different according to whether the kidney is native or transplanted. Quantitative analysis of dynamic data includes measurement of renal vascularity (important for the transplanted kidney), absolute tracer clearance rates, differential renal function (DRF) and response to diuretic challenge. Static image reveals functional renal parenchymal damage, both focal and global, is useful in the clinical management of obstructive uropathy, renal stone disease and hypertension (under angiotensin converting enzyme inhibition), and is the preferred technique for determining DRF. Diagnosis based on morphological appearances is important in transplant management. Even though nuclear medicine is now in the era of hybrid imaging, renal imaging remains an important subspecialty in nuclear medicine and requires a sound basing in applied physiology, the classical supporting discipline of nuclear medicine.

  20. Sparse image reconstruction for molecular imaging.

    PubMed

    Ting, Michael; Raich, Raviv; Hero, Alfred O

    2009-06-01

    The application that motivates this paper is molecular imaging at the atomic level. When discretized at subatomic distances, the volume is inherently sparse. Noiseless measurements from an imaging technology can be modeled by convolution of the image with the system point spread function (psf). Such is the case with magnetic resonance force microscopy (MRFM), an emerging technology where imaging of an individual tobacco mosaic virus was recently demonstrated with nanometer resolution. We also consider additive white Gaussian noise (AWGN) in the measurements. Many prior works of sparse estimators have focused on the case when H has low coherence; however, the system matrix H in our application is the convolution matrix for the system psf. A typical convolution matrix has high coherence. This paper, therefore, does not assume a low coherence H. A discrete-continuous form of the Laplacian and atom at zero (LAZE) p.d.f. used by Johnstone and Silverman is formulated, and two sparse estimators derived by maximizing the joint p.d.f. of the observation and image conditioned on the hyperparameters. A thresholding rule that generalizes the hard and soft thresholding rule appears in the course of the derivation. This so-called hybrid thresholding rule, when used in the iterative thresholding framework, gives rise to the hybrid estimator, a generalization of the lasso. Estimates of the hyperparameters for the lasso and hybrid estimator are obtained via Stein's unbiased risk estimate (SURE). A numerical study with a Gaussian psf and two sparse images shows that the hybrid estimator outperforms the lasso.

  1. Radionuclide imaging of myocardial infarction using Tc-99m TBI

    SciTech Connect

    Holman, B.L.; Campbell, S.; Kirshenbaum, J.M.; Lister-James, J.; Jones, A.G.; Davison, A.; Antman, E.

    1985-05-01

    The cationic complex Tc-99m t-butylisonitrile (TBI) concentrates in the myocardial tissue of several animal species. Its myocardial distribution is proportional to blood flow both in zones of ischemia and in normal myocardium at rest. Planar, tomographic, and gated myocardial images have been obtained using Tc-99m TBI in the human. The authors investigated the potential application of Tc-99m TBI imaging to detect and localize myocardial infarction. Four subjects without clinical evidence of cardiovascular disease and five patients with ECG evidence of previous myocardial infarction were studied. Tc-99m TBI (10mCi) was injected intravenously with the patient in a resting state with planar imaging in the anterior, 30 and 70 degree LAO projections beginning one hr after injection. The distribution of the tracer was homogeneous throughout the left ventricular wall in the normal subjects. Regional perfusion defects were present in 4/5 of the patients with myocardial infarction. Location of the defects corresponded to the location of the infarct using ECG criteria (2 inferoposterior and 2 anterior). The patient in whom the Tc-99m TBI image appeared normal had sustained a subendocardial myocardial infarct which could not be localized by ECG; the other 4 pts had transmural infarcts. Anterior and 30 degree LAO images were of excellent quality in all cases; there was overlap of the liver on the inferior wall of the left ventricle on the 70 degree LAO views. The authors conclude that accurate perfusion imaging may be possible using Tc-99m TBI in patients with transmural myocardial infarction.

  2. Molecular Imaging of Prostate Cancer.

    PubMed

    Wibmer, Andreas G; Burger, Irene A; Sala, Evis; Hricak, Hedvig; Weber, Wolfgang A; Vargas, Hebert Alberto

    2016-01-01

    Prostate cancer is the most common noncutaneous malignancy among men in the Western world. The natural history and clinical course of prostate cancer are markedly diverse, ranging from small indolent intraprostatic lesions to highly aggressive disseminated disease. An understanding of this biologic heterogeneity is considered a necessary requisite in the quest for the adoption of precise and personalized management strategies. Molecular imaging offers the potential for noninvasive assessment of the biologic interactions underpinning prostate carcinogenesis. Currently, numerous molecular imaging probes are in clinical use or undergoing preclinical or clinical evaluation. These probes can be divided into those that image increased cell metabolism, those that target prostate cancer-specific membrane proteins and receptor molecules, and those that bind to the bone matrix adjacent to metastases to bone. The increased metabolism and vascular changes in prostate cancer cells can be evaluated with radiolabeled analogs of choline, acetate, glucose, amino acids, and nucleotides. The androgen receptor, prostate-specific membrane antigen, and gastrin-releasing peptide receptor (ie, bombesin) are overexpressed in prostate cancer and can be targeted by specific radiolabeled imaging probes. Because metastatic prostate cancer cells induce osteoblastic signaling pathways of adjacent bone tissue, bone-seeking radiotracers are sensitive tools for the detection of metastases to bone. Knowledge about the underlying biologic processes responsible for the phenotypes associated with the different stages of prostate cancer allows an appropriate choice of methods and helps avoid pitfalls. PMID:26587888

  3. Role of radionuclide cardiac imaging in coronary artery bypass surgery

    SciTech Connect

    Iskandrian, A.S.; Heo, J.; Mostel, E.

    1987-01-01

    The main applications of cardiac nuclear imaging in coronary artery bypass surgery include: patient selection, prediction of improvement in resting LV function after revascularization, diagnosis of perioperative myocardial infarction, assessment of the results of revascularization, evaluation of new or recurrent symptoms, and in risk stratification. Proper understanding of which test to be used, when, and why may be important to optimize patient management.

  4. Radionuclide thyroid imaging in the newborn with suspected hypothyroidism

    SciTech Connect

    Yoosufani, Z.; Karimeddini, M.K.; Spencer, R.P.; Ratzan, S.K.

    1985-05-01

    The authors reviewed their experience with thyroid imaging in newborns with suspected congenital hypothyroidism. The infants were selected through a hypothyroidism screening program. There were 19 infants (14 females, 5 males) from 2 to 8 weeks of age with a blood T4 <6 ..mu..g/dl. Thyroid imaging was performed with either IV or IM injection of 0.5 to 1 mCi of Tc 99m pertechnetate using a gamma camera with a pinhole collimator. Salivary glands and stomach were also imaged for assessing the presence of the transport system. In 6 infants (32%) no thyroid tissue was visualized (thyroid hypoplasia). Four infants (21%) showed ectopic thyroid tissue in the lingual or sublingual area. Two infants (10%) had evidence of goiter. The remaining 7 infants (37%) had normal appearing glands in size and position. TSH values were markedly elevated (> 100 ..mu mu../ml) in all 10 patients with hypoplastic or ectopic thyroid. Two patients were subsequently found to have normal thyroid function (one with TBG deficiency and one with transient hypothyroidism). Thyroidal as well as salivary gland trapping of the radiotracer in these two infants was clearly less than that of adults suggesting immaturity of the transport/trapping mechanism. All 4 patients with ectopic thyroid had markedly increased uptake of the radiotracer. All other patients with elevated TSH levels had increased uptake of the radiotracer as compared to the normals. They conclude that thyroid scanning is an important tool in delineating the etiology of congenital hypothyroidism.

  5. Cross-bridged Macrocyclic Chelators for Stable Complexation of Copper Radionuclides for PET Imaging

    PubMed Central

    Anderson, Carolyn J.; Wadas, Thaddeus J.; Wong, Edward H.; Weisman, Gary R.

    2015-01-01

    Copper-64 (t1/2 = 12.7 h, β+: 17.4%, Eβ+max = 656 keV; β−: 39%, Eβ-max = 573 keV) has emerged as an important non-standard positron-emitting radionuclide for PET imaging of diseased tissues. A significant challenge of working with copper radionuclides is that they must be delivered to the living system as a stable complex that is attached to a biological targeting molecule for effective imaging and therapy. Significant research has been devoted to the development of ligands that can stably chelate 64Cu, in particular, the cross-bridged macrocyclic chelators. This review describes the coordination chemistry and biological behavior of 64Cu-labeled cross-bridged complexes. PMID:18043536

  6. Development of gamma-photon/Cerenkov-light hybrid system for simultaneous imaging of I-131 radionuclide

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Suzuki, Mayumi; Kato, Katsuhiko; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Ogata, Yoshimune; Hatazawa, Jun

    2016-09-01

    Although iodine 131 (I-131) is used for radionuclide therapy, high resolution images are difficult to obtain with conventional gamma cameras because of the high energy of I-131 gamma photons (364 keV). Cerenkov-light imaging is a possible method for beta emitting radionuclides, and I-131 (606 MeV maximum beta energy) is a candidate to obtain high resolution images. We developed a high energy gamma camera system for I-131 radionuclide and combined it with a Cerenkov-light imaging system to form a gamma-photon/Cerenkov-light hybrid imaging system to compare the simultaneously measured images of these two modalities. The high energy gamma imaging detector used 0.85-mm×0.85-mm×10-mm thick GAGG scintillator pixels arranged in a 44×44 matrix with a 0.1-mm thick reflector and optical coupled to a Hamamatsu 2 in. square position sensitive photomultiplier tube (PSPMT: H12700 MOD). The gamma imaging detector was encased in a 2 cm thick tungsten shield, and a pinhole collimator was mounted on its top to form a gamma camera system. The Cerenkov-light imaging system was made of a high sensitivity cooled CCD camera. The Cerenkov-light imaging system was combined with the gamma camera using optical mirrors to image the same area of the subject. With this configuration, we simultaneously imaged the gamma photons and the Cerenkov-light from I-131 in the subjects. The spatial resolution and sensitivity of the gamma camera system for I-131 were respectively ~3 mm FWHM and ~10 cps/MBq for the high sensitivity collimator at 10 cm from the collimator surface. The spatial resolution of the Cerenkov-light imaging system was 0.64 mm FWHM at 10 cm from the system surface. Thyroid phantom and rat images were successfully obtained with the developed gamma-photon/Cerenkov-light hybrid imaging system, allowing direct comparison of these two modalities. Our developed gamma-photon/Cerenkov-light hybrid imaging system will be useful to evaluate the advantages and disadvantages of these two

  7. Radionuclide Tracers for Myocardial Perfusion Imaging and Blood Flow Quantification.

    PubMed

    deKemp, Robert A; Renaud, Jennifer M; Klein, Ran; Beanlands, Rob S B

    2016-02-01

    Myocardial perfusion imaging is performed most commonly using Tc-99m-sestamibi or tetrofosmin SPECT as well as Rb-82-rubidium or N-13-ammonia PET. Diseased-to-normal tissue contrast is determined by the tracer retention fraction, which decreases nonlinearly with flow. Reduced tissue perfusion results in reduced tracer retention, but the severity of perfusion defects is typically underestimated by 20% to 40%. Compared to SPECT, retention of the PET tracers is more linearly related to flow, and therefore, the perfusion defects are measured more accurately using N-13-ammonia or Rb-82. PMID:26590778

  8. Pulp cell tracking by radionuclide imaging for dental tissue engineering.

    PubMed

    Souron, Jean-Baptiste; Petiet, Anne; Decup, Franck; Tran, Xuan Vinh; Lesieur, Julie; Poliard, Anne; Le Guludec, Dominique; Letourneur, Didier; Chaussain, Catherine; Rouzet, Francois; Opsahl Vital, Sibylle

    2014-03-01

    Pulp engineering with dental mesenchymal stem cells is a promising therapy for injured teeth. An important point is to determine the fate of implanted cells in the pulp over time and particularly during the early phase following implantation. Indeed, the potential engraftment of the implanted cells in other organs has to be assessed, in particular, to evaluate the risk of inducing ectopic mineralization. In this study, our aim was to follow by nuclear imaging the radiolabeled pulp cells after implantation in the rat emptied pulp chamber. For that purpose, indium-111-oxine (¹¹¹In-oxine)-labeled rat pulp cells were added to polymerizing type I collagen hydrogel to obtain a pulp equivalent. This scaffold was implanted in the emptied pulp chamber space in the upper first rat molar. Labeled cells were then tracked during 3 weeks by helical single-photon emission computed tomography (SPECT)/computed tomography performed on a dual modality dedicated small animal camera. Negative controls were performed using lysed radiolabeled cells obtained in a hypotonic solution. In vitro data indicated that ¹¹¹In-oxine labeling did not affect cell viability and proliferation. In vivo experiments allowed a noninvasive longitudinal follow-up of implanted living cells for at least 3 weeks and indicated that SPECT signal intensity was related to implanted cell integrity. Notably, there was no detectable systemic release of implanted cells from the tooth. In addition, histological analysis of the samples showed mitotically active fibroblastic cells as well as neoangiogenesis and nervous fibers in pulp equivalents seeded with entire cells, whereas pulp equivalents prepared from lysed cells were devoid of cell colonization. In conclusion, our study demonstrates that efficient labeling of pulp cells can be achieved and, for the first time, that these cells can be followed up after implantation in the tooth by nuclear imaging. Furthermore, it appears that grafted cells retained the label

  9. Pulp cell tracking by radionuclide imaging for dental tissue engineering.

    PubMed

    Souron, Jean-Baptiste; Petiet, Anne; Decup, Franck; Tran, Xuan Vinh; Lesieur, Julie; Poliard, Anne; Le Guludec, Dominique; Letourneur, Didier; Chaussain, Catherine; Rouzet, Francois; Opsahl Vital, Sibylle

    2014-03-01

    Pulp engineering with dental mesenchymal stem cells is a promising therapy for injured teeth. An important point is to determine the fate of implanted cells in the pulp over time and particularly during the early phase following implantation. Indeed, the potential engraftment of the implanted cells in other organs has to be assessed, in particular, to evaluate the risk of inducing ectopic mineralization. In this study, our aim was to follow by nuclear imaging the radiolabeled pulp cells after implantation in the rat emptied pulp chamber. For that purpose, indium-111-oxine (¹¹¹In-oxine)-labeled rat pulp cells were added to polymerizing type I collagen hydrogel to obtain a pulp equivalent. This scaffold was implanted in the emptied pulp chamber space in the upper first rat molar. Labeled cells were then tracked during 3 weeks by helical single-photon emission computed tomography (SPECT)/computed tomography performed on a dual modality dedicated small animal camera. Negative controls were performed using lysed radiolabeled cells obtained in a hypotonic solution. In vitro data indicated that ¹¹¹In-oxine labeling did not affect cell viability and proliferation. In vivo experiments allowed a noninvasive longitudinal follow-up of implanted living cells for at least 3 weeks and indicated that SPECT signal intensity was related to implanted cell integrity. Notably, there was no detectable systemic release of implanted cells from the tooth. In addition, histological analysis of the samples showed mitotically active fibroblastic cells as well as neoangiogenesis and nervous fibers in pulp equivalents seeded with entire cells, whereas pulp equivalents prepared from lysed cells were devoid of cell colonization. In conclusion, our study demonstrates that efficient labeling of pulp cells can be achieved and, for the first time, that these cells can be followed up after implantation in the tooth by nuclear imaging. Furthermore, it appears that grafted cells retained the label

  10. Radionuclide imaging of the injured spleen and liver

    SciTech Connect

    Lutzker, L.G.

    1983-07-01

    After the introduction of Tc-99m sulfur colloid and the gamma camera, radiocolloid liver-spleen imaging displaced angiography as the primary modality for diagnosing injury because of its sensitivity and non-invasiveness. A splenic defect may be nonspecific since it can be caused by a congenital variant. Specificity can be increased by awareness of common morphologic variations and judicious use of detector angulation to separate an overlapping left lobe. An increased incidence of overwhelming sepsis in postsplenectomy patients led to a more conservative approach to splenic injury, aided by sequential scintigraphy to demonstrate healing of traumatic defects. This decreased the significance of an initial false-positive scan that was caused by congenital variation, since the clinical ''bottom line'' was failure of a defect to enlarge or cause delayed rupture. Computed tomography (CT) is also a sensitive method of diagnosing injury or spleen and liver as well as other intraabdominal organs such as the kidneys. Its performance has not been compared to simultaneous multiorgan scintigraphy, an underutilized but very useful approach.

  11. An automated voxelized dosimetry tool for radionuclide therapy based on serial quantitative SPECT/CT imaging

    SciTech Connect

    Jackson, Price A.; Kron, Tomas; Beauregard, Jean-Mathieu; Hofman, Michael S.; Hogg, Annette; Hicks, Rodney J.

    2013-11-15

    Purpose: To create an accurate map of the distribution of radiation dose deposition in healthy and target tissues during radionuclide therapy.Methods: Serial quantitative SPECT/CT images were acquired at 4, 24, and 72 h for 28 {sup 177}Lu-octreotate peptide receptor radionuclide therapy (PRRT) administrations in 17 patients with advanced neuroendocrine tumors. Deformable image registration was combined with an in-house programming algorithm to interpolate pharmacokinetic uptake and clearance at a voxel level. The resultant cumulated activity image series are comprised of values representing the total number of decays within each voxel's volume. For PRRT, cumulated activity was translated to absorbed dose based on Monte Carlo-determined voxel S-values at a combination of long and short ranges. These dosimetric image sets were compared for mean radiation absorbed dose to at-risk organs using a conventional MIRD protocol (OLINDA 1.1).Results: Absorbed dose values to solid organs (liver, kidneys, and spleen) were within 10% using both techniques. Dose estimates to marrow were greater using the voxelized protocol, attributed to the software incorporating crossfire effect from nearby tumor volumes.Conclusions: The technique presented offers an efficient, automated tool for PRRT dosimetry based on serial post-therapy imaging. Following retrospective analysis, this method of high-resolution dosimetry may allow physicians to prescribe activity based on required dose to tumor volume or radiation limits to healthy tissue in individual patients.

  12. The need for routine delayed radionuclide hepatobiliary imaging in patients with intercurrent disease

    SciTech Connect

    Drane, W.E.; Nelp, W.B.; Rudd, T.G.

    1984-06-01

    A retrospective review was made of all radionuclide hepatobiliary studies performed in a major trauma center over a 27-month period and correlated with the patients' clinical course. In a population of 42 patients (27 of whom were on total parenteral nutrition (TPN)) who had severe intercurrent illness (primarily trauma), and an additional 18 patients who had hepatocellular dysfunction, hepatobiliary imaging confirmed a patent cystic duct in 43 of 60 patients (72%). Fourteen of these 43 patients (33%) had gallbladder visualization at later than one hour after radiotracer administration, and seven of these 14 required imaging from four to 24 hours. Of 17 patients who had nonvisualization of the gallbladder, four had surgically proved acute cholecystitis. Images of nine of the remaining 13 patients with gallbladder nonvisualization were not obtained for 24 hours. The presence of gallstones, wall thickening, or sludge on sonograms did not correlate with cystic duct patency, and was not specific for acute cholecystitis. Though gallbladder function is compromised in the population with severe intercurrent disease, radionuclide hepatobiliary imaging is still valuable; it can confirm a patent cystic duct in at least 72% of patients if routine imaging is continued for up to 24 hours.

  13. PSMA Ligands for Radionuclide Imaging and Therapy of Prostate Cancer: Clinical Status

    PubMed Central

    Lütje, Susanne; Heskamp, Sandra; Cornelissen, Alexander S.; Poeppel, Thorsten D.; van den Broek, Sebastiaan A. M. W.; Rosenbaum-Krumme, Sandra; Bockisch, Andreas; Gotthardt, Martin; Rijpkema, Mark; Boerman, Otto C.

    2015-01-01

    Prostate cancer (PCa) is the most common malignancy in men worldwide, leading to substantial morbidity and mortality. At present, imaging of PCa has become increasingly important for staging, restaging, and treatment selection. Until recently, choline-based positron emission tomography/computed tomography (PET/CT) represented the state-of-the-art radionuclide imaging technique for these purposes. However, its application is limited to patients with high PSA levels and Gleason scores. Prostate-specific membrane antigen (PSMA) is a promising new target for specific imaging of PCa, because it is upregulated in the majority of PCa. Moreover, PSMA can serve as a target for therapeutic applications. Currently, several small-molecule PSMA ligands with excellent in vivo tumor targeting characteristics are being investigated for their potential in theranostic applications in PCa. Here, a review of the recent developments in PSMA-based diagnostic imaging and therapy in patients with PCa with radiolabeled PSMA ligands is provided. PMID:26681984

  14. PSMA Ligands for Radionuclide Imaging and Therapy of Prostate Cancer: Clinical Status.

    PubMed

    Lütje, Susanne; Heskamp, Sandra; Cornelissen, Alexander S; Poeppel, Thorsten D; van den Broek, Sebastiaan A M W; Rosenbaum-Krumme, Sandra; Bockisch, Andreas; Gotthardt, Martin; Rijpkema, Mark; Boerman, Otto C

    2015-01-01

    Prostate cancer (PCa) is the most common malignancy in men worldwide, leading to substantial morbidity and mortality. At present, imaging of PCa has become increasingly important for staging, restaging, and treatment selection. Until recently, choline-based positron emission tomography/computed tomography (PET/CT) represented the state-of-the-art radionuclide imaging technique for these purposes. However, its application is limited to patients with high PSA levels and Gleason scores. Prostate-specific membrane antigen (PSMA) is a promising new target for specific imaging of PCa, because it is upregulated in the majority of PCa. Moreover, PSMA can serve as a target for therapeutic applications. Currently, several small-molecule PSMA ligands with excellent in vivo tumor targeting characteristics are being investigated for their potential in theranostic applications in PCa. Here, a review of the recent developments in PSMA-based diagnostic imaging and therapy in patients with PCa with radiolabeled PSMA ligands is provided.

  15. Role of radionuclide imaging for diagnosis of device and prosthetic valve infections

    PubMed Central

    Sarrazin, Jean-François; Philippon, François; Trottier, Mikaël; Tessier, Michel

    2016-01-01

    Cardiovascular implantable electronic device (CIED) infection and prosthetic valve endocarditis (PVE) remain a diagnostic challenge. Cardiac imaging plays an important role in the diagnosis and management of patients with CIED infection or PVE. Over the past few years, cardiac radionuclide imaging has gained a key role in the diagnosis of these patients, and in assessing the need for surgery, mainly in the most difficult cases. Both 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) and radiolabelled white blood cell single-photon emission computed tomography/computed tomography (WBC SPECT/CT) have been studied in these situations. In their 2015 guidelines for the management of infective endocarditis, the European Society of Cardiology incorporated cardiac nuclear imaging as part of their diagnostic algorithm for PVE, but not CIED infection since the data were judged insufficient at the moment. This article reviews the actual knowledge and recent studies on the use of 18F-FDG PET/CT and WBC SPECT/CT in the context of CIED infection and PVE, and describes the technical aspects of cardiac radionuclide imaging. It also discusses their accepted and potential indications for the diagnosis and management of CIED infection and PVE, the limitations of these tests, and potential areas of future research. PMID:27721936

  16. Techniques for Molecular Imaging Probe Design

    PubMed Central

    Reynolds, Fred; Kelly, Kimberly A.

    2011-01-01

    Molecular imaging allows clinicians to visualize disease specific molecules, thereby providing relevant information in the diagnosis and treatment of patients. With advances in genomics and proteomics and underlying mechanisms of disease pathology, the number of targets identified has significantly outpaced the number of developed molecular imaging probes. There has been a concerted effort to bridge this gap with multidisciplinary efforts in chemistry, proteomics, physics, material science, and biology; all essential to progress in molecular imaging probe development. In this review, we will discuss target selection, screening techniques and probe optimization with the aim of developing clinically relevant molecularly targeted imaging agents. PMID:22201532

  17. Multimodality Molecular Imaging of the Lung

    PubMed Central

    Chen, Delphine L.; Kinahan, Paul E.

    2010-01-01

    The continued progression of chronic lung disease despite current treatment options has led to the increasing evaluation of molecular imaging tools for diagnosis, treatment planning, drug discovery, and therapy monitoring. Concurrently the development of multimodality PET/CT, SPECT/CT, and MRI/PET scanners has opened up the potential for more sophisticated imaging biomarker probes. Here we review the potential uses of multimodality imaging tools, the established uses of molecular imaging in non-oncologic lung pathophysiology and drug discovery, and some of the technical challenges in multimodality molecular imaging of the lung. PMID:21105145

  18. Radiolabelled nanoparticles: novel classification of radiopharmaceuticals for molecular imaging of cancer.

    PubMed

    Mirshojaei, Seyedeh Fatemeh; Ahmadi, Amirhossein; Morales-Avila, Enrique; Ortiz-Reynoso, Mariana; Reyes-Perez, Horacio

    2016-01-01

    Nanotechnology has been used for every single modality in the molecular imaging arena for imaging purposes. Synergic advantages can be explored when multiple molecular imaging modalities are combined with respect to single imaging modalities. Multifunctional nanoparticles have large surface areas, where multiple functional moieties can be incorporated, including ligands for site-specific targeting and radionuclides, which can be detected to create 3D images. Recently, radiolabeled nanoparticles with individual properties have attracted great interest regarding their use in multimodality tumor imaging. Multifunctional nanoparticles can combine diagnostic and therapeutic capabilities for both target-specific diagnosis and the treatment of a given disease. The future of nanomedicine lies in multifunctional nanoplatforms that combine the diagnostic ability and therapeutic effects using appropriate ligands, drugs, responses and technological devices, which together are collectively called theranostic drugs. Co-delivery of radiolabeled nanoparticles is useful in multifunctional molecular imaging areas because it comprises several advantages based on nanoparticles architecture, pharmacokinetics and pharmacodynamic properties.

  19. Radiolabelled nanoparticles: novel classification of radiopharmaceuticals for molecular imaging of cancer.

    PubMed

    Mirshojaei, Seyedeh Fatemeh; Ahmadi, Amirhossein; Morales-Avila, Enrique; Ortiz-Reynoso, Mariana; Reyes-Perez, Horacio

    2016-01-01

    Nanotechnology has been used for every single modality in the molecular imaging arena for imaging purposes. Synergic advantages can be explored when multiple molecular imaging modalities are combined with respect to single imaging modalities. Multifunctional nanoparticles have large surface areas, where multiple functional moieties can be incorporated, including ligands for site-specific targeting and radionuclides, which can be detected to create 3D images. Recently, radiolabeled nanoparticles with individual properties have attracted great interest regarding their use in multimodality tumor imaging. Multifunctional nanoparticles can combine diagnostic and therapeutic capabilities for both target-specific diagnosis and the treatment of a given disease. The future of nanomedicine lies in multifunctional nanoplatforms that combine the diagnostic ability and therapeutic effects using appropriate ligands, drugs, responses and technological devices, which together are collectively called theranostic drugs. Co-delivery of radiolabeled nanoparticles is useful in multifunctional molecular imaging areas because it comprises several advantages based on nanoparticles architecture, pharmacokinetics and pharmacodynamic properties. PMID:26061297

  20. Relationship of brain imaging with radionuclides and with x-ray computed tomography

    SciTech Connect

    Kuhl, D.E.

    1981-03-03

    Because of high sensitivity and specificity for altered local cerebral structure, x-ray computed tomography (CT) is the preferred initial diagnostic imaging study under most circumstances when cerebral disease is suspected. CT has no competitor for detecting fresh intracerebral hemorrhage. Radionuclide imaging (RN) scan is preferred when relative perfusion is to be assessed, in patients allergic to contrast media, and when an adequate CT study is not technically possible. (RN) plays an important complementary role to CT, especially for patients suspected of subacute or chronic subdura hematoma, cerebral infarction, arteriovenous malformations, meningitis, encephalitis, normal pressure hydrocephalus, or when CT findings are inconclusive. When CT is not available, RN serves as a good screening study for suspected cerebral tumor, infection, recent infarction, arteriovenous malformation, and chronic subdural hematoma. Future improvement in radionuclide imaging by means of emission composition potential. The compound plating approacl threshold for all the investigated transistors and fast neutron spectra lies within the raal. The value of the potential slightly changes with the coordinate change in this region, i.e. the charge on a collecting electrode is not practically guided up to a certain moment of time during the movement of nonequilibrium carriers.

  1. Radionuclide imaging of myocardial perfusion and viability in assessment of acute myocardial infarction

    SciTech Connect

    Berman, D.S.; Kiat, H.; Maddahi, J.; Shah, P.K.

    1989-07-18

    Technical advances in radionuclide imaging have important implications for the management of patients with acute myocardial infarction. Single-photon emission computerized tomography with thallium 201 (TI-201) offers greater accuracy than planar imaging in detecting, localizing and sizing myocardial perfusion defects. Use of single-photon emission computerized tomography with TI-201 should allow for a more accurate assessment of prognosis after myocardial infarction. A new radiopharmaceutical, technetium 99-m methoxyisobutyl isonitrile, provides a number of advantages over TI-201, including higher quality images, lack of redistribution, and the ability to assess first-pass ventricular function. Applications of TI-201 and technetium 99-m methoxyisobutyl isonitrile include assessment of arterial patency and myocardial salvage immediately after thrombolytic therapy, detection of resting ischemia after thrombolytic therapy, targeting of subsets of patients for further intervention, and predischarge assessment to predict the future course of patients after an acute myocardial infarction.

  2. Molecular Imaging of Pancreatic Cancer with Antibodies

    PubMed Central

    2015-01-01

    Development of novel imaging probes for cancer diagnostics remains critical for early detection of disease, yet most imaging agents are hindered by suboptimal tumor accumulation. To overcome these limitations, researchers have adapted antibodies for imaging purposes. As cancerous malignancies express atypical patterns of cell surface proteins in comparison to noncancerous tissues, novel antibody-based imaging agents can be constructed to target individual cancer cells or surrounding vasculature. Using molecular imaging techniques, these agents may be utilized for detection of malignancies and monitoring of therapeutic response. Currently, there are several imaging modalities commonly employed for molecular imaging. These imaging modalities include positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance (MR) imaging, optical imaging (fluorescence and bioluminescence), and photoacoustic (PA) imaging. While antibody-based imaging agents may be employed for a broad range of diseases, this review focuses on the molecular imaging of pancreatic cancer, as there are limited resources for imaging and treatment of pancreatic malignancies. Additionally, pancreatic cancer remains the most lethal cancer with an overall 5-year survival rate of approximately 7%, despite significant advances in the imaging and treatment of many other cancers. In this review, we discuss recent advances in molecular imaging of pancreatic cancer using antibody-based imaging agents. This task is accomplished by summarizing the current progress in each type of molecular imaging modality described above. Also, several considerations for designing and synthesizing novel antibody-based imaging agents are discussed. Lastly, the future directions of antibody-based imaging agents are discussed, emphasizing the potential applications for personalized medicine. PMID:26620581

  3. Anatomical and molecular imaging of skin cancer

    PubMed Central

    Hong, Hao; Sun, Jiangtao; Cai, Weibo

    2008-01-01

    Skin cancer is the most common form of cancer types. It is generally divided into two categories: melanoma (∼ 5%) and nonmelanoma (∼ 95%), which can be further categorized into basal cell carcinoma, squamous cell carcinoma, and some rare skin cancer types. Biopsy is still the gold standard for skin cancer evaluation in the clinic. Various anatomical imaging techniques have been used to evaluate different types of skin cancer lesions, including laser scanning confocal microscopy, optical coherence tomography, high-frequency ultrasound, terahertz pulsed imaging, magnetic resonance imaging, and some other recently developed techniques such as photoacoustic microscopy. However, anatomical imaging alone may not be sufficient in guiding skin cancer diagnosis and therapy. Over the last decade, various molecular imaging techniques (in particular single photon emission computed tomography and positron emission tomography) have been investigated for skin cancer imaging. The pathways or molecular targets that have been studied include glucose metabolism, integrin αvβ3, melanocortin-1 receptor, high molecular weight melanoma-associated antigen, and several other molecular markers. Preclinical molecular imaging is thriving all over the world, while clinical molecular imaging has not lived up to the expectations because of slow bench-to-bedside translation. It is likely that this situation will change in the near future and molecular imaging will truly play an important role in personalized medicine of melanoma patients. PMID:21437135

  4. Inorganic Nanoparticles for Multimodal Molecular Imaging

    PubMed Central

    Swierczewska, Magdalena; Lee, Seulki; Chen, Xiaoyuan

    2013-01-01

    Multimodal molecular imaging can offer a synergistic improvement of diagnostic ability over a single imaging modality. Recent development of hybrid imaging systems has profoundly impacted the pool of available multimodal imaging probes. In particular, much interest has been focused on biocompatible, inorganic nanoparticle–based multimodal probes. Inorganic nanoparticles offer exceptional advantages to the field of multimodal imaging owing to their unique characteristics, such as nanometer dimensions, tunable imaging properties, and multifunctionality. Nanoparticles mainly based on iron oxide, quantum dots, gold, and silica have been applied to various imaging modalities to characterize and image specific biologic processes on a molecular level. A combination of nanoparticles and other materials such as biomolecules, polymers, and radiometals continue to increase functionality for in vivo multimodal imaging and therapeutic agents. In this review, we discuss the unique concepts, characteristics, and applications of the various multimodal imaging probes based on inorganic nanoparticles. PMID:21303611

  5. Molecular imaging of oncolytic viral therapy

    PubMed Central

    Haddad, Dana; Fong, Yuman

    2015-01-01

    Oncolytic viruses have made their mark on the cancer world as a potential therapeutic option, with the possible advantages of reduced side effects and strengthened treatment efficacy due to higher tumor selectivity. Results have been so promising, that oncolytic viral treatments have now been approved for clinical trials in several countries. However, clinical studies may benefit from the ability to noninvasively and serially identify sites of viral targeting via molecular imaging in order to provide safety, efficacy, and toxicity information. Furthermore, molecular imaging of oncolytic viral therapy may provide a more sensitive and specific diagnostic technique to detect tumor origin and, more importantly, presence of metastases. Several strategies have been investigated for molecular imaging of viral replication broadly categorized into optical and deep tissue imaging, utilizing several reporter genes encoding for fluorescence proteins, conditional enzymes, and membrane protein and transporters. Various imaging methods facilitate molecular imaging, including computer tomography, magnetic resonance imaging, positron emission tomography, single photon emission CT, gamma-scintigraphy, and photoacoustic imaging. In addition, several molecular probes are used for medical imaging, which act as targeting moieties or signaling agents. This review will explore the preclinical and clinical use of in vivo molecular imaging of replication-competent oncolytic viral therapy. PMID:27119098

  6. Gallbladder radionuclide scan

    MedlinePlus

    Radionuclide - gallbladder; Gallbladder scan; Biliary scan; Cholescintigraphy: HIDA; Hepatobiliary nuclear imaging scan ... small amount of morphine. This can help the radionuclide get into the gallbladder. The morphine may cause ...

  7. Principle and applications of terahertz molecular imaging.

    PubMed

    Son, Joo-Hiuk

    2013-05-31

    The principle, characteristics and applications of molecular imaging with terahertz electromagnetic waves are reviewed herein. The terahertz molecular imaging (TMI) technique uses nanoparticle probes to achieve dramatically enhanced sensitivity compared with that of conventional terahertz imaging. Surface plasmons, induced around the nanoparticles, raise the temperature of water in biological cells, and the temperature-dependent changes in the optical properties of water, which are large in the terahertz range, are measured differentially by terahertz waves. TMI has been applied to cancer diagnosis and nanoparticle drug delivery imaging. The technique is also compared with magnetic resonance imaging by using a dual-modality nanoparticle probe.

  8. Imaging, Mapping and Monitoring Environmental Radionuclide Transport Using Compton-Geometry Gamma Camera

    NASA Astrophysics Data System (ADS)

    Bridge, J. W.; Dormand, J.; Cooper, J.; Judson, D.; Boston, A. J.; Bankhead, M.; Onda, Y.

    2014-12-01

    The legacy to-date of the nuclear disaster at Fukushima Dai-ichi, Japan, has emphasised the fundamental importance of high quality radiation measurements in soils and plant systems. Current-generation radiometers based on coded-aperture collimation are limited in their ability to locate sources of radiation in three dimensions, and require a relatively long measurement time due to the poor efficiency of the collimation system. The quality of data they can provide to support biogeochemical process models in such systems is therefore often compromised. In this work we report proof-of-concept experiments demonstrating the potential of an alternative approach in the measurement of environmentally-important radionuclides (in particular 137Cs) in quartz sand and soils from the Fukushima exclusion zone. Compton-geometry imaging radiometers harness the scattering of incident radiation between two detectors to yield significant improvements in detection efficiency, energy resolution and spatial location of radioactive sources in a 180° field of view. To our knowledge we are reporting its first application to environmentally-relevant systems at low activity, dispersed sources, with significant background radiation and, crucially, movement over time. We are using a simple laboratory column setup to conduct one-dimensional transport experiments for 139Ce and 137Cs in quartz sand and in homogenized repacked Fukushima soils. Polypropylene columns 15 cm length with internal diameter 1.6 cm were filled with sand or soil and saturated slowly with tracer-free aqueous solutions. Radionuclides were introduced as 2mL pulses (step-up step-down) at the column inlet. Data were collected continuously throughout the transport experiment and then binned into sequential time intervals to resolve the total activity in the column and its progressive movement through the sand/soil. The objective of this proof-of-concept work is to establish detection limits, optimise image reconstruction

  9. U-SPECT-BioFluo: an integrated radionuclide, bioluminescence, and fluorescence imaging platform

    PubMed Central

    2014-01-01

    Background In vivo bioluminescence, fluorescence, and single-photon emission computed tomography (SPECT) imaging provide complementary information about biological processes. However, to date these signatures are evaluated separately on individual preclinical systems. In this paper, we introduce a fully integrated bioluminescence-fluorescence-SPECT platform. Next to an optimization in logistics and image fusion, this integration can help improve understanding of the optical imaging (OI) results. Methods An OI module was developed for a preclinical SPECT system (U-SPECT, MILabs, Utrecht, the Netherlands). The applicability of the module for bioluminescence and fluorescence imaging was evaluated in both a phantom and in an in vivo setting using mice implanted with a 4 T1-luc + tumor. A combination of a fluorescent dye and radioactive moiety was used to directly relate the optical images of the module to the SPECT findings. Bioluminescence imaging (BLI) was compared to the localization of the fluorescence signal in the tumors. Results Both the phantom and in vivo mouse studies showed that superficial fluorescence signals could be imaged accurately. The SPECT and bioluminescence images could be used to place the fluorescence findings in perspective, e.g. by showing tracer accumulation in non-target organs such as the liver and kidneys (SPECT) and giving a semi-quantitative read-out for tumor spread (bioluminescence). Conclusions We developed a fully integrated multimodal platform that provides complementary registered imaging of bioluminescent, fluorescent, and SPECT signatures in a single scanning session with a single dose of anesthesia. In our view, integration of these modalities helps to improve data interpretation of optical findings in relation to radionuclide images. PMID:25386389

  10. Complementary roles of radionuclide and computed tomographic imaging in evaluating trauma.

    PubMed

    Berg, B C

    1983-04-01

    For 6 consecutive months all triage acceptable emergency room patients at the St. Francis Medical Center with blunt or penetrating trauma involving the abdomen were included in this review. Computed tomography and radionuclide imaging of the abdomen and urinary tract was performed in addition to the usually indicated diagnostic procedures. In our hospital the Radiology Department is adjacent to the Emergency Department. Close cooperation of the trauma team, the imaging physician and the technologists, has provided a stable, reproducible pattern in the performance and evaluation of nuclear medicine and radiographic techniques. Teleradiologic techniques of image transmission over the telephone lines permits immediate availability of the expertise of the radiologist. This correlation has provided an opportunity for improving patient care and refining our protocol in the care and management of the acutely traumatized patient. One-hundred-twenty-seven patients classed as acute trauma cases were processed during those 6 mo. Forty-two of these patients were not included in this study. They were triaged as immediate surgical emergencies, had incurred injury limited to the head, extremities or thorax, or were not injured sufficiently to require the special care of the designated trauma team. The 85 patients in this study included 56 males and 29 females. The patient age ranged from 3- to 71-yr-of-age. The median age was 29.3 yr. The author feels the findings in this evaluation of the complementary roles of radionuclide imaging and computed tomography should be of value to others in the formulation of their acute trauma care protocol. Nuclear medicine techniques retain an important role in the diagnosis of several sequelae of head trauma. Sensitivity and accuracy for detection of subdural hematoma are not as high as those of transmission computed tomography even if proper techniques are employed. Other important applications, however, include the diagnosis of normal pressure

  11. Advances in Molecular Imaging with Ultrasound

    PubMed Central

    Gessner, Ryan; Dayton, Paul A.

    2010-01-01

    Ultrasound imaging has long demonstrated utility in the study and measurement of anatomic features and noninvasive observation of blood flow. Within the last decade, advances in molecular biology and contrast agents have allowed researchers to use ultrasound to detect changes in the expression of molecular markers on the vascular endothelium and other intravascular targets. This new technology, referred to as ultrasonic molecular imaging, is still in its infancy. However, in preclinical studies, ultrasonic molecular imaging has shown promise in assessing angiogenesis, inflammation, and thrombus. In this review, we discuss recent advances in microbubble-type contrast agent development, ultrasound technology, and signal processing strategies that have the potential to substantially improve the capabilities and utility of ultrasonic molecular imaging. PMID:20487678

  12. Techniques for loading technetium-99m and rhenium-186/188 radionuclides into pre-formed liposomes for diagnostic imaging and radionuclide therapy.

    PubMed

    Goins, Beth; Bao, Ande; Phillips, William T

    2010-01-01

    Liposomes can serve as carriers of radionuclides for diagnostic imaging and therapeutic applications. Herein, procedures are outlined for radiolabeling liposomes with the gamma-emitting radionuclide, technetium-99m ((99m)Tc), for non-invasive detection of disease and for monitoring the pharmacokinetics and biodistribution of liposomal drugs, and/or with therapeutic beta-emitting radionuclides, rhenium-186/188 ((186/188)Re), for radionuclide therapy. These efficient and practical liposome radiolabeling methods use a post-labeling mechanism to load (99m)Tc or (186/188)Re into pre-formed liposomes prepared in advance of the labeling procedure. For all liposome radiolabeling methods described, a lipophilic chelator is used to transport (99m)Tc or (186/188)Re across the lipid bilayer of the pre-formed liposomes. Once within the liposome interior, the pre-encapsulated glutathione or ammonium sulfate (pH) gradient provides for stable entrapment of the (99m)Tc and (186/188)Re within the liposomes. In the first method, (99m)Tc is transported across the lipid bilayer by the lipophilic chelator, hexamethylpropyleneamine oxime (HMPAO) and (99m)Tc-HMPAO becomes trapped by interaction with the pre-encapsulated glutathione within the liposomes. In the second method, (99m)Tc or (186/188)Re is transported across the lipid bilayer by the lipophilic chelator, N,N-bis(2-mercaptoethyl)-N',N'-diethylethylenediamine (BMEDA), and (99m)Tc-BMEDA or (186/188)Re-BMEDA becomes trapped by interaction with pre-encapsulated glutathione within the liposomes. In the third method, an ammonium sulfate (pH) gradient loading technique is employed using liposomes with an extraliposomal pH of 7.4 and an interior pH of 5.1. BMEDA, which is lipophilic at pH 7.4, serves as a lipophilic chelator for (99m)Tc or (186/188)Re to transport the radionuclides across the lipid bilayer. Once within the more acidic liposome interior, (99m)Tc/(186/188)Re-BMEDA complex becomes protonated and more hydrophilic, which

  13. Perspectives in molecular imaging through translational research, human medicine, and veterinary medicine.

    PubMed

    Berry, Clifford R; Garg, Predeep

    2014-01-01

    The concept of molecular imaging has taken off over the past 15 years to the point of the renaming of the Society of Nuclear Medicine (Society of Nuclear Medicine and Molecular Imaging) and Journals (European Journal of Nuclear Medicine and Molecular Imaging) and offering of medical fellowships specific to this area of study. Molecular imaging has always been at the core of functional imaging related to nuclear medicine. Even before the phrase molecular imaging came into vogue, radionuclides and radiopharmaceuticals were developed that targeted select physiological processes, proteins, receptor analogs, antibody-antigen interactions, metabolites and specific metabolic pathways. In addition, with the advent of genomic imaging, targeted genomic therapy, and theranostics, a number of novel radiopharmaceuticals for the detection and therapy of specific tumor types based on unique biological and cellular properties of the tumor itself have been realized. However, molecular imaging and therapeutics as well as the concept of theranostics are yet to be fully realized. The purpose of this review article is to present an overview of the translational approaches to targeted molecular imaging with application to some naturally occurring animal models of human disease.

  14. Molecular Imaging of Healing After Myocardial Infarction

    PubMed Central

    Naresh, Nivedita K; Ben-Mordechai, Tamar; Leor, Jonathan

    2011-01-01

    The progression from acute myocardial infarction (MI) to heart failure continues to be a major cause of morbidity and mortality. Potential new therapies for improved infarct healing such as stem cells, gene therapy, and tissue engineering are being investigated. Noninvasive imaging plays a central role in the evaluation of MI and infarct healing, both clinically and in preclinical research. Traditionally, imaging has been used to assess cardiac structure, function, perfusion, and viability. However, new imaging methods can be used to assess biological processes at the cellular and molecular level. We review molecular imaging techniques for evaluating the biology of infarct healing and repair. Specifically, we cover recent advances in imaging the various phases of MI and infarct healing such as apoptosis, inflammation, angiogenesis, extracellular matrix deposition, and scar formation. Significant progress has been made in preclinical molecular imaging, and future challenges include translation of these methods to clinical practice. PMID:21869911

  15. Molecular Imaging of Proteases in Cancer

    PubMed Central

    Yang, Yunan; Hong, Hao; Zhang, Yin; Cai, Weibo

    2010-01-01

    Proteases play important roles during tumor angiogenesis, invasion, and metastasis. Various molecular imaging techniques have been employed for protease imaging: optical (both fluorescence and bioluminescence), magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), and positron emission tomography (PET). In this review, we will summarize the current status of imaging proteases in cancer with these techniques. Optical imaging of proteases, in particular with fluorescence, is the most intensively validated and many of the imaging probes are already commercially available. It is generally agreed that the use of activatable probes is the most accurate and appropriate means for measuring protease activity. Molecular imaging of proteases with other techniques (i.e. MRI, SPECT, and PET) has not been well-documented in the literature which certainly deserves much future effort. Optical imaging and molecular MRI of protease activity has very limited potential for clinical investigation. PET/SPECT imaging is suitable for clinical investigation; however the optimal probes for PET/SPECT imaging of proteases in cancer have yet to be developed. Successful development of protease imaging probes with optimal in vivo stability, tumor targeting efficacy, and desirable pharmacokinetics for clinical translation will eventually improve cancer patient management. Not limited to cancer, these protease-targeted imaging probes will also have broad applications in other diseases such as arthritis, atherosclerosis, and myocardial infarction. PMID:20234801

  16. Molecular imaging of movement disorders

    PubMed Central

    Lizarraga, Karlo J; Gorgulho, Alessandra; Chen, Wei; De Salles, Antonio A

    2016-01-01

    caudal-to-rostral direction. Uptake declines prior to symptom presentation and progresses from contralateral to the most symptomatic side to bilateral, correlating with symptom severity. In progressive supranuclear palsy (PSP) and multiple system atrophy (MSA), striatal activity is symmetrically and diffusely decreased. The caudal-to-rostral pattern is lost in PSP, but could be present in MSA. In corticobasal degeneration (CBD), there is asymmetric, diffuse reduction of striatal activity, contralateral to the most symptomatic side. Additionally, there is hypometabolism in contralateral parieto-occipital and frontal cortices in PD; bilateral putamen and cerebellum in MSA; caudate, thalamus, midbrain, mesial frontal and prefrontal cortices in PSP; and contralateral cortices in CBD. Finally, cardiac sympathetic SPECT signal is decreased in PD. The capacity of molecular imaging to provide in vivo time courses of gene expression, protein synthesis, receptor and transporter binding, could facilitate the development and evaluation of novel medical, surgical and genetic therapies in movement disorders. PMID:27029029

  17. Molecular Imaging in Optical Coherence Tomography

    PubMed Central

    Mattison, Scott P.; Kim, Wihan; Park, Jesung; Applegate, Brian E.

    2015-01-01

    Optical coherence tomography (OCT) is a medical imaging technique that provides tomographic images at micron scales in three dimensions and high speeds. The addition of molecular contrast to the available morphological image holds great promise for extending OCT’s impact in clinical practice and beyond. Fundamental limitations prevent OCT from directly taking advantage of powerful molecular processes such as fluorescence emission and incoherent Raman scattering. A wide range of approaches is being researched to provide molecular contrast to OCT. Here we review those approaches with particular attention to those that derive their molecular contrast directly from modulation of the OCT signal. We also provide a brief overview of the multimodal approaches to gaining molecular contrast coincident with OCT. PMID:25821718

  18. Radionuclide scrotal imaging: further experience with 210 patients. Part I. Anatomy, pathophysiology, and methods

    SciTech Connect

    Chen, D.C.P.; Holder, L.E.; Melloul, M.

    1983-08-01

    Ten years' experience with radionuclide scrotal imaging (RSI) to evaluate perfusion of the scrotal contents has confirmed the value of this examination. In 1973, Nadel et al. first proposed using sodium pertechnetate (Tc-99m) to diagnose testicular torsion. By the end of 1982, more than thirty articles have been published on this topic, with most emphasizing the usefulness of RSI in managing patients with acute scrotal pain. The present communication describes our findings in 210 patients, not previously reported. There were four groups with relatively distinct clinical presentations: (a) acute scrotal pain, (b) chronic scrotal pain, (c) scrotal injury, and (d) scrotal mass. The anatomic and pathophysiologic bases for the scan findings will be emphasized. We discuss the staging of testicular torsion; viability of the compromised testicle; variability in the presentation of acute infection; anatomy of trauma, varicocele, and inguinal hernia; and the correlation with scrotal sonography.

  19. Analysis of serial radionuclide bone images in osteosarcoma and breast carcinoma

    SciTech Connect

    McNeil, B.J.; Hanley, J.

    1980-04-01

    The authors first describe and illustrate didactically the use of the Kaplan-Meier actuarial technique for serial diagnostic studies. They then present an analysis of previously published data on the results of serial radionuclide bone images in patients with osteosarcoma or breast carcinoma, using this technique. The data indicate that patients with osteosarcoma show an almost linear increase in the occurrence of bone metastates between 5 and 29 months after diagnosis; the rate is approximately 1% per month. Patients with breast cancer, on the other hand, show a biphasic rate of development, averaging only 0.5% per month during the first year after diagnosis but increasing rapidly to approximately 2% per month after 15 months.

  20. Radionuclide salivary scan imaging of a "functioning" malignant parotid tumor (mucous-producing papillary adenocarcinoma).

    PubMed

    Noyek, A M; Greyson, N D; Fernandes, B J; Chapnik, J S

    1982-04-01

    To date, all "functioning" or "hot" tumors on salivary gland scan have been benign - either the not uncommon Warthin's tumor or the rare oncocytoma. A positive salivary scan was obtained in a functioning malignant tumor of the parotid gland (a mucous-producing papillary adenocarcinoma). This occurrence has not previously been reported. The pathologic findings and the radionuclide images are demonstrated in this elderly female. It is presumed that the Technetium Tc99m pertechnetate has been concentrated in the tumor. The functioning epithelial cell, however, is not the benign oncocyte associated with other previously reported benign functioning tumors. Clinical discretion is therefore suggested in interpreting the significance of a functioning salivary gland tumor if encountered in an elderly female.

  1. Oncological image analysis: medical and molecular image analysis

    NASA Astrophysics Data System (ADS)

    Brady, Michael

    2007-03-01

    This paper summarises the work we have been doing on joint projects with GE Healthcare on colorectal and liver cancer, and with Siemens Molecular Imaging on dynamic PET. First, we recall the salient facts about cancer and oncological image analysis. Then we introduce some of the work that we have done on analysing clinical MRI images of colorectal and liver cancer, specifically the detection of lymph nodes and segmentation of the circumferential resection margin. In the second part of the paper, we shift attention to the complementary aspect of molecular image analysis, illustrating our approach with some recent work on: tumour acidosis, tumour hypoxia, and multiply drug resistant tumours.

  2. Future imaging of atherosclerosis: molecular imaging of coronary atherosclerosis with 18F positron emission tomography

    PubMed Central

    Psaltis, Peter J.

    2016-01-01

    Atherosclerosis is characterized by the formation of complex atheroma lesions (plaques) in arteries that pose risk by their flow-limiting nature and propensity for rupture and thrombotic occlusion. It develops in the context of disturbances to lipid metabolism and immune response, with inflammation underpinning all stages of plaque formation, progression and rupture. As the primary disease process responsible for myocardial infarction, stroke and peripheral vascular disease, atherosclerosis is a leading cause of morbidity and mortality on a global scale. A precise understanding of its pathogenic mechanisms is therefore critically important. Integral to this is the role of vascular wall imaging. Over recent years, the rapidly evolving field of molecular imaging has begun to revolutionize our ability to image beyond just the anatomical substrate of vascular disease, and more dynamically assess its pathobiology. Nuclear imaging by positron emission tomography (PET) can target specific molecular and biological pathways involved in atherosclerosis, with the application of 18Fluoride PET imaging being widely studied for its potential to identify plaques that are vulnerable or high risk. In this review, we discuss the emergence of 18Fluoride PET as a promising modality for the assessment of coronary atherosclerosis, focusing on the strengths and limitations of the two main radionuclide tracers that have been investigated to date: 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG) and sodium 18F-fluoride (18F-NaF). PMID:27500093

  3. Future imaging of atherosclerosis: molecular imaging of coronary atherosclerosis with (18)F positron emission tomography.

    PubMed

    Scherer, Daniel J; Psaltis, Peter J

    2016-08-01

    Atherosclerosis is characterized by the formation of complex atheroma lesions (plaques) in arteries that pose risk by their flow-limiting nature and propensity for rupture and thrombotic occlusion. It develops in the context of disturbances to lipid metabolism and immune response, with inflammation underpinning all stages of plaque formation, progression and rupture. As the primary disease process responsible for myocardial infarction, stroke and peripheral vascular disease, atherosclerosis is a leading cause of morbidity and mortality on a global scale. A precise understanding of its pathogenic mechanisms is therefore critically important. Integral to this is the role of vascular wall imaging. Over recent years, the rapidly evolving field of molecular imaging has begun to revolutionize our ability to image beyond just the anatomical substrate of vascular disease, and more dynamically assess its pathobiology. Nuclear imaging by positron emission tomography (PET) can target specific molecular and biological pathways involved in atherosclerosis, with the application of (18)Fluoride PET imaging being widely studied for its potential to identify plaques that are vulnerable or high risk. In this review, we discuss the emergence of (18)Fluoride PET as a promising modality for the assessment of coronary atherosclerosis, focusing on the strengths and limitations of the two main radionuclide tracers that have been investigated to date: 2-deoxy-2-((18)F)fluoro-D-glucose ((18)F-FDG) and sodium (18)F-fluoride ((18)F-NaF). PMID:27500093

  4. Imaging quality of (44)Sc in comparison with five other PET radionuclides using Derenzo phantoms and preclinical PET.

    PubMed

    Bunka, Maruta; Müller, Cristina; Vermeulen, Christiaan; Haller, Stephanie; Türler, Andreas; Schibli, Roger; van der Meulen, Nicholas P

    2016-04-01

    PET is the favored nuclear imaging technique because of the high sensitivity and resolution it provides, as well as the possibility for quantification of accumulated radioactivity. (44)Sc (T1/2=3.97h, Eβ(+)=632keV) was recently proposed as a potentially interesting radionuclide for PET. The aim of this study was to investigate the image quality, which can be obtained with (44)Sc, and compare it with five other, frequently employed PET nuclides using Derenzo phantoms and a small-animal PET scanner. The radionuclides were produced at the medical cyclotron at CRS, ETH Zurich ((11)C, (18)F), at the Injector II research cyclotron at CRS, PSI ((64)Cu, (89)Zr, (44)Sc), as well as via a generator system ((68)Ga). Derenzo phantoms, containing solutions of each of these radionuclides, were scanned using a GE Healthcare eXplore VISTA small-animal PET scanner. The image resolution was determined for each nuclide by analysis of the intensity signal using the reconstructed PET data of a hole diameter of 1.3mm. The image quality of (44)Sc was compared to five frequently-used PET radionuclides. In agreement with the positron range, an increasing relative resolution was determined in the sequence of (68)Ga<(44)Sc<(89)Zr<(11)C<(64)Cu<(18)F. The performance of (44)Sc was in agreement with the theoretical expectations based on the energy of the emitted positrons. PMID:26774390

  5. Molecular imaging: an overview and clinical applications.

    PubMed

    Rollo, F David

    2003-01-01

    Molecular imaging is a new medical discipline that integrates cell biology, molecular biology and diagnostic imaging. Clinical applications of molecular imaging include the use of nuclear medicine, magnetic resonance imaging (MRI) and ultrasound (US). The nuclear medicine applications utilize devices such as single photon emission computerized tomography (SPECT) and positron emission tomography (PET). Molecular imaging has two basic applications. The first is diagnostic imaging, which is used to determine the location and extent of targeted molecules specific to the disease being assessed. The second is therapy, which is used to treat specific disease-targeted molecules. The basic principle of the diagnostic imaging application is derived from the ability of cell and molecular biologists to identify specific receptor sites associated with target molecules that characterize the disease process to be studied. The biology teams then develop molecular imaging agents, which will bind specifically to the target molecules of interest. The principle for using molecular targeting therapy is based on an extension of the diagnostic imaging principle. Basically, it is assumed that if the molecular probe does target the specific disease molecules of interest, the same molecular agent can be loaded with an agent that will deliver therapy to the targeted cells. Patients and physicians have the clinical expectation that molecular imaging, when used for diagnostic purposes, will significantly improve the time-liness as well as the accuracy of detecting the presence and extent of disease. When applied to therapy, the expectation is that FDA-approved agents will have been shown in clinical trials to provide a significant improvement in clinical outcomes over traditional therapy methods. The eventual clinical owners of molecular imaging may be a specialty group that is a hybrid by conventional measures. For example, the clinical owner should have fundamental knowledge in basic

  6. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision.

    PubMed

    Verberne, Hein J; Acampa, Wanda; Anagnostopoulos, Constantinos; Ballinger, Jim; Bengel, Frank; De Bondt, Pieter; Buechel, Ronny R; Cuocolo, Alberto; van Eck-Smit, Berthe L F; Flotats, Albert; Hacker, Marcus; Hindorf, Cecilia; Kaufmann, Philip A; Lindner, Oliver; Ljungberg, Michael; Lonsdale, Markus; Manrique, Alain; Minarik, David; Scholte, Arthur J H A; Slart, Riemer H J A; Trägårdh, Elin; de Wit, Tim C; Hesse, Birger

    2015-11-01

    Since the publication of the European Association of Nuclear Medicine (EANM) procedural guidelines for radionuclide myocardial perfusion imaging (MPI) in 2005, many small and some larger steps of progress have been made, improving MPI procedures. In this paper, the major changes from the updated 2015 procedural guidelines are highlighted, focusing on the important changes related to new instrumentation with improved image information and the possibility to reduce radiation exposure, which is further discussed in relation to the recent developments of new International Commission on Radiological Protection (ICRP) models. Introduction of the selective coronary vasodilator regadenoson and the use of coronary CT-contrast agents for hybrid imaging with SPECT/CT angiography are other important areas for nuclear cardiology that were not included in the previous guidelines. A large number of minor changes have been described in more detail in the fully revised version available at the EANM home page: http://eanm.org/publications/guidelines/2015_07_EANM_FINAL_myocardial_perfusion_guideline.pdf .

  7. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision.

    PubMed

    Verberne, Hein J; Acampa, Wanda; Anagnostopoulos, Constantinos; Ballinger, Jim; Bengel, Frank; De Bondt, Pieter; Buechel, Ronny R; Cuocolo, Alberto; van Eck-Smit, Berthe L F; Flotats, Albert; Hacker, Marcus; Hindorf, Cecilia; Kaufmann, Philip A; Lindner, Oliver; Ljungberg, Michael; Lonsdale, Markus; Manrique, Alain; Minarik, David; Scholte, Arthur J H A; Slart, Riemer H J A; Trägårdh, Elin; de Wit, Tim C; Hesse, Birger

    2015-11-01

    Since the publication of the European Association of Nuclear Medicine (EANM) procedural guidelines for radionuclide myocardial perfusion imaging (MPI) in 2005, many small and some larger steps of progress have been made, improving MPI procedures. In this paper, the major changes from the updated 2015 procedural guidelines are highlighted, focusing on the important changes related to new instrumentation with improved image information and the possibility to reduce radiation exposure, which is further discussed in relation to the recent developments of new International Commission on Radiological Protection (ICRP) models. Introduction of the selective coronary vasodilator regadenoson and the use of coronary CT-contrast agents for hybrid imaging with SPECT/CT angiography are other important areas for nuclear cardiology that were not included in the previous guidelines. A large number of minor changes have been described in more detail in the fully revised version available at the EANM home page: http://eanm.org/publications/guidelines/2015_07_EANM_FINAL_myocardial_perfusion_guideline.pdf . PMID:26290421

  8. Molecular Imaging of Inflammation in Atherosclerosis

    PubMed Central

    Wildgruber, Moritz; Swirski, Filip K.; Zernecke, Alma

    2013-01-01

    Acute rupture of vulnerable plaques frequently leads to myocardial infarction and stroke. Within the last decades, several cellular and molecular players have been identified that promote atherosclerotic lesion formation, maturation and plaque rupture. It is now widely recognized that inflammation of the vessel wall and distinct leukocyte subsets are involved throughout all phases of atherosclerotic lesion development. The mechanisms that render a stable plaque unstable and prone to rupture, however, remain unknown and the identification of the vulnerable plaque remains a major challenge in cardiovascular medicine. Imaging technologies used in the clinic offer minimal information about the underlying biology and potential risk for rupture. New imaging technologies are therefore being developed, and in the preclinical setting have enabled new and dynamic insights into the vessel wall for a better understanding of this complex disease. Molecular imaging has the potential to track biological processes, such as the activity of cellular and molecular biomarkers in vivo and over time. Similarly, novel imaging technologies specifically detect effects of therapies that aim to stabilize vulnerable plaques and silence vascular inflammation. Here we will review the potential of established and new molecular imaging technologies in the setting of atherosclerosis, and discuss the cumbersome steps required for translating molecular imaging approaches into the clinic. PMID:24312156

  9. Molecular Imaging Probe Development using Microfluidics

    PubMed Central

    Liu, Kan; Wang, Ming-Wei; Lin, Wei-Yu; Phung, Duy Linh; Girgis, Mark D.; Wu, Anna M.; Tomlinson, James S.; Shen, Clifton K.-F.

    2012-01-01

    In this manuscript, we review the latest advancement of microfluidics in molecular imaging probe development. Due to increasing needs for medical imaging, high demand for many types of molecular imaging probes will have to be met by exploiting novel chemistry/radiochemistry and engineering technologies to improve the production and development of suitable probes. The microfluidic-based probe synthesis is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional systems. Numerous chemical reactions have been successfully performed in micro-reactors and the results convincingly demonstrate with great benefits to aid synthetic procedures, such as purer products, higher yields, shorter reaction times compared to the corresponding batch/macroscale reactions, and more benign reaction conditions. Several ‘proof-of-principle’ examples of molecular imaging probe syntheses using microfluidics, along with basics of device architecture and operation, and their potential limitations are discussed here. PMID:22977436

  10. Effect of Radionuclide Activity Concentration on PET-CT Image Uniformity

    PubMed Central

    Hasford, Francis; Wyk, Bronwin Van; Mabhengu, Thulani; Vangu, Mboyo Di Tamba; Kyere, Augustine Kwame; Amuasi, John Humphrey

    2016-01-01

    Assessment of radionuclide activity concentration on positron emission tomography-computedr tomography (PET-CT) image uniformity has been carried out quantitatively. Tomographic PET-CT images of cylindrical phantom containing F-18 fluorodeoxyglucose (FDG) activity concentration was acquired and used for the assessment. Activity concentrations were varied and PET-CT images were acquired at the constant acquisition parameters of time, matrix size, and reconstruction algorithm, respectively. Using midtransaxial image slices, quantitative index of nonuniformity (NU), and coefficient of uniformity variation were estimated for the different activity concentrations. Maximum NUs of 17.6%, 26.3%, 32.7%, 36.2%, and 38.5% were estimated for activity concentrations of 16.87 kBq/mL, 14.06 kBq/mL, 11.25 kBq/mL, 8.43 kBq/mL, and 5.62 kBq/mL, respectively. The coefficient of uniformity variation established an inverse quadratic relationship with activity concentration. Activity concentrations of 16.87 kBq/mL, 14.06 kBq/mL, 11.25 kBq/mL, 8.43 kBq/mL, and 5.62 kBq/mL produced uniformity variations of 1.47%, 2.52%, 4.23%, 5.12%, and 4.98%, respectively. Increasing activity concentration resulted in decreasing coefficient of uniformity and hence, an increase in image uniformity. The uniformity estimates compared well with the standards set internationally. PMID:27134558

  11. Molecular Imaging of Urogenital Diseases

    PubMed Central

    Cho, Steve Y.; Szabo, Zsolt; Morgan, Russell H.

    2013-01-01

    There is an expanding and exciting repertoire of PET imaging radiotracers for urogenital diseases, particularly in prostate cancer, renal cell cancer, and renal function. Prostate cancer is the most commonly diagnosed cancer in men. With growing therapeutics options for the treatment of metastatic and advanced prostate cancer, improved functional imaging of prostate cancer beyond the limitations of conventional computed tomography (CT) and bone scan (BS) is becoming increasingly important for both clinical management and drug development. PET radiotracers beyond 18F-Fluorodeoxyglucose (FDG) for prostate cancer include 18F-Sodium Fluoride, 11C-Choline and 18F-Fluorocholine and 11C-Acetate. Other emerging and promising PET radiotracers include a synthetic L-leucine amino acid analog (anti-18F-FACBC), dihydrotestosterone analog (18F-FDHT) and prostate specific membrane antigen (PSMA) based PET radiotracers (ex. 18F-DCFBC, 89Zr-DFO-J591, 68Ga(HBED-CC)). Larger prospective and comparison trials of these PET radiotracers are needed to establish the role of PET/CT in prostate cancer. Renal cell cancer imaging with FDG PET/CT although available can be limited, especially for detection of the primary tumor. Improved renal cell cancer detection with carbonic anhydrase IX (CAIX) based antibody (124I-girentuximab) and radioimmunotherapy targeting with 177Lu-cG250 appear promising. Evaluation of renal injury by imaging renal perfusion and function with novel PET radiotracers include p-18F-fluorohippurate (18F-PFH) and hippurate m-cyano-p-18F-fluorohippurate (18F-CNPFH) and Rubidium-82 chloride (typically used for myocardial perfusion imaging). Renal receptor imaging of the renal renin angiotensin system with a variety of selective PET radioligands are also becoming available for clinical translation. PMID:24484747

  12. Molecular and functional imaging of internet addiction.

    PubMed

    Zhu, Yunqi; Zhang, Hong; Tian, Mei

    2015-01-01

    Maladaptive use of the Internet results in Internet addiction (IA), which is associated with various negative consequences. Molecular and functional imaging techniques have been increasingly used for analysis of neurobiological changes and neurochemical correlates of IA. This review summarizes molecular and functional imaging findings on neurobiological mechanisms of IA, focusing on magnetic resonance imaging (MRI) and nuclear imaging modalities including positron emission tomography (PET) and single photon emission computed tomography (SPECT). MRI studies demonstrate that structural changes in frontal cortex are associated with functional abnormalities in Internet addicted subjects. Nuclear imaging findings indicate that IA is associated with dysfunction of the brain dopaminergic systems. Abnormal dopamine regulation of the prefrontal cortex (PFC) could underlie the enhanced motivational value and uncontrolled behavior over Internet overuse in addicted subjects. Further investigations are needed to determine specific changes in the Internet addictive brain, as well as their implications for behavior and cognition.

  13. Molecular and Functional Imaging of Internet Addiction

    PubMed Central

    Zhu, Yunqi; Zhang, Hong; Tian, Mei

    2015-01-01

    Maladaptive use of the Internet results in Internet addiction (IA), which is associated with various negative consequences. Molecular and functional imaging techniques have been increasingly used for analysis of neurobiological changes and neurochemical correlates of IA. This review summarizes molecular and functional imaging findings on neurobiological mechanisms of IA, focusing on magnetic resonance imaging (MRI) and nuclear imaging modalities including positron emission tomography (PET) and single photon emission computed tomography (SPECT). MRI studies demonstrate that structural changes in frontal cortex are associated with functional abnormalities in Internet addicted subjects. Nuclear imaging findings indicate that IA is associated with dysfunction of the brain dopaminergic systems. Abnormal dopamine regulation of the prefrontal cortex (PFC) could underlie the enhanced motivational value and uncontrolled behavior over Internet overuse in addicted subjects. Further investigations are needed to determine specific changes in the Internet addictive brain, as well as their implications for behavior and cognition. PMID:25879023

  14. Imaging approaches to optimize molecular therapies.

    PubMed

    Weissleder, Ralph; Schwaiger, Markus C; Gambhir, Sanjiv Sam; Hricak, Hedvig

    2016-09-01

    Imaging, including its use for innovative tissue sampling, is slowly being recognized as playing a pivotal role in drug development, clinical trial design, and more effective delivery and monitoring of molecular therapies. The challenge is that, while a considerable number of new imaging technologies and new targeted tracers have been developed for cancer imaging in recent years, the technologies are neither evenly distributed nor evenly implemented. Furthermore, many imaging innovations are not validated and are not ready for widespread use in drug development or in clinical trial designs. Inconsistent and often erroneous use of terminology related to quantitative imaging biomarkers has also played a role in slowing their development and implementation. We examine opportunities for, and challenges of, the use of imaging biomarkers to facilitate development of molecular therapies and to accelerate progress in clinical trial design. In the future, in vivo molecular imaging, image-guided tissue sampling for mutational analyses ("high-content biopsies"), and noninvasive in vitro tests ("liquid biopsies") will likely be used in various combinations to provide the best possible monitoring and individualized treatment plans for cancer patients. PMID:27605550

  15. Molecular imaging of Alzheimer disease pathology.

    PubMed

    Kantarci, K

    2014-06-01

    Development of molecular imaging agents for fibrillar β-amyloid positron-emission tomography during the past decade has brought molecular imaging of Alzheimer disease pathology into the spotlight. Large cohort studies with longitudinal follow-up in cognitively normal individuals and patients with mild cognitive impairment and Alzheimer disease indicate that β-amyloid deposition can be detected many years before the onset of symptoms with molecular imaging, and its progression can be followed longitudinally. The utility of β-amyloid PET in the differential diagnosis of Alzheimer disease is greatest when there is no pathologic overlap between 2 dementia syndromes, such as in frontotemporal lobar degeneration and Alzheimer disease. However β-amyloid PET alone may be insufficient in distinguishing dementia syndromes that commonly have overlapping β-amyloid pathology, such as dementia with Lewy bodies and vascular dementia, which represent the 2 most common dementia pathologies after Alzheimer disease. The role of molecular imaging in Alzheimer disease clinical trials is growing rapidly, especially in an era when preventive interventions are designed to eradicate the pathology targeted by molecular imaging agents.

  16. Improved dosimetry for targeted radionuclide therapy using nonrigid registration on sequential SPECT images

    SciTech Connect

    Ao, Edwin C. I.; Mok, Greta S. P.; Wu, Nien-Yun; Wang, Shyh-Jen; Song, Na

    2015-02-15

    Purpose: Voxel-level and patient-specific 3D dosimetry for targeted radionuclide therapy (TRT) typically involves serial nuclear medicine scans. Misalignment of the images can result in reduced dosimetric accuracy. Since the scans are typically performed over a period of several days, there will be patient movement between scans and possible nonrigid organ deformation. This work aims to implement and evaluate the use of nonrigid image registration on a series of quantitative SPECT (QSPECT) images for TRT dosimetry. Methods: A population of 4D extended cardiac torso phantoms, comprised of three In-111 Zevalin biokinetics models and three anatomical variations, was generated based on the patient data. The authors simulated QSPECT acquisitions at five time points. At each time point, individual organ and whole-body deformation between scans were modeled by translating/rotating organs and the body up to 5°/voxels, keeping ≤5% difference in organ volume. An analytical projector was used to generate realistic noisy projections for a medium energy general purpose collimator. Projections were reconstructed using OS-EM algorithm with geometric collimator detector response, attenuation, and scatter corrections. The QSPECT images were registered using organ-based nonrigid image registration method. The cumulative activity in each voxel was obtained by integrating the activity over time. Dose distribution images were obtained by convolving the cumulative activity images with a Y-90 dose kernel. Dose volume histograms (DVHs) for organs-of-interest were analyzed. Results: After nonrigid registration, the mean differences in organ doses compared to the case without misalignment were improved from (−15.50 ± 5.59)% to (−2.12 ± 1.05)% and (−7.28 ± 2.30)% to (−0.23 ± 0.71)% for the spleen and liver, respectively. For all organs, the cumulative DVHs showed improvement after nonrigid registration and the normalized absolute error of differential DVHs ranged from 6.79% to

  17. Potential clinical impact of radionuclide imaging technologies: highlights of the ITBS 2003 meeting

    NASA Astrophysics Data System (ADS)

    Itti, Roland

    2004-07-01

    Radiopharmaceuticals are major determinants of progress in Nuclear Medicine. Besides 18FDG, the most common PET tracer, several other molecules are under evaluation, such as 18F-fluoride for bone studies, numerous ligands for neurotransmission, 18F-DOPA for neuro-endocrine tumors or generator produced 68Ga-peptides for various cancers. Nuclear medicine gradually changes for "molecular imaging" and medical imaging, which was at the beginning mainly anatomic, has progressed in the direction of functional and metabolic imaging. The present challenge is to achieve some degree of "in vivo" biochemistry or even histology or genetics. The importance of anatomic/functional image fusion justifies the development of combined PET-CT instrumentation, whose objectives have to be discussed in terms of anatomical landmarks and/or additional clinical information. The question of "hard" or "soft" image co-registration remains open, involving not only CT, but also SPECT or MRI. Development of dedicated imaging devices, whether single photon or positron, is of major interest for breast imaging, allowing optimal imaging conditions, with results definitely superior to classical gamma-cameras or PET. The patient population concerned with scintimammography is still controversial, as well as the imaging modalities: FDG or sestaMIBI, planar or tomographic, scintillators or semi-conductors, and the research field remains open. This is also valid for external or per-operative probe systems for tumor or lymph nodes localization.

  18. Molecular imaging of prostate cancer with PET.

    PubMed

    Jadvar, Hossein

    2013-10-01

    Molecular imaging is paving the way for precision and personalized medicine. In view of the significant biologic and clinical heterogeneity of prostate cancer, molecular imaging is expected to play an important role in the evaluation of this prevalent disease. The natural history of prostate cancer spans from an indolent localized process to biochemical relapse after radical treatment with curative intent to a lethal castrate-resistant metastatic disease. The ongoing unraveling of the complex tumor biology of prostate cancer uniquely positions molecular imaging with PET to contribute significantly to every clinical phase of prostate cancer evaluation. The purpose of this article was to provide a concise review of the current state of affairs and potential future developments in the diagnostic utility of PET in prostate cancer.

  19. Scintillating Balloon-Enabled Fiber-Optic System for Radionuclide Imaging of Atherosclerotic Plaques

    PubMed Central

    Zaman, Raiyan T.; Kosuge, Hisanori; Carpenter, Colin; Sun, Conroy; McConnell, Michael V.; Xing, Lei

    2015-01-01

    Atherosclerosis underlies coronary artery disease, the leading cause of death in the United States and worldwide. Detection of coronary plaque inflammation remains challenging. In this study, we developed a scintillating balloon-enabled fiber-optic radio-nuclide imaging (SBRI) system to improve the sensitivity and resolution of plaque imaging using 18F-FDG, a marker of vascular inflammation, and tested it in a murine model. Methods The fiber-optic system uses a Complementary Metal-Oxide Silicon (CMOS) camera with a distal ferrule terminated with a wide-angle lens. The novelty of this system is a scintillating balloon in the front of the wide-angle lens to image light from the decay of 18F-FDG emission signal. To identify the optimal scintillating materials with respect to resolution, we calculated the modulation transfer function of yttrium–aluminum–garnet doped with cerium, anthracene, and calcium fluoride doped with europium (CaF2:Eu) phosphors using an edge pattern and a thin-line optical phantom. The scintillating balloon was then fabricated from 10 mL of silicone RTV catalyst mixed with 1 mL of base and 50 mg of CaF2:Eu per mL. The addition of a lutetium oxyorthosilicate scintillating crystal (500 μm thick) to the balloon was also investigated. The SBRI system was tested in a murine atherosclerosis model: carotid-ligated mice (n = 5) were injected with 18F-FDG, followed by ex vivo imaging of the macrophage-rich carotid plaques and nonligated controls. Confirmatory imaging of carotid plaques and controls was also performed by an external optical imaging system and autoradiography. Results Analyses of the different phosphors showed that CaF2:Eu enabled the best resolution of 1.2 μm. The SBRI system detected almost a 4-fold-higher radioluminescence signal from the ligated left carotid artery than the nonligated right carotid: 1.63 × 102 ± 4.01 × 101 vs. 4.21 × 101 ± 2.09 × 100 (photon counts), P = 0.006. We found no significant benefit to adding a

  20. Design of Targeted Cardiovascular Molecular Imaging Probes

    PubMed Central

    Anderson, Carolyn J.; Bulte, Jeff W.M.; Chen, Kai; Chen, Xiaoyuan; Khaw, Ban-An; Shokeen, Monica; Wooley, Karen L.; VanBrocklin, Henry F.

    2013-01-01

    Molecular imaging relies on the development of sensitive and specific probes coupled with imaging hardware and software to provide information about the molecular status of a disease and its response to therapy, which are important aspects of disease management. As genomic and proteomic information from a variety of cardiovascular diseases becomes available, new cellular and molecular targets will provide an imaging readout of fundamental disease processes. A review of the development and application of several cardiovascular probes is presented here. Strategies for labeling cells with superparamagnetic iron oxide nanoparticles enable monitoring of the delivery of stem cell therapies. Small molecules and biologics (e.g., proteins and antibodies) with high affinity and specificity for cell surface receptors or cellular proteins as well as enzyme substrates or inhibitors may be labeled with single-photon–emitting or positron-emitting isotopes for nuclear molecular imaging applications. Labeling of bispecific antibodies with single-photon–emitting isotopes coupled with a pretargeting strategy may be used to enhance signal accumulation in small lesions. Emerging nanomaterials will provide platforms that have various sizes and structures and that may be used to develop multimeric, multimodal molecular imaging agents to probe one or more targets simultaneously. These platforms may be chemically manipulated to afford molecules with specific targeting and clearance properties. These examples of molecular imaging probes are characteristic of the multidisciplinary nature of the extraction of advanced biochemical information that will enhance diagnostic evaluation and drug development and predict clinical outcomes, fulfilling the promise of personalized medicine and improved patient care. PMID:20395345

  1. Quantitative Assessment of Radionuclide Uptake and Positron Emission Tomography-computed Tomography Image Contrast

    PubMed Central

    Francis, Hasford; Amuasi, John Humphrey; Kwame, Kyere Augustine; Vangu, Mboyo Di Tamba

    2016-01-01

    Radionuclide uptake and contrast for positron emission tomography-computed tomography (PET-CT) images have been assessed in this study using NEMA image quality phantom filled with background activity concentration of 5.3 kBq/mL fluorodeoxyglucose (F-18 FDG). Spheres in the phantom were filled in turns with water to mimic cold lesions and FDG of higher activity concentrations to mimic tumor sites. Transaxial image slices were acquired on the PET-CT system and used for the evaluation of mean standard uptake value (SUVmean) and contrasts for varying sphere sizes at different activity concentrations of 10.6 kBq/mL, 21.2 kBq/mL, and 42.4 kBq/mL. For spheres of same sizes, SUVmean increased with increase in activity concentration. SUVmean was increased by 80.6%, 83.5%, 63.2%, 87.4%, and 63.2% when activity concentrations of spheres with a diameter of 1.3 cm, 1.7 cm, 2.2 cm, 2.8 cm, and 3.7 cm, respectively, were increased from 10.6 kBq/mL to 42.4 kBq/mL. Average percentage contrast between cold spheres (cold lesions) and background activity concentration was estimated to be 89.96% for the spheres. Average contrast for the spheres containing 10.6 kBq/mL, 21.2 kBq/mL, and 42.4 kBq/mL were found to be 110.92%, 134.48%, and 150.52%, respectively. The average background contrast variability was estimated to be 2.97% at 95% confidence interval (P < 0.05). PMID:27650938

  2. Quantitative Assessment of Radionuclide Uptake and Positron Emission Tomography-computed Tomography Image Contrast

    PubMed Central

    Francis, Hasford; Amuasi, John Humphrey; Kwame, Kyere Augustine; Vangu, Mboyo Di Tamba

    2016-01-01

    Radionuclide uptake and contrast for positron emission tomography-computed tomography (PET-CT) images have been assessed in this study using NEMA image quality phantom filled with background activity concentration of 5.3 kBq/mL fluorodeoxyglucose (F-18 FDG). Spheres in the phantom were filled in turns with water to mimic cold lesions and FDG of higher activity concentrations to mimic tumor sites. Transaxial image slices were acquired on the PET-CT system and used for the evaluation of mean standard uptake value (SUVmean) and contrasts for varying sphere sizes at different activity concentrations of 10.6 kBq/mL, 21.2 kBq/mL, and 42.4 kBq/mL. For spheres of same sizes, SUVmean increased with increase in activity concentration. SUVmean was increased by 80.6%, 83.5%, 63.2%, 87.4%, and 63.2% when activity concentrations of spheres with a diameter of 1.3 cm, 1.7 cm, 2.2 cm, 2.8 cm, and 3.7 cm, respectively, were increased from 10.6 kBq/mL to 42.4 kBq/mL. Average percentage contrast between cold spheres (cold lesions) and background activity concentration was estimated to be 89.96% for the spheres. Average contrast for the spheres containing 10.6 kBq/mL, 21.2 kBq/mL, and 42.4 kBq/mL were found to be 110.92%, 134.48%, and 150.52%, respectively. The average background contrast variability was estimated to be 2.97% at 95% confidence interval (P < 0.05).

  3. Quantitative Assessment of Radionuclide Uptake and Positron Emission Tomography-computed Tomography Image Contrast.

    PubMed

    Francis, Hasford; Amuasi, John Humphrey; Kwame, Kyere Augustine; Vangu, Mboyo Di Tamba

    2016-09-01

    Radionuclide uptake and contrast for positron emission tomography-computed tomography (PET-CT) images have been assessed in this study using NEMA image quality phantom filled with background activity concentration of 5.3 kBq/mL fluorodeoxyglucose (F-18 FDG). Spheres in the phantom were filled in turns with water to mimic cold lesions and FDG of higher activity concentrations to mimic tumor sites. Transaxial image slices were acquired on the PET-CT system and used for the evaluation of mean standard uptake value (SUVmean) and contrasts for varying sphere sizes at different activity concentrations of 10.6 kBq/mL, 21.2 kBq/mL, and 42.4 kBq/mL. For spheres of same sizes, SUVmean increased with increase in activity concentration. SUVmean was increased by 80.6%, 83.5%, 63.2%, 87.4%, and 63.2% when activity concentrations of spheres with a diameter of 1.3 cm, 1.7 cm, 2.2 cm, 2.8 cm, and 3.7 cm, respectively, were increased from 10.6 kBq/mL to 42.4 kBq/mL. Average percentage contrast between cold spheres (cold lesions) and background activity concentration was estimated to be 89.96% for the spheres. Average contrast for the spheres containing 10.6 kBq/mL, 21.2 kBq/mL, and 42.4 kBq/mL were found to be 110.92%, 134.48%, and 150.52%, respectively. The average background contrast variability was estimated to be 2.97% at 95% confidence interval (P < 0.05). PMID:27650938

  4. Molecular Probes for Fluorescence Lifetime Imaging

    PubMed Central

    Sarder, Pinaki; Maji, Dolonchampa; Achilefu, Samuel

    2015-01-01

    Visualization of biological processes and pathologic conditions at the cellular and tissue levels largely rely on the use of fluorescence intensity signals from fluorophores or their bioconjugates. To overcome the concentration dependency of intensity measurements, evaluate subtle molecular interactions, and determine biochemical status of intracellular or extracellular microenvironments, fluorescence lifetime (FLT) imaging has emerged as a reliable imaging method complementary to intensity measurements. Driven by a wide variety of dyes exhibiting stable or environment-responsive FLTs, information multiplexing can be readily accomplished without the need for ratiometric spectral imaging. With knowledge of the fluorescent states of the molecules, it is entirely possible to predict the functional status of biomolecules or microevironment of cells. Whereas the use of FLT spectroscopy and microscopy in biological studies is now well established, in vivo imaging of biological processes based on FLT imaging techniques is still evolving. This review summarizes recent advances in the application of the FLT of molecular probes for imaging cells and small animal models of human diseases. It also highlights some challenges that continue to limit the full realization of the potential of using FLT molecular probes to address diverse biological problems, and outlines areas of potential high impact in the future. PMID:25961514

  5. Functionalized gold nanorods for molecular optoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Eghtedari, Mohammad; Oraevsky, Alexander; Conjusteau, Andre; Copland, John A.; Kotov, Nicholas A.; Motamedi, Massoud

    2007-02-01

    The development of gold nanoparticles for molecular optoacoustic imaging is a very promising area of research and development. Enhancement of optoacoustic imaging for molecular detection of tumors requires the engineering of nanoparticles with geometrical and molecular features that can enhance selective targeting of malignant cells while optimizing the sensitivity of optoacoustic detection. In this article, cylindrical gold nanoparticles (i.e. gold nanorods) were fabricated with a plasmon resonance frequency in the near infra-red region of the spectrum, where deep irradiation of tissue is possible using an Alexandrite laser. Gold nanorods (Au-NRs) were functionalized by covalent attachment of Poly(ethylene glycol) to enhance their biocompatibility. These particles were further functionalized with the aim of targeting breast cancer cells using monoclonal antibodies that binds to Her2/neu receptors, which are over expressed on the surface of breast cancer cells. A custom Laser Optoacoustic Imaging System (LOIS) was designed and employed to image nanoparticle-targeted cancer cells in a phantom and PEGylated Au-NRs that were injected subcutaneously into a nude mouse. The results of our experiments show that functionalized Au-NRs with a plasmon resonance frequency at near infra-red region of the spectrum can be detected and imaged in vivo using laser optoacoustic imaging system.

  6. A Targeting Microbubble for Ultrasound Molecular Imaging

    PubMed Central

    Yeh, James Shue-Min; Sennoga, Charles A.; McConnell, Ellen; Eckersley, Robert; Tang, Meng-Xing; Nourshargh, Sussan; Seddon, John M.; Haskard, Dorian O.; Nihoyannopoulos, Petros

    2015-01-01

    Rationale Microbubbles conjugated with targeting ligands are used as contrast agents for ultrasound molecular imaging. However, they often contain immunogenic (strept)avidin, which impedes application in humans. Although targeting bubbles not employing the biotin-(strept)avidin conjugation chemistry have been explored, only a few reached the stage of ultrasound imaging in vivo, none were reported/evaluated to show all three of the following properties desired for clinical applications: (i) low degree of non-specific bubble retention in more than one non-reticuloendothelial tissue; (ii) effective for real-time imaging; and (iii) effective for acoustic quantification of molecular targets to a high degree of quantification. Furthermore, disclosures of the compositions and methodologies enabling reproduction of the bubbles are often withheld. Objective To develop and evaluate a targeting microbubble based on maleimide-thiol conjugation chemistry for ultrasound molecular imaging. Methods and Results Microbubbles with a previously unreported generic (non-targeting components) composition were grafted with anti-E-selectin F(ab’)2 using maleimide-thiol conjugation, to produce E-selectin targeting microbubbles. The resulting targeting bubbles showed high specificity to E-selectin in vitro and in vivo. Non-specific bubble retention was minimal in at least three non-reticuloendothelial tissues with inflammation (mouse heart, kidneys, cremaster). The bubbles were effective for real-time ultrasound imaging of E-selectin expression in the inflamed mouse heart and kidneys, using a clinical ultrasound scanner. The acoustic signal intensity of the targeted bubbles retained in the heart correlated strongly with the level of E-selectin expression (|r|≥0.8), demonstrating a high degree of non-invasive molecular quantification. Conclusions Targeting microbubbles for ultrasound molecular imaging, based on maleimide-thiol conjugation chemistry and the generic composition described

  7. Molecular specific optoacoustic imaging with plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Mallidi, Srivalleesha; Larson, Timothy; Aaron, Jesse; Sokolov, Konstantin; Emelianov, Stanislav

    2007-05-01

    Gold nanoparticles functionalized with antibodies can specifically bind to molecular biomarkers such as epithelial growth factor receptor (EGFR). The molecule specific nature of the antibody-functionalized gold nanoparticles forms the basis for the developed optoacoustic imaging technique to detect cancer at an asymptotic stage. Optoacoustic imaging was performed with 532 nm and 680 nm pulsed laser irradiation on three-dimensional tissue phantoms prepared using a human keratinocyte cell line. The results of our study demonstrate that the combination of anti-EGFR gold ioconjugates and optoacoustic imaging can allow highly sensitive and selective detection of human epithelial cancer cells.

  8. NAOMI: nanoparticle assisted optical molecular imaging

    NASA Astrophysics Data System (ADS)

    Faber, Dirk J.; van Velthoven, Mirjam E. J.; de Bruin, Martijn; Aalders, Maurice C. G.; Verbraak, Frank D.; Graf, Christina; van Leeuwen, Ton G.

    2006-02-01

    Our first steps towards nanoparticle assisted, optical molecular imaging (NAOMI) using OCT as the imaging modality are presented. We derive an expression to estimate the sensitivity of this technique. We propose to use nanoparticles based on biodegradable polymers, loaded with suitable dyes as contrast agent, and outline a method for establishing their desired optical properties prior to synthesis. This report presents preliminary results of our investigation on the use of nanoshells to serve as contrast agents We injected nanoshells with specific contrast features in the 800 nm wavelength region in excised porcine eyes. The nanoshells showed up as bright reflecting structures in the OCT images, which confirm their potential as contrast agents.

  9. Protein-based tumor molecular imaging probes

    PubMed Central

    Lin, Xin; Xie, Jin

    2013-01-01

    Molecular imaging is an emerging discipline which plays critical roles in diagnosis and therapeutics. It visualizes and quantifies markers that are aberrantly expressed during the disease origin and development. Protein molecules remain to be one major class of imaging probes, and the option has been widely diversified due to the recent advances in protein engineering techniques. Antibodies are part of the immunosystem which interact with target antigens with high specificity and affinity. They have long been investigated as imaging probes and were coupled with imaging motifs such as radioisotopes for that purpose. However, the relatively large size of antibodies leads to a half-life that is too long for common imaging purposes. Besides, it may also cause a poor tissue penetration rate and thus compromise some medical applications. It is under this context that various engineered protein probes, essentially antibody fragments, protein scaffolds, and natural ligands have been developed. Compared to intact antibodies, they possess more compact size, shorter clearance time, and better tumor penetration. One major challenge of using protein probes in molecular imaging is the affected biological activity resulted from random labeling. Site-specific modification, however, allows conjugation happening in a stoichiometric fashion with little perturbation of protein activity. The present review will discuss protein-based probes with focus on their application and related site-specific conjugation strategies in tumor imaging. PMID:20232092

  10. Radionuclide imaging in myocardial sarcoidosis. Demonstration of myocardial uptake of /sup 99m/Tc pyrophosphate and gallium

    SciTech Connect

    Forman, M.B.; Sandler, M.P.; Sacks, G.A.; Kronenberg, M.W.; Powers, T.A.

    1983-03-01

    A patient had severe congestive cardiomyopathy secondary to myocardial sarcoidosis. The clinical diagnosis was confirmed by radionuclide ventriculography, /sup 201/Tl, /sup 67/Ga, and /sup 99m/Tc pyrophosphate (TcPYP) scintigraphy. Myocardial TcPYP uptake has not been reported previously in sarcoidosis. In this patient, TcPYP was as useful as gallium scanning and thallium imaging in documenting the myocardial process.

  11. Experimental radionuclide ventriculography and the baboon (Papio ursinus) model: imaging projection of the heart and blood pool labelling.

    PubMed

    Dormehl, I C; du Plessis, M; Maree, M; van Wyk, A

    1986-01-01

    The chacma baboon (Papio ursinus) presents a suitable animal model for the evaluation of interpretation problems of data from radionuclide ventriculography. However, the procedure has to be standardized: it is important to so view the heart as to ensure optimal ventricular separation and minimal ventricle-atrium overlap. Also necessary is efficient labelling of the blood pool for good cardiac images and prolonged experimentation. This report concerns an evaluation of different cardiac viewing projections and labelling procedures, and concludes with a preferred method.

  12. Dose reduction in molecular breast imaging

    NASA Astrophysics Data System (ADS)

    Wagenaar, Douglas J.; Chowdhury, Samir; Hugg, James W.; Moats, Rex A.; Patt, Bradley E.

    2011-10-01

    Molecular Breast Imaging (MBI) is the imaging of radiolabeled drugs, cells, or nanoparticles for breast cancer detection, diagnosis, and treatment. Screening of broad populations of women for breast cancer with mammography has been augmented by the emergence of breast MRI in screening of women at high risk for breast cancer. Screening MBI may benefit the sub-population of women with dense breast tissue that obscures small tumors in mammography. Dedicated breast imaging equipment is necessary to enable detection of early-stage tumors less than 1 cm in size. Recent progress in the development of these instruments is reviewed. Pixellated CZT for single photon MBI imaging of 99mTc-sestamibi gives high detection sensitivity for early-stage tumors. The use of registered collimators in a near-field geometry gives significantly higher detection efficiency - a factor of 3.6-, which translates into an equivalent dose reduction factor given the same acquisition time. The radiation dose in the current MBI procedure has been reduced to the level of a four-view digital mammography study. In addition to screening of selected sub-populations, reduced MBI dose allows for dual-isotope, treatment planning, and repeated therapy assessment studies in the era of molecular medicine guided by quantitative molecular imaging.

  13. Assessment of single vessel coronary artery disease: results of exercise electrocardiography, thallium-201 myocardial perfusion imaging and radionuclide angiography

    SciTech Connect

    Port, S.C.; Oshima, M.; Ray, G.; McNamee, P.; Schmidt, D.H.

    1985-07-01

    The sensitivity of the commonly used stress tests for the diagnosis of coronary artery disease was analyzed in 46 patients with significant occlusion (greater than or equal to 70% luminal diameter obstruction) of only one major coronary artery and no prior myocardial infarction. In all patients, thallium-201 perfusion imaging (both planar and seven-pinhole tomographic) and 12 lead electrocardiography were performed during the same graded treadmill exercise test and radionuclide angiography was performed during upright bicycle exercise. Exercise rate-pressure (double) product was 22,307 +/- 6,750 on the treadmill compared with 22,995 +/- 5,622 on the bicycle (p = NS). Exercise electrocardiograms were unequivocally abnormal in 24 patients (52%). Qualitative planar thallium images were abnormal in 42 patients (91%). Quantitative analysis of the tomographic thallium images were abnormal in 41 patients (89%). An exercise ejection fraction of less than 0.56 or a new wall motion abnormality was seen in 30 patients (65%). Results were similar for the right (n = 11) and left anterior descending (n = 28) coronary arteries while all tests but the planar thallium imaging showed a lower sensitivity for isolated circumflex artery disease (n = 7). The specificity of the tests was 72, 83, 89 and 72% for electrocardiography, planar thallium imaging, tomographic thallium imaging and radionuclide angiography, respectively. The results suggest that exercise thallium-201 perfusion imaging is the most sensitive noninvasive stress test for the diagnosis of single vessel coronary artery disease.

  14. Molecular histopathology by nonlinear interferometric vibrational imaging

    NASA Astrophysics Data System (ADS)

    Boppart, Stephen A.

    2011-07-01

    A rapid label-free approach for molecular histopathology is presented and reviewed. Broadband vibrational spectra are generated by nonlinear interferometric vibrational imaging (NIVI), a coherent anti-Stokes Raman scattering (CARS)- based technique that uses interferometry and signal processing approaches to acquire Raman-like profiles with suppression of the non-resonant background. This allows for the generation of images that provide contrast based on quantitative chemical composition with high spatial and spectral resolution. Algorithms are demonstrated for reducing the diagnostic spectral information into color-coded composite images for the rapid identification of chemical constituents in skin, as well as differentiating normal from abnormal tissue in a pre-clinical tumor model for human breast cancer. This technology and methodology could result in an alternative method to the traditional histological staining and subjective interpretation procedure currently used in the diagnosis of disease, and has the potential for future in vivo molecular histopathology.

  15. Cherenkov radiation fluence estimates in tissue for molecular imaging and therapy applications

    NASA Astrophysics Data System (ADS)

    Glaser, Adam K.; Zhang, Rongxiao; Andreozzi, Jacqueline; Gladstone, David; Pogue, Brian

    2016-03-01

    Cherenkov radiation has emerged as a novel source of light with a number of applications in the biomedical sciences. It's unique properties, including its broadband emission spectrum, spectral weighting in the ultraviolet and blue wavebands, and local generation of light within a given tissue have made it an attractive source of light for techniques ranging from widefield imaging to oximetry and phototherapy. To help guide the future development of this field in the context of molecular imaging, quantitative estimates of the light fluence rates of Cherenkov radiation from a number of radionuclide and external radiotherapy beams in tissue was explored for the first time. Using Monte Carlo simulations, these values were found to be on the order of 0.1 - 1 nW/cm2 per MBq/g for radionuclides and 1 - 10 μW/cm2 per Gy/sec for external radiotherapy beams, dependent on the given waveband and optical properties. For phototherapy applications, the total light fluence was found to be on the order of nJ/cm2 for radionuclides, and mJ/cm2 for radiotherapy beams. To validate these findings, experimental validation was completed with an MV x-ray photon beam incident onto a tissue phantom, confirming the magnitudes of the simulation values. The results indicate that diagnostic potential is reasonable for Cherenkov excitation of molecular probes, but phototherapy may remain elusive at these relatively low fluence values.

  16. [Redox Molecular Imaging Using ReMI].

    PubMed

    Hyodo, Fuminori; Ito, Shinji; Utsumi, Hideo

    2015-01-01

    Tissue redox status is one of the most important parameters to maintain homeostasis in the living body. Numerous redox reactions are involved in metabolic processes, such as energy production in the mitochondrial electron transfer system. A variety of intracellular molecules such as reactive oxygen species, glutathione, thioredoxins, NADPH, flavins, and ascorbic acid may contribute to the overall redox status in tissues. Breakdown of redox balance may lead to oxidative stress and can induce many pathological conditions such as cancer, neurological disorders, and aging. Therefore imaging of tissue redox status and monitoring antioxidant levels in living organisms can be useful in the diagnosis of disease states and assessment of treatment response. In vivo redox molecular imaging technology such as electron spin resonance imaging (ESRI), magnetic resonance imaging (MRI), and dynamic nuclear polarization (DNP)-MRI (redox molecular imaging; ReMI) is emerging as a viable redox status imaging modality. This review focuses on the application of magnetic resonance technologies using MRI or DNP-MRI and redox-sensitive contrast agents.

  17. Advance of Molecular Imaging Technology and Targeted Imaging Agent in Imaging and Therapy

    PubMed Central

    Chen, Zhi-Yi; Wang, Yi-Xiang; Lin, Yan; Zhang, Jin-Shan; Yang, Feng; Zhou, Qiu-Lan; Liao, Yang-Ying

    2014-01-01

    Molecular imaging is an emerging field that integrates advanced imaging technology with cellular and molecular biology. It can realize noninvasive and real time visualization, measurement of physiological or pathological process in the living organism at the cellular and molecular level, providing an effective method of information acquiring for diagnosis, therapy, and drug development and evaluating treatment of efficacy. Molecular imaging requires high resolution and high sensitive instruments and specific imaging agents that link the imaging signal with molecular event. Recently, the application of new emerging chemical technology and nanotechnology has stimulated the development of imaging agents. Nanoparticles modified with small molecule, peptide, antibody, and aptamer have been extensively applied for preclinical studies. Therapeutic drug or gene is incorporated into nanoparticles to construct multifunctional imaging agents which allow for theranostic applications. In this review, we will discuss the characteristics of molecular imaging, the novel imaging agent including targeted imaging agent and multifunctional imaging agent, as well as cite some examples of their application in molecular imaging and therapy. PMID:24689058

  18. Radionuclides in Diagnosis.

    ERIC Educational Resources Information Center

    Williams, E. D.

    1989-01-01

    Discussed is a radionuclide imaging technique, including the gamma camera, image analysis computer, radiopharmaceuticals, and positron emission tomography. Several pictures showing the use of this technique are presented. (YP)

  19. Molecular imaging with CARS micro-spectroscopy.

    PubMed

    Cicerone, Marcus

    2016-08-01

    After more than a decade of instrument and method development, broadband coherent anti-Stokes Raman scattering (CARS) micro-spectroscopy is beginning to live up to its potential as a label-free imaging modality that can rapidly generate high resolution images with full vibrational spectra at each image pixel. Presently these instruments are able to obtain quantitative, spatially resolved information on lipids from the CH stretch region of the Raman spectrum, and some instrument designs facilitate acquisition of high quality fingerprint spectra, containing information on a host of molecular species including structural proteins, nucleotides, and metabolites. While most of the existing instruments are research projects themselves, it appears that the relevant technologies are maturing so that commercially available instruments may not be too far in the future, making this remarkable imaging modality widely available. PMID:27400394

  20. Hybrid imaging is the future of molecular imaging

    PubMed Central

    Hicks, RJ; Lau, EWF; Binns, DS

    2007-01-01

    Correlative imaging has long been used in clinical practice and particularly for the interpretation of nuclear medicine studies wherein detailed anatomical information is often lacking. Previously, side-by-side comparison or software co-registration techniques were applied but suffered from technical limitations related to the differing geometries of the imaging equipment, differences in the positioning of patients and displacement of mobile structures between studies. The development of the first hybrid PET and CT device struck a chord with the medical imaging community that is still ringing loudly throughout the world. So successful has been the concept of PET-CT that none of the major medical imaging manufacturers now offers stand-alone PET scanners. Following close behind this success, SPECT-CT devices have recently been adopted by the nuclear medicine community, already compelled by the benefits of hybrid imaging through their experience with PET-CT. Recent reports of adaptation of PET detectors to operate within the strong magnetic field of MRI scanners have generated further enthusiasm. Prototype PET-MRI devices are now in development. The complementary anatomical, functional and molecular information provided by these techniques can now be presented in an intuitive and aesthetically-pleasing format. This has made end-users more comfortable with the results of functional imaging techniques than when the same information is presented independently. Despite the primacy of anatomical imaging for locoregional disease definition, the molecular characterisation available from PET and SPECT offers unique complementary information for cancer evaluation. A new era of cancer imaging, when hybrid imaging will be the primary diagnostic tool, is approaching. PMID:21614291

  1. Translational Molecular Imaging of Prostate Cancer

    PubMed Central

    Kiess, Ana P.; Cho, Steve Y.; Pomper, Martin G.

    2013-01-01

    Prostate cancer is a heterogeneous disease, and its management is now evolving to become more personalized and to incorporate new targeted therapies. With these new changes comes a demand for molecular imaging techniques that can not only detect disease but also assess biology and treatment response. This review article summarizes current molecular imaging approaches in prostate cancer (e.g. 99mTc bone scintigraphy and 18F-fluorodeoxyglucose positron emission tomography) and highlights emerging clinical and preclinical imaging agents, with an emphasis on mechanism and clinical application. Emerging agents at various stages of clinical translation include radiolabeled analogs of lipid, amino acid, and nucleoside metabolism, as well as agents more specifically targeting prostate cancer biomarkers including androgen receptor, prostate-specific membrane antigen and others. We also highlight new techniques and targeted contrast agents for magnetic resonance imaging and spectroscopy. For all these imaging techniques, a growing and important unmet need is for well-designed prospective clinical trials to establish clear indications with clinical benefit in prostate cancer. PMID:24159427

  2. Three Dimensional Molecular Imaging for Lignocellulosic Materials

    SciTech Connect

    Bohn, Paul W.; Sweedler, Jonathan V.

    2011-06-09

    The development of high efficiency, inexpensive processing protocols to render biomass components into fermentable substrates for the sequential processing of cell wall components into fuels and important feedstocks for the biorefinery of the future is a key goal of the national roadmap for renewable energy. Furthermore, the development of such protocols depends critically on detailed knowledge of the spatial and temporal infiltration of reagents designed to remove and separate the phenylpropenoid heteropolymer (lignin) from the processable sugar components sequestered in the rigid cell walls of plants. A detailed chemical and structural understanding of this pre-enzymatic processing in space and time was the focus of this program. We worked to develop new imaging strategies that produce real-time molecular speciation information in situ; extract sub-surface information about the effects of processing; and follow the spatial and temporal characteristics of the molecular species in the matrix and correlate this complex profile with saccharification. Spatially correlated SIMS and Raman imaging were used to provide high quality, high resolution subcellular images of Miscanthus cross sections. Furthermore, the combination of information from the mass spectrometry and Raman scattering allows specific chemical assignments of observed structures, difficult to assign from either imaging approach alone and lays the foundation for subsequent heterocorrelated imaging experiments targeted at more challenging biological systems, such as the interacting plant-microbe systems relevant to the rhizosphere.

  3. NAOMI: nanoparticle-assisted optical molecular imaging

    NASA Astrophysics Data System (ADS)

    Faber, Dirk J.; de Bruin, Martijn; Aalders, Maurice C. G.; Verbraak, Frank D.; van Leeuwen, Ton G.

    2007-02-01

    We present our first steps towards nanoparticle assisted, optical molecular imaging (NAOMI) using biodegradable nanoparticles. Our focus is on using optical coherence tomography(OCT) as the imaging modality. We propose to use nanoparticles based on biodegradable polymers, loaded with carefully selected dyes as contrast agent, and outline a method for establishing their desired optical properties prior to synthesis. Moreover, we perform a qualitative pilot study using these biodegradable nanoparticles, measuring their optical properties which are found to be in line with theoretical predictions.

  4. Molecular Imaging of Biomarkers in Breast Cancer

    PubMed Central

    Ulaner, Gary A.; Riedl, Chris C.; Dickler, Maura N.; Jhaveri, Komal; Pandit-Taskar, Neeta; Weber, Wolfgang

    2016-01-01

    The success of breast cancer therapy is ultimately defined by clinical endpoints such as survival. It is valuable to have biomarkers that can predict the most efficacious therapies or measure response to therapy early in the course of treatment. Molecular imaging has a promising role in complementing and overcoming some of the limitations of traditional biomarkers by providing the ability to perform noninvasive, repeatable whole-body assessments. The potential advantages of imaging biomarkers are obvious and initial clinical studies have been promising, but proof of clinical utility still requires prospective multicenter clinical trials. PMID:26834103

  5. Molecular imaging probe development: a chemistry perspective

    PubMed Central

    Nolting, Donald D; Nickels, Michael L; Guo, Ning; Pham, Wellington

    2012-01-01

    Molecular imaging is an attractive modality that has been widely employed in many aspects of biomedical research; especially those aimed at the early detection of diseases such as cancer, inflammation and neurodegenerative disorders. The field emerged in response to a new research paradigm in healthcare that seeks to integrate detection capabilities for the prediction and prevention of diseases. This approach made a distinct impact in biomedical research as it enabled researchers to leverage the capabilities of molecular imaging probes to visualize a targeted molecular event non-invasively, repeatedly and continuously in a living system. In addition, since such probes are inherently compact, robust, and amenable to high-throughput production, these probes could potentially facilitate screening of preclinical drug discovery, therapeutic assessment and validation of disease biomarkers. They could also be useful in drug discovery and safety evaluations. In this review, major trends in the chemical synthesis and development of positron emission tomography (PET), optical and magnetic resonance imaging (MRI) probes are discussed. PMID:22943038

  6. Evaluation of energy spectral information in nuclear imaging and investigation of protein binding of cationic radionuclides by lactoferrin. Comprehensive progress report, October 1, 1977-September 30, 1980

    SciTech Connect

    Hoffer, P. B.

    1980-06-10

    Construction of an Anger camera-computer system which allows collection of both the position and energy signals from events detected by the scintillation camera has been completed. The system allows correction of energy response non-uniformity of the detector and facilitates research related to effects of energy discrimination in radionuclide scintigraphy. The system consists of electronic hardware to transmit and digitize the energy signal, software to record and process that signal in conjunction with spatial positioning signals, and additional hardware for recording the processed images so that they can be evaluated by observers. Preliminary results indicate that the system is useful in evaluating clinical images. Assymetric (eccentric) energy windows do improve image quality and are of value in improving detection of lesions on liver scintigraphs. The mechanisms by which Ga-67 is taken up in infection and tumor has been elucidated, and the uptake of radiogallium in microorganisms as a function of its interaction with siderophores was also studied. The primary function of these low molecular weight compounds is to trap ferric ion. However, gallium may be substituted for ferric ion and becomes trapped within the microorganism. The uptake of radiogallium by neutrophils and the role that lactoferrin plays in both intracellular localization of radiogallium and subsequent deposition of the radionuclide at sites of infection were also studied. Investigation of ferric ion analogs reveals definate differences in the affinity of these metals for binding molecules which helps explain their biologic activity. While ferric ion has the strongest affinity for such molecules, gallium has very high affinity for siderophores, moderate affinity for lactoferrin, and lower affinity for transferrin. The relative affinity of indium for these molecules is in approximately the reverse order.

  7. Molecular imaging of microRNAs.

    PubMed

    Wang, Fu; Niu, Gang; Chen, Xiaoyuan; Cao, Feng

    2011-08-01

    MicroRNAs (miRNAs) are a novel class of small noncoding RNAs that regulate gene expression by targeting mRNAs for either cleavage or translational repression. They have been shown to play important roles in a broad range of biological processes including development, cellular differentiation, proliferation and apoptosis. Conventional detection methods, such as northern blot, real-time PCR or microarray, have been used to assess miRNA expression. However, these techniques require the fixation or lysis of cells, and thus cannot be used to study the dynamic function of miRNAs in living cells. Recent remarkable advances in molecular imaging techniques have provided the capability of noninvasive repeated quantitative imaging of tumour or stem cells in living animals. The current brief discussion focuses on the reporter and fluorescent beacon imaging approaches to visualize miRNA expression in living subjects.

  8. Radionuclide Therapy

    NASA Astrophysics Data System (ADS)

    Zalutsky, M. R.

    Radionuclide therapy utilizes unsealed sources of radionuclides as a treatment for cancer or other pathological conditions such as rheumatoid arthritis. Radionuclides that decay by the emission of β and α particles, as well as those that emit Auger electrons, have been used for this purpose. In this chapter, radiochemical aspects of radionuclide therapy, including criteria for radionuclide selection, radionuclide production, radiolabeling chemistry, and radiation dosimetry are discussed.

  9. The detection of coronary artery disease: a comparison of exercise thallium imaging and exercise equilibrium radionuclide ventriculography.

    PubMed

    McGhie, I; Martin, W; Tweddel, A; Hutton, I

    1987-01-01

    This study compared the accuracy of rest and exercise gated equilibrium technetium ventriculography with exercise thallium imaging in 50 consecutive male patients undergoing routine coronary angiography for the evaluation of chest pain. No patients were excluded on the basis of prior myocardial infarction, nature of angiographically defined coronary disease or symptoms. Antianginal therapy was continued in all patients. Eight patients had normal coronary arteries, 9 had single vessel, disease, 20 had double vessel disease and 13 had triple vessel disease. Sixteen patients had previously documented myocardial infarction. Using exercise radionuclide ventriculography, 34 patients with coronary disease were detected resulting in a sensitivity of 81%; 6 patients with normal coronary arteries had normal scans, a specificity of 75%, with a predictive accuracy of 80%. In comparison, thallium imaging detected 42 patients with coronary disease resulting in a sensitivity of 100%. Six patients with normal coronary arteries had normal thallium images resulting in a specificity of 75% and a predictive accuracy of 96%. These results suggest that exercise thallium imaging is a more accurate investigation than exercise equilibrium radio-nuclide ventriculography and is the investigation of choice in the noninvasive detection of coronary artery disease. PMID:3036530

  10. Preclinical Molecular Imaging of Tumor Angiogenesis

    PubMed Central

    Zhu, Lei; Niu, Gang; Fang, Xuexun; Chen, Xiaoyuan

    2010-01-01

    Angiogenesis, a course that new blood vessels grow from the existing vasculature, plays important roles both physiologically and pathologically. Angiogenesis can be switched on by growth factors secreted by tumor cells, and in turn supplies more oxygen and nutrition to the tumor. More and more preclinical studies and clinical trials have shown that inhibition of angiogenesis is an effective way to inhibit tumor growth, substantiating the development of anti-angiogenesis therapeutics. Imaging technologies accelerate the translation of preclinical research to the clinic. In oncology, various imaging modalities are widely applied to drug development, tumor early detection and therapy response monitoring. So far, several angiogenesis related imaging agents are promising in cancer diagnosis. However, more effective imaging agents with less side-effect still need to be pursued to visualize angiogenesis process non-invasively. The main purpose of this review is to summarize the recent progresses in preclinical molecular imaging of angiogenesis and to discuss the potential of the current preclinical probes specific to various angiogenesis targets including vascular endothelial growth factor and its receptors (VEGF/VEGFRs), integrin αvβ3 and matrix metalloproteinases (MMPs). It is predicable that related investigations in the field will benefit cancer research and quicken the anti-angiogenic drug development. PMID:20639815

  11. Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging

    NASA Astrophysics Data System (ADS)

    Yuan, Shuai; Roney, Celeste A.; Wierwille, Jeremiah; Chen, Chao-Wei; Xu, Biying; Griffiths, Gary; Jiang, James; Ma, Hongzhou; Cable, Alex; Summers, Ronald M.; Chen, Yu

    2010-01-01

    Optical coherence tomography (OCT) provides high-resolution, cross-sectional imaging of tissue microstructure in situ and in real time, while fluorescence molecular imaging (FMI) enables the visualization of basic molecular processes. There is a great deal of interest in combining these two modalities so that the tissue's structural and molecular information can be obtained simultaneously. This could greatly benefit biomedical applications such as detecting early diseases and monitoring therapeutic interventions. In this research, an optical system that combines OCT and FMI was developed. The system demonstrated that it could co-register en face OCT and FMI images with a 2.4 × 2.4 mm2 field-of-view. The transverse resolutions of OCT and FMI of the system are both ~10 µm. Capillary tubes filled with fluorescent dye Cy 5.5 in different concentrations under a scattering medium are used as the phantom. En face OCT images of the phantoms were obtained and successfully co-registered with FMI images that were acquired simultaneously. A linear relationship between FMI intensity and dye concentration was observed. The relationship between FMI intensity and target fluorescence tube depth measured by OCT images was also observed and compared with theoretical modeling. This relationship could help in correcting reconstructed dye concentration. Imaging of colon polyps of the APCmin mouse model is presented as an example of biological applications of this co-registered OCT/FMI system.

  12. A reference skeletal dosimetry model for an adult male radionuclide therapy patient based on three-dimensional imaging and paired-image radiation transport

    NASA Astrophysics Data System (ADS)

    Shah, Amish P.

    The need for improved patient-specificity of skeletal dose estimates is widely recognized in radionuclide therapy. Current clinical models for marrow dose are based on skeletal mass estimates from a variety of sources and linear chord-length distributions that do not account for particle escape into cortical bone. To predict marrow dose, these clinical models use a scheme that requires separate calculations of cumulated activity and radionuclide S values. Selection of an appropriate S value is generally limited to one of only three sources, all of which use as input the trabecular microstructure of an individual measured 25 years ago, and the tissue mass derived from different individuals measured 75 years ago. Our study proposed a new modeling approach to marrow dosimetry---the Paired Image Radiation Transport (PIRT) model---that properly accounts for both the trabecular microstructure and the cortical macrostructure of each skeletal site in a reference male radionuclide patient. The PIRT model, as applied within EGSnrc, requires two sets of input geometry: (1) an infinite voxel array of segmented microimages of the spongiosa acquired via microCT; and (2) a segmented ex-vivo CT image of the bone site macrostructure defining both the spongiosa (marrow, endosteum, and trabeculae) and the cortical bone cortex. Our study also proposed revising reference skeletal dosimetry models for the adult male cancer patient. Skeletal site-specific radionuclide S values were obtained for a 66-year-old male reference patient. The derivation for total skeletal S values were unique in that the necessary skeletal mass and electron dosimetry calculations were formulated from the same source bone site over the entire skeleton. We conclude that paired-image radiation-transport techniques provide an adoptable method by which the intricate, anisotropic trabecular microstructure of the skeletal site; and the physical size and shape of the bone can be handled together, for improved

  13. Complementary optical and nuclear imaging of caspase-3 activity using combined activatable and radio-labeled multimodality molecular probe

    NASA Astrophysics Data System (ADS)

    Lee, Hyeran; Akers, Walter J.; Cheney, Philip P.; Edwards, W. Barry; Liang, Kexian; Culver, Joseph P.; Achilefu, Samuel

    2009-07-01

    Based on the capability of modulating fluorescence intensity by specific molecular events, we report a new multimodal optical-nuclear molecular probe with complementary reporting strategies. The molecular probe (LS498) consists of tetraazacyclododecanetetraacetic acid (DOTA) for chelating a radionuclide, a near-infrared fluorescent dye, and an efficient quencher dye. The two dyes are separated by a cleavable peptide substrate for caspase-3, a diagnostic enzyme that is upregulated in dying cells. LS498 is radiolabeled with 64Cu, a radionuclide used in positron emission tomography. In the native form, LS498 fluorescence is quenched until caspase-3 cleavage of the peptide substrate. Enzyme kinetics assay shows that LS498 is readily cleaved by caspase-3, with excellent enzyme kinetic parameters kcat and KM of 0.55+/-0.01 s-1 and 1.12+/-0.06 μM, respectively. In mice, the initial fluorescence of LS498 is ten-fold less than control. Using radiolabeled 64Cu-LS498 in a controlled and localized in-vivo model of caspase-3 activation, a time-dependent five-fold NIR fluorescence enhancement is observed, but radioactivity remains identical in caspase-3 positive and negative controls. These results demonstrate the feasibility of using radionuclide imaging for localizing and quantifying the distribution of molecular probes and optical imaging for reporting the functional status of diagnostic enzymes.

  14. Combining optical coherence tomography with fluorescence molecular imaging: towards simultaneous morphology and molecular imaging

    NASA Astrophysics Data System (ADS)

    Yuan, Shuai; Lai, Michael; Roney, Celeste A.; Jiang, James; Li, Qian; Ma, Hongzhou; Cable, Alex; Summers, Ronald M.; Chen, Yu

    2009-02-01

    Optical coherence tomography (OCT) provides high-resolution, cross-sectional imaging of tissue microstructure in situ and in real-time, while fluorescence molecular imaging (FMI) enables the visualization of basic molecular processes. There are great interests in combining these two modalities so that the tissue's structural and molecular information can be obtained simultaneously. This could greatly benefit biomedical applications such as detecting early diseases and monitoring therapeutic interventions. In this research, a new optical system that combines OCT and FMI was developed. The system demonstrated that it could co-register en face OCT and FMI images with a 2.4 x 2.4 mm field of view. The transverse resolutions of OCT and FMI of the system are both 10 μm. Capillary tubes filled with Cy 5.5 fluorescent dye in different concentrations (750nM to 24μM) under a scattering medium (1% - 2% intralipid) are used as the phantom. En face OCT images of the phantoms were obtained and successfully co-registered with FMI images that were acquired simultaneously. A linear relationship between FMI intensity and dye concentration was observed. The relationship between FMI intensity and target fluorescence tube depth measured by OCT images was also observed and compared with theoretical modeling. This relationship could help in correcting reconstructed dye concentration. Imaging of colon polyps of APCmin mouse model is presented as an example of biological applications of this co-registered OCT/FMI system. In conclusion, a co-registering OCT and FMI imaging system has been demonstrated. The system enables simultaneous visualization of tissue morphology and molecular information at high resolutions over a 2-3 mm field-of-view.

  15. Sodium Iodide Symporter for Nuclear Molecular Imaging and Gene Therapy: From Bedside to Bench and Back

    PubMed Central

    Ahn, Byeong-Cheol

    2012-01-01

    Molecular imaging, defined as the visual representation, characterization and quantification of biological processes at the cellular and subcellular levels within intact living organisms, can be obtained by various imaging technologies, including nuclear imaging methods. Imaging of normal thyroid tissue and differentiated thyroid cancer, and treatment of thyroid cancer with radioiodine rely on the expression of the sodium iodide symporter (NIS) in these cells. NIS is an intrinsic membrane protein with 13 transmembrane domains and it takes up iodide into the cytosol from the extracellular fluid. By transferring NIS function to various cells via gene transfer, the cells can be visualized with gamma or positron emitting radioisotopes such as Tc-99m, I-123, I-131, I-124 and F-18 tetrafluoroborate, which are accumulated by NIS. They can also be treated with beta- or alpha-emitting radionuclides, such as I-131, Re-186, Re-188 and At-211, which are also accumulated by NIS. This article demonstrates the diagnostic and therapeutic applications of NIS as a radionuclide-based reporter gene for trafficking cells and a therapeutic gene for treating cancers. PMID:22539935

  16. Simultaneous Tc-99m/I-123 dual-radionuclide myocardial perfusion/innervation imaging using Siemens IQ-SPECT with SMARTZOOM collimator

    NASA Astrophysics Data System (ADS)

    Du, Yong; Bhattacharya, Manojeet; Frey, Eric C.

    2014-06-01

    Simultaneous dual-radionuclide myocardial perfusion/innervation SPECT imaging can provide important information about the mismatch between scar tissue and denervated regions. The Siemens IQ-SPECT system developed for cardiac imaging uses a multifocal SMARTZOOM collimator to achieve a four-fold sensitivity for the cardiac region, compared to a typical parallel-hole low-energy high-resolution collimator, but without the data truncation that can result with conventional converging-beam collimators. The increased sensitivity allows shorter image acquisition times or reduced patient dose, making IQ-SPECT ideal for simultaneous dual-radionuclide SPECT, where reduced administrated activity is desirable in order to reduce patient radiation exposure. However, crosstalk is a major factor affecting the image quality in dual-radionuclide imaging. In this work we developed a model-based method that can estimate and compensate for the crosstalk in IQ-SPECT data. The crosstalk model takes into account interactions in the object and collimator-detector system. Scatter in the object was modeled using the effective source scatter estimation technique (ESSE), previously developed to model scatter with parallel-hole collimators. The geometric collimator-detector response was analytically modeled in the IQ-SPECT projector. The estimated crosstalk was then compensated for in an iterative reconstruction process. The new method was validated with data from both Monte Carlo simulations and physical phantom experiments. The results showed that the estimated crosstalk was in good agreement with simulated and measured results. After model-based compensation the images from simultaneous dual-radionuclide acquisitions were similar in quality to those from single-radionuclide acquisitions that did not have crosstalk contamination. The proposed model-based method can be used to improve simultaneous dual-radionuclide images acquired using IQ-SPECT. This work also demonstrates that ESSE scatter

  17. Molecular imaging and sensing using plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Crow, Matthew James

    Noble metal nanoparticles exhibit unique optical properties that are beneficial to a variety of applications, including molecular imaging. The large scattering cross sections of nanoparticles provide high contrast necessary for biomarkers. Unlike alternative contrast agents, nanoparticles provide refractive index sensitivity revealing information regarding the local cellular environment. Altering the shape and composition of the nanoparticle shifts the peak resonant wavelength of scattered light, allowing for implementation of multiple spectrally distinct tags. In this project, nanoparticles that scatter in different spectral windows are functionalized with various antibodies recognizing extra-cellular receptors integral to cancer progression. A hyperspectral imaging system is developed, allowing for visualization and spectral characterization of cells labeled with these conjugates. Various molecular imaging and microspectroscopy applications of plasmonic nanoparticles are then investigated. First, anti-EGFR gold nanospheres are shown to quantitatively measure receptor expression with similar performance to fluorescence assays. Second, anti-EGFR gold nanorods and novel anti-IGF-1R silver nanospheres are implemented to indicate local cellular refractive indices. Third, because biosensing capabilities of nanoparticle tags may be limited by plasmonic coupling, polarization mapping is investigated as a method to discern these effects. Fourth, plasmonic coupling is tested to monitor HER-2 dimerization. Experiments reveal the interparticle conformation of proximal HER-2 bound labels, required for plasmonic coupling-enhanced dielectric sensing. Fifth, all three functionalized plasmonic tags are implemented simultaneously to indicate clinically relevant cell immunophenotype information and changes in the cellular dielectric environment. Finally, flow cytometry experiments are conducted utilizing the anti-EGFR nanorod tag to demonstrate profiling of receptor expression

  18. Multi-modality molecular imaging for gastric cancer research

    NASA Astrophysics Data System (ADS)

    Liang, Jimin; Chen, Xueli; Liu, Junting; Hu, Hao; Qu, Xiaochao; Wang, Fu; Nie, Yongzhan

    2011-12-01

    Because of the ability of integrating the strengths of different modalities and providing fully integrated information, multi-modality molecular imaging techniques provide an excellent solution to detecting and diagnosing earlier cancer, which remains difficult to achieve by using the existing techniques. In this paper, we present an overview of our research efforts on the development of the optical imaging-centric multi-modality molecular imaging platform, including the development of the imaging system, reconstruction algorithms and preclinical biomedical applications. Primary biomedical results show that the developed optical imaging-centric multi-modality molecular imaging platform may provide great potential in the preclinical biomedical applications and future clinical translation.

  19. The evolving role of nuclear molecular imaging in cancer

    PubMed Central

    Kurdziel, KA; Ravizzini, G; Croft, BY; Tatum, JL; Choyke, PL; Kobayashi, H

    2008-01-01

    Background Novel therapies targeted to specific tumor pathways are entering the clinic. The need for in vivo monitoring of resulting molecular changes, particularly with respect to the tumor microenvironment, is growing. Molecular imaging is evolving to include a variety of imaging methods to enable in vivo monitoring of cellular and molecular processes. Objectives This article reviews the emerging role of molecular imaging in the development of improved therapeutic strategies that provide better patient selection for therapeutic personalization (i.e. determine which therapies have the greatest chance of success given the individual patient’s disease genetic, and phenotypical profile). Methods In order to illustrate the utility of integrating molecular imaging into therapy development strategies, current and emerging applications of nuclear molecular imaging strategies will be compared with conventional strategies. Proposed methods of integrating molecular imaging techniques into cancer therapeutic development and limitations of these techniques will be discussed. Results/Conclusion Molecular imaging provides a variety of new tools to accelerate the development of cancer therapies. The recent drive to develop molecular imaging probes and standardize molecular imaging techniques is creating the scaffolding for the evolving paradigm shift to personalized cancer therapy. PMID:19122861

  20. Molecular Imaging with MRI: Potential Application in Pancreatic Cancer

    PubMed Central

    Chen, Chen; Wu, Chang Qiang; Chen, Tian Wu; Tang, Meng Yue; Zhang, Xiao Ming

    2015-01-01

    Despite the variety of approaches that have been improved to achieve a good understanding of pancreatic cancer (PC), the prognosis of PC remains poor, and the survival rates are dismal. The lack of early detection and effective interventions is the main reason. Therefore, considerable ongoing efforts aimed at identifying early PC are currently being pursued using a variety of methods. In recent years, the development of molecular imaging has made the specific targeting of PC in the early stage possible. Molecular imaging seeks to directly visualize, characterize, and measure biological processes at the molecular and cellular levels. Among different imaging technologies, the magnetic resonance (MR) molecular imaging has potential in this regard because it facilitates noninvasive, target-specific imaging of PC. This topic is reviewed in terms of the contrast agents for MR molecular imaging, the biomarkers related to PC, targeted molecular probes for MRI, and the application of MRI in the diagnosis of PC. PMID:26579537

  1. Computational methods for optical molecular imaging

    PubMed Central

    Chen, Duan; Wei, Guo-Wei; Cong, Wen-Xiang; Wang, Ge

    2010-01-01

    Summary A new computational technique, the matched interface and boundary (MIB) method, is presented to model the photon propagation in biological tissue for the optical molecular imaging. Optical properties have significant differences in different organs of small animals, resulting in discontinuous coefficients in the diffusion equation model. Complex organ shape of small animal induces singularities of the geometric model as well. The MIB method is designed as a dimension splitting approach to decompose a multidimensional interface problem into one-dimensional ones. The methodology simplifies the topological relation near an interface and is able to handle discontinuous coefficients and complex interfaces with geometric singularities. In the present MIB method, both the interface jump condition and the photon flux jump conditions are rigorously enforced at the interface location by using only the lowest-order jump conditions. This solution near the interface is smoothly extended across the interface so that central finite difference schemes can be employed without the loss of accuracy. A wide range of numerical experiments are carried out to validate the proposed MIB method. The second-order convergence is maintained in all benchmark problems. The fourth-order convergence is also demonstrated for some three-dimensional problems. The robustness of the proposed method over the variable strength of the linear term of the diffusion equation is also examined. The performance of the present approach is compared with that of the standard finite element method. The numerical study indicates that the proposed method is a potentially efficient and robust approach for the optical molecular imaging. PMID:20485461

  2. Molecular Ultrasound Imaging: Current Status and Future Directions

    PubMed Central

    Deshpande, Nirupama; Needles, Andrew; Willmann, Jürgen K.

    2011-01-01

    Targeted contrast-enhanced ultrasound (molecular ultrasound) is an emerging imaging strategy that combines ultrasound technology with novel molecularly-targeted ultrasound contrast agents for assessing biological processes at the molecular level. Molecular ultrasound contrast agents are nano- or micro-sized particles that are targeted to specific molecular markers by adding high-affinity binding ligands onto the surface of the particles. Following intravenous administration, these targeted ultrasound contrast agents accumulate at tissue sites overexpressing specific molecular markers, thereby enhancing the ultrasound imaging signal. High spatial and temporal resolution, real-time imaging, non-invasiveness, relatively low costs, lack of ionizing irradiation and wide availability of ultrasound systems are advantages compared to other molecular imaging modalities. In this article we review current concepts and future directions of molecular ultrasound imaging, including different classes of molecular ultrasound contrast agents, ongoing technical developments of preclinical and clinical ultrasound systems , the potential of molecular ultrasound for imaging different diseases at the molecular level, and the translation of molecular ultrasound into the clinic. PMID:20541656

  3. Molecular probes for the in vivo imaging of cancer

    PubMed Central

    Alford, Raphael; Ogawa, Mikako; Choyke, Peter L.

    2012-01-01

    Advancements in medical imaging have brought about unprecedented changes in the in vivo assessment of cancer. Positron emission tomography, single photon emission computed tomography, optical imaging, and magnetic resonance imaging are the primary tools being developed for oncologic imaging. These techniques may still be in their infancy, as recently developed chemical molecular probes for each modality have improved in vivo characterization of physiologic and molecular characteristics. Herein, we discuss advances in these imaging techniques, and focus on the major design strategies with which molecular probes are being developed. PMID:19823742

  4. The Advancing Clinical Impact of Molecular Imaging in Cardiovascular Disease

    PubMed Central

    Osborn, Eric A; Jaffer, Farouc A

    2013-01-01

    Molecular imaging seeks to unravel critical molecular and cellular events in living subjects by providing complementary biological information to current structural clinical imaging modalities. In recent years, molecular imaging efforts have marched forward into the clinical cardiovascular arena, and are now actively illuminating new biology in a broad range of conditions, including atherosclerosis, myocardial infarction, thrombosis, vasculitis, aneurysm, cardiomyopathy, and valvular disease. Development of novel molecular imaging reporters is occurring for many clinical cardiovascular imaging modalities (PET, SPECT, MRI), as well in translational platforms such as intravascular fluorescence imaging. The ability to image, track, and quantify molecular biomarkers in organs not routinely amenable to biopsy (e.g. the heart and vasculature) open new clinical opportunities to tailor therapeutics based on a cardiovascular disease molecular profile. In addition, molecular imaging is playing an increasing role in atherosclerosis drug development in Phase II clinical trials. Here we present state-of-the-art clinical cardiovascular molecular imaging strategies, and explore promising translational approaches positioned for clinical testing in the near term. PMID:24332285

  5. Cardiovascular Molecular Imaging with Contrast Ultrasound: Principles and Applications

    PubMed Central

    Shim, Chi Young

    2014-01-01

    Methods for imaging the molecular or cellular profile of tissue are being developed for all forms of non-invasive cardiovascular imaging. It is thought that these technologies will potentially improve patient outcomes by allowing diagnosis of disease at an early-stage, monitoring disease progression, providing important information on patient risk, and for tailoring therapy to the molecular basis of disease. Molecular imaging is also already assuming an important role in science by providing a better understanding of the molecular basis of cardiovascular pathology, for assessing response to new therapies, and for rapidly optimizing new or established therapies. Ultrasound-based molecular imaging is one of these new approaches. Contrast-enhanced ultrasound molecular imaging relies on the detection of novel site-targeted microbubbles (MB) or other acoustically active particles which are administered by intravenous injection, circulate throughout the vascular compartment, and are then retained and imaged within regions of disease by ligand-directed binding. The technique is thought to be advantageous in practical terms of cost, time, and ease of use. The aim of this review is to discuss the molecular participants of cardiovascular disease that have been targeted for ultrasound imaging, general features of site-targeted MB, imaging protocols, and potential roles of ultrasound molecular imaging in cardiovascular research and clinical medicine. PMID:24497883

  6. Radionuclide trap

    DOEpatents

    McGuire, Joseph C.

    1978-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

  7. Radionuclide angiography and blood pool imaging to assess skin ulcer healing prognosis in patients with peripheral vascular disease

    SciTech Connect

    Alazraki, N.; Lawrence, P.F.; Syverud, J.B.

    1984-01-01

    Several non-invasive diagnostic techniques including segmental limb blood pressures, skin fluoresence, and photo plethysmography, have been evaluated as predictors of skin ulcer healing in patients with peripheral vascular disease, but none are widely used. Using 20mCi of Tc-99m phosphate compounds, four phase bone scans were obtained, including (1) radionuclide angiogram (2) blood pool image (3) 2 hour and 4-6 hour static images and (4) 24 hour static delayed images. The first two phases were used to assess vacularity to the region of distal extremity ulceration; the last two phases evaluated presence or absence of osteomyelitis. Studies were performed in 30 patients with non-healing ulcers of the lower extremities. Perfusion to the regions of ulceration on images was graded as normal, increased, or reduced with respect to the opposite (presumed normal) limb or some other normal reference area. Hypervascular response was interpreted as good prognosis for healing unless osteomyelitis was present. Clinicians followed patients for 14 days to assess limb healing with optimum care. If there was no improvement, angiography and/or surgery (reconstructive surgery, sympathectomy, or amputation) was done. Results showed: sensitivity for predicting ulcer healing was 94%, specificity 89%. Patients who failed to heal their ulcers showed reduced perfusion, no hypervascular response, or osteomyelitis. Microcirculatory adequacy for ulcer healing appear predictable by this technique.

  8. Efficient Radioisotope Energy Transfer by Gold Nanoclusters for Molecular Imaging.

    PubMed

    Volotskova, Olga; Sun, Conroy; Stafford, Jason H; Koh, Ai Leen; Ma, Xiaowei; Cheng, Zhen; Cui, Bianxiao; Pratx, Guillem; Xing, Lei

    2015-08-26

    Beta-emitting isotopes Fluorine-18 and Yttrium-90 are tested for their potential to stimulate gold nanoclusters conjugated with blood serum proteins (AuNCs). AuNCs excited by either medical radioisotope are found to be highly effective ionizing radiation energy transfer mediators, suitable for in vivo optical imaging. AuNCs synthesized with protein templates convert beta-decaying radioisotope energy into tissue-penetrating optical signals between 620 and 800 nm. Optical signals are not detected from AuNCs incubated with Technetium-99m, a pure gamma emitter that is used as a control. Optical emission from AuNCs is not proportional to Cerenkov radiation, indicating that the energy transfer between the radionuclide and AuNC is only partially mediated by Cerenkov photons. A direct Coulombic interaction is proposed as a novel and significant mechanism of energy transfer between decaying radionuclides and AuNCs.

  9. Molecular imaging of stem cell transplantation for neurodegenerative diseases.

    PubMed

    Wang, Ping; Moore, Anna

    2012-01-01

    Cell replacement therapy with stem cells holds tremendous therapeutic potential for treating neurodegenerative diseases. Over the last decade, molecular imaging techniques have proven to be of great value in tracking transplanted cells and assessing the therapeutic efficacy. This current review summarizes the role and capabilities of different molecular imaging modalities including optical imaging, nuclear imaging and magnetic resonance imaging in the field of stem cell therapy for neurodegenerative disorders. We discuss current challenges and perspectives of these techniques and encompass updated information such as theranostic imaging and optogenetics in stem cell-based treatment of neurodegenerative diseases.

  10. Metal-isonitrile adducts for preparing radionuclide complexes for labelling and imaging agents

    DOEpatents

    Jones, Alun G.; Davison, Alan; Abrams, Michael J.

    1987-01-01

    A method for preparing a coordination complex of an isonitrile ligand and radionuclide such as Tc, Ru, Co, Pt, Fe, Os, Ir, W, Re, Cr, Mo, Mn, Ni, Rh, Pd, Nb and Ta is disclosed. The method comprises preparing a soluble metal adduct of said isonitrile ligand by admixing said ligand with a salt of a displaceable metal having a complete d-electron shell selected from the group consisting of Zn, Ga, Cd, In, Sn, Hg, Tl, Pb and Bi to form a soluble metal-isonitrile salt, and admixing said metal isonitrile salt with a salt comprising said radioactive metal in a suitable solvent to displace said displaceable metal with the radioactive metal thereby forming said coordination. The complex is useful as a diagnostic agent for labelling liposomes or vesicles, and selected living cells containing lipid membranes, such as blood clots, myocardial tissue, gall bladder tissue, etc.

  11. Molecular Imaging of Prostate Cancer: A Concise Synopsis

    PubMed Central

    Jadvar, Hossein

    2009-01-01

    Prostate cancer is the most common malignancy in men and continues to be a major public health problem. Imaging of prostate cancer remains particularly challenging owing to disease heterogeneity. Molecular imaging can provide unprecedented opportunities for deciphering the molecular mechanisms that are involved in the development and natural progression of prostate cancer from a localized process to the hormone-refractory metastatic disease. Such understanding will be the key for targeted imaging and therapy and for predicting and evaluating treatment response and prognosis. In this article, we review briefly the contribution of multimodality molecular imaging methods for the in vivo characterization of the pathophysiology of prostate cancer. PMID:19397851

  12. Molecular imaging in Libman-Sacks endocarditis.

    PubMed

    Dahl, Anders; Schaadt, Bente K; Santoni-Rugiu, Eric; Bruun, Niels E

    2015-04-01

    We present a 54-year-old woman with systemic lupus erythematosus (SLE), fever, pericardial effusion and a mitral valve vegetation. (18)F-Fluorodesoxyglucose positron emission tomography CT ((18)F-FDG-PET-CT) showed very high accumulation of the isotope at the mitral valve. The patient underwent cardiothoracic surgery and pathologic examinations showed characteristic morphology of Libman-Sacks vegetations. All microbiological examinations including blood cultures, microscopy, culture and 16s PCR of the valve were negative and the diagnosis of Libman-Sacks endocarditis was convincing. It is difficult to distinguish Libman-Sacks endocarditis from culture-negative infective endocarditis (IE). Molecular imaging techniques are being used increasingly in cases of suspected IE but no studies have previously reported the use in patients with Libman-Sacks endocarditis. In the present case, (18)F-FDG-PET-CT clearly demonstrated the increased glucose uptake caused by infiltrating white blood cells in the ongoing inflammatory process at the mitral valve. In conclusion, (18)F-FDG-PET-CT cannot be used to distinguish between IE and non-infective Libman-Sacks vegetations.

  13. Polydopamine Coated Single-Walled Carbon Nanotubes as a Versatile Platform with Radionuclide Labeling for Multimodal Tumor Imaging and Therapy.

    PubMed

    Zhao, He; Chao, Yu; Liu, Jingjing; Huang, Jie; Pan, Jian; Guo, Wanliang; Wu, Jizhi; Sheng, Mao; Yang, Kai; Wang, Jian; Liu, Zhuang

    2016-01-01

    Single-walled carbon nanotubes (SWNTs) with various unique properties have attracted great attention in cancer theranostics. Herein, SWNTs are coated with a shell of polydopamine (PDA), which is further modified by polyethylene glycol (PEG). The PDA shell in the obtained SWNT@PDA-PEG could chelate Mn(2+), which together with metallic nanoparticulate impurities anchored on SWNTs offer enhanced both T1 and T2 contrasts under magnetic resonance (MR) imaging. Meanwhile, also utilizing the PDA shell, radionuclide (131)I could be easily labeled onto SWNT@PDA-PEG, enabling nuclear imaging and radioisotope cancer therapy. As revealed by MR & gamma imaging, efficient tumor accumulation of SWNT@PDA-(131)I-PEG is observed after systemic administration into mice. By further utilizing the strong near-infarared (NIR) absorbance of SWNTs, NIR-triggered photothermal therapy in combination with (131)I-based radioisotope therapy is realized in our animal experiments, in which a remarkable synergistic antitumor therapeutic effect is observed compared to monotherapies. Our work not only presents a new type of theranostic nanoplatform based on SWNTs, but also suggests the promise of PDA coating as a general approach to modify nano-agents and endow them with highly integrated functionalities. PMID:27570554

  14. Polydopamine Coated Single-Walled Carbon Nanotubes as a Versatile Platform with Radionuclide Labeling for Multimodal Tumor Imaging and Therapy

    PubMed Central

    Zhao, He; Chao, Yu; Liu, Jingjing; Huang, Jie; Pan, Jian; Guo, Wanliang; Wu, Jizhi; Sheng, Mao; Yang, Kai; Wang, Jian; Liu, Zhuang

    2016-01-01

    Single-walled carbon nanotubes (SWNTs) with various unique properties have attracted great attention in cancer theranostics. Herein, SWNTs are coated with a shell of polydopamine (PDA), which is further modified by polyethylene glycol (PEG). The PDA shell in the obtained SWNT@PDA-PEG could chelate Mn2+, which together with metallic nanoparticulate impurities anchored on SWNTs offer enhanced both T1 and T2 contrasts under magnetic resonance (MR) imaging. Meanwhile, also utilizing the PDA shell, radionuclide 131I could be easily labeled onto SWNT@PDA-PEG, enabling nuclear imaging and radioisotope cancer therapy. As revealed by MR & gamma imaging, efficient tumor accumulation of SWNT@PDA-131I-PEG is observed after systemic administration into mice. By further utilizing the strong near-infarared (NIR) absorbance of SWNTs, NIR-triggered photothermal therapy in combination with 131I-based radioisotope therapy is realized in our animal experiments, in which a remarkable synergistic antitumor therapeutic effect is observed compared to monotherapies. Our work not only presents a new type of theranostic nanoplatform based on SWNTs, but also suggests the promise of PDA coating as a general approach to modify nano-agents and endow them with highly integrated functionalities. PMID:27570554

  15. Polydopamine Coated Single-Walled Carbon Nanotubes as a Versatile Platform with Radionuclide Labeling for Multimodal Tumor Imaging and Therapy.

    PubMed

    Zhao, He; Chao, Yu; Liu, Jingjing; Huang, Jie; Pan, Jian; Guo, Wanliang; Wu, Jizhi; Sheng, Mao; Yang, Kai; Wang, Jian; Liu, Zhuang

    2016-01-01

    Single-walled carbon nanotubes (SWNTs) with various unique properties have attracted great attention in cancer theranostics. Herein, SWNTs are coated with a shell of polydopamine (PDA), which is further modified by polyethylene glycol (PEG). The PDA shell in the obtained SWNT@PDA-PEG could chelate Mn(2+), which together with metallic nanoparticulate impurities anchored on SWNTs offer enhanced both T1 and T2 contrasts under magnetic resonance (MR) imaging. Meanwhile, also utilizing the PDA shell, radionuclide (131)I could be easily labeled onto SWNT@PDA-PEG, enabling nuclear imaging and radioisotope cancer therapy. As revealed by MR & gamma imaging, efficient tumor accumulation of SWNT@PDA-(131)I-PEG is observed after systemic administration into mice. By further utilizing the strong near-infarared (NIR) absorbance of SWNTs, NIR-triggered photothermal therapy in combination with (131)I-based radioisotope therapy is realized in our animal experiments, in which a remarkable synergistic antitumor therapeutic effect is observed compared to monotherapies. Our work not only presents a new type of theranostic nanoplatform based on SWNTs, but also suggests the promise of PDA coating as a general approach to modify nano-agents and endow them with highly integrated functionalities.

  16. Molecular Imaging to Plan Radiotherapy and Evaluate Its Efficacy.

    PubMed

    Jeraj, Robert; Bradshaw, Tyler; Simončič, Urban

    2015-11-01

    Molecular imaging plays a central role in the management of radiation oncology patients. Specific uses of imaging, particularly to plan radiotherapy and assess its efficacy, require an additional level of reproducibility and image quality beyond what is required for diagnostic imaging. Specific requirements include proper patient preparation, adequate technologist training, careful imaging protocol design, reliable scanner technology, reproducible software algorithms, and reliable data analysis methods. As uncertainty in target definition is arguably the greatest challenge facing radiation oncology, the greatest impact that molecular imaging can have may be in the reduction of interobserver variability in target volume delineation and in providing greater conformity between target volume boundaries and true tumor boundaries. Several automatic and semiautomatic contouring methods based on molecular imaging are available but still need sufficient validation to be widely adopted. Biologically conformal radiotherapy (dose painting) based on molecular imaging-assessed tumor heterogeneity is being investigated, but many challenges remain to fully exploring its potential. Molecular imaging also plays increasingly important roles in both early (during treatment) and late (after treatment) response assessment as both a predictive and a prognostic tool. Because of potentially confounding effects of radiation-induced inflammation, treatment response assessment requires careful interpretation. Although molecular imaging is already strongly embedded in radiotherapy, the path to widespread and all-inclusive use is still long. The lack of solid clinical evidence is the main impediment to broader use. Recommendations for practicing physicians are still rather scarce. (18)F-FDG PET/CT remains the main molecular imaging modality in radiation oncology applications. Although other molecular imaging options (e.g., proliferation imaging) are becoming more common, their widespread use is

  17. Non-invasive molecular imaging for preclinical cancer therapeutic development

    PubMed Central

    O'Farrell, AC; Shnyder, SD; Marston, G; Coletta, PL; Gill, JH

    2013-01-01

    Molecular and non-invasive imaging are rapidly emerging fields in preclinical cancer drug discovery. This is driven by the need to develop more efficacious and safer treatments, the advent of molecular-targeted therapeutics, and the requirements to reduce and refine current preclinical in vivo models. Such bioimaging strategies include MRI, PET, single positron emission computed tomography, ultrasound, and optical approaches such as bioluminescence and fluorescence imaging. These molecular imaging modalities have several advantages over traditional screening methods, not least the ability to quantitatively monitor pharmacodynamic changes at the cellular and molecular level in living animals non-invasively in real time. This review aims to provide an overview of non-invasive molecular imaging techniques, highlighting the strengths, limitations and versatility of these approaches in preclinical cancer drug discovery and development. PMID:23488622

  18. Relative prognostic value of rest thallium-201 imaging, radionuclide ventriculography and 24 hour ambulatory electrocardiographic monitoring after acute myocardial infarction

    SciTech Connect

    Hakki, A.H.; Nestico, P.F.; Heo, J.; Unwala, A.A.; Iskandrian, A.S.

    1987-07-01

    Rest thallium-201 scintigraphy, radionuclide ventriculography and 24 hour Holter monitoring are acceptable methods to assess myocardial necrosis, performance and electrical instability. This study examined the relative value of the three tests, when obtained a mean of 7 days after acute myocardial infarction, in predicting 1 year mortality in 93 patients. Planar thallium-201 images were obtained in three projections and were scored on a scale of 0 to 4 in 15 segments (normal score = 60). Patients were classified as having high risk test results as follows: thallium score less than or equal to 45 (33 patients), left ventricular ejection fraction less than or equal to 40% (51 patients) and complex ventricular arrhythmias on Holter monitoring (36 patients). During the follow-up of 6.4 +/- 3.4 months (mean +/- SD), 15 patients died of cardiac causes. All three tests were important predictors of survival by univariate Cox survival analysis; the thallium score, however, was the only important predictor by multivariate analysis. The predictive power of the thallium score was comparable with that of combined ejection fraction and Holter monitoring (chi-square = 21 versus chi-square = 22). Thus, rest thallium-201 imaging performed before hospital discharge provides important prognostic information in survivors of acute myocardial infarction which is comparable with that provided by left ventricular ejection fraction and Holter monitoring. Patients with a lower thallium score (large perfusion defects) are at high risk of cardiac death during the first year after infarction.

  19. Radionuclide imaging of cardiac sympathetic innervation in heart failure: unlocking untapped potential.

    PubMed

    Gupta, Shuchita; Amanullah, Aman

    2015-03-01

    Heart failure (HF) is associated with sympathetic overactivity, which contributes to disease progression and arrhythmia development. Cardiac sympathetic innervation imaging can be performed using radiotracers that are taken up in the presynaptic nerve terminal of sympathetic nerves. The commonly used radiotracers are (123)I-metaiodobenzylguanidine ((123)I-mIBG) for planar and single-photon emission computed tomography imaging, and (11)C-hydroxyephedrine for positron emission tomography imaging. Sympathetic innervation imaging has been used in assessing prognosis, response to treatment, risk of ventricular arrhythmias and sudden death and prediction of response to cardiac resynchronization therapy in patients with HF. Other potential applications of these techniques are in patients with chemotherapy-induced cardiomyopathy, predicting myocardial recovery in patients with left ventricular assist devices, and assessing reinnervation following cardiac transplantation. There is a lack of standardization with respect to technique of (123)I-mIBG imaging that needs to be overcome for the imaging modality to gain popularity in clinical practice.

  20. Molecular imaging of macrophage enzyme activity in cardiac inflammation

    PubMed Central

    Ali, Muhammad; Pulli, Benjamin; Chen, John W.

    2014-01-01

    Molecular imaging is highly advantageous as various insidious inflammatory events can be imaged in a serial and quantitative fashion. Combined with the conventional imaging modalities like computed tomography (CT), magnetic resonance (MR) and nuclear imaging, it helps us resolve the extent of ongoing pathology, quantify inflammation and predict outcome. Macrophages are increasingly gaining importance as an imaging biomarker in inflammatory cardiovascular diseases. Macrophages, recruited to the site of injury, internalize necrotic or foreign material. Along with phagocytosis, activated macrophages release proteolytic enzymes like matrix metalloproteinases (MMPs) and cathepsins into the extracellular environment. Pro-inflammatory monocytes and macrophages also induce tissue oxidative damage through the inflammatory enzyme myeloperoxidase (MPO). In this review we will highlight recent advances in molecular macrophage imaging. Particular stress will be given to macrophage functional and enzymatic activity imaging which targets phagocytosis, proteolysis and myeloperoxidase activity imaging. PMID:24729833

  1. Wide Field Imaging of the Molecular Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Heyer, Mark

    1999-10-01

    Wide field imaging of the interstellar medium is an essential tool to investigate the physical processes which operate within a range of size scales or densities. The ability to construct images with high spatial dynamic range at millimeter wavelengths has increased in recent years with focal plane arrays on single dish telescopes and routine mosaicing of interferometers. In this contribution, I will demonstrate the value of wide field imaging from images of the molecular interstellar medium obtained with focal plane arrays on the FCRAO 14 meter telescope. These include data from wide field surveys of the Galaxy, a 12CO J=1-0 image of M31, and 13CO J=1-0 major axis maps of several galaxies. The images enable investigations of the equilibrium state of the molecular gas, interstellar turbulence, and radial variations of molecular gas properties and emissivities.

  2. Imaging of a molecular wheelbarrow by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Grill, Leonhard; Rieder, Karl-Heinz; Moresco, Francesca; Jimenez-Bueno, Gorka; Wang, Cheng; Rapenne, Gwénaël; Joachim, Christian

    2005-06-01

    We have studied the deposition and imaging of nanoscale molecular wheelbarrows. These molecules integrate—in analogy to macroscopic barrows—two wheels, legs and handles along a polyaromatic platform and were imaged on a clean Cu(1 0 0) surface with a scanning tunneling microscope at 7 K. The obtained images are in accordance with calculations and are dominated by the wheels. Several stable conformations of the wheelbarrow were found and identified by comparison with calculated images.

  3. Scatter and crosstalk corrections for {sup 99m}Tc/{sup 123}I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators

    SciTech Connect

    Fan, Peng; Hutton, Brian F.; Holstensson, Maria; Ljungberg, Michael; Hendrik Pretorius, P.; Prasad, Rameshwar; Liu, Chi; Ma, Tianyu; Liu, Yaqiang; Wang, Shi; Thorn, Stephanie L.; Stacy, Mitchel R.; Sinusas, Albert J.

    2015-12-15

    Purpose: The energy spectrum for a cadmium zinc telluride (CZT) detector has a low energy tail due to incomplete charge collection and intercrystal scattering. Due to these solid-state detector effects, scatter would be overestimated if the conventional triple-energy window (TEW) method is used for scatter and crosstalk corrections in CZT-based imaging systems. The objective of this work is to develop a scatter and crosstalk correction method for {sup 99m}Tc/{sup 123}I dual-radionuclide imaging for a CZT-based dedicated cardiac SPECT system with pinhole collimators (GE Discovery NM 530c/570c). Methods: A tailing model was developed to account for the low energy tail effects of the CZT detector. The parameters of the model were obtained using {sup 99m}Tc and {sup 123}I point source measurements. A scatter model was defined to characterize the relationship between down-scatter and self-scatter projections. The parameters for this model were obtained from Monte Carlo simulation using SIMIND. The tailing and scatter models were further incorporated into a projection count model, and the primary and self-scatter projections of each radionuclide were determined with a maximum likelihood expectation maximization (MLEM) iterative estimation approach. The extracted scatter and crosstalk projections were then incorporated into MLEM image reconstruction as an additive term in forward projection to obtain scatter- and crosstalk-corrected images. The proposed method was validated using Monte Carlo simulation, line source experiment, anthropomorphic torso phantom studies, and patient studies. The performance of the proposed method was also compared to that obtained with the conventional TEW method. Results: Monte Carlo simulations and line source experiment demonstrated that the TEW method overestimated scatter while their proposed method provided more accurate scatter estimation by considering the low energy tail effect. In the phantom study, improved defect contrasts were

  4. TU-F-12A-06: BEST IN PHYSICS (IMAGING) - A Novel Catheter-Based Radionuclide Imaging System to Characterize Atherosclerotic Plaque

    SciTech Connect

    Zaman, R; Kosuge, H; Carpenter, C; Pratx, G; Sun, C; McConnell, M; Xing, L

    2014-06-15

    Purpose: Atherosclerosis underlies coronary artery diseases, the leading cause of death in the United States and worldwide. In this study, we developed a novel catheter-based radionuclide imaging (CRI) system to image 18F-fluorodeoxyglucose (18F-FDG), a radionuclide, a marker of vascular inflammation, in murine carotid arteries and characterized the system for spatial resolution from multiple scintillating materials. Methods: The catheter system includes 35 mm and 8 mm fixed focal length lenses, which are subsequently connected to a CMOS camera and fiber holder. The distal ferrule of an image bundle is terminated with a wide-angle lens. The novelty of this system is a scintillating balloon with a crystal tip in the front of the wide angle lens to image light from the decay of 18F-FDG emission signal. The scintillating balloon is fabricated from 1mL of silicone RTV catalyst mixed with 1 mL base and 50 mg/mL calcium fluoride doped with Europium (CaF2:Eu). To identify the optimal scintillating materials with respect to resolution, we calculated modulation transfer function (MTF) of Yttrium Aluminum Garnet doped with Cerium (YAG:Ce), anthracene, and CaF2:Eu phosphors using a thin line optical phantom (Fig. 1a-1b). Macrophage-rich FVB murine atherosclerotic carotid plaque model (n = 4) was used in ex vivo experiments. Confirmatory imaging was also performed by an external optical imaging system (IVIS-200). Results: Analysis of the different phosphors (Fig 1b) showed that CaF2:Eu enabled the best resolution of 1.2μm. The CRI system visualized 18F-FDG in atherosclerotic plaques (Fig. 1d). The ligated left carotid (LR) artery exhibited 4× higher 18F-FDG signal intensity compared to the non-ligated right carotid (negative control) artery (1.65×10{sup 2} ±4.07×10{sup 1} vs. 4.44×10{sup 1}±2.17×10{sup 0}, A.U., p = 0.005) and confirmed with IVIS-200 (Fig. 1d). Conclusion: This CRI system enables high-resolution and sensitive detection of 18F-FDG uptake by murine

  5. Time domain optical molecular imaging of small animals in vivo

    NASA Astrophysics Data System (ADS)

    Hall, David J.

    2006-03-01

    The advent of optical molecular probes has taken optical imaging beyond approaches limited to intrinsic optical contrast mechanisms. Fluorophores are typically used as the source of contrast for optical molecular probes and the field of optical molecular imaging is concerned with measuring and quantifying their in vivo biodistribution and pharmacokinetics. Most optical molecular imaging systems are based on Continuous Wave (CW) approaches which enable rapid, full-body imaging of small animals and readily yield images of probe location, however quantification of probe concentration is challenging. Time Domain (TD) approaches, although more expensive and complicated than CW, provide more information to assist in determining the probe location and concentration. Moreover, the TD approach permits access to measuring the fluorophore lifetime which can be indicative of the probe's environment. The eXplore Optix TM system, developed by ART (Canada; distributed by GE Healthcare, has enabled TD optical molecular imaging of small animals in vivo and preliminary studies conducted with the system will be presented. In addition, the initial research and development of a full-field TD optical molecular imaging system incorporating a high-power laser for area illumination and a gated-intensified CCD camera for area detection will be presented.

  6. Cardiomyocyte Death: Insights from Molecular and Microstructural Magnetic Resonance Imaging

    PubMed Central

    Berry, Natalia C.

    2011-01-01

    Cardiomyocytes can die via necrosis, apoptosis, and autophagy. Although the molecular signals and pathways underlying these processes have been well elucidated, the pathophysiology of cardiomyocyte death remains incompletely understood. This review describes the development and application of novel imaging techniques to detect and characterize cardiomyocyte death noninvasively in vivo. It focuses on molecular and microstructural magnetic resonance images (MRIs) and their respective abilities to image cellular events such as apoptosis, inflammation, and myofiber architecture. These in vivo imaging techniques have the potential to provide novel insights into the mechanisms of cardiomyocyte death and to help guide the development of novel cardioprotective therapies. PMID:21298427

  7. Biodistribution of the radionuclides 18F-FDG, 11C-methionine, 11C-PK11195, and 68Ga-citrate in domestic juvenile female pigs and morphological and molecular imaging of the tracers in hematogenously disseminated Staphylococcus aureus lesions

    PubMed Central

    Afzelius, Pia; Nielsen, Ole L; Alstrup, Aage KO; Bender, Dirk; Leifsson, Páll S; Jensen, Svend B; Schønheyder, Henrik C

    2016-01-01

    Approximately 5-7% of acute-care patients suffer from bacteremia. Bacteremia may give rise to bacterial spread to different tissues. Conventional imaging procedures as X-ray, Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and ultrasound are often first-line imaging methods for identification and localization of infection. These methods are, however, not always successful. Early identification and localization of infection is critical for the appropriate and timely selection of therapy. The aim of this study was thus; a head to head comparison of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) to PET with tracers that potentially could improve uncovering of infectious lesions in soft tissues. We chose 11C-methionine, 11C-PK11195, and 68Ga-citrate as tracers and besides presenting their bio-distribution we validated their diagnostic utility in pigs with experimental bacterial infection. Four juvenile 14-15 weeks old female domestic pigs were scanned seven days after intra-arterial inoculation in the right femoral artery with a porcine strain of S. aureus using a sequential scanning protocol with 18F-FDG, 11C-methionine, 11C-PK11195 and 68Ga-citrate. This was followed by necropsy of the pigs consisting of gross pathology, histopathology and microbial examination. The pigs primarily developed lesions in lungs and neck muscles. 18F-FDG had higher infection to background ratios and accumulated in most infectious foci caused by S. aureus, while 11C-methionine and particularly 11C-PK11195 and 68Ga-citrate accumulated to a lesser extent in infectious foci. 18F-FDG-uptake was seen in the areas of inflammatory cells and to a much lesser extent in reparative infiltration surrounding necrotic regions. PMID:27069765

  8. Molecular Imaging of Angiogenesis and Vascular Remodeling in Cardiovascular Pathology

    PubMed Central

    Golestani, Reza; Jung, Jae-Joon; Sadeghi, Mehran M.

    2016-01-01

    Angiogenesis and vascular remodeling are involved in a wide array of cardiovascular diseases, from myocardial ischemia and peripheral arterial disease, to atherosclerosis and aortic aneurysm. Molecular imaging techniques to detect and quantify key molecular and cellular players in angiogenesis and vascular remodeling (e.g., vascular endothelial growth factor and its receptors, αvβ3 integrin, and matrix metalloproteinases) can advance vascular biology research and serve as clinical tools for early diagnosis, risk stratification, and selection of patients who would benefit most from therapeutic interventions. To target these key mediators, a number of molecular imaging techniques have been developed and evaluated in animal models of angiogenesis and vascular remodeling. This review of the state of the art molecular imaging of angiogenesis and vascular (and valvular) remodeling, will focus mostly on nuclear imaging techniques (positron emission tomography and single photon emission tomography) that offer high potential for clinical translation. PMID:27275836

  9. Molecular Imaging and Radiotherapy: Theranostics for Personalized Patient Management

    PubMed Central

    Velikyan, Irina

    2012-01-01

    This theme issue presents current achievements in the development of radioactive agents, pre-clinical and clinical molecular imaging, and radiotherapy in the context of theranostics in the field of oncology. PMID:22768022

  10. Multimodality Molecular Imaging of Stem Cells Therapy for Stroke

    PubMed Central

    Zhang, Hong; Tian, Mei

    2013-01-01

    Stem cells have been proposed as a promising therapy for treating stroke. While several studies have demonstrated the therapeutic benefits of stem cells, the exact mechanism remains elusive. Molecular imaging provides the possibility of the visual representation of biological processes at the cellular and molecular level. In order to facilitate research efforts to understand the stem cells therapeutic mechanisms, we need to further develop means of monitoring these cells noninvasively, longitudinally and repeatedly. Because of tissue depth and the blood-brain barrier (BBB), in vivo imaging of stem cells therapy for stroke has unique challenges. In this review, we describe existing methods of tracking transplanted stem cells in vivo, including magnetic resonance imaging (MRI), nuclear medicine imaging, and optical imaging (OI). Each of the imaging techniques has advantages and drawbacks. Finally, we describe multimodality imaging strategies as a more comprehensive and potential method to monitor transplanted stem cells for stroke. PMID:24222920

  11. Molecular Imaging of Prostate Cancer: PET Radiotracers

    PubMed Central

    Jadvar, Hossein

    2012-01-01

    OBJECTIVE Recent advances in the fundamental understanding of the complex biology of prostate cancer have provided an increasing number of potential targets for imaging and treatment. The imaging evaluation of prostate cancer needs to be tailored to the various phases of this remarkably heterogeneous disease. CONCLUSION In this article, I review the current state of affairs on a range of PET radiotracers for potential use in the imaging evaluation of men with prostate cancer. PMID:22826388

  12. Continuous-terahertz-wave molecular imaging system for biomedical applications

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Zhang, Liangliang; Wu, Tong; Wang, Ruixue; Zuo, Shasha; Wu, Dong; Zhang, Cunlin; Zhang, Jue; Fang, Jing

    2016-07-01

    Molecular imaging techniques are becoming increasingly important in biomedical research and potentially in clinical practice. We present a continuous-terahertz (THz)-wave molecular imaging system for biomedical applications, in which an infrared (IR) laser is integrated into a 0.2-THz reflection-mode continuous-THz-wave imaging system to induce surface plasmon polaritons on the nanoparticles and further improve the intensity of the reflected signal from the water around the nanoparticles. A strong and rapid increment of the reflected THz signal in the nanoparticle solution upon the IR laser irradiation is demonstrated, using either gold or silver nanoparticles. This low-cost, simple, and stable continuous-THz-wave molecular imaging system is suitable for miniaturization and practical imaging applications; in particular, it shows great promise for cancer diagnosis and nanoparticle drug-delivery monitoring.

  13. Molecular imaging of cancer with copper-64 radiopharmaceuticals and positron emission tomography (PET).

    PubMed

    Shokeen, Monica; Anderson, Carolyn J

    2009-07-21

    Molecular imaging has evolved over the past several years into an important tool for diagnosing, understanding, and monitoring disease. Molecular imaging has distinguished itself as an interdisciplinary field, with contributions from chemistry, biology, physics, and medicine. The cross-disciplinary impetus has led to significant achievements, such as the development of more sensitive imaging instruments and robust, safer radiopharmaceuticals, thereby providing more choices to fit personalized medical needs. Molecular imaging is making steadfast progress in the field of cancer research among others. Cancer is a challenging disease, characterized by heterogeneity, uncontrolled cell division, and the ability of cancer cells to invade other tissues. Researchers are addressing these challenges by aggressively identifying and studying key cancer-specific biomarkers such as growth factor receptors, protein kinases, cell adhesion molecules, and proteases, as well as cancer-related biological processes such as hypoxia, apoptosis, and angiogenesis. Positron emission tomography (PET) is widely used by clinicians in the United States as a diagnostic molecular imaging tool. Small-animal PET systems that can image rodents and generate reconstructed images in a noninvasive manner (with a resolution as low as 1 mm) have been developed and are used frequently, facilitating radiopharmaceutical development and drug discovery. Currently, [(18)F]-labeled 2-fluorodeoxyglucose (FDG) is the only PET radiotracer used for routine clinical evaluation (primarily for oncological imaging). There is now increasing interest in nontraditional positron-emitting radionuclides, particularly those of the transition metals, for imaging with PET because of increased production and availability. Copper-based radionuclides are currently being extensively evaluated because they offer a varying range of half-lives and positron energies. For example, the half-life (12.7 h) and decay properties (beta(+), 0

  14. Radionuclide (131)I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors.

    PubMed

    Zhu, Jingyi; Zhao, Lingzhou; Cheng, Yongjun; Xiong, Zhijuan; Tang, Yueqin; Shen, Mingwu; Zhao, Jinhua; Shi, Xiangyang

    2015-11-21

    We report the synthesis, characterization, and utilization of radioactive (131)I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5·NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and labeling of radioactive iodine-131 ((131)I). The generated multifunctional (131)I-G5·NHAc-HPAO-PEG-FA dendrimers were characterized via different methods. We show that prior to (131)I labeling, the G5·NHAc-HPAO-PEG-FA dendrimers conjugated with approximately 9.4 HPAO moieties per dendrimer are noncytotoxic at a concentration up to 20 μM and are able to target cancer cells overexpressing FA receptors (FAR), thanks to the modified FA ligands. In the presence of a phenol group, radioactive (131)I is able to be efficiently labeled onto the dendrimer platform with good stability and high radiochemical purity, and render the platform with an ability for targeted SPECT imaging and radiotherapy of an FAR-overexpressing xenografted tumor model in vivo. The designed strategy to use the facile dendrimer nanotechnology may be extended to develop various radioactive theranostic nanoplatforms for targeted SPECT imaging and radiotherapy of different types of cancer.

  15. Molecular Body Imaging: MR Imaging, CT, and US. Part I. Principles

    PubMed Central

    Kircher, Moritz F.

    2012-01-01

    Molecular imaging, generally defined as noninvasive imaging of cellular and subcellular events, has gained tremendous depth and breadth as a research and clinical discipline in recent years. The coalescence of major advances in engineering, molecular biology, chemistry, immunology, and genetics has fueled multi- and interdisciplinary innovations with the goal of driving clinical noninvasive imaging strategies that will ultimately allow disease identification, risk stratification, and monitoring of therapy effects with unparalleled sensitivity and specificity. Techniques that allow imaging of molecular and cellular events facilitate and go hand in hand with the development of molecular therapies, offering promise for successfully combining imaging with therapy. While traditionally nuclear medicine imaging techniques, in particular positron emission tomography (PET), PET combined with computed tomography (CT), and single photon emission computed tomography, have been the molecular imaging methods most familiar to clinicians, great advances have recently been made in developing imaging techniques that utilize magnetic resonance (MR), optical, CT, and ultrasonographic (US) imaging. In the first part of this review series, we present an overview of the principles of MR imaging-, CT-, and US-based molecular imaging strategies. © RSNA, 2012 PMID:22623690

  16. Radionuclide 131I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors

    NASA Astrophysics Data System (ADS)

    Zhu, Jingyi; Zhao, Lingzhou; Cheng, Yongjun; Xiong, Zhijuan; Tang, Yueqin; Shen, Mingwu; Zhao, Jinhua; Shi, Xiangyang

    2015-10-01

    We report the synthesis, characterization, and utilization of radioactive 131I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and labeling of radioactive iodine-131 (131I). The generated multifunctional 131I-G5.NHAc-HPAO-PEG-FA dendrimers were characterized via different methods. We show that prior to 131I labeling, the G5.NHAc-HPAO-PEG-FA dendrimers conjugated with approximately 9.4 HPAO moieties per dendrimer are noncytotoxic at a concentration up to 20 μM and are able to target cancer cells overexpressing FA receptors (FAR), thanks to the modified FA ligands. In the presence of a phenol group, radioactive 131I is able to be efficiently labeled onto the dendrimer platform with good stability and high radiochemical purity, and render the platform with an ability for targeted SPECT imaging and radiotherapy of an FAR-overexpressing xenografted tumor model in vivo. The designed strategy to use the facile dendrimer nanotechnology may be extended to develop various radioactive theranostic nanoplatforms for targeted SPECT imaging and radiotherapy of different types of cancer.We report the synthesis, characterization, and utilization of radioactive 131I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and

  17. Scatter correction in scintillation camera imaging of positron-emitting radionuclides

    SciTech Connect

    Ljungberg, M.; Danfelter, M.; Strand, S.E.

    1996-12-31

    The use of Anger scintillation cameras for positron SPECT has become of interest recently due to their use with imaging 2-{sup 18}F deoxyglucose. Due to the special crystal design (thin and wide), a significant amount of primary events will be also recorded in the Compton region of the energy spectra. Events recorded in a second Compton window (CW) can add information to the data in the photopeak window (PW), since some events are correctly positioned in the CW. However, a significant amount of the scatter is also included in CW which needs to be corrected. This work describes a method whereby a third scatter window (SW) is used to estimate the scatter distribution in the CW and the PW. The accuracy of estimation has been evaluated by Monte Carlo simulations in a homogeneous elliptical phantom for point and extended sources. Two examples of clinical application are also provided. Results from simulations show that essentially only scatter from the phantom is recorded between the 511 keV PW and 340 keV CW. Scatter projection data with a constant multiplier can estimate the scatter in the CW and PW, although the scatter distribution in SW corresponds better to the scatter distribution in the CW. The multiplier k for the CW varies significantly more with depth than it does for the PW. Clinical studies show an improvement in image quality when using scatter corrected combined PW and CW.

  18. Molecular imaging in myeloma precursor disease.

    PubMed

    Mena, Esther; Choyke, Peter; Tan, Esther; Landgren, Ola; Kurdziel, Karen

    2011-01-01

    Multiple myeloma (MM) is consistently preceded by its pre-malignant states, monoclonal gammopathy of undetermined significance (MGUS) and/or smoldering multiple myeloma (SMM). By definition, precursor conditions do not exhibit end-organ disease (anemia, hypercalcemia, renal failure, skeletal lytic lesions, or a combination of these). However, new imaging methods are demonstrating that some patients in the MGUS or SMM category are exhibiting early signs of MM. Although MGUS/SMM patients are currently defined as low-risk versus high-risk based on clinical markers, we currently lack the ability to predict the individual patient's risk of progression from MGUS/SMM to MM. Given that the presence of gross lytic bone lesions is a hallmark of MM, it is reasonable to believe that less severe bone changes defined by more sensitive imaging may be predictive of MM progression. Indeed, since bone disease is such an essential aspect of MM, imaging techniques directed at the detection of early bone lesions, have the potential to become increasingly more useful in the setting of MGUS/SMM. Current guidelines for the radiological assessment of MM still recommend the traditional skeletal survey, although its limitations are well documented, especially in early phases of the disease when radiographs can significantly underestimate the extent of bone lesions and bone marrow involvement. Newer, more advanced imaging modalities, with higher sensitivities, including whole-body low-dose computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) are being employed. Also various imaging techniques have been used to provide an assessment of bone involvement and identify extra-osseous disease. This review emphasizes the current state of the art and emerging imaging methods, which may help to better define high-risk versus low-risk MGUS/SMM. Ultimately, improved imaging could allow more tailored clinical management, and, most likely play an important role

  19. Molecular Optical Coherence Tomography Contrast Enhancement and Imaging

    NASA Astrophysics Data System (ADS)

    Oldenburg, Amy L.; Applegate, Brian E.; Tucker-Schwartz, Jason M.; Skala, Melissa C.; Kim, Jongsik; Boppart, Stephen A.

    Histochemistry began as early as the nineteenth century, with the development of synthetic dyes that provided spatially mapped chemical contrast in tissue [1]. Stains such as hematoxylin and eosin, which contrast cellular nuclei and cytoplasm, greatly aid in the interpretation of microscopy images. An analogous development is currently taking place in biomedical imaging, whereby techniques adapted for MRI, CT, and PET now provide in vivo molecular imaging over the entire human body, aiding in both fundamental research discovery and in clinical diagnosis and treatment monitoring. Because OCT offers a unique spatial scale that is intermediate between microscopy and whole-body biomedical imaging, molecular contrast OCT (MCOCT) also has great potential for providing new insight into in vivo molecular processes. The strength of MCOCT lies in its ability to isolate signals from a molecule or contrast agent from the tissue scattering background over large scan areas at depths greater than traditional microscopy techniques while maintaining high resolution.

  20. Nanomedicine strategies for molecular targets with MRI and optical imaging

    PubMed Central

    Pan, Dipanjan; Caruthers, Shelton D; Chen, Junjie; Winter, Patrick M; SenPan, Angana; Schmieder, Anne H; Wickline, Samuel A

    2010-01-01

    The science of ‘theranostics’ plays a crucial role in personalized medicine, which represents the future of patient management. Over the last decade an increasing research effort has focused on the development of nanoparticle-based molecular-imaging and drug-delivery approaches, emerging as a multidisciplinary field that shows promise in understanding the components, processes, dynamics and therapies of a disease at a molecular level. The potential of nanometer-sized agents for early detection, diagnosis and personalized treatment of diseases is extraordinary. They have found applications in almost all clinically relevant biomedical imaging modality. In this review, a number of these approaches will be presented with a particular emphasis on MRI and optical imaging-based techniques. We have discussed both established molecular-imaging approaches and recently developed innovative strategies, highlighting the seminal studies and a number of successful examples of theranostic nanomedicine, especially in the areas of cardiovascular and cancer therapy. PMID:20485473

  1. Quantum dot imaging platform for single-cell molecular profiling

    NASA Astrophysics Data System (ADS)

    Zrazhevskiy, Pavel; Gao, Xiaohu

    2013-03-01

    Study of normal cell physiology and disease pathogenesis heavily relies on untangling the complexity of intracellular molecular mechanisms and pathways. To achieve this goal, comprehensive molecular profiling of individual cells within the context of microenvironment is required. Here we report the development of a multicolour multicycle in situ imaging technology capable of creating detailed quantitative molecular profiles for individual cells at the resolution of optical imaging. A library of stoichiometric fluorescent probes is prepared by linking target-specific antibodies to a universal quantum dot-based platform via protein A in a quick and simple procedure. Surprisingly, despite the potential for multivalent binding between protein A and antibody and the intermediate affinity of this non-covalent bond, fully assembled probes do not aggregate or exchange antibodies, facilitating highly multiplexed parallel staining. This single-cell molecular profiling technology is expected to open new opportunities in systems biology, gene expression studies, signalling pathway analysis and molecular diagnostics.

  2. Positron emission tomography provides molecular imaging of biological processes

    PubMed Central

    Phelps, Michael E.

    2000-01-01

    Diseases are biological processes, and molecular imaging with positron emission tomography (PET) is sensitive to and informative of these processes. This is illustrated by detection of biological abnormalities in neurological disorders with no computed tomography or MRI anatomic changes, as well as even before symptoms are expressed. PET whole body imaging in cancer provides the means to (i) identify early disease, (ii) differentiate benign from malignant lesions, (iii) examine all organs for metastases, and (iv) determine therapeutic effectiveness. Diagnostic accuracy of PET is 8–43% higher than conventional procedures and changes treatment in 20–40% of the patients, depending on the clinical question, in lung and colorectal cancers, melanoma, and lymphoma, with similar findings in breast, ovarian, head and neck, and renal cancers. A microPET scanner for mice, in concert with human PET systems, provides a novel technology for molecular imaging assays of metabolism and signal transduction to gene expression, from mice to patients: e.g., PET reporter gene assays are used to trace the location and temporal level of expression of therapeutic and endogenous genes. PET probes and drugs are being developed together—in low mass amounts, as molecular imaging probes to image the function of targets without disturbing them, and in mass amounts to modify the target's function as a drug. Molecular imaging by PET, optical technologies, magnetic resonance imaging, single photon emission tomography, and other technologies are assisting in moving research findings from in vitro biology to in vivo integrative mammalian biology of disease. PMID:10922074

  3. Radionuclide cisternogram

    MedlinePlus

    ... please enable JavaScript. A radionuclide cisternogram is a nuclear scan test. It is used to diagnose problems ... damage. The amount of radiation used during the nuclear scan is very small. Almost all of the ...

  4. A novel high resolution, high sensitivity SPECT detector for molecular imaging of cardiovascular diseases

    NASA Astrophysics Data System (ADS)

    Cusanno, F.; Argentieri, A.; Baiocchi, M.; Colilli, S.; Cisbani, E.; De Vincentis, G.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Magliozzi, M. L.; Majewski, S.; Marano, G.; Musico, P.; Musumeci, M.; Santavenere, F.; Torrioli, S.; Tsui, B. M. W.; Vitelli, L.; Wang, Y.

    2010-05-01

    Cardiovascular diseases are the most common cause of death in western countries. Understanding the rupture of vulnerable atherosclerotic plaques and monitoring the effect of innovative therapies of heart failure is of fundamental importance. A flexible, high resolution, high sensitivity detector system for molecular imaging with radionuclides on small animal models has been designed for this aim. A prototype has been built using tungsten pinhole and LaBr3(Ce) scintillator coupled to Hamamatsu Flat Panel PMTs. Compact individual-channel readout has been designed, built and tested. Measurements with phantoms as well as pilot studies on mice have been performed, the results show that the myocardial perfusion in mice can be determined with sufficient precision. The detector will be improved replacing the Hamamatsu Flat Panel with Silicon Photomultipliers (SiPMs) to allow integration of the system with MRI scanners. Application of LaBr3(Ce) scintillator coupled to photosensor with high photon detection efficiency and excellent energy resolution will allow dual-label imaging to monitor simultaneously the cardiac perfusion and the molecular targets under investigation during the heart therapy.

  5. 124Iodine: A Longer-Life Positron Emitter Isotope—New Opportunities in Molecular Imaging

    PubMed Central

    Cascini, Giuseppe Lucio; Notaristefano, Antonio; Restuccia, Antonino; Ferrari, Cristina; Rubini, Domenico; Altini, Corinna

    2014-01-01

    124Iodine (124I) with its 4.2 d half-life is particularly attractive for in vivo detection and quantification of longer-term biological and physiological processes; the long half-life of 124I is especially suited for prolonged time in vivo studies of high molecular weight compounds uptake. Numerous small molecules and larger compounds like proteins and antibodies have been successfully labeled with 124I. Advances in radionuclide production allow the effective availability of sufficient quantities of 124I on small biomedical cyclotrons for molecular imaging purposes. Radioiodination chemistry with 124I relies on well-established radioiodine labeling methods, which consists mainly in nucleophilic and electrophilic substitution reactions. The physical characteristics of 124I permit taking advantages of the higher PET image quality. The availability of new molecules that may be targeted with 124I represents one of the more interesting reasons for the attention in nuclear medicine. We aim to discuss all iodine radioisotopes application focusing on 124I, which seems to be the most promising for its half-life, radiation emissions, and stability, allowing several applications in oncological and nononcological fields. PMID:24895600

  6. Molecular Imaging of Inflammation: Current Status.

    PubMed

    Hammoud, Dima A

    2016-08-01

    The ability to image inflammation in vivo can improve our understanding of the pathophysiology underlying various disease etiologies, including cancer, atherosclerosis, and neurodegeneration. A great wealth of preclinical and translational research has been and is currently being developed to decipher the involvement of the immune system in disease pathophysiology, quantify the course of a disease, and visualize the potential detrimental effects of excessive inflammation. Down the road, the ultimate goal is to have clinical noninvasive in vivo imaging biomarkers of inflammation that will help diagnose disease, establish prognosis, and gauge response to preventative and therapeutic strategies. PMID:27173159

  7. Cardiac sarcoidosis mimicking hypertrophic cardiomyopathy: clinical utility of radionuclide imaging for differential diagnosis.

    PubMed

    Yazaki, Y; Isobe, M; Hayasaka, M; Tanaka, M; Fujii, T; Sekiguchi, M

    1998-06-01

    A 62-year-old woman with skin sarcoidosis was admitted to our hospital to ascertain whether she had cardiac involvement. Although she displayed no cardiac signs or symptoms, the electrocardiogram showed first-degree atrioventricular block, right bundle branch block with left anterior fascicular block, and giant negative T waves in the V3 lead. Echocardiography revealed marked hypertrophy localized in the basal portion of the interventricular septum (IVS) without systolic dysfunction, mimicking hypertrophic cardiomyopathy (HCM). Exercise thallium-201 myocardial imaging revealed redistribution in the anteroseptal region. Both gallium-67 (67Ga) and technetium-99m pyrophosphate (99mTc-PYP) scintigraphy revealed abnormal uptake in the myocardium. These findings disappeared after 2 months of steroid treatment. Reports of cardiac sarcoidosis mimicking HCM are rare. However, hypertrophy in the basal portion of the IVS is an important sign of early cardiac involvement in sarcoidosis. 67Ga and 99mTc-PYP scintigraphy were useful and necessary to differentiate this type of cardiac sarcoidosis from HCM.

  8. Emerging applications of conjugated polymers in molecular imaging.

    PubMed

    Li, Junwei; Liu, Jie; Wei, Chen-Wei; Liu, Bin; O'Donnell, Matthew; Gao, Xiaohu

    2013-10-28

    In recent years, conjugated polymers have attracted considerable attention from the imaging community as a new class of contrast agent due to their intriguing structural, chemical, and optical properties. Their size and emission wavelength tunability, brightness, photostability, and low toxicity have been demonstrated in a wide range of in vitro sensing and cellular imaging applications, and have just begun to show impact in in vivo settings. In this Perspective, we summarize recent advances in engineering conjugated polymers as imaging contrast agents, their emerging applications in molecular imaging (referred to as in vivo uses in this paper), as well as our perspectives on future research.

  9. Molecular imaging probes spy on the body's inner workings: miniaturized microscopes, microbubbles, 7- and 15-T scanners, diffusion-tensor MRI, and other molecular-imaging technologies are pushing molecular imaging into the future.

    PubMed

    Mertz, Leslie

    2013-01-01

    Molecular imaging is one of the hot-button areas within medical imaging. This technology employs imaging techniques in concert with molecular probes, or biomarkers, that together noninvasively spy on cellular function and molecular processes. In some cases, this technology may be able to detect the very earliest stages of diseases and eliminate them on the spot. This paper discusses how miniaturized microscopes, microbubbles, 7T and 15T scanners, diffusion-tensor MRI and other molecular imaging technologies are pushing molecular imaging into the future.

  10. Inorganic nanoparticle-based contrast agents for molecular imaging

    PubMed Central

    Cho, Eun Chul; Glaus, Charles; Chen, Jingyi; Welch, Michael J.; Xia, Younan

    2010-01-01

    Inorganic nanoparticles including semiconductor quantum dots, iron oxide nanoparticles, and gold nanoparticles have been developed as contrast agents for diagnostics by molecular imaging. Compared to traditional contrast agents, nanoparticles offer several advantages: their optical and magnetic properties can be tailored by engineering the composition, structure, size, and shape; their surfaces can be modified with ligands to target specific biomarkers of disease; the contrast enhancement provided can be equivalent to millions of molecular counterparts; and they can be integrated with a combination of different functions for multi-modal imaging. Here, we review recent advances in the development of contrast agents based on inorganic nanoparticles for molecular imaging, with a touch on contrast enhancement, surface modification, tissue targeting, clearance, and toxicity. As research efforts intensify, contrast agents based on inorganic nanoparticles that are highly sensitive, target-specific, and safe to use are expected to enter clinical applications in the near future. PMID:21074494

  11. Molecular Imaging of Breast Cancer: Present and future directions

    NASA Astrophysics Data System (ADS)

    Alcantara, David; Pernia Leal, Manuel; Garcia, Irene; Garcia-Martin, Maria Luisa

    2014-12-01

    Medical imaging technologies have undergone explosive growth over the past few decades and now play a central role in clinical oncology. But the truly transformative power of imaging in the clinical management of cancer patients lies ahead. Today, imaging is at a crossroads, with molecularly targeted imaging agents expected to broadly expand the capabilities of conventional anatomical imaging methods. Molecular imaging will allow clinicians to not only see where a tumour is located in the body, but also to visualize the expression and activity of specific molecules (e.g. proteases and protein kinases) and biological processes (e.g. apoptosis, angiogenesis, and metastasis) that influence tumour behavior and/or response to therapy. Breast cancer, the most common cancer among women and a research area where our group is actively involved, is a very heterogeneous disease with diverse patterns of development and response to treatment. Hence, molecular imaging is expected to have a major impact on this type of cancer, leading to important improvements in diagnosis, individualized treatment, and drug development, as well as our understanding of how breast cancer arises.

  12. Molecular imaging of breast cancer: present and future directions

    PubMed Central

    Alcantara, David; Leal, Manuel Pernia; García-Bocanegra, Irene; García-Martín, Maria L.

    2014-01-01

    Medical imaging technologies have undergone explosive growth over the past few decades and now play a central role in clinical oncology. But the truly transformative power of imaging in the clinical management of cancer patients lies ahead. Today, imaging is at a crossroads, with molecularly targeted imaging agents expected to broadly expand the capabilities of conventional anatomical imaging methods. Molecular imaging will allow clinicians to not only see where a tumor is located in the body, but also to visualize the expression and activity of specific molecules (e.g., proteases and protein kinases) and biological processes (e.g., apoptosis, angiogenesis, and metastasis) that influence tumor behavior and/or response to therapy. Breast cancer, the most common cancer among women and a research area where our group is actively involved, is a very heterogeneous disease with diverse patterns of development and response to treatment. Hence, molecular imaging is expected to have a major impact on this type of cancer, leading to important improvements in diagnosis, individualized treatment, and drug development, as well as our understanding of how breast cancer arises. PMID:25566530

  13. Molecular targeting of the lymphovascular system for imaging and therapy.

    PubMed

    Schöder, Heiko; Glass, Edwin C; Pecking, Alain P; Harness, Jay K; Wallace, Anne M; Hirnle, Peter; Alberini, Jean L; Vilain, Didier; Larson, Steven M; Hoh, Carl K; Vera, David R

    2006-06-01

    Progress toward targeting cancer cells is a multi-disciplinary endeavor. In addition to the surgical and oncology specialties, radiologists collaborate with mathematicians, computer scientists, and physicists, in a constant effort to incrementally improve upon the current imaging modalities. Recently, radiologists have formed collaborations with molecular biologists and chemists in order to develop molecular agents that target cancer cells via receptor-substrate or specific physiochemical interactions. In this review, we summarize selected efforts toward molecular targeting of the lymphovascular system. Standard imaging modalities, positron emission tomography, single photon emission tomography, and ultrasound, are reviewed as well as, the targeted introduction of substances for endolymphatic therapy. We also review the current status of sentinel lymph node mapping with radiocolloids and the application of molecular targeting for the development of a radiopharmaceutical specifically designed for sentinel lymph node mapping.

  14. MIPortal: a high capacity server for molecular imaging research.

    PubMed

    Pivovarov, Misha; Bhandary, Gokul; Mahmood, Umar; Zahlmann, Gudrun; Naraghi, Mohammad; Weissleder, Ralph

    2005-01-01

    The introduction of novel molecular tools in research and clinical medicine has created a need for more refined information management systems. This article describes the design and implementation of such a new information platform: the Molecular Imaging Portal (MIPortal). The platform was created to organize, archive, and rapidly retrieve large datasets using Web-based browsers as access points. The system has been implemented in a heterogeneous, academic research environment serving Macintosh, Unix, and Microsoft Windows clients and has been shown to be extraordinarily robust and versatile. In addition, it has served as a useful tool for clinical trials and collaborative multi-institutional small-animal imaging research.

  15. Molecular imaging of atherosclerosis for improving diagnostic and therapeutic development

    PubMed Central

    Quillard, Thibaut; Libby, Peter

    2012-01-01

    Despite recent progress, cardiovascular and allied metabolic disorders remain a worldwide health challenge. We need to identify new targets for therapy, develop new agents for clinical use, and deploy them in a clinically-effective and cost-effective manner. Molecular imaging of atherosclerotic lesions has become a major experimental tool in the last decade, notably by providing a direct gateway to the processes involved in atherogenesis and its complications. This review summarizes the current status of molecular imaging approaches that target the key processes implicated in plaque formation, development, and disruption, and highlights how the refinement and application of such tools might aid the development and evaluation of novel therapeutics. PMID:22773426

  16. Molecular imaging agents: impact on diagnosis and therapeutics in oncology

    PubMed Central

    Seaman, Marc E.; Contino, Gianmarco; Bardeesy, Nabeel; Kelly, Kimberly A.

    2011-01-01

    Imaging has become a crucial tool in oncology throughout the course of disease detection and management and is an integral part of clinical trials. Anatomic and functional imaging led the way, providing valuable information used in the diagnosis of disease, including data regarding the size and location of the tumor and on physiologic processes such as blood flow and perfusion. As understanding of cancer pathogenesis has advanced through the identification of genetic, biochemical, and cellular alterations in evolving tumors, emphasis has been made on developing methods to detect and serially monitor such alterations. This class of approaches is referred to as molecular imaging. Molecular imaging offers the potential for increasingly sensitive and specific visualization and quantification of biological processes at the cellular and molecular level. These approaches have become established as essential tools for cancer research, early cancer detection and staging and monitoring and predicting response to targeted therapies. Here, we will discuss recent advances in the development of molecular imaging agents and their implementation in basic cancer research as well as in more rationalized approaches to cancer care. PMID:20633310

  17. Multiphoton and photothermal imaging of molecular events in cancer

    NASA Astrophysics Data System (ADS)

    Skala, Melissa

    2010-10-01

    Optical techniques are attractive for monitoring disease processes in living tissues because they are relatively cheap, non-invasive and provide a wealth of functional information. Multiphoton microscopy (MPM) and Optical Coherence Tomography (OCT) are two types of three-dimensional optical imaging modalities that have demonstrated great utility in pre-clinical models of disease. These techniques are particularly useful for identifying metabolic and molecular biomarkers in cancer. These biomarkers can be used to identify the mechanisms of tumor growth, and to predict the response of a particular tumor to treatment. Specifically, MPM of the co-enzymes NADH and FAD was used to quantify metabolic changes associated with developing cancers in vivo. This imaging technique exploits intrinsic sources of tissue contrast and thus does not require contrast agents. Ongoing work combines this metabolic imaging technique with vascular imaging to provide a comprehensive picture of oxygen supply and demand with tumor therapy. Molecular signaling represents a third critical component in tumor physiology. To this end we have recently developed photothermal OCT, which combines coherent detection with laser-heated gold nanoparticles to achieve high-resolution molecular contrast at deeper depths than MPM. This multi-functional imaging platform will provide unprecedented insight into oxygen supply and demand, and molecular signaling in response to tumor growth and targeted cancer therapies in pre-clinical models.

  18. Molecular Magnetic Resonance Imaging of Tumor Response to Therapy

    PubMed Central

    Shuhendler, Adam J.; Ye, Deju; Brewer, Kimberly D.; Bazalova-Carter, Magdalena; Lee, Kyung-Hyun; Kempen, Paul; Dane Wittrup, K.; Graves, Edward E.; Rutt, Brian; Rao, Jianghong

    2015-01-01

    Personalized cancer medicine requires measurement of therapeutic efficacy as early as possible, which is optimally achieved by three-dimensional imaging given the heterogeneity of cancer. Magnetic resonance imaging (MRI) can obtain images of both anatomy and cellular responses, if acquired with a molecular imaging contrast agent. The poor sensitivity of MRI has limited the development of activatable molecular MR contrast agents. To overcome this limitation of molecular MRI, a novel implementation of our caspase-3-sensitive nanoaggregation MRI (C-SNAM) contrast agent is reported. C-SNAM is triggered to self-assemble into nanoparticles in apoptotic tumor cells, and effectively amplifies molecular level changes through nanoaggregation, enhancing tissue retention and spin-lattice relaxivity. At one-tenth the current clinical dose of contrast agent, and following a single imaging session, C-SNAM MRI accurately measured the response of tumors to either metronomic chemotherapy or radiation therapy, where the degree of signal enhancement is prognostic of long-term therapeutic efficacy. Importantly, C-SNAM is inert to immune activation, permitting radiation therapy monitoring. PMID:26440059

  19. Molecular imaging: a promising tool to monitor islet transplantation.

    PubMed

    Wang, Ping; Medarova, Zdravka; Moore, Anna

    2011-01-01

    Replacement of insulin production by pancreatic islet transplantation has great potential as a therapy for type 1 diabetes mellitus. At present, the lack of an effective approach to islet grafts assessment limits the success of this treatment. The development of molecular imaging techniques has the potential to fulfill the goal of real-time noninvasive monitoring of the functional status and viability of the islet grafts. We review the application of a variety of imaging modalities for detecting endogenous and transplanted beta-cell mass. The review also explores the various molecular imaging strategies for assessing islet delivery, the metabolic effects on the islet grafts as well as detection of immunorejection. Here, we highlight the use of combined imaging and therapeutic interventions in islet transplantation and the in vivo monitoring of stem cells differentiation into insulin-producing cells. PMID:22013504

  20. Imaging the molecular dynamics of dissociative electron attachment to water

    SciTech Connect

    Adaniya, Hidihito; Rudek, B.; Osipov, Timur; Haxton, Dan; Weber, Thorsten; Rescigno, Thomas N.; McCurdy, C.W.; Belkacem, Ali

    2009-10-19

    Momentum imaging experiments on dissociative electron attachment to the water molecule are combined with ab initio theoretical calculations of the angular dependence of the quantum mechanical amplitude for electron attachment to provide a detailed picture of the molecular dynamics of dissociation attachment via the two lowest energy Feshbach resonances. The combination of momentum imaging experiments and theory can reveal dissociation dynamics for which the axial recoil approximation breaks down and thus provides a powerful reaction microscope for DEA to polyatomics.

  1. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    SciTech Connect

    Baba, Justin S.; Endres, Christopher J.; Foss, Catherine A.; Nimmagadda, Sridhar; Jung, Hyeyun; Goddard, James S.; Lee, Seung Joon; McKisson, John; Smith, Mark F.; Stolin, Alexander V.; Weisenberger, Andrew G.; Pomper, Martin G.

    2013-06-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a ^99mTc-pertechnetate phantom, ^99mTc-methylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand ^123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of ^123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.

  2. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    SciTech Connect

    Baba, Justin S; Endres, Christopher; Foss, Catherine; Nimmagadda, Sridhar; Jung, Hyeyun; Goddard Jr, James Samuel; Lee, Seung Joon; McKisson, John; Smith, Mark F.; Stolin, Alexander; Weisenberger, Andrew G.; Pomper, Martin

    2013-01-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a 99mTc-pertechnetate phantom, 99mTcmethylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand 123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of 123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.

  3. Interferometric Imaging of Molecular Envelopes with and without YSOs<

    NASA Astrophysics Data System (ADS)

    Ohashi, Nagayoshi

    1999-10-01

    Molecular envelopes are sites of star formation, and their geometrical and kinematical properties are very important to understand star formation. Particularly, their velocity structures, such as infall or rotation, need to be studied in detail to understand processes essential for star-formation. In order to investigate the physical properties of molecular envelopes in very detail, we need fine angular and velocity resolutions, which resolve both geometrical and velocity structures of molecular envelopes. A millimeter & submillimeter-wave interferometer is a very powerful tool providing high angular and velocity resolutions. Interferometric observations have realized direct imaging of infalling motions in molecular envelopes. In my talk, I will review what we learned about the physical properties of molecular envelopes with and without young stellar objects (YSOs) through interferometric observations. I will also discuss what we may learn about star-formation using a large millimeter & submillimeter array.

  4. Imaging and Simulations of CO Molecular Outflows

    NASA Astrophysics Data System (ADS)

    Lee, Chin-Fei; Mundy, Lee; Stone, James; Ostriker, Eve

    1999-10-01

    We have mapped the CO J=1-0 emission from molecular outflows associated with 10 young stellar systems of class 0 to class II with BIMA interferometry array and FCRAO single dish. Many of our outflows are closely related to jet like and bow shock structures detected in H2 or Halpha emission. The CO emission generally forms a hollowed structure around the jet and bow shock structures. Most of the CO outflows show a nested shell structure with velocity increasing with the distance from the star, but the detailed behavior can vary widely. Here, we presents five outflows to illustrate the different kinematics. Two of them are well described by a single parabolic shell with a Hubble law velocity, consistent with a wide-angle wind driven model. Two of them seem better explained with a jet-driven bow shock model, with a broad range of velocity near the bow shock. The last one appears to have elements of both models. To better understand the observations and test specific outflow models, we are performing a number of numerical simulations. This poster presents simulations of a jet propagating into a stratified ambient material. In these simulations, the jet-driven bow shock forms a thin cylindrical shell of swept-up gas around the jet, with the velocity vector of the material perpendicular to the shell surface. The simulations produce a wide range of velocity observed near the bow shock, but fail to produce the other CO kinematics in our observations.

  5. Molecular Imaging and Contrast Agent Database (MICAD): Evolution and Progress

    PubMed Central

    Chopra, Arvind; Shan, Liang; Eckelman, W. C.; Leung, Kam; Latterner, Martin; Bryant, Stephen H.; Menkens, Anne

    2011-01-01

    The purpose of writing this review is to showcase the Molecular Imaging and Contrast Agent Database (MICAD; www.micad.nlm.nih.gov) to students, researchers and clinical investigators interested in the different aspects of molecular imaging. This database provides freely accessible, current, online scientific information regarding molecular imaging (MI) probes and contrast agents (CA) used for positron emission tomography, single-photon emission computed tomography, magnetic resonance imaging, x-ray/computed tomography, optical imaging and ultrasound imaging. Detailed information on >1000 agents in MICAD is provided in a chapter format and can be accessed through PubMed. Lists containing >4250 unique MI probes and CAs published in peer-reviewed journals and agents approved by the United States Food and Drug Administration (FDA) as well as a CSV file summarizing all chapters in the database can be downloaded from the MICAD homepage. Users can search for agents in MICAD on the basis of imaging modality, source of signal/contrast, agent or target category, preclinical or clinical studies, and text words. Chapters in MICAD describe the chemical characteristics (structures linked to PubChem), the in vitro and in vivo activities and other relevant information regarding an imaging agent. All references in the chapters have links to PubMed. A Supplemental Information Section in each chapter is available to share unpublished information regarding an agent. A Guest Author Program is available to facilitate rapid expansion of the database. Members of the imaging community registered with MICAD periodically receive an e-mail announcement (eAnnouncement) that lists new chapters uploaded to the database. Users of MICAD are encouraged to provide feedback, comments or suggestions for further improvement of the database by writing to the editors at: micad@nlm.nih.gov PMID:21989943

  6. Paving the way to personalized medicine: production of some theragnostic radionuclides at Brookhaven National Laboratory

    SciTech Connect

    Srivastava S. C.

    2011-06-06

    This paper introduces a relatively novel paradigm that involves specific individual radionuclides or radionuclide pairs that have emissions that allow pre-therapy low-dose imaging plus higher-dose therapy in the same patient. We have made an attempt to sort out and organize a number of such theragnostic radionuclides and radionuclide pairs that may potentially bring us closer to the age-long dream of personalized medicine for performing tailored low-dose molecular imaging (SPECT/CT or PET/CT) to provide the necessary pre-therapy information on biodistribution, dosimetry, the limiting or critical organ or tissue, and the maximum tolerated dose (MTD), etc. If the imaging results then warrant it, it would be possible to perform higher-dose targeted molecular therapy in the same patient with the same radiopharmaceutical. A major problem that remains yet to be fully resolved is the lack of availability, in sufficient quantities, of a majority of the best candidate theragnostic radionuclides in a no-carrier-added (NCA) form. A brief description of the recently developed new or modified methods at BNL for the production of four theragnostic radionuclides, whose nuclear, physical, and chemical characteristics seem to show great promise for personalized cancer therapy are described.

  7. Recent Progress in Molecular Recognition Imaging Using Atomic Force Microscopy.

    PubMed

    Senapati, Subhadip; Lindsay, Stuart

    2016-03-15

    Atomic force microscopy (AFM) is an extremely powerful tool in the field of bionanotechnology because of its ability to image single molecules and make measurements of molecular interaction forces with piconewton sensitivity. It works in aqueous media, enabling studies of molecular phenomenon taking place under physiological conditions. Samples can be imaged in their near-native state without any further modifications such as staining or tagging. The combination of AFM imaging with the force measurement added a new feature to the AFM technique, that is, molecular recognition imaging. Molecular recognition imaging enables mapping of specific interactions between two molecules (one attached to the AFM tip and the other to the imaging substrate) by generating simultaneous topography and recognition images (TREC). Since its discovery, the recognition imaging technique has been successfully applied to different systems such as antibody-protein, aptamer-protein, peptide-protein, chromatin, antigen-antibody, cells, and so forth. Because the technique is based on specific binding between the ligand and receptor, it has the ability to detect a particular protein in a mixture of proteins or monitor a biological phenomenon in the native physiological state. One key step for recognition imaging technique is the functionalization of the AFM tips (generally, silicon, silicon nitrides, gold, etc.). Several different functionalization methods have been reported in the literature depending on the molecules of interest and the material of the tip. Polyethylene glycol is routinely used to provide flexibility needed for proper binding as a part of the linker that carries the affinity molecule. Recently, a heterofunctional triarm linker has been synthesized and successfully attached with two different affinity molecules. This novel linker, when attached to AFM tip, helped to detect two different proteins simultaneously from a mixture of proteins using a so-called "two

  8. Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging

    PubMed Central

    Joshi, Bishnu P.; Wang, Thomas D.

    2010-01-01

    Cancer is one of the major causes of mortality and morbidity in our healthcare system. Molecular imaging is an emerging methodology for the early detection of cancer, guidance of therapy, and monitoring of response. The development of new instruments and exogenous molecular probes that can be labeled for multi-modality imaging is critical to this process. Today, molecular imaging is at a crossroad, and new targeted imaging agents are expected to broadly expand our ability to detect and manage cancer. This integrated imaging strategy will permit clinicians to not only localize lesions within the body but also to manage their therapy by visualizing the expression and activity of specific molecules. This information is expected to have a major impact on drug development and understanding of basic cancer biology. At this time, a number of molecular probes have been developed by conjugating various labels to affinity ligands for targeting in different imaging modalities. This review will describe the current status of exogenous molecular probes for optical, scintigraphic, MRI and ultrasound imaging platforms. Furthermore, we will also shed light on how these techniques can be used synergistically in multi-modal platforms and how these techniques are being employed in current research. PMID:22180839

  9. Veni, vidi, vici: in vivo molecular imaging of immune response.

    PubMed

    Gross, Shimon; Moss, Britney L; Piwnica-Worms, David

    2007-10-01

    "I came, I saw, I conquered," Julius Caesar proclaimed, highlighting the importance of direct visualization as a winning strategy. Continuing the "From the Field" series (see Editorial [2007] 26, 131), Gross et al. summarize how modern molecular imaging techniques can successfully dissect the complexities of immune response in vivo. PMID:17967405

  10. Coronary Computed Tomography Versus Radionuclide Myocardial Perfusion Imaging in Chest Pain Patients Admitted to Telemetry: A Randomized, Controlled Trial

    PubMed Central

    Levsky, Jeffrey M.; Spevack, Daniel M.; Travin, Mark I.; Menegus, Mark A.; Huang, Paul W.; Clark, Elana T.; Kim, Choo-won; Hirschhorn, Esther; Freeman, Katherine D.; Tobin, Jonathan N.; Haramati, Linda B.

    2016-01-01

    BACKGROUND Coronary computed tomography angiography plays an expanding role managing symptomatic patients with suspected coronary artery disease. Prospective intermediate-term outcomes are lacking. OBJECTIVE To compare coronary CT angiography with conventional non-invasive testing. DESIGN Randomized, controlled comparative effectiveness trial. SETTING Telemetry-monitored wards of one inner-city medical center. PATIENTS 400 acute chest pain patients (mean age 57); 63% women; 54% Hispanic, 37% African-American; low socioeconomic status. INTERVENTION Coronary CT angiography (CT) or radionuclide stress myocardial perfusion imaging (MPI). MEASUREMENTS The primary outcome was cardiac catheterization not leading to revascularization within one year. Secondary outcomes included length of stay, resource utilization and patient experience. Safety outcomes included death, major cardiovascular events and radiation exposure. RESULTS 30(15%) CT patients and 32(16%) MPI patients underwent cardiac catheterization within one year, of which 15(7.5%) and 20(10%), respectively, were not revascularized (-2.5% difference, 95%CI −8.6%–+3.5%; hazard ratio 0.77, 95%CI 0.40–1.49, p=0.44). Median length of stay was 28.9 hours for CT and 30.4 hours for MPI (p=0.057). Median follow-up was 40.4 months. For CT and MPI, the incidences of death (0.5% vs 3%, p=0.12), non-fatal cardiovascular events (4.5% vs 4.5%), re-hospitalization (43% vs 49%), emergency visit (63% vs 58%) and outpatient cardiology visit (23% vs 21%) were not different. Long-term, all-cause radiation was lower for CT (24 vs 29 milliSieverts, p<0.001). More CT patients graded their experience favorably (p=0.001) and would undergo the exam again (p=0.003). LIMITATIONS Single site study; primary outcome dependent on clinical management decisions. CONCLUSIONS There were no significant differences between CT and MPI in outcomes or resource utilization over 40 months. CT had lower associated radiation and was more positively

  11. Molecular subtypes and imaging phenotypes of breast cancer

    PubMed Central

    2016-01-01

    During the last 15 years, traditional breast cancer classifications based on histopathology have been reorganized into the luminal A, luminal B, human epidermal growth factor receptor 2 (HER2), and basal-like subtypes based on gene expression profiling. Each molecular subtype has shown varying risk for progression, response to treatment, and survival outcomes. Research linking the imaging phenotype with the molecular subtype has revealed that non-calcified, relatively circumscribed masses with posterior acoustic enhancement are common in the basal-like subtype, spiculated masses with a poorly circumscribed margin and posterior acoustic shadowing in the luminal subtype, and pleomorphic calcifications in the HER2-enriched subtype. Understanding the clinical implications of the molecular subtypes and imaging phenotypes could help radiologists guide precision medicine, tailoring medical treatment to patients and their tumor characteristics. PMID:27599892

  12. Molecular Imaging of Apoptosis: From Micro to Macro

    PubMed Central

    Zeng, Wenbin; Wang, Xiaobo; Xu, Pengfei; Liu, Gang; Eden, Henry S.; Chen, Xiaoyuan

    2015-01-01

    Apoptosis, or programmed cell death, is involved in numerous human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer, and is often confused with other types of cell death. Therefore strategies that enable visualized detection of apoptosis would be of enormous benefit in the clinic for diagnosis, patient management, and development of new therapies. In recent years, improved understanding of the apoptotic machinery and progress in imaging modalities have provided opportunities for researchers to formulate microscopic and macroscopic imaging strategies based on well-defined molecular markers and/or physiological features. Correspondingly, a large collection of apoptosis imaging probes and approaches have been documented in preclinical and clinical studies. In this review, we mainly discuss microscopic imaging assays and macroscopic imaging probes, ranging in complexity from simple attachments of reporter moieties to proteins that interact with apoptotic biomarkers, to rationally designed probes that target biochemical changes. Their clinical translation will also be our focus. PMID:25825597

  13. Molecular Targeted Viral Nanoparticles as Tools for Imaging Cancer

    PubMed Central

    Cho, C.F.; Sourabh, S.; Simpson, E.J.; Steinmetz, N.F.; Luyt, L.G.; Lewis, J.D.

    2015-01-01

    Viral nanoparticles (VNPs) are a novel class of bionanomaterials that harness the natural biocompatibility of viruses for the development of therapeutics, vaccines, and imaging tools. The plant virus, cowpea mosaic virus (CPMV), has been successfully engineered to create novel cancer-targeted imaging agents by incorporating fluorescent dyes, polyethylene glycol (PEG) polymers, and targeting moieties. Using straightforward conjugation strategies, VNPs with high selectivity for cancer-specific molecular targets can be synthesized for in vivo imaging of tumors. Here we describe the synthesis and purification of CPMV-based VNPs, the functionalization of these VNPs using click chemistry, and their use for imaging xenograft tumors in animal models. VNPs decorated with fluorescent dyes, PEG, and targeting ligands can be synthesized in one day, and imaging studies can be performed over hours, days, or weeks, depending on the application. PMID:24243252

  14. Molecular imaging of apoptosis: from micro to macro.

    PubMed

    Zeng, Wenbin; Wang, Xiaobo; Xu, Pengfei; Liu, Gang; Eden, Henry S; Chen, Xiaoyuan

    2015-01-01

    Apoptosis, or programmed cell death, is involved in numerous human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer, and is often confused with other types of cell death. Therefore strategies that enable visualized detection of apoptosis would be of enormous benefit in the clinic for diagnosis, patient management, and development of new therapies. In recent years, improved understanding of the apoptotic machinery and progress in imaging modalities have provided opportunities for researchers to formulate microscopic and macroscopic imaging strategies based on well-defined molecular markers and/or physiological features. Correspondingly, a large collection of apoptosis imaging probes and approaches have been documented in preclinical and clinical studies. In this review, we mainly discuss microscopic imaging assays and macroscopic imaging probes, ranging in complexity from simple attachments of reporter moieties to proteins that interact with apoptotic biomarkers, to rationally designed probes that target biochemical changes. Their clinical translation will also be our focus.

  15. In vivo molecular and genomic imaging: new challenges for imaging physics.

    PubMed

    Cherry, Simon R

    2004-02-01

    The emerging and rapidly growing field of molecular and genomic imaging is providing new opportunities to directly visualize the biology of living organisms. By combining our growing knowledge regarding the role of specific genes and proteins in human health and disease, with novel ways to target these entities in a manner that produces an externally detectable signal, it is becoming increasingly possible to visualize and quantify specific biological processes in a non-invasive manner. All the major imaging modalities are contributing to this new field, each with its unique mechanisms for generating contrast and trade-offs in spatial resolution, temporal resolution and sensitivity with respect to the biological process of interest. Much of the development in molecular imaging is currently being carried out in animal models of disease, but as the field matures and with the development of more individualized medicine and the molecular targeting of new therapeutics, clinical translation is inevitable and will likely forever change our approach to diagnostic imaging. This review provides an introduction to the field of molecular imaging for readers who are not experts in the biological sciences and discusses the opportunities to apply a broad range of imaging technologies to better understand the biology of human health and disease. It also provides a brief review of the imaging technology (particularly for x-ray, nuclear and optical imaging) that is being developed to support this new field.

  16. Imaging of Isotopically Enhanced Molecular Targeting Agents Final Report

    SciTech Connect

    Quong, J N

    2004-02-19

    The goal of this project is to develop experimental and computational protocols to use SIMS to image the chemical composition of biological samples, focusing on optimizing sample preparation protocols and developing multivariate data analysis methods. Our results on sample preparation, molecular imaging, and multivariate analysis have been presented at several meeting abstracts (UCRL151797ABS, UCRL151797ABSREV1, UCRL151426ABS, UCRL201277, UCRL154757). A refereed paper describing our results for sample preparation and molecular imaging of various endogenous biomolecules as well as the mutagen PhIP has been accepted for publication (UCRL-JC-151797). We are also preparing two additional papers describing our multivariate analysis methods to analyze spectral data. As these papers have not been submitted, their content is included in this final report.

  17. Molecular imaging of cell-based cancer immunotherapy

    PubMed Central

    Liu, Gang; Swierczewska, Magdalena; Zhang, Xiaoming

    2011-01-01

    Cell-based cancer immunotherapy represents a new and powerful weapon in the arsenal of anticancer treatments. Non-invasive monitoring of the disposition, migration and destination of therapeutic cells will facilitate the development of cell based therapy. The therapeutic cells can be modified intrinsically by a reporter gene or labeled extrinsically by introducing imaging probes into the cells or on the cell surface before transplant. Various advanced non-invasive molecular imaging techniques are playing important roles in optimizing cellular therapy by tracking cells and monitoring the therapeutic effects of transplanted cells in vivo. This review will summarize the application of multiple molecular imaging modalities in cell-based cancer immunotherapy. PMID:21308113

  18. The Utility of Molecular Imaging in Prostate Cancer.

    PubMed

    Leiblich, Aaron; Stevens, Daniel; Sooriakumaran, Prasanna

    2016-03-01

    Prostate cancer is the commonest solid-organ cancer diagnosed in males and represents an important source of morbidity and mortality worldwide. Imaging plays a crucial role in diagnosing prostate cancer and informs the ongoing management of the disease at all stages. Several novel molecular imaging technologies have been developed recently that have the potential to revolutionise disease diagnosis and the surveillance of patients living with prostate cancer. These innovations include hyperpolarised MRI, choline PET/CT and PSMA PET/CT. The major utility of choline and PSMA PET/CT currently lies in their sensitivity for detecting early recurrence after radical treatment for prostate cancer and identifying discrete lesions that may be amenable to salvage therapy. Molecular imaging is likely to play a future role in characterising genetic and biochemical signatures in individual tumours, which may be of particular significance as cancer therapies move into an era of precision medicine. PMID:26894753

  19. Pathogenesis of multiple sclerosis: insights from molecular and metabolic imaging.

    PubMed

    Ciccarelli, Olga; Barkhof, Frederik; Bodini, Benedetta; De Stefano, Nicola; Golay, Xavier; Nicolay, Klaas; Pelletier, Daniel; Pouwels, Petra J W; Smith, Seth A; Wheeler-Kingshott, Claudia A M; Stankoff, Bruno; Yousry, Tarek; Miller, David H

    2014-08-01

    The mechanisms underlying the pathogenesis of multiple sclerosis induce the changes that underpin relapse-associated and progressive disability. Disease mechanisms can be investigated in preclinical models and patients with multiple sclerosis by molecular and metabolic imaging techniques. Many insights have been gained from such imaging studies: persisting inflammation in the absence of a damaged blood-brain barrier, activated microglia within and beyond lesions, increased mitochondrial activity after acute lesions, raised sodium concentrations in the brain, increased glutamate in acute lesions and normal-appearing white matter, different degrees of demyelination in different patients and lesions, early neuronal damage in grey matter, and early astrocytic proliferation and activation in lesions and white matter. Clinical translation of molecular and metabolic imaging and extension of these techniques will enable the assessment of novel drugs targeted at these disease mechanisms, and have the potential to improve health outcomes through the stratification of patients for treatments.

  20. Intraoperative Imaging-Guided Cancer Surgery: From Current Fluorescence Molecular Imaging Methods to Future Multi-Modality Imaging Technology

    PubMed Central

    Chi, Chongwei; Du, Yang; Ye, Jinzuo; Kou, Deqiang; Qiu, Jingdan; Wang, Jiandong; Tian, Jie; Chen, Xiaoyuan

    2014-01-01

    Cancer is a major threat to human health. Diagnosis and treatment using precision medicine is expected to be an effective method for preventing the initiation and progression of cancer. Although anatomical and functional imaging techniques such as radiography, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role for accurate preoperative diagnostics, for the most part these techniques cannot be applied intraoperatively. Optical molecular imaging is a promising technique that provides a high degree of sensitivity and specificity in tumor margin detection. Furthermore, existing clinical applications have proven that optical molecular imaging is a powerful intraoperative tool for guiding surgeons performing precision procedures, thus enabling radical resection and improved survival rates. However, detection depth limitation exists in optical molecular imaging methods and further breakthroughs from optical to multi-modality intraoperative imaging methods are needed to develop more extensive and comprehensive intraoperative applications. Here, we review the current intraoperative optical molecular imaging technologies, focusing on contrast agents and surgical navigation systems, and then discuss the future prospects of multi-modality imaging technology for intraoperative imaging-guided cancer surgery. PMID:25250092

  1. Guidelines for clinical use of cardiac radionuclide imaging, December 1986. A report of the American College of Cardiology/American Heart Association Task Force on Assessment of Cardiovascular Procedures (Subcommittee on Nuclear Imaging).

    PubMed

    1986-12-01

    This report describes the nuclear cardiology procedures available for use as diagnostic techniques in patients with definite or suspected cardiovascular disease. The usefulness of myocardial imaging, radionuclide angiocardiography, and other radionuclide cardiovascular imaging techniques is classified within specific disease states. The clinical utility of each technique is graded from I to IV, depending on the clinical importance of the technique (I equals most important; IV equals not indicated). A grade of V is given for methods now considered to be in their research phase. The usefulness of these methods is discussed in patients with acute ischemic heart disease, chronic ischemic heart disease, valvular heart disease, pulmonary vascular disease, and hypertensive heart disease. Selected references are provided.

  2. Interventional Optical Molecular Imaging Guidance during Percutaneous Biopsy

    PubMed Central

    Sheth, Rahul A.; Heidari, Pedram; Esfahani, Shadi A.; Wood, Bradford J.

    2014-01-01

    Purpose To investigate indocyanine green (ICG) as a molecular beacon for malignant lesions within the liver and evaluate the ability of a developed handheld imaging system to allow measurement of ICG fluorescence within focal hepatic lesions with high target-to-background ratios in a mouse model. Materials and Methods All animal experiments were approved by the institutional animal care committee. A handheld optical molecular imaging device was constructed to pass through the introducer needle of a standard percutaneous biopsy kit. An ex vivo phantom system was constructed to quantify tissue attenuation properties of ICG in liver parenchyma. Subsequently, intrahepatic colorectal cancer metastases were generated in nude mice, and epifluorescence imaging of ICG, as well as histologic analysis of the explanted livers, was performed at 3 weeks after implantation (n = 6). Epifluorescence imaging with the handheld imaging device was then performed on intrahepatic colorectal metastases after the administration of ICG (n = 15) at 3, 6, and 24 hours after injection. Target-to-background ratios were calculated for each time point. Subsequently, a core biopsy of intrahepatic colorectal metastases was performed by using a standard clinical 18-gauge biopsy needle. Results There was avid localization of ICG to the focal lesions at all time points. Similarly, fluorescence within the tumors was greater than that within normal liver, as detected with the handheld imaging system (mean target-to-background ratio ± standard deviation, 3.9 ± 0.2 at 24 hours). A core biopsy of tumor and normal adjacent liver by using a standard biopsy needle demonstrated a sharp margin of fluorescence intensity at the tumor-liver interface. Conclusion The custom-designed molecular imaging device, in combination with ICG, readily allowed differentiation between normal and malignant tissue in a murine model of intrahepatic colorectal metastasis. © RSNA, 2014 PMID:24520946

  3. Molecular application of spectral photoacoustic imaging in pancreatic cancer pathology

    NASA Astrophysics Data System (ADS)

    Lakshman, Minalini; Hupple, Clinton; Lohse, Ines; Hedley, David; Needles, Andrew; Theodoropoulos, Catherine

    2012-12-01

    Spectral imaging is an advanced photo-acoustic (PA) mode that can discern optical absorption of contrast agent(s) in the tissue micro-environment. This advancement is made possible by precise control of optical wavelength using a tunable pulsed laser, ranging from 680-970 nm. Differential optical absorption of blood oxygenation states makes spectral imaging of hemoglobin ideal to investigate remodeling of the tumor microenvironment- a molecular change that renders resistance to standard cancer treatment. Approach: Photo-acoustic imaging was performed on the Vevo® LAZR system (VisualSonics) at 5-20 Hz. Deep abdominal imaging was accomplished with a LZ250D probe at a center frequency of 21MHz and an axial resolution of 75 μm. The tumor model was generated in an immune compromised mouse by surgical implantation of primary patient derived tumors, in the pancreas. Results: Spectral imaging for oxygen saturation at 750 nm and 850 nm characterized this tumor with a poorly oxygenated core surrounded by a well oxygenated periphery. Multispectral imaging identified a sub region in the core with a four-fold signal exclusively at 750 and 800 nm. A co-registered 2D image of this region was shown to be echogenic and calcification was suspected. Perfusion imaging with contrast enhanced ultrasound using microbubbles (Vevo MicroMarker® contrast agents, VisualSonics) identified functional vessels towards this sub region. Histology confirmed calcification and vascularization in the tumor core. Taken together, non-invasive characterization of the tumor microenvironment using photo-acoustics rendered spectral imaging a sensitive tool to monitor molecular changes representative of progression of pancreatic cancer that kills within 6 months of diagnosis.

  4. MR Molecular Imaging of Tumor Vasculature and Vascular Targets

    PubMed Central

    Pathak, Arvind P.; Penet, Marie-France; Bhujwalla, Zaver M.

    2016-01-01

    Tumor angiogenesis and the ability of cancer cells to induce neovasculature continue to be a fascinating area of research. As the delivery network that provides substrates and nutrients, as well as chemotherapeutic agents to cancer cells, but allows cancer cells to disseminate, the tumor vasculature is richly primed with targets and mechanisms that can be exploited for cancer cure or control. The spatial and temporal heterogeneity of tumor vasculature, and the heterogeneity of response to targeting, make noninvasive imaging essential for understanding the mechanisms of tumor angiogenesis, tracking vascular targeting, and detecting the efficacy of antiangiogenic therapies. With its noninvasive characteristics, exquisite spatial resolution and range of applications, magnetic resonance imaging (MRI) techniques have provided a wealth of functional and molecular information on tumor vasculature in applications spanning from “bench to bedside”. The integration of molecular biology and chemistry to design novel imaging probes ensures the continued evolution of the molecular capabilities of MRI. In this review, we have focused on developments in the characterization of tumor vasculature with functional and molecular MRI. PMID:20807600

  5. Noninvasive imaging of focal atherosclerotic lesions using fluorescence molecular tomography

    NASA Astrophysics Data System (ADS)

    Maji, Dolonchampa; Solomon, Metasebya; Nguyen, Annie; Pierce, Richard A.; Woodard, Pamela K.; Akers, Walter J.; Achilefu, Samuel; Culver, Joseph P.; Abendschein, Dana R.; Shokeen, Monica

    2014-11-01

    Insights into the etiology of stroke and myocardial infarction suggest that rupture of unstable atherosclerotic plaque is the precipitating event. Clinicians lack tools to detect lesion instability early enough to intervene, and are often left to manage patients empirically, or worse, after plaque rupture. Noninvasive imaging of the molecular events signaling prerupture plaque progression has the potential to reduce the morbidity and mortality associated with myocardial infarction and stroke by allowing early intervention. Here, we demonstrate proof-of-principle in vivo molecular imaging of C-type natriuretic peptide receptor in focal atherosclerotic lesions in the femoral arteries of New Zealand white rabbits using a custom built fiber-based, fluorescence molecular tomography (FMT) system. Longitudinal imaging showed changes in the fluorescence signal intensity as the plaque progressed in the air-desiccated vessel compared to the uninjured vessel, which was validated by ex vivo tissue studies. In summary, we demonstrate the potential of FMT for noninvasive detection of molecular events leading to unstable lesions heralding plaque rupture.

  6. Engineering imaging probes and molecular machines for nanomedicine.

    PubMed

    Tong, Sheng; Cradick, Thomas J; Ma, Yan; Dai, Zhifei; Bao, Gang

    2012-10-01

    Nanomedicine is an emerging field that integrates nanotechnology, biomolecular engineering, life sciences and medicine; it is expected to produce major breakthroughs in medical diagnostics and therapeutics. Due to the size-compatibility of nano-scale structures and devices with proteins and nucleic acids, the design, synthesis and application of nanoprobes, nanocarriers and nanomachines provide unprecedented opportunities for achieving a better control of biological processes, and drastic improvements in disease detection, therapy, and prevention. Recent advances in nanomedicine include the development of functional nanoparticle based molecular imaging probes, nano-structured materials as drug/gene carriers for in vivo delivery, and engineered molecular machines for treating single-gene disorders. This review focuses on the development of molecular imaging probes and engineered nucleases for nanomedicine, including quantum dot bioconjugates, quantum dot-fluorescent protein FRET probes, molecular beacons, magnetic and gold nanoparticle based imaging contrast agents, and the design and validation of zinc finger nucleases (ZFNs) and TAL effector nucleases (TALENs) for gene targeting. The challenges in translating nanomedicine approaches to clinical applications are discussed.

  7. Molecular Imaging Probes for Positron Emission Tomography and Optical Imaging of Sentinel Lymph Node and Tumor

    NASA Astrophysics Data System (ADS)

    Qin, Zhengtao

    Molecular imaging is visualizations and measurements of in vivo biological processes at the molecular or cellular level using specific imaging probes. As an emerging technology, biocompatible macromolecular or nanoparticle based targeted imaging probes have gained increasing popularities. Those complexes consist of a carrier, an imaging reporter, and a targeting ligand. The active targeting ability dramatically increases the specificity. And the multivalency effect may further reduce the dose while providing a decent signal. In this thesis, sentinel lymph node (SLN) mapping and cancer imaging are two research topics. The focus is to develop molecular imaging probes with high specificity and sensitivity, for Positron Emission Tomography (PET) and optical imaging. The objective of this thesis is to explore dextran radiopharmaceuticals and porous silicon nanoparticles based molecular imaging agents. Dextran polymers are excellent carriers to deliver imaging reporters or therapeutic agents due to its well established safety profile and oligosaccharide conjugation chemistry. There is also a wide selection of dextran polymers with different lengths. On the other hand, Silicon nanoparticles represent another class of biodegradable materials for imaging and drug delivery. The success in fluorescence lifetime imaging and enhancements of the immune activation potency was briefly discussed. Chapter 1 begins with an overview on current molecular imaging techniques and imaging probes. Chapter 2 presents a near-IR dye conjugated probe, IRDye 800CW-tilmanocept. Fluorophore density was optimized to generate the maximum brightness. It was labeled with 68Ga and 99mTc and in vivo SLN mapping was successfully performed in different animals, such as mice, rabbits, dogs and pigs. With 99mTc labeled IRDye 800CW-tilmanocept, chapter 3 introduces a two-day imaging protocol with a hand-held imager. Chapter 4 proposed a method to dual radiolabel the IRDye 800CW-tilmanocept with both 68Ga and

  8. Imaging, Biodistribution, and Dosimetry of Radionuclide-Labeled PD-L1 Antibody in an Immunocompetent Mouse Model of Breast Cancer.

    PubMed

    Josefsson, Anders; Nedrow, Jessie R; Park, Sunju; Banerjee, Sangeeta Ray; Rittenbach, Andrew; Jammes, Fabien; Tsui, Benjamin; Sgouros, George

    2016-01-15

    The programmed cell death ligand 1 (PD-L1) participates in an immune checkpoint system involved in preventing autoimmunity. PD-L1 is expressed on tumor cells, tumor-associated macrophages, and other cells in the tumor microenvironment. Anti-PD-L1 antibodies are active against a variety of cancers, and combined anti-PD-L1 therapy with external beam radiotherapy has been shown to increase therapeutic efficacy. PD-L1 expression status is an important indicator of prognosis and therapy responsiveness, but methods to precisely capture the dynamics of PD-L1 expression in the tumor microenvironment are still limited. In this study, we developed a murine anti-PD-L1 antibody conjugated to the radionuclide Indium-111 ((111)In) for imaging and biodistribution studies in an immune-intact mouse model of breast cancer. The distribution of (111)In-DTPA-anti-PD-L1 in tumors as well as the spleen, liver, thymus, heart, and lungs peaked 72 hours after injection. Coinjection of labeled and 100-fold unlabeled antibody significantly reduced spleen uptake at 24 hours, indicating that an excess of unlabeled antibody effectively blocked PD-L1 sites in the spleen, thus shifting the concentration of (111)In-DTPA-anti-PD-L1 into the blood stream and potentially increasing tumor uptake. Clearance of (111)In-DTPA-anti-PD-L1 from all organs occurred at 144 hours. Moreover, dosimetry calculations revealed that radionuclide-labeled anti-PD-L1 antibody yielded tolerable projected marrow doses, further supporting its use for radiopharmaceutical therapy. Taken together, these studies demonstrate the feasibility of using anti-PD-L1 antibody for radionuclide imaging and radioimmunotherapy and highlight a new opportunity to optimize and monitor the efficacy of immune checkpoint inhibition therapy.

  9. Noninvasive cardiac risk stratification of diabetic and nondiabetic uremic renal allograft candidates using dipyridamole-thallium-201 imaging and radionuclide ventriculography

    SciTech Connect

    Brown, K.A.; Rimmer, J.; Haisch, C. )

    1989-11-01

    The ability of noninvasive risk stratification using dipyridamole-thallium-201 (Tl-201) imaging and radionuclide ventriculography to predict perioperative and long-term cardiac events (myocardial infarction or cardiac death) was evaluated in 36 uremic diabetic and 29 nondiabetic candidates for renal allograft surgery. Of the 35 patients who underwent renal allograft surgery 8 +/- 7 months after the study, none had transient Tl-201 defects (although 13 had depressed left ventricular ejection fraction) and none developed perioperative cardiac events. During a mean follow-up of 23 +/- 11 months, 6 (9%) patients developed cardiac events. Logistic regression analysis was used to compare the predictive value of clinical data (including age, sex, diabetes, chest pain history, allograft recipient) and radionuclide data. Presence of transient Tl-201 defect and left ventricular ejection fraction were the only significant predictors of future cardiac events (p less than 0.01). No other patient variables, including diabetes or receiving a renal allograft, had either univariate or multivariate predictive value. All 3 patients with transient Tl-201 defects had cardiac events compared with only 3 of 62 (5%) patients without transient Tl-201 defect (p less than 0.0001). Mean left ventricular ejection fraction was lower in patients with cardiac events (44 +/- 13%) compared with patients without cardiac events (57 +/- 9%, p less than 0.005). Overall, 5 of 6 patients with cardiac events had either transient Tl-201 defects or depressed left ventricular ejection fraction. Dipyridamole-Tl-201 imaging and radionuclide ventriculography may be helpful in identifying uremic candidates for renal allograft surgery who are at low risk for perioperative and long-term cardiac events.

  10. [Molecular hyperspectral imaging (MHSI) system and application in biochemical medicine].

    PubMed

    Liu, Hong-Ying; Li, Qing-Li; Wang, Yi-Ting; Liu, Jin-Gao; Xue, Yong-Qi

    2011-10-01

    A novel molecular hyperspectral imaging (MHSI) system based on AOTF (acousto-optic tunable filters) was presented. The system consists of microscope, AOTF-based spectrometer, matrix CCD, image collection card and computer. The spectral range of the MHSI is from 550 to 1 000 nm. The spectral resolution is less than 2 nm, and the spatial resolution is about 0.3 microm. This paper has also presented that spectral curves extracted from the corrected hyperspectral data of the sample, which have been preprocessed by the gray correction coefficient, can more truly represent biochemical characteristic of the sample. The system can supply not only single band images in the visible range, but also spectrum curve of random pixel of sample image. This system can be widely used in various fields of biomedicine, clinical medicine, material science and microelectronics. PMID:22250515

  11. Radionuclide removal

    SciTech Connect

    Sorg, T.J.

    1991-01-01

    The U.S. Environmental Protection Agency proposed new and revised regulations on radionuclide contaminants in drinking water in June 1991. During the 1980's, the Drinking Water Research Division, USEPA conducted a research program to evaluate various technologies to remove radium, uranium and radon from drinking water. The research consisted of laboratory and field studies conducted by USEPA, universities and consultants. The paper summarizes the results of the most significant projects completed. General information is also presented on the general chemistry of the three radionuclides. The information presented indicates that the most practical treatment methods for radium are ion exchange and lime-soda softening and reverse osmosis. The methods tested for radon are aeration and granular activated carbon and the methods for uranium are anion exchange and reverse osmosis.

  12. Frequency Domain Fluorescent Molecular Tomography and Molecular Probes for Small Animal Imaging

    NASA Astrophysics Data System (ADS)

    Kujala, Naresh Gandhi

    Fluorescent molecular tomography (FMT) is a noninvasive biomedical optical imaging that enables 3-dimensional quantitative determination of fluorochromes distributed in biological tissues. There are three methods for imaging large volume tissues based on different light sources: (a) using a light source of constant intensity, through a continuous or constant wave, (b) using a light source that is intensity modulated with a radio frequency (RF), and (c) using ultrafast pulses in the femtosecond range. In this study, we have developed a frequency domain fluorescent molecular tomographic system based on the heterodyne technique, using a single source and detector pair that can be used for small animal imaging. In our system, the intensity of the laser source is modulated with a RF frequency to produce a diffuse photon density wave in the tissue. The phase of the diffuse photon density wave is measured by comparing the reference signal with the signal from the tissue using a phasemeter. The data acquisition was performed by using a Labview program. The results suggest that we can measure the phase change from the heterogeneous inside tissue. Combined with fiber optics and filter sets, the system can be used to sensitively image the targeted fluorescent molecular probes, allowing the detection of cancer at an early stage. We used the system to detect the tumor-targeting molecular probe Alexa Fluor 680 and Alexa Fluor 750 bombesin peptide conjugates in phantoms as well as mouse tissues. We also developed and evaluated fluorescent Bombesin (BBN) probes to target gastrin-releasing peptide (GRP) receptors for optical molecular imaging. GRP receptors are over-expressed in several types of human cancer cells, including breast, prostate, small cell lung, and pancreatic cancers. BBN is a 14 amino acid peptide that is an analogue to human gastrin-releasing peptide that binds specifically to GRPr receptors. BBN conjugates are significant in cancer detection and therapy. The

  13. Kinetic modeling based probabilistic segmentation for molecular images.

    PubMed

    Saad, Ahmed; Hamarneh, Ghassan; Möller, Torsten; Smith, Ben

    2008-01-01

    We propose a semi-supervised, kinetic modeling based segmentation technique for molecular imaging applications. It is an iterative, self-learning algorithm based on uncertainty principles, designed to alleviate low signal-to-noise ratio (SNR) and partial volume effect (PVE) problems. Synthetic fluorodeoxyglucose (FDG) and simulated Raclopride dynamic positron emission tomography (dPET) brain images with excessive noise levels are used to validate our algorithm. We show, qualitatively and quantitatively, that our algorithm outperforms state-of-the-art techniques in identifying different functional regions and recovering the kinetic parameters.

  14. Intelligent design of nano-scale molecular imaging agents.

    PubMed

    Kim, Sung Bae; Hattori, Mitsuru; Ozawa, Takeaki

    2012-12-12

    Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs), biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on-off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents.

  15. Intelligent Design of Nano-Scale Molecular Imaging Agents

    PubMed Central

    Kim, Sung Bae; Hattori, Mitsuru; Ozawa, Takeaki

    2012-01-01

    Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs), biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents. PMID:23235326

  16. Enhanced sensitivity carbon nanotubes as targeted photoacoustic molecular imaging agents

    NASA Astrophysics Data System (ADS)

    de la Zerda, Adam; Liu, Zhuang; Zavaleta, Cristina; Bodapati, Sunil; Teed, Robert; Vaithilingam, Srikant; Ma, Te-Jen; Oralkan, Omer; Chen, Xiaoyuan; Khuri-Yakub, Butrus T.; Dai, Hongjie; Gambhir, Sanjiv S.

    2009-02-01

    Photoacoustic imaging of living subjects offers high spatial resolution at increased tissue depths compared to purely optical imaging techniques. We have recently shown that intravenously injected single walled carbon nanotubes (SWNTs) can be used as targeted photoacoustic imaging agents in living mice using RGD peptides to target αvβ3 integrins. We have now developed a new targeted photoacoustic imaging agent based on SWNTs and Indocyanine Green (SWNT-ICG) with absorption peak at 780nm. The photoacoustic signal of the new imaging agent is enhanced by ~20 times as compared to plain SWNTs. The particles are synthesized from SWNT-RGD that noncovalently attach to multiple ICG molecules through pi-pi stacking interactions. Negative control particles had RAD peptide instead of RGD. We measured the serum stability of the particles and verified that the RGD/RAD conjugation did not alter the particle's absorbance spectrum. Finally, through cell uptake studies with U87MG cells we verified that the particles bind selectively to αvβ3 integrin. In conclusion, the extremely high absorption of the SWNT-ICG particles shows great promise for high sensitivity photoacoustic imaging of molecular targets in-vivo. This work lays the foundations for future in-vivo studies that will use the SWNT-ICG particles as imaging agents administered systemically.

  17. Molecular resolution imaging of macromolecular crystals by atomic force microscopy.

    PubMed Central

    Kuznetsov YuG; Malkin, A J; Land, T A; DeYoreo, J J; Barba, A P; Konnert, J; McPherson, A

    1997-01-01

    Atomic force microscopy (AFM) images at the molecular level have been obtained for a number of different protein and virus crystals. They can be utilized in some special cases to obtain information useful to crystal structure analyses by x-ray diffraction. In particular, questions of space group enantiomer, the packing of molecules within a unit cell, the number of molecules per asymmetric unit, and the dispositions of multiple molecules within the asymmetric unit may be resolved. In addition, because of the increasing sensitivity and resolution of the AFM technique, some molecular features of very large asymmetric units may be within reach. We describe here high-resolution studies, using AFM, to visualize individual molecules and viruses in their crystal lattices. These investigations included fungal lipase, lysozyme, thaumatin, canavalin, and satellite tobacco mosaic virus (STMV). Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 PMID:9129839

  18. Scandium-44: benefits of a long-lived PET radionuclide available from the (44)Ti/(44)Sc generator system.

    PubMed

    Roesch, F

    2012-07-01

    (44)Ti/(44)Sc radionuclide generators are of interest for molecular imaging. The 3.97 hours half-life of (44)Sc and its high positron branching of 94.27% may stimulate the application of (44)Sc-labeled PET radiopharmaceuticals. This review describes the current status of (44)Ti production, (44)Ti/(44)Sc radionuclide generator development, post-processing of generator eluates towards medical application, identification of ligands adequate to Sc(III) co-ordination chemistry, proof-of-principle labeling of (44)Sc-DOTA-octreotides, investigation of in vitro and in vivo parameters, and initial applications for molecular imaging - both in small animals and humans.

  19. NIR fluorescent ytterbium compound for in vivo fluorescence molecular imaging.

    PubMed

    Aita, Kazuki; Temma, Takashi; Kuge, Yuji; Seki, Koh-ichi; Saji, Hideo

    2010-01-01

    We have developed a new NIR fluorescent probe based on an ytterbium(III) (E)-1-(pyridin-2-yl-diazenyl)naphthalen-2-ol (PAN) complex. This probe emits near-infrared luminescence derived from the Yb ion through excitation of the PAN moiety with visible light (lambda(ex)= 530 nm, lambda(em)= 975 nm). The results support the possible utility of the probe for in vivo fluorescence molecular imaging.

  20. Non-invasive Optical Molecular Imaging for Cancer Detection

    NASA Astrophysics Data System (ADS)

    Luo, Zhen

    Cancer is a leading cause of death worldwide. It remains the second most common cause of death in the US, accounting for nearly 1 out of every 4 deaths. Improved fundamental understanding of molecular processes and pathways resulting in cancer development has catalyzed a shift towards molecular analysis of cancer using imaging technologies. It is expected that the non-invasive or minimally invasive molecular imaging analysis of cancer can significantly aid in improving the early detection of cancer and will result in reduced mortality and morbidity associated with the disease. The central hypothesis of the proposed research is that non-invasive imaging of changes in metabolic activity of individual cells, and extracellular pH within a tissue will improve early stage detection of cancer. The specific goals of this research project were to: (a) develop novel optical imaging probes to image changes in choline metabolism and tissue pH as a function of progression of cancer using clinically isolated tissue biopsies; (b) correlate changes in tissue extracellular pH and metabolic activity of tissues as a function of disease state using clinically isolated tissue biopsies; (c) provide fundamental understanding of relationship between tumor hypoxia, acidification of the extracellular space and altered cellular metabolism with progression of cancer. Three novel molecular imaging probes were developed to detect changes in choline and glucose metabolism and extracellular pH in model systems and clinically isolated cells and biopsies. Glucose uptake and metabolism was measured using a fluorescence analog of glucose, 2-NBDG (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose), while choline metabolism was measured using a click chemistry analog of choline, propargyl choline, which can be in-situ labeled with a fluorophore Alexa-488 azide via a click chemistry reaction. Extracellular pH in tissue were measured by Alexa-647 labeled pHLIP (pH low insertion peptide

  1. Molecular-matched materials for anticancer drug delivery and imaging

    PubMed Central

    Wang, Dun; Fu, Qiang; Tang, Jingling; Hackett, Michael; Wang, Yongjun; Liu, Feng

    2015-01-01

    Aim: In this study, we aim to construct nanoformulation with high-cargo loading and controlled serum kinetics. Materials & methods: Molecular-matched materials (MMMs) are established through the conjugation of the functional moiety to a molecule representative of the nanoparticle's core. Molecular-matched nanoemulsions and liposomes were prepared using MMMs. Results: This technique based on MMMs even allows us to efficiently load either hydrophobic or hydrophilic moieties into a hydrophobic core of the nanoparticles. MMMs-based nanoparticles showed marked improvement in serum pharmacokinetics and anticancer effect. Conclusion: The desired performance can be achieved when the hydrophobic anchor of the PEG derivatives and the moiety conjugated to the therapeutic (or imaging) agents are molecularly identical to the core. PMID:26420013

  2. Improved molecular imaging contrast agent for detection of human thrombus.

    PubMed

    Winter, Patrick M; Caruthers, Shelton D; Yu, Xin; Song, Sheng-Kwei; Chen, Junjie; Miller, Brad; Bulte, Jeff W M; Robertson, J David; Gaffney, Patrick J; Wickline, Samuel A; Lanza, Gregory M

    2003-08-01

    Molecular imaging of microthrombus within fissures of unstable atherosclerotic plaques requires sensitive detection with a thrombus-specific agent. Effective molecular imaging has been previously demonstrated with fibrin-targeted Gd-DTPA-bis-oleate (BOA) nanoparticles. In this study, the relaxivity of an improved fibrin-targeted paramagnetic formulation, Gd-DTPA-phosphatidylethanolamine (PE), was compared with Gd-DTPA-BOA at 0.05-4.7 T. Ion- and particle-based r(1) relaxivities (1.5 T) for Gd-DTPA-PE (33.7 (s*mM)(-1) and 2.48 x 10(6) (s*mM)(-1), respectively) were about twofold higher than for Gd-DTPA-BOA, perhaps due to faster water exchange with surface gadolinium. Gd-DTPA-PE nanoparticles bound to thrombus surfaces via anti-fibrin antibodies (1H10) induced 72% +/- 5% higher change in R(1) values at 1.5 T (deltaR(1) = 0.77 +/- 0.02 1/s) relative to Gd-DTPA-BOA (deltaR(1) = 0.45 +/- 0.02 1/s). These studies demonstrate marked improvement in a fibrin-specific molecular imaging agent that might allow sensitive, early detection of vascular microthrombi, the antecedent to stroke and heart attack.

  3. Photoacoustic molecular imaging for in vivo liver iron quantitation

    NASA Astrophysics Data System (ADS)

    Maccarinelli, Federica; Carmona, Fernando; Regoni, Maria; Arosio, Paolo

    2016-05-01

    A recent study showed that ferritin is a suitable endogenous contrast agent for photoacoustic molecular imaging in cultured mammalian cells. We have therefore tested whether this imaging technique can be used for in vivo quantification of iron in mouse livers. To verify this hypothesis, we used multispectral optoacoustic tomography (MSOT) to image albino CD1 mice before and after experimental iron loading. Postmortem assays showed that the iron treatment caused a 15-fold increase in liver iron and a 40-fold increase in liver ferritin levels, while in vivo longitudinal analysis using MSOT revealed just a 1.6-fold increase in the ferritin/iron photoacoustic signal in the same animals. We conclude that MSOT can monitor changes in ferritin/iron levels in vivo, but its sensitivity is much lower than that of ex vivo iron assays.

  4. Deep-UV biological imaging by lanthanide ion molecular protection

    PubMed Central

    Kumamoto, Yasuaki; Fujita, Katsumasa; Smith, Nicholas Isaac; Kawata, Satoshi

    2015-01-01

    Deep-UV (DUV) light is a sensitive probe for biological molecules such as nucleobases and aromatic amino acids due to specific absorption. However, the use of DUV light for imaging is limited because DUV can destroy or denature target molecules in a sample. Here we show that trivalent ions in the lanthanide group can suppress molecular photodegradation under DUV exposure, enabling a high signal-to-noise ratio and repetitive DUV imaging of nucleobases in cells. Underlying mechanisms of the photodegradation suppression can be excitation relaxation of the DUV-absorptive molecules due to energy transfer to the lanthanide ions, and/or avoiding ionization and reactions with surrounding molecules, including generation of reactive oxygen species, which can modify molecules that are otherwise transparent to DUV light. This approach, directly removing excited energy at the fundamental origin of cellular photodegradation, indicates an important first step towards the practical use of DUV imaging in a variety of biological applications. PMID:26819825

  5. Bioconjugated Quantum Dots for In Vivo Molecular and Cellular Imaging

    PubMed Central

    Smith, Andrew M.; Duan, Hongwei; Mohs, Aaron M.; Nie, Shuming

    2008-01-01

    Semiconductor quantum dots (QDs) are tiny light-emitting particles on the nanometer scale, and are emerging as a new class of fluorescent labels for biology and medicine. In comparison with organic dyes and fluorescent proteins, they have unique optical and electronic properties, with size-tunable light emission, superior signal brightness, resistance to photobleaching, and broad absorption spectra for simultaneous excitation of multiple fluorescence colors. QDs also provide a versatile nanoscale scaffold for designing multifunctional nanoparticles with both imaging and therapeutic functions. When linked with targeting ligands such as antibodies, peptides or small molecules, QDs can be used to target tumor biomarkers as well as tumor vasculatures with high affinity and specificity. Here we discuss the synthesis and development of state-of-the-art QD probes and their use for molecular and cellular imaging. We also examine key issues for in vivo imaging and therapy, such as nanoparticle biodistribution, pharmacokinetics, and toxicology. PMID:18495291

  6. Novel Molecular Imaging Approaches to Abdominal Aortic Aneurysm Risk Stratification

    PubMed Central

    Toczek, Jakub; Meadows, Judith L.; Sadeghi, Mehran M.

    2015-01-01

    Selection of patients for abdominal aortic aneurysm (AAA) repair is currently based on aneurysm size, growth rate and symptoms. Molecular imaging of biological processes associated with aneurysm growth and rupture, e.g., inflammation and matrix remodeling, could improve patient risk stratification and lead to a reduction in AAA morbidity and mortality. 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) and ultrasmall superparamagnetic particles of iron oxide (USPIO) magnetic resonance imaging are two novel approaches to AAA imaging evaluated in clinical trials. A variety of other tracers, including those that target inflammatory cells and proteolytic enzymes (e.g., integrin αvβ3 and matrix metalloproteinases), have proven effective in preclinical models of AAA and show great potential for clinical translation. PMID:26763279

  7. Molecular probes for imaging of hypoxia in the retina.

    PubMed

    Evans, Stephanie M; Kim, Kwangho; Moore, Chauca E; Uddin, Md Imam; Capozzi, Megan E; Craft, Jason R; Sulikowski, Gary A; Jayagopal, Ashwath

    2014-11-19

    Hypoxia has been associated with retinal diseases which lead the causes of irreversible vision loss, including diabetic retinopathy, retinopathy of prematurity, and age-related macular degeneration. Therefore, technologies for imaging hypoxia in the retina are needed for early disease detection, monitoring of disease progression, and assessment of therapeutic responses in the patient. Toward this goal, we developed two hypoxia-sensitive imaging agents based on nitroimidazoles which are capable of accumulating in hypoxic cells in vivo. 2-nitroimidazole or Pimonidazole was conjugated to fluorescent dyes to yield the imaging agents HYPOX-1 and HYPOX-2. Imaging agents were characterized in cell culture and animal models of retinal vascular diseases which exhibit hypoxia. Both HYPOX-1 and -2 were capable of detecting hypoxia in cell culture models with >10:1 signal-to-noise ratios without acute toxicity. Furthermore, intraocular administration of contrast agents in mouse models of retinal hypoxia enabled ex vivo detection of hypoxic tissue. These imaging agents are a promising step toward translation of hypoxia-sensitive molecular imaging agents in preclinical animal models and patients.

  8. Biodistribution and Lymphatic Tracking of the Main Neurotoxin of Micrurus fulvius Venom by Molecular Imaging.

    PubMed

    Vergara, Irene; Castillo, Erick Y; Romero-Piña, Mario E; Torres-Viquez, Itzel; Paniagua, Dayanira; Boyer, Leslie V; Alagón, Alejandro; Medina, Luis Alberto

    2016-04-01

    The venom of the Eastern coral snake Micrurus fulvius can cause respiratory paralysis in the bitten patient, which is attributable to β-neurotoxins (β-NTx). The aim of this work was to study the biodistribution and lymphatic tracking by molecular imaging of the main β-NTx of M. fulvius venom. β-NTx was bioconjugated with the chelator diethylenetriaminepenta-acetic acid (DTPA) and radiolabeled with the radionuclide Gallium-67. Radiolabeling efficiency was 60%-78%; radiochemical purity ≥92%; and stability at 48 h ≥ 85%. The median lethal dose (LD50) and PLA₂ activity of bioconjugated β-NTx decreased 3 and 2.5 times, respectively, in comparison with native β-NTx. The immune recognition by polyclonal antibodies decreased 10 times. Biodistribution of β-NTx-DTPA-(67)Ga in rats showed increased uptake in popliteal, lumbar nodes and kidneys that was not observed with (67)Ga-free. Accumulation in organs at 24 h was less than 1%, except for kidneys, where the average was 3.7%. The inoculation site works as a depot, since 10% of the initial dose of β-NTx-DTPA-(67)Ga remains there for up to 48 h. This work clearly demonstrates the lymphatic system participation in the biodistribution of β-NTx-DTPA-(67)Ga. Our approach could be applied to analyze the role of the lymphatic system in snakebite for a better understanding of envenoming. PMID:27023607

  9. Biodistribution and Lymphatic Tracking of the Main Neurotoxin of Micrurus fulvius Venom by Molecular Imaging

    PubMed Central

    Vergara, Irene; Castillo, Erick Y.; Romero-Piña, Mario E.; Torres-Viquez, Itzel; Paniagua, Dayanira; Boyer, Leslie V.; Alagón, Alejandro; Medina, Luis Alberto

    2016-01-01

    The venom of the Eastern coral snake Micrurus fulvius can cause respiratory paralysis in the bitten patient, which is attributable to β-neurotoxins (β-NTx). The aim of this work was to study the biodistribution and lymphatic tracking by molecular imaging of the main β-NTx of M. fulvius venom. β-NTx was bioconjugated with the chelator diethylenetriaminepenta-acetic acid (DTPA) and radiolabeled with the radionuclide Gallium-67. Radiolabeling efficiency was 60%–78%; radiochemical purity ≥92%; and stability at 48 h ≥ 85%. The median lethal dose (LD50) and PLA2 activity of bioconjugated β-NTx decreased 3 and 2.5 times, respectively, in comparison with native β-NTx. The immune recognition by polyclonal antibodies decreased 10 times. Biodistribution of β-NTx-DTPA-67Ga in rats showed increased uptake in popliteal, lumbar nodes and kidneys that was not observed with 67Ga-free. Accumulation in organs at 24 h was less than 1%, except for kidneys, where the average was 3.7%. The inoculation site works as a depot, since 10% of the initial dose of β-NTx-DTPA-67Ga remains there for up to 48 h. This work clearly demonstrates the lymphatic system participation in the biodistribution of β-NTx-DTPA-67Ga. Our approach could be applied to analyze the role of the lymphatic system in snakebite for a better understanding of envenoming. PMID:27023607

  10. Molecular Imaging of Activated Platelets Allows the Detection of Pulmonary Embolism with Magnetic Resonance Imaging

    PubMed Central

    Heidt, Timo; Ehrismann, Simon; Hövener, Jan-Bernd; Neudorfer, Irene; Hilgendorf, Ingo; Reisert, Marco; Hagemeyer, Christoph E.; Zirlik, Andreas; Reinöhl, Jochen; Bode, Christoph; Peter, Karlheinz; von Elverfeldt, Dominik; von zur Muhlen, Constantin

    2016-01-01

    Early and reliable detection of pulmonary embolism (PE) is critical for improving patient morbidity and mortality. The desire for low-threshold screening for pulmonary embolism is contradicted by unfavorable radiation of currently used computed tomography or nuclear techniques, while standard magnetic resonance imaging still struggles to provide sufficient diagnostic sensitivity in the lung. In this study we evaluate a molecular-targeted contrast agent against activated platelets for non-invasive detection of murine pulmonary thromboembolism using magnetic resonance imaging. By intravenous injection of human thrombin, pulmonary thromboembolism were consistently induced as confirmed by immunohistochemistry of the lung. Magnetic resonance imaging after thrombin injection showed local tissue edema in weighted images which co-localized with the histological presence of pulmonary thromboembolism. Furthermore, injection of a functionalized contrast agent targeting activated platelets provided sensitive evidence of focal accumulation of activated platelets within the edematous area, which, ex vivo, correlated well with the size of the pulmonary embolism. In summary, we here show delivery and specific binding of a functionalized molecular contrast agent against activated platelets for targeting pulmonary thromboembolism. Going forward, molecular imaging may provide new opportunities to increase sensitivity of magnetic resonance imaging for detection of pulmonary embolism. PMID:27138487

  11. Molecular Imaging of Activated Platelets Allows the Detection of Pulmonary Embolism with Magnetic Resonance Imaging.

    PubMed

    Heidt, Timo; Ehrismann, Simon; Hövener, Jan-Bernd; Neudorfer, Irene; Hilgendorf, Ingo; Reisert, Marco; Hagemeyer, Christoph E; Zirlik, Andreas; Reinöhl, Jochen; Bode, Christoph; Peter, Karlheinz; von Elverfeldt, Dominik; von Zur Muhlen, Constantin

    2016-01-01

    Early and reliable detection of pulmonary embolism (PE) is critical for improving patient morbidity and mortality. The desire for low-threshold screening for pulmonary embolism is contradicted by unfavorable radiation of currently used computed tomography or nuclear techniques, while standard magnetic resonance imaging still struggles to provide sufficient diagnostic sensitivity in the lung. In this study we evaluate a molecular-targeted contrast agent against activated platelets for non-invasive detection of murine pulmonary thromboembolism using magnetic resonance imaging. By intravenous injection of human thrombin, pulmonary thromboembolism were consistently induced as confirmed by immunohistochemistry of the lung. Magnetic resonance imaging after thrombin injection showed local tissue edema in weighted images which co-localized with the histological presence of pulmonary thromboembolism. Furthermore, injection of a functionalized contrast agent targeting activated platelets provided sensitive evidence of focal accumulation of activated platelets within the edematous area, which, ex vivo, correlated well with the size of the pulmonary embolism. In summary, we here show delivery and specific binding of a functionalized molecular contrast agent against activated platelets for targeting pulmonary thromboembolism. Going forward, molecular imaging may provide new opportunities to increase sensitivity of magnetic resonance imaging for detection of pulmonary embolism. PMID:27138487

  12. MOLECULAR IMAGING OF PROSTATE CANCER: translating molecular biology approaches into the clinical realm

    PubMed Central

    Vargas, Hebert Alberto; Grimm, Jan; Donati, Olivio F.; Sala, Evis; Hricak, Hedvig

    2016-01-01

    The epidemiology of prostate cancer has dramatically changed since the introduction of prostate-specific antigen (PSA) screening in the 1980’s. Most prostate cancers today are detected at early stages of the disease and are considered “indolent”, however some patients’ prostate cancers demonstrate a more aggressive behavior which leads to rapid progression and death. Increasing understanding of the biology underlying the heterogeneity that characterizes this disease has lead to a continuously evolving role of imaging in the management of prostate cancer. Functional and metabolic imaging techniques are gaining importance as the impact on the therapeutic paradigm has shifted from structural tumor detection alone to distinguishing patients with indolent tumors that can be managed conservatively (e.g., by active surveillance) from patients with more aggressive tumors that may require definitive treatment with surgery or radiation. In this review, we discuss advanced imaging techniques that allow direct visualization of molecular interactions relevant to prostate cancer and their potential for translation to the clinical setting in the near future. The potential use of imaging to follow molecular events during drug therapy as well as the use of imaging agents for therapeutic purposes will also be discussed. PMID:25693661

  13. Will Molecular Optical Imaging Have Clinically Important Roles in Stroke Management, and How?

    PubMed Central

    Lee, Dong Kun; Nahrendorf, Matthias; Schellingerhout, Dawid

    2010-01-01

    Molecular imaging is a novel technology to visualize biological processes at the cellular and molecular levels, which is reshaping both biomedical research and clinical practice. By providing molecular information to supplement and augment conventional anatomy-based imaging, molecular imaging is expected to allow 1) the earlier detection of diseases, 2) precise evaluation of disease stages, and 3) both diagnostic and therapeutic monitoring of disease progression in a quantitative manner. In this brief review, we present our view on the prospects of molecular optical imaging in the field of stroke practice, focusing on the imaging vulnerability of atherosclerotic plaques, thrombolytic resistance, real-time cerebral perfusion, and penumbra. PMID:20386638

  14. Molecular Imaging of Vulnerable Atherosclerotic Plaques in Animal Models

    PubMed Central

    Gargiulo, Sara; Gramanzini, Matteo; Mancini, Marcello

    2016-01-01

    Atherosclerosis is characterized by intimal plaques of the arterial vessels that develop slowly and, in some cases, may undergo spontaneous rupture with subsequent heart attack or stroke. Currently, noninvasive diagnostic tools are inadequate to screen atherosclerotic lesions at high risk of acute complications. Therefore, the attention of the scientific community has been focused on the use of molecular imaging for identifying vulnerable plaques. Genetically engineered murine models such as ApoE−/− and ApoE−/−Fbn1C1039G+/− mice have been shown to be useful for testing new probes targeting biomarkers of relevant molecular processes for the characterization of vulnerable plaques, such as vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, intercellular adhesion molecule (ICAM)-1, P-selectin, and integrins, and for the potential development of translational tools to identify high-risk patients who could benefit from early therapeutic interventions. This review summarizes the main animal models of vulnerable plaques, with an emphasis on genetically altered mice, and the state-of-the-art preclinical molecular imaging strategies. PMID:27618031

  15. Molecular Imaging in Traditional Chinese Medicine Therapy for Neurological Diseases

    PubMed Central

    Wan, Haitong; Li, Jinhui; Zhang, Hong; Tian, Mei

    2013-01-01

    With the speeding tendency of aging society, human neurological disorders have posed an ever increasing threat to public health care. Human neurological diseases include ischemic brain injury, Alzheimer's disease, Parkinson's disease, and spinal cord injury, which are induced by impairment or specific degeneration of different types of neurons in central nervous system. Currently, there are no more effective treatments against these diseases. Traditional Chinese medicine (TCM) is focused on, which can provide new strategies for the therapy in neurological disorders. TCM, including Chinese herb medicine, acupuncture, and other nonmedication therapies, has its unique therapies in treating neurological diseases. In order to improve the treatment of these disorders by optimizing strategies using TCM and evaluate the therapeutic effects, we have summarized molecular imaging, a new promising technology, to assess noninvasively disease specific in cellular and molecular levels of living models in vivo, that was applied in TCM therapy for neurological diseases. In this review, we mainly focus on applying diverse molecular imaging methodologies in different TCM therapies and monitoring neurological disease, and unveiling the mysteries of TCM. PMID:24222911

  16. Molecular Imaging of Vulnerable Atherosclerotic Plaques in Animal Models.

    PubMed

    Gargiulo, Sara; Gramanzini, Matteo; Mancini, Marcello

    2016-01-01

    Atherosclerosis is characterized by intimal plaques of the arterial vessels that develop slowly and, in some cases, may undergo spontaneous rupture with subsequent heart attack or stroke. Currently, noninvasive diagnostic tools are inadequate to screen atherosclerotic lesions at high risk of acute complications. Therefore, the attention of the scientific community has been focused on the use of molecular imaging for identifying vulnerable plaques. Genetically engineered murine models such as ApoE(-/-) and ApoE(-/-)Fbn1C1039G(+/-) mice have been shown to be useful for testing new probes targeting biomarkers of relevant molecular processes for the characterization of vulnerable plaques, such as vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, intercellular adhesion molecule (ICAM)-1, P-selectin, and integrins, and for the potential development of translational tools to identify high-risk patients who could benefit from early therapeutic interventions. This review summarizes the main animal models of vulnerable plaques, with an emphasis on genetically altered mice, and the state-of-the-art preclinical molecular imaging strategies. PMID:27618031

  17. Molecular magnetic resonance imaging of brain–immune interactions

    PubMed Central

    Gauberti, Maxime; Montagne, Axel; Quenault, Aurélien; Vivien, Denis

    2014-01-01

    Although the blood–brain barrier (BBB) was thought to protect the brain from the effects of the immune system, immune cells can nevertheless migrate from the blood to the brain, either as a cause or as a consequence of central nervous system (CNS) diseases, thus contributing to their evolution and outcome. Accordingly, as the interface between the CNS and the peripheral immune system, the BBB is critical during neuroinflammatory processes. In particular, endothelial cells are involved in the brain response to systemic or local inflammatory stimuli by regulating the cellular movement between the circulation and the brain parenchyma. While neuropathological conditions differ in etiology and in the way in which the inflammatory response is mounted and resolved, cellular mechanisms of neuroinflammation are probably similar. Accordingly, neuroinflammation is a hallmark and a decisive player of many CNS diseases. Thus, molecular magnetic resonance imaging (MRI) of inflammatory processes is a central theme of research in several neurological disorders focusing on a set of molecules expressed by endothelial cells, such as adhesion molecules (VCAM-1, ICAM-1, P-selectin, E-selectin, …), which emerge as therapeutic targets and biomarkers for neurological diseases. In this review, we will present the most recent advances in the field of preclinical molecular MRI. Moreover, we will discuss the possible translation of molecular MRI to the clinical setting with a particular emphasis on myeloperoxidase imaging, autologous cell tracking, and targeted iron oxide particles (USPIO, MPIO). PMID:25505871

  18. A targeted molecular probe for colorectal cancer imaging

    NASA Astrophysics Data System (ADS)

    Attramadal, T.; Bjerke, R.; Indrevoll, B.; Moestue, S.; Rogstad, A.; Bendiksen, R.; Healey, A.; Johannesen, E.

    2008-02-01

    Colorectal cancer is a major cause of cancer death. Morbidity, mortality and healthcare costs can be reduced if the disease can be detected at an early stage. Screening is a viable approach as there is a clear link to risk factors such as age. We have developed a fluorescent contrast agent for use during colonoscopy. The agent is administered intravenously and is targeted to an early stage molecular marker for colorectal cancer. The agent consists of a targeting section comprising a peptide, and a fluorescent reporter molecule. Clinical imaging of the agent is to be performed with a far red fluorescence imaging channel (635 nm excitation/660-700 nm emission) as an adjunct to white light colonoscopy. Preclinical proof of mechanism results are presented. The compound has a K d of ~3nM. Two human xenograft tumour models were used. Tumour cells were implanted and grown subcutaneously in nude mice. Imaging using a fluorescence reflectance imaging system and quantitative biodistribution studies were performed. Substances tested include the targeted agent, and a scrambled sequence of the peptide (no binding) used as a negative control. Competition studies were also performed by co-administration of 180 times excess unlabelled peptide. Positive imaging contrast was shown in the tumours, with a clear relationship to expression levels (confirmed with quantitative biodistribution data). There was a significant difference between the positive and negative control substances, and a significant reduction in contrast in the competition experiment.

  19. Photoacoustic molecular imaging of ferritin as a reporter gene

    NASA Astrophysics Data System (ADS)

    Ha, S.; Carson, A.; Kim, K.

    2012-02-01

    Spectral analysis of photoacoustic (PA) molecular imaging (PMI) of ferritin expressed in human melanoma cells (SK-24) was performed in vitro. Ferritin is a ubiquitously expressed protein which stores iron that can be detected by PA imaging, allowing ferritin to act as a reporter gene. To over-express ferritin, SK-24 cells were co-transfected with plasmid expressing Heavy chain ferritin (H-FT) and plasmid expressing enhanced green fluorescent protein (pEGFP-C1) using LipofectamineTM 2000. Non-transfected SK-24 cells served as a negative control. Fluorescent imaging of EGFP confirmed transfection and transgene expression in co-transfected cells. To detect iron accumulation in SK-24 cells, a focused high frequency ultrasonic transducer (60 MHz, f/1.5), synchronized to a pulsed laser (<20mJ/cm2), was used to scan the PA signal from 680 nm to 950 nm (in 10 nm increments) from the surface of the 6-well culturing plate. PA signal intensity from H-FT transfected SK-24 cells was not different from that of non-transfected SK-24 cells at wavelengths less than 770 nm, but was over 4 dB higher than non-transfected SK-24 cells at 850 ~ 950 nm. Fluorescent microscopy indicates significant accumulation of ferritin in H-FT transfected SK-24 cells, with little ferritin expression in non-transfected SK-24 cells. The PA spectral analysis clearly differentiates transfected SK-24 cells from nontransfected SK-24 cells with significantly increased iron signal at 850 ~ 950 nm, and these increased signals were associated with transfection of H-FT plasmid. As such, the feasibility of ferritin as a reporter gene for PMI has been demonstrated in vitro. The use of ferritin as a reporter gene represents a new concept for PA imaging, and may provide various opportunities for molecular imaging and basic science research.

  20. Using molecular beacons for cancer imaging and treatment.

    PubMed

    Stefflova, Klara; Chen, Juan; Zheng, Gang

    2007-01-01

    Molecular beacons are essentially all probes that illuminate particular cellular target or cells with similar characteristics. In this review we focus on those molecular beacons that use near-infrared fluorescence imaging (NIRF-I) to identify the unique cellular and metabolic markers characteristic of cancer. They employ various delivery and activation pathways, selectively or specifically targeting proliferating and immortal cancer cells. These beacons can either be used in an imaging step separate from therapy or they can intimately connect these two steps into a single process. Matching cancer therapy to NIRF-I is photodynamic therapy (PDT) that uses the light-triggered phototoxic properties of some porphyrin-based dyes. Guided by beacon's restored fluorescence, the PDT laser could be focused on affected sites, killing the cancer cells using the enhanced photoactivity of the same beacon. Or vice versa-the restored fluorescence from the cleaved beacon could be used as an indication of the beacon's own therapeutic success, imaging the post-PDT apoptotic cells.

  1. Luminescent Nanomaterials for Molecular-Specific Cellular Imaging

    NASA Astrophysics Data System (ADS)

    Zvyagin, Andrei Vasilyevich; Song, Zhen; Nadort, Annemarie; Sreenivasan, Varun Kumaraswamy Annayya; Deyev, Sergey Mikhailovich

    Imaging of molecular trafficking in cells and biological tissue aided by molecular-specific fluorescent labeling is very attractive, since it affords capturing the key processes in comprehensive biological context. Several shortcomings of the existing organic dye labeling technology, however, call for development of alternative molecular reporters, with improved photostability, reduced cytotoxicity, and an increased number of controllable surface moieties. Such alternative molecular reporters are represented by inorganic luminescent nanoparticles (NP) whose optical, physical, and chemical properties are discussed on the examples of luminescent nanodiamonds (LND) and upconversion nanoparticles (UCNP). The emission origins of these nanomaterials differ markedly. LND emission results from individual nitrogen-vacancy color-centers in a biocompatible nanodiamond host whose properties can be controlled via size and surface groups. Photophysics of UCNP is governed by the collective, nonlinear excitation transfer processes, resulting in conversion of longer-wavelength excitation to the shorter-wavelength emission. The emission/excitation spectral properties of UCNP falling within the biological tissue transparency window open new opportunities of almost complete suppression of the cell/tissue autofluorescence background. The developed surface of these nanoparticles represents a flexible platform populated with biocompatible surface moieties onto which cargo and targeting biomolecules can be firmly docked through a process called bioconjugation. These bioconjugated modules, e.g., nanodiamond-antibody, (quantum dot)-somatostatin, or (upconversion nanoparticle)-(mini-antibody) can gain admission into the cells by initiating the cell-specific, cell-recognized communication protocol. In this chapter, we aim to demonstrate the whole bottom-up bio-nano-optics approach for optical biological imaging capturing luminescent nanoparticle design, surface activation, and bioconjugation

  2. Molecular breast imaging: an emerging modality for breast cancer screening

    PubMed Central

    O’Connor, Michael K

    2015-01-01

    SUMMARY Screening mammography is recognized as an imperfect imaging tool that performs poorly in women with dense breast tissue – a limitation which has driven demand for supplemental screening techniques. One potential supplemental technique is molecular breast imaging (MBI). Significant improvements in gamma camera technology allow MBI to be performed at low radiation doses, comparable with those of tomosynthesis and mammography. A recent screening trial in women with dense breast tissue yielded a cancer detection rate of 3.2 per 1000 for mammography alone and 12.0 per 1000 for the combination of mammography and MBI. MBI also demonstrated a lower recall rate than that of mammography. MBI is a promising supplemental screening technique in women with dense breast tissue. PMID:25621015

  3. Noninvasive Molecular Imaging of Disease Activity in Atherosclerosis.

    PubMed

    Dweck, Marc R; Aikawa, Elena; Newby, David E; Tarkin, Jason M; Rudd, James H F; Narula, Jagat; Fayad, Zahi A

    2016-07-01

    Major focus has been placed on the identification of vulnerable plaques as a means of improving the prediction of myocardial infarction. However, this strategy has recently been questioned on the basis that the majority of these individual coronary lesions do not in fact go on to cause clinical events. Attention is, therefore, shifting to alternative imaging modalities that might provide a more complete pan-coronary assessment of the atherosclerotic disease process. These include markers of disease activity with the potential to discriminate between patients with stable burnt-out disease that is no longer metabolically active and those with active atheroma, faster disease progression, and increased risk of infarction. This review will examine how novel molecular imaging approaches can provide such assessments, focusing on inflammation and microcalcification activity, the importance of these processes to coronary atherosclerosis, and the advantages and challenges posed by these techniques. PMID:27390335

  4. Multifunctional Gold Nanostars for Molecular Imaging and Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Yuan, Hsiangkuo; Fales, Andrew; Register, Janna; Vo-Dinh, Tuan

    2015-08-01

    Plasmonics-active gold nanoparticles offer excellent potential in molecular imaging and cancer therapy. Among them, gold nanostars (AuNS) exhibit cross-platform flexibility as multimodal contrast agents for macroscopic X-ray computer tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), as well as nanoprobes for photoacoustic tomography (PAT), two-photon photoluminescence (TPL) and surface-enhanced Raman spectroscopy (SERS). Their surfactant-free surface enables versatile functionalization to enhance cancer targeting, and allow triggered drug release. AuNS can also be used as an efficient platform for drug carrying, photothermal therapy, and photodynamic therapy. This review paper presents the latest progress regarding AuNS as a promising nanoplatform for cancer nanotheranostics. Future research directions with AuNS for biomedical applications will also be discussed.

  5. Widespread functional and molecular imaging in drug development.

    PubMed

    Ashton, Edward A

    2007-11-01

    The numbers of both large- and small-molecule drug candidates have increased substantially over the past decade, while overall and late-stage failure rates have hovered around 80 and 50% respectively. The corresponding rise in research and development expenditures relative to numbers of approved drugs has made it increasingly apparent that new methods are needed to assess potential efficacy in the earliest stages of drug development. It is generally not possible to power early-phase trials sufficiently to demonstrate efficacy using clinical end points. However, functional imaging techniques can often provide both the sensitivity to treatment effects and high reproducibility necessary to obtain statistically supportable evidence of treatment effect, even in relatively small Phase I trials. This article examines both the benefits and potential pitfalls associated with the inclusion of functional and molecular imaging in the drug development process.

  6. Mapping microbubble viscosity using fluorescence lifetime imaging of molecular rotors

    PubMed Central

    Hosny, Neveen A.; Mohamedi, Graciela; Rademeyer, Paul; Owen, Joshua; Wu, Yilei; Tang, Meng-Xing; Eckersley, Robert J.; Stride, Eleanor; Kuimova, Marina K.

    2013-01-01

    Encapsulated microbubbles are well established as highly effective contrast agents for ultrasound imaging. There remain, however, some significant challenges to fully realize the potential of microbubbles in advanced applications such as perfusion mapping, targeted drug delivery, and gene therapy. A key requirement is accurate characterization of the viscoelastic surface properties of the microbubbles, but methods for independent, nondestructive quantification and mapping of these properties are currently lacking. We present here a strategy for performing these measurements that uses a small fluorophore termed a “molecular rotor” embedded in the microbubble surface, whose fluorescence lifetime is directly related to the viscosity of its surroundings. We apply fluorescence lifetime imaging to show that shell viscosities vary widely across the population of the microbubbles and are influenced by the shell composition and the manufacturing process. We also demonstrate that heterogeneous viscosity distributions exist within individual microbubble shells even with a single surfactant component. PMID:23690599

  7. Multifunctional gold nanostars for molecular imaging and cancer therapy

    PubMed Central

    Liu, Yang; Yuan, Hsiangkuo; Fales, Andrew M.; Register, Janna K.; Vo-Dinh, Tuan

    2015-01-01

    Plasmonics-active gold nanoparticles offer excellent potential in molecular imaging and cancer therapy. Among them, gold nanostars (AuNS) exhibit cross-platform flexibility as multimodal contrast agents for macroscopic X-ray computer tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), as well as nanoprobes for photoacoustic tomography (PAT), two-photon photoluminescence (TPL), and surface-enhanced Raman spectroscopy (SERS). Their surfactant-free surface enables versatile functionalization to enhance cancer targeting, and allow triggered drug release. AuNS can also be used as an efficient platform for drug carrying, photothermal therapy, and photodynamic therapy (PDT). This review paper presents the latest progress regarding AuNS as a promising nanoplatform for cancer nanotheranostics. Future research directions with AuNS for biomedical applications will also be discussed. PMID:26322306

  8. Ultrasound in Radiology: from Anatomic, Functional, Molecular Imaging to Drug Delivery and Image-Guided Therapy

    PubMed Central

    Klibanov, Alexander L.; Hossack, John A.

    2015-01-01

    During the past decade, ultrasound has expanded medical imaging well beyond the “traditional” radiology setting - a combination of portability, low cost and ease of use makes ultrasound imaging an indispensable tool for radiologists as well as for other medical professionals who need to obtain imaging diagnosis or guide a therapeutic intervention quickly and efficiently. Ultrasound combines excellent ability for deep penetration into soft tissues with very good spatial resolution, with only a few exceptions (i.e. those involving overlying bone or gas). Real-time imaging (up to hundreds and thousands frames per second) enables guidance of therapeutic procedures and biopsies; characterization of the mechanical properties of the tissues greatly aids with the accuracy of the procedures. The ability of ultrasound to deposit energy locally brings about the potential for localized intervention encompassing: tissue ablation, enhancing penetration through the natural barriers to drug delivery in the body and triggering drug release from carrier micro- and nanoparticles. The use of microbubble contrast agents brings the ability to monitor and quantify tissue perfusion, and microbubble targeting with ligand-decorated microbubbles brings the ability to obtain molecular biomarker information, i.e., ultrasound molecular imaging. Overall, ultrasound has become the most widely used imaging modality in modern medicine; it will continue to grow and expand. PMID:26200224

  9. Gastrointestinal tract radionuclide activity on In-111 labeled leukocyte imaging: clinical significance in patients with fever of unknown origin

    SciTech Connect

    Datz, F.L.; Thorne, D.A.

    1986-09-01

    To determine the frequency and clinical significance of indium-111 labeled leukocyte activity in the gastrointestinal (GI) tract of patients with fever of unknown origin, we reviewed 312 leukocyte studies involving 271 patients. Radionuclide activity was noted in the bowel in 59 cases. Of these, only 27 were due to the infection or inflammatory disease that caused the patient's fever. The 32 false-positive results were due primarily to swallowed leukocytes or bleeding. In two cases, no explanation was found for the activity in the GI tract. We conclude that bowel activity on In-111 labeled leukocyte scans in patients with fever of unknown origin often does not correlate with the true cause of the patient's fever.

  10. Targeted Radionuclide Therapy of Human Tumors

    PubMed Central

    Gudkov, Sergey V.; Shilyagina, Natalya Yu.; Vodeneev, Vladimir A.; Zvyagin, Andrei V.

    2015-01-01

    Targeted radionuclide therapy is one of the most intensively developing directions of nuclear medicine. Unlike conventional external beam therapy, the targeted radionuclide therapy causes less collateral damage to normal tissues and allows targeted drug delivery to a clinically diagnosed neoplastic malformations, as well as metastasized cells and cellular clusters, thus providing systemic therapy of cancer. The methods of targeted radionuclide therapy are based on the use of molecular carriers of radionuclides with high affinity to antigens on the surface of tumor cells. The potential of targeted radionuclide therapy has markedly grown nowadays due to the expanded knowledge base in cancer biology, bioengineering, and radiochemistry. In this review, progress in the radionuclide therapy of hematological malignancies and approaches for treatment of solid tumors is addressed. PMID:26729091

  11. Targeted Radionuclide Therapy of Human Tumors.

    PubMed

    Gudkov, Sergey V; Shilyagina, Natalya Yu; Vodeneev, Vladimir A; Zvyagin, Andrei V

    2015-12-28

    Targeted radionuclide therapy is one of the most intensively developing directions of nuclear medicine. Unlike conventional external beam therapy, the targeted radionuclide therapy causes less collateral damage to normal tissues and allows targeted drug delivery to a clinically diagnosed neoplastic malformations, as well as metastasized cells and cellular clusters, thus providing systemic therapy of cancer. The methods of targeted radionuclide therapy are based on the use of molecular carriers of radionuclides with high affinity to antigens on the surface of tumor cells. The potential of targeted radionuclide therapy has markedly grown nowadays due to the expanded knowledge base in cancer biology, bioengineering, and radiochemistry. In this review, progress in the radionuclide therapy of hematological malignancies and approaches for treatment of solid tumors is addressed.

  12. Multifunctional nanomaterials for advanced molecular imaging and cancer therapy

    NASA Astrophysics Data System (ADS)

    Subramaniam, Prasad

    Nanotechnology offers tremendous potential for use in biomedical applications, including cancer and stem cell imaging, disease diagnosis and drug delivery. The development of nanosystems has aided in understanding the molecular mechanisms of many diseases and permitted the controlled nanoscale manipulation of biological phenomena. In recent years, many studies have focused on the use of several kinds of nanomaterials for cancer and stem cell imaging and also for the delivery of anticancer therapeutics to tumor cells. However, the proper diagnosis and treatment of aggressive tumors such as brain and breast cancer requires highly sensitive diagnostic agents, in addition to the ability to deliver multiple therapeutics using a single platform to the target cells. Addressing these challenges, novel multifunctional nanomaterial-based platforms that incorporate multiple therapeutic and diagnostic agents, with superior molecular imaging and targeting capabilities, has been presented in this work. The initial part of this work presents the development of novel nanomaterials with superior optical properties for efficiently delivering soluble cues such as small interfering RNA (siRNA) into brain cancer cells with minimal toxicity. Specifically, this section details the development of non-toxic quantums dots for the imaging and delivery of siRNA into brain cancer and mesenchymal stem cells, with the hope of using these quantum dots as multiplexed imaging and delivery vehicles. The use of these quantum dots could overcome the toxicity issues associated with the use of conventional quantum dots, enabled the imaging of brain cancer and stem cells with high efficiency and allowed for the delivery of siRNA to knockdown the target oncogene in brain cancer cells. The latter part of this thesis details the development of nanomaterial-based drug delivery platforms for the co-delivery of multiple anticancer drugs to brain tumor cells. In particular, this part of the thesis focuses on

  13. Size-Minimized Quantum Dots for Molecular and Cellular Imaging

    NASA Astrophysics Data System (ADS)

    Smith, Andrew M.; Wen, Mary M.; Wang, May D.; Nie, Shuming

    Semiconductor quantum dots, tiny light-emitting particles on thenanometer scale, are emerging as a new class of fluorescent labels for a broad range of molecular and cellular applications. In comparison with organic dyes and fluorescent proteins, they have unique optical and electronic properties such as size-tunable light emission, intense signal brightness, resistance to photobleaching, and broadband absorption for simultaneous excitation of multiple fluorescence colors. Here we report new advances in minimizing the hydrodynamic sizes of quantum dots using multidentate and multifunctional polymer coatings. A key finding is that a linear polymer containing grafted amine and thiol coordinating groups can coat nanocrystals and lead to a highly compact size, exceptional colloidal stability, strong resistance to photobleaching, and high fluorescence quantum yields. This has allowed a new generation of bright and stable quantum dots with small hydrodynamic diameters between 5.6 and 9.7 nm with tunable fluorescence emission from the visible (515 nm) to the near infrared (720 nm). These quantum dots are well suited for molecular and cellular imaging applications in which the nanoparticle hydrodynamic size needs to be minimized. Together with the novel properties of new strain-tunable quantum dots, these findings will be especially useful for multicolor and super-resolution imaging at the single-molecule level.

  14. Molecular Beacons: Powerful Tools for Imaging RNA in Living Cells

    PubMed Central

    Monroy-Contreras, Ricardo; Vaca, Luis

    2011-01-01

    Recent advances in RNA functional studies highlights the pivotal role of these molecules in cell physiology. Diverse methods have been implemented to measure the expression levels of various RNA species, using either purified RNA or fixed cells. Despite the fact that fixed cells offer the possibility to observe the spatial distribution of RNA, assays with capability to real-time monitoring RNA transport into living cells are needed to further understand the role of RNA dynamics in cellular functions. Molecular beacons (MBs) are stem-loop hairpin-structured oligonucleotides equipped with a fluorescence quencher at one end and a fluorescent dye (also called reporter or fluorophore) at the opposite end. This structure permits that MB in the absence of their target complementary sequence do not fluoresce. Upon binding to targets, MBs emit fluorescence, due to the spatial separation of the quencher and the reporter. Molecular beacons are promising probes for the development of RNA imaging techniques; nevertheless much work remains to be done in order to obtain a robust technology for imaging various RNA molecules together in real time and in living cells. The present work concentrates on the different requirements needed to use successfully MB for cellular studies, summarizing recent advances in this area. PMID:21876785

  15. Natural chelates for radionuclide decorporation

    DOEpatents

    Premuzic, E.T.

    1983-08-25

    This invention relates to the method and resulting chelates of desorbing a radionuclide selected from thorium, uranium, and plutonium containing cultures in a bioavailable form involving pseudomonas or other microorganisms. A preferred microorganism is Pseudomonas aeruginosa which forms multiple chelates with thorium in the range of molecular weight 1000 to 1000 and also forms chelates with uranium of molecular weight in the area of 100 to 1000 and 1000 to 2000.

  16. Graphene-based nanomaterials as molecular imaging agents.

    PubMed

    Garg, Bhaskar; Sung, Chu-Hsun; Ling, Yong-Chien

    2015-01-01

    Molecular imaging (MI) is a noninvasive, real-time visualization of biochemical events at the cellular and molecular level within tissues, living cells, and/or intact objects that can be advantageously applied in the areas of diagnostics, therapeutics, drug discovery, and development in understanding the nanoscale reactions including enzymatic conversions and protein-protein interactions. Consequently, over the years, great advancement has been made in the development of a variety of MI agents such as peptides, aptamers, antibodies, and various nanomaterials (NMs) including single-walled carbon nanotubes. Recently, graphene, a material popularized by Geim & Novoselov, has ignited considerable research efforts to rationally design and execute a wide range of graphene-based NMs making them an attractive platform for developing highly sensitive MI agents. Owing to their exceptional physicochemical and biological properties combined with desirable surface engineering, graphene-based NMs offer stable and tunable visible emission, small hydrodynamic size, low toxicity, and high biocompatibility and thus have been explored for in vitro and in vivo imaging applications as a promising alternative of traditional imaging agents. This review begins by describing the intrinsic properties of graphene and the key MI modalities. After which, we provide an overview on the recent advances in the design and development as well as physicochemical properties of the different classes of graphene-based NMs (graphene-dye conjugates, graphene-antibody conjugates, graphene-nanoparticle composites, and graphene quantum dots) being used as MI agents for potential applications including theranostics. Finally, the major challenges and future directions in the field will be discussed.

  17. Near Infrared Imaging of Molecular Beacons in Cancers

    NASA Astrophysics Data System (ADS)

    Chance, Britton

    2001-03-01

    The recent demonstrations of the efficacy of the tumor to background contrast in breast cancer using the tricarbo-cyanine near infrared (NIR) agent with time domain 2-D imaging presages the greater efficacy of site-directed optical contrast agents for early detection of cancers which show contrast (tissue to background) of over 20 fold. Further increases of contrast are obtained with structures that quench the fluorescence until the agent is delivered, recognized, and opened by specific enzymatic activity of the tumor. These are termed ``Molecular Beacons". In order to image the localization of the Beacons, we employ light pen (< 40μ) scanning of the freeze trapped tumor in order to immobilize the tissue, to increase the fluorescence quantum yield and to limit the penetration of the excitation to a thin superficial layer (< 20μ). Precision milling of layers (> 20μ) in LN2 gives the desired 3D high resolution image of the location of the Beacon within in the cancer cell. Since cancer prevention is linked to early detection, the high signal to background obtainable with Molecular Beacons enables the detection of very early subsurface cancers, especially breast and prostate (NIH, UIP). Thus the fluorescent Beacon excites and emits in the NIR window and signals from several cm deep in breast are detected by diffusive wave optical tomography (DWOT). Detection of objects (< 1 mm) is achieved by phased array optical system using 0^O, 180^O 50 MHz modulation of pairs of laser diodes (780 nm) and fluorescence detection (> 800 nm) affording 0.2 mm object detection of even low Beacon concentrations. One, two, and 3-D localization is made possible by one, two, and three orthogonal phase array null planes.

  18. PETglove: a new technology for portable molecular imaging

    NASA Astrophysics Data System (ADS)

    Wong, Kenneth H.; Gruionu, Lucian G.; Cheng, Patrick; Abshire, Pamela; Saveliev, Valeri; Mun, Seong K.; Cleary, Kevin; Weinberg, Irving N.

    2007-03-01

    PET (Positron Emission Tomography) scanning has become a dominant force in oncology care because of its ability to identify regions of abnormal function. The current generation of PET scanners is focused on whole-body imaging, and does not address aspects that might be required by surgeons or other practitioners interested in the function of particular body parts. We are therefore developing and testing a new class of hand-operated molecular imaging scanners designed for use with physical examinations and intraoperative visualization. These devices integrate several technological advances, including (1) nanotechnology-based quantum photodetectors for high performance at low light levels, (2) continuous position tracking of the detectors so that they form a larger 'virtual detector', and (3) novel reconstruction algorithms that do not depend on a circular or ring geometry. The first incarnations of this device will be in the form of a glove with finger-mounted detectors or in a "sash" of detectors that can be draped over the patient. Potential applications include image-guided biopsy, surgical resection of tumors, assessment of inflammatory conditions, and early cancer detection. Our first prototype is in development now along with a clinical protocol for pilot testing.

  19. Molecular Imaging of Metabolic Reprograming in Mutant IDH Cells

    PubMed Central

    Viswanath, Pavithra; Chaumeil, Myriam M.; Ronen, Sabrina M.

    2016-01-01

    Mutations in the metabolic enzyme isocitrate dehydrogenase (IDH) have recently been identified as drivers in the development of several tumor types. Most notably, cytosolic IDH1 is mutated in 70–90% of low-grade gliomas and upgraded glioblastomas, and mitochondrial IDH2 is mutated in ~20% of acute myeloid leukemia cases. Wild-type IDH catalyzes the interconversion of isocitrate to α-ketoglutarate (α-KG). Mutations in the enzyme lead to loss of wild-type enzymatic activity and a neomorphic activity that converts α-KG to 2-hydroxyglutarate (2-HG). In turn, 2-HG, which has been termed an “oncometabolite,” inhibits key α-KG-dependent enzymes, resulting in alterations of the cellular epigenetic profile and, subsequently, inhibition of differentiation and initiation of tumorigenesis. In addition, it is now clear that the IDH mutation also induces a broad metabolic reprograming that extends beyond 2-HG production, and this reprograming often differs from what has been previously reported in other cancer types. In this review, we will discuss in detail what is known to date about the metabolic reprograming of mutant IDH cells, and how this reprograming has been investigated using molecular metabolic imaging. We will describe how metabolic imaging has helped shed light on the basic biology of mutant IDH cells, and how this information can be leveraged to identify new therapeutic targets and to develop new clinically translatable imaging methods to detect and monitor mutant IDH tumors in vivo. PMID:27014635

  20. MOLECULAR AND IONIZED HYDROGEN IN 30 DORADUS. I. IMAGING OBSERVATIONS

    SciTech Connect

    Yeh, Sherry C. C.; Seaquist, Ernest R.; Matzner, Christopher D.; Pellegrini, Eric W.

    2015-07-10

    We present the first fully calibrated H{sub 2} 1–0 S(1) image of the entire 30 Doradus nebula. The observations were conducted using the NOAO Extremely Wide-field Infrared Imager (NEWFIRM) on the CTIO 4 m Blanco Telescope. Together with a NEWFIRM Brγ image of 30 Doradus, our data reveal the morphologies of the warm molecular gas and ionized gas in 30 Doradus. The brightest H{sub 2}-emitting area, which extends from the northeast to the southwest of R136, is a photodissociation region (PDR) viewed face-on, while many clumps and pillar features located at the outer shells of 30 Doradus are PDRs viewed edge-on. Based on the morphologies of H{sub 2}, Brγ, CO, and 8 μm emission, the H{sub 2} to Brγ line ratio, and Cloudy models, we find that the H{sub 2} emission is formed inside the PDRs of 30 Doradus, 2–3 pc to the ionization front of the H ii region, in a relatively low-density environment <10{sup 4} cm{sup −3}. Comparisons with Brγ, 8 μm, and CO emission indicate that H{sub 2} emission is due to fluorescence, and provide no evidence for shock excited emission of this line.

  1. MO-C-BRE-01: The WMIS-AAPM Joint Symposium: Advances in Molecular Imaging

    SciTech Connect

    Contag, C; Pogue, B; Lewis, J

    2014-06-15

    This joint symposium of the World Molecular Imaging Society (WMIS) and the AAPM includes three luminary speakers discussing work in new paradigms of molecular imaging in cancer (Contag), applications of optical imaging technologies to radiation therapy (Pogue) and an update on PET imaging as a surrogate biomarker for cancer progression and response to therapy. Learning Objectives: Appreciate the current trends in molecular and systems imaging. Understand how optical imaging technologies, and particularly Cerenkov detectors, can be used in advancing radiation oncology. Stay current on new PET tracers - and targets - of interest in cancer treatment.

  2. Synthesis and radiolabeling of chelator-RNA aptamer bioconjugates with copper-64 for targeted molecular imaging.

    PubMed

    Rockey, William M; Huang, Ling; Kloepping, Kyle C; Baumhover, Nicholas J; Giangrande, Paloma H; Schultz, Michael K

    2011-07-01

    Ribonucleic acid (RNA) aptamers with high affinity and specificity for cancer-specific cell-surface antigens are promising reagents for targeted molecular imaging of cancer using positron emission tomography (PET). For this application, aptamers must be conjugated to chelators capable of coordinating PET-radionuclides (e.g., copper-64, (64)Cu) to enable radiolabeling for in vivo imaging of tumors. This study investigates the choice of chelator and radiolabeling parameters such as pH and temperature for the development of (64)Cu-labeled RNA-based targeted agents for PET imaging. The characterization and optimization of labeling conditions are described for four chelator-aptamer complexes. Three commercially available bifunctional macrocyclic chelators (1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid mono N-hydroxysuccinimide [DOTA-NHS]; S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid [p-SCN-Bn-NOTA]; and p-SCN-Bn-3,6,9,15-tetraazabicyclo [9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic acid [p-SCN-Bn-PCTA]), as well as the polyamino-macrocyclic diAmSar (3,6,10,13,16,19-hexaazabicyclo[6.6.6] icosane-1,8-diamine) were conjugated to A10-3.2, a RNA aptamer which has been shown to bind specifically to a prostate cancer-specific cell-surface antigen (PSMA). Although a commercial bifunctional version of diAmSar was not available, RNA conjugation with this chelator was achieved in a two-step reaction by the addition of a disuccinimidyl suberate linker. Radiolabeling parameters (e.g., pH, temperature, and time) for each chelator-RNA conjugate were assessed in order to optimize specific activity and RNA stability. Furthermore, the radiolabeled chelator-coupled RNA aptamers were evaluated for binding specificity to their target antigen. In summary, key parameters were established for optimal radiolabeling of RNA aptamers for eventual PET imaging with (64)Cu.

  3. Tumor immunotargeting using innovative radionuclides.

    PubMed

    Kraeber-Bodéré, Françoise; Rousseau, Caroline; Bodet-Milin, Caroline; Mathieu, Cédric; Guérard, François; Frampas, Eric; Carlier, Thomas; Chouin, Nicolas; Haddad, Ferid; Chatal, Jean-François; Faivre-Chauvet, Alain; Chérel, Michel; Barbet, Jacques

    2015-01-01

    This paper reviews some aspects and recent developments in the use of antibodies to target radionuclides for tumor imaging and therapy. While radiolabeled antibodies have been considered for many years in this context, only a few have reached the level of routine clinical use. However, alternative radionuclides, with more appropriate physical properties, such as lutetium-177 or copper-67, as well as alpha-emitting radionuclides, including astatine-211, bismuth-213, actinium-225, and others are currently reviving hopes in cancer treatments, both in hematological diseases and solid tumors. At the same time, PET imaging, with short-lived radionuclides, such as gallium-68, fluorine-18 or copper-64, or long half-life ones, particularly iodine-124 and zirconium-89 now offers new perspectives in immuno-specific phenotype tumor imaging. New antibody analogues and pretargeting strategies have also considerably improved the performances of tumor immunotargeting and completely renewed the interest in these approaches for imaging and therapy by providing theranostics, companion diagnostics and news tools to make personalized medicine a reality. PMID:25679452

  4. Tumor Immunotargeting Using Innovative Radionuclides

    PubMed Central

    Kraeber-Bodéré, Françoise; Rousseau, Caroline; Bodet-Milin, Caroline; Mathieu, Cédric; Guérard, François; Frampas, Eric; Carlier, Thomas; Chouin, Nicolas; Haddad, Ferid; Chatal, Jean-François; Faivre-Chauvet, Alain; Chérel, Michel; Barbet, Jacques

    2015-01-01

    This paper reviews some aspects and recent developments in the use of antibodies to target radionuclides for tumor imaging and therapy. While radiolabeled antibodies have been considered for many years in this context, only a few have reached the level of routine clinical use. However, alternative radionuclides, with more appropriate physical properties, such as lutetium-177 or copper-67, as well as alpha-emitting radionuclides, including astatine-211, bismuth-213, actinium-225, and others are currently reviving hopes in cancer treatments, both in hematological diseases and solid tumors. At the same time, PET imaging, with short-lived radionuclides, such as gallium-68, fluorine-18 or copper-64, or long half-life ones, particularly iodine-124 and zirconium-89 now offers new perspectives in immuno-specific phenotype tumor imaging. New antibody analogues and pretargeting strategies have also considerably improved the performances of tumor immunotargeting and completely renewed the interest in these approaches for imaging and therapy by providing theranostics, companion diagnostics and news tools to make personalized medicine a reality. PMID:25679452

  5. In Vivo Stabilization of a Gastrin-Releasing Peptide Receptor Antagonist Enhances PET Imaging and Radionuclide Therapy of Prostate Cancer in Preclinical Studies.

    PubMed

    Chatalic, Kristell L S; Konijnenberg, Mark; Nonnekens, Julie; de Blois, Erik; Hoeben, Sander; de Ridder, Corrina; Brunel, Luc; Fehrentz, Jean-Alain; Martinez, Jean; van Gent, Dik C; Nock, Berthold A; Maina, Theodosia; van Weerden, Wytske M; de Jong, Marion

    2016-01-01

    A single tool for early detection, accurate staging, and personalized treatment of prostate cancer (PCa) would be a major breakthrough in the field of PCa. Gastrin-releasing peptide receptor (GRPR) targeting peptides are promising probes for a theranostic approach for PCa overexpressing GRPR. However, the successful application of small peptides in a theranostic approach is often hampered by their fast in vivo degradation by proteolytic enzymes, such as neutral endopeptidase (NEP). Here we show for the first time that co-injection of a NEP inhibitor (phosphoramidon (PA)) can lead to an impressive enhancement of diagnostic sensitivity and therapeutic efficacy of the theranostic (68)Ga-/(177)Lu-JMV4168 GRPR-antagonist. Co-injection of PA (300 µg) led to stabilization of (177)Lu-JMV4168 in murine peripheral blood. In PC-3 tumor-bearing mice, PA co-injection led to a two-fold increase in tumor uptake of (68)Ga-/(177)Lu-JMV4168, 1 h after injection. In positron emission tomography (PET) imaging with (68)Ga-JMV4168, PA co-injection substantially enhanced PC-3 tumor signal intensity. Radionuclide therapy with (177)Lu-JMV4168 resulted in significant regression of PC-3 tumor size. Radionuclide therapy efficacy was confirmed by production of DNA double strand breaks, decreased cell proliferation and increased apoptosis. Increased survival rates were observed in mice treated with (177)Lu-JMV4168 plus PA as compared to those without PA. This data shows that co-injection of the enzyme inhibitor PA greatly enhances the theranostic potential of GRPR-radioantagonists for future application in PCa patients.

  6. In Vivo Stabilization of a Gastrin-Releasing Peptide Receptor Antagonist Enhances PET Imaging and Radionuclide Therapy of Prostate Cancer in Preclinical Studies

    PubMed Central

    Chatalic, Kristell L.S.; Konijnenberg, Mark; Nonnekens, Julie; de Blois, Erik; Hoeben, Sander; de Ridder, Corrina; Brunel, Luc; Fehrentz, Jean-Alain; Martinez, Jean; van Gent, Dik C.; Nock, Berthold A.; Maina, Theodosia; van Weerden, Wytske M.; de Jong, Marion

    2016-01-01

    A single tool for early detection, accurate staging, and personalized treatment of prostate cancer (PCa) would be a major breakthrough in the field of PCa. Gastrin-releasing peptide receptor (GRPR) targeting peptides are promising probes for a theranostic approach for PCa overexpressing GRPR. However, the successful application of small peptides in a theranostic approach is often hampered by their fast in vivo degradation by proteolytic enzymes, such as neutral endopeptidase (NEP). Here we show for the first time that co-injection of a NEP inhibitor (phosphoramidon (PA)) can lead to an impressive enhancement of diagnostic sensitivity and therapeutic efficacy of the theranostic 68Ga-/177Lu-JMV4168 GRPR-antagonist. Co-injection of PA (300 µg) led to stabilization of 177Lu-JMV4168 in murine peripheral blood. In PC-3 tumor-bearing mice, PA co-injection led to a two-fold increase in tumor uptake of 68Ga-/177Lu-JMV4168, 1 h after injection. In positron emission tomography (PET) imaging with 68Ga-JMV4168, PA co-injection substantially enhanced PC-3 tumor signal intensity. Radionuclide therapy with 177Lu-JMV4168 resulted in significant regression of PC-3 tumor size. Radionuclide therapy efficacy was confirmed by production of DNA double strand breaks, decreased cell proliferation and increased apoptosis. Increased survival rates were observed in mice treated with 177Lu-JMV4168 plus PA as compared to those without PA. This data shows that co-injection of the enzyme inhibitor PA greatly enhances the theranostic potential of GRPR-radioantagonists for future application in PCa patients. PMID:26722377

  7. Non-invasive molecular imaging of prostate cancer lymph node metastasis

    PubMed Central

    Pouliot, Frédéric; Johnson, Mai; Wu, Lily

    2009-01-01

    Imaging in medicine has been classically based on the anatomical description of organs. In the past 15 years, new imaging techniques based on gene expression that characterize a pathological process have been developed. Molecular imaging is the use of such molecules to image cell-specific characteristics. Here, we review recent advances in molecular imaging, taking as our prime example lymph node (LN) metastasis in prostate cancer. We describe the new techniques and compare their accuracy in detecting LN metastasis in prostate cancer. We also present new molecular strategies for improving tumor detection using adenoviruses, molecular promoters and amplification systems. Finally, we present the concept of ‘in vivo pathology’, which envisages using molecular imaging to accurately localize metastatic lesions based on the molecular signature of the disease. PMID:19482514

  8. Novel paramagnetic contrast agents for molecular imaging and targeted drug delivery.

    PubMed

    Lanza, Gregory M; Winter, Patrick; Caruthers, Shelton; Schmeider, Anne; Crowder, Kathy; Morawski, Anne; Zhang, Huiying; Scott, Michael J; Wickline, Samuel A

    2004-12-01

    Molecular biology and genomic sciences are revealing the early biological signatures for many diseases. In response, the Molecular Imaging community is rapidly developing contrast agents to visualize the nascent pathological changes and to concomitantly deliver treatment directly to the site of disease. The evaluation, development and use of these new agents require a complementary understanding of contrast chemistry and imaging techniques. The fundamental issues surrounding magnetic contrast agent development, rational drug delivery, MR molecular imaging, and their interdependence are elucidated.

  9. Chlorotoxin-Conjugated Multifunctional Dendrimers Labeled with Radionuclide 131I for Single Photon Emission Computed Tomography Imaging and Radiotherapy of Gliomas.

    PubMed

    Zhao, Lingzhou; Zhu, Jingyi; Cheng, Yongjun; Xiong, Zhijuan; Tang, Yueqin; Guo, Lilei; Shi, Xiangyang; Zhao, Jinhua

    2015-09-01

    Chlorotoxin-conjugated multifunctional dendrimers labeled with radionuclide 131I were synthesized and utilized for targeted single photon emission computed tomography (SPECT) imaging and radiotherapy of cancer. In this study, generation five amine-terminated poly(amidoamine) dendrimers were used as a platform to be sequentially conjugated with polyethylene glycol (PEG), targeting agent chlorotoxin (CTX), and 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO). This was followed by acetylation of the remaining dendrimer terminal amines and radiolabeling with 131I to form the targeted theranostic dendrimeric nanoplatform. We show that the dendrimer platform possessing approximately 7.7 CTX and 21.1 HPAO moieties on each dendrimer displays excellent cytocompatibility in a given concentration range (0-20 μM) and can specifically target cancer cells overexpressing matrix metallopeptidase 2 (MMP2) due to the attached CTX. With the attached HPAO moiety having the phenol group, the dendrimer platform can be effectively labeled with radioactive 131I with good stability and high radiochemical purity. Importantly, the 131I labeling renders the dendrimer platform with an ability to be used for targeted SPECT imaging and radiotherapy of an MMP2-overexpressing glioma model in vivo. The developed radiolabeled multifunctional dendrimeric nanoplatform may hold great promise to be used for targeted theranostics of human gliomas.

  10. Radionuclide angiography for assessment of hyperthyroidism

    SciTech Connect

    Lee, V.W.; Welji, A.N.; Shapiro, J.H.; Angtuaco, E.

    1982-01-01

    A retrospective study of 66 radionuclide angiograms of the thyroid showed that a simple visual inspection of the images is highly accurate for diagnosing hyperthyroidism. Mathematical analysis with computers is not necessary.

  11. Synthesis of heterodimer radionuclide nanoparticles for magnetic resonance and single-photon emission computed tomography dual-modality imaging.

    PubMed

    Zhu, Jing; Zhang, Bin; Tian, Jian; Wang, Jiaqing; Chong, Yu; Wang, Xin; Deng, Yaoyao; Tang, Minghua; Li, Yonggang; Ge, Cuicui; Pan, Yue; Gu, Hongwei

    2015-02-28

    We report a facile synthesis of bifunctional Fe3O4-Ag(125)I heterodimers for use as dual-modality imaging agents in magnetic resonance (MR) and single-photon emission computed tomography (SPECT). We introduced (125)I, which is a clinically used radioisotope, as a SPECT reporter, into Fe3O4-Ag heterodimer nanoparticles to provide a new type of bifunctional contrast agent for MRI and SPECT imaging.

  12. A Raman-based endoscopic strategy for multiplexed molecular imaging.

    PubMed

    Zavaleta, Cristina L; Garai, Ellis; Liu, Jonathan T C; Sensarn, Steven; Mandella, Michael J; Van de Sompel, Dominique; Friedland, Shai; Van Dam, Jacques; Contag, Christopher H; Gambhir, Sanjiv S

    2013-06-18

    Endoscopic imaging is an invaluable diagnostic tool allowing minimally invasive access to tissues deep within the body. It has played a key role in screening colon cancer and is credited with preventing deaths through the detection and removal of precancerous polyps. However, conventional white-light endoscopy offers physicians structural information without the biochemical information that would be advantageous for early detection and is essential for molecular typing. To address this unmet need, we have developed a unique accessory, noncontact, fiber optic-based Raman spectroscopy device that has the potential to provide real-time, multiplexed functional information during routine endoscopy. This device is ideally suited for detection of functionalized surface-enhanced Raman scattering (SERS) nanoparticles as molecular imaging contrast agents. This device was designed for insertion through a clinical endoscope and has the potential to detect and quantify the presence of a multiplexed panel of tumor-targeting SERS nanoparticles. Characterization of the Raman instrument was performed with SERS particles on excised human tissue samples, and it has shown unsurpassed sensitivity and multiplexing capabilities, detecting 326-fM concentrations of SERS nanoparticles and unmixing 10 variations of colocalized SERS nanoparticles. Another unique feature of our noncontact Raman endoscope is that it has been designed for efficient use over a wide range of working distances from 1 to 10 mm. This is necessary to accommodate for imperfect centering during endoscopy and the nonuniform surface topology of human tissue. Using this endoscope as a key part of a multiplexed detection approach could allow endoscopists to distinguish between normal and precancerous tissues rapidly and to identify flat lesions that are otherwise missed.

  13. Novel Metal Ion Based Estrogen Mimics for Molecular Imaging

    SciTech Connect

    Rajagopalan, Raghavan

    2006-01-30

    The overall objective of the SBIR Phase I proposal is to prepare and evaluate a new class of {sup 99m}Tc or {sup 94m}Tc containing estrogen-like small molecules ('estrogen mimics') for SPECT or PET molecular imaging of estrogen receptor positive (ER+) tumors. In this approach, the metal ion is integrated into the estrone skeleton by isosteric substitution of a carbon atom in the steroidal structure to give new class of mimics that are topologically similar to the native estrogen (Fig. 1). Although both N{sub 2}S{sub 2} and N{sub 3}S mimics 1 and 2 were considered as target structures, molecular modeling study revealed that the presence of the acetyl group at position-15 in the N{sub 3}S mimic 2 causes steric hinderance toward binding of 2 to SHBG. Therefore, initial efforts were directed at the synthesis and evaluation of the N{sub 2}S{sub 2} mimic 1.

  14. Molecular imaging of biological tissue using gas cluster ions

    PubMed Central

    Tian, Hua; Wucher, Andreas; Winograd, Nicholas

    2015-01-01

    An Arn+ (n = 1–6000) gas cluster ion source has been utilized to map the chemical distribution of lipids in a mouse brain tissue section. We also show that the signal from high mass species can be further enhanced by doping a small amount of CH4 into the Ar cluster to enhance the ionization of several biologically important molecules. Coupled with secondary ion mass spectrometry instrumentation which utilizes a continuous Ar cluster ion projectile, maximum spatial resolution and maximum mass resolution can be achieved at the same time. With this arrangement, it is possible to achieve chemically resolved molecular ion images at the 4-µm resolution level. The focused Arn+/[Arx(CH4)y]+ beams (4–10 µm) have been applied to the study of untreated mouse brain tissue. A high signal level of molecular ions and salt adducts, mainly from various phosphocholine lipids, has been seen and directly used to map the chemical distribution. The signal intensity obtained using the pure Ar cluster source, the CH4-doped cluster source and C60 is also presented. PMID:26207076

  15. Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Seekell, Kevin; Crow, Matthew J.; Marinakos, Stella; Ostrander, Julie; Chilkoti, Ashutosh; Wax, Adam

    2011-11-01

    This work presents simultaneous imaging and detection of three different cell receptors using three types of plasmonic nanoparticles (NPs). The size, shape, and composition-dependent scattering profiles of these NPs allow for a system of multiple distinct molecular markers using a single optical source. With this goal in mind, tags consisting of anti-epidermal growth factor receptor gold nanorods, anti-insulin-like growth factor 1-R silver nanospheres, and human epidermal growth factor receptor 2Ab gold nanospheres were developed to monitor the expression of receptors commonly overexpressed by cancer cells. These labels were chosen because they scatter strongly in distinct spectral windows. A hyperspectral darkfield microspectroscopy system was developed to record the scattering spectra of cells labeled with these molecular tags. Simultaneous monitoring of multiple tags may lead to applications such as profiling of cell line immunophenotype and investigation of receptor signaling pathways. Single, dual, and triple tag experiments were performed to analyze NP tag specificity as well as their interactions. Distinct resonance peaks were observed in these studies, showing the ability to characterize cell lines using conjugated NPs. However, interpreting shifts in these peaks due to changes in a cellular dielectric environment may be complicated by plasmon coupling between NPs bound to proximal receptors and other coupling mechanisms due to the receptors themselves.

  16. New Researches and Application Progress of Commonly Used Optical Molecular Imaging Technology

    PubMed Central

    Chen, Zhi-Yi; Yang, Feng; Lin, Yan; Zhou, Qiu-Lan; Liao, Yang-Ying

    2014-01-01

    Optical molecular imaging, a new medical imaging technique, is developed based on genomics, proteomics and modern optical imaging technique, characterized by non-invasiveness, non-radiativity, high cost-effectiveness, high resolution, high sensitivity and simple operation in comparison with conventional imaging modalities. Currently, it has become one of the most widely used molecular imaging techniques and has been applied in gene expression regulation and activity detection, biological development and cytological detection, drug research and development, pathogenesis research, pharmaceutical effect evaluation and therapeutic effect evaluation, and so forth, This paper will review the latest researches and application progresses of commonly used optical molecular imaging techniques such as bioluminescence imaging and fluorescence molecular imaging. PMID:24696850

  17. Purification of a Low Molecular Weight Fucoidan for SPECT Molecular Imaging of Myocardial Infarction

    PubMed Central

    Saboural, Pierre; Chaubet, Frédéric; Rouzet, Francois; Al-Shoukr, Faisal; Ben Azzouna, Rana; Bouchemal, Nadia; Picton, Luc; Louedec, Liliane; Maire, Murielle; Rolland, Lydia; Potier, Guy; Le Guludec, Dominique; Letourneur, Didier; Chauvierre, Cédric

    2014-01-01

    Fucoidans constitute a large family of sulfated polysaccharides with several biochemical properties. A commercial fucoidan from brown algae, containing low molecular weight polysaccharidic species constituted of l-fucose, uronic acids and sulfate groups, was simply treated here with calcium acetate solution. This treatment led to a purified fraction with a yield of 45%. The physicochemical characterizations of the purified fucoidan using colorimetric assay, MALLS, dRI, FT-IR, NMR, exhibited molecular weight distributions and chemical profiles similar for both fucoidans whereas the sulfate and l-fucose contents increased by 16% and 71%, respectively. The biodistribution study in rat of both compounds labeled with 99mTc evidenced a predominant renal elimination of the purified fucoidan, but the crude fucoidan was mainly retained in liver and spleen. In rat myocardial ischemia-reperfusion, we then demonstrated the better efficiency of the purified fucoidan. This purified sulfated polysaccharide appears promising for the development of molecular imaging in acute coronary syndrome. PMID:25251032

  18. Chelators for copper radionuclides in positron emission tomography radiopharmaceuticals†

    PubMed Central

    Cai, Zhengxin; Anderson, Carolyn J.

    2014-01-01

    The development of chelating agents for copper radionuclides in positron emission tomography radiopharmaceuticals has been a highly active and important area of study in recent years. The rapid evolution of chelators has resulted in highly specific copper chelators that can be readily conjugated to biomolecules and efficiently radiolabeled to form stable complexes in vivo. Chelators are not only designed for conjugation to monovalent biomolecules but also for incorporation into multivalent targeting ligands such as theranostic nanoparticles. These advancements have strengthened the role of copper radionuclides in the fields of nuclear medicine and molecular imaging. This review emphasizes developments of new copper chelators that have most greatly advanced the field of copper-based radiopharmaceuticals over the past 5 years. PMID:24347474

  19. Novel fluorescence molecular imaging of chemotherapy-induced intestinal apoptosis

    NASA Astrophysics Data System (ADS)

    Levin, Galit; Shirvan, Anat; Grimberg, Hagit; Reshef, Ayelet; Yogev-Falach, Merav; Cohen, Avi; Ziv, Ilan

    2009-09-01

    Chemotherapy-induced enteropathy (CIE) is one of the most serious complications of anticancer therapy, and tools for its early detection and monitoring are highly needed. We report on a novel fluorescence method for detection of CIE, based on molecular imaging of the related apoptotic process. The method comprises systemic intravenous administration of the ApoSense fluorescent biomarker (N,N'-didansyl-L-cystine DDC) in vivo and subsequent fluorescence imaging of the intestinal mucosa. In the reported proof-of-concept studies, mice were treated with either taxol+cyclophosphamide or doxil. DDC was administered in vivo at various time points after drug administration, and tracer uptake by ileum tissue was subsequently evaluated by ex vivo fluorescent microscopy. Chemotherapy caused marked and selective uptake of DDC in ileal epithelial cells, in correlation with other hallmarks of apoptosis (i.e., DNA fragmentation and Annexin-V binding). Induction of DDC uptake occurred early after chemotherapy, and its temporal profile was parallel to that of the apoptotic process, as assessed histologically. DDC may therefore serve as a useful tool for detection of CIE. Future potential integration of this method with fluorescent endoscopic techniques, or development of radio-labeled derivatives of DDC for emission tomography, may advance early diagnosis and monitoring of this severe adverse effect of chemotherapy.

  20. Molecular photoacoustic imaging using gold nanoparticles as a contrast agent

    NASA Astrophysics Data System (ADS)

    Kim, Chulhong; Cho, Eun Chul; Chen, Jingyi; Song, Kwang Hyun; Au, Leslie; Favazza, Christopher P.; Zhang, Qiang; Cobley, Claire M.; Xia, Younan; Wang, Lihong V.

    2010-02-01

    Gold nanoparticles have received much attention due to their potential diagnostic and therapeutic applications. Gold nanoparticles are attractive in many biomedical applications because of their biocompatibility, easily modifiable surfaces for targeting, lack of heavy metal toxicity, wide range of sizes (35-100 nm), tunable plasmonic resonance peak, encapsulated site-specific drug delivery, and strong optical absorption in the near-infrared regime. Specifically, due to their strong optical absorption, gold nanoparticles have been used as a contrast agent for molecular photoacoustic (PA) imaging of tumor. The plasmonic resonance peak of the gold nanocages (AuNCs) was tuned to the near-infrared region, and the ratio of the absorption cross-section to the extinction cross-section was approximately ~70%, as measured by PA sensing. We used PEGylated gold nanocages (PEG-AuNCs) as a passive targeting contrast agent on melanomas. After 6-h intravenous injection of PEG-AuNCs, PA amplitude was increased by ~14 %. These results strongly suggest PA imaging paired with AuNCs is a promising diagnostic tool for early cancer detection.

  1. Synthesis of heterodimer radionuclide nanoparticles for magnetic resonance and single-photon emission computed tomography dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Zhang, Bin; Tian, Jian; Wang, Jiaqing; Chong, Yu; Wang, Xin; Deng, Yaoyao; Tang, Minghua; Li, Yonggang; Ge, Cuicui; Pan, Yue; Gu, Hongwei

    2015-02-01

    We report a facile synthesis of bifunctional Fe3O4-Ag125I heterodimers for use as dual-modality imaging agents in magnetic resonance (MR) and single-photon emission computed tomography (SPECT). We introduced 125I, which is a clinically used radioisotope, as a SPECT reporter, into Fe3O4-Ag heterodimer nanoparticles to provide a new type of bifunctional contrast agent for MRI and SPECT imaging.We report a facile synthesis of bifunctional Fe3O4-Ag125I heterodimers for use as dual-modality imaging agents in magnetic resonance (MR) and single-photon emission computed tomography (SPECT). We introduced 125I, which is a clinically used radioisotope, as a SPECT reporter, into Fe3O4-Ag heterodimer nanoparticles to provide a new type of bifunctional contrast agent for MRI and SPECT imaging. Electronic supplementary information (ESI) available: Details of general experimental procedures, TEM image. See DOI: 10.1039/c4nr07255c

  2. 21 CFR 892.1420 - Radionuclide test pattern phantom.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1420 Radionuclide test pattern phantom... performance characteristic of a nuclear medicine imaging device. (b) Classification. Class I (general...

  3. 21 CFR 892.1420 - Radionuclide test pattern phantom.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1420 Radionuclide test pattern phantom... performance characteristic of a nuclear medicine imaging device. (b) Classification. Class I (general...

  4. 21 CFR 892.1420 - Radionuclide test pattern phantom.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1420 Radionuclide test pattern phantom... performance characteristic of a nuclear medicine imaging device. (b) Classification. Class I (general...

  5. 21 CFR 892.1420 - Radionuclide test pattern phantom.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1420 Radionuclide test pattern phantom... performance characteristic of a nuclear medicine imaging device. (b) Classification. Class I (general...

  6. Design of optimal collimation for dedicated molecular breast imaging systems

    SciTech Connect

    Weinmann, Amanda L.; Hruska, Carrie B.; O'Connor, Michael K.

    2009-03-15

    Molecular breast imaging (MBI) is a functional imaging technique that uses specialized small field-of-view gamma cameras to detect the preferential uptake of a radiotracer in breast lesions. MBI has potential to be a useful adjunct method to screening mammography for the detection of occult breast cancer. However, a current limitation of MBI is the high radiation dose (a factor of 7-10 times that of screening mammography) associated with current technology. The purpose of this study was to optimize the gamma camera collimation with the aim of improving sensitivity while retaining adequate resolution for the detection of sub-10-mm lesions. Square-hole collimators with holes matched to the pixilated cadmium zinc telluride detector elements of the MBI system were designed. Data from MBI patient studies and parameters of existing dual-head MBI systems were used to guide the range of desired collimator resolutions, source-to-collimator distances, pixel sizes, and collimator materials that were examined. General equations describing collimator performance for a conventional gamma camera were used in the design process along with several important adjustments to account for the specialized imaging geometry of the MBI system. Both theoretical calculations and a Monte Carlo model were used to measure the geometric efficiency (or sensitivity) and resolution of each designed collimator. Results showed that through optimal collimation, collimator sensitivity could be improved by factors of 1.5-3.2, while maintaining a collimator resolution of either {<=}5 or {<=}7.5 mm at a distance of 3 cm from the collimator face. These gains in collimator sensitivity permit an inversely proportional drop in the required dose to perform MBI.

  7. Molecular imaging of inflammation and intraplaque vasa vasorum: A step forward to identification of vulnerable plaques?

    PubMed Central

    ten Kate, Gerrit L.; Sijbrands, Eric J. G.; Valkema, Roelf; ten Cate, Folkert J.; Feinstein, Steven B.; van der Steen, Antonius F. W.; Daemen, Mat J. A. P.

    2010-01-01

    Current developments in cardiovascular biology and imaging enable the noninvasive molecular evaluation of atherosclerotic vascular disease. Intraplaque neovascularization sprouting from the adventitial vasa vasorum has been identified as an independent predictor of intraplaque hemorrhage and plaque rupture. These intraplaque vasa vasorum result from angiogenesis, most likely under influence of hypoxic and inflammatory stimuli. Several molecular imaging techniques are currently available. Most experience has been obtained with molecular imaging using positron emission tomography and single photon emission computed tomography. Recently, the development of targeted contrast agents has allowed molecular imaging with magnetic resonance imaging, ultrasound and computed tomography. The present review discusses the use of these molecular imaging techniques to identify inflammation and intraplaque vasa vasorum to identify vulnerable atherosclerotic plaques at risk of rupture and thrombosis. The available literature on molecular imaging techniques and molecular targets associated with inflammation and angiogenesis is discussed, and the clinical applications of molecular cardiovascular imaging and the use of molecular techniques for local drug delivery are addressed. PMID:20552308

  8. Neuroendocrine tumours of the head and neck: anatomical, functional and molecular imaging and contemporary management

    PubMed Central

    Subedi, Navaraj; Prestwich, Robin; Chowdhury, Fahmid; Patel, Chirag

    2013-01-01

    Abstract Neuroendocrine tumours (NETs) of the head and neck are rare neoplasms and can be of epithelial or non-epithelial differentiation. Although the natural history of NETs is variable, it is crucial to establish an early diagnosis of these tumours as they can be potentially curable. Conventional anatomical imaging and functional imaging using radionuclide scintigraphy and positron emission tomography/computed tomography can be complementary for the diagnosis, staging and monitoring of treatment response. This article describes and illustrates the imaging features of head and neck NETs, discusses the potential future role of novel positron-emitting tracers that are emerging into clinical practice and reviews contemporary management of these tumours. Familiarity with the choice of imaging techniques and the variety of imaging patterns and treatment options should help guide radiologists in the management of this rare but important subgroup of head and neck neoplasms. PMID:24240099

  9. Optimized time-resolved imaging of contrast kinetics (TRICKS) in dynamic contrast-enhanced MRI after peptide receptor radionuclide therapy in small animal tumor models.

    PubMed

    Haeck, Joost; Bol, Karin; Bison, Sander; van Tiel, Sandra; Koelewijn, Stuart; de Jong, Marion; Veenland, Jifke; Bernsen, Monique

    2015-01-01

    Anti-tumor efficacy of targeted peptide-receptor radionuclide therapy (PRRT) relies on several factors, including functional tumor vasculature. Little is known about the effect of PRRT on tumor vasculature. With dynamic contrast-enhanced (DCE-) MRI, functional vasculature is imaged and quantified using contrast agents. In small animals DCE-MRI is a challenging application. We optimized a clinical sequence for fast hemodynamic acquisitions, time-resolved imaging of contrast kinetics (TRICKS), to obtain DCE-MRI images at both high spatial and high temporal resolution in mice and rats. Using TRICKS, functional vasculature was measured prior to PRRT and longitudinally to investigate the effect of treatment on tumor vascular characteristics. Nude mice bearing H69 tumor xenografts and rats bearing syngeneic CA20948 tumors were used to study perfusion following PRRT administration with (177) lutetium octreotate. Both semi-quantitative and quantitative parameters were calculated. Treatment efficacy was measured by tumor-size reduction. Optimized TRICKS enabled MRI at 0.032 mm(3) voxel size with a temporal resolution of less than 5 s and large volume coverage, a substantial improvement over routine pre-clinical DCE-MRI studies. Tumor response to therapy was reflected in changes in tumor perfusion/permeability parameters. The H69 tumor model showed pronounced changes in DCE-derived parameters following PRRT. The rat CA20948 tumor model showed more heterogeneity in both treatment outcome and perfusion parameters. TRICKS enabled the acquisition of DCE-MRI at both high temporal resolution (Tres ) and spatial resolutions relevant for small animal tumor models. With the high Tres enabled by TRICKS, accurate pharmacokinetic data modeling was feasible. DCE-MRI parameters revealed changes over time and showed a clear relationship between tumor size and Ktrans . PMID:25995102

  10. Optimized time-resolved imaging of contrast kinetics (TRICKS) in dynamic contrast-enhanced MRI after peptide receptor radionuclide therapy in small animal tumor models.

    PubMed

    Haeck, Joost; Bol, Karin; Bison, Sander; van Tiel, Sandra; Koelewijn, Stuart; de Jong, Marion; Veenland, Jifke; Bernsen, Monique

    2015-01-01

    Anti-tumor efficacy of targeted peptide-receptor radionuclide therapy (PRRT) relies on several factors, including functional tumor vasculature. Little is known about the effect of PRRT on tumor vasculature. With dynamic contrast-enhanced (DCE-) MRI, functional vasculature is imaged and quantified using contrast agents. In small animals DCE-MRI is a challenging application. We optimized a clinical sequence for fast hemodynamic acquisitions, time-resolved imaging of contrast kinetics (TRICKS), to obtain DCE-MRI images at both high spatial and high temporal resolution in mice and rats. Using TRICKS, functional vasculature was measured prior to PRRT and longitudinally to investigate the effect of treatment on tumor vascular characteristics. Nude mice bearing H69 tumor xenografts and rats bearing syngeneic CA20948 tumors were used to study perfusion following PRRT administration with (177) lutetium octreotate. Both semi-quantitative and quantitative parameters were calculated. Treatment efficacy was measured by tumor-size reduction. Optimized TRICKS enabled MRI at 0.032 mm(3) voxel size with a temporal resolution of less than 5 s and large volume coverage, a substantial improvement over routine pre-clinical DCE-MRI studies. Tumor response to therapy was reflected in changes in tumor perfusion/permeability parameters. The H69 tumor model showed pronounced changes in DCE-derived parameters following PRRT. The rat CA20948 tumor model showed more heterogeneity in both treatment outcome and perfusion parameters. TRICKS enabled the acquisition of DCE-MRI at both high temporal resolution (Tres ) and spatial resolutions relevant for small animal tumor models. With the high Tres enabled by TRICKS, accurate pharmacokinetic data modeling was feasible. DCE-MRI parameters revealed changes over time and showed a clear relationship between tumor size and Ktrans .

  11. Tumor Endothelial Marker Imaging in Melanomas Using Dual-Tracer Fluorescence Molecular Imaging

    PubMed Central

    Tichauer, Kenneth M.; Deharvengt, Sophie J.; Samkoe, Kimberley S.; Gunn, Jason R.; Bosenberg, Marcus W.; Turk, Mary-Jo; Hasan, Tayyaba; Stan, Radu V.; Pogue, Brian W.

    2014-01-01

    Purpose Cancer-specific endothelial markers available for intravascular binding are promising targets for new molecular therapies. In this study, a molecular imaging approach of quantifying endothelial marker concentrations (EMCI) is developed and tested in highly light-absorbing melanomas. The approach involves injection of targeted imaging tracer in conjunction with an untargeted tracer, which is used to account for nonspecific uptake and tissue optical property effects on measured targeted tracer concentrations. Procedures Theoretical simulations and a mouse melanoma model experiment were used to test out the EMCI approach. The tracers used in the melanoma experiments were fluorescently labeled anti-Plvap/PV1 antibody (plasmalemma vesicle associated protein Plvap/PV1 is a transmembrane protein marker exposed on the luminal surface of endothelial cells in tumor vasculature) and a fluorescent isotype control antibody, the uptakes of which were measured on a planar fluorescence imaging system. Results The EMCI model was found to be robust to experimental noise under reversible and irreversible binding conditions and was capable of predicting expected overexpression of PV1 in melanomas compared to healthy skin despite a 5-time higher measured fluorescence in healthy skin compared to melanoma: attributable to substantial light attenuation from melanin in the tumors. Conclusions This study demonstrates the potential of EMCI to quantify endothelial marker concentrations in vivo, an accomplishment that is currently unavailable through any other methods, either in vivo or ex vivo. PMID:24217944

  12. Targeted radionuclide therapy

    SciTech Connect

    Williams, Lawrence E.; DeNardo, Gerald L.; Meredith, Ruby F.

    2008-07-15

    Targeted radionuclide therapy (TRT) seeks molecular and functional targets within patient tumor sites. A number of agents have been constructed and labeled with beta, alpha, and Auger emitters. Radionuclide carriers spanning a broad range of sizes; e.g., antibodies, liposomes, and constructs such as nanoparticles have been used in these studies. Uptake, in percent-injected dose per gram of malignant tissue, is used to evaluate the specificity of the targeting vehicle. Lymphoma (B-cell) has been the primary clinical application. Extension to solid tumors will require raising the macroscopic absorbed dose by several-fold over values found in present technology. Methods that may effect such changes include multistep targeting, simultaneous chemotherapy, and external sequestration of the agent. Toxicity has primarily involved red marrow so that marrow replacement can also be used to enhance future TRT treatments. Correlation of toxicities and treatment efficiency has been limited by relatively poor absorbed dose estimates partly because of using standard (phantom) organ sizes. These associations will be improved in the future by obtaining patient-specific organ size and activity data with hybrid SPECT/CT and PET/CT scanners.

  13. Targeted radionuclide therapy

    PubMed Central

    Williams, Lawrence E.; DeNardo, Gerald L.; Meredith, Ruby F.

    2008-01-01

    Targeted radionuclide therapy (TRT) seeks molecular and functional targets within patient tumor sites. A number of agents have been constructed and labeled with beta, alpha, and Auger emitters. Radionuclide carriers spanning a broad range of sizes; e.g., antibodies, liposomes, and constructs such as nanoparticles have been used in these studies. Uptake, in percent-injected dose per gram of malignant tissue, is used to evaluate the specificity of the targeting vehicle. Lymphoma (B-cell) has been the primary clinical application. Extension to solid tumors will require raising the macroscopic absorbed dose by several-fold over values found in present technology. Methods that may effect such changes include multistep targeting, simultaneous chemotherapy, and external sequestration of the agent. Toxicity has primarily involved red marrow so that marrow replacement can also be used to enhance future TRT treatments. Correlation of toxicities and treatment efficiency has been limited by relatively poor absorbed dose estimates partly because of using standard (phantom) organ sizes. These associations will be improved in the future by obtaining patient-specific organ size and activity data with hybrid SPECT∕CT and PET∕CT scanners. PMID:18697529

  14. [Radionuclide therapy of endocrine-related cancer].

    PubMed

    Kratochwil, C; Giesel, F L

    2014-10-01

    This article gives an overview of the established radionuclide therapies for endocrine-related cancer that already have market authorization or are currently under evaluation in clinical trials. Radioiodine therapy is still the gold standard for differentiated iodine-avid thyroid cancer. In patients with bone and lung metastases (near) total remission is seen in approximately 50% and the 15-year survival rate for these patients is approximately 90%. In contrast to the USA, meta-iodobenzylguanidine (MIBG) therapy has market approval in Europe. According to the current literature, in the setting of advanced stage neuroblastoma and malignant pheochromocytoma or paraganglioma, radiological remission can be achieved in >30% and symptom control in almost 80% of the treated patients. Somatostatin receptor targeted radionuclide therapies (e.g. with DOTATATE or DOTATOC) demonstrated promising results in phase 2 trials, reporting progression-free survival in the range of 24-36 months. A first phase 3 pivotal trial for intestinal carcinoids is currently recruiting and another trial for pancreatic neuroendocrine tumors is planned. Radiopharmaceuticals based on glucagon-like peptide 1 (GLP1) or minigastrins are in the early evaluation stage for application in the treatment of insulinomas and medullary thyroid cancer. In general, radiopharmaceutical therapy belongs to the group of so-called theranostics which means that therapy is tailored for individual patients based on molecular imaging diagnostics to stratify target positive or target negative tumor phenotypes.

  15. Radionuclide imaging of the spleen with heat denatured technetium-99m RBC when the splenic reticuloendothelial system seems impaired

    SciTech Connect

    Owunwanne, A.; Halkar, R.; Al-Rasheed, A.; Abubacker, K.C.; Abdel-Dayem, H.

    1988-03-01

    Imaging of the spleen of 10 patients who had been hematologically diagnosed with sickle-cell anemia (SCA) was studied with (/sup 99m/Tc)tin colloid and heat denatured (/sup 99m/Tc)RBCs. In all ten patients, there was faint or nonvisualization of the spleen with (/sup 99m/Tc)tin colloid. However, with heat denatured (/sup 99m/Tc)RBCs, nine spleens were well visualized, and the uptake was homogenous. One spleen had two patchy areas of uptake. The results indicate that when splenic phagocytic function is impaired as reflected by nonvisualization of the spleen with (/sup 99m/Tc)tin colloid, it is still possible to image such a spleen with heat denatured (/sup 99m/Tc)RBCs

  16. The role of imaging and molecular imaging in the early detection of metabolic and cardiovascular dysfunctions.

    PubMed

    Montet-Abou, K; Viallon, M; Hyacinthe, J-N; Delattre, B; Vallee, J-P; Didier, D; Croisille, P; Montet, X

    2010-12-01

    Despite intense effort, obesity is still rising throughout the world. Links between obesity and cardiovascular diseases are now well established. Most of the cardiovascular changes related to obesity can be followed by magnetic resonance imaging (MRI) or by magnetic resonance spectroscopy (MRS). In particular, we will see in this review that MRI/MRS is extremely well suited to depict (1) changes in cardiac mass and function, (2) changes in stroke volume, (3) accumulation of fat inside the mediastinum or even inside the cardiomyocytes, (4) cell viability and (5) molecular changes during early cardiovascular diseases. PMID:21151150

  17. Can Physicians Identify Inappropriate Nuclear Stress Tests? An Examination of Inter-rater Reliability for the 2009 Appropriate Use Criteria for Radionuclide Imaging

    PubMed Central

    Ye, Siqin; Rabbani, LeRoy E.; Kelly, Christopher R.; Kelly, Maureen R.; Lewis, Matthew; Paz, Yehuda; Peck, Clara L.; Rao, Shaline; Bokhari, Sabahat; Weiner, Shepard D.; Einstein, Andrew J.

    2014-01-01

    Background We sought to determine inter-rater reliability of the 2009 Appropriate Use Criteria (AUC) for radionuclide imaging (RNI) and whether physicians at various levels of training can effectively identify nuclear stress tests with inappropriate indications. Methods and Results Four hundred patients were randomly selected from a consecutive cohort of patients undergoing nuclear stress testing at an academic medical center. Raters with different levels of training (including cardiology attending physicians, cardiology fellows, internal medicine hospitalists, and internal medicine interns) classified individual nuclear stress tests using the 2009 AUC. Consensus classification by two cardiologists was considered the operational gold standard, and sensitivity and specificity of individual raters for identifying inappropriate tests was calculated. Inter-rater reliability of the AUC was assessed using Cohen’s kappa statistics for pairs of different raters. The mean age of patients was 61.5 years; 214 (54%) were female. The cardiologists rated 256 (64%) of 400 NSTs as appropriate, 68 (18%) as uncertain, 55 (14%) as inappropriate; 21 (5%) tests were unable to be classified. Inter-rater reliability for non-cardiologist raters was modest (unweighted Cohen’s kappa, 0.51, 95% confidence interval, 0.45 to 0.55). Sensitivity of individual raters for identifying inappropriate tests ranged from 47% to 82%, while specificity ranged from 85% to 97%. Conclusions Inter-rater reliability for the 2009 AUC for RNI is modest, and there is considerable variation in the ability of raters at different levels of training to identify inappropriate tests. PMID:25563660

  18. Molecular Images in Organic Chemistry: Assessment of Understanding in Aromaticity, Symmetry, Spectroscopy, and Shielding

    ERIC Educational Resources Information Center

    Ealy, Julie B.; Hermanson, Jim

    2006-01-01

    When students take General Chemistry there are substantially fewer molecular images than they will encounter in Organic Chemistry. The molecular images Organic Chemistry students see in their textbooks are ones that use dashes and wedges to represent 2D and semi 3D views, ball and spoke, ball and wire, and structural formulas, to name just a few.…

  19. Translational applications of molecular imaging in cardiovascular disease and stem cell therapy.

    PubMed

    Du, Wei; Tao, Hongyan; Zhao, Shihua; He, Zuo-Xiang; Li, Zongjin

    2015-09-01

    Cardiovascular disease (CVD) is the leading cause of mortality and morbidity worldwide. Molecular imaging techniques provide valuable information at cellular and molecular level, as opposed to anatomical and structural layers acquired from traditional imaging modalities. More specifically, molecular imaging employs imaging probes which interact with specific molecular targets and therefore makes it possible to visualize biological processes in vivo. Molecular imaging technology is now progressing towards preclinical and clinical application that gives an integral and comprehensive guidance for the investigation of cardiovascular disease. In addition, cardiac stem cell therapy holds great promise for clinical translation. Undoubtedly, combining stem cell therapy with molecular imaging technology will bring a broad prospect for the study and treatment of cardiac disease. This review will focus on the progresses of molecular imaging strategies in cardiovascular disease and cardiac stem cell therapy. Furthermore, the perspective on the future role of molecular imaging in clinical translation and potential strategies in defining safety and efficacy of cardiac stem cell therapies will be discussed.

  20. Introduction to the special issue on molecular imaging in radiation biology.

    PubMed

    Humm, John L; Dewhirst, Mark W; Bhujwalla, Zaver M

    2012-04-01

    Molecular imaging is an evolving science that is concerned with the development of novel imaging probes and biomarkers that can be used to non-invasively image molecular and cellular processes. This special issue approaches molecular imaging in the context of radiation research, focusing on biomarkers and imaging methods that provide measurable signals that can assist in the quantification of radiation-induced effects of living systems at the physical, chemical and biological levels. The potential to image molecular changes in response to a radiation insult opens new and exciting opportunities for a more profound understanding of radiation biology, with the possibility of translation of these techniques to radiotherapy practice. This special issue brings together 14 reviews dedicated to the use of molecular imaging in the field of radiation research. The initial three reviews are introductory overviews of the key molecular imaging modalities: magnetic resonance, nuclear and optical. This is followed by 11 reviews each focusing on a specialist area within the field of radiation research. These include: hypoxia and perfusion, tissue metabolism, normal tissue injury, cell death and viability, receptor targeting and nanotechnology, reporter genes, reactive oxygen species (ROS), and biological dosimetry. Over the preceding decade, molecular imaging brought significant new advances to our understanding of every area of radiation biology. This special issue shows us these advances and points to the vibrant future of our field armed with these new capabilities.

  1. In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging

    PubMed Central

    Hu, Zhenhua; Qu, Yawei; Wang, Kun; Zhang, Xiaojun; Zha, Jiali; Song, Tianming; Bao, Chengpeng; Liu, Haixiao; Wang, Zhongliang; Wang, Jing; Liu, Zhongyu; Liu, Haifeng; Tian, Jie

    2015-01-01

    Cerenkov luminescence imaging utilizes visible photons emitted from radiopharmaceuticals to achieve in vivo optical molecular-derived signals. Since Cerenkov radiation is weak, non-optimum for tissue penetration and continuous regardless of biological interactions, it is challenging to detect this signal with a diagnostic dose. Therefore, it is challenging to achieve useful activated optical imaging for the acquisition of direct molecular information. Here we introduce a novel imaging strategy, which converts γ and Cerenkov radiation from radioisotopes into fluorescence through europium oxide nanoparticles. After a series of imaging studies, we demonstrate that this approach provides strong optical signals with high signal-to-background ratios, an ideal tissue penetration spectrum and activatable imaging ability. In comparison with present imaging techniques, it detects tumour lesions with low radioactive tracer uptake or small tumour lesions more effectively. We believe it will facilitate the development of nuclear and optical molecular imaging for new, highly sensitive imaging applications. PMID:26123615

  2. A Molecular Imaging Approach to Mercury Sensing Based on Hyperpolarized (129)Xe Molecular Clamp Probe.

    PubMed

    Guo, Qianni; Zeng, Qingbin; Jiang, Weiping; Zhang, Xiaoxiao; Luo, Qing; Zhang, Xu; Bouchard, Louis-S; Liu, Maili; Zhou, Xin

    2016-03-14

    Mercury pollution, in the form of mercury ions (Hg(2+)), is a major health and environmental hazard. Commonly used sensors are invasive and limited to point measurements. Fluorescence-based sensors do not provide depth resolution needed to image spatial distributions. Herein we report a novel sensor capable of yielding spatial distributions by MRI using hyperpolarized (129)Xe. A molecular clamp probe was developed consisting of dipyrrolylquinoxaline (DPQ) derivatives and twocryptophane-A cages. The DPQ derivatives act as cation receptors whereas cryptophane-A acts as a suitable host molecule for xenon. When the DPQ moiety interacts with mercury ions, the molecular clamp closes on the ion. Due to overlap of the electron clouds of the two cryptophane-A cages, the shielding effect on the encapsulated Xe becomes important. This leads to an upfield change of the chemical shift of the encapsulated Xe. This sensor exhibits good selectivity and sensitivity toward the mercury ion. This mercury-activated hyperpolarized (129)Xe-based chemosensor is a new concept method for monitoring Hg(2+) ion distributions by MRI.

  3. Advancing molecular imaging: a chairman's perspective on how radiology can meet the challenge.

    PubMed

    Hricak, Hedvig

    2011-02-01

    To date, most molecular imaging techniques applied clinically have offered relatively general information about the metabolism and physiology of diseased cells and tissues. However, due to recent scientific and technological advances, much more specifically targeted molecular imaging probes (e.g., reporter gene probes, whole cell-tracking probes, and probes for localizing specific biomolecules) are now being used in preclinical research and, in some cases, translated to the clinical setting. As a result, the imaging community is poised to help lead a revolution in personalized, molecularly targeted medicine. This article considers the importance of molecular imaging for advancing research and clinical care both within individual institutions and across the medical field. It outlines specific steps that leaders in academic radiology can take to hasten progress in molecular imaging and explains why they must have the courage to reach across traditional interdisciplinary boundaries and advocate for major investments in equipment, education, and personnel. PMID:20809095

  4. SU-E-I-39: Molecular Image Guided Cancer Stem Cells Therapy

    SciTech Connect

    Abdollahi, H

    2014-06-01

    Purpose: Cancer stem cells resistance to radiation is a problematic issue that has caused a big fail in cancer treatment. Methods: As a primary work, molecular imaging can indicate the main mechanisms of radiation resistance of cancer stem cells. By developing and commissioning new probes and nanomolecules and biomarkers, radiation scientist will able to identify the essential pathways of radiation resistance of cancer stem cells. As the second solution, molecular imaging is a best way to find biological target volume and delineate cancer stem cell tissues. In the other hand, by molecular imaging techniques one can image the treatment response in tumor and also in normal tissue. In this issue, the response of cancer stem cells to radiation during therapy course can be imaged, also the main mechanisms of radiation resistance and finding the best radiation modifiers (sensitizers) can be achieved by molecular imaging modalities. In adaptive radiotherapy the molecular imaging plays a vital role to have higher tumor control probability by delivering high radiation doses to cancer stem cells in any time of treatment. The outcome of a feasible treatment is dependent to high cancer stem cells response to radiation and removing all of which, so a good imaging modality can show this issue and preventing of tumor recurrence and metastasis. Results: Our results are dependent to use of molecular imaging as a new modality in the clinic. We propose molecular imaging as a new radiobiological technique to solve radiation therapy problems due to cancer stem cells. Conclusion: Molecular imaging guided cancer stem cell diagnosis and therapy is a new approach in the field of cancer treatment. This new radiobiological imaging technique should be developed in all clinics as a feasible tool that is more biological than physical imaging.

  5. Radionuclide deposition control

    DOEpatents

    Brehm, William F.; McGuire, Joseph C.

    1980-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

  6. Radionuclide (131)I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer.

    PubMed

    Chen, Lei; Zhong, Xiaoyan; Yi, Xuan; Huang, Min; Ning, Ping; Liu, Teng; Ge, Cuicui; Chai, Zhifang; Liu, Zhuang; Yang, Kai

    2015-10-01

    Nano-graphene and its derivatives have attracted great attention in biomedicine, including their applications in cancer theranostics. In this work, we develop 131I labeled, polyethylene glycol (PEG) coated reduced nano-graphene oxide (RGO), obtaining 131I-RGO-PEG for nuclear imaging guided combined radiotherapy and photothermal therapy of cancer. Compared with free 131I, 131IRGO- PEG exhibits enhanced cellular uptake and thus improved radio-therapeutic efficacy against cancer cells. As revealed by gamma imaging, efficient tumor accumulation of 131I-RGO-PEG is observed after its intravenous injection. While RGO exhibits strong near-infrared (NIR) absorbance and could induce effective photothermal heating of tumor under NIR light irradiation, 131I is able to emit high-energy X-ray to induce cancer killing as the result of radio ionization effect. By utilizing the combined photothermal therapy and radiotherapy, both of which are delivered by a single agent 131IRGO- PEG, effective elimination of tumors is achieved in our animal tumor model experiments. Toxicology studies further indicate that 131I-RGO-PEG induces no appreciable toxicity to mice at the treatment dose. Our work demonstrates the great promise of combing nuclear medicine and photothermal therapy as a novel therapeutic strategy to realize synergistic efficacy in cancer treatment.

  7. Radionuclide (131)I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer.

    PubMed

    Chen, Lei; Zhong, Xiaoyan; Yi, Xuan; Huang, Min; Ning, Ping; Liu, Teng; Ge, Cuicui; Chai, Zhifang; Liu, Zhuang; Yang, Kai

    2015-10-01

    Nano-graphene and its derivatives have attracted great attention in biomedicine, including their applications in cancer theranostics. In this work, we develop 131I labeled, polyethylene glycol (PEG) coated reduced nano-graphene oxide (RGO), obtaining 131I-RGO-PEG for nuclear imaging guided combined radiotherapy and photothermal therapy of cancer. Compared with free 131I, 131IRGO- PEG exhibits enhanced cellular uptake and thus improved radio-therapeutic efficacy against cancer cells. As revealed by gamma imaging, efficient tumor accumulation of 131I-RGO-PEG is observed after its intravenous injection. While RGO exhibits strong near-infrared (NIR) absorbance and could induce effective photothermal heating of tumor under NIR light irradiation, 131I is able to emit high-energy X-ray to induce cancer killing as the result of radio ionization effect. By utilizing the combined photothermal therapy and radiotherapy, both of which are delivered by a single agent 131IRGO- PEG, effective elimination of tumors is achieved in our animal tumor model experiments. Toxicology studies further indicate that 131I-RGO-PEG induces no appreciable toxicity to mice at the treatment dose. Our work demonstrates the great promise of combing nuclear medicine and photothermal therapy as a novel therapeutic strategy to realize synergistic efficacy in cancer treatment. PMID:26188609

  8. Update on radionuclide imaging in hepatobiliary disease. [/sup 99m/Tc-labelled acetanilide iminodracetic acid analogues

    SciTech Connect

    Rosenthall, L.

    1981-05-01

    The recent introduction of technetium Tc 99m-labeled acetanilide iminodiacetic acid (/sup 99m/Tc-IDA) analogues has facilitated the clincal study of the bile flow pathways. A variety of /sup 99m/Tc-IDA derivaties are under investigation. Basically all are metabolized by the hepatocyte and immediately thereafter excreted unconjugated into the biliary tract. Of the various derivatives tested, e.g., dimethyl (lidofenin), diethyl, paraisopropyl (iprofenin), parabutyl (butilfenin), and diisopropyl (disofenin), the last named is the best universal agent at this time. By serial liver imaging the patency of the cystic duct and the integrity of altered cholangiointestinal anatomy can be assessed, leakage of bile and gastric reflux can be disclosed, and medical and surgical jaundice can be distinguished.

  9. Lead sulfide near-infrared quantum dot bioconjugates for targeted molecular imaging.

    PubMed

    Sun, Jiantang; Zhu, Ming-Qiang; Fu, Kun; Lewinski, Nastassja; Drezek, Rebekah A

    2007-01-01

    In this paper, we report the use of lead sulfide quantum dot (PbS QD) bioconjugates as near infrared (NIR) contrast agents for targeted molecular imaging with expanded emission wavelengths beyond 1000 nm. The red-shifted emission band, coupled with the small particle size, which will facilitate clearance, both afford PbS QDs unique properties for noninvasive, high resolution in vivo NIR imaging applications. We have performed imaging experiments at the molecular level using surface-modified PbS NIR QDs, together with our lab-built NIR imaging system. This novel instrumentation and fluorescent contrast agent have enabled us to study the relatively unexplored NIR biomedical imaging spectral region of 900-1200 nm. Preliminary experimental results indicate that PbS-QD/antibody bioconjugates are promising candidates for targeted NIR molecular imaging and future in vivo NIR tissue imaging applications.

  10. Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics

    PubMed Central

    Tran, Trung D; Caruthers, Shelton D; Hughes, Michael; Marsh, John N; Cyrus, Tillmann; Winter, Patrick M; Neubauer, Anne M; Wickline, Samuel A; Lanza, Gregory M

    2007-01-01

    Molecular imaging is a novel tool that has allowed non-invasive diagnostic imaging to transition from gross anatomical description to identification of specific tissue epitopes and observation of biological processes at the cellular level. This technique has been confined to the field of nuclear imaging; however, recent advances in nanotechnology have extended this research to include ultrasound (US) and magnetic resonance (MR) imaging. The exploitation of nanotechnology for MR and US molecular imaging has generated several candidate contrast agents. One multimodality platform, targeted perfluorocarbon (PFC) nanoparticles, is useful for noninvasive detection with US and MR, targeted drug delivery, and quantification. PMID:18203420

  11. Lipid-shelled vehicles: engineering for ultrasound molecular imaging and drug delivery.

    PubMed

    Ferrara, Katherine W; Borden, Mark A; Zhang, Hua

    2009-07-21

    Ultrasound pressure waves can map the location of lipid-stabilized gas micro-bubbles after their intravenous administration in the body, facilitating an estimate of vascular density and microvascular flow rate. Microbubbles are currently approved by the Food and Drug Administration as ultrasound contrast agents for visualizing opacification of the left ventricle in echocardiography. However, the interaction of ultrasound waves with intravenously-injected lipid-shelled particles, including both liposomes and microbubbles, is a far richer field. Particles can be designed for molecular imaging and loaded with drugs or genes; the mechanical and thermal properties of ultrasound can then effect localized drug release. In this Account, we provide an overview of the engineering of lipid-shelled microbubbles (typical diameter 1000-10 000 nm) and liposomes (typical diameter 65-120 nm) for ultrasound-based applications in molecular imaging and drug delivery. The chemistries of the shell and core can be optimized to enhance stability, circulation persistence, drug loading and release, targeting to and fusion with the cell membrane, and therapeutic biological effects. To assess the biodistribution and pharmacokinetics of these particles, we incorporated positron emission tomography (PET) radioisotopes on the shell. The radionuclide (18)F (half-life approximately 2 h) was covalently coupled to a dipalmitoyl lipid, followed by integration of the labeled lipid into the shell, facilitating short-term analysis of particle pharmacokinetics and metabolism of the lipid molecule. Alternately, labeling a formed particle with (64)Cu (half-life 12.7 h), after prior covalent incorporation of a copper-chelating moiety onto the lipid shell, permits pharmacokinetic study of particles over several days. Stability and persistence in circulation of both liposomes and microbubbles are enhanced by long acyl chains and a poly(ethylene glycol) coating. Vascular targeting has been demonstrated with

  12. MARS spectral molecular imaging of lamb tissue: data collection and image analysis

    NASA Astrophysics Data System (ADS)

    Aamir, R.; Chernoglazov, A.; Bateman, C. J.; Butler, A. P. H.; Butler, P. H.; Anderson, N. G.; Bell, S. T.; Panta, R. K.; Healy, J. L.; Mohr, J. L.; Rajendran, K.; Walsh, M. F.; de Ruiter, N.; Gieseg, S. P.; Woodfield, T.; Renaud, P. F.; Brooke, L.; Abdul-Majid, S.; Clyne, M.; Glendenning, R.; Bones, P. J.; Billinghurst, M.; Bartneck, C.; Mandalika, H.; Grasset, R.; Schleich, N.; Scott, N.; Nik, S. J.; Opie, A.; Janmale, T.; Tang, D. N.; Kim, D.; Doesburg, R. M.; Zainon, R.; Ronaldson, J. P.; Cook, N. J.; Smithies, D. J.; Hodge, K.

    2014-02-01

    Spectral molecular imaging is a new imaging technique able to discriminate and quantify different components of tissue simultaneously at high spatial and high energy resolution. Our MARS scanner is an x-ray based small animal CT system designed to be used in the diagnostic energy range (20-140 keV). In this paper, we demonstrate the use of the MARS scanner, equipped with the Medipix3RX spectroscopic photon-processing detector, to discriminate fat, calcium, and water in tissue. We present data collected from a sample of lamb meat including bone as an illustrative example of human tissue imaging. The data is analyzed using our 3D Algebraic Reconstruction Algorithm (MARS-ART) and by material decomposition based on a constrained linear least squares algorithm. The results presented here clearly show the quantification of lipid-like, water-like and bone-like components of tissue. However, it is also clear to us that better algorithms could extract more information of clinical interest from our data. Because we are one of the first to present data from multi-energy photon-processing small animal CT systems, we make the raw, partial and fully processed data available with the intention that others can analyze it using their familiar routines. The raw, partially processed and fully processed data of lamb tissue along with the phantom calibration data can be found at http://hdl.handle.net/10092/8531.

  13. Molecular Imaging of Transporters with Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Antoni, Gunnar; Sörensen, Jens; Hall, Håkan

    Positron emission tomography (PET) visualization of brain components in vivo is a rapidly growing field. Molecular imaging with PET is also increasingly used in drug development, especially for the determination of drug receptor interaction for CNS-active drugs. This gives the opportunity to relate clinical efficacy to per cent receptor occupancy of a drug on a certain targeted receptor and to relate drug pharmacokinetics in plasma to interaction with target protein. In the present review we will focus on the study of transporters, such as the monoamine transporters, the P-glycoprotein (Pgp) transporter, the vesicular monoamine transporter type 2, and the glucose transporter using PET radioligands. Neurotransmitter transporters are presynaptically located and in vivo imaging using PET can therefore be used for the determination of the density of afferent neurons. Several promising PET ligands for the noradrenaline transporter (NET) have been labeled and evaluated in vivo including in man, but a really useful PET ligand for NET still remains to be identified. The most promising tracer to date is (S,S)-[18F]FMeNER-D2. The in vivo visualization of the dopamine transporter (DAT) may give clues in the evaluation of conditions related to dopamine, such as Parkinson's disease and drug abuse. The first PET radioligands based on cocaine were not selective, but more recently several selective tracers such as [11C]PE2I have been characterized and shown to be suitable as PET radioligands. Although there are a large number of serotonin transporter inhibitors used today as SSRIs, it was not until very recently, when [11C]McN5652 was synthesized, that this transporter was studied using PET. New candidates as PET radioligands for the SERT have subsequently been developed and [11C]DASB and [11C]MADAM and their analogues are today the most promising ligands. The existing radioligands for Pgp transporters seem to be suitable tools for the study of both peripheral and central drug

  14. Conus Medullaris Syndrome following Radionuclide Cisternography.

    PubMed

    Choi, Jay Chol

    2014-01-01

    Radionuclide cisternography is generally considered to be a safe procedure without significant neurological complications. However, in this report we present a patient who developed conus medullaris syndrome following radionuclide cisternography. A 46-year-old woman underwent lumbar puncture followed by radionuclide cisternography with the diagnosis of hydrocephalus. After the cisternography, she developed voiding difficulty with perineal sensory loss. Lumbar MRI revealed a high signal intensity lesion on T2-weighted images at the level of conus medullaris. Considering its clinical course and MRI findings, a spinal cord infarction is highly suggested as a cause of the conus medullaris lesion in this patient.

  15. Molecular imaging as a guide for the treatment of central nervous system disorders.

    PubMed

    Kim, Euitae; Howes, Oliver D; Kapur, Shitij

    2013-09-01

    Molecular imaging techniques have a number of advantages for research into the pathophysiology and treatment of central nervous system (CNS) disorders. Firstly, they provide a noninvasive means of characterizing physiological processes in the living brain, enabling molecular alterations to be linked to clinical changes. Secondly, the pathophysiological target in a given CNS disorder can be measured in animal models and in experimental human models in the same way, which enables translational research. Moreover, as molecular imaging facilitates the detection of functional change which precedes gross pathology, it is particularly useful for the early diagnosis and treatment of CNS disorders. This review considers the application of molecular imaging to CNS disorders focusing on its potential to inform the development and evaluation of treatments. We focus on schizophrenia, Parkinson's disease, depression, and dementia as major CNS disorders. We also review the potential of molecular imaging to guide new drug development for CNS disorders.

  16. Three-dimensional nanoscale molecular imaging by extreme ultraviolet laser ablation mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Ilya; Filevich, Jorge; Dong, Feng; Woolston, Mark; Chao, Weilun; Anderson, Erik H.; Bernstein, Elliot R.; Crick, Dean C.; Rocca, Jorge J.; Menoni, Carmen S.

    2015-04-01

    Analytical probes capable of mapping molecular composition at the nanoscale are of critical importance to materials research, biology and medicine. Mass spectral imaging makes it possible to visualize the spatial organization of multiple molecular components at a sample's surface. However, it is challenging for mass spectral imaging to map molecular composition in three dimensions (3D) with submicron resolution. Here we describe a mass spectral imaging method that exploits the high 3D localization of absorbed extreme ultraviolet laser light and its fundamentally distinct interaction with matter to determine molecular composition from a volume as small as 50 zl in a single laser shot. Molecular imaging with a lateral resolution of 75 nm and a depth resolution of 20 nm is demonstrated. These results open opportunities to visualize chemical composition and chemical changes in 3D at the nanoscale.

  17. Three-dimensional nanoscale molecular imaging by extreme ultraviolet laser ablation mass spectrometry

    PubMed Central

    Kuznetsov, Ilya; Filevich, Jorge; Dong, Feng; Woolston, Mark; Chao, Weilun; Anderson, Erik H.; Bernstein, Elliot R.; Crick, Dean C.; Rocca, Jorge J.; Menoni, Carmen S.

    2015-01-01

    Analytical probes capable of mapping molecular composition at the nanoscale are of critical importance to materials research, biology and medicine. Mass spectral imaging makes it possible to visualize the spatial organization of multiple molecular components at a sample's surface. However, it is challenging for mass spectral imaging to map molecular composition in three dimensions (3D) with submicron resolution. Here we describe a mass spectral imaging method that exploits the high 3D localization of absorbed extreme ultraviolet laser light and its fundamentally distinct interaction with matter to determine molecular composition from a volume as small as 50 zl in a single laser shot. Molecular imaging with a lateral resolution of 75 nm and a depth resolution of 20 nm is demonstrated. These results open opportunities to visualize chemical composition and chemical changes in 3D at the nanoscale. PMID:25903827

  18. Molecular imaging as a guide for the treatment of central nervous system disorders.

    PubMed

    Kim, Euitae; Howes, Oliver D; Kapur, Shitij

    2013-09-01

    Molecular imaging techniques have a number of advantages for research into the pathophysiology and treatment of central nervous system (CNS) disorders. Firstly, they provide a noninvasive means of characterizing physiological processes in the living brain, enabling molecular alterations to be linked to clinical changes. Secondly, the pathophysiological target in a given CNS disorder can be measured in animal models and in experimental human models in the same way, which enables translational research. Moreover, as molecular imaging facilitates the detection of functional change which precedes gross pathology, it is particularly useful for the early diagnosis and treatment of CNS disorders. This review considers the application of molecular imaging to CNS disorders focusing on its potential to inform the development and evaluation of treatments. We focus on schizophrenia, Parkinson's disease, depression, and dementia as major CNS disorders. We also review the potential of molecular imaging to guide new drug development for CNS disorders. PMID:24174903

  19. Spectral imaging of the central molecular zone in multiple 7-mm molecular lines

    NASA Astrophysics Data System (ADS)

    Jones, P. A.; Burton, M. G.; Cunningham, M. R.; Tothill, N. F. H.; Walsh, A. J.

    2013-07-01

    We have imaged 24 spectral lines in the central molecular zone (CMZ) around the Galactic Centre, in the range 42-50 GHz. The lines include emission from the CS, CH3OH, HC3N, SiO, HNCO, HOCO+, NH2CHO, OCS, HCS+, CCS, C34S, 13CS, 29SiO, H13CCCN, HCC13CN and HC5N molecules, and three hydrogen recombination lines. The area covered is Galactic longitude -0.7° to 1.8° and latitude -0.3° to 0.2°, including the bright cores around Sgr A, Sgr B2, Sgr C and G1.6-0.025. This work used the 22-m Mopra radio telescope in Australia, obtaining ˜1.8 km s-1 spectral and ˜65 arcsec spatial resolution. We present peak images from this study and conduct a principal component analysis on the integrated emission from the brightest 10 lines, to study similarities and differences in the line distribution. We examine the integrated line intensities and line ratios in selected apertures around the bright cores, as well as for the complete mapped region of the CMZ. We compare these 7-mm lines to the corresponding lines in the 3-mm band, for five molecules, to study the excitation. There is a variation in 3 to 7-mm line ratio across the CMZ, with relatively higher ratio in the centre around Sgr B2 and Sgr A. We find that the lines are sub-thermally excited, and from modelling with RADEX find that non-Local Thermodynamic Equilibrium conditions apply, with densities of the order of 104 cm-3.

  20. Molecular imaging of drug transit through the blood-brain barrier with MALDI mass spectrometry imaging.

    PubMed

    Liu, Xiaohui; Ide, Jennifer L; Norton, Isaiah; Marchionni, Mark A; Ebling, Maritza C; Wang, Lan Y; Davis, Erin; Sauvageot, Claire M; Kesari, Santosh; Kellersberger, Katherine A; Easterling, Michael L; Santagata, Sandro; Stuart, Darrin D; Alberta, John; Agar, Jeffrey N; Stiles, Charles D; Agar, Nathalie Y R

    2013-10-04

    Drug transit through the blood-brain barrier (BBB) is essential for therapeutic responses in malignant glioma. Conventional methods for assessment of BBB penetrance require synthesis of isotopically labeled drug derivatives. Here, we report a new methodology using matrix assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) to visualize drug penetration in brain tissue without molecular labeling. In studies summarized here, we first validate heme as a simple and robust MALDI MSI marker for the lumen of blood vessels in the brain. We go on to provide three examples of how MALDI MSI can provide chemical and biological insights into BBB penetrance and metabolism of small molecule signal transduction inhibitors in the brain - insights that would be difficult or impossible to extract by use of radiolabeled compounds.

  1. Inversion of strong-field photoelectron spectra for molecular orbital imaging

    NASA Astrophysics Data System (ADS)

    Puthumpally-Joseph, R.; Viau-Trudel, J.; Peters, M.; Nguyen-Dang, T. T.; Atabek, O.; Charron, E.

    2016-08-01

    Imaging structures at the molecular level is a developing interdisciplinary research field that spans the boundaries of physics and chemistry. High-spatial-resolution images of molecules can be obtained with photons or ultrafast electrons. In addition, images of valence molecular orbitals can be extracted via tomographic techniques based on the coherent extreme UV radiation emitted by a molecular gas exposed to an intense ultrashort infrared laser pulse. In this paper, we demonstrate that similar information can be obtained by inverting energy-resolved photoelectron spectra using a simplified analytical model.

  2. Near-infrared Molecular Probes for In Vivo Imaging

    PubMed Central

    Zhang, Xuan; Bloch, Sharon; Akers, Walter; Achilefu, Samuel

    2012-01-01

    Cellular and tissue imaging in the near-infrared (NIR) wavelengths between 700 and 900 nm is advantageous for in vivo because of the low absorption of biological molecules in this region. This Unit presents protocols for small animal imaging using planar and fluorescence lifetime imaging techniques. Included is an overview of NIR fluorescence imaging of cells and small animals using NIR organic fluorophores, nanoparticles, and multimodal imaging probes. The development, advantages, and application of NIR fluorescent probes that have been used for in vivo imaging are also summarized. The use of NIR agents in conjunction with visible dyes and considerations in selecting imaging agents are discussed. We conclude with practical considerations for the use of these dyes in cell and small animal imaging applications. PMID:22470154

  3. Improving Sensitivity in Ultrasound Molecular Imaging by Tailoring Contrast Agent Size Distribution: In Vivo Studies

    PubMed Central

    Streeter, Jason E.; Gessner, Ryan; Miles, Iman; Dayton, Paul A.

    2010-01-01

    Molecular imaging with ultrasound relies on microbubble contrast agents (MCAs) selectively adhering to a ligand-specific target. Prior studies have shown that only small quantities of microbubbles are retained at their target sites, therefore, enhancing contrast sensitivity to low concentrations of microbubbles is essential to improve molecular imaging techniques. In order to assess the effect of MCA diameter on imaging sensitivity, perfusion and molecular imaging studies were performed with microbubbles of varying size distributions. To assess signal improvement and MCA circulation time as a function of size and concentration, blood perfusion was imaged in rat kidneys using nontargeted size-sorted MCAs with a Siemens Sequoia ultrasound system (Siemans, Mountain View, CA) in cadence pulse sequencing (CPS) mode. Molecular imaging sensitivity improvements were studied with size-sorted αvβ3-targeted bubbles in both fibrosarcoma and R3230 rat tumor models. In perfusion imaging studies, video intensity and contrast persistence was ≈8 times and ≈3 times greater respectively, for “sorted 3-micron” MCAs (diameter, 3.3 ± 1.95 μm) when compared to “unsorted” MCAs (diameter, 0.9 ± 0.45 μm) at low concentrations. In targeted experiments, application of sorted 3-micron MCAs resulted in a ≈20 times video intensity increase over unsorted populations. Tailoring size-distributions results in substantial imaging sensitivity improvement over unsorted populations, which is essential in maximizing sensitivity to small numbers of MCAs for molecular imaging. PMID:20236606

  4. Sodium-iodine symporter gene expression controlled by the EGR-1 promoter: biodistribution, imaging and in vitro radionuclide therapy with Na(131)I.

    PubMed

    Tang, Jun; Wang, Xiaoxia; Xu, Yuanqi; Shi, Yizhen; Liu, Zengli; Yang, Yi

    2015-02-01

    The objective of this study is to explore the feasibility of radioiodine treatment for cervical cancer using the early growth response (Egr-1) promoter to control sodium-iodine symporter (hNIS) gene expression. The hNIS gene was previously transfected into Hela cells under the control of either the cytomegalovirus (CMV) or Egr-1 promoters. Na(125)I uptake was measured in the presence or absence of NaClO4. Na(125)I efflux was measured. The effects of external beam radiation on iodine uptake and retention were studied. The cytotoxic effects of (131)I were measured by clonogenic assay. The Na(125)I biodistribution was obtained using mice bearing control and transfected cells. The %ID/g of tumor and major organs were obtained for a range of times up to 48 hours post injection and the ratio of tumor to non-tumor activity (T/NT) was calculated. Tumors were imaged with Na(131)I and (99m)TcO4 (-), and the ratio of tumor to background activity (T/B) was calculated. Na(125)I uptake in Hela cells was minimal in the absence of hNIS. Uptake in the transfected cells was strong, and could be blocked by NaClO4. The iodine uptake of Hela-Egr-1-hNIS cells increased after the irradiation, and the magnitude of this effect approximately matched the radiation dose delivered. The efflux of 125I was affected by neither the promoter sequence nor pre-irradiation. (131)I reduced the clonogenic survival of symporter expressing cells, relative to the parental line. The effect was greatest in cells where hNIS was driven by the CMV promoter. Tumors formed from Hela-Egr-1-hNIS concentrated Na(125)I over a 12 hour period, in contrast to untransfected cells. These tumors could also be successfully imaged using either Na(131)I or (99m)TcO4 (-). (131)I uptake peaked at 4h, while (99m)TcO4 (-) accumulated over approximately 20 hours. In vivo uptake of (131)I and (99m)TcO4 (-) was slightly higher in cells transfected with the Egr-1 promoter, compared to CMV. Hela-Egr-1-hNIS cells demonstrate highly

  5. Radionuclide carriers for targeting of cancer

    PubMed Central

    Sofou, Stavroula

    2008-01-01

    This review describes strategies for the delivery of therapeutic radionuclides to tumor sites. Therapeutic approaches are summarized in terms of tumor location in the body, and tumor morphology. These determine the radionuclides of choice for suggested targeting ligands, and the type of delivery carriers. This review is not exhaustive in examples of radionuclide carriers for targeted cancer therapy. Our purpose is two-fold: to give an integrated picture of the general strategies and molecular constructs currently explored for the delivery of therapeutic radionuclides, and to identify challenges that need to be addressed. Internal radiotherapies for targeting of cancer are at a very exciting and creative stage. It is expected that the current emphasis on multidisciplinary approaches for exploring such therapeutic directions should enable internal radiotherapy to reach its full potential. PMID:18686778

  6. Quantitative radionuclide angiocardiography

    SciTech Connect

    Scholz, P.M.; Rerych, S.K.; Moran, J.F.; Newman, G.E.; Douglas, J.M.; Sabiston, D.C. Jr.; Jones, R.H.

    1980-01-01

    This study introduces a new method for calculating actual left ventricular volumes and cardiac output from data recorded during a single transit of a radionuclide bolus through the heart, and describes in detail current radionuclide angiocardiography methodology. A group of 64 healthy adults with a wide age range were studied to define the normal range of hemodynamic parameters determined by the technique. Radionuclide angiocardiograms were performed in patients undergoing cardiac catherization to validate the measurements. In 33 patients studied by both techniques on the same day, a close correlation was documented for measurement of ejection fraction and end-diastolic volume. To validate the method of volumetric cardiac output calcuation, 33 simultaneous radionuclide and indocyanine green dye determinations of cardiac output were performed in 18 normal young adults. These independent comparisons of radionuclide measurements with two separate methods document that initial transit radionuclide angiocardiography accurately assesses left ventricular function.

  7. The Role of Molecular Imaging in the Diagnosis and Management of Neuropsychiatric Disorders

    PubMed Central

    Shen, Lie-Hang; Tseng, Yu-Chin; Liao, Mei-Hsiu; Fu, Ying-Kai

    2011-01-01

    Neuropsychiatric disorders are becoming a major socioeconomic burden to modern society. In recent years, a dramatic expansion of tools has facilitated the study of the molecular basis of neuropsychiatric disorders. Molecular imaging has enabled the noninvasive characterization and quantification of biological processes at the cellular, tissue, and organism levels in intact living subjects. This technology has revolutionized the practice of medicine and has become critical to quality health care. New advances in research on molecular imaging hold promise for personalized medicine in neuropsychiatric disorders, with adjusted therapeutic doses, predictable responses, reduced adverse drug reactions, early diagnosis, and personal health planning. In this paper, we discuss the development of radiotracers for imaging dopaminergic, serotonergic, and noradrenergic systems and β-amyloid plaques. We will underline the role of molecular imaging technologies in various neuropsychiatric disorders, describe their unique strengths and limitations, and suggest future directions in the diagnosis and management of neuropsychiatric disorders. PMID:21541178

  8. Semiconducting Polymer Nanoparticles as Photoacoustic Molecular Imaging Probes in Living Mice

    PubMed Central

    Pu, Kanyi; Shuhendler, Adam J.; Jokerst, Jesse V.; Mei, Jianguo; Gambhir, Sanjiv S.; Bao, Zhenan; Rao, Jianghong

    2014-01-01

    Photoacoustic (PA) imaging holds great promise for the visualization of physiology and pathology at the molecular level with deep tissue penetration and fine spatial resolution. To fully utilize this potential, PA molecular imaging probes have to be developed. Herein we introduce near infrared (NIR) light absorbing semiconducting polymer nanoparticles (SPNs) as a new class of contrast agents for PA molecular imaging. SPNs can produce stronger signal than commonly used single-wall carbon nanotubes and gold nanorods on a per mass basis, permitting whole-body lymph node PA mapping in living mice at a low systematic injection mass. Furthermore, SPNs possess high structural flexibility, narrow PA spectral profiles, and strong resistance to photodegradation and oxidation, which enables development of the first NIR ratiometric PA probe for in vivo real-time imaging of reactive oxygen species—vital chemical mediators of many diseases. These results demonstrate SPNs an ideal nanoplatform for developing PA molecular probes. PMID:24463363

  9. Establishment of functional and molecular ultrasound for breast cancer xenograft imaging.

    PubMed

    Bzyl, J

    2014-04-01

    The present work was originally published in European Radiology and as a PhD thesis at the RWTH Aachen University and was conducted at the Institute for Experimental Molecular Imaging at the RWTH Aachen University. PMID:24683170

  10. Preclinical lymphatic imaging.

    PubMed

    Zhang, Fan; Niu, Gang; Lu, Guangming; Chen, Xiaoyuan

    2011-08-01

    Noninvasive in vivo imaging of lymphatic vessels and lymphatic nodes is expected to fulfill the purpose of analyzing lymphatic vessels and their function, understanding molecular mechanisms of lymphangiogenesis and lymphatic spread of tumors, and utilizing lymphatic molecular markers as a prognostic or diagnostic indicator. In this review, we provide a comprehensive summary of in vivo imaging modalities for detecting lymphatic vessels, lymphatic drainage, and lymphatic nodes, which include conventional lymphatic imaging techniques such as dyes and radionuclide scintigraphy as well as novel techniques for lymphatic imaging such as optical imaging, computed tomography, magnetic resonance imaging, ultrasound, positron emission tomography using lymphatic biomarkers, photoacoustic imaging, and combinations of multiple modalities. The field of lymphatic imaging is ever evolving, and technological advances, combined with the development of new contrast agents, continue to improve the research of lymphatic vascular system in health and disease states as well as to improve the accuracy of diagnosis in the relevant diseases.

  11. Preclinical Lymphatic Imaging

    PubMed Central

    Zhang, Fan; Niu, Gang; Lu, Guangming; Chen, Xiaoyuan

    2011-01-01

    Non-invasive in vivo imaging of lymphatic vessels and lymphatic nodes is expected to fulfill the purpose of analyzing lymphatic vessels and their function, understanding molecular mechanisms of lymphangiogenesis and lymphatic spread of tumors, and utilizing lymphatic molecular markers as a prognostic or diagnostic indicator. In this review, we provide a comprehensive summary of in vivo imaging modalities for detecting lymphatic vessels, lymphatic drainage, lymphatic nodes, which include conventional lymphatic imaging techniques such as dyes and radionuclide scintigraphy as well as novel techniques for lymphatic imaging such as optical imaging, computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET) using lymphatic biomarkers, photoacoustic imaging and combinations of multiple modalities. The field of lymphatic imaging is ever evolving, and technological advances, combined with the development of new contrast agents, continue to improve the research of lymphatic vascular system in health and disease states as well as to improve the accuracy of diagnosis in the relevant diseases. PMID:20862613

  12. Achieving molecular selectivity in imaging using multiphoton Raman spectroscopy techniques

    SciTech Connect

    Holtom, Gary R. ); Thrall, Brian D. ); Chin, Beek Yoke ); Wiley, H Steven ); Colson, Steven D. )

    2000-12-01

    In the case of most imaging methods, contrast is generated either by physical properties of the sample (Differential Image Contrast, Phase Contrast), or by fluorescent labels that are localized to a particular protein or organelle. Standard Raman and infrared methods for obtaining images are based upon the intrinsic vibrational properties of molecules, and thus obviate the need for attached flurophores. Unfortunately, they have significant limitations for live-cell imaging. However, an active Raman method, called Coherent Anti-Stokes Raman Scattering (CARS), is well suited for microscopy, and provides a new means for imaging specific molecules. Vibrational imaging techniques, such as CARS, avoid problems associated with photobleaching and photo-induced toxicity often associated with the use of fluorescent labels with live cells. Because the laser configuration needed to implement CARS technology is similar to that used in other multiphoton microscopy methods, such as two -photon fluorescence and harmonic generation, it is possible to combine imaging modalities, thus generating simultaneous CARS and fluorescence images. A particularly powerful aspect of CARS microscopy is its ability to selectively image deuterated compounds, thus allowing the visualization of molecules, such as lipids, that are chemically indistinguishable from the native species.

  13. Small unilamellar vesicles: a platform technology for molecular imaging of brain tumors

    NASA Astrophysics Data System (ADS)

    Iqbal, Umar; Albaghdadi, Homam; Nieh, Mu-Ping; Tuor, Ursula I.; Mester, Zoltan; Stanimirovic, Danica; Katsaras, John; Abulrob, Abedelnasser

    2011-05-01

    Molecular imaging enables the non-invasive investigation of cellular and molecular processes. Although there are challenges to overcome, the development of targeted contrast agents to increase the sensitivity of molecular imaging techniques is essential for their clinical translation. In this study, spontaneously forming, small unilamellar vesicles (sULVs) (30 nm diameter) were used as a platform to build a bimodal (i.e., optical and magnetic resonance imaging (MRI)) targeted contrast agent for the molecular imaging of brain tumors. sULVs were loaded with a gadolinium (Gd) chelated lipid (Gd-DPTA-BOA), functionalized with targeting antibodies (anti-EGFR monoclonal and anti-IGFBP7 single domain), and incorporated a near infrared dye (Cy5.5). The resultant sULVs were characterized in vitro using small angle neutron scattering (SANS), phantom MRI and dynamic light scattering (DLS). Antibody targeted and nontargeted Gd loaded sULVs labeled with Cy5.5 were assessed in vivo in a brain tumor model in mice using time domain optical imaging and MRI. The results demonstrated that a spontaneously forming, nanosized ULVs loaded with a high payload of Gd can selectively target and image, using MR and optical imaging, brain tumor vessels when functionalized with anti-IGFBP7 single domain antibodies. The unique features of these targeted sULVs make them promising molecular MRI contrast agents.

  14. Small Unilamellar Vesicles: A Platform Technology for Molecular Imaging of Brain Tumors

    SciTech Connect

    Iqbal, U; Albaghdadi, H; Nieh, Mu-Ping; Tuor, U.I; Mester, Z; Stanimirovic, D; Katsaras, John; Abulrob, A

    2011-01-01

    Molecular imaging enables the non-invasive investigation of cellular and molecular processes. Although there are challenges to overcome, the development of targeted contrast agents to increase the sensitivity of molecular imaging techniques is essential for their clinical translation. In this study, spontaneously forming, small unilamellar vesicles (sULVs) (30 nm diameter) were used as a platform to build a bimodal (i.e., optical and magnetic resonance imaging (MRI)) targeted contrast agent for the molecular imaging of brain tumors. sULVs were loaded with a gadolinium (Gd) chelated lipid (Gd-DPTA-BOA), functionalized with targeting antibodies (anti-EGFR monoclonal and anti-IGFBP7 single domain), and incorporated a near infrared dye (Cy5.5). The resultant sULVs were characterized in vitro using small angle neutron scattering (SANS), phantom MRI and dynamic light scattering (DLS). Antibody targeted and nontargeted Gd loaded sULVs labeled with Cy5.5 were assessed in vivo in a brain tumor model in mice using time domain optical imaging and MRI. The results demonstrated that a spontaneously forming, nanosized ULVs loaded with a high payload of Gd can selectively target and image, using MR and optical imaging, brain tumor vessels when functionalized with anti-IGFBP7 single domain antibodies. The unique features of these targeted sULVs make them promising molecular MRI contrast agents.

  15. Small unilamellar vesicles: a platform technology for molecular imaging of brain tumors.

    PubMed

    Iqbal, Umar; Albaghdadi, Homam; Nieh, Mu-Ping; Tuor, Ursula I; Mester, Zoltan; Stanimirovic, Danica; Katsaras, John; Abulrob, Abedelnasser

    2011-05-13

    Molecular imaging enables the non-invasive investigation of cellular and molecular processes. Although there are challenges to overcome, the development of targeted contrast agents to increase the sensitivity of molecular imaging techniques is essential for their clinical translation. In this study, spontaneously forming, small unilamellar vesicles (sULVs) (30 nm diameter) were used as a platform to build a bimodal (i.e., optical and magnetic resonance imaging (MRI)) targeted contrast agent for the molecular imaging of brain tumors. sULVs were loaded with a gadolinium (Gd) chelated lipid (Gd-DPTA-BOA), functionalized with targeting antibodies (anti-EGFR monoclonal and anti-IGFBP7 single domain), and incorporated a near infrared dye (Cy5.5). The resultant sULVs were characterized in vitro using small angle neutron scattering (SANS), phantom MRI and dynamic light scattering (DLS). Antibody targeted and nontargeted Gd loaded sULVs labeled with Cy5.5 were assessed in vivo in a brain tumor model in mice using time domain optical imaging and MRI. The results demonstrated that a spontaneously forming, nanosized ULVs loaded with a high payload of Gd can selectively target and image, using MR and optical imaging, brain tumor vessels when functionalized with anti-IGFBP7 single domain antibodies. The unique features of these targeted sULVs make them promising molecular MRI contrast agents.

  16. Molecular imaging for theranostics in gastroenterology: one stone to kill two birds.

    PubMed

    Ko, Kwang Hyun; Kown, Chang-Il; Park, Jong Min; Lee, Hoo Geun; Han, Na Young; Hahm, Ki Baik

    2014-09-01

    Molecular imaging in gastroenterology has become more feasible with recent advances in imaging technology, molecular genetics, and next-generation biochemistry, in addition to advances in endoscopic imaging techniques including magnified high-resolution endoscopy, narrow band imaging or autofluorescence imaging, flexible spectral imaging color enhancement, and confocal laser endomicroscopy. These developments have the potential to serve as "red flag" techniques enabling the earlier and accurate detection of mucosal abnormalities (such as precancerous lesions) beyond biomarkers, virtual histology of detected lesions, and molecular targeted therapy-the strategy of "one stone to kill two or three birds"; however, more effort should be done to be "blue ocean" benefit. This review deals with the introduction of Raman spectroscopy endoscopy, imaging mass spectroscopy, and nanomolecule development for theranostics. Imaging of molecular pathological changes in cells/tissues/organs might open the "royal road" to either convincing diagnosis of diseases that otherwise would only be detected in the advanced stages or novel therapeutic methods targeted to personalized medicine.

  17. NEAR-INFRARED DYES: Probe Development and Applications in Optical Molecular Imaging

    PubMed Central

    Nolting, Donald D.; Gore, John C.; Pham, Wellington

    2010-01-01

    The recent emergence of optical imaging has brought forth a unique challenge for chemists: development of new biocompatible dyes that fluoresce in the near-infrared (NIR) region for optimal use in biomedical applications. This review describes the synthesis of NIR dyes and the design of probes capable of noninvasively imaging molecular events in small animal models. PMID:21822405

  18. Imaging Ultra-fast Molecular Dynamics in Free Electron Laser Field

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Z.; Jiang, Y. H.

    The free electron laser (FEL) provides the coherent, brilliant and ultrashort light pulse in short wavelength (extreme ultraviolet and X-ray) regimes, opening up possibilities to study ultra-fast molecular dynamics in photo-induced chemical reactions with new methodologies. In this chapter, we introduce the time-resolved pump-probe experiments on gas-phase targets with FEL facilities to image the nuclear and electronic motions in molecular reactions, which serve as a benchmark for further FEL applications like coherent diffraction imaging and coherent control of functional dynamics in complex molecular reactions.

  19. Molecular and functional imaging for detection of lymph node metastases in prostate cancer.

    PubMed

    Fortuin, Ansje; Rooij, Maarten de; Zamecnik, Patrik; Haberkorn, Uwe; Barentsz, Jelle

    2013-07-03

    Knowledge on lymph node metastases is crucial for the prognosis and treatment of prostate cancer patients. Conventional anatomic imaging often fails to differentiate benign from metastatic lymph nodes. Pelvic lymph node dissection is an invasive technique and underestimates the extent of lymph node metastases. Therefore, there is a need for more accurate non-invasive diagnostic techniques. Molecular and functional imaging has been subject of research for the last decades, in this respect. Therefore, in this article the value of imaging techniques to detect lymph node metastases is reviewed. These techniques include scintigraphy, sentinel node imaging, positron emission tomography/computed tomography (PET/CT), diffusion weighted magnetic resonance imaging (DWI MRI) and magnetic resonance lymphography (MRL). Knowledge on pathway and size of lymph node metastases has increased with molecular and functional imaging. Furthermore, improved detection and localization of lymph node metastases will enable (focal) treatment of the positive nodes only.

  20. A novel method for image denoising of fluorescence molecular imaging based on fuzzy C-Means clustering

    NASA Astrophysics Data System (ADS)

    An, Yu; Liu, Jie; Ye, Jinzuo; Mao, Yamin; Yang, Xin; Jiang, Shixin; Chi, Chongwei; Tian, Jie

    2015-03-01

    As an important molecular imaging modality, fluorescence molecular imaging (FMI) has the advantages of high sensitivity, low cost and ease of use. By labeling the regions of interest with fluorophore, FMI can noninvasively obtain the distribution of fluorophore in-vivo. However, due to the fact that the spectrum of fluorescence is in the section of the visible light range, there are mass of autofluorescence on the surface of the bio-tissues, which is a major disturbing factor in FMI. Meanwhile, the high-level of dark current for charge-coupled device (CCD) camera and other influencing factor can also produce a lot of background noise. In this paper, a novel method for image denoising of FMI based on fuzzy C-Means clustering (FCM) is proposed, because the fluorescent signal is the major component of the fluorescence images, and the intensity of autofluorescence and other background signals is relatively lower than the fluorescence signal. First, the fluorescence image is smoothed by sliding-neighborhood operations to initially eliminate the noise. Then, the wavelet transform (WLT) is performed on the fluorescence images to obtain the major component of the fluorescent signals. After that, the FCM method is adopt to separate the major component and background of the fluorescence images. Finally, the proposed method was validated using the original data obtained by in vivo implanted fluorophore experiment, and the results show that our proposed method can effectively obtain the fluorescence signal while eliminate the background noise, which could increase the quality of fluorescence images.

  1. Air flow-assisted ionization imaging mass spectrometry method for easy whole-body molecular imaging under ambient conditions.

    PubMed

    Luo, Zhigang; He, Jiuming; Chen, Yi; He, Jingjing; Gong, Tao; Tang, Fei; Wang, Xiaohao; Zhang, Ruiping; Huang, Lan; Zhang, Lianfeng; Lv, Haining; Ma, Shuanggang; Fu, Zhaodi; Chen, Xiaoguang; Yu, Shishan; Abliz, Zeper

    2013-03-01

    Whole-body molecular imaging is able to directly map spatial distribution of molecules and monitor its biotransformation in intact biological tissue sections. Imaging mass spectrometry (IMS), a label-free molecular imaging method, can be used to image multiple molecules in a single measurement with high specificity. Herein, a novel easy-to-implement, whole-body IMS method was developed with air flow-assisted ionization in a desorption electrospray ionization mode. The developed IMS method can effectively image molecules in a large whole-body section in open air without sample pretreatment, such as chemical labeling, section division, or matrix deposition. Moreover, the signal levels were improved, and the spatial assignment errors were eliminated; thus, high-quality whole-body images were obtained. With this novel IMS method, in situ mapping analysis of molecules was performed in adult rat sections with picomolar sensitivity under ambient conditions, and the dynamic information of molecule distribution and its biotransformation was provided to uncover molecular events at the whole-animal level. A global view of the differential distribution of an anticancer agent and its metabolites was simultaneously acquired in whole-body rat and model mouse bearing neuroglioma along the administration time. The obtained drug distribution provided rich information for identifying the targeted organs and predicting possible tumor spectrum, pharmacological activity, and potential toxicity of drug candidates.

  2. External accumulation of radionuclide in hepatic hydrothorax

    SciTech Connect

    Albin, R.J.; Johnston, G.S.

    1989-05-01

    Hepatic hydrothorax is a complication in approximately 5% of patients with cirrhosis. Ascites is almost always present and helps to suggest the correct diagnosis. However, when ascites is absent, radionuclide imaging has proven to be helpful in establishing that the pleural effusion originated from ascitic fluid. When pleural fluid is rapidly removed, such as by thoracostomy tube drainage, the radioisotope may accumulate outside the thorax and produce a negative scan of the chest. When the radionuclide scan is nondiagnostic and the pleural space is being rapidly drained, the pleural fluid collecting system should always be imaged before rejecting a diagnosis of hepatic hydrothorax.

  3. Molecular Probes for Imaging Myelinated White Matter in CNS

    PubMed Central

    Wu, Chunying; Wei, Jinjun; Tian, Donghua; Feng, Yue; Miller, Robert H.; Wang, Yanming

    2009-01-01

    Abnormalities and changes in myelination in the brain are seen in many neurodegenerative disorders such as multiple sclerosis (MS). Direct detection and quantification of myelin content in vivo is desired to facilitate diagnosis and therapeutic treatments of myelin-related diseases. The imaging studies require use of myelin-imaging agents that readily enter the brain and selectively bind to myelinated regions. For this purpose, we have systematically evaluated a series of stilbene derivatives as myelin imaging agents. Spectrophotometry-based and radioligand-based binding assays showed that these stilbene derivatives exhibited relatively high myelin-binding affinities. In vitro myelin staining exhibited that the compounds selectively stained intact myelinated regions in wild type mouse brain. In situ tissue staining demonstrated that the compounds readily entered the mouse brain and selectively labeled myelinated white matter regions. These studies suggested that these stilbene derivatives can be used as myelin-imaging probes to monitor myelin pathology in vivo. PMID:18844339

  4. SPECT and PET serve as molecular imaging techniques and in vivo biomarkers for brain metastases.

    PubMed

    Palumbo, Barbara; Buresta, Tommaso; Nuvoli, Susanna; Spanu, Angela; Schillaci, Orazio; Fravolini, Mario Luca; Palumbo, Isabella

    2014-06-03

    Nuclear medicine techniques (single photon emission computerized tomography, SPECT, and positron emission tomography, PET) represent molecular imaging tools, able to provide in vivo biomarkers of different diseases. To investigate brain tumours and metastases many different radiopharmaceuticals imaged by SPECT and PET can be used. In this review the main and most promising radiopharmaceuticals available to detect brain metastases are reported. Furthermore the diagnostic contribution of the combination of SPECT and PET data with radiological findings (magnetic resonance imaging, MRI) is discussed.

  5. SPECT and PET Serve as Molecular Imaging Techniques and in Vivo Biomarkers for Brain Metastases

    PubMed Central

    Palumbo, Barbara; Buresta, Tommaso; Nuvoli, Susanna; Spanu, Angela; Schillaci, Orazio; Fravolini, Mario Luca; Palumbo, Isabella

    2014-01-01

    Nuclear medicine techniques (single photon emission computerized tomography, SPECT, and positron emission tomography, PET) represent molecular imaging tools, able to provide in vivo biomarkers of different diseases. To investigate brain tumours and metastases many different radiopharmaceuticals imaged by SPECT and PET can be used. In this review the main and most promising radiopharmaceuticals available to detect brain metastases are reported. Furthermore the diagnostic contribution of the combination of SPECT and PET data with radiological findings (magnetic resonance imaging, MRI) is discussed. PMID:24897023

  6. Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging.

    PubMed

    Sharifi, Shahriar; Seyednejad, Hajar; Laurent, Sophie; Atyabi, Fatemeh; Saei, Amir Ata; Mahmoudi, Morteza

    2015-01-01

    In the last decade, the biomedical applications of nanoparticles (NPs) (e.g. cell tracking, biosensing, magnetic resonance imaging (MRI), targeted drug delivery, and tissue engineering) have been increasingly developed. Among the various NP types, superparamagnetic iron oxide NPs (SPIONs) have attracted considerable attention for early detection of diseases due to their specific physicochemical properties and their molecular imaging capabilities. A comprehensive review is presented on the recent advances in the development of in vitro and in vivo SPION applications for molecular imaging, along with opportunities and challenges.

  7. Quick and easy molecular weight determination with Macintosh computers and public domain image analysis software.

    PubMed

    Seebacher, T; Bade, E G

    1996-10-01

    The program "molecular weights" allows a fast and easy estimation of molecular weights (M(r)), isoelectric point (pI) values and band intensities directly from scanned, polyacrylamide gels, two-dimensional protein patterns and DNA gel images. The image coordinates of M(r) and pI reference standards enable the program to calculate M(r) and pI values in a real time manner for any cursor position. The program requires NIH-Image for Macintosh computers and includes automatic band detection coupled with a densitometric evaluation.

  8. Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics

    PubMed Central

    Hellebust, Anne; Richards-Kortum, Rebecca

    2012-01-01

    Over the last three decades, our understanding of the molecular changes associated with cancer development and progression has advanced greatly. This has led to new cancer therapeutics targeted against specific molecular pathways; such therapies show great promise to reduce mortality, in part by enabling physicians to tailor therapy for patients based on a molecular profile of their tumor. Unfortunately, the tools for definitive cancer diagnosis – light microscopic examination of biopsied tissue stained with nonspecific dyes – remain focused on the analysis of tissue ex vivo. There is an important need for new clinical tools to support the molecular diagnosis of cancer. Optical molecular imaging is emerging as a technique to help meet this need. Targeted, optically active contrast agents can specifically label extra-and intracellular biomarkers of cancer. Optical images can be acquired in real time with high spatial resolution to image-specific molecular targets, while still providing morphologic context. This article reviews recent advances in optical molecular imaging, highlighting the advances in technology required to improve early cancer detection, guide selection of targeted therapy and rapidly evaluate therapeutic efficacy. PMID:22385200

  9. Gd-based macromolecules and nanoparticles as magnetic resonance contrast agents for molecular imaging

    PubMed Central

    Huang, Ching-Hui; Tsourkas, Andrew

    2013-01-01

    As we move towards an era of personalized medicine, molecular imaging contrast agents are likely to see an increasing presence in routine clinical practice. Magnetic resonance (MR) imaging has garnered particular interest as a platform for molecular imaging applications due its ability to monitor anatomical changes concomitant with physiologic and molecular changes. One promising new direction in the development of MR contrast agents involves the labeling and/or loading of nanoparticles with gadolinium (Gd). These nanoplatforms are capable of carrying large payloads of Gd, thus providing the requisite sensitivity to detect molecular signatures within disease pathologies. In this review, we discuss some of the progress that has recently been made in the development of Gd-based macromolecules and nanoparticles and outline some of the physical and chemical properties that will be important to incorporate into the next generation of contrast agents, including high Gd chelate stability, high “relaxivity per particle” and “relaxivity density”, and biodegradability. PMID:23432004

  10. High-order harmonic spectroscopy for molecular imaging of polyatomic molecules.

    PubMed

    Negro, M; Devetta, M; Faccialá, D; De Silvestri, S; Vozzi, C; Stagira, S

    2014-01-01

    High-order harmonic generation is a powerful and sensitive tool for probing atomic and molecular structures, combining in the same measurement an unprecedented attosecond temporal resolution with a high spatial resolution of the order of an angstrom. Imaging of the outermost molecular orbital by high-order harmonic generation has been limited for a long time to very simple molecules, like nitrogen. Recently we demonstrated a technique that overcame several of the issues that have prevented the extension of molecular orbital tomography to more complex species, showing that molecular imaging can be applied to a triatomic molecule like carbon dioxide. Here we report on the application of such a technique to nitrous oxide (N(2)O) and acetylene (C(2)H(2)). This result represents a first step towards the imaging of fragile compounds, a category which includes most of the fundamental biological molecules.

  11. Fluorescence molecular tomographic image reconstruction based on reduced measurement data

    NASA Astrophysics Data System (ADS)

    Zou, Wei; Wang, Jiajun; Feng, David Dagan; Fang, Erxi

    2015-07-01

    The analysis of fluorescence molecular tomography is important for medical diagnosis and treatment. Although the quality of reconstructed results can be improved with the increasing number of measurement data, the scale of the matrices involved in the reconstruction of fluorescence molecular tomography will also become larger, which may slow down the reconstruction process. A new method is proposed where measurement data are reduced according to the rows of the Jacobian matrix and the projection residual error. To further accelerate the reconstruction process, the global inverse problem is solved with level-by-level Schur complement decomposition. Simulation results demonstrate that the speed of the reconstruction process can be improved with the proposed algorithm.

  12. High Speed Data Processing for Imaging MS-Based Molecular Histology Using Graphical Processing Units

    NASA Astrophysics Data System (ADS)

    Jones, Emrys A.; van Zeijl, René J. M.; Andrén, Per E.; Deelder, André M.; Wolters, Lex; McDonnell, Liam A.

    2012-04-01

    Imaging MS enables the distributions of hundreds of biomolecular ions to be determined directly from tissue samples. The application of multivariate methods, to identify pixels possessing correlated MS profiles, is referred to as molecular histology as tissues can be annotated on the basis of the MS profiles. The application of imaging MS-based molecular histology to larger tissue series, for clinical applications, requires significantly increased computational capacity in order to efficiently analyze the very large, highly dimensional datasets. Such datasets are highly suited to processing using graphical processor units, a very cost-effective solution for high speed processing. Here we demonstrate up to 13× speed improvements for imaging MS-based molecular histology using off-the-shelf components, and demonstrate equivalence with CPU based calculations. It is then discussed how imaging MS investigations may be designed to fully exploit the high speed of graphical processor units.

  13. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    PubMed Central

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  14. Video-rate molecular imaging in vivo with stimulated Raman scattering.

    PubMed

    Saar, Brian G; Freudiger, Christian W; Reichman, Jay; Stanley, C Michael; Holtom, Gary R; Xie, X Sunney

    2010-12-01

    Optical imaging in vivo with molecular specificity is important in biomedicine because of its high spatial resolution and sensitivity compared with magnetic resonance imaging. Stimulated Raman scattering (SRS) microscopy allows highly sensitive optical imaging based on vibrational spectroscopy without adding toxic or perturbative labels. However, SRS imaging in living animals and humans has not been feasible because light cannot be collected through thick tissues, and motion-blur arises from slow imaging based on backscattered light. In this work, we enable in vivo SRS imaging by substantially enhancing the collection of the backscattered signal and increasing the imaging speed by three orders of magnitude to video rate. This approach allows label-free in vivo imaging of water, lipid, and protein in skin and mapping of penetration pathways of topically applied drugs in mice and humans.

  15. Fluorescent X-Ray Computed Tomography towards Molecular Imaging: Proof-of-Concept Experiments

    SciTech Connect

    Yuasa, Tetsuya; Huo, Qingkai; Akatsuka, Takao; Takeda, Tohoru; Hyodo, Kazuyuki; Dilmanian, F. Avraham

    2009-03-10

    By means of fluorescent x-ray computed tomography (FXCT) one can detect and image a distribution of non-radioactive imaging agent, e.g., iodine, in a biomedical subject at a high spatial resolution, so it can be a novel molecular imaging modality. We have been studying an FXCT system using synchrotron radiation for in-vivo imaging brains of small animals such as mouse, or rat. For the purpose, we propose a fast FXCT imaging method based on the novel geometry. In this study, we prove the feasibility of this concept and investigate its imaging properties, including spatial and contrast resolutions and quantitativeness, by imaging an acrylic phantom and a normal mouse brain using a preliminary imaging system with monochromatic synchrotron x rays.

  16. Method and apparatus for molecular imaging using X-rays at resonance wavelengths

    DOEpatents

    Chapline, Jr., George F.

    1985-01-01

    Holographic X-ray images are produced representing the molecular structure of a microscopic object, such as a living cell, by directing a beam of coherent X-rays upon the object to produce scattering of the X-rays by the object, producing interference on a recording medium between the scattered X-rays from the object and unscattered coherent X-rays and thereby producing holograms on the recording surface, and establishing the wavelength of the coherent X-rays to correspond with a molecular resonance of a constituent of such object and thereby greatly improving the contrast, sensitivity and resolution of the holograms as representations of molecular structures involving such constituent. For example, the coherent X-rays may be adjusted to the molecular resonant absorption line of nitrogen at about 401.3 eV to produce holographic images featuring molecular structures involving nitrogen.

  17. Method and apparatus for molecular imaging using x-rays at resonance wavelengths

    DOEpatents

    Chapline, G.F. Jr.

    Holographic x-ray images are produced representing the molecular structure of a microscopic object, such as a living cell, by directing a beam of coherent x-rays upon the object to produce scattering of the x-rays by the object, producing interference on a recording medium between the scattered x-rays from the object and unscattered coherent x-rays and thereby producing holograms on the recording surface, and establishing the wavelength of the coherent x-rays to correspond with a molecular resonance of a constituent of such object and thereby greatly improving the contrast, sensitivity and resolution of the holograms as representations of molecular structures involving such constituent. For example, the coherent x-rays may be adjusted to the molecular resonant absorption line of nitrogen at about 401.3 eV to produce holographic images featuring molecular structures involving nitrogen.

  18. The Molecular Gas Outflow of NGC 1068 Imaged by ALMA

    NASA Astrophysics Data System (ADS)

    García-Burillo, S.

    2015-12-01

    We have used the ALMA array to map the emission of a set of dense molecular gas tracers (CO(3-2), CO(6-5), HCN(4-3), HCO+(4-3), and CS(7-6)) in the central r˜2 kpc of the Seyfert 2 galaxy NGC 1068 with spatial resolutions ˜0.3″-0.5″ (˜20-35 pc). The sensitivity and spatial resolution of ALMA give a detailed view of the distribution and kinematics of the dense molecular gas. The gas kinematics from r˜50 pc out to r˜400 pc reveal a massive outflow in all molecular tracers. The tight correlation between the ionized gas outflow, the radio jet, and the occurrence of outward motions in the disk suggests that the outflow is AGN driven. The outflow rate estimated in the CND, M/dt˜63+21-37 M⊙ yr-1, is an order of magnitude higher than the star formation rate at these radii. The molecular outflow could quench star formation in the inner r˜400 pc of the galaxy on short timescales of ≤1 Myr and regulate gas accretion in the CND.

  19. Genetic engineered molecular imaging probes for applications in cell therapy: emphasis on MRI approach

    PubMed Central

    Cho, In K; Wang, Silun; Mao, Hui; Chan, Anthony WS

    2016-01-01

    Recent advances in stem cell-based regenerative medicine, cell replacement therapy, and genome editing technologies (i.e. CRISPR-Cas 9) have sparked great interest in in vivo cell monitoring. Molecular imaging promises a unique approach to noninvasively monitor cellular and molecular phenomena, including cell survival, migration, proliferation, and even differentiation at the whole organismal level. Several imaging modalities and strategies have been explored for monitoring cell grafts in vivo. We begin this review with an introduction describing the progress in stem cell technology, with a perspective toward cell replacement therapy. The importance of molecular imaging in reporting and assessing the status of cell grafts and their relation to the local microenvironment is highlighted since the current knowledge gap is one of the major obstacles in clinical translation of stem cell therapy. Based on currently available imaging techniques, we provide a brief discussion on the pros and cons of each imaging modality used for monitoring cell grafts with particular emphasis on magnetic resonance imaging (MRI) and the reporter gene approach. Finally, we conclude with a comprehensive discussion of future directions of applying molecular imaging in regenerative medicine to emphasize further the importance of correlating cell graft conditions and clinical outcomes to advance regenerative medicine. PMID:27766183

  20. "Click"-cyclized (68)Ga-labeled peptides for molecular imaging and therapy: synthesis and preliminary in vitro and in vivo evaluation in a melanoma model system.

    PubMed

    Martin, Molly E; Sue O'Dorisio, M; Leverich, Whitney M; Kloepping, Kyle C; Walsh, Susan A; Schultz, Michael K

    2013-01-01

    Cyclization techniques are used often to impart higher in vivo stability and binding affinity to peptide targeting vectors for molecular imaging and therapy. The two most often used techniques to impart these qualities are lactam bridge construction and disulfide bond formation. While these techniques have been demonstrated to be effective, orthogonal protection/deprotection steps can limit achievable product yields. In the work described in this chapter, new α-melanocyte stimulating hormone (α-MSH) peptide analogs were synthesized and cyclized by copper-catalyzed terminal azide-alkyne cycloaddition "click" chemistry techniques. The α-MSH peptide and its cognate receptor (melanocortin receptor subtype 1, MC1R) represent a well-characterized model system to examine the effect of the triazole linkage for peptide cyclization on receptor binding in vitro and in vivo. Four new DOTA-conjugated α-MSH analogs were cyclized and evaluated by in vitro competitive binding assays, serum stability testing, and in vivo imaging by positron emission tomography (PET) of tumor-bearing mice. These new DOTA-conjugated click-cyclized analogs exhibited selective high binding affinity (<2 nM) for MC1R on melanoma cells in vitro, high stability in human serum, and produced high-contrast PET/CT images of tumor xenografts. (68)Ga-labeled DOTA bioconjugates displayed rapid pharmacokinetics with receptor-mediated tumor accumulation of up to 16 ± 5% ID/g. The results indicate that the triazole ring is an effective bioisosteric replacement for the standard lactam bridge assemblage for peptide cyclization. Radiolabeling results confirm that Cu catalyst is sufficiently removed prior to DOTA chelator addition to enable insertion of radio metals or stable metals for molecular imaging and therapy. Thus, these click-chemistry-cyclized variants show promise as agents for melanocortin receptor-targeted imaging and radionuclide therapy.

  1. Bioluminescence: a versatile technique for imaging cellular and molecular features

    PubMed Central

    Paley, Miranda A.

    2016-01-01

    Bioluminescence is a ubiquitous imaging modality for visualizing biological processes in vivo. This technique employs visible light and interfaces readily with most cell and tissue types, making it a versatile technology for preclinical studies. Here we review basic bioluminescence imaging principles, along with applications of the technology that are relevant to the medicinal chemistry community. These include noninvasive cell tracking experiments, analyses of protein function, and methods to visualize small molecule metabolites. In each section, we also discuss how bioluminescent tools have revealed insights into experimental therapies and aided drug discovery. Last, we highlight the development of new bioluminescent tools that will enable more sensitive and multi-component imaging experiments and, thus, expand our broader understanding of living systems. PMID:27594981

  2. Molecular probes for nonlinear optical imaging of biological membranes

    NASA Astrophysics Data System (ADS)

    Blanchard-Desce, Mireille H.; Ventelon, Lionel; Charier, Sandrine; Moreaux, Laurent; Mertz, Jerome

    2001-12-01

    Second-harmonic generation (SHG) and two-photon excited fluorescence (TPEF) are nonlinear optical (NLO) phenomena that scale with excitation intensity squared, and hence give rise to an intrinsic 3-dimensional resolution when used in microscopic imaging. TPEF microscopy has gained widespread popularity in the biology community whereas SHG microscopy promises to be a powerful tool because of its sensitivity to local asymmetry. We have implemented an approach toward the design of NLO-probes specifically adapted for SHG and/or TPEF imaging of biological membranes. Our strategy is based on the design of nanoscale amphiphilic NLO-phores. We have prepared symmetrical bolaamphiphilic fluorophores combining very high two-photon absorption (TPA) cross-sections in the visible red region and affinity for cellular membranes. Their incorporation and orientation in lipid membranes can be monitored via TPEF anisotropy. We have also prepared amphiphilic push-pull chromophores exhibiting both large TPA cross-sections and very large first hyperpolarizabilities in the near-IR region. These NLO-probes have proved to be particularly useful for imaging of biological membranes by simultaneous SHG and TPEF microscopy and offer attractive prospects for real-time imaging of fundamental biological processes such as adhesion, fusion or reporting of membrane potentials.

  3. Molecular line emission in NGC 1068 imaged with ALMA

    NASA Astrophysics Data System (ADS)

    Garcia-Burillo, S.

    2015-09-01

    We investigate the fueling and the feedback of star formation and nuclear activity in NGC1068, a nearby Seyfert 2 barred galaxy, by analyzing the distribution and kinematics of the molecular gas in the disk. We have used ALMA to map the emission of a set of dense molecular gas tracers and their underlying continuum emission in the central r=2 kpc of NGC1068 with spatial resolutions 0.3"-0.5" (20-35 pc). Molecular line and dust continuum emissions are detected from a r=200 pc off-centered circumnuclear disk (CND), from the 2.6 kpc-diameter bar region, and from the r=1.3 kpc starburst (SB) ring. We used the dust continuum fluxes measured by ALMA together with NIR/MIR data to constrain the properties of the putative torus using CLUMPY models and found a torus radius of 20(6,-10)pc. The gas kinematics from r=50 pc out to r=400 pc reveal a massive outflow in all molecular tracers. The tight correlation between the ionized gas outflow, the radio jet and the occurrence of outward motions in the disk suggests that the outflow is AGN-driven. The outflow rate estimated in the CND, dM/dt=63(21,-37)M(sun)/yr, is an order of magnitude higher than the star formation rate at these radii, confirming that the outflow is AGN-driven. The power of the AGN is able to account for the estimated momentum and kinetic luminosity of the outflow. The CND mass load rate of the CND outflow implies a very short gas depletion time scale of 1 Myr.

  4. Homing peptide guiding optical molecular imaging for the diagnosis of bladder cancer

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-feng; Pang, Jian-zhi; Liu, Jie-hao; Zhao, Yang; Jia, Xing-you; Li, Jun; Liu, Reng-xin; Wang, Wei; Fan, Zhen-wei; Zhang, Zi-qiang; Yan, San-hua; Luo, Jun-qian; Zhang, Xiao-lei

    2014-11-01

    Background: The limitations of primary transurethral resection of bladder tumor (TURBt) have led the residual tumors rates as high as 75%. The intraoperative fluorescence imaging offers a great potential for improving TURBt have been confirmed. So we aim to distinguish the residual tumors and normal mucosa using fluorescence molecular imaging formed by conjugated molecule of the CSNRDARRC bladder cancer homing peptide with fluorescent dye. The conjugated molecule was abbreviated FIuo-ACP. In our study, we will research the image features of FIuo-ACP probe targeted bladder cancer for fluorescence molecular imaging diagnosis for bladder cancer in vivo and ex vivo. Methods: After the FIuo-ACP probe was synthetized, the binding sites, factors affecting binding rates, the specificity and the targeting of Fluo-ACP labeled with bladder cancer cells were studied respectively by laser scanning confocal microscope (LSCM), immunofluorescence and multispectral fluorescence ex vivo optical molecular imaging system. Results: The binding sites were located in nucleus and the binding rates were correlated linearly with the dose of probe and the grade of pathology. Moreover, the probe has a binding specificity with bladder cancer in vivo and ex vivo. Tumor cells being labeled by the Fluo-ACP, bright green spots were observed under LSCM. The tissue samples and tumor cells can be labeled and identified by fluorescence microscope. Optical molecular imaging of xenograft tumor tissues was exhibited as fluorescent spots under EMCCD. Conclusion: The CSNRDARRC peptides might be a useful bladder cancer targeting vector. The FIuo-ACP molecular probe was suitable for fluorescence molecular imaging diagnosis for bladder cancer in vivo and ex vivo.

  5. Acute gangrenous cholecystitis: radionuclide diagnosis

    SciTech Connect

    Brachman, M.B.; Tanasescu, D.E.; Ramanna, L.; Waxman, A.D.

    1984-04-01

    Radionuclide hepatobiliary imaging with Tc-99m IDA is a useful procedure for the diagnosis of acute cholecystitis. Visualization of the gallbladder essentially rules out acute cholecystitis. Nonvisualization suggest acute cholecystitis but may also be associated with chronic gallbladder disease or other conditions. The authors recently observed five patients in whom a rim of increased parenchymal liver activity was seen adjacent to the gallbladder fossa. All five patients had acute gangrenous cholecystitis. The rim of increased activity appears to be a useful secondary sign of acute cholecystitis.

  6. Angle resolved photoemission from organic semiconductors: orbital imaging beyond the molecular orbital interpretation

    NASA Astrophysics Data System (ADS)

    Dauth, M.; Wiessner, M.; Feyer, V.; Schöll, A.; Puschnig, P.; Reinert, F.; Kümmel, S.

    2014-10-01

    Fascinating pictures that can be interpreted as showing molecular orbitals have been obtained with various imaging techniques. Among these, angle resolved photoemission spectroscopy (ARPES) has emerged as a particularly powerful method. Orbital images have been used to underline the physical credibility of the molecular orbital concept. However, from the theory of the photoemission process it is evident that imaging experiments do not show molecular orbitals, but Dyson orbitals. The latter are not eigenstates of a single-particle Hamiltonian and thus do not fit into the usual simple interpretation of electronic structure in terms of molecular orbitals. In a combined theoretical and experimental study we thus check whether a Dyson-orbital and a molecular-orbital based interpretation of ARPES lead to differences that are relevant on the experimentally observable scale. We discuss a scheme that allows for approximately calculating Dyson orbitals with moderate computational effort. Electronic relaxation is taken into account explicitly. The comparison reveals that while molecular orbitals are frequently good approximations to Dyson orbitals, a detailed understanding of photoemission intensities may require one to go beyond the molecular orbital picture. In particular we clearly observe signatures of the Dyson-orbital character for an adsorbed semiconductor molecule in ARPES spectra when these are recorded over a larger momentum range than in earlier experiments.

  7. Hysterosalpingo-radionuclide scintigraphy (HERS)

    SciTech Connect

    Iturralde, M.; Venter, P.F.

    1981-10-01

    A radionuclide procedure, hysterosalpingo-radionuclide scintigraphy (HERS), was designed to evaluate the migration of a particulate radioactive tracer from the vagina to the peritoneal cavity and ovaries as well as to image and functionally outline the patency of the pathways between these two extremes of the female reproductive system. Technetium-99m human albumin microspheres (99mTc-HAM) were deposited in the posterior fornices of patients who were divided into two specific groups. Group I consisted of patients who were to undergo different elective gynecologic operations, in which besides obtaining sequential images, radioactivity levels were measured in the removed organs and tissues. Group II consisted of patients referred by the Infertility Clinic for evaluation of their reproductive system pathways patency. In this latter group, HERS was compared with contrast hysterosalpingography (HSG) and peritoneoscopy (PCP). The results obtained from measurements of radioactivity levels on the removed surgical specimens and comparison with other conventional gynecologic diagnostic procedures provide accurate evidence of the migration of 99mTc-HAM from the vagina, through the uterus and tubes, to the peritoneal cavity and ovaries, and show that HERS is a simple noninvasive method for functionally imaging and assessing the patency of the female reproductive system pathways.

  8. Quantitative sensing of microviscosity in protocells and amyloid materials using fluorescence lifetime imaging of molecular rotors

    NASA Astrophysics Data System (ADS)

    Thompson, Alex J.; Tang, T.-Y. Dora; Herling, Therese W.; Che Hak, C. Rohaida; Mann, Stephen; Knowles, Tuomas P. J.; Kuimova, Marina K.

    2014-03-01

    Molecular rotors are fluorophores that have a fluorescence quantum yield that depends upon intermolecular rotation. The fluorescence quantum yield, intensity and lifetime of molecular rotors all vary as functions of viscosity, as high viscosities inhibit intermolecular rotation and cause an increase in the non-radiative decay rate. As such, molecular rotors can be used to probe viscosity on microscopic scales. Here, we apply fluorescence lifetime imaging microscopy (FLIM) to measure the fluorescence lifetimes of three different molecular rotors, in order to determine the microscopic viscosity in two model systems with significant biological interest. First, the constituents of a novel protocell - a model of a prebiotic cell - were studied using the molecular rotors BODIPY C10 and kiton red. Second, amyloid formation was investigated using the molecular rotor Cy3.

  9. Radionuclides in US coals

    SciTech Connect

    Bisselle, C. A.; Brown, R. D.

    1984-03-01

    The current state of knowledge with respect to radionuclide concentrations in US coals is discussed. Emphasis is placed on the levels of uranium in coal (and lignite) which are considered to represent a concern resulting from coal combustion; areas of the US where such levels have been found; and possible origins of high radionuclide levels in coal. The report reviews relevant studies and presents new data derived from a computerized search of radionuclide content in about 4000 coal samples collected throughout the coterminous US. 103 references, 5 figures, 5 tables.

  10. NIH workshop on clinical translation of molecular imaging probes and technology--meeting report.

    PubMed

    Liu, Christina H; Sastre, Antonio; Conroy, Richard; Seto, Belinda; Pettigrew, Roderic I

    2014-10-01

    A workshop on "Clinical Translation of Molecular Imaging Probes and Technology" was held August 2, 2013 in Bethesda, Maryland, organized and supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB). This workshop brought together researchers, clinicians, representatives from pharmaceutical companies, molecular probe developers, and regulatory science experts. Attendees met to talk over current challenges in the discovery, validation, and translation of molecular imaging (MI) probes for key clinical applications. Participants also discussed potential strategies to address these challenges. The workshop consisted of 4 sessions, with 14 presentations and 2 panel discussions. Topics of discussion included (1) challenges and opportunities for clinical research and patient care, (2) advances in molecular probe design, (3) current approaches used by industry and pharmaceutical companies, and (4) clinical translation of MI probes. In the presentations and discussions, there were general agreement that while the barriers for validation and translation of MI probes remain high, there are pressing clinical needs and development opportunities for targets in cardiovascular, cancer, endocrine, neurological, and inflammatory diseases. The strengths of different imaging modalities, and the synergy of multimodality imaging, were highlighted. Participants also underscored the continuing need for close interactions and collaborations between academic and industrial partners, and federal agencies in the imaging probe development process.

  11. In vivo near infrared fluorescence (NIRF) intravascular molecular imaging of inflammatory plaque, a multimodal approach to imaging of atherosclerosis.

    PubMed

    Calfon, Marcella A; Rosenthal, Amir; Mallas, Georgios; Mauskapf, Adam; Nudelman, R Nika; Ntziachristos, Vasilis; Jaffer, Farouc A

    2011-08-04

    The vascular response to injury is a well-orchestrated inflammatory response triggered by the accumulation of macrophages within the vessel wall leading to an accumulation of lipid-laden intra-luminal plaque, smooth muscle cell proliferation and progressive narrowing of the vessel lumen. The formation of such vulnerable plaques prone to rupture underlies the majority of cases of acute myocardial infarction. The complex molecular and cellular inflammatory cascade is orchestrated by the recruitment of T lymphocytes and macrophages and their paracrine effects on endothelial and smooth muscle cells.(1) Molecular imaging in atherosclerosis has evolved into an important clinical and research tool that allows in vivo visualization of inflammation and other biological processes. Several recent examples demonstrate the ability to detect high-risk plaques in patients, and assess the effects of pharmacotherapeutics in atherosclerosis.(4) While a number of molecular imaging approaches (in particular MRI and PET) can image biological aspects of large vessels such as the carotid arteries, scant options exist for imaging of coronary arteries.(2) The advent of high-resolution optical imaging strategies, in particular near-infrared fluorescence (NIRF), coupled with activatable fluorescent probes, have enhanced sensitivity and led to the development of new intravascular strategies to improve biological imaging of human coronary atherosclerosis. Near infrared fluorescence (NIRF) molecular imaging utilizes excitation light with a defined band width (650-900 nm) as a source of photons that, when delivered to an optical contrast agent or fluorescent probe, emits fluorescence in the NIR window that can be detected using an appropriate emission filter and a high sensitivity charge-coupled camera. As opposed to visible light, NIR light penetrates deeply into tissue, is markedly less attenuated by endogenous photon absorbers such as hemoglobin, lipid and water, and enables high target

  12. Strategies for molecular imaging dementia and neurodegenerative diseases

    PubMed Central

    Schaller, Bernhard J

    2008-01-01

    Dementia represents a heterogeneous term that has evolved to describe the behavioral syndromes associated with a variety of clinical and neuropathological changes during continuing degenerative disease of the brain. As such, there lacks a clear consensus regarding the neuropsychological and other constituent characteristics associated with various cerebrovascular changes in this disease process. But increasing this knowledge has given more insights into memory deterioration in patients suffering from Alzheimer’s disease and other subtypes of dementia. The author reviews current knowledge of the physiological coupling between cerebral blood flow and metabolism in the light of state-of-the-art-imaging methods and its changes in dementia with special reference to Alzheimer’s disease. Different imaging techniques are discussed with respect to their visualizing effect of biochemical, cellular, and/or structural changes in dementia. The pathophysiology of dementia in advanced age is becoming increasingly understood by revealing the underlying basis of neuropsychological changes with current imaging techniques, genetic and pathological features, which suggests that alterations of (neuro) vascular regulatory mechanisms may lead to brain dysfunction and disease. The current view is that cerebrovascular deregulation is seen as a contributor to cerebrovascular pathologies, such as stroke, but also to neurodegenerative conditions, such as Alzheimer’s disease. The better understanding of these (patho) physiological mechanisms may open an approach to new interventional strategies in dementia to enhance neurovascular repair and to protect neurovascular coupling. PMID:18830391

  13. In situ quantitative imaging of cellular lipids using molecular sensors

    NASA Astrophysics Data System (ADS)

    Yoon, Youngdae; Lee, Park J.; Kurilova, Svetlana; Cho, Wonhwa

    2011-11-01

    Membrane lipids are dynamic molecules that play important roles in cell signalling and regulation, but an in situ imaging method for quantitatively tracking lipids in living cells is lacking at present. Here, we report a new chemical method of quantitative lipid imaging using sensors engineered by labelling proteins with an environmentally sensitive fluorophore. A prototype sensor for phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2)—a key signalling lipid in diverse cellular processes—was generated by covalently attaching a single 2-dimethylamino-6-acyl-naphthalene group to the N-terminal α-helix of the engineered epsin1 ENTH domain, a protein that selectively binds PtdIns(4,5)P2. The sensor allows robust and sensitive in situ quantitative imaging in mammalian cells, providing new insight into the spatiotemporal dynamics and fluctuation of this key signalling lipid. Application of the sensor to immune cells reveals the presence of a local threshold PtdIns(4,5)P2 concentration required for triggering phagocytosis. This sensor strategy is generally applicable to in situ quantification of other cellular lipids.

  14. Insight into the Molecular Imaging of Alzheimer's Disease

    PubMed Central

    Bhagat, Neeta

    2016-01-01

    Alzheimer's disease is a complex neurodegenerative disease affecting millions of individuals worldwide. Earlier it was diagnosed only via clinical assessments and confirmed by postmortem brain histopathology. The development of validated biomarkers for Alzheimer's disease has given impetus to improve diagnostics and accelerate the development of new therapies. Functional imaging like positron emission tomography (PET), single photon emission computed tomography (SPECT), functional magnetic resonance imaging (fMRI), and proton magnetic resonance spectroscopy provides a means of detecting and characterising the regional changes in brain blood flow, metabolism, and receptor binding sites that are associated with Alzheimer's disease. Multimodal neuroimaging techniques have indicated changes in brain structure and metabolic activity, and an array of neurochemical variations that are associated with neurodegenerative diseases. Radiotracer-based PET and SPECT potentially provide sensitive, accurate methods for the early detection of disease. This paper presents a review of neuroimaging modalities like PET, SPECT, and selected imaging biomarkers/tracers used for the early diagnosis of AD. Neuroimaging with such biomarkers and tracers could achieve a much higher diagnostic accuracy for AD and related disorders in the future. PMID:26880871

  15. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging

    SciTech Connect

    Meng, Congsen; Janssen, Maurice H. M.

    2015-02-15

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the density profile of the molecular beam, and the measured absolute density is compared with theoretical calculations of the centre line beam density. Subsequently, we discuss reasons accounting for the differences between measurements and calculations and propose that strong skimmer interference is the most probable cause for the differences. Furthermore, we report on experiments measuring the centre line density of seeded supersonic beams. The femtosecond ion images show that seeding the heavy Xe atom at low relative seed fractions (1%-10%) in a light carrier gas like Ne results in strong relative enhancements of up to two orders of magnitude.

  16. Alternative Non-Antibody Protein Scaffolds for Molecular Imaging of Cancer

    PubMed Central

    Stern, Lawrence A.; Case, Brett A.; Hackel, Benjamin J.

    2013-01-01

    The development of improved methods for early detection and characterization of cancer presents a major clinical challenge. One approach that has shown excellent potential in preclinical and clinical evaluation is molecular imaging with small-scaffold, non-antibody based, engineered proteins. These novel diagnostic agents produce high contrast images due to their fast clearance from the bloodstream and healthy tissues, can be evolved to bind a multitude of cancer biomarkers, and are easily functionalized by site-specific bioconjugation methods. Several small protein scaffolds have been verified for in vivo molecular imaging including affibodies and their two-helix variants, knottins, fibronectins, DARPins, and several natural ligands. Further, the biodistribution of these engineered ligands can be optimized through rational mutation of the conserved regions, careful selection and placement of chelator, and modification of molecular size. PMID:24358455

  17. Using tRNA-linked molecular beacons to image cytoplasmic mRNAs in live cells.

    PubMed

    Mhlanga, Musa M; Tyagi, Sanjay

    2006-01-01

    Imaging products of gene expression in live cells will provide unique insights into the biology of cells. Molecular beacons make attractive probes for imaging mRNA in live cells as they can report the presence of an RNA target by turning on the fluorescence of a quenched fluorophore. However, when oligonucleotide probes are introduced into cells, they are rapidly sequestered in the nucleus, making the detection of cytoplasmic mRNAs difficult. We have shown that if a molecular beacon is linked to a tRNA, it stays in the cytoplasm and permits detection of cytoplasmic mRNAs. Here we describe two methods of linking molecular beacons to tRNA and show how the joint molecules can be used for imaging an mRNA that is normally present in the cytoplasm in live cultured cells. This protocol should take a total of 4 d to complete.

  18. Enhancing contrast and quantitation by spatial frequency domain fluorescence molecular imaging

    NASA Astrophysics Data System (ADS)

    Sun, Jessica; Hathi, Deep; Zhou, Haiying; Shokeen, Monica; Akers, Walter J.

    2016-03-01

    Optical imaging with fluorescent contrast agents is highly sensitive for molecular imaging but is limited in depth to a few centimeters below the skin. Planar fluorescence imaging with full-field, uniform illumination and scientific camera image capture provides a portable and robust configuration for real-time, sensitive fluorescence detection with scalable resolution, but is inherently surface weighted and therefore limited in depth to a few millimeters. At the NIR region (700-1000 nm), tissue absorption and autofluorescence are relatively reduced, increasing depth penetration and reducing background signal, respectively. Optical imaging resolution scales with depth, limiting microscopic resolution with multiphoton microscopy and optical coherence tomography to < 3 mm depth. Unfortunately, patient skin and peri-tumoral tissues are not uniform, varying in thickness and color, complicating subsurface fluorescence measurements. Diffuse optical imaging methods have been developed that better quantify optical signals relative to faster full-field planar reflectance imaging, but require long scan times, complex instrumentation, and reconstruction algorithms. Here we report a novel strategy for rapid measurement of subsurface fluorescence using structured light illumination to improve quantitation of deep-seated fluorescence molecular probe accumulation. This technique, in combination with highly specific, tumor-avid fluorescent molecular probes, will easily integrate noninvasive diagnostics for superficial cancers and fluorescence guided surgery.

  19. In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes.

    PubMed

    Wang, Huina; Liu, Chengbo; Gong, Xiaojing; Hu, Dehong; Lin, Riqiang; Sheng, Zonghai; Zheng, Cuifang; Yan, Meng; Chen, Jingqin; Cai, Lintao; Song, Liang

    2014-11-01

    As an optical-acoustic hybrid imaging technology, photoacoustic imaging uniquely combines the advantages of rich optical contrast with high ultrasonic resolution in depth, opening up many new possibilities not attainable with conventional pure optical imaging technologies. To perform photoacoustic molecular imaging, optically absorbing exogenous contrast agents are needed to enhance the signals from specifically targeted disease activity. In this work, we designed and developed folate receptor targeted, indocyanine green dye doped poly(d,l-lactide-co-glycolide) lipid nanoparticles (FA-ICG-PLGA-lipid NPs) for molecular photoacoustic imaging of tumor. The fabricated FA-ICG-PLGA-lipid NPs exhibited good aqueous stability, a high folate-receptor targeting efficiency, and remarkable optical absorption in near-infrared wavelengths, providing excellent photoacoustic signals in vitro. Furthermore, after intravenous administration of FA-ICG-PLGA-lipid NPs, mice bearing MCF-7 breast carcinomas showed significantly enhanced photoacoustic signals in vivo in the tumor regions, compared with those using non-targeted ICG-PLGA-lipid NPs. Given the existing wide clinical use of ICG and PLGA, the developed FA-ICG-PLGA-lipid NPs, in conjunction with photoacoustic imaging technology, offer a great potential to be translated into the clinic for non-ionizing molecular imaging of breast cancer in vivo.

  20. In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes

    NASA Astrophysics Data System (ADS)

    Wang, Huina; Liu, Chengbo; Gong, Xiaojing; Hu, Dehong; Lin, Riqiang; Sheng, Zonghai; Zheng, Cuifang; Yan, Meng; Chen, Jingqin; Cai, Lintao; Song, Liang

    2014-11-01

    As an optical-acoustic hybrid imaging technology, photoacoustic imaging uniquely combines the advantages of rich optical contrast with high ultrasonic resolution in depth, opening up many new possibilities not attainable with conventional pure optical imaging technologies. To perform photoacoustic molecular imaging, optically absorbing exogenous contrast agents are needed to enhance the signals from specifically targeted disease activity. In this work, we designed and developed folate receptor targeted, indocyanine green dye doped poly(d,l-lactide-co-glycolide) lipid nanoparticles (FA-ICG-PLGA-lipid NPs) for molecular photoacoustic imaging of tumor. The fabricated FA-ICG-PLGA-lipid NPs exhibited good aqueous stability, a high folate-receptor targeting efficiency, and remarkable optical absorption in near-infrared wavelengths, providing excellent photoacoustic signals in vitro. Furthermore, after intravenous administration of FA-ICG-PLGA-lipid NPs, mice bearing MCF-7 breast carcinomas showed significantly enhanced photoacoustic signals in vivo in the tumor regions, compared with those using non-targeted ICG-PLGA-lipid NPs. Given the existing wide clinical use of ICG and PLGA, the developed FA-ICG-PLGA-lipid NPs, in conjunction with photoacoustic imaging technology, offer a great potential to be translated into the clinic for non-ionizing molecular imaging of breast cancer in vivo.

  1. Improved tumor identification using dual tracer molecular imaging in fluorescence guided brain surgery

    NASA Astrophysics Data System (ADS)

    Xu, Xiaochun; Torres, Veronica; Straus, David; Brey, Eric M.; Byrne, Richard W.; Tichauer, Kenneth M.

    2015-03-01

    Brain tumors represent a leading cause of cancer death for people under the age of 40 and the probability complete surgical resection of brain tumors remains low owing to the invasive nature of these tumors and the consequences of damaging healthy brain tissue. Molecular imaging is an emerging approach that has the potential to improve the ability for surgeons to correctly discriminate between healthy and cancerous tissue; however, conventional molecular imaging approaches in brain suffer from significant background signal in healthy tissue or an inability target more invasive sections of the tumor. This work presents initial studies investigating the ability of novel dual-tracer molecular imaging strategies to be used to overcome the major limitations of conventional "single-tracer" molecular imaging. The approach is evaluated in simulations and in an in vivo mice study with animals inoculated orthotopically using fluorescent human glioma cells. An epidermal growth factor receptor (EGFR) targeted Affibody-fluorescent marker was employed as a targeted imaging agent, and the suitability of various FDA approved untargeted fluorescent tracers (e.g. fluorescein & indocyanine green) were evaluated in terms of their ability to account for nonspecific uptake and retention of the targeted imaging agent. Signal-to-background ratio was used to measure and compare the amount of reporter in the tissue between targeted and untargeted tracer. The initial findings suggest that FDA-approved fluorescent imaging agents are ill-suited to act as untargeted imaging agents for dual-tracer fluorescent guided brain surgery as they suffer from poor delivery to the healthy brain tissue and therefore cannot be used to identify nonspecific vs. specific uptake of the targeted imaging agent where current surgery is most limited.

  2. Radionuclide Behavior in Containments.

    2000-02-14

    MATADOR analyzes the transport and deposition of radionuclides as vapor or aerosol through Light Water Reactor (LWR) containments during severe accidents and calculates environmental release fractions of radionuclides as a function of time. It is intended for use in system risk studies. The principal output is information on the timing and magnitude of radionuclide releases to the environment as a result of severely degraded core accidents. MATADOR considers the transport of radionuclides through the containmentmore » and their removal by natural deposition and the operation of engineered safety systems such as sprays. Input data on the source term from the primary system, the containment geometry, and thermal-hydraulic conditions are required.« less

  3. Peptide receptor radionuclide therapy of Merkel cell carcinoma using (177)lutetium-labeled somatostatin analogs in combination with radiosensitizing chemotherapy: a potential novel treatment based on molecular pathology.

    PubMed

    Salavati, Ali; Prasad, Vikas; Schneider, Claus-Peter; Herbst, Rudolf; Baum, Richard Paul

    2012-05-01

    Few studies have been published on the safety and feasibility of synchronous use of peptide receptor radionuclide therapy (PRRNT), as source of internal radiation therapy, in combination with chemotherapy. In this study we reported a 53-year-old man with stage IV Merkel cell carcinoma (MCC), who underwent synchronous internal radiation therapy and chemotherapy. Based on presumable poor prognosis with chemotherapy only, functional similarities of MCC with other neuroendocrine tumors and available evidence of effectiveness and safety of synchronous use of external beam radiation therapy and chemotherapy in treatment of high-risk MCC patients, our interdisciplinary neuroendocrine tumor board recommended him to add PRRNT to his ongoing chemotherapy. He received 2 courses of (177)Lu-DOTATATE(1, 4, 7, 10-Tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid-1-D-Phe1-Tyr3-Thr8-octreotide) in combination with ongoing 8 cycles of liposomal doxorubicin based on standard protocols. Response to therapy was evaluated by (18)F-FDG and (68)gallium-somatostatin-receptor PET/CT. There was an impressive improvement of the clinical symptoms. However, follow-up PET/CT studies showed mixed pattern of response. Synchronous use of PRRNT and radiosensitizing chemotherapy seems safe and feasible in high risk MCC patients, however, further prospective studies and clinical trials are warranted to provide reliable evidence of possible pitfalls and effectiveness of PRRNT and (68)Ga-somatostatin-receptor PET/CT in the management of MCC.

  4. Imaging mass spectrometry: Molecular microscopy for the new age of biology and medicine.

    PubMed

    Caprioli, Richard M

    2016-06-01

    Imaging mass spectrometry provides a powerful tool for monitoring and discovery of molecular processes in the spatial domain in tissues for research and practical applications in both biology and medicine. This technology directly measures molecular compounds in tissues without the use of target-specific reagents such as antibodies, is applicable to a wide variety of analytes, and can provide spatial resolutions below the single cell level. Importantly, it has paradigm shifting capabilities in clinical applications, especially for anatomic pathology.

  5. Small animal SPECT and its place in the matrix of molecular imaging technologies.

    PubMed

    Meikle, Steven R; Kench, Peter; Kassiou, Michael; Banati, Richard B

    2005-11-21

    Molecular imaging refers to the use of non-invasive imaging techniques to detect signals that originate from molecules, often in the form of an injected tracer, and observe their interaction with a specific cellular target in vivo. Differences in the underlying physical principles of these measurement techniques determine the sensitivity, specificity and length of possible observation of the signal, characteristics that have to be traded off according to the biological question under study. Here, we describe the specific characteristics of single photon emission computed tomography (SPECT) relative to other molecular imaging technologies. SPECT is based on the tracer principle and external radiation detection. It is capable of measuring the biodistribution of minute (<10(-10) molar) concentrations of radio-labelled biomolecules in vivo with sub-millimetre resolution and quantifying the molecular kinetic processes in which they participate. Like some other imaging techniques, SPECT was originally developed for human use and was subsequently adapted for imaging small laboratory animals at high spatial resolution for basic and translational research. Its unique capabilities include (i) the ability to image endogenous ligands such as peptides and antibodies due to the relative ease of labelling these molecules with technetium or iodine, (ii) the ability to measure relatively slow kinetic processes (compared with positron emission tomography, for example) due to the long half-life of the commonly used isotopes and (iii) the ability to probe two or more molecular pathways simultaneously by detecting isotopes with different emission energies. In this paper, we review the technology developments and design tradeoffs that led to the current state-of-the-art in SPECT small animal scanning and describe the position SPECT occupies within the matrix of molecular imaging technologies.

  6. High-Resolution Molecular Imaging Via Intravital Microscopy: Illuminating Vascular Biology In Vivo

    PubMed Central

    Taqueti, Viviany R.; Jaffer, Farouc A.

    2012-01-01

    Complications of atherosclerosis and thrombosis are leading causes of death worldwide. While experimental investigations have yielded valuable insights into key molecular and cellular phenomena in these diseases of medium- and large-sized vessels, direct visualization of relevant in vivo biological processes has been limited. However, recent developments in molecular imaging technology, specifically fluorescence imaging agents coupled with high-resolution, high-speed intravital microscopy (IVM), are now enabling dynamic and longitudinal investigations into the mechanisms and progression of many vascular diseases. Here we review recent advances in IVM that have provided new in vivo biological insights into atherosclerosis and thrombosis. PMID:23135362

  7. Emerging Themes in Image Informatics and Molecular Analysis for Digital Pathology.

    PubMed

    Bhargava, Rohit; Madabhushi, Anant

    2016-07-11

    Pathology is essential for research in disease and development, as well as for clinical decision making. For more than 100 years, pathology practice has involved analyzing images of stained, thin tissue sections by a trained human using an optical microscope. Technological advances are now driving major changes in this paradigm toward digital pathology (DP). The digital transformation of pathology goes beyond recording, archiving, and retrieving images, providing new computational tools to inform better decision making for precision medicine. First, we discuss some emerging innovations in both computational image analytics and imaging instrumentation in DP. Second, we discuss molecular contrast in pathology. Molecular DP has traditionally been an extension of pathology with molecularly specific dyes. Label-free, spectroscopic images are rapidly emerging as another important information source, and we describe the benefits and potential of this evolution. Third, we describe multimodal DP, which is enabled by computational algorithms and combines the best characteristics of structural and molecular pathology. Finally, we provide examples of application areas in telepathology, education, and precision medicine. We conclude by discussing challenges and emerging opportunities in this area.

  8. Emerging Themes in Image Informatics and Molecular Analysis for Digital Pathology.

    PubMed

    Bhargava, Rohit; Madabhushi, Anant

    2016-07-11

    Pathology is essential for research in disease and development, as well as for clinical decision making. For more than 100 years, pathology practice has involved analyzing images of stained, thin tissue sections by a trained human using an optical microscope. Technological advances are now driving major changes in this paradigm toward digital pathology (DP). The digital transformation of pathology goes beyond recording, archiving, and retrieving images, providing new computational tools to inform better decision making for precision medicine. First, we discuss some emerging innovations in both computational image analytics and imaging instrumentation in DP. Second, we discuss molecular contrast in pathology. Molecular DP has traditionally been an extension of pathology with molecularly specific dyes. Label-free, spectroscopic images are rapidly emerging as another important information source, and we describe the benefits and potential of this evolution. Third, we describe multimodal DP, which is enabled by computational algorithms and combines the best characteristics of structural and molecular pathology. Finally, we provide examples of application areas in telepathology, education, and precision medicine. We conclude by discussing challenges and emerging opportunities in this area. PMID:27420575

  9. Nonlinear optical molecular imaging enables metabolic redox sensing in tissue-engineered constructs

    NASA Astrophysics Data System (ADS)

    Chen, Leng-Chun; Lloyd, William R.; Wilson, Robert H.; Kuo, Shiuhyang; Marcelo, Cynthia L.; Feinberg, Stephen E.; Mycek, Mary-Ann

    2011-07-01

    Tissue-engineered constructs require noninvasive monitoring of cellular viability prior to implantation. In a preclinical study on human Ex Vivo Produced Oral Mucosa Equivalent (EVPOME) constructs, nonlinear optical molecular imaging was employed to extract morphological and functional information from intact constructs. Multiphoton excitation fluorescence images were acquired using endogenous fluorescence from cellular nicotinamide adenine dinucleotide phosphate [NAD(P)H] and flavin adenine dinucleotide (FAD). The images were analyzed to report quantitatively on tissue structure and metabolism (redox ratio). Both thickness variations over time and cell distribution variations with depth were identified, while changes in redox were quantified. Our results show that nonlinear optical molecular imaging has the potential to visualize and quantitatively monitor the growth and viability of a tissue-engineered construct over time.

  10. Photoactive Lipid-Gold Nanoconstructs for Molecular Imaging and Photo-Therapy

    NASA Astrophysics Data System (ADS)

    Farhadi, Arash

    The ubiquitous presence of porphyrins in nature is a testament to their versatility and utility. This thesis examines the utility of novel synthetic porphyrin derivatives, metallo-pyrolipid, as surface-enhanced Raman scattering (SERS) contrast agents for molecular imaging and monitoring of photodynamic therapy (PDT). Chapter 2 illustrates the refinement and optimization of manganese-pyrolipid gold nanoparticles for optical imaging of endothelial growth factor receptor overexpression in early stage lung cancer. In chapter 3, the use of palladium-pyrolipid gold nanoparticles as a new platform for SERS reporting photosensitizers is presented, allowing for real-time PDT and molecular imaging. These nanoparticles are demonstrated to be promising as photobleaching-dependent SERS reporting agents for PDT dosimetry. It is my hope that the studies presented in this thesis will set the stage for the development of simple and multifunctional SERS agents for medical imaging and therapeutic-use relevant to current unmet needs in medicine.

  11. [Development of a new redox molecular imaging method].

    PubMed

    Naganuma, Tatsuya; Nakao, Motonao; Ichikawa, Kazuhiro; Utsumi, Hideo

    2015-01-01

    For indirect tissue observation, electron-spin, Overhauser-enhanced, dynamic nuclear polarization magnetic resonance imaging (DNP-MRI) is a useful technique. However, its sensitivity and resolution are low compared with the clinical MRI apparatus. By switching to electron spin resonance (ESR) excitation, the magnetic field of the NMR detection, field cycle technique, which aims to improve resolution, was proposed. However, the effect of eddy currents or current value was altered unsatisfactorily. A team at Kyushu University proposed a new DNP-MRI technique capable of improving NMR detection field by preparing in advance a magnetic field, which was connected by the sample transport system. By developing a mobile MRI method that can be used while moving, and fastening the sample in a disk that rotates at a constant speed, they have developed a circular transport DNP-MRI method that greatly reduces the load on the sample. The circular transport DNP-MRI system comprises a circular sample transport system, detection of an MRI magnetic field of 1.5 T, and ESR excitation magnetic field of 20 mT. The developed DNP-MRI had a clear glass tube phantom and resolution of 0.15 mm, and was successful in imaging multiple radical resonant points. It has been commercialized by Japan Redox Limited. In the process of equipment commercialization, a new digital spectrometer has been developed, which expanded the MRI apparatus. PMID:25948310

  12. Update: affibody molecules for molecular imaging and therapy for cancer.

    PubMed

    Orlova, Anna; Feldwisch, Joachim; Abrahmsén, Lars; Tolmachev, Vladimir

    2007-10-01

    Affibody molecules are scaffold proteins, having a common frame of amino acids determining the overall fold or tertiary structure, but with each member characterized by a unique amino acid composition in an exposed binding surface determining binding specificity and affinity for a certain target. Affibody molecules represent a new class of affinity proteins based on a 58-amino acid residue protein domain, derived from one of the IgG binding domains of staphylococcal protein A. They combine small size ( approximately 6.5 kDa) with high affinity and specificity. Affibody molecules with nanomolar affinities were selected from an initial library (3 x 10(9) members) and, after affinity maturation, picomolar binders were obtained. The small size and simple structure of affibody molecules allow their production by chemical synthesis with homogeneous site-specific incorporation of moieties for further labeling using a wide range of labeling chemistries. The robustness and the refolding properties of affibody molecules make them amenable to labeling conditions that denature most proteins, including incubation at pH 11 at 60 degrees C for up to 60 minutes. Affibody molecules meet the requirements which are key for successful clinical use as imaging agents: high-affinity binding to the chosen target; short plasma half-life time; rapid renal clearance for nonbound drug substance and, high, continuously increasing tumor-to-organ ratios, resulting in high-contrast in vivo images shortly after injection of the diagnostic agent. PMID:17979560

  13. In-vivo optical molecular imaging for laser hyperthermia

    NASA Astrophysics Data System (ADS)

    Zeng, Shaoqun; Zhang, Zhihong; Zhou, Wei; Luo, Qingming

    2002-04-01

    Green fluorescent protein (GFP) transfected Hela cell was planted in naked mice, to construct an in vivo model for monitoring the therapeutic effect of laser hyperthermia in real time. A cooled CCD fluorescence imaging system was used to record the tumor fluorescence image during the hyperthermia process. Primary experimental results were presented in this paper. To make sure the fluorescent probe GFP does not have strong effect on the biologic function of the host tumor cell (Hela cell), several conventional biological processes were observed in real time. First, neurons, which are much more tender than tumor cells, were transfected with GFP (cameleons). No morphological inhomogenities were observed, and normal functional responses of the neurons were observed when stimulated with histamine. In the second step, the mitosis process of cultured Hela cell was monitored. The features observed during mitosis confirmed that the transfection does not ruin the mitosis process of the tumor cell. At last, naked mice with tumor cell was constructed, which emit fluorescence in the tumor region when excited with faint laser. This presentation provides an in vivo biological model for quick monitoring of the therapeutic results of tumor hyperthermia.

  14. Justifying molecular images in cell biology textbooks: From constructions to primary data.

    PubMed

    Serpente, Norberto

    2016-02-01

    For scientific claims to be reliable and productive they have to be justified. However, on the one hand little is known on what justification precisely means to scientists, and on the other the position held by philosophers of science on what it entails is rather limited; for justifications customarily refer to the written form (textual expressions) of scientific claims, leaving aside images, which, as many cases from the history of science show are relevant to this process. The fact that images can visually express scientific claims independently from text, plus their vast variety and origins, requires an assessment of the way they are currently justified and in turn used as sources to justify scientific claims in the case of particular scientific fields. Similarly, in view of the different nature of images, analysis is required to determine on what side of the philosophical distinction between data and phenomena these different kinds of images fall. This paper historicizes and documents a particular aspect of contemporary life sciences research: the use of the molecular image as vehicle of knowledge production in cell studies, a field that has undergone a significant shift in visual expressions from the early 1980s onwards. Focussing on textbooks as sources that have been overlooked in the historiography of contemporary biomedicine, the aim is to explore (1) whether the shift of cell studies, entailing a superseding of the optical image traditionally conceptualised as primary data, by the molecular image, corresponds with a shift of justificatory practices, and (2) to assess the role of the molecular image as primary data. This paper also explores the dual role of images as teaching resources and as resources for the construction of knowledge in cell studies especially in its relation to discovery and justification. Finally, this paper seeks to stimulate reflection on what kind of archival resources could benefit the work of present and future epistemic

  15. Molecular Beacon-Based MicroRNA Imaging During Neurogenesis.

    PubMed

    Lee, Jonghwan; Kim, Soonhag

    2016-01-01

    The fluorescence monitoring system for examining endogenous microRNA (miRNA) activity in cellular level provides crucial information on not only understanding a critical role of miRNA involving a variety of biological processes, but also evaluating miRNA expression patterns in a noninvasive manner. In this protocol, we report the details of a new procedure for a molecular beacon-based miRNA monitoring system, which includes the illustration scheme for miRNA detection strategy, exogenous miRNA detection, and measurement of endogenous miRNA expression level during neurogenesis. The fluorescence signal of miR-124a beacon quenched by BHQ2 was gradually recovered as increasing concentration of the miR-124a in tube. The functional work of miR-124a beacon was examined in intracellular environment, allowing for the internalization of the miR-124a beacon by lipofectamine, which resulted in activated fluorescent signals of the miR-124a beacon in the HeLa cells after the addition of synthetic miR-124a. The endogenous miR-124a expression level was detected by miR-124a beacon system during neurogenesis, showing brighter fluorescence intensity in cytoplasmic area of P19 cells after induction of neuronal differentiation by retinoic acid. The molecular beacon based-miRNA detection technique could be applicable to the simultaneous visualization of a variety of miRNA expression patterns using different fluorescence dyes. For the study of examining endogenous miRNA expression level using miRNA-beacon system, if cellular differentiation step is already prepared, transfection step of miR-124a beacon into P19 cells, and acquisition of activated fluorescence signal measured by confocal microscope can be conducted approximately within 6 h.

  16. Bifunctional Coupling Agents for Radiolabeling of Biomolecules and Target-Specific Delivery of Metallic Radionuclides

    PubMed Central

    Liu, Shuang

    2008-01-01

    Receptor-based radiopharmaceuticals are of great current interest in early molecular imaging and radiotherapy of cancers, and provide a unique tool for target-specific delivery of radionuclides to the diseased tissues. In general, a target-specific radiopharmaceutical can be divided into four parts: targeting biomolecule (BM), pharmacokinetic modifying (PKM) linker, bifunctional coupling or chelating agent (BFC), and radionuclide. The targeting biomolecule serves as a “carrier” for specific delivery of the radionuclide. PKM linkers are used to modify radiotracer excretion kinetics. BFC is needed for radiolabeling of biomolecules with a metallic radionuclide. Different radiometals have significant difference in their coordination chemistry, and require BFCs with different donor atoms and chelator frameworks. Since the radiometal chelate can have a significant impact on physical and biological properties of the target-specific radiopharmaceutical, its excretion kinetics can be altered by modifying the coordination environment with various chelators or coligand, if needed. This review will focus on the design of BFCs and their coordination chemistry with technetium, copper, gallium, indium, yttrium and lanthanide radiometals. PMID:18538888

  17. Low molecular weight Neutral Boron Dipyrromethene (Bodipy) dyads for fluorescence-based neural imaging

    NASA Astrophysics Data System (ADS)

    Bai, Dan; Benniston, Andrew C.; Clift, Sophie; Baisch, Ulrich; Steyn, Jannetta; Everitt, Nicola; Andras, Peter

    2014-05-01

    The neutral low molecular weight julolidine-based borondipyrromethene (Bodipy) dyads JULBD and MJULBD were used for fast voltage-sensitive dye imaging of neurons in the crab stomatogastric ganglion. The fluorescence modulation of the dyads mirrors alterations in the membrane potential of the imaged neurons. The toxicity of the dyes towards the neurons is related to their structure in that methyl groups at the 3,5 positions results in reduced toxic effects.

  18. Method and apparatus for separating radionuclides from non-radionuclides

    DOEpatents

    Harp, Richard J.

    1990-01-01

    In an apparatus for separating radionuclides from non-radionuclides in a mixture of nuclear waste, a vessel is provided wherein the mixture is heated to a temperature greater than the temperature of vaporization for the non-radionuclides but less than the temperature of vaporization for the radionuclides. Consequently the non-radionuclides are vaporized while the non-radionuclides remain the solid or liquid state. The non-radionuclide vapors are withdrawn from the vessel and condensed to produce a flow of condensate. When this flow decreases the heat is reduced to prevent temperature spikes which might otherwise vaporize the radionuclides. The vessel is removed and capped with the radioactive components of the apparatus and multiple batches of the radionuclide residue disposed therein. Thus the vessel ultimately provides a burial vehicle for all of the radioactive components of the process.

  19. Preparation of Radiopharmaceuticals Labeled with Metal Radionuclides

    SciTech Connect

    Welch, M.J.

    2012-02-16

    The overall goal of this project was to develop methods for the production of metal-based radionuclides, to develop metal-based radiopharmaceuticals and in a limited number of cases, to translate these agents to the clinical situation. Initial work concentrated on the application of the radionuclides of Cu, Cu-60, Cu-61 and Cu-64, as well as application of Ga-68 radiopharmaceuticals. Initially Cu-64 was produced at the Missouri University Research Reactor and experiments carried out at Washington University. A limited number of studies were carried out utilizing Cu-62, a generator produced radionuclide produced by Mallinckrodt Inc. (now Covidien). In these studies, copper-62-labeled pyruvaldehyde Bis(N{sup 4}-methylthiosemicarbazonato)-copper(II) was studied as an agent for cerebral myocardial perfusion. A remote system for the production of this radiopharmaceutical was developed and a limited number of patient studies carried out with this agent. Various other copper radiopharmaceuticals were investigated, these included copper labeled blood imaging agents as well as Cu-64 labeled antibodies. Cu-64 labeled antibodies targeting colon cancer were translated to the human situation. Cu-64 was also used to label peptides (Cu-64 octriatide) and this is one of the first applications of a peptide radiolabeled with a positron emitting metal radionuclide. Investigations were then pursued on the preparation of the copper radionuclides on a small biomedical cyclotron. A system for the production of high specific activity Cu-64 was developed and initially the Cu-64 was utilized to study the hypoxic imaging agent Cu-64 ATSM. Utilizing the same target system, other positron emitting metal radionuclides were produced, these were Y-86 and Ga-66. Radiopharmaceuticals were labeled utilizing both of these radionuclides. Many studies were carried out in animal models on the uptake of Cu-ATSM in hypoxic tissue. The hypothesis is that Cu-ATSM retention in vivo is dependent upon the

  20. Magnetically engineered smart thin films: toward lab-on-chip ultra-sensitive molecular imaging.

    PubMed

    Hassan, Muhammad A; Saqib, Mudassara; Shaikh, Haseeb; Ahmad, Nasir M; Elaissari, Abdelhamid

    2013-03-01

    Magnetically responsive engineered smart thin films of nanoferrites as contrast agent are employed to develop surface based magnetic resonance imaging to acquire simple yet fast molecular imaging. The work presented here can be of significant potential for future lab-on-chip point-of-care diagnostics from the whole blood pool on almost any substrates to reduce or even prevent clinical studies involve a living organism to enhance the non-invasive imaging to advance the '3Rs' of work in animals-replacement, refinement and reduction.

  1. Meeting the challenges of PET-based molecular imaging in cancer.

    PubMed

    Choyke, Peter; Kurdziel, Karen A; Mena, Esther; Lindenberg, Maria L

    2013-09-01

    As personalized medicine becomes a reality, there is a need for specific imaging agents that reflect molecular characteristics of a cancer. Fluorodeoxyglucose is an important advance because of its sensitivity. Newer molecular imaging probes offer higher specificity and are categorized as: radiolabeled biomimetics; antibody-antibody fragments and drug-drug-like compounds. Biomimetics have high sensitivity but tend to be less specific as they often engage natural transporters and metabolic pathways. Antibodies and their fragments are specific but may be limited by slow clearance. Labeled drugs and drug-like compounds offer good specificity but may be limited in sensitivity. There are numerous challenges facing molecular imaging related to their complexity. Additionally, fear of ionizing radiation and regulatory constraints have somewhat inhibited clinical translation. However, there is reason for optimism due to economies of scale and a changing health care system, which places a premium on diagnostic accuracy. Although molecular imaging is not likely to become mainstream in the near future, its long-term prospects for doing so are excellent. PMID:24063395

  2. Molecular histology of arteries: mass spectrometry imaging as a novel ex vivo tool to investigate atherosclerosis.

    PubMed

    Martin-Lorenzo, Marta; Alvarez-Llamas, Gloria; McDonnell, Liam A; Vivanco, Fernando

    2016-01-01

    Atherosclerosis is usually the underlying cause of a fatal event such as myocardial infarction or ictus. The atherome plaque develops silently and asymptomatically within the arterial intima layer. In this context, the possibility to analyze the molecular content of arterial tissue while preserving each molecule's specific localization is of great interest as it may reveal further insights into the physiopathological changes taking place. Mass spectrometry imaging (MSI) enables the spatially resolved molecular analysis of proteins, peptides, metabolites, lipids and drugs directly in tissue, with a resolution sufficient to reveal molecular features specific to distinct arterial structures. MSI represents a novel ex vivo imaging tool still underexplored in cardiovascular diseases. This review focuses on the MSI technique applied to cardiovascular disease and covers the main contributions to date, ongoing efforts, the main challenges and current limitations of MSI.

  3. Ultrasound Contrast Materials in Cardiovascular Medicine: from Perfusion Assessment to Molecular Imaging

    PubMed Central

    Klibanov, Alexander L

    2013-01-01

    Ultrasound imaging is widely used in cardiovascular diagnostics. Contrast agents expand the range of tasks that ultrasound can perform. In the clinic in US, endocardial border delineation and left ventricle opacification have been an approved indication for more than a decade. However, myocardial perfusion contrast ultrasound studies are still at the clinical trials stage. Blood pool contrast and perfusion in other tissues might be an easier indication to achieve: general blood pool ultrasound contrast is in wider use in Europe, Canada, Japan, and China. Targeted (molecular) contrast microbubbles will be the next generation of ultrasound imaging probes, capable of specific delineation of the areas of disease by adherence to molecular targets. The shell of targeted microbubbles (currently in the preclinical research and early stage clinical trials) is decorated with the ligands (antibodies, peptides or mimetics, hormones, carbohydrates) that ensure firm binding to the molecular markers of disease. PMID:23913363

  4. Molecular Imaging Using Fluorescence and Bioluminescence to Reveal Tissue Response to Laser-Mediated Thermal Injury

    NASA Astrophysics Data System (ADS)

    Mackanos, Mark A.; Jansen, E. Duco; Contag, Christopher H.

    For decades biological investigation has focused on a reductionist approach, which has greatly advanced our understanding of the biological process, but has also served to move the analysis further and further away from the living body. This was necessary as we sought to identify the cells, genes, mutations and/or etiological agents that were associated with a given process. The information generated through these approaches can now be used to advance more integrative strategies in which specific cellular and molecular events can be studied in context of the functional circulation and intact organ systems of living animals, and humans. Essential tools for integrative analyses of biology include imaging modalities that enable visualization of structure and function in the living body. The relatively recent development of molecular probes as exogenous contrast agents and reporter genes that encode proteins with unique properties that can be distinguished from tissues and cells has ushered in a new set of approaches that are being called molecular imaging.

  5. A synthetic molecular system capable of mirror-image genetic replication and transcription.

    PubMed

    Wang, Zimou; Xu, Weiliang; Liu, Lei; Zhu, Ting F

    2016-07-01

    The overwhelmingly homochiral nature of life has left a puzzle as to whether mirror-image biological systems based on a chirally inverted version of molecular machinery could also have existed. Here we report that two key steps in the central dogma of molecular biology, the template-directed polymerization of DNA and transcription into RNA, can be catalysed by a chemically synthesized D-amino acid polymerase on an L-DNA template. We also show that two chirally mirrored versions of the 174-residue African swine fever virus polymerase X could operate in a racemic mixture without significant enantiomeric cross-inhibition to the activity of each other. Furthermore, we demonstrate that a functionally active L-DNAzyme could be enzymatically produced using the D-amino acid polymerase. The establishment of such molecular systems with an opposite handedness highlights the potential to exploit enzymatically produced mirror-image biomolecules as research and therapeutic tools. PMID:27325097

  6. Simultaneous and spectroscopic redox molecular imaging of multiple free radical intermediates using dynamic nuclear polarization-magnetic resonance imaging.

    PubMed

    Hyodo, Fuminori; Ito, Shinji; Yasukawa, Keiji; Kobayashi, Ryoma; Utsumi, Hideo

    2014-08-01

    Redox reactions that generate free radical intermediates are essential to metabolic processes. However, their intermediates can produce reactive oxygen species, which may promote diseases related to oxidative stress. We report here the use of dynamic nuclear polarization-magnetic resonance imaging (DNP-MRI) to conduct redox molecular imaging. Using DNP-MRI, we obtained simultaneous images of free radical intermediates generated from the coenzyme Q10 (CoQ10), flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD) involved in the mitochondrial electron transport chain as well as the radicals derived from vitamins E and K1. Each of these free radicals was imaged in real time in a phantom comprising a mixture of free radicals localized in either lipophilic or aqueous environments. Changing the frequency of electron spin resonance (ESR) irradiation also allowed each of the radical species to be distinguished in the spectroscopic images. This study is the first to report the spectroscopic DNP-MRI imaging of free radical intermediates that are derived from endogenous species involved in metabolic processes.

  7. Atomic resolution ADF-STEM imaging of organic molecular crystal of halogenated copper phthalocyanine.

    PubMed

    Haruta, Mitsutaka; Yoshida, Kaname; Kurata, Hiroki; Isoda, Seiji

    2008-05-01

    Annular dark-field (ADF) scanning transmission electron microscopy (STEM) measurements are demonstrated for the first time to be applicable for acquiring Z-contrast images of organic molecules at atomic resolution. High-angle ADF imaging by STEM is a new technique that provides incoherent high-resolution Z-contrast images for organic molecules. In the present study, low-angle ADF-STEM is successfully employed to image the molecular crystal structure of hexadecachloro-Cu-phthalocyanine (Cl16-CuPc), an organic molecule. The structures of CuPc derivatives (polyhalogenated CuPc with Br and Cl) are determined quantitatively using the same technique to determine the occupancy of halogens at each chemical site. By comparing the image contrasts of atomic columns, the occupancy of Br is found to be ca. 56% at the inner position, slightly higher than that for random substitution and in good agreement with previous TEM results.

  8. Full-direct method for imaging pharmacokinetic parameters in dynamic fluorescence molecular tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Guanglei; Pu, Huangsheng; He, Wei; Liu, Fei; Luo, Jianwen; Bai, Jing

    2015-02-01

    Images of pharmacokinetic parameters (also known as parametric images) in dynamic fluorescence molecular tomography (FMT) can provide three-dimensional metabolic information for biological studies and drug development. However, the ill-posed nature of FMT and the high temporal variation of fluorophore concentration together make it difficult to obtain accurate parametric images in small animals in vivo. In this letter, we present a method to directly reconstruct the parametric images from the boundary measurements based on hybrid FMT/X-ray computed tomography (XCT) system. This method can not only utilize structural priors obtained from the XCT system to mitigate the ill-posedness of FMT but also make full use of the temporal correlations of boundary measurements to model the high temporal variation of fluorophore concentration. The results of numerical simulation and mouse experiment demonstrate that the proposed method leads to significant improvements in the reconstruction quality of parametric images.

  9. Differential structured illumination microendoscopy for in vivo imaging of molecular contrast agents

    PubMed Central

    Keahey, Pelham; Ramalingam, Preetha; Schmeler, Kathleen

    2016-01-01

    Fiber optic microendoscopy has shown promise for visualization of molecular contrast agents used to study disease in vivo. However, fiber optic microendoscopes have limited optical sectioning capability, and image contrast is limited by out-of-focus light generated in highly scattering tissue. Optical sectioning techniques have been used in microendoscopes to remove out-of-focus light but reduce imaging speed or rely on bulky optical elements that prevent in vivo imaging. Here, we present differential structured illumination microendoscopy (DSIMe), a fiber optic system that can perform structured illumination in real time for optical sectioning without any opto-mechanical components attached to the distal tip of the fiber bundle. We demonstrate the use of DSIMe during in vivo fluorescence imaging in patients undergoing surgery for cervical adenocarcinoma in situ. Images acquired using DSIMe show greater contrast than standard microendoscopy, improving the ability to detect cellular atypia associated with neoplasia. PMID:27621464

  10. Full-direct method for imaging pharmacokinetic parameters in dynamic fluorescence molecular tomography

    SciTech Connect

    Zhang, Guanglei; Pu, Huangsheng; Liu, Fei; Bai, Jing; He, Wei; Luo, Jianwen

    2015-02-23

    Images of pharmacokinetic parameters (also known as parametric images) in dynamic fluorescence molecular tomography (FMT) can provide three-dimensional metabolic information for biological studies and drug development. However, the ill-posed nature of FMT and the high temporal variation of fluorophore concentration together make it difficult to obtain accurate parametric images in small animals in vivo. In this letter, we present a method to directly reconstruct the parametric images from the boundary measurements based on hybrid FMT/X-ray computed tomography (XCT) system. This method can not only utilize structural priors obtained from the XCT system to mitigate the ill-posedness of FMT but also make full use of the temporal correlations of boundary measurements to model the high temporal variation of fluorophore concentration. The results of numerical simulation and mouse experiment demonstrate that the proposed method leads to significant improvements in the reconstruction quality of parametric images.

  11. Companion diagnostics and molecular imaging-enhanced approaches for oncology clinical trials

    PubMed Central

    Van Heertum, Ronald L; Scarimbolo, Robert; Ford, Robert; Berdougo, Eli; O’Neal, Michael

    2015-01-01

    In the era of personalized medicine, diagnostic approaches are helping pharmaceutical and biotechnology sponsors streamline the clinical trial process. Molecular assays and diagnostic imaging are routinely being used to stratify patients for treatment, monitor disease, and provide reliable early clinical phase assessments. The importance of diagnostic approaches in drug development is highlighted by the rapidly expanding global cancer diagnostics market and the emergent attention of regulatory agencies worldwide, who are beginning to offer more structured platforms and guidance for this area. In this paper, we highlight the key benefits of using companion diagnostics and diagnostic imaging with a focus on oncology clinical trials. Nuclear imaging using widely available radiopharmaceuticals in conjunction with molecular imaging of oncology targets has opened the door to more accurate disease assessment and the modernization of standard criteria for the evaluation, staging, and treatment responses of cancer patients. Furthermore, the introduction and validation of quantitative molecular imaging continues to drive and optimize the field of oncology diagnostics. Given their pivotal role in disease assessment and treatment, the validation and commercialization of diagnostic tools will continue to advance oncology clinical trials, support new oncology drugs, and promote better patient outcomes. PMID:26392755

  12. Automatic identification and quantitative morphometry of unstained spinal nerve using molecular hyperspectral imaging technology.

    PubMed

    Li, Qingli; Chen, Zenggan; He, Xiaofu; Wang, Yiting; Liu, Hongying; Xu, Qintong

    2012-12-01

    Quantitative observation of nerve fiber sections is often complemented by morphological analysis in both research and clinical condition. However, existing manual or semi-automated methods are tedious and labour intensive, fully automated morphometry methods are complicated as the information of color or gray images captured by traditional microscopy is limited. Moreover, most of the methods are time-consuming as the nerve sections need to be stained with some reagents before observation. To overcome these shortcomings, a molecular hyperspectral imaging system is developed and used to observe the spinal nerve sections. The molecular hyperspectral images contain both the structural and biochemical information of spinal nerve sections which is very useful for automatic identification and quantitative morphological analysis of nerve fibers. This characteristic makes it possible for researchers to observe the unstained spinal nerve and live cells in their native environment. To evaluate the performance of the new method, the molecular hyperspectral images were captured and the improved spectral angle mapper algorithm was proposed and used to segment the myelin contours. Then the morphological parameters such as myelin thickness and myelin area were calculated and evaluated. With these morphological parameters, the three dimension surface view images were drawn to help the investigators observe spinal nerve at different angles. The experiment results show that the hyperspectral based method has the potential to identify the spinal nerve more accurate than the traditional method as the new method contains both the spectral and spatial information of nerve sections. PMID:23059447

  13. Companion diagnostics and molecular imaging-enhanced approaches for oncology clinical trials.

    PubMed

    Van Heertum, Ronald L; Scarimbolo, Robert; Ford, Robert; Berdougo, Eli; O'Neal, Michael

    2015-01-01

    In the era of personalized medicine, diagnostic approaches are helping pharmaceutical and biotechnology sponsors streamline the clinical trial process. Molecular assays and diagnostic imaging are routinely being used to stratify patients for treatment, monitor disease, and provide reliable early clinical phase assessments. The importance of diagnostic approaches in drug development is highlighted by the rapidly expanding global cancer diagnostics market and the emergent attention of regulatory agencies worldwide, who are beginning to offer more structured platforms and guidance for this area. In this paper, we highlight the key benefits of using companion diagnostics and diagnostic imaging with a focus on oncology clinical trials. Nuclear imaging using widely available radiopharmaceuticals in conjunction with molecular imaging of oncology targets has opened the door to more accurate disease assessment and the modernization of standard criteria for the evaluation, staging, and treatment responses of cancer patients. Furthermore, the introduction and validation of quantitative molecular imaging continues to drive and optimize the field of oncology diagnostics. Given their pivotal role in disease assessment and treatment, the validation and commercialization of diagnostic tools will continue to advance oncology clinical trials, support new oncology drugs, and promote better patient outcomes.

  14. Optical imaging of radioisotopes: a novel multimodal approach to molecular imaging.

    PubMed

    Spinelli, A E; Marengo, M; Calandrino, R; Sbarbati, A; Boschi, F

    2012-06-01

    In this review there will be presented an overview of the literature about the recent developments on radiotracers imaging using optical methods and their applications. We will begin with a short summary regarding the discovery of Cerenkov radiation (CR) and then focus on the early developments and experimental validation of planar Cerenkov luminescence imaging. A significant improvement in Cerenkov luminescence imaging was given by the development of tomographic methods in order to obtain in vivo whole body 3D images of Cerenkov sources. An interesting and original application discussed in this review is the use of CR as the excitation source of quantum dots and fluorophores. We will also present some recent experimental results on in vivo radio luminescence imaging of alpha and gamma emitters. All these results make optical radioisotopes imaging an interesting cost-effective tool for the screening of new probes for both imaging and therapeutic applications. Other interesting aspects are the uses of Cerenkov radiation for radiotherapy and for radiopharmaceuticals synthesis applications. We will conclude by summarising the most important results and the future challenges. PMID:22695338

  15. Reconstitution of Giant Mammalian Synapses in Culture for Molecular Functional and Imaging Studies

    PubMed Central

    Takagi, Hiroshi; Guillaud, Laurent; Saitoh, Naoto; Eguchi, Kohgaku

    2016-01-01

    Giant presynaptic terminal brain slice preparations have allowed intracellular recording of electrical signals and molecular loading, elucidating cellular and molecular mechanisms underlying neurotransmission and modulation. However, molecular genetic manipulation or optical imaging in these preparations is hampered by factors, such as tissue longevity and background fluorescence. To overcome these difficulties, we developed a giant presynaptic terminal culture preparation, which allows genetic manipulation and enables optical measurements of synaptic vesicle dynamics, simultaneously with presynaptic electrical signal recordings. This giant synapse reconstructed from dissociated mouse brainstem neurons resembles the development of native calyceal giant synapses in several respects. Thus, this novel preparation constitutes a powerful tool for studying molecular mechanisms of neurotransmission, neuromodulation, and neuronal development. SIGNIFICANCE STATEMENT We have developed a novel culture preparation of giant mammalian synapses. These presynaptic terminals make it possible to perform optical imaging simultaneously with presynaptic electrophysiological recording. We demonstrate that this enables one to dissect endocytic and acidification times of synaptic vesicles. In addition, developmental elimination and functional maturation in this cultured preparation provide a useful model for studying presynaptic development. Because this giant synapse preparation allows molecular genetic manipulations, it constitutes a powerful new tool for studying molecular mechanisms of neurotransmission, neuromodulation, and neuronal development. PMID:27013688

  16. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    SciTech Connect

    Bowsher, James Giles, William; Yin, Fang-Fang; Yan, Susu; Roper, Justin

    2014-01-15

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min

  17. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    PubMed Central

    Bowsher, James; Yan, Susu; Roper, Justin; Giles, William; Yin, Fang-Fang

    2014-01-01

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min

  18. Target-to-background enhancement in multispectral endoscopy with background autofluorescence mitigation for quantitative molecular imaging

    NASA Astrophysics Data System (ADS)

    Yang, Chenying; Hou, Vivian W.; Girard, Emily J.; Nelson, Leonard Y.; Seibel, Eric J.

    2014-07-01

    Fluorescence molecular imaging with exogenous probes improves specificity for the detection of diseased tissues by targeting unambiguous molecular signatures. Additionally, increased diagnostic sensitivity is expected with the application of multiple molecular probes. We developed a real-time multispectral fluorescence-reflectance scanning fiber endoscope (SFE) for wide-field molecular imaging of fluorescent dye-labeled molecular probes at nanomolar detection levels. Concurrent multichannel imaging with the wide-field SFE also allows for real-time mitigation of the background autofluorescence (AF) signal, especially when fluorescein, a U.S. Food and Drug Administration approved dye, is used as the target fluorophore. Quantitative tissue AF was measured for the ex vivo porcine esophagus and murine brain tissues across the visible and near-infrared spectra. AF signals were then transferred to the unit of targeted fluorophore concentration to evaluate the SFE detection sensitivity for sodium fluorescein and cyanine. Next, we demonstrated a real-time AF mitigation algorithm on a tissue phantom, which featured molecular probe targeted cells of high-grade dysplasia on a substrate containing AF species. The target-to-background ratio was enhanced by more than one order of magnitude when applying the real-time AF mitigation algorithm. Furthermore, a quantitative estimate of the fluorescein photodegradation (photobleaching) rate was evaluated and shown to be insignificant under the illumination conditions of SFE. In summary, the multichannel laser-based flexible SFE has demonstrated the capability to provide sufficient detection sensitivity, image contrast, and quantitative target intensity information for detecting small precancerous lesions in vivo.

  19. Non-invasive molecular profiling of cancer using photoacoustic imaging of functionalized gold nanorods

    NASA Astrophysics Data System (ADS)

    Shah, Anant J.; Alles, Erwin J.; Box, Carol; Eccles, Suzanne A.; Robinson, Simon P.; deSouza, Nandita; Bamber, Jeffrey C.

    2014-03-01

    Although molecularly targeted cancer therapies have shown great promise, it is now evident that responses are dependent upon the molecular genetic context. Spatial and temporal tumour heterogeneity renders biopsy of solid tumours unsuitable for determining the genetic profile of the disease, making adaptation of appropriate therapy difficult. We have utilized the tunable optical absorption characteristic of gold nanorods to assess the potential of photoacoustics for non-invasive multiplexed molecular imaging. Gold nanorods with resonance peaks at 700nm and 900nm were functionalised with in-house antibodies ICR55 and ICR62, targeted to HER2 and EGFR transmembrane receptors, respectively. Three human squamous carcinoma cell lines (LICR-LON-HN4 expressing high HER2 and low EGFR, LICR-LON-HN3 expressing intermediate levels of HER2 and EGFR and A431 expressing high EGFR and low HER2) were incubated with the targeted nanorods for 24 hours. Cells were then incorporated as simulated tumours in tissue-like phantoms composed of 7.5% gelatin containing 0.5% Intralipid® for optical scattering and imaged at a depth of 2.5 cm, using a new clinical in-house multi-spectral photoacoustic imaging system. Images were obtained from the cell inclusions for wavelengths ranging from 710 to 950 nm at 40 nm intervals, and the mean amplitude of the photoacoustic image was computed for each wavelength, to determine their relative receptor expression levels. The molecular profile of the cells obtained using multi-wavelength photoacoustics had substantial similarity to that obtained using flow cytometry. These preliminary results confirm selective uptake of the functionalised nanorods, which reflects the cellular expression of therapeutically important oncoproteins, and give an indication of the potential of photoacoustics for multiplexed molecular profiling.

  20. Molecular imaging of bacterial infections in vivo: the discrimination of infection from inflammation

    PubMed Central

    Eggleston, Heather; Panizzi, Peter

    2016-01-01

    Molecular imaging by definition is the visualization of molecular and cellular processes within a given system. The modalities and reagents described here represent a diverse array spanning both pre-clinical and clinical applications. Innovations in probe design and technologies would greatly benefit therapeutic outcomes by enhancing diagnostic accuracy and assessment of acute therapy. Opportunistic pathogens continue to pose a worldwide threat, despite advancements in treatment strategies, which highlights the continued need for improved diagnostics. In this review, we present a summary of the current clinical protocol for the imaging of a suspected infection, methods currently in development to optimize this imaging process, and finally, insight into endocarditis as a model of infectious disease in immediate need of improved diagnostic methods. PMID:26985401

  1. Hands-on molecular imaging: real-time visualization tools bridge gaps in translational medicine.

    PubMed

    Vanderheyden, Jean-Luc

    2008-08-01

    Molecular imaging tools such as CT, MRI, PET and SPECT, as well as various combinations of these instrument systems, continue to improve and evolve, offering increasingly sensitive and high-resolution images of biological processes in real time. The optimal use of these tools across the continuum of biomedical research and clinical medicine can generate the information that is needed to bridge the gaps that currently exist in drug discovery and development. These gaps negatively affect the promise and potential of translational medicine, in which the knowledge gained from multidisciplinary efforts encompassing genomics, proteomics, biomarker discovery, systems biology and bioinformatics are used to drive R&D, design experiments, predict outcomes, guide patient selection for clinical trials, and define pharmacogenomic parameters for optimizing the safety and efficacy of drug compounds. Thus, molecular imaging tools serve an important role in optimizing the drug discovery and development process.

  2. A Bridge Not Too Far: Linking Disciplines Through Molecular Imaging Probes.

    PubMed

    Valliant, John F

    2016-09-01

    The field of nuclear medicine will rely increasingly on the discovery, proper evaluation, and clinical use of molecular imaging probes and on collaborations. Collaborations will include new initiatives among experts already involved in the field and with researchers, technologists, and clinicians from different areas of science and medicine. This article serves to highlight some of the opportunities in which molecular imaging and nuclear medicine in conjunction with probe development, new imaging technologies, and multidisciplinary collaborations can have a significant impact on health care and basic science from the perspective of a person involved in probe development. The article emphasizes breast cancer, but the concepts are readily applied to other areas of medicine and medical research. PMID:27601414

  3. Ratiometric and near-infrared molecular probes for the detection and imaging of zinc ions.

    PubMed

    Carol, Priya; Sreejith, Sivaramapanicker; Ajayaghosh, Ayyappanpillai

    2007-03-01

    The detection and imaging of Zn2+ in biological samples are of paramount interest owing to the role of this cation in physiological functions. This is possible only with molecular probes that specifically bind to Zn2+ and result in changes in emission properties. A "turn-on" emission or shift in the emission color upon binding to Zn2+ should be ideal for in vivo imaging. In this context, ratiometric and near-IR probes are of particular interest. Therefore, in the area of chemosensors or molecular probes, the design of fluorophores that allow ratiometric sensing or imaging in the near-IR region is attracting the attention of chemists. The purpose of this Focus Review is to highlight recent developments in this area and stress the importance of further research for future applications.

  4. Combination of cross-sectional and molecular imaging studies in the localization of gastroenteropancreatic neuroendocrine tumors.

    PubMed

    Toumpanakis, Christos; Kim, Michelle K; Rinke, Anja; Bergestuen, Deidi S; Thirlwell, Christina; Khan, Mohid S; Salazar, Ramon; Oberg, Kjell

    2014-01-01

    Molecular imaging modalities exploit aspects of neuroendocrine tumors (NET) pathophysiology for both diagnostic imaging and therapeutic purposes. The characteristic metabolic pathways of NET determine which tracers are useful for their visualization. In this review, we summarize the diagnostic value of all available molecular imaging studies, present data about their use in daily practice in NET centers globally, and finally make recommendations about the appropriate use of those modalities in specific clinical scenarios. Somatostatin receptor scintigraphy (SRS) continues to have a central role in the diagnostic workup of patients with NET, as it is also widely available. However, and despite the lack of prospective randomized studies, many NET experts predict that Gallium-68 ((68)Ga)-DOTA positron emission tomography (PET) techniques may replace SRS in the future, not only because of their technical advantages, but also because they are superior in patients with small-volume disease, in patients with skeletal metastases, and in those with occult primary tumors. Carbon-11 ((11)C)-5-hydroxy-L-tryptophan (5-HTP) PET and (18)F-dihydroxyphenylalanine ((18)F-DOPA) PET are new molecular imaging techniques of limited availability, and based on retrospective data, their sensitivities seem to be inferior to that of (68)Ga-DOTA PET. Glucagon-like-peptide-1 (GLP-1) receptor imaging seems promising for localization of the primary in benign insulinomas, but is currently available only in a few centers. Fluorine-18 ((18)F)-fluorodeoxyglucose ((18)F-FDG) PET was initially thought to be of limited value in NET, due to their usually slow-growing nature. However, according to subsequent data, (18)F-FDG PET is particularly helpful for visualizing the more aggressive NET, such as poorly differentiated neuroendocrine carcinomas, and well-differentiated tumors with Ki67 values >10%. According to limited data, (18)F-FDG-avid tumor lesions, even in slow-growing NET, may indicate a more

  5. Can gallium-68 compounds partly replace (18)F-FDG in PET molecular imaging?

    PubMed

    Pagou, Margarita; Zerizer, Imene; Al-Nahhas, Adil

    2009-01-01

    The development of gallium-68 -1,4,7,10-tetraazacyclodecane-1,4,7,10-tetraacetic acid ((68)Ga-DOTA) compounds was made possible due to the chemistry of (68)Ga, which matches the pharmacokinetics of many peptides, specially the chelators DOTA and DOTAderivatives with the formation of stable (68)Ga (3+) complexes. The availability of this tracer from a germanium-68-gallium-68 generator with a relatively long half-life makes it attractive to use in busy nuclear medicine departments, particularly those with limited access to cyclotrons. The recent clinical experience with (68)Ga-peptides includes imaging neuroendocrine tumours particularly carcinoid, as well as neuroectodermal tumours such as phaeochromocytoma and paraganglioma. In vitro and animal testing are still progressing alongside clinical studies, with promising results in the use of (68)Ga-DOTA-rhenium-cyclized alpha-melanocyte stimulating hormone (MSH) and (68)Ga-DOTA-napamide (NAP) in melanoma, (68)Ga-DOTA-PEG(4)-BN(7-14) (PESIN) for the imaging of bombesin receptor- positive tumours and (68)Ga-ethylene dicysteine-metronidazole (EC-MN) for imaging tumour hypoxia. In addition to tumours, (68)Ga- DOTA peptide inhibitor of vascular peptide protein 1(VAP-P1) is being assessed for imaging inflammatory reaction. An additional value following a positive scan is the use of beta emitters labelled to the same peptides for radionuclide treatment. In conclusion, the recent introduction of (68)Ga-peptides, made available by a convenient (68)Ga/(68)Ge generator, could greatly contribute to the management of a wide range of clinical conditions including tumours and inflammation. PMID:19675859

  6. Nanoparticle-facilitated functional and molecular imaging for the early detection of cancer

    PubMed Central

    Sivasubramanian, Maharajan; Hsia, Yu; Lo, Leu-Wei

    2014-01-01

    Cancer detection in its early stages is imperative for effective cancer treatment and patient survival. In recent years, biomedical imaging techniques, such as magnetic resonance imaging, computed tomography and ultrasound have been greatly developed and have served pivotal roles in clinical cancer management. Molecular imaging (MI) is a non-invasive imaging technique that monitors biological processes at the cellular and sub-cellular levels. To achieve these goals, MI uses targeted imaging agents that can bind targets of interest with high specificity and report on associated abnormalities, a task that cannot be performed by conventional imaging techniques. In this respect, MI holds great promise as a potential therapeutic tool for the early diagnosis of cancer. Nevertheless, the clinical applications of targeted imaging agents are limited due to their inability to overcome biological barriers inside the body. The use of nanoparticles has made it possible to overcome these limitations. Hence, nanoparticles have been the subject of a great deal of recent studies. Therefore, developing nanoparticle-based imaging agents that can target tumors via active or passive targeting mechanisms is desirable. This review focuses on the applications of various functionalized nanoparticle-based imaging agents used in MI for the early detection of cancer. PMID:25988156

  7. Nanoparticle-facilitated functional and molecular imaging for the early detection of cancer.

    PubMed

    Sivasubramanian, Maharajan; Hsia, Yu; Lo, Leu-Wei

    2014-01-01

    Cancer detection in its early stages is imperative for effective cancer treatment and patient survival. In recent years, biomedical imaging techniques, such as magnetic resonance imaging, computed tomography and ultrasound have been greatly developed and have served pivotal roles in clinical cancer management. Molecular imaging (MI) is a non-invasive imaging technique that monitors biological processes at the cellular and sub-cellular levels. To achieve these goals, MI uses targeted imaging agents that can bind targets of interest with high specificity and report on associated abnormalities, a task that cannot be performed by conventional imaging techniques. In this respect, MI holds great promise as a potential therapeutic tool for the early diagnosis of cancer. Nevertheless, the clinical applications of targeted imaging agents are limited due to their inability to overcome biological barriers inside the body. The use of nanoparticles has made it possible to overcome these limitations. Hence, nanoparticles have been the subject of a great deal of recent studies. Therefore, developing nanoparticle-based imaging agents that can target tumors via active or passive targeting mechanisms is desirable. This review focuses on the applications of various functionalized nanoparticle-based imaging agents used in MI for the early detection of cancer.

  8. Image-guided Coring for Large-scale Studies in Molecular Pathology

    PubMed Central

    Montaser-Kouhsari, Laleh; Knoblauch, Nicholas W.; Oh, Eun-Yeong; Baker, Gabrielle; Christensen, Stephen; Hazra, Aditi; Tamimi, Rulla M.

    2016-01-01

    Sampling of formalin-fixed paraffin-embedded (FFPE) tissue blocks is a critical initial step in molecular pathology. Image-guided coring (IGC) is a new method for using digital pathology images to guide tissue block coring for molecular analyses. The goal of our study is to evaluate the use of IGC for both tissue-based and nucleic acid–based projects in molecular pathology. First, we used IGC to construct a tissue microarray (TMA); second, we used IGC for FFPE block sampling followed by RNA extraction; and third, we assessed the correlation between nuclear counts quantitated from the IGC images and RNA yields. We used IGC to construct a TMA containing 198 normal and breast cancer cores. Histopathologic analysis showed high accuracy for obtaining tumor and normal breast tissue. Next, we used IGC to obtain normal and tumor breast samples before RNA extraction. We selected a random subset of tumor and normal samples to perform computational image analysis to quantify nuclear density, and we built regression models to estimate RNA yields from nuclear count, age of the block, and core diameter. Number of nuclei and core diameter were the strongest predictors of RNA yields in both normal and tumor tissue. IGC is an effective method for sampling FFPE tissue blocks for TMA construction and nucleic acid extraction. We identify significant associations between quantitative nuclear counts obtained from IGC images and RNA yields, suggesting that the integration of computational image analysis with IGC may be an effective approach for tumor sampling in large-scale molecular studies. PMID:26186251

  9. Initial Radionuclide Inventories

    SciTech Connect

    Miller, H

    2005-07-12

    The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only. Bounding waste stream information and data were collected that capture probable limits. For commercially generated waste, this analysis considers alternative waste stream projections to bound the characteristics of wastes likely to be encountered using arrival scenarios that potentially impact the commercial spent nuclear fuel (CSNF) waste stream. For TSPA-LA, this radionuclide inventory analysis considers U.S. Department of Energy (DOE) high-level radioactive waste (DHLW) glass and two types of spent nuclear fuel (SNF): CSNF and DOE-owned (DSNF). These wastes are placed in two groups of waste packages: the CSNF waste package and the codisposal waste package (CDSP), which are designated to contain DHLW glass and DSNF, or DHLW glass only. The radionuclide inventory for naval SNF is provided separately in the classified ''Naval Nuclear Propulsion Program Technical Support Document'' for the License Application. As noted previously, the radionuclide inventory data presented here is intended only for TSPA-LA postclosure calculations. It is not applicable to preclosure safety calculations. Safe storage, transportation, and ultimate disposal of these wastes require safety analyses to support the design and licensing of repository equipment and facilities. These analyses will require radionuclide inventories to represent the radioactive source term that must be accommodated during handling, storage and disposition of these wastes. This analysis uses the best available information to identify the radionuclide inventory that is expected at the last year of last emplacement, currently identified as

  10. Initial Radionuclide Inventories

    SciTech Connect

    H. Miller

    2004-09-19

    The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only. Bounding waste stream information and data were collected that capture probable limits. For commercially generated waste, this analysis considers alternative waste stream projections to bound the characteristics of wastes likely to be encountered using arrival scenarios that potentially impact the commercial spent nuclear fuel (CSNF) waste stream. For TSPA-LA, this radionuclide inventory analysis considers U.S. Department of Energy (DOE) high-level radioactive waste (DHLW) glass and two types of spent nuclear fuel (SNF): CSNF and DOE-owned (DSNF). These wastes are placed in two groups of waste packages: the CSNF waste package and the codisposal waste package (CDSP), which are designated to contain DHLW glass and DSNF, or DHLW glass only. The radionuclide inventory for naval SNF is provided separately in the classified ''Naval Nuclear Propulsion Program Technical Support Document'' for the License Application. As noted previously, the radionuclide inventory data presented here is intended only for TSPA-LA postclosure calculations. It is not applicable to preclosure safety calculations. Safe storage, transportation, and ultimate disposal of these wastes require safety analyses to support the design and licensing of repository equipment and facilities. These analyses will require radionuclide inventories to represent the radioactive source term that must be accommodated during handling, storage and disposition of these wastes. This analysis uses the best available information to identify the radionuclide inventory that is expected at the last year of last emplacement, currently identified as

  11. Radionuclide studies in impotence

    SciTech Connect

    Hilson, A.J.; Lewis, C.A. )

    1991-04-01

    Impotence may be of physiological origin with causes including vascular or neurological pathology. Alternatively, it may be of psychogenic origin. Clinicians can distinguish between psychological and organic impotence by observing nocturnal penile tumescence. Non-radionuclide investigations for organic impotence include penile plethysmography or pulse Doppler analysis for arterial supply, cavernosometry for venous drainage, and biothesiometry or evoked potentials for neurological pathology. Radionuclide studies are primarily based on the use of technetium 99m-pertechnetate, 99mTc-red blood cells, or xenon 133 to study the blood flow, with or without pharmacological intervention, commonly papaverine. 26 references.

  12. Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green

    PubMed Central

    Fang, Cheng; Wang, Kun; Zeng, Chaoting; Chi, Chongwei; Shang, Wenting; Ye, Jinzuo; Mao, Yamin; Fan, Yingfang; Yang, Jian; Xiang, Nan; Zeng, Ning; Zhu, Wen; Fang, Chihua; Tian, Jie

    2016-01-01

    Tissue necrosis commonly accompanies the development of a wide range of serious diseases. Therefore, highly sensitive detection and precise boundary delineation of necrotic tissue via effective imaging techniques are crucial for clinical treatments; however, no imaging modalities have achieved satisfactory results to date. Although fluorescence molecular imaging (FMI) shows potential in this regard, no effective necrosis-avid fluorescent probe has been developed for clinical applications. Here, we demonstrate that indocyanine green (ICG) can achieve high avidity of necrotic tissue owing to its interaction with lipoprotein (LP) and phospholipids. The mechanism was explored at the cellular and molecular levels through a series of in vitro studies. Detection of necrotic tissue and real-time image-guided surgery were successfully achieved in different organs of different animal models with the help of FMI using in house-designed imaging devices. The results indicated that necrotic tissue with a 0.6 mm diameter could be effectively detected with precise boundary definition. We believe that the new discovery and the associated imaging techniques will improve personalized and precise surgery in the near future. PMID:26864116

  13. Disease-specific target gene expression profiling of molecular imaging probes: database development and clinical validation.

    PubMed

    Chan, Lawrence Wing-Chi; Ngo, Connie Hiu-Ching; Wang, Fengfeng; Zhao, Moss Y; Zhao, Mengying; Law, Helen Ka-Wai; Wong, Sze Chuen Cesar; Yung, Benjamin Yat-Ming

    2014-01-01

    Molecular imaging probes can target abnormal gene expression patterns in patients and allow early diagnosis of disease. For selecting a suitable imaging probe, the current Molecular Imaging and Contrast Agent Database (MICAD) provides descriptive and qualitative information on imaging probe characteristics and properties. However, MICAD does not support linkage with the expression profiles of target genes. The proposed Disease-specific Imaging Probe Profiling (DIPP) database quantitatively archives and presents the gene expression profiles of targets across different diseases, anatomic regions, and subcellular locations, providing an objective reference for selecting imaging probes. The DIPP database was validated with a clinical positron emission tomography (PET) study on lung cancer and an in vitro study on neuroendocrine cancer. The retrieved records show that choline kinase beta and glucose transporters were positively and significantly associated with lung cancer among the targets of 11C-choline and [18F]fluoro-2-deoxy-2-d-glucose (FDG), respectively. Their significant overexpressions corresponded to the findings that the uptake rate of FDG increased with tumor size but that of 11C-choline remained constant. Validated with the in vitro study, the expression profiles of disease-associated targets can indicate the eligibility of patients for clinical trials of the treatment probe. A Web search tool of the DIPP database is available at http://www.polyu.edu.hk/bmi/dipp/. PMID:25022454

  14. Target Definition in Salvage Radiotherapy for Recurrent Prostate Cancer: The Role of Advanced Molecular Imaging

    PubMed Central

    Amzalag, Gaël; Rager, Olivier; Tabouret-Viaud, Claire; Wissmeyer, Michael; Sfakianaki, Electra; de Perrot, Thomas; Ratib, Osman; Miralbell, Raymond; Giovacchini, Giampiero; Garibotto, Valentina; Zilli, Thomas

    2016-01-01

    Salvage radiotherapy (SRT) represents the main treatment option for relapsing prostate cancer in patients after radical prostatectomy. Several open questions remain unanswered in terms of target volumes definition and delivered doses for SRT: the effective dose necessary to achieve biochemical control in the SRT setting may be different if the tumor recurrence is micro- or macroscopic. At the same time, irradiation of only the prostatic bed or of the whole pelvis will depend on the localization of the recurrence, local or locoregional. In the “theragnostic imaging” era, molecular imaging using positron emission tomography (PET) constitutes a useful tool for clinicians to define the site of the recurrence, the extent of disease, and individualize salvage treatments. The best option currently available in clinical routine is the combination of radiolabeled choline PET imaging and multiparametric magnetic resonance imaging (MRI), associating the nodal and distant metastases identification based on PET with the local assessment by MRI. A new generation of targeted tracers, namely, prostate-specific membrane antigen, show promising results, with a contrast superior to choline imaging and a higher detection rate even for low prostate-specific antigen levels; validation studies are ongoing. Finally, imaging targeting bone remodeling, using whole-body SPECT–CT, is a relevant complement to molecular/metabolic PET imaging when bone involvement is suspected. PMID:27065024

  15. Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green.

    PubMed

    Fang, Cheng; Wang, Kun; Zeng, Chaoting; Chi, Chongwei; Shang, Wenting; Ye, Jinzuo; Mao, Yamin; Fan, Yingfang; Yang, Jian; Xiang, Nan; Zeng, Ning; Zhu, Wen; Fang, Chihua; Tian, Jie

    2016-02-11

    Tissue necrosis commonly accompanies the development of a wide range of serious diseases. Therefore, highly sensitive detection and precise boundary delineation of necrotic tissue via effective imaging techniques are crucial for clinical treatments; however, no imaging modalities have achieved satisfactory results to date. Although fluorescence molecular imaging (FMI) shows potential in this regard, no effective necrosis-avid fluorescent probe has been developed for clinical applications. Here, we demonstrate that indocyanine green (ICG) can achieve high avidity of necrotic tissue owing to its interaction with lipoprotein (LP) and phospholipids. The mechanism was explored at the cellular and molecular levels through a series of in vitro studies. Detection of necrotic tissue and real-time image-guided surgery were successfully achieved in different organs of different animal models with the help of FMI using in house-designed imaging devices. The results indicated that necrotic tissue with a 0.6 mm diameter could be effectively detected with precise boundary definition. We believe that the new discovery and the associated imaging techniques will improve personalized and precise surgery in the near future.

  16. Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green.

    PubMed

    Fang, Cheng; Wang, Kun; Zeng, Chaoting; Chi, Chongwei; Shang, Wenting; Ye, Jinzuo; Mao, Yamin; Fan, Yingfang; Yang, Jian; Xiang, Nan; Zeng, Ning; Zhu, Wen; Fang, Chihua; Tian, Jie

    2016-01-01

    Tissue necrosis commonly accompanies the development of a wide range of serious diseases. Therefore, highly sensitive detection and precise boundary delineation of necrotic tissue via effective imaging techniques are crucial for clinical treatments; however, no imaging modalities have achieved satisfactory results to date. Although fluorescence molecular imaging (FMI) shows potential in this regard, no effective necrosis-avid fluorescent probe has been developed for clinical applications. Here, we demonstrate that indocyanine green (ICG) can achieve high avidity of necrotic tissue owing to its interaction with lipoprotein (LP) and phospholipids. The mechanism was explored at the cellular and molecular levels through a series of in vitro studies. Detection of necrotic tissue and real-time image-guided surgery were successfully achieved in different organs of different animal models with the help of FMI using in house-designed imaging devices. The results indicated that necrotic tissue with a 0.6 mm diameter could be effectively detected with precise boundary definition. We believe that the new discovery and the associated imaging techniques will improve personalized and precise surgery in the near future. PMID:26864116

  17. Image fusion of mass spectrometry and microscopy: a multimodality paradigm for molecular tissue mapping.

    PubMed

    Van de Plas, Raf; Yang, Junhai; Spraggins, Jeffrey; Caprioli, Richard M

    2015-04-01

    We describe a predictive imaging modality created by 'fusing' two distinct technologies: imaging mass spectrometry (IMS) and microscopy. IMS-generated molecular maps, rich in chemical information but having coarse spatial resolution, are combined with optical microscopy maps, which have relatively low chemical specificity but high spatial information. The resulting images combine the advantages of both technologies, enabling prediction of a molecular distribution both at high spatial resolution and with high chemical specificity. Multivariate regression is used to model variables in one technology, using variables from the other technology. We demonstrate the potential of image fusion through several applications: (i) 'sharpening' of IMS images, which uses microscopy measurements to predict ion distributions at a spatial resolution that exceeds that of measured ion images by ten times or more; (ii) prediction of ion distributions in tissue areas that were not measured by IMS; and (iii) enrichment of biological signals and attenuation of instrumental artifacts, revealing insights not easily extracted from either microscopy or IMS individually.

  18. Effect of molecular organization on the image histograms of polarization SHG microscopy

    PubMed Central

    Psilodimitrakopoulos, Sotiris; Amat-Roldan, Ivan; Loza-Alvarez, Pablo; Artigas, David

    2012-01-01

    Based on its polarization dependency, second harmonic generation (PSHG) microscopy has been proven capable to structurally characterize molecular architectures in different biological samples. By exploiting this polarization dependency of the SHG signal in every pixel of the image, average quantitative structural information can be retrieved in the form of PSHG image histograms. In the present study we experimentally show how the PSHG image histograms can be affected by the organization of the SHG active molecules. Our experimental scenario grounds on two inherent properties of starch granules. Firstly, we take advantage of the radial organization of amylopectin molecules (the SHG source in starch) to attribute shifts of the image histograms to the existence of tilted off the plane molecules. Secondly, we use the property of starch to organize upon hydration to demonstrate that the degree of structural order at the molecular level affects the width of the PSHG image histograms. The shorter the width is the more organized the molecules in the sample are, resulting in a reliable method to measure order. The implication of this finding is crucial to the interpretation of PSHG images used for example in tissue diagnostics. PMID:23082306

  19. Personalized Medicine Based on Theranostic Radioiodine Molecular Imaging for Differentiated Thyroid Cancer

    PubMed Central

    2016-01-01

    Molecular imaging based personalized therapy has been a fascinating concept for individualized therapeutic strategy, which is able to attain the highest efficacy and reduce adverse effects in certain patients. Theranostics, which integrates diagnostic testing to detect molecular targets for particular therapeutic modalities, is one of the key technologies that contribute to the success of personalized medicine. Although the term “theranostics” was used after the second millennium, its basic principle was applied more than 70 years ago in the field of thyroidology with radioiodine molecular imaging. Differentiated thyroid cancer, which arises from follicular cells in the thyroid, is the most common endocrine malignancy, and theranostic radioiodine has been successfully applied to diagnose and treat differentiated thyroid cancer, the applications of which were included in the guidelines published by various thyroid or nuclear medicine societies. Through better pathophysiologic understanding of thyroid cancer and advancements in nuclear technologies, theranostic radioiodine contributes more to modern tailored personalized management by providing high therapeutic effect and by avoiding significant adverse effects in differentiated thyroid cancer. This review details the inception of theranostic radioiodine and recent radioiodine applications for differentiated thyroid cancer management as a prototype of personalized medicine based on molecular imaging. PMID:27239470

  20. Differential diagnosis of lung carcinoma with three-dimensional quantitative molecular vibrational imaging

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Hammoudi, Ahmad A.; Li, Fuhai; Thrall, Michael J.; Cagle, Philip T.; Chen, Yuanxin; Yang, Jian; Xia, Xiaofeng; Fan, Yubo; Massoud, Yehia; Wang, Zhiyong; Wong, Stephen T. C.

    2012-06-01

    The advent of molecularly targeted therapies requires effective identification of the various cell types of non-small cell lung carcinomas (NSCLC). Currently, cell type diagnosis is performed using small biopsies or cytology specimens that are often insufficient for molecular testing after morphologic analysis. Thus, the ability to rapidly recognize different cancer cell types, with minimal tissue consumption, would accelerate diagnosis and preserve tissue samples for subsequent molecular testing in targeted therapy. We report a label-free molecular vibrational imaging framework enabling three-dimensional (3-D) image acquisition and quantitative analysis of cellular structures for identification of NSCLC cell types. This diagnostic imaging system employs superpixel-based 3-D nuclear segmentation for extracting such disease-related features as nuclear shape, volume, and cell-cell distance. These features are used to characterize cancer cell types using machine learning. Using fresh unstained tissue samples derived from cell lines grown in a mouse model, the platform showed greater than 97% accuracy for diagnosis of NSCLC cell types within a few minutes. As an adjunct to subsequent histology tests, our novel system would allow fast delineation of cancer cell types with minimum tissue consumption, potentially facilitating on-the-spot diagnosis, while preserving specimens for additional tests. Furthermore, 3-D measurements of cellular structure permit evaluation closer to the native state of cells, creating an alternative to traditional 2-D histology specimen evaluation, potentially increasing accuracy in diagnosing cell type of lung carcinomas.