Science.gov

Sample records for radionuclide transport modelling

  1. Modeling Radionuclide Transport in Clays

    SciTech Connect

    Zheng, Liange; Li, Lianchong; Rutqvist, Jonny; Liu, Hui -Hai; Birkholzer, Jens

    2012-05-01

    tests (e.g. Garcia-Gutierrez et al. 2006, Soler et al. 2008, van Loon et al. 2004, Wu et al. 2009) and numerical modeling (de Windt et al. 2003; 2006), the effects of THMC processes on radionuclide transport are not fully investigated. The objectives of the research activity documented in this report are to improve a modeling capability for coupled THMC processes and to use it to evaluate the THMC impacts on radionuclide transport. This research activity addresses several key Features, Events and Processes (FEPs), including FEP 2.2.08, Hydrologic Processes, FEP 2.2.07, Mechanical Processes and FEP 2.2.09, Chemical Process— Transport, by studying near-field coupled THMC processes in clay/shale repositories and their impacts on radionuclide transport. This report documents the progress that has been made in FY12. Section 2 discusses the development of THMC modeling capability. Section 3 reports modeling results of THMC impacts on radionuclide transport. Planned work for the remaining months of FY12 and proposed work for FY13 are presented in Section 4.

  2. RADIONUCLIDE TRANSPORT MODELS UNDER AMBIENT CONDITIONS

    SciTech Connect

    S. Magnuson

    2004-11-01

    The purpose of this model report is to document the unsaturated zone (UZ) radionuclide transport model, which evaluates, by means of three-dimensional numerical models, the transport of radioactive solutes and colloids in the UZ, under ambient conditions, from the repository horizon to the water table at Yucca Mountain, Nevada.

  3. Radionuclide Transport Models Under Ambient Conditions

    SciTech Connect

    G. Moridis; Q. Hu

    2000-03-12

    The purpose of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada. This is in accordance with the ''AMR Development Plan U0060, Radionuclide Transport Models Under Ambient Conditions'' (CRWMS M and O 1999a). This AMR supports the UZ Flow and Transport Process Model Report (PMR). This AMR documents the UZ Radionuclide Transport Model (RTM). This model considers: the transport of radionuclides through fractured tuffs; the effects of changes in the intensity and configuration of fracturing from hydrogeologic unit to unit; colloid transport; physical and retardation processes and the effects of perched water. In this AMR they document the capabilities of the UZ RTM, which can describe flow (saturated and/or unsaturated) and transport, and accounts for (a) advection, (b) molecular diffusion, (c) hydrodynamic dispersion (with full 3-D tensorial representation), (d) kinetic or equilibrium physical and/or chemical sorption (linear, Langmuir, Freundlich or combined), (e) first-order linear chemical reaction, (f) radioactive decay and tracking of daughters, (g) colloid filtration (equilibrium, kinetic or combined), and (h) colloid-assisted solute transport. Simulations of transport of radioactive solutes and colloids (incorporating the processes described above) from the repository horizon to the water table are performed to support model development and support studies for Performance Assessment (PA). The input files for these simulations include transport parameters obtained from other AMRs (i.e., CRWMS M and O 1999d, e, f, g, h; 2000a, b, c, d). When not available, the parameter values used are obtained from the literature. The results of the simulations are used to evaluate the transport of radioactive solutes and colloids, and

  4. Sediment and radionuclide transport in rivers: radionuclide transport modeling for Cattaraugus and Buttermilk Creeks, New York

    SciTech Connect

    Onishi, Y.; Yabusaki, S.B.; Kincaid, C.T.; Skaggs, R.L.; Walters, W.H.

    1982-12-01

    SERATRA, a transient, two-dimensional (laterally-averaged) computer model of sediment-contaminant transport in rivers, satisfactorily resolved the distribution of sediment and radionuclide concentrations in the Cattaraugus Creek stream system in New York. By modeling the physical processes of advection, diffusion, erosion, deposition, and bed armoring, SERATRA routed three sediment size fractions, including cohesive soils, to simulate three dynamic flow events. In conjunction with the sediment transport, SERATRA computed radionuclide levels in dissolved, suspended sediment, and bed sediment forms for four radionuclides (/sup 137/Cs, /sup 90/Sr, /sup 239/ /sup 240/Pu, and /sup 3/H). By accounting for time-dependent sediment-radionuclide interaction in the water column and bed, SERATA is a physically explicit model of radionuclide fate and migration. Sediment and radionuclide concentrations calculated by SERATA in the Cattaraugus Creek stream system are in reasonable agreement with measured values. SERATRA is in the field performance phase of an extensive testing program designed to establish the utility of the model as a site assessment tool. The model handles not only radionuclides but other contaminants such as pesticides, heavy metals and other toxic chemicals. Now that the model has been applied to four field sites, including the latest study of the Cattaraugus Creek stream system, it is recommended that a final model be validated through comparison of predicted results with field data from a carefully controlled tracer test at a field site. It is also recommended that a detailed laboratory flume be tested to study cohesive sediment transport, deposition, and erosion characteristics. The lack of current understanding of these characteristics is one of the weakest areas hindering the accurate assessment of the migration of radionuclides sorbed by fine sediments of silt and clay.

  5. Critical review: Radionuclide transport, sediment transport, and water quality mathematical modeling; and radionuclide adsorption/desorption mechanisms

    SciTech Connect

    Onishi, Y.; Serne, R.J.; Arnold, E.M.; Cowan, C.E.; Thompson, F.L.

    1981-01-01

    This report describes the results of a detailed literature review of radionuclide transport models applicable to rivers, estuaries, coastal waters, the Great Lakes, and impoundments. Some representatives sediment transport and water quality models were also reviewed to evaluate if they can be readily adapted to radionuclide transport modeling. The review showed that most available transport models were developed for dissolved radionuclide in rivers. These models include the mechanisms of advection, dispersion, and radionuclide decay. Since the models do not include sediment and radionuclide interactions, they are best suited for simulating short-term radionuclide migration where: (1) radionuclides have small distribution coefficients; (2) sediment concentrations in receiving water bodies are very low. Only 5 of the reviewed models include full sediment and radionuclide interactions: CHMSED developed by Fields; FETRA SERATRA, and TODAM developed by Onishi et al, and a model developed by Shull and Gloyna. The 5 models are applicable to cases where: (1) the distribution coefficient is large; (2) sediment concentrations are high; or (3) long-term migration and accumulation are under consideration. The report also discusses radionuclide absorption/desorption distribution ratios and addresses adsorption/desorption mechanisms and their controlling processes for 25 elements under surface water conditions. These elements are: Am, Sb, C, Ce, Cm, Co, Cr, Cs, Eu, I, Fe, Mn, Np, P, Pu, Pm, Ra, Ru, Sr, Tc, Th, {sup 3}H, U, Zn and Zr.

  6. A model for radionuclide transport in the Cooling Water System

    SciTech Connect

    Kahook, S.D.

    1992-08-01

    A radionuclide transport model developed to assess radiological levels in the K-reactor Cooling Water System (CWS) in the event of an inadvertent process water (PW) leakage to the cooling water (CW) in the heat exchangers (HX) is described. During and following a process water leak, the radionuclide transport model determines the time-dependent release rates of radionuclide from the cooling water system to the environment via evaporation to the atmosphere and blow-down to the Savannah River. The developed model allows for delay times associated with the transport of the cooling water radioactivity through cooling water system components. Additionally, this model simulates the time-dependent behavior of radionuclides levels in various CWS components. The developed model is incorporated into the K-reactor Cooling Tower Activity (KCTA) code. KCTA allows the accident (heat exchanger leak rate) and the cooling tower blow-down and evaporation rates to be described as time-dependent functions. Thus, the postulated leak and the consequence of the assumed leak can be modelled realistically. This model is the first of three models to be ultimately assembled to form a comprehensive Liquid Pathway Activity System (LPAS). LPAS will offer integrated formation, transport, deposition, and release estimates for radionuclides formed in a SRS facility. Process water and river water modules are forthcoming as input and downstream components, respectively, for KCTA.

  7. A model for radionuclide transport in the Cooling Water System

    SciTech Connect

    Kahook, S.D.

    1992-08-01

    A radionuclide transport model developed to assess radiological levels in the K-reactor Cooling Water System (CWS) in the event of an inadvertent process water (PW) leakage to the cooling water (CW) in the heat exchangers (HX) is described. During and following a process water leak, the radionuclide transport model determines the time-dependent release rates of radionuclide from the cooling water system to the environment via evaporation to the atmosphere and blow-down to the Savannah River. The developed model allows for delay times associated with the transport of the cooling water radioactivity through cooling water system components. Additionally, this model simulates the time-dependent behavior of radionuclides levels in various CWS components. The developed model is incorporated into the K-reactor Cooling Tower Activity (KCTA) code. KCTA allows the accident (heat exchanger leak rate) and the cooling tower blow-down and evaporation rates to be described as time-dependent functions. Thus, the postulated leak and the consequence of the assumed leak can be modelled realistically. This model is the first of three models to be ultimately assembled to form a comprehensive Liquid Pathway Activity System (LPAS). LPAS will offer integrated formation, transport, deposition, and release estimates for radionuclides formed in a SRS facility. Process water and river water modules are forthcoming as input and downstream components, respectively, for KCTA.

  8. Model of colloidal transportation of radionuclides by groundwater

    NASA Astrophysics Data System (ADS)

    Malkovsky, V. I.; Yudintsev, S. V.

    2016-09-01

    The transportation of colloidal radionuclides by groundwater was subject to theoretical analysis. The far field of radioactive contamination of the underground environment (liquid waste pumping sites or storage of solidified waste) is dominated by pseudocolloids, i.e., colloidal particles of natural origin contaminated with radionuclides upon contact of groundwater with radioactive materials. Properties of real pseudocolloids were analyzed at sites of radioactive contamination of the underground environment. Based on a probabilistic approach, we developed a mathematical model of pseudocolloid transportation by groundwater, taking into account the difference in size of colloidal particles and the occurrence of nonradioactive natural particles with a similar composition in the groundwater. It is proved that nonuniform dimensions of the particles considerably affect the water transportation rate.

  9. Modelling radionuclide distribution and transport in the environment.

    PubMed

    Thiessen, K M; Thorne, M C; Maul, P R; Pröhl, G; Wheater, H S

    1999-01-01

    Mathematical models of radionuclide distribution and transport in the environment have been developed to assess the impact on people of routine and accidental releases of radioactivity from a variety of nuclear activities, including: weapons development, production, and testing; power production; and waste disposal. The models are used to estimate human exposures and doses in situations where measurements have not been made or would be impossible or impractical to make. Model results are used to assess whether nuclear facilities are operated in compliance with regulatory requirements, to determine the need for remediation of contaminated sites, to estimate the effects on human health of past releases, and to predict the potential effects of accidental releases or new facilities. This paper describes the various applications and types of models currently used to represent the distribution and transport of radionuclides in the terrestrial and aquatic environments, as well as integrated global models for selected radionuclides and special issues in the fields of solid radioactive waste disposal and dose reconstruction. Particular emphasis is placed on the issue of improving confidence in the model results, including the importance of uncertainty analysis and of model verification and validation.

  10. EBS Radionuclide Transport Abstraction

    SciTech Connect

    J. Prouty

    2006-07-14

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport

  11. Unsaturated moisture and radionuclide transport: laboratory analysis and modeling

    SciTech Connect

    Gee, G.W.; Campbell, A.C.; Wierenga, P.J.; Jones, T.L.

    1981-06-01

    This report describes several laboratory procedures and computer model simulations used to evaluate the transport of water and radionuclides through unsaturated Hanford soils. The unsaturated hydraulic conductivity was measured using the steady state methods of Klute and the transient state method of Rose. These experimental data were compared to other conductivity models. Good agreement was found between all methods in the wet range; however, disagreement was found in the dry range. None of the conductivity models explicity addresses the water vapor component of the conductivity. This may explain the under prediction of the hydraulic conductivity in the dry range where vapor transport is important. Radionuclide transport through unsaturated media was investigated by using two solute transport models to describe the transport of tritium and strontium-85 in laboratory columns. A two parameter convective-dispersive model was compared with a four parameter mobile-immobile water model. Both models adequately described the movement of tritium and strontium through small (5 cm x 27.5 cm) columns and the movement of tritium and strontium through a large (0.5 m x 1.7) column. The dispersion coefficient was found to be sensitive to changes in both velocity and column length. The mobile-immoble water equations were not as sensitive to changes in experimental scales as the convective-dispersive equation. Both models were relatively successful in describing the rapid flush of strontium-85 from a column initially leached with a low salt solution followed by a high salt solution, a phenomona called the snow plow effect. The four parameter mobile-immobile water model predicted the initial release of the strontium more accurately than the two parameter convective-dispersive model. Both models confirm enhanced mobility of strontium-85 with leaching solutions of increased salt concentration.

  12. EBS Radionuclide Transport Abstraction

    SciTech Connect

    J.D. Schreiber

    2005-08-25

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers

  13. EBS Radionuclide Transport Abstraction

    SciTech Connect

    R. Schreiner

    2001-06-27

    The purpose of this work is to develop the Engineered Barrier System (EBS) radionuclide transport abstraction model, as directed by a written development plan (CRWMS M&O 1999a). This abstraction is the conceptual model that will be used to determine the rate of release of radionuclides from the EBS to the unsaturated zone (UZ) in the total system performance assessment-license application (TSPA-LA). In particular, this model will be used to quantify the time-dependent radionuclide releases from a failed waste package (WP) and their subsequent transport through the EBS to the emplacement drift wall/UZ interface. The development of this conceptual model will allow Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department to provide a more detailed and complete EBS flow and transport abstraction. The results from this conceptual model will allow PA0 to address portions of the key technical issues (KTIs) presented in three NRC Issue Resolution Status Reports (IRSRs): (1) the Evolution of the Near-Field Environment (ENFE), Revision 2 (NRC 1999a), (2) the Container Life and Source Term (CLST), Revision 2 (NRC 1999b), and (3) the Thermal Effects on Flow (TEF), Revision 1 (NRC 1998). The conceptual model for flow and transport in the EBS will be referred to as the ''EBS RT Abstraction'' in this analysis/modeling report (AMR). The scope of this abstraction and report is limited to flow and transport processes. More specifically, this AMR does not discuss elements of the TSPA-SR and TSPA-LA that relate to the EBS but are discussed in other AMRs. These elements include corrosion processes, radionuclide solubility limits, waste form dissolution rates and concentrations of colloidal particles that are generally represented as boundary conditions or input parameters for the EBS RT Abstraction. In effect, this AMR provides the algorithms for transporting radionuclides using the flow geometry and radionuclide concentrations determined by other

  14. PATHWAY: a simulation model of radionuclide-transport through agricultural food chains

    SciTech Connect

    Kirchner, T.B.; Whicker, F.W.; Otis, M.D.

    1982-01-01

    PATHWAY simulates the transport of radionuclides from fallout through an agricultural ecosystem. The agro-ecosystem is subdivided into several land management units, each of which is used either for grazing animals, for growing hay, or for growing food crops. The model simulates the transport of radionuclides by both discrete events and continuous, time-dependent processes. The discrete events include tillage of soil, harvest and storage of crops,and deposition of fallout. The continuous processes include the transport of radionuclides due to resuspension, weathering, rain splash, percolation, leaching, adsorption and desorption of radionuclides in the soil, root uptake, foliar absorption, growth and senescence of vegetation, and the ingestion assimilation, and excretion of radionuclides by animals. Preliminary validation studies indicate that the model dynamics and simulated values of radionuclide concentrations in several agricultural products agree well with measured values when the model is driven with site specific data on deposition from world-wide fallout.

  15. Drift-Scale Radionuclide Transport

    SciTech Connect

    J. Houseworth

    2004-09-22

    The purpose of this model report is to document the drift scale radionuclide transport model, taking into account the effects of emplacement drifts on flow and transport in the vicinity of the drift, which are not captured in the mountain-scale unsaturated zone (UZ) flow and transport models ''UZ Flow Models and Submodels'' (BSC 2004 [DIRS 169861]), ''Radionuclide Transport Models Under Ambient Conditions'' (BSC 2004 [DIRS 164500]), and ''Particle Tracking Model and Abstraction of Transport Process'' (BSC 2004 [DIRS 170041]). The drift scale radionuclide transport model is intended to be used as an alternative model for comparison with the engineered barrier system (EBS) radionuclide transport model ''EBS Radionuclide Transport Abstraction'' (BSC 2004 [DIRS 169868]). For that purpose, two alternative models have been developed for drift-scale radionuclide transport. One of the alternative models is a dual continuum flow and transport model called the drift shadow model. The effects of variations in the flow field and fracture-matrix interaction in the vicinity of a waste emplacement drift are investigated through sensitivity studies using the drift shadow model (Houseworth et al. 2003 [DIRS 164394]). In this model, the flow is significantly perturbed (reduced) beneath the waste emplacement drifts. However, comparisons of transport in this perturbed flow field with transport in an unperturbed flow field show similar results if the transport is initiated in the rock matrix. This has led to a second alternative model, called the fracture-matrix partitioning model, that focuses on the partitioning of radionuclide transport between the fractures and matrix upon exiting the waste emplacement drift. The fracture-matrix partitioning model computes the partitioning, between fractures and matrix, of diffusive radionuclide transport from the invert (for drifts without seepage) into the rock water. The invert is the structure constructed in a drift to provide the floor of the

  16. Conceptual model for regional radionuclide transport from a salt dome repository: a technical memorandum

    SciTech Connect

    Kier, R.S.; Showalter, P.A.; Dettinger, M.D.

    1980-05-30

    Disposal of high-level radioactive wastes is a major environmental problem influencing further development of nuclear energy in this country. Salt domes in the Gulf Coast Basin are being investigated as repository sites. A major concern is geologic and hydrologic stability of candidate domes and potential transport of radionuclides by groundwater to the biosphere prior to their degradation to harmless levels of activity. This report conceptualizes a regional geohydrologic model for transport of radionuclides from a salt dome repository. The model considers transport pathways and the physical and chemical changes that would occur through time prior to the radionuclides reaching the biosphere. Necessary, but unknown inputs to the regional model involve entry and movement of fluids through the repository dome and across the dome-country rock interface and the effect on the dome and surrounding strata of heat generated by the radioactive wastes.

  17. Conceptual model for regional radionuclide transport from a basalt repository site. Final draft, technical memorandum

    SciTech Connect

    Walton, W.C.; Voorhees, M.L.; Prickett, T.A.

    1980-05-23

    This technical memorandum was prepared to: (1) describe a typical basalt radionuclide repository site, (2) describe geologic and hydrologic processes associated with regional radionuclide transport in basalts, (3) define the parameters required to model regional radionuclide transport from a basalt repository site, and (4) develop a ''conceptual model'' of radionuclide transport from a basalt repository site. In a general hydrological sense, basalts may be described as layered sequences of aquifers and aquitards. The Columbia River Basalt, centered near the semi-arid Pasco Basin, is considered by many to be typical basalt repository host rock. Detailed description of the flow system including flow velocities with high-low hydraulic conductivity sequences are not possible with existing data. However, according to theory, waste-transport routes are ultimately towards the Columbia River and the lengths of flow paths from the repository to the biosphere may be relatively short. There are many physical, chemical, thermal, and nuclear processes with associated parameters that together determine the possible pattern of radionuclide migration in basalts and surrounding formations. Brief process descriptions and associated parameter lists are provided. Emphasis has been placed on the use of the distribution coefficient in simulating ion exchange. The use of the distribution coefficient approach is limited because it takes into account only relatively fast mass transfer processes. In general, knowledge of hydrogeochemical processes is primitive.

  18. Inverse problem in radionuclide transport

    SciTech Connect

    Yu, C.

    1988-01-01

    The disposal of radioactive waste must comply with the performance objectives set forth in 10 CFR 61 for low-level waste (LLW) and 10 CFR 60 for high-level waste (HLW). To determine probable compliance, the proposed disposal system can be modeled to predict its performance. One of the difficulties encountered in such a study is modeling the migration of radionuclides through a complex geologic medium for the long term. Although many radionuclide transport models exist in the literature, the accuracy of the model prediction is highly dependent on the model parameters used. The problem of using known parameters in a radionuclide transport model to predict radionuclide concentrations is a direct problem (DP); whereas the reverse of DP, i.e., the parameter identification problem of determining model parameters from known radionuclide concentrations, is called the inverse problem (IP). In this study, a procedure to solve IP is tested, using the regression technique. Several nonlinear regression programs are examined, and the best one is recommended. 13 refs., 1 tab.

  19. Inverse Modeling of Experiments to Support More Realistic Simulations of Sorbing Radionuclide Transport

    NASA Astrophysics Data System (ADS)

    Arnold, B. W.; James, S. C.; Reimus, P. W.

    2012-12-01

    A series of adsorption, desorption, and column transport experiments were conducted to evaluate the transport of uranium (U) and neptunium (Np) through saturated volcanic tuffs. For potential high-level radioactive waste sites, these experiments demonstrate that slow radionuclide desorption processes, which are typically not accounted for in transport models implementing simple partition coefficients (Kd values), may dominate field-scale transport. A complimentary interpretive numerical model couples a simplified geochemical description of the system with transport calculations where heterogeneities are represented as an ensemble of sorption sites with characteristic adsorption and desorption rate constants that have widely varying values. Adsorption and desorption rate constants were estimated through inverse modeling such that reliable upscaled predictions of reactive transport in field settings could be simulated. The inverse modeling software, PEST, was also used to perform advanced uncertainty quantification. The multicomponent model/parameters matching the combined data sets suggest that over much longer time and distance scales the transport of U and Np under the experimental conditions would result in very little transport over field scales because even a small number of strong sorption sites will have an exaggerated retarding influence on the transport of a radionuclide plume. Modeling of combined sorption/desorption experiments and column transport experiments that involve both the measurement of column effluent breakthrough curves and the distribution of radionuclides remaining in the column at the conclusion of the experiments holds significant promise for supporting an improved approach to properly account for mineralogical heterogeneity over long time and distance scales in reactive radionuclide transport models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed

  20. Towards a unified modeling system of predicting the transport of radionuclides in coastal sea regions

    NASA Astrophysics Data System (ADS)

    Jung, Kyung Tae; Brovchenko, Igor; Maderich, Vladimir; Kim, Kyeong Ok; Qiao, Fangli

    2016-04-01

    We present in this talk a recent progress in developing a unified modeling system of predicting three-dimensional transport of radionuclides coupled with multiple-scale circulation, wave and suspended sediment modules, keeping in mind the application to coastal sea regions with non-uniform distribution of suspended and bed sediments of both cohesive and non-cohesive types. The model calculates the concentration fields of dissolved and particulate radionuclides in bottom sediment as well as in water column. The transfer of radioactivity between the water column and the pore water in the upper layer of the bottom sediment is governed by diffusion processes. The phase change between dissolved and particulate radionuclides is written in terms of absorption/desorption rates and distribution coefficients. The dependence of distribution coefficients is inversely proportional to the sediment particle size. The hydrodynamic numerical model SELFE that solves equations for the multiple-scale circulation, the wave action and sand transport on the unstructured grids has been used as a base model. We have extended the non-cohesive sediment module of SELFE to the form applicable to mixture of cohesive and non-cohesive sedimentary regimes by implementing an extended form of erosional rate and a flocculation model for the determination of settling velocity of cohesive flocs. Issues related to the calibration of the sediment transport model in the Yellow Sea are described. The radionuclide transport model with one-step transfer kinetics and single bed layer has been initially developed and then applied to Fukushima Daiichi nuclear accident. The model has been in this study verified through the comparison with measurements of 137Cs concentration in bed sediments. Preliminary application to the Yellow and East China Seas with a hypothetical release scenario are described. On-going development of the radionuclide transport model using two-step transfer kinetics and multiple bed layers

  1. Multicomponent mass transport model: a model for simulating migration of radionuclides in ground water

    SciTech Connect

    Washburn, J.F.; Kaszeta, F.E.; Simmons, C.S.; Cole, C.R.

    1980-07-01

    This report presents the results of the development of a one-dimensional radionuclide transport code, MMT2D (Multicomponent Mass Transport), for the AEGIS Program. Multicomponent Mass Transport is a numerical solution technique that uses the discrete-parcel-random-wald (DPRW) method to directly simulate the migration of radionuclides. MMT1D accounts for: convection;dispersion; sorption-desorption; first-order radioactive decay; and n-membered radioactive decay chains. Comparisons between MMT1D and an analytical solution for a similar problem show that: MMT1D agrees very closely with the analytical solution; MMT1D has no cumulative numerical dispersion like that associated with solution techniques such as finite differences and finite elements; for current AEGIS applications, relatively few parcels are required to produce adequate results; and the power of MMT1D is the flexibility of the code in being able to handle complex problems for which analytical solution cannot be obtained. Multicomponent Mass Transport (MMT1D) codes were developed at Pacific Northwest Laboratory to predict the movement of radiocontaminants in the saturated and unsaturated sediments of the Hanford Site. All MMT models require ground-water flow patterns that have been previously generated by a hydrologic model. This report documents the computer code and operating procedures of a third generation of the MMT series: the MMT differs from previous versions by simulating the mass transport processes in systems with radionuclide decay chains. Although MMT is a one-dimensional code, the user is referred to the documentation of the theoretical and numerical procedures of the three-dimensional MMT-DPRW code for discussion of expediency, verification, and error-sensitivity analysis.

  2. The Role of Dispersion in Radionuclide Transport - Data and Modeling Requirements: Revision No. 1

    SciTech Connect

    Stoller-Navarro Joint Venture

    2004-02-01

    This document is the collaborative effort of the members of an ad hoc subcommittee of the Underground Test Area Project Technical Working Group. This subcommittee was to answer questions and concerns raised by the Nevada Division of Environmental Protection to the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, regarding Pahute Mesa Corrective Action Units (CAUs) 101 and 102. The document attempts to synthesize the combined comments made by each member of this subcommittee into insights made in the role of dispersion in radionuclide transport data and modeling. Dispersion is one of many processes that control the concentration of radionuclides in groundwater beneath the Nevada Test Site where CAUs 101 and 102 are located. In order to understand the role of dispersion in radionuclide transport, there is a critical need for CAU- or site-specific data related to transport parameters which is currently lacking, particularly in the case of Western a nd Central Pahute Mesa. The purpose of this technical basis document is to: (1) define dispersion and its role in contaminant transport, (2) present a synopsis of field-scale dispersion measurements, (3) provide a literature review of theories to explain field-scale dispersion, (4) suggest approaches to account for dispersion in CAU-scale radionuclide modeling, and (5) to determine if additional dispersion measurements should be made at this time.

  3. Radionuclide transport simulation and uncertainty analyses with the saturated-zone site-scale model at Yucca Mountain, Nevada.

    PubMed

    Arnold, B W; Kuzio, S P; Robinson, B A

    2003-01-01

    Evaluation of radionuclide transport in the saturated zone (SZ) to the accessible environment is an important component of performance assessment for the proposed radioactive waste repository at Yucca Mountain. Simulations of radionuclide migration in the SZ have been performed using the calibrated three-dimensional (3-D) SZ site-scale flow and transport model. An innovative particle-tracking method was used to simulate transport that includes the processes of advection, dispersion, matrix diffusion, and sorption. The uncertainties in groundwater flow and radionuclide transport were quantitatively evaluated to develop uncertainty distributions for key model parameters, and multiple realizations of the SZ system were simulated using the SZ site-scale model. The results of multiple realizations of radionuclide transport indicate significant aggregate uncertainty in transport times through the SZ. The simulated radionuclide mass breakthrough curves in the SZ have been coupled with other components of the repository system in Total System Performance Assessment (TSPA) analyses and constitute the means by which uncertainty in the SZ is incorporated into regulatory analyses. Regression analysis has been used to determine the sensitivity of radionuclide transport simulation results to the uncertainty of individual model input parameters. Results of the sensitivity analysis indicate that median radionuclide transport times were dominantly controlled by uncertainty in the specific discharge in the SZ, with sorption and retardation in the alluvium playing important roles for some radionuclides.

  4. Colloids and Radionuclide Transport: A Field, Experimental and Modeling Effort

    NASA Astrophysics Data System (ADS)

    Zhao, P.; Zavarin, M.; Sylwester, E. E.; Allen, P. G.; Williams, R. W.; Kersting, A. B.

    2002-05-01

    sorption/desorption experiments, coupled with redox kinetics of plutonium in solution will be used in geochemical modeling of Pu surface complexation to colloids and reactive transport. (This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.)

  5. Performance assessment model development and analysis of radionuclide transport in the unsaturated zone, Yucca Mountain, Nevada.

    PubMed

    Robinson, Bruce A; Li, Chunhong; Ho, Clifford K

    2003-01-01

    This paper describes the development and use of a particle-tracking model to perform radionuclide-transport simulations in the unsaturated zone at Yucca Mountain, Nevada. The goal of the effort was to produce a computational model that can be coupled to the project's calibrated 3D site-scale flow model so that the results of that effort could be incorporated directly into the Total System Performance Assessment (TSPA) analyses. The transport model simulates multiple species (typically 20 or more) with complex time-varying and spatially varying releases from the potential repository. Water-table rise, climate-change scenarios, and decay chains are additional features of the model. A cell-based particle-tracking method was employed that includes a dual-permeability formulation, advection, longitudinal dispersion, matrix diffusion, and colloid-facilitated transport. This paper examines the transport behavior of several key radionuclides through the unsaturated zone using the calibrated 3D unsaturated flow fields. Computational results illustrate the relative importance of fracture flow, matrix diffusion, and lateral diversion on the distribution of travel times from the simulated repository to the water table for various climatic conditions. Results also indicate rapid transport through fractures for a portion of the released mass. Further refinement of the model will address several issues, including conservatism in the transport model, the assignment of parameters in the flow and transport models, and the underlying assumptions used to support the conceptual models of flow and transport in the unsaturated zone at Yucca Mountain.

  6. Colloid-Facilitated Transport of Low-Solubility Radionuclides: A Field, Experimental, and Modeling Investigation

    SciTech Connect

    Kersting, A B; Reimus, P W; Abdel-Fattah, A; Allen, P G; Anghel, I; Benedict, F C; Esser, B K; Lu, N; Kung, K S; Nelson, J; Neu, M P; Reilly, S D; Smith, D K; Sylwester, E R; Wang, L; Ware, S D; Warren, RG; Williams, R W; Zavarin, M; Zhao, P

    2003-02-01

    For the last several years, the Underground Test Area (UGTA) program has funded a series of studies carried out by scientists to investigate the role of colloids in facilitating the transport of low-solubility radionuclides in groundwater, specifically plutonium (Pu). Although the studies were carried out independently, the overarching goals of these studies has been to determine if colloids in groundwater at the NTS can and will transport low-solubility radionuclides such as Pu, define the geochemical mechanisms under which this may or may not occur, determine the hydrologic parameters that may or may not enhance transport through fractures and provide recommendations for incorporating this information into future modeling efforts. The initial motivation for this work came from the observation in 1997 and 1998 by scientists from Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL) that low levels of Pu originally from the Benham underground nuclear test were detected in groundwater from two different aquifers collected from wells 1.3 km downgradient (Kersting et al., 1999). Greater than 90% of the Pu and other radionuclides were associated with the naturally occurring colloidal fraction (< 1 micron particles) in the groundwater. The colloids consisted mainly of zeolite (mordenite, clinoptilolite/heulandite), clays (illite, smectite) and cristobalite (SiO{sub 2}). These minerals were also identified as alteration mineral components in the host rock aquifer, a rhyolitic tuff. The observation that Pu can and has migrated in the subsurface at the NTS has forced a rethinking of our basic assumptions regarding the mechanical and geochemical transport pathways of low-solubility radionuclides. If colloid-facilitated transport is the primary mechanism for transporting low-solubility radionuclides in the subsurface, then current transport models based solely on solubility arguments and retardation estimates may underestimate the flux and

  7. Technical Work Plan for: Near Field Environment: Engineered System: Radionuclide Transport Abstraction Model Report

    SciTech Connect

    J.D. Schreiber

    2006-12-08

    This technical work plan (TWP) describes work activities to be performed by the Near-Field Environment Team. The objective of the work scope covered by this TWP is to generate Revision 03 of EBS Radionuclide Transport Abstraction, referred to herein as the radionuclide transport abstraction (RTA) report. The RTA report is being revised primarily to address condition reports (CRs), to address issues identified by the Independent Validation Review Team (IVRT), to address the potential impact of transport, aging, and disposal (TAD) canister design on transport models, and to ensure integration with other models that are closely associated with the RTA report and being developed or revised in other analysis/model reports in response to IVRT comments. The RTA report will be developed in accordance with the most current version of LP-SIII.10Q-BSC and will reflect current administrative procedures (LP-3.15Q-BSC, ''Managing Technical Product Inputs''; LP-SIII.2Q-BSC, ''Qualification of Unqualified Data''; etc.), and will develop related Document Input Reference System (DIRS) reports and data qualifications as applicable in accordance with prevailing procedures. The RTA report consists of three models: the engineered barrier system (EBS) flow model, the EBS transport model, and the EBS-unsaturated zone (UZ) interface model. The flux-splitting submodel in the EBS flow model will change, so the EBS flow model will be validated again. The EBS transport model and validation of the model will be substantially revised in Revision 03 of the RTA report, which is the main subject of this TWP. The EBS-UZ interface model may be changed in Revision 03 of the RTA report due to changes in the conceptualization of the UZ transport abstraction model (a particle tracker transport model based on the discrete fracture transfer function will be used instead of the dual-continuum transport model previously used). Validation of the EBS-UZ interface model will be revised to be consistent with

  8. Atmospheric Transport Modelling confining potential source location of East-Asian radionuclide detections in May 2010

    NASA Astrophysics Data System (ADS)

    Ross, J. Ole; Ceranna, Lars

    2016-04-01

    The radionuclide component of the International Monitoring System (IMS) to verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) is in place to detect tiny traces of fission products from nuclear explosions in the atmosphere. The challenge for the interpretation of IMS radionuclide data is to discriminate radionuclide sources of CTBT relevance against emissions from nuclear facilities. Remarkable activity concentrations of Ba/La-140 occurred at the IMS radionuclide stations RN 37 (Okinawa) and RN 58 (Ussurysk) mid of May 2010. In those days also an elevated Xe-133 level was measured at RN 38 (Takasaki). Additional regional measurements of radioxenon were reported in the press and further analyzed in various publications. The radionuclide analysis gives evidence for the presence of a nuclear fission source between 10 and 12 May 2010. Backward Atmospheric Transport Modelling (ATM) with HYSPLIT driven by 0.2° ECMWF meteorological data for the IMS samples indicates that, assuming a single source, a wide range of source regions is possible including the Korean Peninsula, the Sea of Japan (East Sea), and parts of China and Russia. Further confinement of the possible source location can be provided by atmospheric backtracking for the assumed sampling periods of the reported regional xenon measurements. New studies indicate a very weak seismic event at the DPRK test site on early 12 May 2010. Forward ATM for a pulse release caused by this event shows fairly good agreement with the observed radionuclide signature. Nevertheless, the underlying nuclear fission scenario remains quite unclear and speculative even if assuming a connection between the waveform and the radionuclide event.

  9. The Atmospheric Radionuclide Transport Model (ARTM) - Validation of a long-term atmospheric dispersion model

    NASA Astrophysics Data System (ADS)

    Hettrich, Sebastian; Wildermuth, Hans; Strobl, Christopher; Wenig, Mark

    2016-04-01

    In the last couple of years, the Atmospheric Radionuclide Transport Model (ARTM) has been developed by the German Federal Office for Radiation Protection (BfS) and the Society for Plant and Reactor Security (GRS). ARTM is an atmospheric dispersion model for continuous long-term releases of radionuclides into the atmosphere, based on the Lagrangian particle model. This model, developed in the first place as a more realistic replacement for the out-dated Gaussian plume models, is currently being optimised for further scientific purposes to study atmospheric dispersion in short-range scenarios. It includes a diagnostic wind field model, allows for the application of building structures and multiple sources (including linear, 2-and 3-dimensional source geometries), and considers orography and surface roughness. As an output it calculates the activity concentration, dry and wet deposition and can model also the radioactive decay of Rn-222. As such, ARTM requires to undergo an intense validation process. While for short-term and short-range models, which were mainly developed for examining nuclear accidents or explosions, a few measurement data-sets are available for validation, data-sets for validating long-term models are very sparse and the existing ones mostly prove to be not applicable for validation. Here we present a strategy for the validation of long-term Lagrangian particle models based on the work with ARTM. In our validation study, the first part we present is a comprehensive analysis of the model sensitivities on different parameters like e.g. (simulation grid size resolution, starting random number, amount of simulation particles, etc.). This study provides a good estimation for the uncertainties of the simulation results and consequently can be used to generate model outputs comparable to the available measurements data at various distances from the emission source. This comparison between measurement data from selected scenarios and simulation results

  10. Modeling the potential radionuclide transport by the Ob and Yenisey Rivers to the Kara Sea.

    PubMed

    Paluszkiewicz, T; Hibler, L F; Richmond, M C; Bradley, D J; Thomas, S A

    2001-01-01

    A major portion of the former Soviet Union (FSU) nuclear program is located in the West Siberian Basin. Among the many nuclear facilities are three production reactors and the spent nuclear fuel reprocessing sites, Mayak, Tomsk-7, and Krasnoyarsk-26, which together are probably responsible for the majority of the radioactive contamination found in the Ob and Yenisey River systems that feed into the Arctic Ocean through the Kara Sea. This manuscript describes ongoing research to estimate radionuclide fluxes to the Kara Sea from these river systems. Our approach is to apply a hierarchy of simple models that use existing and forthcoming data to quantify the transport and fate of radionuclide contaminants via various environmental pathways. We present an initial quantification of the contaminant inventory, hydrology, meteorology, and sedimentology of the Ob River system and preliminary conclusions from portions of the Ob River model.

  11. Drift-Scale Radionuclide Transport

    SciTech Connect

    P.R. Dixon

    2004-02-17

    The purpose of this Model Report is to document two models for drift-scale radionuclide transport. This has been developed in accordance with ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (Bechtel SAIC Company, LLC (BSC) 2002 [160819]), which includes planning documents for the technical work scope, content, and management of this Model Report in Section 1.15, Work Package AUZM11, ''Drift-Scale Radionuclide Transport.'' The technical work scope for this Model Report calls for development of a process-level model and an abstraction model representing diffusive release from the invert to the rocks, partitioned between fracture and matrix, as compared to the fracture-release approach used in the Site Recommendation. The invert is the structure constructed in a drift to provide the floor of that drift. The plan for validation of the models documented in this Model Report is given in Section I-5 of Attachment I in BSC (2002 [160819]). Note that the model validation presented in Section 7 deviates from the technical work plan (BSC 2002 [160819], Section I-5) in that an independent technical review specifically for model validation has not been conducted, nor publication in a peer-reviewed journal. Model validation presented in Section 7 is based on corroboration with alternative mathematical models, which is also called out by the technical work plan (BSC 2002 [160819], Section I-5), and is sufficient based on the requirements of AP-SIII.10Q for model validation. See Section 7 for additional discussion. The phenomenon of flow and transport in the vicinity of the waste emplacement drift are evaluated in this model report under ambient thermal, chemical, and mechanical conditions. This includes the effects of water diversion around an emplacement drift and the flow and transport behavior expected in a fractured rock below the drift. The reason for a separate assessment of drift-scale transport is that the effects of waste emplacement drifts on flow

  12. High resolution atmospheric transport modelling in support of radionuclide detections at CTBTO network

    NASA Astrophysics Data System (ADS)

    Krysta, M.; Szintai, B.; Kuśmierczyk-Michulec, J.; Carter, J. A.; Given, J. W.

    2014-12-01

    In order to support its mission of monitoring compliance with the treaty banning nuclear explosions, the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) operates four global networks of seismic, infrasound, hydroacoustic, referred to as waveform, sensors and air samplers accompanied with radionuclide detectors. The role of the International Data Centre (IDC) of CTBTO is to associate the signals detected in the monitoring networks with the physical phenomena which emitted these signals, by forming events. While the process of event building for the waveform technologies is well-established, the task of event building using the radionuclide detections remains a challenge. One of the reasons is the complexity of the process of atmospheric transport of airborne radionuclides from their sources to the detecting stations and subsequent difficulties in representing this process in models. An atmospheric transport model is driven by meteorological fields generated by numerical models coupled to observations. In addition, it is equipped with parameterisations of sub-grid scale processes to account for incompleteness of the representation of meteorological processes in the meteorological fields. In this presentation we will discuss possibilities of improving the accuracy of the atmospheric transport modelling simulations in support of radionuclide detections at CTBTO. Some of these improvements can be implemented operationally, while others, due to their computational cost, could only be performed on request. We will present the influence an increase of resolution of global meteorological fields, provided by the EMCWF (European Centre of Medium-Range Weather Forecasts), has on the quality of the simulations. We will address possible benefits of using high resolution regional meteorological fields generated with the mesoscale model WRF (Weather research and Forecasting). We will illustrate the impact of parameterisations, namely those linked to the atmospheric

  13. Transport and fate of radionuclides in aquatic environments--the use of ecosystem modelling for exposure assessments of nuclear facilities.

    PubMed

    Kumblad, L; Kautsky, U; Naeslund, B

    2006-01-01

    In safety assessments of nuclear facilities, a wide range of radioactive isotopes and their potential hazard to a large assortment of organisms and ecosystem types over long time scales need to be considered. Models used for these purposes have typically employed approaches based on generic reference organisms, stylised environments and transfer functions for biological uptake exclusively based on bioconcentration factors (BCFs). These models are of non-mechanistic nature and involve no understanding of uptake and transport processes in the environment, which is a severe limitation when assessing real ecosystems. In this paper, ecosystem models are suggested as a method to include site-specific data and to facilitate the modelling of dynamic systems. An aquatic ecosystem model for the environmental transport of radionuclides is presented and discussed. With this model, driven and constrained by site-specific carbon dynamics and three radionuclide specific mechanisms: (i) radionuclide uptake by plants, (ii) excretion by animals, and (iii) adsorption to organic surfaces, it was possible to estimate the radionuclide concentrations in all components of the modelled ecosystem with only two radionuclide specific input parameters (BCF for plants and Kd). The importance of radionuclide specific mechanisms for the exposure to organisms was examined, and probabilistic and sensitivity analyses to assess the uncertainties related to ecosystem input parameters were performed. Verification of the model suggests that this model produces analogous results to empirically derived data for more than 20 different radionuclides.

  14. Using U/Th Series Nuclide Systematics for Modelling Subsurface Radionuclide Transport

    NASA Astrophysics Data System (ADS)

    Porcelli, D.; Strekopytov, S.; Shaw, S.; Hilton, D.

    2007-05-01

    U- and Th- series nuclides have provided essential tools for studying weathering and subsurface element transport processes. The radionuclides U, Th, Ra, Rn, and Pb have a range of half-lives and contrasting chemical behaviours, and their distribution between subsurface solids and water can be used to quantify rates of soil formation, chemical and mechanical weathering of watersheds, and potentially, subsurface water flow rates. Decay systematics clearly connect the different isotopes, although transfer between different phases and through subsurface systems are generally defined through a series of assumptions that have not been experimentally substantiated. Modification of these assumptions may have significant effects on the choice of models and the conclusions of U/Th series studies. Two key areas of uncertainty are: Nuclide inputs. Comparing the different isotopes requires relating the input rates from recoil and weathering. The common assumption is that nuclides are released at similar rates by recoil and congruently by weathering. Various theories have been proposed for preferential release of Rn and leaching of radionuclides, although such effects, as well as possible radionuclide fractionation during weathering release, have not been substantiated. Surface interaction mechanisms. It is generally assumed that radionuclides are removed from water onto surfaces only by reversible adsorption. However, coprecipitation, incorporation into aging secondary mineral structures, and different binding mechanisms can inhibit isotope exchange with nuclides in solution. Data from the unconfined Mojave River Basin aquifer, with a reasonably well-defined flow pattern and groundwater ages of up to ~40,000 years illustrates the response of the U/Th series nuclides to extended water- rock interaction. Measurements of 222Rn find relatively uniform recoil rates throughout the aquifer. If this rate is applied to other daughter nuclides, then the rate of 234Th release can be

  15. Modeling of U-series Radionuclide Transport Through Soil at Pena Blanca, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Pekar, K. E.; Goodell, P. C.; Walton, J. C.; Anthony, E. Y.; Ren, M.

    2007-05-01

    . Independent multi-element analyses of three samples by ICP-MS show decreasing uranium concentration with depth as well. The transport of the radionuclides is evaluated using STANMOD, a Windows-based software package for evaluating solute transport in porous media using analytical solutions of the advection-dispersion solute transport equation. The package allows various one-dimensional, advection-dispersion parameters to be determined by fitting mathematical solutions of theoretical transport models to observed data. The results are promising for future work on the release rate of radionuclides from the boulder, the dominant mode of transport (e.g., particulate or dissolution), and the movement of radionuclides through porous media. The measured subsurface transport rates provide modelers with a model validation dataset.

  16. Atmospheric Transport Modelling and Radionuclide Analysis for the NPE 2015 scenario

    NASA Astrophysics Data System (ADS)

    Ross, J. Ole; Bollhöfer, Andreas; Heidmann, Verena; Krais, Roman; Schlosser, Clemens; Gestermann, Nicolai; Ceranna, Lars

    2017-04-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) prohibits all kinds of nuclear explosions. The International Monitoring System (IMS) is in place and at about 90% complete to verify compliance with the CTBT. The stations of the waveform technologies are capable to detect seismic, hydro-acoustic and infrasonic signals for detection, localization, and characterization of explosions. For practicing Comprehensive Nuclear-Test-Ban Treaty (CTBT) verification procedures and interplay between the International Data Centre (IDC) and National Data Centres (NDC), prepardness exercises (NPE) are regularly performed with selected events of fictitious CTBT-violation. The German NDC's expertise for radionuclide analyses and operation of station RN33 is provided by the Federal Office for Radiation Protection (BfS) while Atmospheric Transport Modelling (ATM) for CTBT purposes is performed at the Federal Institute for Geosciences and Natural Resources (BGR) for the combination of the radionuclide findings with waveform evidence. The radionuclide part of the NPE 2015 scenario is tackled in a joint effort by BfS and BGR. First, the NPE 2015 spectra are analysed, fission products are identified, and respective activity concentrations are derived. Special focus is on isotopic ratios which allow for source characterization and event timing. For atmospheric backtracking the binary coincidence method is applied for both, SRS fields from IDC and WMO-RSMC, and for in-house backward simulations in higher resolution for the first affected samples. Results are compared with the WebGrape PSR and the spatio-temporal domain with high atmospheric release probability is determined. The ATM results together with the radionuclide fingerprint are used for identification of waveform candidate events. Comparative forward simulations of atmospheric dispersion for candidate events are performed. Finally the overall consistency of various source scenarios is assessed and a fictitious government briefing on

  17. CASCADER: An M-chain gas-phase radionuclide transport and fate model. Volume 4 -- Users guide to CASCADR9

    SciTech Connect

    Cawlfield, D.E.; Emer, D.F.; Lindstrom, F.T.; Shott, G.J.

    1993-09-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes through advection and/or dispersion. Additionally during the transport of parent and daughter radionuclides in soil, radionuclide decay may occur. This version of CASCADER called CASCADR9 starts with the concepts presented in volumes one and three of this series. For a proper understanding of how the model works, the reader should read volume one first. Also presented in this volume is a set of realistic scenarios for buried sources of radon gas, and the input and output file structure for CASCADER9.

  18. Comparison of one-, two-, and three-dimensional models for mass transport of radionuclides

    SciTech Connect

    Prickett, T.A.; Voorhees, M.L.; Herzog, B.L.

    1980-02-01

    This technical memorandum compares one-, two-, and three-dimensional models for studying regional mass transport of radionuclides in groundwater associated with deep repository disposal of high-level radioactive wastes. In addition, this report outlines the general conditions for which a one- or two-dimensional model could be used as an alternate to a three-dimensional model analysis. The investigation includes a review of analytical and numerical models in addition to consideration of such conditions as rock and fluid heterogeneity, anisotropy, boundary and initial conditions, and various geometric shapes of repository sources and sinks. Based upon current hydrologic practice, each review is taken separately and discussed to the extent that the researcher can match his problem conditions with the minimum number of model dimensions necessary for an accurate solution.

  19. Developing of Watershed Radionuclide Transport Model DHSVM-R as Modification and Extension of Distributed Hydrological and Sediment Dynamics Model DHSVM

    NASA Astrophysics Data System (ADS)

    Zheleznyak, M.; Kivva, S.; Onda, Y.; Nanba, K.; Wakiyama, Y.; Konoplev, A.

    2015-12-01

    The reliable modeling tools for prediction wash - off radionuclides from watersheds are needed as for assessment the consequences of accidental and industrial releases of radionuclides, as for soil erosion studies using the radioactive tracers. The distributed model of radionuclide transport through watershed in exchangeable and nonexchangeable forms in solute and with sediments was developed and validated for small Chernobyl watersheds in 90th within EU SPARTACUS project (van der Perk et al., 1996). New tendency is coupling of radionuclide transport models and the widely validated hydrological distributed models. To develop radionuclide transport model DHSVM-R the open source Distributed Hydrology Soil Vegetation Model -DHSVM http://www.hydro.washington.edu/Lettenmaier/Models/DHSVM was modified and extended. The main changes provided in the hydrological and sediment transport modules of DHSVM are as follows: Morel-Seytoux infiltration model is added; four-directions schematization for the model's cells flows (D4) is replaced by D8 approach; the finite-difference schemes for solution of kinematic wave equations for overland water flow, stream net flow, and sediment transport are replaced by new computationally efficient scheme. New radionuclide transport module, coupled with hydrological and sediment transport modules, continues SPARTACUS's approach, - it describes radionuclide wash-off from watershed and transport via stream network in soluble phase and on suspended sediments. The hydrological module of DHSVM-R was calibrated and validated for the watersheds of Ukrainian Carpathian mountains and for the subwatersheds of Niida river flowing 137Cs in solute and with suspended sediments to Pacific Ocean at 30 km north of the Fukushima Daiichi NPP. The modules of radionuclide and sediment transport were calibrated and validated versus experimental data for USLE experimental plots in Fukushima Prefecture and versus monitoring data collected in Niida watershed. The role

  20. Conditions and processes affecting radionuclide transport

    USGS Publications Warehouse

    Simmons, Ardyth M.; Neymark, Leonid A.

    2012-01-01

    Understanding of unsaturated-zone transport is based on laboratory and field-scale experiments. Fractures provide advective transport pathways. Sorption and matrix diffusion may contribute to retardation of radionuclides. Conversely, sorption onto mobile colloids may enhance radionuclide transport.

  1. Analytical model for radionuclide transport in the buffer zone of the deep geological disposal

    NASA Astrophysics Data System (ADS)

    Tsao, L. D.; Chen, J. S.; Li, M. H.

    2015-12-01

    Radioactive nuclear waste poses long-term threat to human beings and the environment because that remains radioactive after millions of years. Therefore, radioactive wastes must be isolated from the living environment for millennia. A deep geological disposal entails a combination of four parts: vitrified waste form, imaginary zone, buffer zone and excavation-affected zone. The buffer zone constituted by bentonite clay provides a high level of containment of the radioactivity in the wastes over a very long time period. Analytical solution is an efficient tool for the performance evaluation of the buffer zone. This study develops a new analytical model to diffusion equation in cylindrical coordinate for describing radionuclide transport in the buffer zone. The derived solution is compared against the previous solution to illustrate the validity of previous solution which was derived using a diffusion equation in Cartesian coordinates.

  2. Mathematical Simulation of Sediment and Radionuclide Transport in Surface Waters

    SciTech Connect

    ,

    1981-04-01

    The study objective of "The Mathematical Simulation of Sediment and Radionuclide Transport in Surface Waters" is to synthesize and test radionuclide transport models capable of realistically assessing radionuclide transport in various types of surface water bodies by including the sediment-radionuclide interactions. These interactions include radionuclide adsorption by sediment; desorption from sediment into water; and transport, deposition, and resuspension of sorbed radionuclides controlled by the sediment movements. During FY-1979, the modification of sediment and contaminant (radionuclide) transport model, FETRA, was completed to make it applicable to coastal waters. The model is an unsteady, two-dimensional (longitudinal and lateral) model that consists of three submodels (for sediment, dissolved-contaminant, and particulate-contaminant transport), coupled to include the sediment-contaminant interactions. In estuaries, flow phenomena and consequent sediment and radionuclide migration are often three-dimensional in nature mainly because of nonuniform channel cross-sections, salinity intrusion, and lateral-flow circulation. Thus, an unsteady, three-dimensional radionuclide transport model for estuaries is also being synthesized by combining and modifying a PNL unsteady hydrothermal model and FETRA. These two radionuclide transport models for coastal waters and estuaries will be applied to actual sites to examine the validity of the codes.

  3. A groundwater flow and transport model of long-term radionuclide migration in central Frenchman flat, Nevada test site

    SciTech Connect

    Kwicklis, Edward Michael; Becker, Naomi M; Ruskauff, Gregory; De Novio, Nicole; Wilborn, Bill

    2010-11-10

    A set of groundwater flow and transport models were created for the Central Testing Area of Frenchman Flat at the former Nevada Test Site to investigate the long-term consequences of a radionuclide migration experiment that was done between 1975 and 1990. In this experiment, radionuclide migration was induced from a small nuclear test conducted below the water table by pumping a well 91 m away. After radionuclides arrived at the pumping well, the contaminated effluent was discharged to an unlined ditch leading to a playa where it was expected to evaporate. However, recent data from a well near the ditch and results from detailed models of the experiment by LLNL personnel have convincingly demonstrated that radionuclides from the ditch eventually reached the water table some 220 m below land surface. The models presented in this paper combine aspects of these detailed models with concepts of basin-scale flow to estimate the likely extent of contamination resulting from this experiment over the next 1,000 years. The models demonstrate that because regulatory limits for radionuclide concentrations are exceeded only by tritium and the half-life of tritium is relatively short (12.3 years), the maximum extent of contaminated groundwater has or will soon be reached, after which time the contaminated plume will begin to shrink because of radioactive decay. The models also show that past and future groundwater pumping from water supply wells within Frenchman Flat basin will have negligible effects on the extent of the plume.

  4. Numerical modeling of a thermohydrochemical (T-H-C) coupling and the implications to radionuclide transport.

    SciTech Connect

    Esh, D. W.; Scheetz, B. E.

    1999-09-21

    Thermohydrochemical (T-H-C) processes result from the placement of heat-generating radioactive materials in unsaturated, fractured geologic materials. The placement of materials in the proposed Yucca Mountain repository will result in complex environmental conditions. Simple models are developed liking the thermohydrological effects simulated with TOUGHZ to system chemistry, with an example presented for chloride. Perturbations to near-field chemistry could have a significant impact on the migration of actinides and fission products in geologic materials. Various conceptual models to represent fractures are utilized in TOUGHZ simulations of thermohydrological processes. The simulated moisture redistribution is then coupled to simple chemical models to demonstrate the potential magnitude of T-H-C processes. The concentration of chloride in solution (returning to the engineered barrier system) is demonstrated, in extreme cases, to exceed 100,000 mg/L. The implication is that the system (typically ambient chemical and hydrological conditions) in which radionuclide transport is typically simulated and measured may be significantly different from the perturbed system.

  5. Performance assessment model development and parameter acquisition for analysis of the transport of natural radionuclides in a Mediterranean watershed.

    PubMed

    Agüero, Almudena

    2005-09-15

    This paper describes the methodology developed to construct a model for predicting the behaviour of the natural radioisotopes of U, Th and Ra in a Mediterranean watershed. The methodology includes the development of the performance assessment model, obtaining water flow and radiological parameters based on experimental data and analysis of results. The model, which accounts for both water flows and mass balances of the radionuclides in a semi-natural environment, provides assessments of radionuclide behaviour in grassland and agricultural soils, rivers and reservoirs, including the processes of radionuclide migration through land and water and interactions between both. From field and laboratory data, it has been possible to obtain parameters for the driving processes considered in the model, water fluxes, source term definition, soil to plant transfer factors and distribution coefficient values. Ranges of parameter values obtained have shown good agreement with published literature data. This general methodological approach was developed to be extended to other radionuclides for the modelling of a biosphere watershed in the context of performance assessment of a High Level Waste (HLW) repository under Mediterranean climate conditions, as well as for forecasting radionuclide transport under similar Mediterranean conditions that will occur in the future in other areas. The application of sensitivity and uncertainty analysis was intended to identify key uncertainties with the aim of setting priorities for future research. The model results for the activity concentration in the reservoir indicate that for (238)U and (230)Th the most relevant parameter is the initial concentrations of the radionuclides in the reservoir sediments. However, for (226)Ra the most important parameter is the precipitation rate over the whole watershed.

  6. Modeling the Hydrogeochemical Transport of Radionuclides through Engineered Barriers System in the Proposed LLW Disposal Site of Taiwan - 12082

    SciTech Connect

    Lin, Wen-Sheng; Liu, Chen-Wuing; Tsao, Jui-Hsuan; Li, Ming-Hsu

    2012-07-01

    A proposed site for final disposal of low-level radioactive waste located in Daren Township of Taitung County along the southeastern coast has been on the selected list in Taiwan. The geology of the Daren site consists of argillite and meta-sedimentary rocks. A mined cavern design with a tunnel system of 500 m below the surface is proposed. Concrete is used as the main confinement material for the engineered barrier. To investigate the hydrogeochemical transport of radionuclides through engineered barriers system, HYDROGEOCHEM5.0 model was applied to simulate the complex chemical interactions among radionuclides, the cement minerals of the concrete, groundwater flow, and transport in the proposed site. The simulation results showed that the engineered barriers system with the side ditch efficiently drained the ground water and lowered the concentration of the concrete degradation induced species (e.g., hydrogen ion, sulfate, and chloride). The velocity of groundwater observed at side ditch gradually decreased with time due to the fouling of pore space by the mineral formation of ettringite and thaumasite. The short half-life of Co-60, Sr-90 and Cs-137 significantly reduced the concentrations, whereas the long half-life of I-129(1.57x10{sup 7} years) and Am-241(432 years) remain stable concentrations at the interface of waste canister and concrete barrier after 300 years. The mineral saturation index (SI) was much less than zero due to the low aqueous concentration of radionuclide, so that the precipitation formation of Co-60, Sr-90, I-129, Cs-137 and Am-241 related minerals were not found. The effect of adsorption/desorption (i.e., surface complexation model) could be a crucial geochemical mechanism for the modeling of liquid-solid phase behavior of radionuclide in geochemically dynamic environments. Moreover, the development of advanced numerical models that are coupled with hydrogeochemical transport and dose assessment of radionuclide is required in the future

  7. RADTRAD: A simplified model for RADionuclide Transport and Removal And Dose estimation

    SciTech Connect

    Humphreys, S.L.; Miller, L.A.; Monroe, D.K.; Heames, T.J.

    1998-04-01

    This report documents the RADTRAD computer code developed for the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Reactor Regulation (NRR) to estimate transport and removal of radionuclides and dose at selected receptors. The document includes a users` guide to the code, a description of the technical basis for the code, the quality assurance and code acceptance testing documentation, and a programmers` guide. The RADTRAD code can be used to estimate the containment release using either the NRC TID-14844 or NUREG-1465 source terms and assumptions, or a user-specified table. In addition, the code can account for a reduction in the quantity of radioactive material due to containment sprays, natural deposition, filters, and other natural and engineered safety features. The RADTRAD code uses a combination of tables and/or numerical models of source term reduction phenomena to determine the time-dependent dose at user-specified locations for a given accident scenario. The code system also provides the inventory, decay chain, and dose conversion factor tables needed for the dose calculation. The RADTRAD code can be used to assess occupational radiation exposures, typically in the control room; to estimate site boundary doses; and to estimate dose attenuation due to modification of a facility or accident sequence.

  8. A geostatistical modeling study of the effect of heterogeneity on radionuclide transport in the unsaturated zone, Yucca Mountain.

    PubMed

    Viswanathan, Hari S; Robinson, Bruce A; Gable, Carl W; Carey, James W

    2003-01-01

    Retardation of certain radionuclides due to sorption to zeolitic minerals is considered one of the major barriers to contaminant transport in the unsaturated zone of Yucca Mountain. However, zeolitically altered areas are lower in permeability than unaltered regions, which raises the possibility that contaminants might bypass the sorptive zeolites. The relationship between hydrologic and chemical properties must be understood to predict the transport of radionuclides through zeolitically altered areas. In this study, we incorporate mineralogical information into an unsaturated zone transport model using geostatistical techniques to correlate zeolitic abundance to hydrologic and chemical properties. Geostatistical methods are used to develop variograms, kriging maps, and conditional simulations of zeolitic abundance. We then investigate, using flow and transport modeling on a heterogeneous field, the relationship between percent zeolitic alteration, permeability changes due to alteration, sorption due to alteration, and their overall effect on radionuclide transport. We compare these geostatistical simulations to a simplified threshold method in which each spatial location in the model is assigned either zeolitic or vitric properties based on the zeolitic abundance at that location. A key conclusion is that retardation due to sorption predicted by using the continuous distribution is larger than the retardation predicted by the threshold method. The reason for larger retardation when using the continuous distribution is a small but significant sorption at locations with low zeolitic abundance. If, for practical reasons, models with homogeneous properties within each layer are used, we recommend setting nonzero K(d)s in the vitric tuffs to mimic the more rigorous continuous distribution simulations. Regions with high zeolitic abundance may not be as effective in retarding radionuclides such as Neptunium since these rocks are lower in permeability and contaminants can

  9. Mathematical simulation of sediment and radionuclide transport in estuaries

    SciTech Connect

    Onishi, Y.; Trent, D.S.

    1982-11-01

    The finite element model LFESCOT (Flow, Energy, Salinity, Sediment and Contaminant Transport Model) was synthesized under this study to simulate radionuclide transport in estuaries to obtain accurate radionuclide distributions which are affected by these factors: time variance, three-dimensional flow, temperature, salinity, and sediments. Because sediment transport and radionuclide adsorption/desorption depend strongly on sizes or types of sediments, FLESCOT simulates sediment and a sediment-sorbed radionuclide for the total of three sediment-size fractions (or sediment types) of both cohesive and noncohesive sediments. It also calculates changes of estuarine bed conditions, including bed elevation changes due to sediment erosion/deposition, and three-dimensional distributions of three bed sediment sizes and sediment-sorbed radionuclides within the bed. Although the model was synthesized for radionuclide transport, it is general enough to also handle other contaminants such as heavy metals, pesticides, or toxic chemicals. The model was checked for its capability for flow, water surface elevation change, salinity, sediment and radionuclide transport under various simple conditions first, confirming the general validity of the model's computational schemes. These tests also revealed that FLESCOT can use large aspect ratios of computational cells, which are necessary in handling long estuarine study areas. After these simple tests, FLESCOT was applied to the Hudson River estuary between Chelsea and the mouth of the river to examine how well the model can predict radionuclide transport through simulating tidally influenced three-dimensional flow, salinity, sediment and radionuclide movements with their interactions.

  10. Modeling the long-term transport and accumulation of radionuclides in the landscape for derivation of dose conversion factors.

    PubMed

    Avila, Rodolfo Moreno; Kautsky, Ulrik; Ekström, Per-Anders

    2006-12-01

    To evaluate the radiological impact of potential releases to the biosphere from a geological repository for spent nuclear fuel, it is necessary to assess the long-term dynamics of the distribution of radionuclides in the environment. In this paper, we propose an approach for making prognoses of the distribution and fluxes of radionuclides released from the geosphere, in discharges of contaminated groundwater, to an evolving landscape. The biosphere changes during the temperate part (spanning approximately 20,000 years) of an interglacial period are handled by building biosphere models for the projected succession of situations. Radionuclide transport in the landscape is modeled dynamically with a series of interconnected radioecological models of those ecosystem types (sea, lake, running water, mire, agricultural land and forest) that occur at present, and are projected to occur in the future, in a candidate area for a geological repository in Sweden. The transformation between ecosystems is modeled as discrete events occurring every thousand years by substituting one model by another. Examples of predictions of the radionuclide distribution in the landscape are presented for several scenarios with discharge locations varying in time and space. The article also outlines an approach for estimating the exposure of man resulting from all possible reasonable uses of a potentially contaminated landscape, which was used for derivation of Landscape Dose Factors.

  11. The Development and Application of Reactive Transport Modeling Techniques to Study Radionuclide Migration at Yucca Mountain, NV

    SciTech Connect

    Viswanathan, Hari Selvi

    1999-09-01

    Yucca Mountain, Nevada has been chosen as a possible site for the first high level radioactive waste repository in the United States. As part of the site investigation studies, we need to make scientifically rigorous estimations of radionuclide migration in the event of a repository breach. Performance assessment models used to make these estimations are computationally intensive. We have developed two reactive transport modeling techniques to simulate radionuclide transport at Yucca Mountain: (1) the selective coupling approach applied to the convection-dispersion-reaction (CDR) model and (2) a reactive stream tube approach (RST). These models were designed to capture the important processes that influence radionuclide migration while being computationally efficient. The conventional method of modeling reactive transport models is to solve a coupled set of multi-dimensional partial differential equations for the relevant chemical components in the system. We have developed an iterative solution technique, denoted the selective coupling method, that represents a versatile alternative to traditional uncoupled iterative techniques and the filly coupled global implicit method. We show that selective coupling results in computational and memory savings relative to these approaches. We develop RST as an alternative to the CDR method for solving large two- or three-dimensional reactive transport simulations for cases in which one is interested in predicting the flux across a specific control plane. In the RST method, the multidimensional problem is reduced to a series of one-dimensional transport simulations along streamlines. The key assumption with RST is that mixing at the control plane approximates the transverse dispersion between streamlines. We compare the CDR and RST approaches for several scenarios that are relevant to the Yucca Mountain Project. For example, we apply the CDR and RST approaches to model an ongoing field experiment called the Unsaturated Zone

  12. Groundwater velocity magnitude in radionuclide transport calculations

    USGS Publications Warehouse

    Goode, Daniel J.

    1988-01-01

    Analytical solutions have been developed for many conceptual models of solute transport in groundwater (Bear 1979). Although these models usually rely on assumptions too restrictive for accurate description of actual field situations, they are useful in understanding groundwater transport and in evaluating the relative importance of the subsurface processes affecting transport. In addition, these simple models are often used for generic and screening-type analyses of groundwater contamination problems (Kent et al. 1985). For example, the Nuclear Regulatory Commission assesses potential doses resulting from the disposal of very slightly contaminated material in the ground using analytical solutions for one- and two-dimensional groundwater transport (Codell and Schreiber 1979; Codell et al. 1982; Goode et al. 1986). This note presents a method for determining a "worst-case" groundwater velocity value for two conceptual models of decaying radionuclide transport, resulting in maximum calculated point concentration.

  13. The Effect of Stagnant Water Zones on Retarding Radionuclide Transport in Fractured Rocks: An Extension to the Channel Network Model

    NASA Astrophysics Data System (ADS)

    Shahkarami, P. Mr; Neretnieks, I. E.

    2016-12-01

    An essential task of performance assessment of radioactive waste repositories is to predict radionuclide release into the environment. For such a quantitative assessment, the Channel Network Model and the corresponding computer program, CHAN3D, have been used to simulate radionuclide transport in crystalline bedrocks. Recent studies suggest, however, that the model may tend to underestimate the rock retarding capability, because it ignores the presence of stagnant water zones, STWZs, situated in the fracture plane. Once considered, the STWZ can provide additional surface area over which radionuclides diffuse into the rock matrix and thereby contribute to their retardation. The main objective of this contribution is to extend the Channel Network Model and its computer implementation to account for diffusion into STWZs and their adjacent rock matrices. A series of deterministic and probabilistic calculations are performed in this study. The deterministic calculations aimed to investigate the overall impact of STWZs in retarding radionuclide transport and their far-field releases at Forsmark, Sweden. While, the probabilistic calculations aimed to (I) simulate the tracer test experiment performed at Äspö HRL, STT-1 and (II) investigate the short- and long-term effect of diffusion into STWZs. The deterministic calculation results suggest that over the time-scale of the repository safety assessments, the presence of STWZs enhances the retardation of most long-lived radionuclides except for 36Cl and 129I. The probabilistic calculation results suggest that over the short time-scale of the tracer experiment, the effect of diffusion into STWZs is not as pronounced as that of matrix diffusion directly from the flow channel, and the latter remains the main retarding mechanism. Predictions for longer time-scale, tens of years and more, show that the effect of STWZs becomes strong and tends to increase with transport time. It is shown that over the long times of interest for

  14. Kinetic modeling of microbially-driven redox chemistry of radionuclides in subsurface environments: Coupling transport, microbial metabolism and geochemistry

    SciTech Connect

    WANG,YIFENG; PAPENGUTH,HANS W.

    2000-05-04

    Microbial degradation of organic matter is a driving force in many subsurface geochemical systems, and therefore may have significant impacts on the fate of radionuclides released into subsurface environments. In this paper, the authors present a general reaction-transport model for microbial metabolism, redox chemistry, and radionuclide migration in subsurface systems. The model explicitly accounts for biomass accumulation and the coupling of radionuclide redox reactions with major biogeochemical processes. Based on the consideration that the biomass accumulation in subsurface environments is likely to achieve a quasi-steady state, they have accordingly modified the traditional microbial growth kinetic equation. They justified the use of the biogeochemical models without the explicit representation of biomass accumulation, if the interest of modeling is in the net impact of microbial reactions on geochemical processes. They then applied their model to a scenario in which an oxic water flow containing both uranium and completing organic ligands is recharged into an oxic aquifer in a carbonate formation. The model simulation shows that uranium can be reduced and therefore immobilized in the anoxic zone created by microbial degradation.

  15. Modelling radionuclide transport in fractured media with a dynamic update of Kd values

    DOE PAGES

    Trinchero, Paolo; Painter, Scott L.; Ebrahimi, Hedieh; ...

    2015-10-13

    Radionuclide transport in fractured crystalline rocks is a process of interest in evaluating long term safety of potential disposal systems for radioactive wastes. Given their numerical efficiency and the absence of numerical dispersion, Lagrangian methods (e.g. particle tracking algorithms) are appealing approaches that are often used in safety assessment (SA) analyses. In these approaches, many complex geochemical retention processes are typically lumped into a single parameter: the distribution coefficient (Kd). Usually, the distribution coefficient is assumed to be constant over the time frame of interest. However, this assumption could be critical under long-term geochemical changes as it is demonstrated thatmore » the distribution coefficient depends on the background chemical conditions (e.g. pH, Eh, and major chemistry). In this study, we provide a computational framework that combines the efficiency of Lagrangian methods with a sound and explicit description of the geochemical changes of the site and their influence on the radionuclide retention properties.« less

  16. A physically based approach to modelling radionuclide transport in the biosphere.

    PubMed

    Parkin, G; Anderton, S P; Ewen, J; O'Donnell, G M; Thorne, M C; Crossland, I G

    1999-12-01

    Calculations of radiological risk are required to assess the safety of any potential future UK deep underground repository for intermediate-level and certain low-level solid radioactive wastes. In support of such calculations, contaminant movement and dilution in the terrestrial biosphere is investigated using the physically based modelling system SHETRAN. Two case studies are presented involving modelling of contaminants representing long-lived poorly sorbed radionuclides in the near-surface aquifers and surface waters of hypothetical catchments. The contaminants arise from diffuse sources at the base of the modelled aquifers. The catchments are characterised in terms of detailed spatial data for topography, the river network, soils and vegetation. Simulations are run for temperate and boreal climates representing possible future conditions at a repository site. Results are presented in terms of the concentration of contaminants in the aquifer, in soils and in surface waters; these are used to support the simpler models used in risk calculations.

  17. Colloid and Colloid-Facilitated Contaminant Transport Experiments and Models to Support Assessments of Radionuclide Migration at Yucca Mountain and the Nevada Test Site

    SciTech Connect

    P. Reimus

    2004-06-01

    involved injecting inorganic colloids with radionuclides adsorbed onto them into fractured or porous media to determine the ability of the colloids to facilitate the transport of the radionuclides through the media. Recent experiments have also involved comparing the transport behavior of CML microspheres and inorganic colloids so that more defensible inferences about inorganic colloid transport can be made from CML microsphere transport observations in field tracer tests. All of this experimental information has been collectively used to develop a modeling framework for evaluating sensitivities of predicted colloid-facilitated radionuclide transport to various colloid-transport and radionuclide-colloid-interaction parameters. This modeling framework is helping to focus future experimental efforts on processes and parameters that have the greatest potential impact on colloid-facilitated radionuclide transport at the Nevada Test Site.

  18. Modelling the global atmospheric transport and deposition of radionuclides from the Fukushima Dai-ichi nuclear accident.

    NASA Astrophysics Data System (ADS)

    Christoudias, Theodoros; Lelieveld, Jos

    2013-04-01

    We modeled the global atmospheric dispersion and deposition of radionuclides released from the Fukushima Dai-ichi nuclear power plant accident. The EMAC atmospheric chemistry - general circulation model was used, with circulation dynamics nudged towards ERA-Interim reanalysis data. We applied a resolution of approximately 0.5 degrees in latitude and longitude (T255). The model accounts for emissions and transport of the radioactive isotopes 131I and 137Cs, and removal processes through precipitation, particle sedimentation and dry deposition. In addition, we simulated the release of 133Xe, a noble gas that can be regarded as a passive transport tracer of contaminated air. The source terms are based on Chino et al. (2011) and Stohl et al. (2012); especially the emission estimates of 131I are associated with a high degree of uncertainty. The calculated concentrations have been compared to station observations by the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO).

  19. Modeling Radionuclide Decay Chain Migration Using HYDROGEOCHEM

    NASA Astrophysics Data System (ADS)

    Lin, T. C.; Tsai, C. H.; Lai, K. H.; Chen, J. S.

    2014-12-01

    Nuclear technology has been employed for energy production for several decades. Although people receive many benefits from nuclear energy, there are inevitably environmental pollutions as well as human health threats posed by the radioactive materials releases from nuclear waste disposed in geological repositories or accidental releases of radionuclides from nuclear facilities. Theoretical studies have been undertaken to understand the transport of radionuclides in subsurface environments because that the radionuclide transport in groundwater is one of the main pathway in exposure scenarios for the intake of radionuclides. The radionuclide transport in groundwater can be predicted using analytical solution as well as numerical models. In this study, we simulate the transport of the radionuclide decay chain using HYDROGEOCHEM. The simulated results are verified against the analytical solution available in the literature. Excellent agreements between the numerical simulation and the analytical are observed for a wide spectrum of concentration. HYDROGECHEM is a useful tool assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.

  20. A regional sediment transport modeling for assessing dispersal and recirculation of land-derived radionuclides in the Fukushima coast

    NASA Astrophysics Data System (ADS)

    Yamanishi, T.; Uchiyama, Y.; Tsumune, D.; Miyazawa, Y.

    2014-12-01

    Fluvial discharge from the rivers is viewed as a missing piece in the inventory of the radionuclides in the ocean during the accident at the Fukushima Daiichi Nuclear Power Plant (FNPP). The land-derived input introduces a time lag behind the direct release through hydrological process because these radionuclides mostly attach to suspended fine particles (sediments) that are transported quite differently to the dissolved matter. Therefore, we implement a sediment transport model proposed by Blaas et al. (2007) consisting of a multi-class non-cohesive sediment transport model, a wave-enhanced bed boundary layer model, and a stratigraphy model into ROMS. A 128 x 256 km domain with the grid resolution of dx = 250 m centered at FNPP is configured as a test bed embedded in the existing ROMS model domain at dx = 1 km (Uchiyama et al., 2012, 2013). A spectral wave model SWAN at dx = 1 km nested in the JMA GPV-CWM wave reanalysis is used for the wave forcing field. A surface runoff model (Toyota et al., 2009) provides daily-mean discharges and associated sediment fluxes at the mouths of 20 rivers in the study area.The model results show that bed stresses are enhanced in the coastal area about 10 to 20 km from the shore, most part of the semi-sheltered Sendai Bay, and on the continental shelf slope at about 600 m deep. In contrast, band-like structures are formed between the nearshore and the shelf slope where bed stresses are found to be modest. This low stress bands correspond to the areas where fine particles such as silt and clay are predominant in the bed. Since the cesium 137 is quite readily attached to fine particles rather than coarse sediments (sand), this result suggests that the band acts as a hot spot of the sediment-attached radionuclides. Indeed, a qualitative correlation is found between the low stress band with high radioactivity of cesium 137 in the bed sediment off FNPP based on the field measurement (Ambe et al., 2013).

  1. Efficient Modelling of Radionuclide Transport in Highly Heterogeneous Media and Under Variable Hydrochemical Conditions Using an "Intelligent Kd" Approach

    NASA Astrophysics Data System (ADS)

    Trinchero, P.; Painter, S. L.; Ebrahimi, H.; Koskinen, L.; Molinero, J.; Selroos, J. O.

    2014-12-01

    Due to the high heterogeneity of fractured media and the ubiquitous lack of a complete site characterization, deterministic simulations of radionuclide transport in fractured rocks are notoriously highly uncertain. This epistemic uncertainty is typically addressed using stochastic methods; e.g. the connectivity structure of the medium is described using one or multiple realizations of Discrete Fracture Networks (DFN), which are then combined to Time Domain Random Walk (TDRW) simulations (e.g. Painter and Cvetkovic, 2005). In these formulations, many complex geochemical retention processes are usually lumped into a single parameter: the distribution coefficient (Kd). Although this approach is mathematically robust and numerically efficient, it relies on an important assumption: the Kd value of each radionuclide is constant in time. This assumption could be critical under long-term geochemical changes as it is demonstrated that the distribution coefficient depends on the pH, redox conditions and major chemistry of the system. In this work, we present a novel methodology that combines the robustness of stochastic methods with a sound and explicit description of water-solute-rock interaction processes. The reconciliation of all these is achieved by using an "intelligent Kd" approach. The hydrogeochemical evolution of the site of study is first computed using long-term and large-scale mechanistic reactive transport simulations. The simulated hydrochemical conditions are then used to generate a complete database of Kd values, which represent the hydrochemical conditions in every position and time of the model domain. Then, TDRW simulations, based on one or multiple DFN realizations, are fed with these data and the results (e.g. radionuclide breakthrough curves) implicitly bring the signature of the underlying changes in the background geochemistry.

  2. Mathematical modeling and evaluation of radionuclide transport parameters from the ANL Laboratory Analog Program

    SciTech Connect

    Chen, B.C.J.; Hull, J.R.; Seitz, M.G.; Sha, W.T.; Shah, V.L.; Soo, S.L.

    1984-07-01

    Computer model simulation is required to evaluate the performance of proposed or future high-level radioactive waste geological repositories. However, the accuracy of a model in predicting the real situation depends on how well the values of the transport properties are prescribed as input parameters. Knowledge of transport parameters is therefore essential. We have modeled ANL's Experiment Analog Program which was designed to simulate long-term radwaste migration process by groundwater flowing through a high-level radioactive waste repository. Using this model and experimental measurements, we have evaluated neptunium (actinide) deposition velocity and analyzed the complex phenomena of simultaneous deposition, erosion, and reentrainment of bentonite when groundwater is flowing through a narrow crack in a basalt rock. The present modeling demonstrates that we can obtain the values of transport parameters, as added information without any additional cost, from the available measurements of laboratory analog experiments. 8 figures, 3 tables.

  3. SIMULATING RADIONUCLIDE FATE AND TRANSPORT IN THE UNSATURATED ZONE: EVALUATION AND SENSITIVITY ANALYSES OF SELECT COMPUTER MODELS

    EPA Science Inventory

    Numerical, mathematical models of water and chemical movement in soils are used as decision aids for determining soil screening levels (SSLs) of radionuclides in the unsaturated zone. Many models require extensive input parameters which include uncertainty due to soil variabil...

  4. SIMULATING RADIONUCLIDE FATE AND TRANSPORT IN THE UNSATURATED ZONE: EVALUATION AND SENSITIVITY ANALYSES OF SELECT COMPUTER MODELS

    EPA Science Inventory

    Numerical, mathematical models of water and chemical movement in soils are used as decision aids for determining soil screening levels (SSLs) of radionuclides in the unsaturated zone. Many models require extensive input parameters which include uncertainty due to soil variabil...

  5. Modeling of Groundwater Flow and Radionuclide Transport at the Climax Mine sub-CAU, Nevada Test Site

    SciTech Connect

    K. Pohlmann; M. Ye; D. Reeves; M. Zavarin; D. Decker; J. Chapman

    2007-09-28

    The Yucca Flat-Climax Mine Corrective Action Unit (CAU) on the Nevada Test Site comprises 747 underground nuclear detonations, all but three of which were conducted in alluvial, volcanic, and carbonate rocks in Yucca Flat. The remaining three tests were conducted in the very different hydrogeologic setting of the Climax Mine granite stock located in Area 15 at the northern end of Yucca Flat. As part of the Corrective Action Investigation (CAI) for the Yucca Flat-Climax Mine CAU, models of groundwater flow and radionuclide transport will be developed for Yucca Flat. However, two aspects of these CAU-scale models require focused modeling at the northern end of Yucca Flat beyond the capability of these large models. First, boundary conditions and boundary flows along the northern reaches of the Yucca Flat-Climax Mine CAU require evaluation to a higher level of detail than the CAU-scale Yucca Flat model can efficiently provide. Second, radionuclide fluxes from the Climax tests require analysis of flow and transport in fractured granite, a unique hydrologic environment as compared to Yucca Flat proper. This report describes the Climax Mine sub-CAU modeling studies conducted to address these issues, with the results providing a direct feed into the CAI for the Yucca Flat-Climax Mine CAU. Three underground nuclear detonations were conducted for weapons effects testing in the Climax stock between 1962 and 1966: Hard Hat, Pile Driver, and Tiny Tot. Though there is uncertainty regarding the position of the water table in the stock, it is likely that all three tests were conducted in the unsaturated zone. In the early 1980s, the Spent Fuel Test-Climax (SFT-C) was constructed to evaluate the feasibility of retrievable, deep geologic storage of commercial nuclear reactor wastes. Detailed mapping of fractures and faults carried out for the SFT-C studies greatly expanded earlier data sets collected in association with the nuclear tests and provided invaluable information for

  6. Radionuclide transport and uptake in coastal aquatic ecosystems: a comparison of a 3D dynamic model and a compartment model.

    PubMed

    Erichsen, Anders Christian; Konovalenko, Lena; Møhlenberg, Flemming; Closter, Rikke Margrethe; Bradshaw, Clare; Aquilonius, Karin; Kautsky, Ulrik

    2013-05-01

    In safety assessments of underground radioactive waste repositories, understanding radionuclide fate in ecosystems is necessary to determine the impacts of potential releases. Here, the reliability of two mechanistic models (the compartmental K-model and the 3D dynamic D-model) in describing the fate of radionuclides released into a Baltic Sea bay is tested. Both are based on ecosystem models that simulate the cycling of organic matter (carbon). Radionuclide transfer is linked to adsorption and flows of carbon in food chains. Accumulation of Th-230, Cs-135, and Ni-59 in biological compartments was comparable between the models and site measurements despite differences in temporal resolution, biological state variables, and partition coefficients. Both models provided confidence limits for their modeled concentration ratios, an improvement over models that only estimate means. The D-model enables estimates at high spatio-temporal resolution. The K-model, being coarser but faster, allows estimates centuries ahead. Future developments could integrate the two models to take advantage of their respective strengths.

  7. Atmospheric Transport Modelling assessing radionuclide detection chances after the nuclear test announced by the DPRK in January 2016

    NASA Astrophysics Data System (ADS)

    Ross, J. Ole; Ceranna, Lars

    2016-04-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) prohibits all kinds of nuclear explosions. The International Monitoring System (IMS) is in place and at about 90% complete to verify compliance with the CTBT. The stations of the waveform technologies are capable to detect seismic, hydro-acoustic and infrasonic signals for detection, localization, and characterization of explosions. The seismic signals of the DPRK event on 6 January 2016 were detected by many seismic stations around the globe and allow for localization of the event and identification as explosion (see poster by G. Hartmann et al.). However, the direct evidence for a nuclear explosion is only possible through the detection of nuclear fission products which may be released. For that 80 Radionuclide (RN) Stations are part of the designed IMS, about 60 are already operational. All RN stations are highly sensitive for tiny traces of particulate radionuclides in large volume air samplers. There are 40 of the RN stations designated to be equipped with noble gas systems detecting traces of radioactive xenon isotopes which are more likely to escape from an underground test cavity than particulates. Already 30 of the noble gas systems are operational. Atmospheric Transport Modelling supports the interpretation of radionuclide detections (and as appropriate non-detections) by connecting the activity concentration measurements with potential source locations and release times. In our study forecasts with the Lagrangian Particle Dispersion Model HYSPLIT (NOAA) and GFS (NCEP) meteorological data are considered to assess the plume propagation patterns for hypothetical releases at the known DPRK nuclear test site. The results show a considerable sensitivity of the IMS station RN 38 Takasaki (Japan) to a potential radionuclide release at the test site in the days and weeks following the explosion in January 2016. In addition, backtracking simulations with ECMWF analysis data in 0.2° horizontal resolution are

  8. Radionuclide source scenario and forward atmospheric transport modeling for the National Data Center Preparedness Exercise 2012

    NASA Astrophysics Data System (ADS)

    Ross, Ole; Schlosser, Clemens; Gestermann, Nicolai; Ceranna, Lars; Bönnemann, Christian

    2013-04-01

    For verification with compliance of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) the International Monitoring System (IMS) operates stations observing seismic, hydroacoustic, and infrasound signals as well as radioisotopes in the atmosphere. While the IMS data is collected, processed and technically analyzed in the International Data Center (IDC) of the CTBT-Organization, National Data Centers (NDC) provide interpretation and advice to their government concerning suspicious detections occurring in IMS data. NDC Preparedness Exercises (NPE) are regularly performed dealing with fictitious treaty violations to practice the combined analysis of CTBT verification technologies and mutual exchange of information between NDCs and with the IDC as well. For NPE 2012 the trigger scenario was based on a selected seismic event from the Reviewed Event Bulletin serving as starting point for fictitious radionuclide dispersion. Hypothetical xenon and iodine radioisotope source terms with isotopic ratios fitting to a nuclear explosion were assumed. The simulated concentrations at dedicated IMS stations were calculated using the NOAA HYSPLIT model driven by NCEP GDAS analysis data with 0.5 degree horizontal resolution. Noble gas and particulate emissions were treated separately considering wet and dry deposition for the iodine. Only stations which were operational and sending data at that time were taken for the creation of virtual samples according to the actual collection times. The actual meteorological conditions during the days following the NPE 2012 event and the location of the IMS stations lead to a detection pattern which allowed for sufficient backtracking results using the data and software provided by IDC. For participants without ATM capacity two additional entrance levels were offered upon request: Either a space-time-box containing the trigger event or even the complete REB entry containing source and waveform parameters.

  9. Modeling of long range transport pathways for radionuclides to Korea during the Fukushima Dai-ichi nuclear accident and their association with meteorological circulations.

    PubMed

    Lee, Kwan-Hee; Kim, Ki-Hyun; Lee, Jin-Hong; Yun, Ju-Yong; Kim, Cheol-Hee

    2015-10-01

    The Lagrangian FLEXible PARTicle (FLEXPART) dispersion model and National Centers for Environmental Prediction/Global Forecast System (NCEP/GFS) meteorological data were used to simulate the long range transport pathways of three artificial radionuclides: (131)I, (137)Cs, and (133)Xe, coming into Korean Peninsula during the Fukushima Dai-ichi nuclear accident. Using emission rates of these radionuclides estimated from previous studies, three distinctive transport routes of these radionuclides toward the Korean Peninsula for a period from 10 March to 20 April 2011 were exploited by three spatial scales: 1) intercontinental scale - plume released since mid-March 2011 and transported to the North to arrive Korea on 23 March 2011, 2) global (hemispherical) scale - plume traveling over the whole northern hemisphere passing through the Pacific Ocean/Europe to reach the Korean Peninsula with relatively low concentrations in late March 2011 and, 3) regional scale - plume released on early April 2011 arrived at the Korean Peninsula via southwest sea of Japan influenced directly by veering mesoscale wind circulations. Our identification of these transport routes at three different scales of meteorological circulations suggests the feasibility of a multi-scale approach for more accurate prediction of radionuclide transport in the study area. In light of the fact that the observed arrival/duration time of peaks were explained well by the FLEXPART model coupled with NCEP/GFS input data, our approach can be used meaningfully as a decision support model for radiation emergency situations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Radionuclides: Accumulation and Transport in Plants.

    PubMed

    Gupta, D K; Chatterjee, S; Datta, S; Voronina, A V; Walther, C

    Application of radioactive elements or radionuclides for anthropogenic use is a widespread phenomenon nowadays. Radionuclides undergo radioactive decays releasing ionizing radiation like gamma ray(s) and/or alpha or beta particles that can displace electrons in the living matter (like in DNA) and disturb its function. Radionuclides are highly hazardous pollutants of considerable impact on the environment, food chain and human health. Cleaning up of the contaminated environment through plants is a promising technology where the rhizosphere may play an important role. Plants belonging to the families of Brassicaceae, Papilionaceae, Caryophyllaceae, Poaceae, and Asteraceae are most important in this respect and offer the largest potential for heavy metal phytoremediation. Plants like Lactuca sativa L., Silybum marianum Gaertn., Centaurea cyanus L., Carthamus tinctorius L., Helianthus annuus and H. tuberosus are also important plants for heavy metal phytoremediation. However, transfer factors (TF) of radionuclide from soil/water to plant ([Radionuclide]plant/[Radionuclide]soil) vary widely in different plants. Rhizosphere, rhizobacteria and varied metal transporters like NRAMP, ZIP families CDF, ATPases (HMAs) family like P1B-ATPases, are involved in the radio-phytoremediation processes. This review will discuss recent advancements and potential application of plants for radionuclide removal from the environment.

  11. Modeling Groundwater Flow and Transport of Radionuclides at Amchitka Island's Underground Nuclear Tests: Milrow, Long Shot, and Cannikin

    SciTech Connect

    Ahmed Hassan; Karl Pohlmann; Jenny Chapman

    2002-11-19

    Since 1963, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive material in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site (NTS), but a limited number of experiments were conducted in other locations. One of these locations, Amchitka Island, Alaska is the subject of this report. Three underground nuclear tests were conducted on Amchitka Island. Long Shot was an 80-kiloton-yield test conducted at a depth of 700 meters (m) on October 29, 1965 (DOE, 2000). Milrow had an announced yield of about 1,000 kilotons, and was detonated at a depth of 1,220 m on October 2, 1969. Cannikin had an announced yield less than 5,000 kilotons, and was conducted at a depth of 1,790 m on November 6, 1971. The purpose of this work is to provide a portion of the information needed to conduct a human-health risk assessment of the potential hazard posed by the three underground nuclear tests on Amchitka Island. Specifically, the focus of this work is the subsurface transport portion, including the release of radionuclides from the underground cavities and their movement through the groundwater system to the point where they seep out of the ocean floor and into the marine environment. This requires a conceptual model of groundwater flow on the island using geologic, hydrologic, and chemical information, a numerical model for groundwater flow, a conceptual model of contaminant release and transport properties from the nuclear test cavities, and a numerical model for contaminant transport. Needed for the risk assessment are estimates of the quantity of radionuclides (in terms of mass flux) from the underground tests on Amchitka that could discharge to the ocean, the time of possible discharge, and the location in terms of distance from shoreline. The radionuclide data presented here are all reported in terms of normalized

  12. Modelling the global atmospheric transport and deposition of radionuclides from the Fukushima Dai-ichi nuclear accident

    NASA Astrophysics Data System (ADS)

    Christoudias, T.; Lelieveld, J.

    2013-02-01

    We modeled the global atmospheric dispersion and deposition of radionuclides released from the Fukushima Dai-ichi nuclear power plant accident. The EMAC atmospheric chemistry - general circulation model was used, with circulation dynamics nudged towards ERA-Interim reanalysis data. We applied a resolution of approximately 0.5 degrees in latitude and longitude (T255). The model accounts for emissions and transport of the radioactive isotopes 131I and 137Cs, and removal processes through precipitation, particle sedimentation and dry deposition. In addition, we simulated the release of 133Xe, a noble gas that can be regarded as a passive transport tracer of contaminated air. The source terms are based on Chino et al. (2011) and Stohl et al. (2012); especially the emission estimates of 131I are associated with a high degree of uncertainty. The calculated concentrations have been compared to station observations by the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO). We calculated that about 80% of the radioactivity from Fukushima which was released to the atmosphere deposited into the Pacific Ocean. In Japan a large inhabited land area was contaminated by more than 40 kBq m-2. We also estimated the inhalation and 50-year dose by 137Cs, 134Cs and 131I to which the people in Japan are exposed.

  13. Modelling the global atmospheric transport and deposition of radionuclides from the Fukushima Dai-ichi nuclear accident

    NASA Astrophysics Data System (ADS)

    Christoudias, T.; Lelieveld, J.

    2012-09-01

    We modeled the global atmospheric dispersion and deposition of radionuclides released from the Fukushima Dai-ichi nuclear power plant accident. The EMAC atmospheric chemistry - general circulation model was used, with circulation dynamics nudged towards ERA-Interim reanalysis data. We applied a resolution of approximately 0.5 degrees in latitude and longitude (T255). The model accounts for emissions and transport of the radioactive isotopes 131I and 137Cs, and removal processes through precipitation, particle sedimentation and dry deposition. In addition, we simulated the release of 133Xe, a noble gas that can be regarded as a passive transport tracer of contaminated air. The source terms are based on Stohl et al. (2012) and Chino et al. (2011); especially the emission estimates of 131I are associated with a high degree of uncertainty. The calculated concentrations have been compared to station observations by the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO). We calculated that about 80% of the radioactivity from Fukushima which was released to the atmosphere deposited into the Pacific Ocean. In Japan a land area of 34 000 km2 around the reactors, inhabited by nearly 10 million people, was contaminated by more than 40 kBq m-2. We also estimated the inhalation and 50-yr dose by 137Cs and 131I to which the people in Japan have been exposed.

  14. Radionuclide transport behavior in a generic geological radioactive waste repository.

    PubMed

    Bianchi, Marco; Liu, Hui-Hai; Birkholzer, Jens T

    2015-01-01

    We performed numerical simulations of groundwater flow and radionuclide transport to study the influence of several factors, including the ambient hydraulic gradient, groundwater pressure anomalies, and the properties of the excavation damaged zone (EDZ), on the prevailing transport mechanism (i.e., advection or molecular diffusion) in a generic nuclear waste repository within a clay-rich geological formation. By comparing simulation results, we show that the EDZ plays a major role as a preferential flowpath for radionuclide transport. When the EDZ is not taken into account, transport is dominated by molecular diffusion in almost the totality of the simulated domain, and transport velocity is about 40% slower. Modeling results also show that a reduction in hydraulic gradient leads to a greater predominance of diffusive transport, slowing down radionuclide transport by about 30% with respect to a scenario assuming a unit gradient. In addition, inward flow caused by negative pressure anomalies in the clay-rich formation further reduces transport velocity, enhancing the ability of the geological barrier to contain the radioactive waste. On the other hand, local high gradients associated with positive pressure anomalies can speed up radionuclide transport with respect to steady-state flow systems having the same regional hydraulic gradients. Transport behavior was also found to be sensitive to both geometrical and hydrogeological parameters of the EDZ. Results from this work can provide useful knowledge toward correctly assessing the post-closure safety of a geological disposal system. © 2014, National Ground Water Association.

  15. A new statistical method for transfer coefficient calculations in the framework of the general multiple-compartment model of transport for radionuclides in biological systems.

    PubMed

    Garcia, F; Arruda-Neto, J D; Manso, M V; Helene, O M; Vanin, V R; Rodriguez, O; Mesa, J; Likhachev, V P; Filho, J W; Deppman, A; Perez, G; Guzman, F; de Camargo, S P

    1999-10-01

    A new and simple statistical procedure (STATFLUX) for the calculation of transfer coefficients of radionuclide transport to animals and plants is proposed. The method is based on the general multiple-compartment model, which uses a system of linear equations involving geometrical volume considerations. By using experimentally available curves of radionuclide concentrations versus time, for each animal compartment (organs), flow parameters were estimated by employing a least-squares procedure, whose consistency is tested. Some numerical results are presented in order to compare the STATFLUX transfer coefficients with those from other works and experimental data.

  16. CASCADER: An m-chain gas-phase radionuclide transport and fate model. Volume 2, User`s manual for CASCADR8

    SciTech Connect

    Cawlfield, D.E.; Been, K.B.; Emer, D.F.; Lindstrom, F.T.; Shott, G.J.

    1993-06-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes through advection and/or diffusion. Furthermore, parent and daughter radionuclides may decay as they are transported in the soil. This is volume two to the CASCADER series, titled CASCADR8. It embodies the concepts presented in volume one of this series. To properly understand how the CASCADR8 model works, the reader should read volume one first. This volume presents the input and output file structure for CASCADR8, and a set of realistic scenarios for buried sources of radon gas.

  17. Mesoscale Backtracking by Means of Atmospheric Transport Modeling of Xenon Plumes Measured by Radionuclide Gas Stations

    NASA Astrophysics Data System (ADS)

    Armand, P. P.; Achim, P.; Taffary, T.

    2006-12-01

    The monitoring of atmospheric radioactive xenon concentration is performed for nuclear safety regulatory requirements. It is also planned to be used for the detection of hypothetical nuclear tests in the framework of the Comprehensive nuclear-Test-Ban Treaty (CTBT). In this context, the French Atomic Energy Commission designed a high sensitive and automated fieldable station, named SPALAX, to measure the activity concentrations of xenon isotopes in the atmosphere. SPALAX stations were set up in Western Europe and have been operated quite continuously for three years or more, detecting principally xenon-133 and more scarcely xenon-135, xenon-133m and xenon-131m. There are around 150 nuclear power plants in the European Union, research reactors, reprocessing plants, medical production and application facilities releasing radioactive xenon in normal or incidental operations. A numerical study was carried out aiming to explain the SPALAX measurements. The mesoscale Atmospheric Transport Modelling involves the MM5 suite (PSU- NCAR) to predict the wind fields on nested domains, and FLEXPART, a 3D Lagrangian particle dispersion code, used to simulate the backward transport of xenon plumes detected by the SPALAX. For every event of detection, at least one potential xenon source has a significant efficiency of emission. The identified likely sources are located quite close to the SPALAX stations (some tens of kilometres), or situated farther (a few hundreds of kilometres). A base line of some mBq per cubic meter in xenon-133 is generated by the nuclear power plants. Peaks of xenon-133 ranging from tens to hundreds of mBq per cubic meter originate from a radioisotope production facility. The calculated xenon source terms required to obtain the SPALAX measurements are discussed and seem consistent with realistic emissions from the xenon sources in Western Europe.

  18. Mass transfer and transport of radionuclides in fractured porous rock

    SciTech Connect

    Ahn, Joonhong

    1988-04-01

    Analytical studies are made to predict space-time dependent concentrations of radionuclides transported through water-saturated fractured porous rock. A basic model, which is expected to generate conservative results when used in long-term safety assessment of geologic repositories for radioactive waste, is established. Applicability and limitations of the model are investigated. 67 refs., 54 figs., 3 tabs.

  19. Radionuclide release, transport, and consequence modeling for WIPP: a report of a workshop held on September 16-17, 1981

    SciTech Connect

    Not Available

    1982-02-01

    The purpose of this workshop was to discuss potential mechanisms for release of radionuclides from the WIPP repository years after waste emplacement and termination of institutional controls, and the resultant radiological consequences. Opportunity was also provided for the exchange of information on meaningful release and transport models, and the availability, reliability and significance of data for the parameters applicable to those models. Other than those scenarios provided in draft by the Environmental Evaluation Group (EEG) (Appendix II), there were no new breach scenarios postulated. Also there were no major objections posed to the EEG proposals or the approaches taken in these drafts. Although there were no formal conclusions highlighted by the Conference, the EEG has concluded that the statements below provide a summary of EEG's views concerning the topics covered. These views are based upon the discussions at the Conference, the subsequent comments of the conferees, the information provided in the preceding EEG sponsored geological meeting and field trip, and the information contained in the EEG draft reports (Appendix II).

  20. EOS7R: Radionuclide transport for TOUGH2

    SciTech Connect

    Oldenburg, C.M.; Pruess, K.

    1995-11-01

    EOS7R provides radionuclide transport capability for TOUGH2. EOS7R extends the EOS7 module (water, brine, and optional air) to model water, brine, parent component, daughter component, and optional air and heat. The radionuclide components follow a first-order decay law, and may adsorb onto the solid grains. Volatilization of the decaying components is modeled by Henry`s Law. The decaying components are normally referred to as radionuclides, but they may in fact by any trace components that decay, adsorb, and volatilize. The decay process need not be radioactive decay, but could be any process that follows a first-order decay law, such as biodegradation. EOS7R includes molecular diffusion for all components in gaseous and aqueous phases using a simplified binary diffusion model. When EOS7R is used with standard TOUGH2, transport occurs by advection and molecular diffusion in all phases. When EOS7R is coupled with the dispersion module T2DM, one obtains T2DMR, the radionuclide transport version of T2DM. T2DMR models advection, diffusion, and hydrodynamic dispersion in rectangular two-dimensional regions. Modeling of radionuclide transport requires input parameters specifying the half-life for first-order decay, distribution coefficients for each rock type for adsorption, and inverse Henry`s constants for volatilization. Options can be specified in the input file to model decay in inactive grid blocks and to read from standard EOS7 INCON files. The authors present a number of example problems to demonstrate application and accuracy of TOUGH2/EOS7R. One-dimensional simulation results agree well with analytical solutions. For a two-dimensional salt-dome flow problem, the final distribution of daughter radionuclide component is complicated by the presence of weak recirculation caused by density effects due to salinity.

  1. Colloid-facilitated radionuclide transport: a regulatory perspective

    NASA Astrophysics Data System (ADS)

    Dam, W. L.; Pickett, D. A.; Codell, R. B.; Nicholson, T. J.

    2001-12-01

    What hydrogeologic-geochemical-microbial conditions and processes affect migration of radionuclides sorbed onto microparticles or native colloid-sized radionuclide particles? The U.S. Nuclear Regulatory Commission (NRC) is responsible for protecting public health, safety, and the environment at numerous nuclear facilities including a potential high-level nuclear waste disposal site. To fulfill these obligations, NRC needs to understand the mechanisms controlling radionuclide release and transport and their importance to performance. The current focus of NRC staff reviews and technical interactions dealing with colloid-facilitated transport relates to the potential nuclear-waste repository at Yucca Mountain, Nevada. NRC staff performed bounding calculations to quantify radionuclide releases available for ground-water transport to potential receptors from a Yucca Mountain repository. Preliminary analyses suggest insignificant doses of plutonium and americium colloids could be derived from spent nuclear fuel. Using surface complexation models, NRC staff found that colloids can potentially lower actinide retardation factors by up to several orders of magnitude. Performance assessment calculations, in which colloidal transport of plutonium and americium was simulated by assuming no sorption or matrix diffusion, indicated no effect of colloids on human dose within the 10,000 year compliance period due largely to long waste-package lifetimes. NRC staff have identified information gaps and developed technical agreements with the U.S. Department of Energy (DOE) to ensure sufficient information will be presented in any potential future Yucca Mountain license application. DOE has agreed to identify which radionuclides could be transported via colloids, incorporate uncertainties in colloid formation, release and transport parameters, and conceptual models, and address the applicability of field data using synthetic microspheres as colloid analogs. NRC is currently

  2. Modelling radionuclide transport in fractured media with a dynamic update of Kd values

    SciTech Connect

    Trinchero, Paolo; Painter, Scott L.; Ebrahimi, Hedieh; Koskinen, Lasse; Molinero, Jorge; Selroos, Jan -Olof

    2015-10-13

    Radionuclide transport in fractured crystalline rocks is a process of interest in evaluating long term safety of potential disposal systems for radioactive wastes. Given their numerical efficiency and the absence of numerical dispersion, Lagrangian methods (e.g. particle tracking algorithms) are appealing approaches that are often used in safety assessment (SA) analyses. In these approaches, many complex geochemical retention processes are typically lumped into a single parameter: the distribution coefficient (Kd). Usually, the distribution coefficient is assumed to be constant over the time frame of interest. However, this assumption could be critical under long-term geochemical changes as it is demonstrated that the distribution coefficient depends on the background chemical conditions (e.g. pH, Eh, and major chemistry). In this study, we provide a computational framework that combines the efficiency of Lagrangian methods with a sound and explicit description of the geochemical changes of the site and their influence on the radionuclide retention properties.

  3. Simulation of radionuclide transport in U. S. agriculture

    SciTech Connect

    Sharp, R.D.; Baes, C.F. III

    1982-01-01

    Because of the recent concern about the impact of energy technologies on man and related health effects, there has emerged a need for models to calculate or predict the effects of radionuclides on man. A general overview is presented of a model that calculates the ingrowth of radionuclides into man's food chain. The FORTRAN IV computer program TERRA, Transport of Environmentally Released Radionuclides in Agriculture, simulates the build-up of radionuclides in soil, four plant food compartments, in meat and milk from beef, and in the livestock food compartments that cause radionuclide build-up in milk and meat from beef. A large data set of spatially oriented parameters has been developed in conjunction with TERRA. This direct-access data set is called SITE, Specific Information on the Terrestrial Environment, and contains 35 parameters for each of 3525 half-degree longitude-latitude cells which define the lower 48 states. TERRA and SITE are used together as a package for determining radionuclide concentrations in man's food anywhere within the conterminous 48 states due to atmospheric releases.

  4. Flow and Radionuclide Transport Models of the Unsaturated Zone at the Nevada National Security Site: Examples from Yucca Flat and Rainier Mesa

    NASA Astrophysics Data System (ADS)

    Kwicklis, E. M.; Viswanathan, H. S.; Levitt, D. G.; Dash, Z.; Gable, C. W.; Lu, Z.; Dai, Z.; Zyvoloski, G.; Miller, T. A.

    2011-12-01

    The former Nevada Test Site (now the Nevada National Security Site) hosted 828 underground nuclear explosions between 1951 and 1992, leaving an estimated 1.3e+08 curies of tritium, fission products, activation products and unspent fuel in the subsurface when the nuclear test moratorium was adopted in September, 1992. In two former testing areas of the Nevada National Security Site - Yucca Flat and Rainier Mesa- a significant fraction of the initial radionuclide inventory was introduced from nuclear tests with working points in the unsaturated zone. In Yucca Flat, an arid, low-elevation alluvium-filled basin where most tests were conducted in vertical shafts, unsaturated flow and transport models indicate that radionuclide migration to the water table is most likely where overlying subsidence craters receive significant infiltration from overland flow during infrequent runoff events. These craters tend to be located along the perimeter of the basin and have large contributing watersheds in the surrounding hills. At Rainier Mesa, a wetter, high-elevation remnant of a once more extensive volcanic plateau, most tests were conducted at the ends of horizontal drifts in the vicinity of local perched water zones. Unsaturated flow and transport models of one of the larger tunnel complexes (N-tunnel) indicate that despite relatively high infiltration rates on the mesa, radionuclide diffusion from the flowing fractures to the porous matrix may significantly attenuate radionuclide movement to the water table, depending on the assumed fracture attributes. Simulations show that the tunnel itself may be an important hydraulic feature that connects radionuclide sources to sub-vertical faults that are assumed to extend to the water table.

  5. Analysis of the NAEG model of transuranic radionuclide transport and dose

    SciTech Connect

    Kercher, J.R.; Anspaugh, L.R.

    1984-11-01

    We analyze the model for estimating the dose from /sup 239/Pu developed for the Nevada Applied Ecology Group (NAEG) by using sensitivity analysis and uncertainty analysis. Sensitivity analysis results suggest that the air pathway is the critical pathway for the organs receiving the highest dose. Soil concentration and the factors controlling air concentration are the most important parameters. The only organ whose dose is sensitive to parameters in the ingestion pathway is the GI tract. The air pathway accounts for 100% of the dose to lung, upper respiratory tract, and thoracic lymph nodes; and 95% of its dose via ingestion. Leafy vegetable ingestion accounts for 70% of the dose from the ingestion pathway regardless of organ, peeled vegetables 20%; accidental soil ingestion 5%; ingestion of beef liver 4%; beef muscle 1%. Only a handful of model parameters control the dose for any one organ. The number of important parameters is usually less than 10. Uncertainty analysis indicates that choosing a uniform distribution for the input parameters produces a lognormal distribution of the dose. The ratio of the square root of the variance to the mean is three times greater for the doses than it is for the individual parameters. As found by the sensitivity analysis, the uncertainty analysis suggests that only a few parameters control the dose for each organ. All organs have similar distributions and variance to mean ratios except for the lymph modes. 16 references, 9 figures, 13 tables.

  6. Need Of Modelling Radionuclide Transport In Fresh Water Lake System, Subject To Indian Context

    NASA Astrophysics Data System (ADS)

    Desai, Hiral; Christian, R. A.

    2010-10-01

    The operations of nuclear facilities results in low level radioactive effluents, which are required to be released into the environment. The effluents from nuclear installations are treated adequately and then released in a controlled manner under strict compliance of discharge criteria. The effluents released from installations into environment undergo dilution and dispersion. However, there is possibility of concentration by the biological process in the environment. Aquatic ecosystems are very complex webs of physical, chemical and biological interactions. It is generally both costly and laborious to describe their characteristics, and to predict them is even harder. Every aquatic ecosystem is unique, and yet it is impossible to study each system in the detail necessary for case-by-case assessment of ecological threats. In this situation, quantitative mathematical models are essential to predict, to guide assessment and to direct interventions.

  7. Resuspension and redistribution of radionuclides during grassland and forest fires in the Chernobyl exclusion zone: part II. Modeling the transport process.

    PubMed

    Yoschenko, V I; Kashparov, V A; Levchuk, S E; Glukhovskiy, A S; Khomutinin, Yu V; Protsak, V P; Lundin, S M; Tschiersch, J

    2006-01-01

    To predict parameters of radionuclide resuspension, transport and deposition during forest and grassland fires, several model modules were developed and adapted. Experimental data of controlled burning of prepared experimental plots in the Chernobyl exclusion zone have been used to evaluate the prognostic power of the models. The predicted trajectories and elevations of the plume match with those visually observed during the fire experiments in the grassland and forest sites. Experimentally determined parameters could be successfully used for the calculation of the initial plume parameters which provide the tools for the description of various fire scenarios and enable prognostic calculations. In summary, the model predicts a release of some per thousand from the radionuclide inventory of the fuel material by the grassland fires. During the forest fire, up to 4% of (137)Cs and (90)Sr and up to 1% of the Pu isotopes can be released from the forest litter according to the model calculations. However, these results depend on the parameters of the fire events. In general, the modeling results are in good accordance with the experimental data. Therefore, the considered models were successfully validated and can be recommended for the assessment of the resuspension and redistribution of radionuclides during grassland and forest fires in contaminated territories.

  8. Evaluation of conceptual, mathematical and physical-and-chemical models for describing subsurface radionuclide transport at the Lake Karachai Waste Disposal Site

    SciTech Connect

    Rumynin, V.G.; Mironenko, V.A.; Sindalovsky, L.N.; Boronina, A.V.; Konosavsky, P.K.; Pozdniakov, S.P.

    1998-06-01

    The goal of this work was to develop the methodology and to improve understanding of subsurface radionuclide transport for application to the Lake Karachai Site and to identify the influence of the processes and interactions involved into transport and fate of the radionuclides. The report is focused on two sets of problems, which have to do both with, hydrodynamic and hydrogeochemical aspects of the contaminant transport.

  9. Flow and radionuclide transport from rock to surface systems: characterization and modelling of potential repository sites in Sweden

    SciTech Connect

    Werner, Kent; Bosson, Emma; Berglund, Sten

    2007-07-01

    The safety assessments of potential geological repositories for spent nuclear fuel in Sweden are supported by modelling of groundwater flow in rock, to predict locations (exit points) where radionuclides from the deep repository may enter land, surface waters and associated ecosystems above the rock. This modelling includes detailed rock descriptions, but simplifies the upper part of the flow domain, including representations of meteorological processes and interactions with hydrological objects at the surface. Using the Laxemar candidate site as example, this paper investigates some potentially important consequences of these simplifications. Specifically, it compares particle tracking results obtained by a deep-rock groundwater flow model (CONNECTFLOW) and by MIKE SHE-MIKE 11, which contains detailed descriptions of near-surface/surface water flow. Overall, the models predict similar exit point patterns, occurring as clusters along streams in valleys, at a lake, and in sea bays. However, on a detailed level there are some prediction differences, which may be of importance for biosphere-focused safety assessments. CONNECTFLOW essentially predicts flow paths through the repository that follow fractures and deformation zones, outcropping in valleys. In comparison, MIKE SHE-MIKE 11 provides more detailed information on near-surface water flow paths, including the associated exit points and inputs to assessments of radionuclide retention. (authors)

  10. The time series analysis of the radionuclide emissions from Fukushima Daiichi nuclear power plant by online global chemistry transport model and inverse model

    NASA Astrophysics Data System (ADS)

    Maki, Takashi; Tanaka, Taichu; Kajino, Mizuo; Sekiyama, Tsuyoshi; Igarashi, Yasuhito; Mikami, Masao

    2013-04-01

    The accident of the Fukushima Daiichi nuclear power plant that occurred in March 2011 emitted a large amount of radionuclide. The important feature of this accident was that the source position was evidently clear, however, time and vertical emission variations were unknown (in this case, it was known that the height of emission was not so high in altitude). In such a case, the technique of inverse model was a powerful tool to gain answers to questions; high resolution and more precise analysis by using prior emission information with relatively low computational cost are expected to be obtainable. Tagged simulation results by global aerosol model named MASINGAR (Tanaka et al., 2005) were used; the horizontal resolution was TL319 (about 60 km). Tagged tracers (Cs137) from lowest model layer (surface to 100m) were released every three hours with 1Tg/hr which accumulated daily mean. 50 sites' daily observation data in the world (CTBTO, Ro5, Berkeley, Hoffmann and Taiwan) were collected. The analysis period was 40 days, from 11 March to 19 April. We tested two prior emission information. The first information was JAEA posterior emission (Chino et al., 2011) and the second was NILU prior emission (not posterior) (Stohl et al.,2011) as our observation data were almost similar to their study. Due to consideration for observation error and space representation error, the observation error was set as 20%. Several sensitivity tests were examined by changing prior emission flux uncertainties. As a result, Cs137 estimated the total emission amount from 11 March to 19 April as 18.5PBq with the uncertainty of 3.6PBq. Moreover, the maximum radio nuclei emission occurred during 15 March, which was larger than prior information. The precision of the analysis was highly dependent on observation data (quantity and quality) and precision of transport model. Possibility to obtain robust result by using multi-model ensemble results with inverse model was also considered. The results of

  11. Radionuclide Transport in Fracture-Granite Interface Zones

    SciTech Connect

    Hu, Q; Mori, A

    2007-09-12

    In situ radionuclide migration experiments, followed by excavation and sample characterization, were conducted in a water-conducting shear zone at the Grimsel Test Site (GTS) in Switzerland to study diffusion paths of radionuclides in fractured granite. In this work, we employed a micro-scale mapping technique that interfaces laser ablation sampling with inductively coupled plasma-mass spectrometry (LA/ICP-MS) to measure the fine-scale (micron-range) distribution of actinides ({sup 234}U, {sup 235}U, and {sup 237}Np) in the fracture-granite interface zones. Long-lived {sup 234}U, {sup 235}U, and {sup 237}Np were detected in flow channels, as well as in the adjacent rock matrix, using the sensitive, feature-based mapping of the LA/ICP-MS technique. The injected sorbing actinides are mainly located within the advective flowing fractures and the immediately adjacent regions. The water-conducting fracture studied in this work is bounded on one side by mylonite and the other by granitic matrix regions. These actinides did not penetrate into the mylonite side as much as the relatively higher-porosity granite matrix, most likely due to the low porosity, hydraulic conductivity, and diffusivity of the fracture wall (a thickness of about 0.4 mm separates the mylonite region from the fracture) and the mylonite region itself. Overall, the maximum penetration depth detected with this technique for the more diffusive {sup 237}Np over the field experimental time scale of about 60 days was about 10 mm in the granitic matrix, illustrating the importance of matrix diffusion in retarding radionuclide transport from the advective fractures. Laboratory tests and numerical modeling of radionuclide diffusion into granitic matrix was conducted to complement and help interpret the field results. Measured apparent diffusivity of multiple tracers in granite provided consistent predictions for radionuclide transport in the fractured granitic rock.

  12. Effect of Selected Modeling Assumptions on Subsurface Radionuclide Transport Projections for the Potential Environmental Management Disposal Facility at Oak Ridge, Tennessee

    SciTech Connect

    Painter, Scott L.

    2016-06-28

    The Department of Energy’s Office of Environmental Management recently revised a Remedial Investigation/ Feasibility Study (RI/FS) that included an analysis of subsurface radionuclide transport at a potential new Environmental Management Disposal Facility (EMDF) in East Bear Creek Valley near Oak Ridge, Tennessee. The effect of three simplifying assumptions used in the RI/FS analyses are investigated using the same subsurface pathway conceptualization but with more flexible modeling tools. Neglect of vadose zone dispersion was found to be conservative or non-conservative, depending on the retarded travel time and the half-life. For a given equilibrium distribution coefficient, a relatively narrow range of half-life was identified for which neglect of vadose zone transport is non-conservative and radionuclide discharge into surface water is non-negligible. However, there are two additional conservative simplifications in the reference case that compensate for the non-conservative effect of neglecting vadose zone dispersion: the use of a steady infiltration rate and vadose zone velocity, and the way equilibrium sorption is used to represent transport in the fractured material of the saturated aquifer. With more realistic representations of all three processes, the RI/FS reference case was found to either provide a reasonably good approximation to the peak concentration or was significantly conservative (pessimistic) for all parameter combinations considered.

  13. The 41Ca bomb pulse and atmospheric transport of radionuclides

    NASA Astrophysics Data System (ADS)

    Zerle, L.; Faestermann, T.; Knie, K.; Korschinek, G.; Nolte, E.; Beer, J.; Schotterer, U.

    1997-08-01

    For the first time, the 41Ca signal from the nuclear weapon tests has been measured. Calcium 41 concentrations have been determined in alpine ice of the Fiescherhorn glacier (Switzerland) with accelerator mass spectrometry. The peak concentrations have been observed to be about 3×106 atoms of 41Ca per kilogram of ice in. the 1950s. It has been found that 41Ca is produced essentially by the atoll bombs. A universal box model, able to describe atmospheric transport of radionuclides that are in gaseous form or attached to aerosols, has been developed. The model has been applied to calculate the bomb pulses of 14C, 36Cl, 41Ca, 90Sr, and 137Cs, For the transport of radionuclides that are attached to aerosols such as 41Ca, 90Sr, and 137Cs, sedimentation (gravitational settling) in the upper stratosphere has been taken into account. It has been found that the deposition of bomb-produced 36Cl on the Earth's surface is delayed compared to that of 90Sr by about 1 year because 36Cl stays gaseous in the stratosphere. The model can also be used to calculate the deposition of cosmogenic radionuclides, e.g., 36Cl and 10Be, in their natural archives, such as polar ice sheets.

  14. Radiogenic isotopic approaches for quantifying radionuclide transport (Invited)

    NASA Astrophysics Data System (ADS)

    Maher, K.; Depaolo, D. J.; Singleton, M. J.; Christensen, J. N.; Conrad, M. E.

    2009-12-01

    Naturally occurring variations in the isotopic compositions of U and Sr provide unique opportunities for assessing the fate and transport of radionuclides at field-scale conditions. When coupled with reactive transport models, U and Sr isotopes may also provide additional constraints on the rates of sediment-fluid or sediment-waste interactions. Such isotopic approaches can be useful for sites where subsurface characterization is complicated by a lack of accessibility or the presence of substantial heterogeneity. In addition, a variety of quantitative modeling approaches of different complexity can be used to evaluate experimentally determined parameters for radionuclide mobility at the field-scale. At the Hanford Site in eastern Washington, 87Sr/86Sr and 234U/238U ratios have been used to quantify the residence time of Sr and U in the unsaturated zone, the long-term background infiltration rate through the unsaturated zone, and to assess the influence of enhanced wastewater discharge on the regional unconfined aquifer. As a result of different processing techniques or due to interactions between caustic waste and the natural sediment, waste plumes may also inherit isotopic fingerprints (e.g. 234U/238U, 235U/238U, 236U/238U; δ15N & δ18O of nitrate) that can be used to resolve multiple sources of contamination. Finally, enriched isotopic tracers can be applied to experimental manipulations to assess the retardation of a variety of contaminants. Collectively this isotopic data contributes unique perspectives on both the hydrologic conditions across the site and the mobility of key radionuclides. Predicting the long-term fate and transport of radionuclides in the environment is often challenging due to natural heterogeneity and incomplete characterization of the subsurface, however detailed analysis of isotopic variations can provide one additional means of characterizing the subsurface.

  15. Quantitative modeling of Cerenkov light production efficiency from medical radionuclides.

    PubMed

    Beattie, Bradley J; Thorek, Daniel L J; Schmidtlein, Charles R; Pentlow, Keith S; Humm, John L; Hielscher, Andreas H

    2012-01-01

    There has been recent and growing interest in applying Cerenkov radiation (CR) for biological applications. Knowledge of the production efficiency and other characteristics of the CR produced by various radionuclides would help in accessing the feasibility of proposed applications and guide the choice of radionuclides. To generate this information we developed models of CR production efficiency based on the Frank-Tamm equation and models of CR distribution based on Monte-Carlo simulations of photon and β particle transport. All models were validated against direct measurements using multiple radionuclides and then applied to a number of radionuclides commonly used in biomedical applications. We show that two radionuclides, Ac-225 and In-111, which have been reported to produce CR in water, do not in fact produce CR directly. We also propose a simple means of using this information to calibrate high sensitivity luminescence imaging systems and show evidence suggesting that this calibration may be more accurate than methods in routine current use.

  16. RADIONUCLIDE TRANSPORT IN FRACTURED TUFF UNDER EPISODIC FLOW CONDITIONS

    SciTech Connect

    O. Hu; Y. Sun; R.P. Ewing

    2005-09-19

    The current conceptual model of radionuclide transport in unsaturated fractured rock includes water movement in fractures, with migration of the entrained radionuclides being retarded by diffusion into and sorption within the rock matrix. Water infiltration and radionuclide transport through low-permeability unsaturated fractured rock are episodic and intermittent in nature, at least at local scales. Under episodic flow conditions, the matrix is constantly imbibing or draining, and this fluctuating wetness both drives two-way advective movement of radionuclides, and forces changes in the matrix diffusivity. This work is intended to examine, both experimentally and numerically, how radionuclide transport under episodic flow conditions is affected by the interacting processes of imbibition and drainage, diffusion, and matrix sorption. Using Topopah Spring welded volcanic tuff, collected from the potential repository geologic unit at Yucca Mountain for storing high-level nuclear waste, we prepared a saw-cut fracture core (length 10.2 cm, diameter 4.4 cm, and fracture aperture 100 {micro}m). The dry core was packed into a flow reactor, flushed with CO{sub 2}, then saturated via slow pumping (0.01 mL/min) of synthetic groundwater. The fractured core was then flushed with air at >97% relative humidity (to simulate in situ unsaturated fractured rock conditions at Yucca Mountain), then the episodic transport experiment was conducted. Episodic flow involved 4 cycles of tracer solution flow within the fracture, followed by flushing with high humidity air. Each flow episode contained a different suite of non-sorbing and sorbing tracers, which included {sup 3}H, ReO{sub 4}{sup -} (a chemical analog for {sup 99}TcO{sub 4}{sup -}), I{sup -} (for {sup 129}I{sup -}), Sr and Cs (for {sup 90}Sr and {sup 137}Cs), plus the radionuclides {sup 235}U, {sup 237}Np, and {sup 241}Pu. These radionuclides span a variety of sorption strengths and represent a large fraction of the radionuclides

  17. Radionuclide Transport in Fractured Tuff under Episodic Flow Conditions

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Sun, Y.; Ewing, R. P.

    2005-12-01

    The current conceptual model of radionuclide transport in unsaturated fractured rock includes water movement in fractures, with migration of the entrained radionuclides being retarded by diffusion into and sorption within the rock matrix. Water infiltration and radionuclide transport through low-permeability unsaturated fractured rock are episodic and intermittent in nature, at least at local scales. Under episodic flow conditions, the matrix is constantly imbibing or draining, and this fluctuating wetness both drives two-way advective movement of radionuclides, and forces changes in the matrix diffusivity. This work is intended to examine, both experimentally and numerically, how radionuclide transport under episodic flow conditions is affected by the interacting processes of imbibition and drainage, diffusion, and matrix sorption. Using Topopah Spring welded volcanic tuff, collected from the potential repository geologic unit at Yucca Mountain for storing high-level nuclear waste, we prepared a saw-cut fracture core (length 10.2 cm, diameter 4.4 cm, and fracture aperture 100 microns). The dry core was packed into a flow reactor, flushed with CO2, then saturated via slow pumping (0.01 mL/min) of synthetic groundwater. The fractured core was then flushed with air at 97% relative humidity (to simulate in situ unsaturated fractured rock conditions at Yucca Mountain), then the episodic transport experiment was conducted. Episodic flow involved 4 cycles of tracer solution flow within the fracture, followed by flushing with high humidity air. Each flow episode contained a different suite of non-sorbing and sorbing tracers, which included 3H, ReO4- (a chemical analog for 99TcO4-), I- (for 129I-), Sr and Cs (for 90Sr and 137Cs), plus the radionuclides 235U, 237Np, and 241Pu. These radionuclides span a variety of sorption strengths and represent a large fraction of the radionuclides of concern at the potential Yucca Mountain repository. Meanwhile, the non-sorbing 3H and Re

  18. Radionuclide Transport in Tuff and Carbonate Fractures from Yucca Flat, Nevada Test Site

    SciTech Connect

    Zavarin, M; Johnson, M R; Roberts, S K; Pletcher, R; Rose, T P; Kersting, A B; Eaton, G; Hu, Q; Ramon, E; Walensky, J; Zhao, P

    2006-02-01

    In the Yucca Flat basin of the Nevada Test Site (NTS), 747 shaft and tunnel nuclear detonations were conducted primarily within the tuff confining unit (TCU) or the overlying alluvium. The TCU in the Yucca Flat basin is hypothesized to reduce radionuclide migration to the regional carbonate aquifer (lower carbonate aquifer) due to its wide-spread aerial extent and chemical reactivity. However, shortcuts through the TCU by way of fractures may provide a migration path for radionuclides to the lower carbonate aquifer (LCA). It is, therefore, imperative to understand how radionuclides migrate or are retarded in TCU fractures. Furthermore, understanding the migration behavior of radionuclides once they reach the fractured LCA is important for predicting contaminant transport within the regional aquifer. The work presented in this report includes: (1) information on the radionuclide reactive transport through Yucca Flat TCU fractures (likely to be the primary conduit to the LCA), (2) information on the reactive transport of radionuclides through LCA fractures and (3) data needed to calibrate the fracture flow conceptualization of predictive models. The predictive models are used to define the extent of contamination for the Underground Test Area (UGTA) project. Because of the complex nature of reactive transport in fractures, a stepwise approach to identifying mechanisms controlling radionuclide transport was used. In the first set of TCU experiments, radionuclide transport through simple synthetic parallel-plate fractured tuff cores was examined. In the second, naturally fractured TCU cores were used. For the fractured LCA experiments, both parallel-plate and rough-walled fracture transport experiments were conducted to evaluate how fracture topography affects radionuclide transport. Tuff cores were prepared from archived UE-7az and UE-7ba core obtained from the USGS core library, Mercury, Nevada. Carbonate cores were prepared from archived ER-6-1 core, also obtained

  19. Specifications for the development of a fully three-dimensional numerical groundwater model for regional mass transport of radionuclides from a deep waste repository

    SciTech Connect

    Prickett, T.A.

    1980-04-01

    Specifications are given which are necessary to develop a three-dimensional numerical model capable of simulating regional mass transport of radionuclides from a deep waste repository. The model to be developed will include all of the significant mass transport processes including flow, chemical, and thermal advection, mechanical dispersion, molecular diffusion, ion exchange reactions, and radioactive decay. The model specifications also include that density and viscosity fluid properties be functions of pressure, temperature, and concentration and take into account fluid and geologic heterogenieties by allowing possible assignment of individual values to every block of the model. The model specifications furthermore include the repository shape, input/output information, boundary conditions, and the need for documentation and a user's manual. Model code validation can be accomplished with the included known analytical or laboratory solutions. It is recommended that an existing finite-difference model (developed by INTERCOMP and INTERA, Inc.) be used as a starting point either as an acceptable basic code for modification or as a pattern for the development of a completely different numerical scheme. A ten-step plan is given to outline the general procedure for development of the code.

  20. RIVER-RAD: A computer code for simulating the transport of radionuclides in rivers

    SciTech Connect

    Hetrick, D.M.; McDowell-Boyer, L.M.; Sjoreen, A.L.; Thorne, D.J.; Patterson, M.R.

    1992-11-01

    A screening-level model, RIVER-RAD, has been developed to assess the potential fate of radionuclides released to rivers. The model is simplified in nature and is intended to provide guidance in determining the potential importance of the surface water pathway, relevant transport mechanisms, and key radionuclides in estimating radiological dose to man. The purpose of this report is to provide a description of the model and a user's manual for the FORTRAN computer code.

  1. BLT-EC (Breach, Leach Transport, and Equilibrium Chemistry), a finite-element model for assessing the release of radionuclides from low-level waste disposal units: Background, theory, and model description

    SciTech Connect

    MacKinnon, R.J.; Sullivan, T.M.; Simonson, S.A.; Suen, C.J.

    1995-08-01

    Performance assessment models typically account for the processes of sorption and dissolution-precipitation by using an empirical distribution coefficient, commonly referred to as K{sub d} that combines the effects of all chemical reactions between solid and aqueous phases. In recent years, however, there has been an increasing awareness that performance assessments based solely on empirically based K{sub d} models may be incomplete, particularly for applications involving radionuclides having sorption and solubility properties that are sensitive to variations in the in-situ chemical environment. To accommodate variations in the in-situ chemical environment, and to assess its impact on radionuclide mobility, it is necessary to model radionuclide release, transport, and chemical processes in a coupled fashion. This modeling has been done and incorporated into the two-dimensional, finite-element, computer code BLT-EC (Breach, Leach, Transport, Equilibrium Chemistry). BLT-EC is capable of predicting container degradation, waste-form leaching, and advective-dispersive, multispecies, solute transport. BLT-EC accounts for retardation directly by modeling the chemical processes of complexation, sorption, dissolution-precipitation, ion-exchange, and oxidation-reduction reactions. In this report we: (1) present a detailed description of the various physical and chemical processes that control the release and migration of radionuclides from shallow land LLW disposal facilities; (2) formulate the mathematical models that represent these processes; (3) outline how these models are incorporated and implemented in BLT-EC; and (4) demonstrate the application of BLT-EC on a set of example problems.

  2. RADIONUCLIDE DISPERSION RATES BY AEOLIAN, FLUVIAL, AND POROUS MEDIA TRANSPORT

    SciTech Connect

    J. Walton; P. Goodell; C. Brashears; D. French; A. Kelts

    2005-07-11

    Radionuclide transport was measured from high grade uranium ore boulders near the Nopal I Site, Chihuahua, Mexico. High grade uranium ore boulders were left behind after removal of a uranium ore stockpile at the Prior High Grade Stockpile (PHGS). During the 25 years when the boulder was present, radionuclides were released and transported by sheetflow during precipitation events, wind blown resuspension, and infiltration into the unsaturated zone. In this study, one of the boulders was removed, followed by grid sampling of the surrounding area. Measured gamma radiation levels in three dimensions were used to derive separate dispersion rates by the three transport mechanisms.

  3. The effect of coupled transport phenomena in the Opalinus Clay and implications for radionuclide transport.

    PubMed

    Soler, J M

    2001-12-01

    In this study, the potential effects of coupled transport phenomena on radionuclide transport in the vicinity of a repository for vitrified high-level radioactive waste (HLW) and spent nuclear fuel (SF) hosted by the Opalinus Clay in Switzerland, at times equal to or greater than the expected lifetime of the waste canisters (about 1000 years), are addressed. The solute fluxes associated with advection, chemical diffusion, thermal and chemical osmosis, hyperfiltration and thermal diffusion have been incorporated into a simple one-dimensional transport equation. The analytical solution of this equation, with appropriate parameters. shows that thermal osmosis is the only coupled transport mechanism that could, on its own, have a strong effect on repository performance. Based on the results from the analytical model, two-dimensional finite-difference models incorporating advection and thermal osmosis, and taking conservation of fluid mass into account, have been formulated. The results show that, under the conditions in the vicinity of the repository at the time scales of interest, and due to the constraints imposed by conservation of fluid mass, the advective component of flow will oppose and cancel the thermal-osmotic component. The overall conclusion is that coupled phenomena will only have a very minor impact on radionuclide transport in the Opalinus Clay, in terms of fluid and solute fluxes, at least under the conditions prevailing at times equal to or greater than the expected lifetime of the waste canisters (about 1000 years).

  4. Assessment of radionuclide vapor-phase transport in unsaturated tuff

    SciTech Connect

    Smith, D.M.; Updegraff, C.D.; Bonano, E.J.; Randall, J.D.

    1986-11-01

    This report describes bounding calculations performed to investigate the possibility of radionuclide migration in a vapor phase associated with the emplacement of high-level waste canister in unsaturated tuff formations. Two potential radionuclide transport mechanisms in the vapor phase were examined: aerosol migration and convection/diffusion of volatile species. The former may have significant impact on the release of radionuclides to the accessible environment as the concentration in the aerosols will be equal to that in the ground water. A conservative analysis of air diffusion in a stagnant liquid film indicated that for all expected repository conditions, aerosol formation is not possible. The migration of volatile species was examined both in the vicinity of a waste canister and outside the thermally disturbed zone. Two-dimensional (radial) and three-dimensional (radial-vertical) coupled heat transfer-gas flow-liquid flow simulations were performed using the TOUGH computer code. The gas flow rate relative to the liquid flow rate predicted from the simulations allowed calculations of mobility ratios due to convection which led to the conclusion that, except for the immediate region near the canister, transport in the liquid phase will be dominant for radionuclides heavier than radon. Near the waste canister, iodine transport may also be important in the vapor phase. Bounding calculations for vertical mobility ratios were carried out as a function of saturation. These calculations are conservative and agree well with the two-dimensional simulations. Based on this analysis, it is clear that vapor-phase transport will not be important for radionuclides such as cesium and heavier species. Vapor transport for iodine may play a role in the overall release scenario depending on the particular repository conditions.

  5. Assessment of hydrologic transport of radionuclides from the Rio Blanco underground nuclear test site, Colorado

    SciTech Connect

    Chapman, J.; Earman, S.; Andricevic, R.

    1996-10-01

    DOE is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations used for nuclear testing. Evaluation of radionuclide transport by groundwater is part of preliminary risk analysis. These evaluations allow prioritization of test areas in terms of risk, provide a basis for discussions with regulators and the public about future work, and provide a framework for assessing site characterization data needs. The Rio Blanco site in Colorado was the location of the simultaneous detonation of three 30-kiloton nuclear devices. The devices were located 1780, 1899, and 2039 below ground surface in the Fort Union and Mesaverde formations. Although all the bedrock formations at the site are thought to contain water, those below the Green River Formation (below 1000 in depth) are also gas-bearing, and have very low permeabilities. The transport scenario evaluated was the migration of radionuclides from the blast-created cavity through the Fort Union Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. This modeling was performed to investigate how the uncertainty in various physical parameters affect radionuclide transport at the site, and to serve as a starting point for discussion regarding further investigation; it was not intended to be a definitive simulation of migration pathways or radionuclide concentration values. Given the sparse data, the modeling results may differ significantly from reality. Confidence in transport predictions can be increased by obtaining more site data, including the amount of radionuclides which would have been available for transport (i.e., not trapped in melt glass or vented during gas flow testing), and the hydraulic properties of the formation. 38 refs., 6 figs., 1 tab.

  6. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks

    NASA Astrophysics Data System (ADS)

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-12-01

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.

  7. Radionuclide gas transport through nuclear explosion-generated fracture networks

    DOE PAGES

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; ...

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gasmore » breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.« less

  8. Radionuclide gas transport through nuclear explosion-generated fracture networks

    SciTech Connect

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.

  9. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks.

    PubMed

    Jordan, Amy B; Stauffer, Philip H; Knight, Earl E; Rougier, Esteban; Anderson, Dale N

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.

  10. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks

    PubMed Central

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-01-01

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable. PMID:26676058

  11. Quantitative Modeling of Cerenkov Light Production Efficiency from Medical Radionuclides

    PubMed Central

    Beattie, Bradley J.; Thorek, Daniel L. J.; Schmidtlein, Charles R.; Pentlow, Keith S.; Humm, John L.; Hielscher, Andreas H.

    2012-01-01

    There has been recent and growing interest in applying Cerenkov radiation (CR) for biological applications. Knowledge of the production efficiency and other characteristics of the CR produced by various radionuclides would help in accessing the feasibility of proposed applications and guide the choice of radionuclides. To generate this information we developed models of CR production efficiency based on the Frank-Tamm equation and models of CR distribution based on Monte-Carlo simulations of photon and β particle transport. All models were validated against direct measurements using multiple radionuclides and then applied to a number of radionuclides commonly used in biomedical applications. We show that two radionuclides, Ac-225 and In-111, which have been reported to produce CR in water, do not in fact produce CR directly. We also propose a simple means of using this information to calibrate high sensitivity luminescence imaging systems and show evidence suggesting that this calibration may be more accurate than methods in routine current use. PMID:22363636

  12. COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES THROUGH THE VADOSE ZONE

    SciTech Connect

    Flury, Markus

    2003-09-14

    close relations to the following EMSP projects: Project: 70126, Interfacial Soil Chemistry of Radionuclides in the Unsaturated Zone (PI: Jon Chorover) Project: 70070, Reactivity of Primary Soil Minerals and Secondary Precipitates (PI: Kathy Nagy) Cesium Transport in Hanford Sediments: Application of an Experimentally Based Cation Exchange Model (PI: Susan Carroll and Carl Steefel).

  13. Influence of the meteorological input on the atmospheric transport modelling with FLEXPART of radionuclides from the Fukushima Daiichi nuclear accident.

    PubMed

    Arnold, D; Maurer, C; Wotawa, G; Draxler, R; Saito, K; Seibert, P

    2015-01-01

    In the present paper the role of precipitation as FLEXPART model input is investigated for one possible release scenario of the Fukushima Daiichi accident. Precipitation data from the European Center for Medium-Range Weather Forecast (ECMWF), the NOAA's National Center for Environmental Prediction (NCEP), the Japan Meteorological Agency's (JMA) mesoscale analysis and a JMA radar-rain gauge precipitation analysis product were utilized. The accident of Fukushima in March 2011 and the following observations enable us to assess the impact of these precipitation products at least for this single case. As expected the differences in the statistical scores are visible but not large. Increasing the ECMWF resolution of all the fields from 0.5° to 0.2° rises the correlation from 0.71 to 0.80 and an overall rank from 3.38 to 3.44. Substituting ECMWF precipitation, while the rest of the variables remains unmodified, by the JMA mesoscale precipitation analysis and the JMA radar gauge precipitation data yield the best results on a regional scale, specially when a new and more robust wet deposition scheme is introduced. The best results are obtained with a combination of ECMWF 0.2° data with precipitation from JMA mesoscale analyses and the modified wet deposition with a correlation of 0.83 and an overall rank of 3.58. NCEP-based results with the same source term are generally poorer, giving correlations around 0.66, and comparatively large negative biases and an overall rank of 3.05 that worsens when regional precipitation data is introduced. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION

    SciTech Connect

    B.W. ARNOLD

    2004-10-27

    The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ.

  15. MAGNUM2D. Radionuclide Transport Porous Media

    SciTech Connect

    Langford, D.W.; Baca, R.G.

    1989-03-01

    MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculations assume local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.

  16. MAGNUM2D. Radionuclide Transport Porous Media

    SciTech Connect

    Langford, D.W.; Baca, R.G.

    1988-08-01

    MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculation assumes local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.

  17. Sediment and Radionuclide Transport in Rivers; Field Sampling Program, Cattaraugus and Buttermilk Creeks, New York

    SciTech Connect

    Onishi., Y.; Walters, W. H.; Ecker, R. M.

    1981-01-01

    This report describes FY-1979 analysis results on flow, sediment and radionuclide data collected in Cattaraugus, Buttermilk and Franks Creek, New York. The objective of the study is to investigate the radionuclide transport in these streams as a part of a continuing program to provide data required for application and verification of the Sediment and Radionuclide Transport Model (SERATRA). Radiological analyses were performed on sand, silt and clay size fractions of suspended and bed sediment, as well as for dissolved radionuclides. These include gamma-ray emitters plus {sup 90}Sr, {sup 238}Pu, {sup 239 - 240}Pu, {sup 241}Am, {sup 244}Cm and {sup 3}H. Among radionuclides analyzed to date, a principal radionuclide found in the study area is {sup 137}Cs. Distributions of {sup 137}Cs associated with suspended and bed sediments have sharp peaks at the mouth of the Franks Creek, revealing the contribution of {sup 137}Cs from the NFS site. Concentration of {sup 137}Cs associated with a clay size fraction of suspended and bed sediments at the mouth of Franks Creek were 32.5 {+-} 1.5 and 134.0 {+-} 0.90 pCi/g, respectively. Cesium-134 and cobalt-60 associated with the bed sediment also have higher peaks at the mouth of Franks Creek. However, dissolved and particulate concentrations of other radionuclides analyzed under this study were generally very low and there is no clear evidence to indicate that these radionculides detected in this study area originated from the Nuclear Fuel Service site.

  18. Simulating Effects of Non-Isothermal Flow on Reactive Transport of Radionuclides Originating from an Underground Nuclear Test

    SciTech Connect

    Carle, S F; Zavarin, M; Shumaker, D E; Tompson, A B; Maxwell, R M; Pawloski, G A

    2006-03-06

    Temperature can significantly affect radionuclide transport behavior. In simulation of radionuclide transport originating from an underground nuclear test, temperature effects from residual test heat include non-isothermal groundwater flow behavior (e.g. convection cells), increased dissolution rates of melt glass containing refractory radionuclides, changes in water chemistry, and, in turn, changes in radionuclide sorption behavior. The low-yield (0.75 kiloton) Cambric underground nuclear test situated in alluvium below the water table offers unique perspectives on radionuclide transport in groundwater. The Cambric test was followed by extensive post-test characterization of the radionuclide source term and a 16-year pumping-induced radionuclide migration experiment that captured more mobile radionuclides in groundwater. Discharge of pumped groundwater caused inadvertent recirculation of radionuclides through a 220-m thick vadose zone to the water table and below, including partial re-capture in the pumping well. Non-isothermal flow simulations indicate test-related heat persists at Cambric for about 10 years and induces limited thermal convection of groundwater. The test heat has relatively little impact on mobilizing radionuclides compared to subsequent pumping effects. However, our reactive transport models indicate test-related heat can raise melt glass dissolution rates up to 10{sup 4} faster than at ambient temperatures depending on pH and species activities. Non-isothermal flow simulations indicate that these elevated glass dissolution rates largely decrease within 1 year. Thermally-induced increases in fluid velocity may also significantly increase rates of melt glass dissolution by changing the fluid chemistry in contact with the dissolving glass.

  19. Apparatus for the measurement of radionuclide transport rates in rock cores

    SciTech Connect

    Weed, H.C.; Koszykowski, R.F.; Dibley, L.L.; Murray, I.

    1981-09-01

    An apparatus and procedure for the study of radionuclide transport in intact rock cores are presented in this report. This equipment more closely simulates natural conditions of radionuclide transport than do crushed rock columns. The apparatus and the procedure from rock core preparation through data analysis are described. The retardation factors measured are the ratio of the transport rate of a non-retarded radionuclide, such as /sup 3/H, to the transport rate of a retarded radionuclide. Sample results from a study of the transport of /sup 95m/Tc and /sup 85/Sr in brine through a sandstone core are included.

  20. Chapter II.C Transport of Radionuclides through Soil and Ground Water

    SciTech Connect

    Corey, J.C.

    1980-12-23

    The purpose of this report is to provide a clearer perspective of the impact of radionuclides in soil and groundwater, particularly for those not well-versed in soil science, hydrology, and geology. Through nuclear waste disposal or accidents, radionuclides come in contact with soil and groundwater. Man is exposed to radiation as a result of movement (or transport) of the radionuclides into his environment. Water is the principal carrier that induces transport, but chemical characteristics of soil inhibit the transport.

  1. Computer simulation of radionuclide transport through thermal convection of groundwater from borehole repositories

    SciTech Connect

    Malkovsky, V.I.; Pek, A.A.

    1993-09-01

    Results are presented of numerical modeling of radionuclide transport by thermal convection of groundwater from a single well repository of high level waste. Because the problem possesses cylindrical symmetry, the process is described by a system of 2-D transient equations for momentum, convective heat transfer and convective mass transfer (taking into account hydrodynamic dispersion and radionuclide decay). Results of computer simulations for a selected range of system parameters were generalized by approximating analytical relationship, which can be used for safety assessment of a radioactive waste repository. The problem of the reciprocal relationship between thermoconvective transport processes and well spacing in an underground repository with a regularly spaced set of the waste-loaded wells is examined using a two-well model as an example. In this case, the transport problem becomes three-dimensional. A solution to this problem was obtained using a special system of orthogonal coordinates, which simplifies the computational algorithm and enhances accuracy. It is shown that thermoconvective transport of radionuclides in the vicinity of each well can be considered to be independent at well separations of the order of 100 m when reasonable values of other repository parameters are assumed.

  2. Transport and distribution of artificial gamma-emitting radionuclides in the River Yenisei and its sediment.

    PubMed

    Semizhon, Tatiana; Röllin, Stefan; Spasova, Yana; Klemt, Eckehard

    2010-05-01

    Discharges from the Krasnoyarsk Mining and Chemical Industrial Complex (KMCIC) near Krasnoyarsk resulted in radioactive contamination of sediments of the River Yenisei. Between 1999 and 2006, 16 sediment cores were collected at different positions 15-1500 km downstream from the discharge point. The concentration of artificial gamma-emitting radionuclides ((137)Cs, (60)Co, (152)Eu, and (241)Am) was determined with the objective to analyze the migration processes leading to the transport of these radionuclides along the river and to their vertical distribution within the sediment. In cores taken in the vicinity of the reactors, the average activity concentration of (137)Cs, (152)Eu, and (60)Co was about 1000 Bq kg(-1), and the activity concentration of (241)Am was about 20 Bq kg(-1). Contamination levels of artificial radionuclides were decreasing with increasing distance downstream the KMCIC: The fastest decrease of average activity by a factor of 10 over a distance of 300 km was observed for (241)Am, whereas for (137)Cs this decrease occurred over a distance of 1100 km. Sequential extraction experiments revealed that in all depths and at all distances the studied radionuclides were tightly bound to the sediment. To investigate the mechanisms of transport of the (137)Cs and (60)Co contamination, mathematical models have been used to describe the contamination in the river water and within the sediments. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. Chancellor Water Colloids: Characterization and Radionuclide Associated Transport

    SciTech Connect

    Reimus, Paul William; Boukhalfa, Hakim

    2014-09-26

    Column transport experiments were conducted in which water from the Chancellor nuclear test cavity was transported through crushed volcanic tuff from Pahute Mesa. In one experiment, the cavity water was spiked with solute 137Cs, and in another it was spiked with 239/240Pu(IV) nanocolloids. A third column experiment was conducted with no radionuclide spike at all, although the 137Cs concentrations in the water were still high enough to quantify in the column effluent. The radionuclides strongly partitioned to natural colloids present in the water, which were characterized for size distribution, mass concentration, zeta potential/surface charge, critical coagulation concentration, and qualitative mineralogy. In the spiked water experiments, the unanalyzed portion of the high-concentration column effluent samples were combined and re-injected into the respective columns as a second pulse. This procedure was repeated again for a third injection. Measurable filtration of the colloids was observed after each initial injection of the Chancellor water into the columns, but the subsequent injections (spiked water experiments only) exhibited no apparent filtration, suggesting that the colloids that remained mobile after relatively short transport distances were more resistant to filtration than the initial population of colloids. It was also observed that while significant desorption of 137Cs from the colloids occurred after the first injection in both the spiked and unspiked waters, subsequent injections of the spiked water exhibited much less 137Cs desorption (much greater 137Cs colloid-associated transport). This result suggests that the 137Cs that remained associated with colloids during the first injection represented a fraction that was more strongly adsorbed to the mobile colloids than the initial 137Cs associated with the colloids. A greater amount of the 239/240

  4. Sediment and radionuclide transport in rivers. Phase 2. Field sampling program for Cattaraugus and Buttermilk Creeks, New York

    SciTech Connect

    Walters, W.H.; Ecker, R.M.; Onishi, Y.

    1982-04-01

    As part of a study on sediment and radionuclide transport in rivers, Pacific Northwest Laboratory (PNL) is investigating the effect of sediment on the transport of radionuclides in Cattaraugus and Buttermilk Creeks, New York. A source of radioactivity in these creeks is the Western New York Nuclear Service Center which consists of a low-level waste disposal site and a nuclear fuel reprocessing plant. Other sources of radioactivity include fallout from worldwide weapons testing and natural background radioactivity. The major objective of the PNL Field Sampling Program is to provide data on sediment and radionuclide characteristics in Cattaraugus and Buttermilk Creeks to verify the use of the Sediment and Radionuclide Transport model, SERATRA, for nontidal rivers. This report covers the results of field data collection conducted during September 1978. Radiological analysis of sand, silt, and clay size fractions of suspended and bed sediment, and water were performed. Results of these analyses indicate that the principal radionuclides occurring in these two water courses, with levels significantly higher than background levels, during the Phase 2 sampling program were Cesium-137 and Strontium-90. These radionuclides had significantly higher activity levels above background in the bed sediment, suspended sediment, and water samples. Other radionuclides that are possibly being released into the surface water environment by the Nuclear Fuel Services facilities are Plutonium-238, 239, and 240, Americium-241, Curium-244, and Tritium. More radionuclides were consistently found in the bed sediment as compared to suspended sediment. The fewest radionuclides were found in the water of Buttermilk and Cattaraugus Creeks. The higher levels were found in the bed sediments for the gamma-emitters and in the suspended sediment for the alpha and beta-emitters (not including Tritium).

  5. Integrated radionuclide release: tests and model development (integrated testing)

    SciTech Connect

    Viani, B

    1995-08-07

    The Department of Energy's Yucca Mountain Site Characterization Project (YMP) is evaluating a site at Yucca Mountain, Nevada as a potential repository for the disposal of high-level nuclear waste. Credible bounding estimates of the type, concentration, and nature of the radionuclides that might potentially escape the engineered barrier system/near field environment (EBS/NFE) (i.e., the source term) are necessary prerequisites to assessing the expected performance of a po- tential repository. Estimating the source term will require a combination of experimental and modeling tasks that are designed to assess the release of radionclides from the waste form and their transport through and interaction with the components of the EBS/NFE. The Integrated Radionuclidc Release: Tests and Model Development activity (Integrated Testing) at Lawrence Liver-more National Laboratory (LLNL) is an experimental and modeling activity that is specifically concerned with radionuclide transport through and interaction with the compo- nents of the EBS/NFE. As such, this activity is the link b!etween waste-form degradation activities and far-field transport activities. Performance analysis of the EBS/NFE subsystem is an important component of the total system performance analyses (TSPA) that will be used to evaluate reposi- tory performance.

  6. Transport mechanism for Pb-210, Cs-137 and Pu fallout radionuclides through fluvial-marine systems

    NASA Astrophysics Data System (ADS)

    Smith, J. N.; Ellis, K. M.

    1982-06-01

    Pb-210, Cs-137 and Pu-239,240 sediment-depth profiles in an anoxic, unbioturbated, estuarine depositional regime at the head of the Saguenay Fjord, Que. exhibit a seasonally-modulated component caused by pulsed inputs of silts and sands during high energy, spring river discharge events superimposed on an ambient depositional pattern of finer grained clays and organic matter. A precise sediment timestratigraphy has been determined by the inverse correlation of the Pb-210 activity with the rate of river discharge during the period, 1963-1976. The historical record of Cs-137 and Pu-239,240 sediment fluxes has been reconstructed through the normalization of fallout radionuclide activities to the excess Pb-210 activity profile. Radionuclide flux geochronologies have been interpreted on the basis of a fluvial-marine transport model which distinguishes between inputs due to direct adsorption of radionuclides onto particles in the water column and inputs resulting from the erosion of particle-associated radionuclides from the drainage basin. Rate constants corresponding to residence times of one year for Cs-137 and Pu-239,240 in the water column and 1500 years for each radionuclide in the drainage basin provide reasonable agreement between the model and experimental results, although there is some evidence for a slightly longer drainage basin residence time for plutonium. Both the threshold for the initial appearance of Pu-238, derived from the atmospheric burnup of a SNAP-9A satellite reactor in 1964, and the magnitude of its isotopic dilution by drainage basin inputs of Pu-239,240 are also in agreement with model predictions.

  7. Factors controlling radionuclide transport behavior in a generic geological radioactive waste repository

    NASA Astrophysics Data System (ADS)

    Bianchi, M.; Liu, H.; Birkholzer, J. T.

    2013-12-01

    One of the main challenges in designing a geological repository for high-level nuclear waste is the assessment of postclosure safety, which involves the long-term ability of the engineered system and the geological host formation to contain and delay the leakage of radionuclides toward the biosphere. A correct assessment requires detailed knowledge of the factors controlling radionuclide transport in the different components of the geological disposal system. For instance, molecular diffusion, which is considered the dominant transport mechanism in low-permeable geological formations, may be influenced by the heterogeneity of the diffusive parameters and by electrochemical processes. Likewise, the prevalence of advective transport in the near-field excavation damaged zone (EDZ) may be controlled by the hydrogeological conditions in the host formation, as well as by hydrogeological and geometrical properties. In this study, we performed two-dimensional numerical simulations of groundwater flow and radionuclide transport to study the influence of several factors on the prevailing transport mechanism (i.e., advection or molecular diffusion) in the different components of a geological nuclear waste repository system. Particular attention was given to the excavation damaged zone (EDZ) around the repository tunnels and access shaft, which was modeled as a single effective continuum as well as with the dual-porosity approach. We considered different hydrogeological and geometrical factors, including the ambient hydraulic gradient, the presence of groundwater pressure anomalies, and the thickness of the EDZ and its hydraulic properties. By comparing simulation results, we show that transport behavior and the role of the EDZ as a preferential flow path for radionuclide transport is most sensitive to the hydrogeological conditions in the host rock. When the hydraulic gradient in the host rock is reduced by a factor of 5 from the unit value, we observe a significant reduction

  8. Simple model for the reconstruction of radionuclide concentrations and radiation exposures along the Techa River

    NASA Technical Reports Server (NTRS)

    Vorobiova, M. I.; Degteva, M. O.; Neta, M. O. (Principal Investigator)

    1999-01-01

    The Techa River (Southern Urals, Russia) was contaminated in 1949-1956 by liquid radioactive wastes from the Mayak complex, the first Russian facility for the production of plutonium. The measurements of environmental contamination were started in 1951. A simple model describing radionuclide transport along the free-flowing river and the accumulation of radionuclides by bottom sediments is presented. This model successfully correlates the rates of radionuclide releases as reconstructed by the Mayak experts, hydrological data, and available environmental monitoring data for the early period of contamination (1949-1951). The model was developed to reconstruct doses for people who lived in the riverside communities during the period of the releases and who were chronically exposed to external and internal irradiation. The model fills the data gaps and permits reconstruction of external gamma-exposure rates in air on the river bank and radionuclide concentrations in river water used for drinking and other household needs in 1949-1951.

  9. Identification and characterization of potential discharge areas for radionuclide transport by groundwater from a nuclear waste repository in Sweden.

    PubMed

    Berglund, Sten; Bosson, Emma; Selroos, Jan-Olof; Sassner, Mona

    2013-05-01

    This paper describes solute transport modeling carried out as a part of an assessment of the long-term radiological safety of a planned deep rock repository for spent nuclear fuel in Forsmark, Sweden. Specifically, it presents transport modeling performed to locate and describe discharge areas for groundwater potentially carrying radionuclides from the repository to the surface where man and the environment could be affected by the contamination. The modeling results show that topography to large extent determines the discharge locations. Present and future lake and wetland objects are central for the radionuclide transport and dose calculations in the safety assessment. Results of detailed transport modeling focusing on the regolith and the upper part of the rock indicate that the identification of discharge areas and objects considered in the safety assessment is robust in the sense that it does not change when a more detailed model representation is used.

  10. Groundwater nanoparticles in the far-field at the Nevada Test Site: mechanism for radionuclide transport.

    PubMed

    Utsunomiya, Satoshi; Kersting, Annie B; Ewing, Rodney C

    2009-03-01

    Colloid-like nanoparticles in groundwater have been shown to facilitate migration of several radionuclides: (239,240)Pu, 137Cs, (152,154, 155)Eu, and 60Co. However, the exact type of nanoparticle and the speciation of the associated radionuclides has remained unknown. We have investigated nanoparticles sampled from the far-field at the Nevada Test Site, Nevada, utilizing advanced electron microscopytechniques, including high-angle annular dark-field scanning TEM (HAADF-STEM). Fissiogenic elements: Cs, rare earth elements (REE), activation elements: Co; and actinides: U and Th, were detected. Cesium is associated with U-forming cesium uranate with a Cs/U atomic ratio of approximately 0.12. Light REEs and Th are associated with phosphates, silicates, or apatite. Cobalt occurs as a metallic aggregate, associated with Cr, Fe, Ni, and +/-Mo. Uranyl minerals; Na-boltwoodite and oxide hydrates are also present as colloids. Because of these chemical associations with nanoscale particles, in the size range <100 nm, these particles may facilitate transport, and a variety of trace nanoscale phases may be responsible for the migration of fissiogenic and actinide elements in groundwater. To accurately model the transport of these contaminants, predictive transport models should include consideration of nanoparticle-facilitated transport.

  11. Radionuclides in fruit systems: model-model intercomparison study.

    PubMed

    Linkov, I; Carini, F; Collins, C; Eged, K; Mitchell, N G; Mourlon, C; Ould-Dada, Z; Robles, B; Sweeck, L; Venter, A

    2006-07-01

    Modeling is widely used to predict radionuclide distribution following accidental radionuclide releases. Modeling is crucial in emergency response planning and risk communication, and understanding model uncertainty is important not only in conducting analysis consistent with current regulatory guidance, but also in gaining stakeholder and decision-maker trust in the process and confidence in the results. However, while methods for dealing with parameter uncertainty are fairly well developed, an adequate representation of uncertainties associated with models remains rare. This paper addresses uncertainty about a model's structure (i.e., the relevance of simplifying assumptions and mathematical equations) that is seldom addressed in practical applications of environmental modeling. The use of several alternative models to derive a range of model outputs or risks is probably the only available technique to assess consistency in model prediction. Since each independent model requires significant resources for development and calibration, multiple models are not generally applied to the same problem. This study uses results from one such model intercomparison conducted by the Fruits Working Group, which was created under the International Atomic Energy Agency (IAEA) BIOMASS (BIOsphere Modelling and ASSessment) Program. Model-model intercomparisons presented in this study were conducted by the working group for two different scenarios (acute or continuous deposition), one radionuclide ((137)Cs), and three fruit-bearing crops (strawberries, apples, and blackcurrants). The differences between models were as great as five orders of magnitude for short-term predictions following acute radionuclide deposition. For long-term predictions and for the continuous deposition scenario, the differences between models were about two orders of magnitude. The difference between strawberry, apple, and blackcurrant contamination predicted by one model is far less than the difference in

  12. TERRA: a computer code for simulating the transport of environmentally released radionuclides through agriculture

    SciTech Connect

    Baes, C.F. III; Sharp, R.D.; Sjoreen, A.L.; Hermann, O.W.

    1984-11-01

    TERRA is a computer code which calculates concentrations of radionuclides and ingrowing daughters in surface and root-zone soil, produce and feed, beef, and milk from a given deposition rate at any location in the conterminous United States. The code is fully integrated with seven other computer codes which together comprise a Computerized Radiological Risk Investigation System, CRRIS. Output from either the long range (> 100 km) atmospheric dispersion code RETADD-II or the short range (<80 km) atmospheric dispersion code ANEMOS, in the form of radionuclide air concentrations and ground deposition rates by downwind location, serves as input to TERRA. User-defined deposition rates and air concentrations may also be provided as input to TERRA through use of the PRIMUS computer code. The environmental concentrations of radionuclides predicted by TERRA serve as input to the ANDROS computer code which calculates population and individual intakes, exposures, doses, and risks. TERRA incorporates models to calculate uptake from soil and atmospheric deposition on four groups of produce for human consumption and four groups of livestock feeds. During the environmental transport simulation, intermediate calculations of interception fraction for leafy vegetables, produce directly exposed to atmospherically depositing material, pasture, hay, and silage are made based on location-specific estimates of standing crop biomass. Pasture productivity is estimated by a model which considers the number and types of cattle and sheep, pasture area, and annual production of other forages (hay and silage) at a given location. Calculations are made of the fraction of grain imported from outside the assessment area. TERRA output includes the above calculations and estimated radionuclide concentrations in plant produce, milk, and a beef composite by location.

  13. Predictions of Long-Term Radionuclide Transport at Rainier Mesa, Nevada National Security Site

    NASA Astrophysics Data System (ADS)

    Reeves, D. M.; Parashar, R.; Pohlmann, K. F.; LaBolle, E. M.; Zhang, Y.; Russell, C. E.; Chapman, J. B.

    2011-12-01

    Rainier Mesa, a tuffaceous plateau on the Nevada National Security Site, has been the location of numerous subsurface nuclear tests conducted in a series of tunnel complexes located approximately 400 m below the top of the mesa and 400 m above the regional groundwater flow system. The tunnels were constructed near the middle of an 800 m Tertiary sequence of faulted, low-permeability welded and non-welded bedded, vitric, and zeolitized tuff units. Water levels from wells in the vicinity of both the N- and T-tunnel complexes indicate the presence of two saturated zones. The first saturated zone has an elevation of approximately 1800 m (300 mbgs) and is located 100 m above the T-tunnel complex. Water level measurements during well construction and borehole moisture profiles of matrix saturation suggest this upper zone of saturation extends downward through most of the Tertiary sequence, though data is not available for the lowest Tertiary units. The second saturated zone is located at an elevation of 1300 m (800 mbgs) within a thrust sheet of Paleozoic carbonates and may be hydraulically connected to the Death Valley regional flow system. This study evaluates the potential for downward radionuclide transport associated with six underground tests at the T-tunnel complex over a 1000 year period. A dual-permeability (DKM) model containing spatially discontinuous fault networks within low-permeability tuff units is utilized to simulate complex patterns of variably-saturated flow. A modified random walk particle tracking code for DKM velocity fields is then used to compute radionuclide breakthrough at the regional water table (second saturated zone). Results include calibration of a variably-saturated model to field observations including water discharge history at the tunnel portal, variably-saturated fault fields, water levels in perched intervals and differential saturations in the volcanics and carbonates; and predictions of radionuclide breakthrough at the regional

  14. Radionuclide release and transport from nuclear underground tests performed at Mururoa and Fangataufa--predictions under uncertainty.

    PubMed

    Pfingsten, W; Hadermann, J; Perrochet, P

    2001-02-01

    In the context of a study by the International Geomechanical Commission (IGC) and the International Atomic Energy Agency (IAEA) on the effects of nuclear tests at the atolls of Mururoa and Fangataufa, release to the biosphere is estimated for 35 radionuclides originating from 147 nuclear underground tests. Based on a qualitatively characterised hydrogeological situation of atolls and relatively scarce site-specific data, a model chain was developed to conservatively estimate the radionuclide fluxes via groundwater, from their sources, the explosion cavities, towards the biosphere, the ocean or lagoon. Finite element hydro-thermal modelling was used to describe water flow. Parameters were calibrated by a very few measured pre-test temperature profiles in bore holes. The impact of the tests on groundwater flow and mechanical impact on rock was considered. Estimates were made to quantify spatial extensions and temporal evolution of impact by using measurements on refilling rate of the cavities. Tests were categorised according to their specific yield and location although detailed data were missing. A base case parameter set was defined for the hydraulic conditions and for the initial radionuclide inventory of individual tests. Models were used to describe the concentration of radionuclides in the cavities as a function of time. Radionuclide transport from the cavities to the biosphere was represented by two different approaches: a double porosity model for the fractured volcanic rock and a single porosity model for the overlaying, highly porous carbonates. Results consist of conservative estimates on radionuclide release into the environment, or concentration in the lagoon or ocean water. Their sensitivity was investigated using different models and parameters. A few measured data (concentrations in a few cavities, in the deep carbonates and in the lagoons for selected radionuclides, such as 3H, 14C, 36Cl, 90Sr, 129I, 137Cs239 240Pu and 241Am) were available for a

  15. Subsurface Characterization To Support Evaluation Of Radionuclide Transport And Attenuation

    EPA Science Inventory

    Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attenuation) within the subsurface. In gene...

  16. Subsurface Characterization To Support Evaluation Of Radionuclide Transport And Attenuation

    EPA Science Inventory

    Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attenuation) within the subsurface. In gene...

  17. Transport of radionuclides in an unconfined chalk aquifer inferred from U-series disequilibria

    NASA Astrophysics Data System (ADS)

    Hubert, Amélie; Bourdon, Bernard; Pili, Eric; Meynadier, Laure

    2006-11-01

    U-series disequilibria measured in waters and rocks from a chalk aquifer in France have been used as an analog for long-term radionuclide migration. Drill core samples from a range of depths in the vadose zone and in the saturated zone, as well as groundwater samples were analyzed for 238U, 234U, 232Th and 230Th to determine transport mechanisms at the water/rock interface and to quantify parameters controlling the migration of radionuclides. Isotope measurements in rocks were done by TIMS, whereas ( 234U/ 238U) and ( 230Th/ 232Th) activity ratios in water samples were measured by multi-collector-ICP-MS. Both depletion and enrichment in 234U relative to 238U were observed in carbonate rock samples resulting from chemical weathering in the unsaturated zone and calcite precipitation in the zone of water-table oscillation, respectively. The correlation between ( 230Th/ 232Th) activity ratios and 87Sr/ 86Sr ratios found in the chalk samples indicates that thorium is mainly contained in a minor silicate phase whose abundance is variable in chalk samples. Water samples are all characterized by ( 234U/ 238U) > 1 resulting from α-recoil effect of 234Th. Groundwaters are characterized by a more radiogenic signature in 87Sr/ 86Sr than the rocks. Moreover, ( 230Th/ 232Th) activity ratios in the waters are lower than in the rocks, and increase with distance from the water divide, which suggests that Th transport is controlled by colloids formed during water infiltration in the soil. A 1-D transport model has been developed in order to constrain the U-series nuclide transport considering a transient behavior of radionuclides in the aquifer and a time-dependent composition for the solid phase. This model permits a prediction of the time scale of equilibration of the system, and an estimation of parameters such as weathering rate, distribution coefficients and α-recoil fractions. Retardation factors of 10-35 and from 1 × 10 4 to 2 × 10 5 were predicted for U and Th

  18. CAP88-PC Version 4, an updated radionuclide NESHAPS model.

    PubMed

    Wood, Raymond; Stuenkel, David; Rosnick, Reid

    2013-08-01

    The latest version of the CAP88-PC computer model, Version 4, has many changes and improvements from previous versions. The most significant of these changes from a user perspective are the incorporation of age-dependent radionuclide dose and risk factors for ingestion and inhalation, the increase in the number of included radionuclides, and a change in the file management system used by the program. Other changes less visible to the user include new code architecture, incorporation of numerical solvers for the calculation of radioactive decay chains, including the ingrowth of decay products during air transport and ground surface deposition, enhanced error messages, updated on-line help, and a utility for migrating Version 3 datasets, wind files, and population files to Version 4. The modifications have produced a significant improvement in speed and stability for Version 4 relative to Version 3 and eliminated the solution approximations used in Version 3. The U.S. Environmental Protection Agency has implemented an extensive testing and documentation program for CAP88-PC Version 4 to address user concerns with past versions, resulting in enhanced documentation supporting compatibility with user software quality assurance programs.

  19. Three-Dimensional Radionuclide Transport Through the Unsaturated Zone of the Yucca Mountain Site 3 Colloids

    SciTech Connect

    G. J. Moridis; Y. Seol

    2007-01-26

    The authors investigated colloid transport in the unsaturated fractured zone by means of three-dimensional site-scale numerical model under present-day climate infiltration, considering varying colloid diameters, kinetic declogging, and filtration. The radionuclide transport model was used to simulate continuous release of colloids into fractures throughout the proposed repository, in which any components of engineered barrier system such as waste package or drip shield were not considered. the results of the study indicate the importance of subsurface geology and site hydrology, i.e., the presence of faults (they dominate and control transport), fractures (the main migration pathways), and the relative distribution of zeolitic and vitric tuffs. The simulations indicate that (1) colloid transport is not significantly affected by varying the filtration parameters, (2) travel time to the water table decreases with the colloid size, (3) larger colloids show little retardation whereas very small ones are retarded significantly, and (4) fracture filtration can have an impact on transport. Because of uncertainties in the fundamentals of colloid transport and an extremely conservative approach (based on an improbably adverse worst-case scenario), caution should be exercised in the analysis and interpretation of the 3-D simulation results. The results discussed here should be viewed as an attempt to identify and evaluate the mechanisms, processes, and geological features that control colloidal transport.

  20. Modeling the Dispersal and Deposition of Radionuclides: Lessons from Chernobyl.

    ERIC Educational Resources Information Center

    ApSimon, H. M.; And Others

    1988-01-01

    Described are theoretical models that simulate the dispersion of radionuclides on local and global scales following the accident at the Chernobyl nuclear power plant. Discusses the application of these results to nuclear weapons fallout. (CW)

  1. Modeling the Dispersal and Deposition of Radionuclides: Lessons from Chernobyl.

    ERIC Educational Resources Information Center

    ApSimon, H. M.; And Others

    1988-01-01

    Described are theoretical models that simulate the dispersion of radionuclides on local and global scales following the accident at the Chernobyl nuclear power plant. Discusses the application of these results to nuclear weapons fallout. (CW)

  2. Emission, transport, deposition, and re-suspension of radionuclides from Fukushima Dai-ichi Nuclear Power Plant in the atmosphere - Overview of 2-year investigations in Japan

    NASA Astrophysics Data System (ADS)

    Kita, Kazuyuki; Igarashi, Yasuhiro; Yoshida, Naohiro; Nakajima, Teruyuki

    2013-04-01

    Following a huge earthquake and tsunami in Eastern Japan on 11 March, 2011, the accident in Fukushima Dai-ichi Nuclear Power Plant (FDNPP) occurred to emit a large amount of artificial radionuclides to the environment. Soon after the FDNPP accident, many Japanese researchers, as well as researchers in other countries, started monitoring radionuclides in various environmental fields and/or model calculations to understand extent and magnitude of radioactive pollution. In this presentation, we overview these activities for the atmospheric radionuclides in Japan as followings: 1. Investigations to evaluate radionuclide emissions by explosions at FNDPP in March 2011 and to estimate the respiration dose of the radiation at this stage. 2. Investigations to evaluate atmospheric transport and deposition processes of atmospheric radionuclide to determine the extent of radionuclide pollution. -- Based on results of the regular and urgent monitoring results, as well as the mapping of the distribution of radionuclide s accumulated by the deposition to the ground, restoration of their time-dependent emission rates has been tried, and processes determining atmospheric concentration and deposition to the ground have been investigated by using the model calculations. 3. Monitoring of the atmospheric concentrations of radionuclide after the initial, surge phase of FNDPP accident. 4. Investigations to evaluate re-suspension of radionuclide from the ground, including the soil and the vegetation. -- Intensive monitoring of the atmospheric concentrations and deposition amount of radionuclide after the initial, surge phase of the accident enable us to evaluate emission history from FNDPP, atmospheric transport and deposition processes, chemical and physical characteristics of atmospheric radionuclide especially of radio cesium, and re-suspension processes which has become dominant process to supply radio cesium to the atmosphere recently.

  3. Pacific bluefin tuna transport Fukushima-derived radionuclides from Japan to California

    PubMed Central

    Madigan, Daniel J.; Baumann, Zofia; Fisher, Nicholas S.

    2012-01-01

    The Fukushima Dai-ichi release of radionuclides into ocean waters caused significant local and global concern regarding the spread of radioactive material. We report unequivocal evidence that Pacific bluefin tuna, Thunnus orientalis, transported Fukushima-derived radionuclides across the entire North Pacific Ocean. We measured γ-emitting radionuclides in California-caught tunas and found 134Cs (4.0 ± 1.4 Bq kg−1) and elevated 137Cs (6.3 ± 1.5 Bq kg−1) in 15 Pacific bluefin tuna sampled in August 2011. We found no 134Cs and background concentrations (∼1 Bq kg−1) of 137Cs in pre-Fukushima bluefin and post-Fukushima yellowfin tunas, ruling out elevated radiocesium uptake before 2011 or in California waters post-Fukushima. These findings indicate that Pacific bluefin tuna can rapidly transport radionuclides from a point source in Japan to distant ecoregions and demonstrate the importance of migratory animals as transport vectors of radionuclides. Other large, highly migratory marine animals make extensive use of waters around Japan, and these animals may also be transport vectors of Fukushima-derived radionuclides to distant regions of the North and South Pacific Oceans. These results reveal tools to trace migration origin (using the presence of 134Cs) and potentially migration timing (using 134Cs:137Cs ratios) in highly migratory marine species in the Pacific Ocean. PMID:22645346

  4. Pacific bluefin tuna transport Fukushima-derived radionuclides from Japan to California.

    PubMed

    Madigan, Daniel J; Baumann, Zofia; Fisher, Nicholas S

    2012-06-12

    The Fukushima Dai-ichi release of radionuclides into ocean waters caused significant local and global concern regarding the spread of radioactive material. We report unequivocal evidence that Pacific bluefin tuna, Thunnus orientalis, transported Fukushima-derived radionuclides across the entire North Pacific Ocean. We measured γ-emitting radionuclides in California-caught tunas and found (134)Cs (4.0 ± 1.4 Bq kg(-1)) and elevated (137)Cs (6.3 ± 1.5 Bq kg(-1)) in 15 Pacific bluefin tuna sampled in August 2011. We found no (134)Cs and background concentrations (~1 Bq kg(-1)) of (137)Cs in pre-Fukushima bluefin and post-Fukushima yellowfin tunas, ruling out elevated radiocesium uptake before 2011 or in California waters post-Fukushima. These findings indicate that Pacific bluefin tuna can rapidly transport radionuclides from a point source in Japan to distant ecoregions and demonstrate the importance of migratory animals as transport vectors of radionuclides. Other large, highly migratory marine animals make extensive use of waters around Japan, and these animals may also be transport vectors of Fukushima-derived radionuclides to distant regions of the North and South Pacific Oceans. These results reveal tools to trace migration origin (using the presence of (134)Cs) and potentially migration timing (using (134)Cs:(137)Cs ratios) in highly migratory marine species in the Pacific Ocean.

  5. Modeling of Radionuclides from the Fukushima Dai-ichi Nuclear Accident to Korea

    NASA Astrophysics Data System (ADS)

    Lee, K.; Yun, J. Y.

    2016-12-01

    FLEXPART Lagrangian model and NCEP/GFS meteorological data were employed and transport of radionuclides from Fukushima Dai-ichi nuclear plant toward Korean Peninsula was simulated for three key artificial radionuclides (Cs-137, I-131, and Xe-133). By simulating horizontal distributions and tracking the trajectories of the radionuclides for the period of 10 March 2011 to 20 April 2011, the following three distinctive different arrival pathways were detected; 1) intercontinental scale - plume released since mid-March 2011 and transported to the North to arrive Korea on 23 March 2011, 2) global(hemispherical) scale - plume traveling over the whole northern hemisphere passing through the Pacific Ocean/Europe to reach the Korean Peninsula with relatively low concentrations in late March 2011 and, 3) regional scale - plume released on early April 2011 arrived at the Korean Peninsula via southwest sea of Japan influenced directly by veering mesoscale wind circulations. Our identification of these transport routes at three different scales of meteorological circulations suggests the feasibility of a multi-scale approach for more accurate prediction of radionuclide transport in the study area. In light of the fact that the observed arrival/duration time of peaks were explained well by the FLEXPART model coupled with NCEP/GFS input data, our approach can be used meaningfully as a decision support model for radiation emergency situations

  6. The use of a heterogeneity-based isotherm to interpret the transport of reactive radionuclides in volcanic tuff media

    SciTech Connect

    Polzer, W.L.; Fuentes, H.R.

    1987-12-31

    The sorption of cesium and strontium has been modeled with a heterogeneity-based isotherm equation for various tuff materials including those within a sequence of geologic stratigraphic units. The theory of the isotherm foresees the relative retardation and the chemical dispersion of the studied radionuclides during transport. The concepts of heterogeneity of sites and variability in the maximum number of sites available for sorption are incorporated into the model. 16 refs., 4 figs., 3 tabs.

  7. Numerical modeling of radionuclide migration through a borehole disposal site.

    PubMed

    Yeboah, Serwaa; Akiti, Thomas T; Fletcher, John J

    2014-01-01

    The migration of radionuclides from a borehole repository located about 20 km from the Akwapim fault line which lies in an area of high seismicity was analyzed for some selected radionuclides. In the event of a seismic activity, fractures and faults could be rejuvenated or initiated resulting in container failure leading to the release of radionuclides. A numerical model was solved using a two-dimensional finite element code (Comsol Multiphysics) by taking into account the effect of heterogeneities. Results showed that, the fractured medium created preferential pathways indicating that, fault zones generated potential paths for released radionuclides from a radioactive waste repository. The results obtained showed that variations in hydraulic conductivity as a result of the heterogeneity considered within the domain significantly affected the direction of flow.

  8. Transportation of radionuclides in urban environs: draft environmental assessment

    SciTech Connect

    Finley, N.C.; Aldrich, D.C.; Daniel, S.L.; Ericson, D.M.; Henning-Sachs, C.; Kaestner, P.C.; Ortiz, N.R.; Sheldon, D.D.; Taylor, J.M.

    1980-07-01

    This report assesses the environmental consequences of the transportation of radioactive materials in densely populated urban areas, including estimates of the radiological, nonradiological, and social impacts arising from this process. The chapters of the report and the appendices which follow detail the methodology and results for each of four causative event categories: incident free transport, vehicular accidents, human errors or deviations from accepted quality assurance practices, and sabotage or malevolent acts. The numerical results are expressed in terms of the expected radiological and economic impacts from each. Following these discussions, alternatives to the current transport practice are considered. Then, the detailed analysis is extended from a limited area of New York city to other urban areas. The appendices contain the data bases and specific models used to evaluate these impacts, as well as discussions of chemical toxicity and the social impacts of radioactive material transport in urban areas. The latter are evaluated for each causative event category in terms of psychological, sociological, political, legal, and organizational impacts. The report is followed by an extensive bibliography covering the many fields of study which were required in performing the analysis.

  9. Imaging, Mapping and Monitoring Environmental Radionuclide Transport Using Compton-Geometry Gamma Camera

    NASA Astrophysics Data System (ADS)

    Bridge, J. W.; Dormand, J.; Cooper, J.; Judson, D.; Boston, A. J.; Bankhead, M.; Onda, Y.

    2014-12-01

    The legacy to-date of the nuclear disaster at Fukushima Dai-ichi, Japan, has emphasised the fundamental importance of high quality radiation measurements in soils and plant systems. Current-generation radiometers based on coded-aperture collimation are limited in their ability to locate sources of radiation in three dimensions, and require a relatively long measurement time due to the poor efficiency of the collimation system. The quality of data they can provide to support biogeochemical process models in such systems is therefore often compromised. In this work we report proof-of-concept experiments demonstrating the potential of an alternative approach in the measurement of environmentally-important radionuclides (in particular 137Cs) in quartz sand and soils from the Fukushima exclusion zone. Compton-geometry imaging radiometers harness the scattering of incident radiation between two detectors to yield significant improvements in detection efficiency, energy resolution and spatial location of radioactive sources in a 180° field of view. To our knowledge we are reporting its first application to environmentally-relevant systems at low activity, dispersed sources, with significant background radiation and, crucially, movement over time. We are using a simple laboratory column setup to conduct one-dimensional transport experiments for 139Ce and 137Cs in quartz sand and in homogenized repacked Fukushima soils. Polypropylene columns 15 cm length with internal diameter 1.6 cm were filled with sand or soil and saturated slowly with tracer-free aqueous solutions. Radionuclides were introduced as 2mL pulses (step-up step-down) at the column inlet. Data were collected continuously throughout the transport experiment and then binned into sequential time intervals to resolve the total activity in the column and its progressive movement through the sand/soil. The objective of this proof-of-concept work is to establish detection limits, optimise image reconstruction

  10. Preferential Radionuclide Transport in a Tuff with Altered Zones: Micro-scale Mapping

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Liu, X.; Zuo, R.

    2009-12-01

    Understanding radionuclide transport in fractured rock is important for performance assessment of proposed radioactive waste disposal sites. We performed laboratory tests to study water imbibition and radionuclide transport into initially dry tuff by contacting one end of a sample with water containing a mixture of tracers (Re, 99Tc, Sr, Cs, 235U, 237Np, and 242Pu). The tuff sample, collected from Yucca Mountain, Nevada, is a cube 1-cm on each side and has a 1-mm thick altered gray zone embedded within the tuff matrix. Such gray zones are observed to be adjacent to lithophysae and fractures, are primarily quartz and tridymite, and have different hydraulic and chemical properties from the rock matrix. Capillary-driven imbibition transports tracer chemicals away from the imbibing face, causing separation of non-sorbing and sorbing tracers in tuff. Using a micro-scale profiling technique of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), we directly mapped the distribution of radionuclides along the altered zone (as well as transverse to the unaltered matrix). We found that the altered zone shows higher permeability, and less retardation of sorbing radionuclides, than the unaltered matrix, leading to preferential transport along the altered zone. Transverse profiling of the unaltered matrix indicated only limited penetration of strongly sorbing radionuclides, such as Pu.

  11. Coupling Seepage and Radionuclide Transport in and Around Emplacement Drifts at Yucca Mountain

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Spycher, N.; Sonnenthal, E.; Steefel, C.

    2007-12-01

    The proposed nuclear waste repository of the United States is located at Yucca Mountain, Nevada. Waste packages will be placed in deep (~350 m) underground drifts in volcanic tuff. Seepage may potentially occur at the repository drifts when the drifts get rewetted after a dryout period. The potential seepage water will be quickly evaporated or boiled to near dryness as long as it falls on the top of the hot waste package leading to formation of brine, precipitation of salts and volatilization of gases. These processes may potentially impact the long-term safety of waste packages in the drift. The objectives of this study are to: (1) develop a quantitative model of coupled thermal, hydrological, and chemical (THC) processes potentially leading to brine formation, salt precipitation and gas volatilization on top of waste packages and/or a drip shield and (2) dynamically integrate such a model into the larger-scale models of processes within and around waste emplacement drifts, as well as into the smaller-scale waste-package corrosion models. Process models were implemented into an existing reactive transport numerical simulator, TOUGHREACT, to allow modeling of (1) evaporative concentration to very high ionic strength (up to 40 molal), (2) boiling point elevation due to dissolved salts, (3) boiling/evaporation to dryness, and (4) salt deliquescence. An integrated near-field and in-drift THC simulation was run using a vertical 2-D grid extending from near the ground surface to the groundwater table, and covering a width equal to half the design drift spacing of 81 m. The integrated model was then used to simulate a discrete dripping event within the drift. The model considered the release of radionuclides into seepage water as this water contacts the waste package and flows through the invert. The precipitation of uranophane and Np-uranophane was also considered. These minerals form in the invert from the neutralization of mildly acidic seepage water by clay minerals

  12. Effect of transport-pathway simplifications on projected releases of radionuclides from a nuclear waste repository (Sweden)

    NASA Astrophysics Data System (ADS)

    Selroos, Jan-Olof; Painter, Scott L.

    2012-12-01

    The Swedish Nuclear Fuel and Waste Management Company has recently submitted an application for a license to construct a final repository for spent nuclear fuel, at approximately 500 m depth in crystalline bedrock. Migration pathways through the geosphere barrier are geometrically complex, with segments in fractured rock, deformation zones, backfilled tunnels, and near-surface soils. Several simplifications of these complex migration pathways were used in the assessments of repository performance that supported the license application. Specifically, in the geosphere transport calculations, radionuclide transport in soils and tunnels was neglected, and deformation zones were assumed to have transport characteristics of fractured rock. The effects of these simplifications on the projected performance of the geosphere barrier system are addressed. Geosphere performance is shown to be sensitive to how transport characteristics of deformation zones are conceptualized and incorporated into the model. Incorporation of advective groundwater travel time within backfilled tunnels reduces radiological dose from non-sorbing radionuclides such as I-129, while sorption in near-surface soils reduces radiological doses from sorbing radionuclides such as Ra-226. These results help quantify the degree to which geosphere performance was pessimistically assessed, and provide some guidance on how future studies to reduce uncertainty in geosphere performance may be focused.

  13. Natural analogue studies of the role of colloids, natural organics and microorganisms on radionuclide transport

    SciTech Connect

    McCarthy, J.F.

    1994-10-01

    Colloids may be important as a geochemical transport mechanism for radionuclides at geological repositories if they are (1) present in the groundwater, (2) stable with respect to both colloidal and chemical stabilities, (3) capable of adsorbing radionuclides, especially if the sorption is irreversible, and (4) mobile in the subsurface. The available evidence from natural analogue and other field studies relevant to these issues is reviewed, as is the potential role of mobile microorganisms ({open_quotes}biocolloids{close_quotes}) on radionuclide migration. Studies have demonstrated that colloids are ubiquitous in groundwater, although colloid concentrations in deep, geochemically stable systems may be too low to affect radionuclide transport. However, even low colloid populations cannot be dismissed as a potential concern because colloids appear to be stable, and many radionuclides that adsorb to colloids are not readily desorbed over long periods. Field studies offer somewhat equivocal evidence concerning colloid mobility and cannot prove or disprove the significance of colloid transport in the far-field environment. Additional research is needed at new sites to properly represent a repository far-field. Performance assessment would benefit from natural analogue studies to examine colloid behavior at sites encompassing a suite of probable groundwater chemistries and that mimic the types of formations selected for radioactive waste repositories.

  14. Final Technical Report: Viral Infection of Subsurface Microorganisms and Metal/Radionuclide Transport

    SciTech Connect

    Weber, Karrie A.; Bender, Kelly S.; Li, Yusong

    2013-09-28

    while yielding greater numbers of viruses capable of transporting contaminats. Additional studies will be necessary to further establish the potential relationship(s) between viruses, cells, carbon, and metals/radionuclides to provide sufficient scientific understanding to incorporate coupled physical, chemical, and biological processes into agent based and reactive transport models.

  15. Sorption-capacity limited retardation of radionuclides transport in water-saturated packing materials

    SciTech Connect

    Pescatore, C.; Sullivan, T.

    1984-01-01

    Radionuclides breakthrough times as calculated through constant retardation factors obtained in dilute solutions are non-conservative. The constant retardation approach regards the solid as having infinite sorption capacity throughout the solid. However, as the solid becomes locally saturated, such as in the proximity of the waste form-packing materials interface, it will exhibit no retardation properties, and transport will take place as if the radionuclides were locally non-reactive. The magnitude of the effect of finite sorption capacity of the packing materials on radionuclide transport is discussed with reference to high-level waste package performance. An example based on literature sorption data indicates that the breakthrough time may be overpredicted by orders of magnitude using a constant retardation factor as compared to using the entire sorption isotherm to obtain a concentration-dependent retardation factor. 8 references, 3 figures, 3 tables.

  16. Inverse modelling of radionuclide release rates using gamma dose rate observations

    NASA Astrophysics Data System (ADS)

    Hamburger, Thomas; Stohl, Andreas; von Haustein, Christoph; Thummerer, Severin; Wallner, Christian

    2014-05-01

    Severe accidents in nuclear power plants such as the historical accident in Chernobyl 1986 or the more recent disaster in the Fukushima Dai-ichi nuclear power plant in 2011 have drastic impacts on the population and environment. The hazardous consequences reach out on a national and continental scale. Environmental measurements and methods to model the transport and dispersion of the released radionuclides serve as a platform to assess the regional impact of nuclear accidents - both, for research purposes and, more important, to determine the immediate threat to the population. However, the assessments of the regional radionuclide activity concentrations and the individual exposure to radiation dose underlie several uncertainties. For example, the accurate model representation of wet and dry deposition. One of the most significant uncertainty, however, results from the estimation of the source term. That is, the time dependent quantification of the released spectrum of radionuclides during the course of the nuclear accident. The quantification of the source terms of severe nuclear accidents may either remain uncertain (e.g. Chernobyl, Devell et al., 1995) or rely on rather rough estimates of released key radionuclides given by the operators. Precise measurements are mostly missing due to practical limitations during the accident. Inverse modelling can be used to realise a feasible estimation of the source term (Davoine and Bocquet, 2007). Existing point measurements of radionuclide activity concentrations are therefore combined with atmospheric transport models. The release rates of radionuclides at the accident site are then obtained by improving the agreement between the modelled and observed concentrations (Stohl et al., 2012). The accuracy of the method and hence of the resulting source term depends amongst others on the availability, reliability and the resolution in time and space of the observations. Radionuclide activity concentrations are observed on a

  17. IN-SITU RADIONUCLIDE TRANSPORT NEAR THE NOPAL I URANIUM DEPOSIT AT PENA BLANCA, MEXICO: CONSTRAINTS FROM SHORT-LIVED DECAY-SERIES RADIONUCLIDES

    SciTech Connect

    S. Luo; T.L. Ku; V. Todd; M. Murrell; J. Alfredo Rodriguez Pineda; J. Dinsmoor; A. Mitchell

    2005-07-11

    For nuclear waste management, an important mechanism by which radioactive waste components are isolated from returning to the human environment, the biosphere, is by the geological barrier in which the effectiveness of the barrier is characterized by in-situ retardation factor, i.e., the transport rate of a radionuclide relative to that of groundwater. As part of natural analog studies of the Yucca Mountain Project of the U. S. Department of Energy, we propose such characterization by using naturally-occurring decay-series radioisotopes as an analog. We collected large-volume (>1000 liters) groundwater samples from three wells (PB, Pozos, and PB4, respectively) near the Nopal I Uranium Ore site at Pena Blanca, Mexico, by using an in-situ Mn-cartridge filtration technique for analysis of short-lived decay-series radionuclides. Results show that the activities of short-lived radioisotopes ({sup 228}Ra, {sup 224}Ra and {sup 223}Ra) and activity ratios of {sup 224}Ra/{sup 228}Ra and {sup 224}Ra/{sup 223}Ra are higher at PB and Pozos than at PB4. In contrast, the {sup 210}Po activity is much lower at PB and Pozos than at PB4. The high Ra activities and activities ratios at PB and Pozos are attributable to the high alpha-recoil input from the aquifer rocks, while the high {sup 210}Po activity at PB4 is due to the enhanced colloidal transport. Based on a uranium-series transport model, we estimate that the in-situ retardation factor of Ra is (0.43 {+-} 0.02) x 10{sup 3} at PB, (1.68 {+-} 0.08) x 10{sup 3} at Pozos, and (1.19 {+-} 0.08) x 10{sup 3} at PB4 and that the mean fracture width in the aquifer rocks is about 0.23 {micro}m at PB, 0.37 {micro}m at Posos, and 4.0 {micro}m at PB4, respectively. The large fracture width at PB4 as derived from the model provides an additional evidence to the inference from the Po measurements that particle-reactive radionuclides are transported mainly as colloidal forms through the large fractures in rocks. Our model also suggests that

  18. Radionuclide transport from yucca Mountain and Inter-basin Flow in Death Valley

    SciTech Connect

    Bredehoeft, J.; Fridrich, C.; King, C.HG.M.

    2007-07-01

    Hydrodynamics and the U.S. Geological survey conducted studies to evaluate far-field issues related to potential transport, by ground water, of radionuclide into Inyo County from Yucca Mountain, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Our oversight and completed Cooperative Agreement research, and a number of other investigators research indicate that there is groundwater flow between the alluvial and carbonate aquifers both at Yucca Mountain and in Inyo County. The specific purpose of our research was to acquire geological, subsurface geology, and hydrologic data to: 1. Establish the existence of inter-basin flow between the Amargosa Basin and Death Valley Basin, 2. Characterize groundwater flow paths in the LCA through Southern Funeral Mountain Range, and 3. Evaluate the hydraulic connection between the Yucca Mountain repository and the major springs in Death Valley through the LCA. 4. Evaluate the hydraulic connection between the Yucca Mountain repository and Franklin Lake Playa. The hydraulic characterization of the LCA is of critical interest to Inyo County and the U.S. Department of Energy because: 1. The upward gradient in the LCA at Yucca Mountain provides a natural barrier to radionuclide transport, 2. The LCA is a necessary habitat resource for the endangered Devil's Hole pup fish, and 3. The LCA is the primary water supply and source of water to the major springs in Death Valley National Park. This paper presents the results of our study program to evaluate if inter-basin flow exists between the Amargosa and Death Valley Basins through the LCA. The study presents the results of our structural geology analysis of the Southern Funeral Mountain range, geochemical source analysis of spring waters in the region, and a numerical groundwater model to simulate inter-basin flow in the Southern Funeral Mountain range. (authors)

  19. Status of ceramic waste form degradation and radionuclide release modeling.

    SciTech Connect

    Fanning, T. H.; Ebert, W. L.; Frank, S. M.; Hash, M. C.; Morris, E. E.; Morss, L. R.; O'Holleran, T. P.; Wigeland, R. A.

    2003-02-26

    As part of the spent fuel treatment program at Argonne National Laboratory (ANL), a ceramic waste form is being developed for disposition of the salt waste stream generated during the treatment process. Ceramic waste form (CWF) degradation and radionuclide release modeling is being carried out for the purpose of estimating the impact of the CWF on the performance of the proposed repository at Yucca Mountain. The CWF is composed of approximately 75 wt% salt-loaded sodalite encapsulated in 25 wt% glass binder. Most radionuclides are present as small inclusion phases in the glass. Since the release of radionuclides can only occur as the glass and sodalite phases dissolve, the dissolution rates of the glass and sodalite phases are modeled to provide an upper bound to radionuclide release rates from the CWF. Transition-state theory for the dissolution of aluminosilicate minerals provides a mechanistic basis for the CWF degradation model, while model parameters are obtained by experimental measurements. Performance assessment calculations are carried out using the engineered barrier system model from the Total System Performance Assessment--Viability Assessment (TSPA-VA) for the proposed repository at Yucca Mountain. The analysis presented herein suggests that the CWF will perform in the repository environment in a manner that is similar to other waste forms destined for the repository.

  20. Transport of fallout and reactor radionuclides in the drainage basin of the Hudson River estuary

    SciTech Connect

    Simpson, H.J.; Linsalata, P.; Olsen, C.R.

    1982-01-01

    The transport and fate of Strontium 90, Cesium 137 and Plutonium 239, 240 in the Hudson River Estuary is discussed. Rates of radionuclide deposition and accumulation over time and space are calculated for the Hudson River watershed, estuary, and continental shelf offshore. 37 references, 7 figures, 15 tables. (ACR)

  1. Scale-Dependent Fracture-Matrix Interactions And Their Impact on Radionuclide Transport - Final Report

    SciTech Connect

    Detwiler, Russell

    2014-06-30

    Matrix diffusion and adsorption within a rock matrix are widely regarded as important mechanisms for retarding the transport of radionuclides and other solutes in fractured rock (e.g., Neretnieks, 1980; Tang et al., 1981; Maloszewski and Zuber, 1985; Novakowski and Lapcevic, 1994; Jardine et al., 1999; Zhou and Xie, 2003; Reimus et al., 2003a,b). When remediation options are being evaluated for old sources of contamination, where a large fraction of contaminants reside within the rock matrix, slow diffusion out of the matrix greatly increases the difficulty and timeframe of remediation. Estimating the rates of solute exchange between fractures and the adjacent rock matrix is a critical factor in quantifying immobilization and/or remobilization of DOE-relevant contaminants within the subsurface. In principle, the most rigorous approach to modeling solute transport with fracture-matrix interaction would be based on local-scale coupled advection-diffusion/dispersion equations for the rock matrix and in discrete fractures that comprise the fracture network (Discrete Fracture Network and Matrix approach, hereinafter referred to as DFNM approach), fully resolving aperture variability in fractures and matrix property heterogeneity. However, such approaches are computationally demanding, and thus, many predictive models rely upon simplified models. These models typically idealize fracture rock masses as a single fracture or system of parallel fractures interacting with slabs of porous matrix or as a mobile-immobile or multi-rate mass transfer system. These idealizations provide tractable approaches for interpreting tracer tests and predicting contaminant mobility, but rely upon a fitted effective matrix diffusivity or mass-transfer coefficients. However, because these fitted parameters are based upon simplified conceptual models, their effectiveness at predicting long-term transport processes remains uncertain. Evidence of scale dependence of effective matrix diffusion

  2. Radionuclide transfer in marine coastal ecosystems, a modelling study using metabolic processes and site data.

    PubMed

    Konovalenko, L; Bradshaw, C; Kumblad, L; Kautsky, U

    2014-07-01

    This study implements new site-specific data and improved process-based transport model for 26 elements (Ac, Ag, Am, Ca, Cl, Cm, Cs, Ho, I, Nb, Ni, Np, Pa, Pb, Pd, Po, Pu, Ra, Se, Sm, Sn, Sr, Tc, Th, U, Zr), and validates model predictions with site measurements and literature data. The model was applied in the safety assessment of a planned nuclear waste repository in Forsmark, Öregrundsgrepen (Baltic Sea). Radionuclide transport models are central in radiological risk assessments to predict radionuclide concentrations in biota and doses to humans. Usually concentration ratios (CRs), the ratio of the measured radionuclide concentration in an organism to the concentration in water, drive such models. However, CRs vary with space and time and CR estimates for many organisms are lacking. In the model used in this study, radionuclides were assumed to follow the circulation of organic matter in the ecosystem and regulated by radionuclide-specific mechanisms and metabolic rates of the organisms. Most input parameters were represented by log-normally distributed probability density functions (PDFs) to account for parameter uncertainty. Generally, modelled CRs for grazers, benthos, zooplankton and fish for the 26 elements were in good agreement with site-specific measurements. The uncertainty was reduced when the model was parameterized with site data, and modelled CRs were most similar to measured values for particle reactive elements and for primary consumers. This study clearly demonstrated that it is necessary to validate models with more than just a few elements (e.g. Cs, Sr) in order to make them robust. The use of PDFs as input parameters, rather than averages or best estimates, enabled the estimation of the probable range of modelled CR values for the organism groups, an improvement over models that only estimate means. Using a mechanistic model that is constrained by ecological processes enables (i) the evaluation of the relative importance of food and water

  3. The role of organic complexants and microparticulates in the facilitated transport of radionuclides

    SciTech Connect

    Schilk, A.J.; Robertson, D.E.; Abel, K.H.; Thomas, C.W.

    1996-12-01

    This progress report describes the results of ongoing radiological and geochemical investigations of the mechanisms of radionuclide transport in groundwater at two low-level waste (LLW) disposal sites within the waste management area of the Chalk River Laboratories (CRL), Ontario, Canada. These sites, the Chemical Pit liquid disposal facility and the Waste Management Area C solid LLW disposal site, have provided valuable 30- to 40-year-old field locations for characterizing the migration of radionuclides and evaluating a number of recent site performance objectives for LLW disposal facilities. This information will aid the NRC and other federal, state, and local regulators, as well as LLW disposal site developers and waste generators, in maximizing the effectiveness of existing or projected LLW disposal facilities for isolating radionuclides from the general public and thereby improving the health and safety aspects of LLW disposal.

  4. Surface Complexation Modeling of Radionuclide Sorption in the Saturated Zone of Yucca Mountain Rocks

    NASA Astrophysics Data System (ADS)

    Ding, M.; Kelkar, S.; Fabryka-Martin, J. T.; Caporuscio, F. A.; Meijer, A.

    2008-12-01

    The U.S. DOE is preparing to submit a license application to the Nuclear Regulatory Commission (NRC) to create a geologic repository at the Yucca Mountain, Nevada, for the disposal of spent nuclear fuel and high- level radioactive waste. In the event of a radionuclide release, the ground water beneath the Yucca Mountain is the primary medium through which most radionuclides might move from the geologic repository to the accessible environment. Sorption of radionuclides onto rock surfaces is one of the important processes affecting the transport in the saturated zone of Yucca Mountain (SZ). For this reason, a considerable experimental effort has been devoted over the last two decades to the measurements of sorption distribution coefficients (Kd) for various radionuclides in rock samples from the vicinity of the repository site at the Yucca Mountain. Despite the quantity and quality of the data, they are strictly valid only under the experimental conditions at which they were measured, whereas the Kd distributions used as inputs in performance assessment calculations need to represent the range of geochemical conditions and rock types expected to occur along the transport pathways. Hence geochemical modeling was used to calculate and predict chemical speciation of elements of interest in solid and solution under a variety of different conditions. The computer code PHREEQC v2.3 and the thermodynamic database PHREEQCDATA025.DAT were used for this geochemical modeling. The modeling provides a basis for extrapolating the experimentally derived Kd's, and provides improved understanding of the underlying sorption mechanisms, thus justifying and defending the Kd's selected for further radionuclide transport modeling development. This presentation focuses on the elements Am, U, Np and Pu which sorb in the SZ primarily via surface complexation reactions. We discuss quantitatively the influence of groundwater compositions, rock surface area, binding constants, and

  5. Colloid-Facilitated Transport of Radionuclides Through the Vadose Zone

    SciTech Connect

    Flury, Markus; Lichtner, Peter C.; McCarthy, John F.

    2003-06-01

    We have completed the studies on reactions of minerals with caustic Hanford tank waste solutions. Systematic studies on the effects of different anions, cations, and the radionuclide Cs-137 were completed and technical manuscripts on these experiments were submitted for publication. The concentration of NaOH and the type of anion played the dominant roles in determining minerals formed. Increasing NaOH concentration and temperature enhanced the formation of feldspathoids; when NaOH concentration was high (e.g.,16 M), stable cancrinite and sodalite formed rapidly. Cancrinite formed in the presence of nitrate or sulfate; sodalite formed in the presence of chloride, carbonate or without added anions. Low concentration of Cs (< 100 mM) did not affect the formation of lepispheric cancrinite and sodalite, whereas only highly crystalline cancrinite formed when Cs concentration was >250mM. The presence of K did not alter but slowed down the formation of cancrinite and sodalite. The presence of divalent cations led to the formation of intermediate or stable silicates, aluminates, hydroxides or even aluminosilicates. We investigated the incorporation of Cs and the stability of the incorporated Cs in feldspathoids, zeolites, and allophane that may form in the sediments under conditions mimicking Hanford tank leaks. The incorporated Cs was quantified by atomic absorption spectroscopy after digestion in 1 M HCl. Cancrinite, sodalite, LTA zeolite, the 3-D cross-shaped zeolite, and allophane were capable to preferentially incorporate Cs when they form in the alkaline simulants.

  6. Fate and transport of radionuclides in soil-water environment. Review.

    NASA Astrophysics Data System (ADS)

    Konoplev, Aleksei

    2017-04-01

    is up to one order of magnitude higher than in Chernobyl. Long-term dynamics of radionuclide concentrations in rivers is approached from the standpoint of basic mechanisms of radionuclide sorption-desorption, fixation, vertical migration in catchment soils. Corresponding semi-empirical models are presented and discussed. For the Chernobyl case, radiostrontium (r-Sr) was shown to be more mobile and moving faster in dissolved state with surface runoff and river water in comparison with r-Cs. Similar pattern was observed for Mayak area in South Ural (Russia), where r-Sr was traced up to 1500 km away from the release point migrating through Techa-Iset'-Tobol-Irtysh-Ob' river system. On the other hand, r-Cs bound to clay particles settles down in Techa river reservoirs and is transported with river water only insignificantly. For the first 3 years after the accident vertical migration of r-Cs in soils of Fukushima catchments was found to be faster than in Chernobyl due to higher air temperature, higher precipitation and higher biological activity in top soil. However, with time this process slows down because of higher r-Cs retardation in Fukushima soils. In Fukushima case, extreme floods during typhoons lead to substantial reduction in dose rate on floodplain areas due to sedimentation of relatively clean material and burial of contaminated top soil layer. In general, due to higher precipitation, higher temperatures and higher biological activities in soils, self-purification of the environment and natural attenuation in Fukushima is essentially faster than in Chernobyl area.

  7. Colloid-Facilitated Transport of Radionuclides through the Vadose Zone

    SciTech Connect

    Flury, Markus; Harsh, James B.; Zachara, John M.; McCarthy, John F.; Lichtner, Peter C.

    2006-05-31

    This project seeks to improve the basic understanding of the role of colloids in facilitating the transport of contaminants in the vadose zone. We focus on three major thrusts: (1) thermodynamic stability and mobility of colloids formed by reactions of sediments with highly alkaline tank waste solutions, (2) colloid-contaminant interactions, and (3) in-situ colloid mobilization and colloid facilitated contaminant transport occurring in both contaminated and uncontaminated Hanford sediments.

  8. Sediment and radionuclide transport in rivers. Phase 3. Field sampling program for Cattaraugus and Buttermilk Creeks, New York

    SciTech Connect

    Ecker, R.M.; Walters, W.H.; Onishi, Y.

    1982-08-01

    A field sampling program was conducted on Cattaraugus and Buttermilk Creeks, New York during April 1979 to investigate the transport of radionuclides in surface waters as part of a continuing program to provide data for application and verification of Pacific Northwest Laboratory's (PNL) sediment and radionuclide transport model, SERATRA. Bed sediment, suspended sediment and water samples were collected during unsteady flow conditions over a 45 mile reach of stream channel. Radiological analysis of these samples included gamma ray spectrometry analysis, and radiochemical separation and analysis of Sr-90, Pu-238, Pu-239, 240, Am-241 and Cm-244. Tritium analysis was also performed on water samples. Based on the evaluation of radionuclide levels in Cattaraugus and Buttermilk Creeks, the Nuclear Fuel Services facility at West Valley, New York, may be the source of Cs-137, Sr-90, Cs-134, Co-60, Pu-238, Pu-239, 240, Am-241, Cm-244 and tritium found in the bed sediment, suspended sediment and water of Buttermilk and Cattaraugus Creeks. This field sampling effort was the last of a three phase program to collect hydrologic and radiologic data at different flow conditions.

  9. Transport and accumulation of radionuclides and stable elements in a Missouri River Reservoir

    USGS Publications Warehouse

    Callendar, Edward; Robbins, John A.

    1993-01-01

    Several long sediment cores from the Cheyenne River Embayment of Lake Oahe, a 250-km-long Missouri River reservoir in South Dakota, have been analyzed for radionuclides and stable elements. The combination of fine-scale sampling and rapid sedimentation produces radionuclide distributions that can be used to estimate the detailed chronology of particle transport processes in the Oahe reservoir system. A self-consistent and quantitative treatment of the 137Cs data suggests processes to which characteristic times may be associated. Times that characterize system-wide processes include (1) an integration time of several years reflecting retention of the sediment-bound tracer in regions within or external to the reservoir, (2) a relaxation time of approximately 15 years reflecting a decreasing rate of sediment accumulation ascribed to shoreline stabilization, (3) a time of a few months characterizing the breadth of riverine signatures in cores due to integration effects in the Cheyenne River system and deltaic deposits, and (4) times of a few years associated with propagation of riverine load signatures along the embayment. The distribution of total sedimentary arsenic confirms the validity of the variable sedimentation model. In 1977, a tailings retention facility was built at the Homestake Mine site, and the unrestricted input of As ceased. As a result of this remedial action, the concentration of sedimentary As decreased dramatically. In the upper section of the core, above the depth represented by the year 1976, the concentration of As decreases tenfold. In this same core the distribution of lithologically discriminating chemical elements, calcium and vanadium, relate to major flow events in the Cheyenne River basin. Because there is minimal diagenesis of chemical constituents in these rapidly accumulating sediments, stable element signatures, in addition to radiotracers, may be used to reconstruct hydrologic events in drainage basins that contribute sediment to

  10. Structure and function of subsurface microbial communities affecting radionuclide transport and bioimmobilization

    SciTech Connect

    Kostka, Joel E.; Prakash, Om; Green, Stefan J.; Akob, Denise; Jasrotia, Puja; Kerkhof, Lee; Chin, Kuk-Jeong; Sheth, Mili; Keller, Martin; Venkateswaran, Amudhan; Elkins, James G.; Stucki, Joseph W.

    2012-05-01

    Our objectives were to: 1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), 2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and 3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations. Field sampling was conducted at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee. The ORFRC subsurface is exposed to mixed contamination predominated by uranium and nitrate. In short, we effectively addressed all 3 stated objectives of the project. In particular, we isolated and characterized a large number of novel anaerobes with a high bioremediation potential that can be used as model organisms, and we are now able to quantify the function of subsurface sedimentary microbial communities in situ using state-of-the-art gene expression methods (molecular proxies).

  11. Transport of Gas Phase Radionuclides in a Fractured, Low-Permeability Reservoir

    NASA Astrophysics Data System (ADS)

    Cooper, C. A.; Chapman, J.

    2001-12-01

    The U.S. Atomic Energy Commission (predecessor to the Department of Energy, DOE) oversaw a joint program between industry and government in the 1960s and 1970s to develop technology to enhance production from low-permeability gas reservoirs using nuclear stimulation rather than conventional means (e.g., hydraulic and/or acid fracturing). Project Rio Blanco, located in the Piceance Basin, Colorado, was the third experiment under the program. Three 30-kiloton nuclear explosives were placed in a 2134 m deep well at 1780, 1899, and 2039 m below the land surface and detonated in May 1973. Although the reservoir was extensively fractured, complications such as radionuclide contamination of the gas prevented production and subsequent development of the technology. Two-dimensional numerical simulations were conducted to identify the main transport processes that have occurred and are currently occurring in relation to the detonations, and to estimate the extent of contamination in the reservoir. Minor modifications were made to TOUGH2, the multiphase, multicomponent reservoir simulator developed at Lawrence Berkeley National Laboratories. The simulator allows the explicit incorporation of fractures, as well as heat transport, phase change, and first order radionuclide decay. For a fractured two-phase (liquid and gas) reservoir, the largest velocities are of gases through the fractures. In the gas phase, tritium and one isotope of krypton are the principle radionuclides of concern. However, in addition to existing as a fast pathway, fractures also permit matrix diffusion as a retardation mechanism. Another retardation mechanism is radionuclide decay. Simulations show that incorporation of fractures can significantly alter transport rates, and that radionuclides in the gas phase can preferentially migrate upward due to the downward gravity drainage of liquid water in the pores. This project was funded by the National Nuclear Security Administration, Nevada Operations Office

  12. Transport of gas-phase radionuclides in a fractured, low-permeability reservoir

    SciTech Connect

    Clay Cooper; Jenny Chapman

    2001-12-01

    The U.S. Atomic Energy Commission (predecessor to the U.S. Department of Energy, DOE) oversaw a joint program between industry and government in the 1960s and 1970s to develop technology to enhance production from low-permeability gas reservoirs using nuclear stimulation rather than conventional means (e.g., hydraulic and/or acid fracturing). Project Rio Blanco, located in the Piceance Basin, Colorado, was the third experiment under the program. Three 30-kiloton nuclear explosives were placed in a 2,134-m-deep well at 1,780, 1,899, and 2,039 m below the land surface and detonated in May 1973. Although the reservoir was extensively fractured, complications such as radionuclide contamination of the gas prevented production and subsequent development of the technology. Two-dimensional numerical simulations were conducted to identify the main transport processes that have occurred and are currently occurring in relation to the detonations, and to estimate the extent of contamination in the reservoir. Minor modifications were made to TOUGH2, the multiphase, multicomponent reservoir simulator developed at Lawrence Berkeley National Laboratories. The simulator allows the explicit incorporation of fractures, as well as heat transport, phase change, and first-order radionuclide decay. For a fractured, two-phase (liquid and gas) reservoir, the largest velocities are of gases through the fractures. In the gas phase, tritium and one isotope of krypton are the principal radionuclides of concern. However, in addition to existing as a fast pathway, fractures also permit matrix diffusion as a retardation mechanism. Another retardation mechanism is radionuclide decay. Simulations show that incorporation of fractures can significantly alter transport rates, and that radionuclides in the gas phase can preferentially migrate upward due to the downward gravity drainage of liquid water in the pores.

  13. Surface Complexation Modeling of Radionuclide Sorption in the Saturated Zone of Yucca Mountain Rocks

    NASA Astrophysics Data System (ADS)

    Ding, M.; Kelkar, S.; Fabryka-Martin, J.; Caporuscio, F.; Meijer, A.

    2007-12-01

    The U.S. DOE is preparing to submit a license application to the Nuclear Regulatory Commission (NRC) to create a geologic repository at the Yucca Mountain, Nevada, for the disposal of spent nuclear fuel and high-level radioactive waste. In the event of a radionuclide release, the ground water beneath the Yucca Mountain is the primary medium through which most radionuclides might move from the geologic repository to the accessible environment. Sorption of radionuclides onto rock surfaces in the saturated zone of Yucca Mountain (SZ) is one of the most important processes retarding their release to the accessible environment. For this reason, a considerable experimental effort has been devoted over the last two decades to the measurements of sorption distribution coefficients (Kd) for various radionuclides in rock samples from the vicinity of the repository site at the Yucca Mountain. Despite the quantity and quality of the data, they are strictly valid only under the experimental conditions at which they were measured, whereas the Kd distributions used as inputs in performance assessment calculations need to represent the range of geochemical conditions and rock types expected to occur along the transport pathways. Hence geochemical modeling was used to calculate and predict chemical speciation of elements of interest in solid and solution under a variety of different conditions. The computer code PHREEQC v2.3 and the thermodynamic database PHREEQCDATA025.DAT were used for this geochemical modeling. The modeling provides a basis for extrapolating the experimentally derived Kd's, and provides improved understanding of the underlying sorption mechanisms, thus justifying and defending the Kd's selected for further radionuclide transport modeling development. This presentation focuses on the elements Am, U, Np and Pu which sorb in the SZ primarily via surface complexation reactions. We discuss quantitatively the influence of groundwater compositions, rock surface area

  14. Toward a Mechanistic Source Term in Advanced Reactors: Characterization of Radionuclide Transport and Retention in a Sodium Cooled Fast Reactor

    SciTech Connect

    Brunett, Acacia J.; Bucknor, Matthew; Grabaskas, David

    2016-04-17

    A vital component of the U.S. reactor licensing process is an integrated safety analysis in which a source term representing the release of radionuclides during normal operation and accident sequences is analyzed. Historically, source term analyses have utilized bounding, deterministic assumptions regarding radionuclide release. However, advancements in technical capabilities and the knowledge state have enabled the development of more realistic and best-estimate retention and release models such that a mechanistic source term assessment can be expected to be a required component of future licensing of advanced reactors. Recently, as part of a Regulatory Technology Development Plan effort for sodium cooled fast reactors (SFRs), Argonne National Laboratory has investigated the current state of knowledge of potential source terms in an SFR via an extensive review of previous domestic experiments, accidents, and operation. As part of this work, the significant sources and transport processes of radionuclides in an SFR have been identified and characterized. This effort examines all stages of release and source term evolution, beginning with release from the fuel pin and ending with retention in containment. Radionuclide sources considered in this effort include releases originating both in-vessel (e.g. in-core fuel, primary sodium, cover gas cleanup system, etc.) and ex-vessel (e.g. spent fuel storage, handling, and movement). Releases resulting from a primary sodium fire are also considered as a potential source. For each release group, dominant transport phenomena are identified and qualitatively discussed. The key product of this effort was the development of concise, inclusive diagrams that illustrate the release and retention mechanisms at a high level, where unique schematics have been developed for in-vessel, ex-vessel and sodium fire releases. This review effort has also found that despite the substantial range of phenomena affecting radionuclide release, the

  15. TYBO/BENHAM: Model Analysis of Groundwater Flow and Radionuclide Migration from Underground Nuclear Tests in Southwestern Pahute Mesa, Nevada

    SciTech Connect

    Andrew Wolfsberg; Lee Glascoe; Guoping Lu; Alyssa Olson; Peter Lichtner; Maureen McGraw; Terry Cherry; Guy Roemer

    2002-09-01

    Recent field studies have led to the discovery of trace quantities of plutonium originating from the BENHAM underground nuclear test in two groundwater observation wells on Pahute Mesa at the Nevada Test Site. These observation wells are located 1.3 km from the BENHAM underground nuclear test and approximately 300 m from the TYBO underground nuclear test. In addition to plutonium, several other conservative (e.g. tritium) and reactive (e.g. cesium) radionuclides were found in both observation wells. The highest radionuclide concentrations were found in a well sampling a welded tuff aquifer more than 500m above the BENHAM emplacement depth. These measurements have prompted additional investigations to ascertain the mechanisms, processes, and conditions affecting subsurface radionuclide transport in Pahute Mesa groundwater. This report describes an integrated modeling approach used to simulate groundwater flow, radionuclide source release, and radionuclide transport near the BENHAM and TYBO underground nuclear tests on Pahute Mesa. The components of the model include a flow model at a scale large enough to encompass many wells for calibration, a source-term model capable of predicting radionuclide releases to aquifers following complex processes associated with nonisothermal flow and glass dissolution, and site-scale transport models that consider migration of solutes and colloids in fractured volcanic rock. Although multiple modeling components contribute to the methodology presented in this report, they are coupled and yield results consistent with laboratory and field observations. Additionally, sensitivity analyses are conducted to provide insight into the relative importance of uncertainty ranges in the transport parameters.

  16. Materials to be used for radionuclide transport experiments (milestones SPL3A1M4)

    SciTech Connect

    Viani, B., LLNL

    1998-02-01

    Experiments to determine the effect of canister corrosion products on the transport of radionuclides will be undertaken using the FE(III) oxides goethite and hematite as proxies for the expected corrosion envelope that will form as a result of alteration of the corrosion allowance overpack prior to the breaching of the waste container. Samples of ESF invert concrete that have been crushed, or left intact but fractured, and that have been subjected to hydrothermal alteration will be used to determine the effect of cementitious materials on transport of radionuclides. A mixture of CaCO{sub 3}, Si0{sub 2}, and aggregate will be used as a proxy for completely carbonated concrete.

  17. Atmospheric transport of radionuclides emitted due to wildfires near the Chernobyl Nuclear Power Plant in 2015

    NASA Astrophysics Data System (ADS)

    Evangeliou, Nikolaos; Zibtsev, Sergey; Myroniuk, Viktor; Zhurba, Marina; Hamburger, Thomas; Stohl, Andreas; Balkanski, Yves; Paugam, Ronan; Mousseau, Timothy A.; Møller, Anders P.; Kireev, Sergey I.

    2016-04-01

    In 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) have caused concerns about the secondary radioactive contamination that might have spread over Europe. The total active burned area was estimated to be about 15,000 hectares, of which 9000 hectares burned in April and 6000 hectares in August. The present paper aims to assess, for the first time, the transport and impact of these fires over Europe. For this reason, direct observations of the prevailing deposition levels of 137Cs and 90Sr, 238Pu, 239Pu, 240Pu and 241Am in the CEZ were processed together with burned area estimates. Based on literature reports, we made the conservative assumption that 20% of the deposited labile radionuclides 137Cs and 90Sr, and 10% of the more refractory 238Pu, 239Pu, 240Pu and 241Am, were resuspended by the fires. We estimate that about 10.9 TBq of 137Cs, 1.5 TBq of 90Sr, 7.8 GBq of 238Pu, 6.3 GBq of 239Pu, 9.4 GBq of 240Pu and 29.7 GBq of 241Am were released from both fire events. These releases could be classified as of "Level 3" on the relative INES (International Nuclear Events Scale) scale, which corresponds to a serious incident, in which non-lethal deterministic effects are expected from radiation. To simulate the dispersion of the resuspended radionuclides in the atmosphere and their deposition onto the terrestrial environment, we used a Lagrangian dispersion model. Spring fires redistributed radionuclides over the northern and eastern parts of Europe, while the summer fires also affected Central and Southern Europe. The more labile elements escaped more easily from the CEZ and then reached and deposited in areas far from the source, whereas the larger refractory particles were removed more efficiently from the atmosphere and thus did mainly affect the CEZ and its vicinity. For the spring 2015 fires, we estimate that about 80% of 137Cs and 90Sr and about 69% of 238Pu, 239Pu, 240Pu and 241Am were deposited over areas outside the CEZ. 93% of the labile and 97% of

  18. Geochemical factors affecting radionuclide transport through near and far fields at a Low-Level Waste Disposal Site

    SciTech Connect

    Kaplan, D.I.; Seme, R.J.; Piepkho, M.G.

    1995-03-01

    The concentration of low-level waste (LLW) contaminants in groundwater is determined by the amount of contaminant present in the solid waste, rate of release from the waste and surrounding barriers, and a number of geochemical processes including adsorption, desorption, diffusion, precipitation, and dissolution. To accurately predict radionuclide transport through the subsurface, it is essential that the important geochemical processes affecting radionuclide transport be identified and, perhaps more importantly, accurately quantified and described in a mathematically defensible manner.

  19. The role of siderophores in the transport of radionuclides

    SciTech Connect

    Hersman, L.E.; Palmer, P.D.; Hobart, D.E.

    1993-12-31

    Iron exists in aerobic soil and water environments most commonly as insoluble Fe(III). Siderophores are powerful, microbially produced chelating agents that are used to mobilize the insoluble Fe(III) cation. Over 80 siderophores have been isolated and characterized, with some reportedly having iron-binding constants as high as 10{sup 52}. Fe(III) and Pu(IV) are similar in their charge/ionic radius ratio (4.6 and 4.2, respectively); therefore, Pu(IV) may serve as analog to Fe(III). It is possible that some radioactive wastes could be chelated by naturally occurring siderophores, thereby altering the transport rates of those elements through the subsurface environment. This investigation was initiated to investigate that possibility. The binding of {sup 239}(IV) by four chelating agents is reported in this paper: a siderophore isolated and purified from a Pseudomonas sp.; desferal, a ferrioxamine siderophore commonly used for deferration therapy; EDTA, ethylenediaminetetraacetic acid; and, citrate, trisodium salt.

  20. The effect of stagnant water zones on retarding radionuclide stransport in fractured rocks: An extension to the Channel Network Model

    NASA Astrophysics Data System (ADS)

    Shahkarami, Pirouz; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2016-09-01

    An essential task of performance assessment of radioactive waste repositories is to predict radionuclide release into the environment. For such a quantitative assessment, the Channel Network Model and the corresponding computer program, CHAN3D, have been used to simulate radionuclide transport in crystalline bedrocks. Recent studies suggest, however, that the model may tend to underestimate the rock retarding capability, because it ignores the presence of stagnant water zones, STWZs, situated in the fracture plane. Once considered, the STWZ can provide additional surface area over which radionuclides diffuse into the rock matrix and thereby contribute to their retardation. The main objective of this paper is to extend the Channel Network Model and its computer implementation to account for diffusion into STWZs and their adjacent rock matrices. In the first part of the paper, the overall impact of STWZs in retarding radionuclide transport is investigated through a deterministic calculation of far-field releases at Forsmark, Sweden. Over the time-scale of the repository safety assessments, radionuclide breakthrough curves are calculated for increasing STWZ width. It is shown that the presence of STWZs enhances the retardation of most long-lived radionuclides except for 36Cl and 129I. The rest of the paper is devoted to the probabilistic calculation of radionuclide transport in fractured rocks. The model that is developed for transport through a single channel is embedded into the Channel Network Model and new computer codes are provided for the CHAN3D. The program is used to (I) simulate the tracer test experiment performed at Äspö HRL, STT-1 and (II) investigate the short- and long-term effect of diffusion into STWZs. The required data for the model are obtained from detailed hydraulic tests in boreholes intersecting the rock mass where the tracer tests were made. The simulation results fairly well predict the release of the sorbing tracer 137Cs. It is found that

  1. LONG-TERM COLLOID MOBILIZATION AND COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES IN A SEMI-ARID VADOSE ZONE

    SciTech Connect

    Markus Flury; James B. Harsh; Fred Zhang; Glendon W. Gee; Earl D. Mattson; Peter C. L

    2012-08-01

    The main purpose of this project was to improve the fundamental mechanistic understanding and quantification of long-term colloid mobilization and colloid-facilitated transport of radionuclides in the vadose zone, with special emphasis on the semi-arid Hanford site. While we focused some of the experiments on hydrogeological and geochemical conditions of the Hanford site, many of our results apply to colloid and colloid-facilitated transport in general. Specific objectives were (1) to determine the mechanisms of colloid mobilization and colloid-facilitated radionuclide transport in undisturbed Hanford sediments under unsaturated flow, (2) to quantify in situ colloid mobilization and colloid-facilitated radionuclidetransport from Hanford sediments under field conditions, and (3) to develop a field-scale conceptual and numerical model for colloid mobilization and transport at the Hanford vadose zone, and use that model to predict long-term colloid and colloid- facilitated radionuclide transport. To achieve these goals and objectives, we have used a combination of experimental, theoretical, and numerical methods at different spatial scales, ranging from microscopic investigationsof single particle attachment and detachment to larger-scale field experiments using outdoor lysimeters at the Hanford site. Microscopic and single particle investigations provided fundamental insight into mechanisms of colloid interactions with the air-water interface. We could show that a moving air water interface (such as a moving water front during infiltration and drainage) is very effective in removing and mobilizing particles from a stationary surface. We further demonstrated that it is particularly the advancing air-water interface which is mainly responsible for colloid mobilization. Forces acting on the colloids calculated from theory corroborated our experimental results, and confirm that the detachment forces (surface tension forces) during the advancing air-water interface

  2. Respiratory tract clearance model for dosimetry and bioassay of inhaled radionuclides

    SciTech Connect

    Bailey, M.R.; Birchall, A. ); Cuddihy, R.G. ); James, A.C. ); Roy, M. . Inst. de Protection et de Surete Nucleaire)

    1990-07-01

    The ICRP Task Group on Respiratory Tract Models is developing a model to describe the retention and clearance of deposited radionuclides for dose-intake calculations and interpretation of bioassay data. Clearance from each region is treated as competition between mechanical transport, which moves particles to the gastro-intestinal tract and lymph nodes, and the translocation of material to blood. It is assumed that mechanical transport rates are the same for all materials, and that rates of translocation to blood are the same in all regions. Time-dependent clearance is represented by combinations of compartments. Representative values of parameters to describe mechanical transport from the human respiratory tract have been estimated, and guidance is given on the determination of translocation rates. It is emphasized that the current version of the model described here is still provisional. 30 refs.

  3. Continuous transport of Pacific-derived anthropogenic radionuclides towards the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Pittauer, Daniela; Tims, Stephen G.; Froehlich, Michaela B.; Fifield, L. Keith; Wallner, Anton; McNeil, Steven D.; Fischer, Helmut W.

    2017-03-01

    Unusually high concentrations of americium and plutonium have been observed in a sediment core collected from the eastern Lombok Basin between Sumba and Sumbawa Islands in the Indonesian Archipelago. Gamma spectrometry and accelerator mass spectrometry data together with radiometric dating of the core provide a high-resolution record of ongoing deposition of anthropogenic radionuclides. A plutonium signature characteristic of the Pacific Proving Grounds (PPG) dominates in the first two decades after the start of the high yield atmospheric tests in 1950’s. Approximately 40-70% of plutonium at this site in the post 1970 period originates from the PPG. This sediment record of transuranic isotopes deposition over the last 55 years provides evidence for the continuous long-distance transport of particle-reactive radionuclides from the Pacific Ocean towards the Indian Ocean.

  4. Fukushima Daiichi–Derived Radionuclides in the Ocean: Transport, Fate, and Impacts

    NASA Astrophysics Data System (ADS)

    Buesseler, Ken; Dai, Minhan; Aoyama, Michio; Benitez-Nelson, Claudia; Charmasson, Sabine; Higley, Kathryn; Maderich, Vladimir; Masqué, Pere; Morris, Paul J.; Oughton, Deborah; Smith, John N.

    2017-01-01

    The events that followed the Tohoku earthquake and tsunami on March 11, 2011, included the loss of power and overheating at the Fukushima Daiichi nuclear power plants, which led to extensive releases of radioactive gases, volatiles, and liquids, particularly to the coastal ocean. The fate of these radionuclides depends in large part on their oceanic geochemistry, physical processes, and biological uptake. Whereas radioactivity on land can be resampled and its distribution mapped, releases to the marine environment are harder to characterize owing to variability in ocean currents and the general challenges of sampling at sea. Five years later, it is appropriate to review what happened in terms of the sources, transport, and fate of these radionuclides in the ocean. In addition to the oceanic behavior of these contaminants, this review considers the potential health effects and societal impacts.

  5. Fukushima Daiichi-Derived Radionuclides in the Ocean: Transport, Fate, and Impacts.

    PubMed

    Buesseler, Ken; Dai, Minhan; Aoyama, Michio; Benitez-Nelson, Claudia; Charmasson, Sabine; Higley, Kathryn; Maderich, Vladimir; Masqué, Pere; Morris, Paul J; Oughton, Deborah; Smith, John N

    2017-01-03

    The events that followed the Tohoku earthquake and tsunami on March 11, 2011, included the loss of power and overheating at the Fukushima Daiichi nuclear power plants, which led to extensive releases of radioactive gases, volatiles, and liquids, particularly to the coastal ocean. The fate of these radionuclides depends in large part on their oceanic geochemistry, physical processes, and biological uptake. Whereas radioactivity on land can be resampled and its distribution mapped, releases to the marine environment are harder to characterize owing to variability in ocean currents and the general challenges of sampling at sea. Five years later, it is appropriate to review what happened in terms of the sources, transport, and fate of these radionuclides in the ocean. In addition to the oceanic behavior of these contaminants, this review considers the potential health effects and societal impacts.

  6. Effect of Hanford Tank Waste Leachate on Radionuclide Transport Through Unsaturated Sediment

    NASA Astrophysics Data System (ADS)

    Rod, K. A.; Serne, J. R.; Um, W.

    2006-12-01

    A series of unsaturated column experiments were conducted to investigate the effect of leaking tank waste on radionuclide transport through sediment from the Hanford site in Washington, USA. Previous studies have shown that the caustic tank leachate solution with high ionic strength (I=2-8 M NaNO3) and high pH (~14) conditions dissolves primary minerals (quartz and clays) and forms secondary precipitates on mineral surfaces. The secondary precipitates include zeolite, cancrinite and sodalite. The dissolution followed by precipitation reaction would alter the sediment pore structure as well as the soil surface properties. Both physical and chemical changes of the sediment were found to have an impact on the flow and mobility of radionuclide in unsaturated columns at varying degrees of saturation.

  7. Continuous transport of Pacific-derived anthropogenic radionuclides towards the Indian Ocean

    PubMed Central

    Pittauer, Daniela; Tims, Stephen G.; Froehlich, Michaela B.; Fifield, L. Keith; Wallner, Anton; McNeil, Steven D.; Fischer, Helmut W.

    2017-01-01

    Unusually high concentrations of americium and plutonium have been observed in a sediment core collected from the eastern Lombok Basin between Sumba and Sumbawa Islands in the Indonesian Archipelago. Gamma spectrometry and accelerator mass spectrometry data together with radiometric dating of the core provide a high-resolution record of ongoing deposition of anthropogenic radionuclides. A plutonium signature characteristic of the Pacific Proving Grounds (PPG) dominates in the first two decades after the start of the high yield atmospheric tests in 1950’s. Approximately 40–70% of plutonium at this site in the post 1970 period originates from the PPG. This sediment record of transuranic isotopes deposition over the last 55 years provides evidence for the continuous long-distance transport of particle-reactive radionuclides from the Pacific Ocean towards the Indian Ocean. PMID:28304374

  8. Continuous transport of Pacific-derived anthropogenic radionuclides towards the Indian Ocean.

    PubMed

    Pittauer, Daniela; Tims, Stephen G; Froehlich, Michaela B; Fifield, L Keith; Wallner, Anton; McNeil, Steven D; Fischer, Helmut W

    2017-03-17

    Unusually high concentrations of americium and plutonium have been observed in a sediment core collected from the eastern Lombok Basin between Sumba and Sumbawa Islands in the Indonesian Archipelago. Gamma spectrometry and accelerator mass spectrometry data together with radiometric dating of the core provide a high-resolution record of ongoing deposition of anthropogenic radionuclides. A plutonium signature characteristic of the Pacific Proving Grounds (PPG) dominates in the first two decades after the start of the high yield atmospheric tests in 1950's. Approximately 40-70% of plutonium at this site in the post 1970 period originates from the PPG. This sediment record of transuranic isotopes deposition over the last 55 years provides evidence for the continuous long-distance transport of particle-reactive radionuclides from the Pacific Ocean towards the Indian Ocean.

  9. Summary of Radionuclide Reactive Transport Experiments in Fractured Tuff and Carbonate Rocks from Yucca Flat, Nevada Test Site

    SciTech Connect

    Zavarin, M; Roberts, S; Reimus, P; Johnson, M

    2006-10-11

    In the Yucca Flat basin of the Nevada Test Site (NTS), 747 shaft and tunnel nuclear detonations were conducted primarily within the tuff confining unit (TCU) or the overlying alluvium. The TCU in the Yucca Flat basin is hypothesized to inhibit radionuclide migration to the highly transmissive and regionally extensive lower carbonate aquifer (LCA) due to its wide-spread aerial extent, low permeability, and chemical reactivity. However, fast transport pathways through the TCU by way of fractures may provide a migration path for radionuclides to the LCA. Radionuclide transport in both TCU and the LCA fractures is likely to determine the location of the contaminant boundary for the Yucca Flat/Climax Mine Corrective Action Unit (CAU). Radionuclide transport through the TCU may involve both matrix and fracture flow. However, radionuclide migration over significant distances is likely to be dominated by fracture transport. Transport through the LCA will almost certainly be dominated by fracture flow, as the LCA has a very dense, low porosity matrix with very low permeability. Because of the complex nature of reactive transport in fractures, a stepwise approach to identifying mechanisms controlling radionuclide transport was used. The simplest LLNL experiments included radionuclide transport through synthetic parallel-plate fractured tuff and carbonate cores. These simplified fracture transport experiments isolated matrix diffusion and sorption effects from all other fracture transport processes (fracture lining mineral sorption, heterogeneous flow, etc.). Additional fracture transport complexity was added by performing induced fractured LCA flowthrough experiments (effect of aperture heterogeneity) or iron oxide coated parallel plate TCU flowthrough experiments (effect of fracture lining minerals). Finally naturally fractured tuff and carbonate cores were examined at LLNL and LANL. All tuff and carbonate core used in the experiments was obtained from the USGS Core Library

  10. A numerical solution for a model of the one-dimensional radionuclide migration in soil

    SciTech Connect

    Trasanidis, S.X.; Seftelis, I.B.; Tsagas, N.F.

    1996-10-01

    A numerical simulation of the radionuclide transport behaviour through the soil is presented. This simulation is derived by embodying, in its main structure, the boundary conditions that should be fulfilled by the radionuclide concentration differential equation. Based on the results received by applying the above numerical method, estimations of the radionuclide concentration at a soil point, of known depth, time period and initial surface concentration, can be obtained. An application example shows the variation of the radionuclide concentration refer to different time periods and soil depths. The results are compared to actual measured data and found to be satisfactory.

  11. Methods for Calculating a Simplified Hydrologic Source Term for Frenchman Flat Sensitivity Studies of Radionuclide Transport Away from Underground Nuclear Tests

    SciTech Connect

    Tompson, A; Zavarin, M; Bruton, C J; Pawloski, G A

    2004-01-06

    The purpose of this report is to provide an approach for the development of a simplified unclassified hydrologic source term (HST) for the ten underground nuclear tests conducted in the Frenchman Flat Corrective Action Unit (CAU) at the Nevada Test Site (NTS). It is being prepared in an analytic form for incorporation into a GOLDSIM (Golder Associates, 2000) model of radionuclide release and migration in the Frenchman Flat CAU. This model will be used to explore, in an approximate and probabilistic fashion, sensitivities of the 1,000-year radionuclide contaminant boundary (FFACO, 1996; 2000) to hydrologic and other related parameters. The total inventory (or quantity) of radionuclides associated with each individual test, regardless of its form and distribution, is referred to as the radiologic source term (RST) of that test. The subsequent release of these radionuclides over time into groundwater is referred to as the hydrologic source term (HST) of that test (Tompson, et al., 2002). The basic elements of the simplified hydrologic source term model include: (1) Estimation of the volumes of geologic material physically affected by the tests. (2) Identification, quantification, and distribution of the radionuclides of importance. (3) Development of simplified release and retardation models for these radionuclides in groundwater. The simplifications used in the current HST model are based upon more fundamental analyses that are too complicated for use in a GOLDSIM sensitivity study. These analyses are based upon complex, three-dimensional flow and reactive transport simulations summarized in the original CAMBRIC hydrologic source term model (Tompson et al., 1999), unclassified improvements of this model discussed in Pawloski et al. (2000), as well as more recent studies that are part of an ongoing model of the HST at the CHESHIRE test in Pahute Mesa (Pawloski et al., 2001).

  12. An investigation into the upward transport of uranium-series radionuclides in soils and uptake by plants.

    PubMed

    Pérez-Sánchez, D; Thorne, M C

    2014-09-01

    The upward migration of radionuclides in the (238)U decay series in soils and their uptake by plants is of interest in various contexts, including the geological disposal of radioactive waste and the remediation of former sites of uranium mining and milling. In order to investigate the likely patterns of behaviour of (238)U-series radionuclides being transported upward through the soil column, a detailed soil-plant model originally developed for studying the behaviour of (79)Se in soil-plant systems has been adapted to make it applicable to the (238)U series. By undertaking a reference case simulation and a series of sensitivity studies, it has been found that a wide variety of behaviour can be exhibited by radionuclides in the (238)U decay chain in soils, even when the source term is limited to being a constant flux of either (238)U or (226)Ra. Hydrological conditions are a primary factor, both in respect of the overall advective flow deeper in the soil, which controls the rate of upward migration, and in the influence of seasonally changing flow directions closer to the soil surface, which can result in the accumulation of radionuclides at specific depths irrespective of changes in sorption between the oxic and anoxic regions of the soil. However, such changes in sorption can also be significant in controlling the degree of accumulation that occurs. This importance of seasonally varying factors in controlling radionuclide transport in soils even in very long-term simulations is a strong argument against the use of annually averaged parameters in long-term assessment models. With a water table that was simulated to fluctuate seasonally from a substantial depth in soil to the surface soil layer, the timing of such variations in relation to the period of plant growth was found to have a major impact on the degree of uptake of radionuclides by plant roots. In long-term safety assessment studies it has sometimes been the practice to model the transport of (226)Ra in

  13. Wind Transport of Radionuclide- Bearing Dust, Peña Blanca, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Velarde, R.; Goodell, P. C.; Gill, T. E.; Arimoto, R.

    2007-05-01

    This investigation evaluates radionuclide fractionation during wind erosion of high-grade uranium ore storage piles at Peña Blanca (50km north of Chihuahua City), Chihuahua, Mexico. The aridity of the local environment promotes dust resuspension by high winds. Although active operations ceased in 1983, the Peña Blanca mining district is one of Mexico`s most important uranium ore reserves. The study site contains piles of high grade ore, left loose on the surface, and separated by the specific deposits from which they were derived (Margaritas, Nopal I, and Puerto I). Similar locations do not exist in the United States, since uranium mining sites in the USA have been reclaimed. The Peña Blanca site serves as an analog for the Yucca Mountain project. Dust deposition is collected at Peña Blanca with BSNE sediment catchers (Fryrear, 1986) and marble dust traps (Reheis, 1999). These devices capture windblown sediment; subsequently, the sample data will help quantify potentially radioactive short term field sediment loss from the repository surface and determine sediment flux. Aerosols and surface materials will be analyzed and radioactivity levels established utilizing techniques such as gamma spectroscopy. As a result, we will be able to estimate how much radionuclide contaminated dust is being transported or attached geochemically to fine grain soils or minerals (e.g., clays or iron oxides). The high-grade uranium-bearing material is at secular equilibrium, thus the entire decay series is present. Of resulting interest is not only the aeolian transport of uranium, but also of the other daughter products. These studies will improve our understanding of geochemical cycling of radionuclides with respect to sources, transport, and deposition. The results may also have important implications for the geosciences and homeland security, and potential applications to public health. Funding for this project is provided in part via a NSF grant to Arimoto.

  14. Untangling radionuclide gas transport in fractured rock by decomposing barometric pressure signals

    NASA Astrophysics Data System (ADS)

    Harp, D. R.; Stauffer, P. H.; Spence, R. A.; Anderson, D. N.

    2016-12-01

    Fractures allow barometric pressure variations to reach much deeper into the subsurface and can result in 105 times more transport than due to diffusion alone. Therefore, barometric pressure variations are often one of the main drivers of gas transport in fractured rock, a process that is referred to as barometric pumping. Barometric pressure signals are influenced by latitude, weather, elevation, lunar phase, time of year, and contain daily and fraction of a day periods. As a result, transport due to barometric pumping can be difficult to characterize. However, our results indicate that it is often a subset of the pressure frequencies that lead to the vast majority of transport while the majority of frequencies result in minor or even insignificant transport. Identifying the dominant pressure frequencies for transport allow us to more simply and effectively characterize the potential for gas transport to the surface at different locations. We will present barometric pressure decomposition analyses on transport and discuss the implications for radionuclide gas monitoring from underground explosions.

  15. Scale-Dependent Fracture-Matrix Interactions and Their Impact on Radionuclide Transport: Development of efficient particle-tracking methods

    SciTech Connect

    Rajaram, Harihar; Brutz, Michael; Klein, Dylan R; Mallikamas, Wasin

    2014-09-18

    Matrix Diffusion and Adsorption within a rock matrix are important mechanisms for retarding transport of radionuclides in fractured rock. Due to computational limitations and difficulties in characterizing complex subsurface systems, diffusive exchange between a fracture network and surrounding rock matrix is often modeled using simplified conceptual representations. There is significant uncertainty in “effective” parameters used in these models, such as the “effective matrix diffusivity”. Often, these parameters are estimated by fitting sparse breakthrough data, and estimated values fall outside meaningful ranges, because simplified interpretive models do not consider complex three-dimensional flow. There is limited understanding of the relationship between the effective parameters and rock mass characteristics including network structure and matrix properties. There is also evidence for an apparent scale-dependence in “effective matrix diffusion” coefficients. These observations raise questions on whether fracture-matrix interaction parameters estimated from small-scale tracer tests can be used for predicting radionuclide fate and transport at the scale of DOE field sites. High-resolution three-dimensional Discrete-Fracture-Network-Matrix (DFNM) models based on well-defined local scale transport equations can help to address some of these questions. Due to tremendous advances in computational technology over the last 10 years, DFNM modeling in relatively large domains is now feasible. The overarching objective of our research is to use DFNM modeling to improve fundamental understanding of how effective parameters in conceptual models are related to fracture network structure and matrix properties. An advanced three-dimensional DFNM model is being developed, which combines upscaled particle-tracking algorithms for fracture-matrix interaction and a parallel fracture-network flow simulator. The particle-tracking algorithms allow complexity in flow fields

  16. Inverse modelling of radionuclide release rates using gamma dose rate observations

    NASA Astrophysics Data System (ADS)

    Hamburger, Thomas; Evangeliou, Nikolaos; Stohl, Andreas; von Haustein, Christoph; Thummerer, Severin; Wallner, Christian

    2015-04-01

    Severe accidents in nuclear power plants such as the historical accident in Chernobyl 1986 or the more recent disaster in the Fukushima Dai-ichi nuclear power plant in 2011 have drastic impacts on the population and environment. Observations and dispersion modelling of the released radionuclides help to assess the regional impact of such nuclear accidents. Modelling the increase of regional radionuclide activity concentrations, which results from nuclear accidents, underlies a multiplicity of uncertainties. One of the most significant uncertainties is the estimation of the source term. That is, the time dependent quantification of the released spectrum of radionuclides during the course of the nuclear accident. The quantification of the source term may either remain uncertain (e.g. Chernobyl, Devell et al., 1995) or rely on estimates given by the operators of the nuclear power plant. Precise measurements are mostly missing due to practical limitations during the accident. The release rates of radionuclides at the accident site can be estimated using inverse modelling (Davoine and Bocquet, 2007). The accuracy of the method depends amongst others on the availability, reliability and the resolution in time and space of the used observations. Radionuclide activity concentrations are observed on a relatively sparse grid and the temporal resolution of available data may be low within the order of hours or a day. Gamma dose rates, on the other hand, are observed routinely on a much denser grid and higher temporal resolution and provide therefore a wider basis for inverse modelling (Saunier et al., 2013). We present a new inversion approach, which combines an atmospheric dispersion model and observations of radionuclide activity concentrations and gamma dose rates to obtain the source term of radionuclides. We use the Lagrangian particle dispersion model FLEXPART (Stohl et al., 1998; Stohl et al., 2005) to model the atmospheric transport of the released radionuclides. The

  17. Unclassified Source Term and Radionuclide Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada, Revision 0

    SciTech Connect

    McCord, John

    2004-08-01

    This report documents the evaluation of the information and data available on the unclassified source term and radionuclide contamination for Central and Western Pahute Mesa: Corrective Action Units (CAUs) 101 and 102.

  18. Reliability of Current Biokinetic and Dosimetric Models for Radionuclides: A Pilot Study

    SciTech Connect

    Leggett, Richard Wayne; Eckerman, Keith F; Meck, Robert A.

    2008-10-01

    This report describes the results of a pilot study of the reliability of the biokinetic and dosimetric models currently used by the U.S. Nuclear Regulatory Commission (NRC) as predictors of dose per unit internal or external exposure to radionuclides. The study examines the feasibility of critically evaluating the accuracy of these models for a comprehensive set of radionuclides of concern to the NRC. Each critical evaluation would include: identification of discrepancies between the models and current databases; characterization of uncertainties in model predictions of dose per unit intake or unit external exposure; characterization of variability in dose per unit intake or unit external exposure; and evaluation of prospects for development of more accurate models. Uncertainty refers here to the level of knowledge of a central value for a population, and variability refers to quantitative differences between different members of a population. This pilot study provides a critical assessment of models for selected radionuclides representing different levels of knowledge of dose per unit exposure. The main conclusions of this study are as follows: (1) To optimize the use of available NRC resources, the full study should focus on radionuclides most frequently encountered in the workplace or environment. A list of 50 radionuclides is proposed. (2) The reliability of a dose coefficient for inhalation or ingestion of a radionuclide (i.e., an estimate of dose per unit intake) may depend strongly on the specific application. Multiple characterizations of the uncertainty in a dose coefficient for inhalation or ingestion of a radionuclide may be needed for different forms of the radionuclide and different levels of information of that form available to the dose analyst. (3) A meaningful characterization of variability in dose per unit intake of a radionuclide requires detailed information on the biokinetics of the radionuclide and hence is not feasible for many infrequently

  19. Rat testis as a radiobiological in vivo model for radionuclides.

    PubMed

    Grafström, G; Jönsson, B-A; El Hassan, A M; Tennvall, J; Strand, S-E

    2006-01-01

    The radiobiological effect of intracellularly localised radionuclides emitting low energy electrons (Auger electrons) has received much attention. Most in vivo studies reported have been performed in the mouse testis. We have investigated the rat testis as an in vivo radiobiological model, with sperm-head survival, testis weight loss and also alteration in the blood plasma hormone levels of FSH and LH as radiobiological endpoints. Validation of the rat testis model was evaluated by using mean absorbed doses of up to 10 Gy from intratesticularly (i.t.) injected (111)In oxine or local X-ray irradiation. Biokinetics of the i.t. injected radionuclide was analysed by scintillation camera imaging and used in the absorbed dose estimation. By the analysis of the autoradiographs, the activity distribution was revealed. Cell fractionation showed (111)In to be mainly associated with the cell nuclei. External irradiations were monitored by thermoluminescence dosimeters. The sperm-head survival was the most sensitive radiobiological parameter correlated to the mean absorbed dose, with a D(37) of 2.3 Gy for (111)In oxine and 1.3 Gy for X rays. The levels of plasma pituitary gonadal hormones FSH and LH were elevated for absorbed doses >7.7 Gy. This investigation shows that the radiobiological model based on the rat testis has several advantages compared with the previously commonly used mouse testis model. The model is appropriate for further investigations of basic phenomena such as radiation geometry, intracellular kinetics and heterogeneity, crucial for an understanding of the biological effect of low-energy electrons.

  20. Winter transport of Chernobyl radionuclides from a montane catchment to an ice-covered lake.

    PubMed

    Brittain, J E; Bjørnstad, H E; Salbu, B; Oughton, D H

    1992-03-01

    The amounts of 137Cs and 90Sr have been determined in the inflows and outflows of the Norwegian sub-alpine lake, Ovre Heimdalsvatn, in March/April during the period of ice-cover, when discharge is extremely stable. The lake is situated in an area contaminated by Chernobyl fallout. The transported course particulate plant material has been collected in traps; the particles and colloids have been removed from water samples by cross-flow ultrafiltration. On the basis of radionuclide inputs and outputs, lake budget calculations have been made for 137Cs and 90Sr during the period of ice-cover. Daily transport of radionuclides is considerably less than that observed during the spring snowmelt period when discharges are high. Size distribution patterns of Cs and Sr observed during winter are compared with previously published data from the same lake during the spring spate. The retention of 137Cs is similar in winter and spring, but retention of 90Sr is greater in winter.

  1. Monitoring Radionuclide Transport and Spatial Distribution with a 1D Gamma-Ray Scanner

    NASA Astrophysics Data System (ADS)

    Dozier, R.; Erdmann, B.; Sams, A.; Barber, K.; DeVol, T. A.; Moysey, S. M.; Powell, B. A.

    2016-12-01

    Understanding radionuclide movement in the environment is important for informing strategies for radioactive waste management and disposal. A 1-dimensional (1D) gamma-ray emission scanning system was developed to investigate radionuclide transport behavior within soils. Two case studies illustrate the use of the system for non-destructively monitoring transport processes within a soil column. The first case study explores the system capabilities for simultaneously detecting technetium-99m (99mTc), iodine-131 (131I), and sodium-22 (22Na) moving through a column (length = 14.1 cm, diameter = 3.8 cm) packed with soil from the Department of Energy's Savannah River Site. A sodium iodide (NaI) detector was placed at 4 cm above the influent and a Bismuth germanate (BGO) detector at about 10 cm above the influent. The NaI detector results show 99mTc, 131I, and 22Na having similar breakthrough curves with the tail of 99mTc being lower than that of 131I and 22Na. NaCl tracer results compliment the gamma-ray emission measurements. These results are promising because we are able to monitor movement of the isotopes in the column in real-time. In the second case study, the 1D gamma scanner was used to quantify radionuclide mobility within a lysimeter (length = 51 cm, diameter = 10 cm). A cementitious waste form containing cobalt-60 (60Co), barium-133 (133Ba), cesium-137 (137Cs), and europium-152 (152Eu), with the amount of each contained in the cement ranging from 3 to 8.5 MBq, was placed at the midpoint of the lysimeter. The lysimeter was then exposed to natural rainfall and environmental conditions and effluent samples were collected and quantified on a quarterly basis. Following 3.3 years of exposure, the radionuclide distribution in the lysimeter was quantified with a 0.64 cm collimated high-purity germanium gamma-ray spectrometer. Diffusion of 137Cs away from the cementitious wasteform was observed. No movement was seen for 133Ba, 60Co, or 152Eu within the detection limits

  2. Particle Tracking Model and Abstraction of Transport Processes

    SciTech Connect

    B. Robinson

    2000-04-07

    The purpose of the transport methodology and component analysis is to provide the numerical methods for simulating radionuclide transport and model setup for transport in the unsaturated zone (UZ) site-scale model. The particle-tracking method of simulating radionuclide transport is incorporated into the FEHM computer code and the resulting changes in the FEHM code are to be submitted to the software configuration management system. This Analysis and Model Report (AMR) outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the unsaturated zone at Yucca Mountain. In addition, methods for determining colloid-facilitated transport parameters are outlined for use in the Total System Performance Assessment (TSPA) analyses. Concurrently, process-level flow model calculations are being carrier out in a PMR for the unsaturated zone. The computer code TOUGH2 is being used to generate three-dimensional, dual-permeability flow fields, that are supplied to the Performance Assessment group for subsequent transport simulations. These flow fields are converted to input files compatible with the FEHM code, which for this application simulates radionuclide transport using the particle-tracking algorithm outlined in this AMR. Therefore, this AMR establishes the numerical method and demonstrates the use of the model, but the specific breakthrough curves presented do not necessarily represent the behavior of the Yucca Mountain unsaturated zone.

  3. A comparison of marine radionuclide dispersion models for the Baltic Sea in the frame of IAEA MODARIA program.

    PubMed

    Periáñez, R; Bezhenar, R; Iosjpe, M; Maderich, V; Nies, H; Osvath, I; Outola, I; de With, G

    2015-01-01

    Four radionuclide dispersion models have been applied to simulate the transport and distribution of (137)Cs fallout from Chernobyl accident in the Baltic Sea. Models correspond to two categories: box models and hydrodynamic models which solve water circulation and then an advection/diffusion equation. In all cases, interactions of dissolved radionuclides with suspended matter and bed sediments are included. Model results have been compared with extensive field data obtained from HELCOM database. Inventories in the water column and seabed, as well as (137)Cs concentrations along 5 years in water and sediments of several sub-basins of the Baltic, have been used for model comparisons. Values predicted by the models for the target magnitudes are very similar and close to experimental values. Results suggest that some processes are not very relevant for radionuclide transport within the Baltic Sea, for instance the roles of the ice cover and, surprisingly, water stratification. Also, results confirm previous findings concerning multi-model applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The influence of adsorption properties on radionuclides transport in porous medium

    SciTech Connect

    Lee, C.H.

    1993-12-31

    The repository design for disposing of radioactive wastes is intended to ensure adequate long-term isolation of the radionuclides. The system consists of natural and engineered barriers to prevent or retard the release of the wastes from the package to the biosphere. An analytical solution covering the entire range of sorption properties between solid phase and liquid phase has been derived for the migration of radionuclides in a porous medium. The analysis takes into account the advective transport, hydrodynamic dispersion, adsorption between solid phase and liquid phase, and the radioactive decay. Three kinds of sorption properties of no sorption, linear nonequilibrium sorption, and linear equilibrium sorption are integrated into the generic transient analytical solution. The results indicate that the assumption of equilibrium sorption results in underestimation of the concentration profile in the early stages of migration. It is worth noting that the concentration profile of the nonequilibrium sorption case is slightly smaller than that of the equilibrium sorption case after a certain time. However, the profiles eventually approach the same value. And the case of nonequilibrium sorption has a plateau in its profile.

  5. Coupled modeling of cement/claystone interactions and radionuclide migration

    NASA Astrophysics Data System (ADS)

    De Windt, L.; Pellegrini, D.; van der Lee, J.

    2004-02-01

    The interactions between cement and a clayey host-rock of an underground repository for intermediate-level radioactive waste are studied with the reactive transport code HYTEC for supporting performance assessment. Care is taken in using relevant time scales (100,000 years) and dimensions. Based on a literature review, three hypotheses are considered with respect to the mineralogical composition of the claystone and the neo-formed phases. In the long term, the pH is buffered for all hypotheses and important mineral transformations occur both in cement and the host-rock. The destruction of the primary minerals is localized close to the cement/claystone interface and is characterized by the precipitation of secondary phases with retention properties (illite, zeolite). However, beyond the zone of intense mineral transformations, the pore water chemistry is also disturbed over a dozen meters due to an attenuated but continuous flux of hydroxyl, potassium and calcium ions. Four interdependent mechanisms control the profile in the whole system: diffusion of the alkaline plume, mineralogical buffering, ion exchange and clogging of the pore space at the cement/claystone interface. The migration of a selected group of radionuclides (Cs, Ra, Tc and U) is explicitly integrated in the simulations of the strongly coupled system. Theoretical profiles of distribution coefficient (Kd) and solubility limit values are derived from the simulations, and their sensitivity with respect to the system evolution is estimated.

  6. Long-term groundwater transport of radionuclides from seepage basins at the Savannah River Site

    NASA Astrophysics Data System (ADS)

    Wiedmer, A.; Hunt, J. R.; Spycher, N.; Denham, M. E.

    2009-12-01

    The Savannah River Site (SRS) in South Carolina produced tritium and plutonium between 1953 and the beginning of the 1990s. The site released process wastewater containing plutonium, tritium, uranium, and fission products into seepage basins with the intent that short half-life radionuclides would decay in the years required for the groundwater to transport the waste materials to surface waters and that activity levels in the surface waters would not exceed levels considered appropriate in the 1950s. Between 1955 and 1988, the process operations at the F-area lead to the discharge of more than 12×106 cubic meters of low-level liquid radioactive waste solutions into unlined seepage basins. The waste contained longer half life nuclides that did not significantly decay during groundwater transit such as 3H (t½ = 12.28 years), 90Sr (t½ = 28.6 years), 99Tc (t½ = 2.13×105 years) and 129I (t½ = 1.57×107 years). Remediation started with the capping of the basin in 1990 followed by active plume pumping between 1997 and 2003. In 2004 a groundwater barrier was installed and in situ pH neutralization started in 2005. Tritium monitoring detected migration to Four Mile Creek by the end of the 1950s. Other radionuclides such as 90Sr, 99Tc and 129I have also been detected in groundwater seeping into the creek, and tritium levels and conductivity were well correlated at the seepage line. The seepage basin contaminated groundwater plume surfaced at seepage faces near a creek with a pH of 3. This acidity combined with high ionic strengths associated with nitrate mobilized contaminants such as 90Sr. The high levels of tritium, low pH and high conductivity at the seepage line show the likely importance of density driven flow for the salts of the plume and the limited dilution by groundwater flow. The Savannah River Site requires remediation to minimize radionuclide migration off-site, and there has been an extensive monitoring program of process waste discharges, groundwater

  7. Short-term dispersal of Fukushima-derived radionuclides off Japan: modeling efforts and model-data intercomparison

    NASA Astrophysics Data System (ADS)

    Rypina, I. I.; Jayne, S. R.; Yoshida, S.; Macdonald, A. M.; Douglass, E.; Buesseler, K.

    2013-01-01

    The March of 2011 earthquake and tsunami that caused a loss of power at the Fukushima nuclear power plants (FNPP) resulted in emission of radioactive isotopes into the atmosphere and the ocean. In June of 2011, an international survey of various radionuclide isotopes, including 137Cs, was conducted in surface and subsurface waters off Japan. This paper presents the results of numerical simulations aimed at interpreting these observations, investigating the spread of Fukushima-derived radionuclides off the coast of Japan and into the greater Pacific Ocean, studying the dominant mechanisms governing this process, as well as estimating the total amount of radionuclides in discharged coolant waters and atmospheric airborne radionuclide fallout. The numerical simulations are based on two different ocean circulation models, one inferred from AVISO altimetry and NCEP/NCAR reanalysis wind stress, and the second generated numerically by the NCOM model. Our simulations determine that >95% of 137Cs remaining in the water within ~600 km of Fukushima, Japan in mid-June 2011 was due to the direct oceanic discharge. The estimated strength of the oceanic source is 16.2 ± 1.6 PBq, based on minimizing the model-data mismatch. We cannot make an accurate estimate for the atmospheric source strength since most of the fallout cesium would have moved out of the survey area by mid-June. The model explained several features of the observed 137Cs distribution. First, the absence of 137Cs at the southernmost stations is attributed to the Kuroshio Current acting as a transport barrier against the southward progression of 137Cs. Second, the largest 137Cs concentrations were associated with a semi-permanent eddy that entrained 137Cs-rich waters collecting and stirring them around the eddy perimeter. Finally, the intermediate 137Cs concentrations at the westernmost stations were attributed to younger, and therefore less Cs-rich, coolant waters that continued to leak from the reactor in June of

  8. Colloid-Facilitated Transport of Contaminants in Groundwater: Mobilization of Transuranic Radionuclides from Disposal Trenches by Natural Organic Matter

    NASA Astrophysics Data System (ADS)

    McCarthy, J. F.

    1998-03-01

    The role of natural organic matter (NOM) in enhancing the field-scale transport of transuranic radionuclides (TRU) in groundwater is used as a case study to illustrate the value of integrated laboratory and field approaches to understanding colloid-facilitated transport. Field observations provide evidence that TRU are mobilized and co-transported by NOM when hydrologic processes bring the groundwater in contact with waste buried in shallow trenches. This hypothesis receives further support from laboratory speciation studies and geochemical modeling. However, laboratory sorption studies indicate that the groundwater NOM should sorb to, and thus be retarded by the mineral surfaces of the formation. This issue is resolved through field studies of NOM transport. Discrepancies between laboratory predictions and field results reveal that the key process in NOM transport in natural-as opposed to model laboratory-systems is competitive adsorption among NOM subcomponents. Unlike laboratory studies of adsorption of NOM to clean mineral surfaces, surfaces in natural systems are coated with groundwater NOM, and binding sites are “passivated” with respect to further binding of the same NOM. The hypothesis that highly mobile NOM enhances TRU migration was tested by using lanthanides as field tracers to determine the extent of retardation of the TRU-NOM complex. The lanthanides, which have sorption and transport properties similar to TRU, migrated as NOM complexes without significant retardation over flow paths of 75-m. It is evident that assumptions inherent in many risk assessments for existing waste facilities, and performance assessments for future repositories, must begin to account for the role that even typically low levels of groundwater NOM plays in contaminant mobility.

  9. A Non-Electrostatic Surface Complexation Approach to Modeling Radionuclide Migration at the Nevada Test Site: I. Iron Oxides and Calcite

    SciTech Connect

    Zavarin, M; Bruton, C J

    2004-12-17

    Reliable quantitative prediction of contaminant transport in subsurface environments is critical to evaluating the risks associated with radionuclide migration. As part of the Underground Test Area (UGTA) project, radionuclide transport away from various underground nuclear tests conducted in the saturated zone at the Nevada Test Site (NTS) is being examined. In the near-field environment, reactive transport simulations must account for changes in water chemistry and mineralogy as a function of time and their effect on radionuclide migration. Unlike the K{sub d} approach, surface complexation (SC) reactions, in conjunction with ion exchange and precipitation, can be used to describe radionuclide reactive transport as a function of changing environmental conditions. They provide a more robust basis for describing radionuclide retardation in geochemically dynamic environments. The interaction between several radionuclides considered relevant to the UGTA project and iron oxides and calcite are examined in this report. The interaction between these same radionuclides and aluminosilicate minerals is examined in a companion report (Zavarin and Bruton, 2004). Selection criteria for radionuclides were based on abundance, half-life, toxicity to human and environmental health, and potential mobility at NTS (Tompson et al., 1999). Both iron oxide and calcite minerals are known to be present at NTS in various locations and are likely to affect radionuclide migration from the near-field. Modeling the interaction between radionuclides and these minerals was based on surface complexation. The effectiveness of the most simplified SC model, the one-site Non-Electrostatic Model (NEM), to describe sorption under various solution conditions is evaluated in this report. NEM reactions were fit to radionuclide sorption data available in the literature, as well as sorption data recently collected for the UGTA project, and a NEM database was developed. For radionuclide-iron oxide sorption

  10. Transport of radionuclides from the Mururoa and Fangataufa atolls through the marine environment.

    PubMed

    Mittelstaedt, E; Osvath, I; Povinec, P P; Togawa, O; Scott, E M

    1999-09-30

    A dispersion of radionuclides (3H, 90Sr, 137Cs, 239Pu) potentially released from the Mururoa and Fangataufa atolls through the South Pacific Ocean has been studied by means of computer models. The models used consisted of three differently structured compartmental models for the regional field and a hydrodynamic world ocean model for the far-field simulations. The outcome of regional modelling is predicted activity concentrations with time in different regions of French Polynesia (over up to 10,000 years for plutonium). The far-field model simulates large-scale dispersion in the South Pacific Ocean over periods of up to 50 years. The overall result suggests that there will not be radioactive contamination of any radiological interest at inhabited sites in French Polynesia or anywhere else in the ocean at present or in the future.

  11. STRUCTURE AND FUNCTION OF SUBSURFACE MICROBIAL COMMUNITIES AFFECTING RADIONUCLIDE TRANSPORT AND BIOIMMOBILIZATION

    SciTech Connect

    Joel E. Kostka; Lee Kerkhof; Kuk-Jeong Chin; Martin Keller; Joseph W. Stucki

    2011-06-15

    to science all show high sequence identity to sequences retrieved from ORFRC subsurface. (2) Based on physiological and phylogenetic characterization, two new species of subsurface bacteria were described: the metal-reducer Geobacter daltonii, and the denitrifier Rhodanobacter denitrificans. (3) Strains isolated from the ORFRC show that Rhodanobacter species are well adapted to the contaminated subsurface. Strains 2APBS1 and 116-2 grow at high salt (3% NaCl), low pH (3.5) and tolerate high concentrations of nitrate (400mM) and nitrite (100mM). Strain 2APBS1 was demonstrated to grow at in situ acidic pHs down to 2.5. (4) R. denitrificans strain 2APBS1 is the first described Rhodanobacter species shown to denitrify. Nitrate is almost entirely converted to N2O, which may account for the large accumulation of N2O in the ORFRC subsurface. (5) G. daltonii, isolated from uranium- and hydrocarbon-contaminated subsurface sediments of the ORFRC, is the first organism from the subsurface clade of the genus Geobacter that is capable of growth on aromatic hydrocarbons. (6) High quality draft genome sequences and a complete eco-physiological description are completed for R. denitrificans strain 2APBS1 and G. daltonii strain FRC-32. (7) Given their demonstrated relevance to DOE remediation efforts and the availability of detailed genotypic/phenotypic characterization, Rhodanobacter denitrificans strain 2APBS1 and Geobacter daltonii strain FRC-32 represent ideal model organisms to provide a predictive understanding of subsurface microbial activity through metabolic modeling. Tasks II and III-Diversity and distribution of active anaerobes and Mechanisms linking electron transport and the fate of radionuclides: (1) Our study showed that members of genus Rhodanobacter and Geobacter are abundant and active in the uranium and nitrate contaminated subsurface. In the contaminant source zone of the Oak Ridge site, Rhodanobacter spp. are the predominant, active organisms detected (comprising

  12. Radionuclide and colloid transport in the Culebra Dolomite and associated complementary cumulative distribution functions in the 1996 performance assessment for the Waste Isolation Pilot Plant

    SciTech Connect

    RAMSEY, JAMES L.; BLAINE,R.; GARNER,J.W.; HELTON,JON CRAIG; JOHNSON,J.D.; SMITH,L.N.; WALLACE,M.

    2000-05-22

    The following topics related to radionuclide and colloid transport in the Culebra Dolomite in the 1996 performance assessment for the Waste Isolation Pilot Plant (WIPP) are presented: (1) mathematical description of models, (2) uncertainty and sensitivity analysis results arising from subjective (i.e., epistemic) uncertainty for individual releases, and (3) construction of complementary cumulative distribution functions (CCDFs) arising from stochastic (i.e., aleatory) uncertainty. The presented results indicate that radionuclide and colloid transport in the Culebra Dolomite does not constitute a serious threat to the effectiveness of the WIPP as a disposal facility for transuranic waste. Even when the effects of uncertain analysis inputs are taken into account, no radionuclide transport to the boundary with the accessible environment was observed; thus the associated CCDFs for comparison with the boundary line specified in the US Environmental Protection Agency's standard for the geologic disposal of radioactive waste (40 CFR 191, 40 CFR 194) are degenerate in the sense of having a probability of zero of exceeding a release of zero.

  13. Hydrologic Processes Controlling the Transport of Radionuclides Through the Hanford Vadose Zone

    NASA Astrophysics Data System (ADS)

    Mayes, M. A.; Jardine, P. M.; Pace, M. N.; Fendorf, S. E.; Mehlhorn, T. L.; Roh, Y.; Ladd, J. L.; Bjornstad, B. N.

    2001-12-01

    At the U.S. Department of Energy's Hanford Reservation in south central Washington, accelerated migration of radionuclides has been observed in the vadose zone beneath the Hanford Tank Farms. The goal of this research was to provide an improved understanding and predictive capability of the coupled hydrological and geochemical mechanisms that are responsible for contaminant mobility in the vadose zone. The research strategy consisted of collecting undisturbed sediment cores (0.3 m diameter x 0.3 m length) in order to perform laboratory-scale, multiple nonreactive and reactive transport experiments at a variety of different water contents. Cores were collected from the Miocene-Pliocene age Upper Ringold Formation, which consists of fine sand, silt and clay. Cores were acquired both parallel and perpendicular to bedding. Two units within the U. Ringold were sampled, a horizontally-bedded, laminated Upper Silt and a cross-bedded Lower Silty Sand. Unsaturated transport experiments were performed using the nonreactive tracers Br-, PFBA, and PIPES, which differ in their free-water molecular diffusion coefficients. Unsaturated transport experiments through cores with discontinuous layering resulted in the formation of an unstable wetting front characterized by preferential finger flow and the development of zones of perched water. Media bypass is inferred by early breakthrough of tracers relative to saturated flow, while the presence of perched water is suggested by decreasing core matric potential. Further, observed separation of tracers (Br-> PFBA > PIPES) suggests that diffusional processes can contribute to contaminant transport. Conversely, transport through cores composed of laterally continuous beds did not result in preferential flow, the development of perched water, or tracer separation regardless of saturation. This suggests a propensity for lateral flow beneath the tank farms. Preferential vertical finger flow may be initiated by intersection with lithologic

  14. A micro-scale random-walk model for radionuclide migration based on image analysis-derived modelling grids

    NASA Astrophysics Data System (ADS)

    Eberhard Falck, W.; Vokal, Vratko

    2010-01-01

    This paper describes the development of a random-walk transport model for the migration of radionuclides in hard-rocks at the grain scale. The physics of diffusion are reviewed and it is described how they are translated into the appropriate model algorithm. Further, the algorithm for recognising solid grain boundaries during the migration step is discussed. The model grid is derived from the analysis of images obtained by optical micro-photography and from autoradiography of hardrock samples impregnated with 14C-marked resins. Sample calculations for tracer-transport cases and simple reaction, i.e. precipitation cases are presented. It is envisaged to couple the code with a geochemical speciation code at a later stage.

  15. Numerical modeling of the radionuclide water pathway with HYDRUS and comparison with the IAEA model of SR 44.

    PubMed

    Merk, Rainer

    2012-02-01

    This study depicts a theoretical experiment in which the radionuclide transport through the porous material of a landfill consisting of concrete rubble (e.g., from the decommissioning of nuclear power plants) and the subsequent migration through the vadose zone and aquifer to a model well is calculated by means of the software HYDRUS-1D (Simunek et al., 2008). The radionuclides originally contained within the rubble become dissolved due to leaching caused by infiltrated rainwater. The resulting well-water contamination (in Bq/L) is calculated numerically as a function of time and location and compared with the outcome of a simplified analytic model for the groundwater pathway published by the IAEA (2005). Identical model parameters are considered. The main objective of the present work is to evaluate the predictive capacity of the more simple IAEA model using HYDRUS-1D as a reference. For most of the radionuclides considered (e.g., ¹²⁹I, and ²³⁹Pu), results from applying the IAEA model were found to be comparable to results from the more elaborate HYDRUS modeling, provided the underlying parameter values are comparable. However, the IAEA model appears to underestimate the effects resulting from, for example, high nuclide mobility, short half-life, or short-term variations in the water infiltration. The present results indicate that the IAEA model is suited for screening calculations and general recommendation purposes. However, the analysis of a specific site should be accompanied by detailed HYDRUS computer simulations. In all models considered, the calculation outcome largely depends on the choice of the sorption parameter K(d). Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Action levels for automatic gamma-measurements based on probabilistic radionuclide transport calculations.

    PubMed

    Lauritzen, Bent; Hedemann-Jensen, Per

    2005-12-01

    In the event of a nuclear or radiological emergency resulting in an atmospheric release of radioactive materials, stationary gamma-measurements, for example obtained from distributed, automatic monitoring stations, may provide a first assessment of exposures resulting from airborne and deposited activity. Decisions on the introduction of countermeasures for the protection of the public can be based on such off-site gamma measurements. A methodology is presented for calculation of gamma-radiation action levels for the introduction of specific countermeasures, based on probabilistic modelling of the dispersion of radionuclides and the radiation exposure. The methodology is applied to a nuclear accident situation with long-range atmospheric dispersion of radionuclides, and action levels of dose rate measured by a network of monitoring stations are estimated for sheltering and foodstuff restrictions. It is concluded that the methodology is applicable to all emergency countermeasures following a nuclear accident but measurable quantities other than ambient dose equivalent rate are needed for decisions on the introduction of foodstuff countermeasures.

  17. Potential of the International Monitoring System radionuclide network for inverse modelling

    NASA Astrophysics Data System (ADS)

    Koohkan, Mohammad Reza; Bocquet, Marc; Wu, Lin; Krysta, Monika

    2012-07-01

    The International Monitoring System (IMS) radionuclide network enforces the Comprehensive Nuclear-Test-Ban Treaty which bans nuclear explosions. We have evaluated the potential of the IMS radionuclide network for inverse modelling of the source, whereas it is usually assessed by its detection capability. To do so, we have chosen the degrees of freedom for the signal (DFS), a well established criterion in remote sensing, in order to assess the performance of an inverse modelling system. Using a recent multiscale data assimilation technique, we have computed optimal adaptive grids of the source parameter space by maximising the DFS. This optimisation takes into account the monitoring network, the meteorology over one year (2009) and the relationship between the source parameters and the observations derived from the FLEXPART Lagrangian transport model. Areas of the domain where the grid-cells of the optimal adaptive grid are large emphasise zones where the retrieval is more uncertain, whereas areas where the grid-cells are smaller and denser stress regions where more source variables can be resolved. The observability of the globe through inverse modelling is studied in strong, realistic and small model error cases. The strong error and realistic error cases yield heterogeneous adaptive grids, indicating that information does not propagate far from the monitoring stations, whereas in the small error case, the grid is much more homogeneous. In all cases, several specific continental regions remain poorly observed such as Africa as well as the tropics, because of the trade winds. The northern hemisphere is better observed through inverse modelling (more than 60% of the total DFS) mostly because it contains more IMS stations. This unbalance leads to a better performance of inverse modelling in the northern hemisphere winter. The methodology is also applied to the subnetwork composed of the stations of the IMS network which measure noble gases.

  18. Coupled Hydrological and Geochemical Processes Governing the Fate and Transport of Radionuclides and Toxic Metals in the Hanford Vadose Zone

    SciTech Connect

    Mayes, M.A.; Jardine, P.M.; Fendorf, S.E.; Pace, M.N.; Yin, X.; Mehlhorn, T.L.; Zachara, J.M.

    2003-03-27

    At the D.O.E. Hanford Reservation, accelerated migration of radionuclides has been observed in the vadose zone underlying the tank farms. Our goal is to provide an improved understanding and predictive capability of the coupled hydrogeochemical mechanisms responsible for observed migration. Our approach is to perform a suite of experiments ranging from novel surface interrogation techniques (e.g., XAS) to miscible displacement experiments on disturbed and undisturbed sediments from the Hanford, Plio-Pleistocene and Ringold formations. Results indicate during unsaturated conditions hydrologic processes governing transport are a strong function of sediment layering in the Hanford and Ringold formations. The transport of radionuclides and toxic metals (U, Cr(VI), Cs, Sr and Co) is influenced by reactive geochemical nonequilibrium, sedimentary mineralogy and solution chemistry. This research will provide new insights into how physical and mineralogical heterogeneities (e.g. stratification, pore regime connectivity, mineral composition along flowpaths) influence contaminant retardation and degree of geochemical nonequilibrium during transport.

  19. Simulations of Groundwater Flow and Radionuclide Transport in the Vadose and Saturated Zones beneath Area G, Los Alamos National Laboratory

    SciTech Connect

    Kay H. Birdsell; Kathleen M. Bower; Andrew V. Wolfsberg; Wendy E. Soll; Terry A. Cherry; Tade W. Orr

    1999-07-01

    Numerical simulations are used to predict the migration of radionuclides from the disposal units at Material Disposal Area G through the vadose zone and into the main aquifer in support of a radiological performance assessment and composite analysis for the site. The calculations are performed with the finite element code, FEHM. The transport of nuclides through the vadose zone is computed using a three-dimensional model that describes the complex mesa top geology of the site. The model incorporates the positions and inventories of thirty-four disposal pits and four shaft fields located at Area G as well as those of proposed future pits and shafts. Only three nuclides, C-14, Tc-99, and I-129, proved to be of concern for the groundwater pathway over a 10,000-year period. The spatial and temporal flux of these three nuclides from the vadose zone is applied as a source term for the three-dimensional saturated zone model of the main aquifer that underlies the site. The movement of these nuclides in the aquifer to a downstream location is calculated, and aquifer concentrations are converted to doses. Doses related to aquifer concentrations are six or more orders of magnitude lower than allowable Department of Energy performance objectives for low-level radioactive waste sites. Numerical studies were used to better understand vadose-zone flow through the dry mesa-top environment at Area G. These studies helped define the final model used to model flow and transport through the vadose zone. The study of transient percolation indicates that a steady flow vadose-zone model is adequate for computing contaminant flux to the aquifer. The fracture flow studies and the investigation of the effect of basalt and pumice properties helped us define appropriate hydrologic properties for the modeling. Finally, the evaporation study helped to justify low infiltration rates.

  20. Probabilistic distribution coefficients (K(d)s) in freshwater for radioisotopes of Ag, Am, Ba, Be, Ce, Co, Cs, I, Mn, Pu, Ra, Ru, Sb, Sr and Th: implications for uncertainty analysis of models simulating the transport of radionuclides in rivers.

    PubMed

    Ciffroy, P; Durrieu, G; Garnier, J-M

    2009-09-01

    The objective of this study was to provide operational probability density functions (PDFs) for distribution coefficients (K(d)s) in freshwater, representing the partition of radionuclides between the particulate and the dissolved phases respectively. Accordingly, the K(d) variability should be considered in uncertainty analysis of transport and risk assessment models. The construction of PDFs for 8 elements (Ag, Am, Co, Cs, I, Mn, Pu and Sr) was established according to the procedure already tested in Durrieu et al. [2006. A weighted bootstrap method for the determination of probability density functions of freshwater distribution coefficients (K(d)s) of Co, Cs, Sr and I radioisotopes. Chemosphere 65 (8), 1308-1320]: (i) construction of a comprehensive database where K(d)s values obtained under various environments and parametric conditions were collected; (ii) scoring procedure to account for the 'quality' of each datapoint (according to several criteria such as the presentation of data (e.g. raw data vs mean with or without replicates), contact time, pH, solid-to-liquid ratio, expert judgement) in the construction of the PDF; (iii) weighted bootstrapping procedure to build the PDFs, in order to give more importance to the most relevant datapoints. Two types of PDFs were constructed: (i) non-conditional, usable when no knowledge about the site of concern is available; (ii) conditional PDFs corresponding to a limited range of parameters such as pH or contact time; conditional PDFs can thus be used when some parametric information is known on the site under study. For 7 other radionuclides (Ba, Be, Ce, Ra, Ru, Sb and Th), a simplified procedure was adopted because of the scarcity of data: only non-conditional PDFs were built, without incorporating a scoring procedure.

  1. Coupling of Nuclear Waste Form Corrosion and Radionuclide Transports in Presence of Relevant Repository Sediments

    SciTech Connect

    Wall, Nathalie A.; Neeway, James J.; Qafoku, Nikolla P.; Ryan, Joseph V.

    2015-09-30

    Assessments of waste form and disposal options start with the degradation of the waste forms and consequent mobilization of radionuclides. Long-term static tests, single-pass flow-through tests, and the pressurized unsaturated flow test are often employed to study the durability of potential waste forms and to help create models that predict their durability throughout the lifespan of the disposal site. These tests involve the corrosion of the material in the presence of various leachants, with different experimental designs yielding desired information about the behavior of the material. Though these tests have proved instrumental in elucidating various mechanisms responsible for material corrosion, the chemical environment to which the material is subject is often not representative of a potential radioactive waste repository where factors such as pH and leachant composition will be controlled by the near-field environment. Near-field materials include, but are not limited to, the original engineered barriers, their resulting corrosion products, backfill materials, and the natural host rock. For an accurate performance assessment of a nuclear waste repository, realistic waste corrosion experimental data ought to be modeled to allow for a better understanding of waste form corrosion mechanisms and the effect of immediate geochemical environment on these mechanisms. Additionally, the migration of radionuclides in the resulting chemical environment during and after waste form corrosion must be quantified and mechanisms responsible for migrations understood. The goal of this research was to understand the mechanisms responsible for waste form corrosion in the presence of relevant repository sediments to allow for accurate radionuclide migration quantifications. The rationale for this work is that a better understanding of waste form corrosion in relevant systems will enable increased reliance on waste form performance in repository environments and potentially

  2. UZ Colloid Transport Model

    SciTech Connect

    M. McGraw

    2000-04-13

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations.

  3. 3D model of radionuclide dispersion in coastal areas with multifraction cohesive and non-cohesive sediments

    NASA Astrophysics Data System (ADS)

    Brovchenko, Igor; Maderich, Vladimir; Jung, Kyung Tae

    2015-04-01

    We developed new radionuclide dispersion model that may be used in coastal areas, rivers and estuaries with non-uniform distribution of suspended and bed sediments both cohesive and non-cohesive types. Model describes radionuclides concentration in dissolved phase in water column, particulated phase on suspended sediments on each sediment class types, bed sediments and pore water. The transfer of activity between the water column and the pore water in the upper layer of the bottom sediment is governed by diffusion processes. The phase exchange between dissolved and particulate radionuclides is written in terms of desorption rate a12 (s-1) and distribution coefficient Kd,iw and Kd,ib (m3/kg) for water column and for bottom deposit, respectively. Following (Periáñez et al., 1996) the dependence of distribution coefficients is inversely proportional to the sediment particle size. For simulation of 3D circulation, turbulent diffusion and wave fields a hydrostatic model SELFE (Roland et. al. 2010) that solves Reynolds-stress averaged Navier-Stokes (RANS) equations and Wave Action transport equation on the unstructured grids was used. Simulation of suspended sediment concentration and bed sediments composition is based on (L. Pinto et. al., 2012) approach that originally was developed for non-cohesive sediments. In present study we modified this approach to include possibility of simulating mixture of cohesive and non-cohesive sediments by implementing parameterizations for erosion and deposition fluxes for cohesive sediments and by implementing flocculation model for determining settling velocity of cohesive flocs. Model of sediment transport was calibrated on measurements in the Yellow Sea which is shallow tidal basin with strongly non-uniform distribution of suspended and bed sediments. Model of radionuclide dispersion was verified on measurements of 137Cs concentration in surface water and bed sediments after Fukushima Daiichi nuclear accident. References Peri

  4. Modeling of radionuclide migration at nuclear facility sites

    SciTech Connect

    Tsang, C.F.; Alexander, D.; Haselow, J.

    1993-12-31

    The United States and Russia are conducting technology exchanges in the area of radionuclide migration in the environment. This paper will give an overview of the various scientific issues and physical and chemical processes associated with migration, thus laying the framework by which the data from the Chelyabinsk-65 site in Russia and the Savannah River Site in the USA can be analyzed.

  5. Mobility of Source Zone Heavy Metals and Radionuclides: The Mixed Roles of Fermentative Activity on Fate and Transport of U and Cr

    SciTech Connect

    Apel, William; Peyton, Brent; Gerlach, Robin; Lee, Brady

    2006-06-01

    Predicting the potential migration of metals and radionuclides from waste pits and trenches will require understanding the effects of carbon and electron flow through these environments. Important aspects of this flow include the physiological activity of cellulolytic and non-cellulolytic fermentative microbial populations, as well as the subsequent activity of metal and radionuclide reducing bacteria. The activity of subsurface fermentative microbial populations is significantly understudied even though these organisms can affect contaminant migration by at least two mechanisms. In the first mechanism, products of the fermentation process can act as chelators for metals and radionuclides increasing their transport through underlying geological media. The second mechanism is the reduction and immobilization of metals and radionuclides since some fermentative bacteria have been shown to directly reduce metals and radionuclides, while their fermentation products can provide carbon and energy for respiratory metal reducing bacteria that can also reduce oxidized metals and radionuclides.

  6. Radionuclides from the Fukushima accident in the air over Lithuania: measurement and modelling approaches.

    PubMed

    Lujanienė, G; Byčenkienė, S; Povinec, P P; Gera, M

    2012-12-01

    Analyses of (131)I, (137)Cs and (134)Cs in airborne aerosols were carried out in daily samples in Vilnius, Lithuania after the Fukushima accident during the period of March-April, 2011. The activity concentrations of (131)I and (137)Cs ranged from 12 μBq/m(3) and 1.4 μBq/m(3) to 3700 μBq/m(3) and 1040 μBq/m(3), respectively. The activity concentration of (239,240)Pu in one aerosol sample collected from 23 March to 15 April, 2011 was found to be 44.5 nBq/m(3). The two maxima found in radionuclide concentrations were related to complicated long-range air mass transport from Japan across the Pacific, the North America and the Atlantic Ocean to Central Europe as indicated by modelling. HYSPLIT backward trajectories and meteorological data were applied for interpretation of activity variations of measured radionuclides observed at the site of investigation. (7)Be and (212)Pb activity concentrations and their ratios were used as tracers of vertical transport of air masses. Fukushima data were compared with the data obtained during the Chernobyl accident and in the post Chernobyl period. The activity concentrations of (131)I and (137)Cs were found to be by 4 orders of magnitude lower as compared to the Chernobyl accident. The activity ratio of (134)Cs/(137)Cs was around 1 with small variations only. The activity ratio of (238)Pu/(239,240)Pu in the aerosol sample was 1.2, indicating a presence of the spent fuel of different origin than that of the Chernobyl accident. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Identification of sorption processes and parameters for radionuclide transport in fractured rock

    NASA Astrophysics Data System (ADS)

    Dai, Zhenxue; Wolfsberg, Andrew; Reimus, Paul; Deng, Hailin; Kwicklis, Edward; Ding, Mei; Ware, Doug; Ye, Ming

    2012-01-01

    SummaryIdentification of chemical reaction processes in subsurface environments is a key issue for reactive transport modeling because simulating different processes requires developing different chemical-mathematical models. In this paper, two sorption processes (equilibrium and kinetics) are considered for modeling neptunium and uranium sorption in fractured rock. Based on different conceptualizations of the two processes occurring in fracture and/or matrix media, seven dual-porosity, multi-component reactive transport models are developed. The process models are identified with a stepwise strategy by using multi-tracer concentration data obtained from a series of transport experiments. In the first step, breakthrough data of a conservative tracer (tritium) obtained from four experiments are used to estimate the flow and non-reactive transport parameters (i.e., mean fluid residence time in fracture, fracture aperture, and matrix tortuosity) common to all the reactive transport models. In the second and third steps, by fixing the common non-reactive flow and transport parameters, the sorption parameters (retardation factor, sorption coefficient, and kinetic rate constant) of each model are estimated using the breakthrough data of reactive tracers, neptunium and uranium, respectively. Based on the inverse modeling results, the seven sorption-process models are discriminated using four model discrimination (or selection) criteria, Akaike information criterion ( AIC), modified Akaike information criterion ( AICc), Bayesian information criterion ( BIC) and Kashyap information criterion ( KIC). These criteria suggest the kinetic sorption process for modeling reactive transport of neptunium and uranium transport in both fracture and matrix. This conclusion is confirmed by two chemical criteria, the half reaction time and Damköhler number criterion.

  8. A Non-Electrostatic Surface Complexation Approach to Modeling Radionuclide Migration at the Nevada Test Site: II. Aluminosilicates

    SciTech Connect

    Zavarin, M; Bruton, C J

    2004-12-16

    Reliable quantitative prediction of contaminant transport in subsurface environments is critical to evaluating the risks associated with radionuclide migration. As part of the Underground Test Area (UGTA) program, radionuclide transport away from selected underground nuclear tests conducted in the saturated zone at the Nevada Test Site (NTS) is being examined. In the near-field environment, reactive transport simulations must account for changes in water chemistry and mineralogy as a function of time and their effect on radionuclide migration. Unlike the Kd approach, surface complexation reactions, in conjunction with ion exchange and precipitation, can be used to describe radionuclide reactive transport as a function of changing environmental conditions. They provide a more robust basis for describing radionuclide retardation in geochemically dynamic environments. In a companion report (Zavarin and Bruton, 2004), a database of radionuclide surface complexation reactions for calcite and iron oxide minerals was developed. In this report, a second set of reactions is developed: surface complexation (SC) and ion exchange (IE) to aluminosilicate minerals. The most simplified surface complexation model, the one-site non-electrostatic model (NEM), and the Vanselow IE model were used to fit a large number of published sorption data and a reaction constant database was developed. Surface complexation of Am(III), Eu(III), Np(V), Pu(IV), Pu(V), and U(VI) to aluminum oxide, silica, and aluminosilicate minerals was modeled using a generalized approach in which surface complexation to aluminosilicate >SiOH or >AlOH reactive sites was considered equivalent to the reactivity of aluminum oxide and silica reactive sites. Ion exchange was allowed to be mineral-dependent. The generalized NEM approach, in conjunction with Vanselow IE, was able to fit most published sorption data well. Fitting results indicate that surface complexation will dominate over ion exchange at pH >7 for the

  9. Comparison between a steady-state and a transient flow model and related radionuclide concentration predictions

    NASA Astrophysics Data System (ADS)

    Gedeon, M.; Mallants, D.

    2012-04-01

    Radionuclide concentration predictions in aquifers play an important role in estimating impact of planned surface disposal of radioactive waste in Belgium, developed by the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF), who also coordinates and leads the corresponding research. Long-term concentration predictions are based on a steady-state flow solution obtained by a cascade of multi-scale models from the catchment to the detailed (site) scale performed in MODFLOW. To test the concept and accuracy of the groundwater flow solution and conservativeness of the concentration predictions obtained therewith, a transient model, considered more realistic, was set up in a sub-domain of the intermediate scale steady-state model. Besides the modelling domain reduction, the transient model was and exact copy of the steady-state model, having the infiltration as the only time-varying parameter. The transient model was run for a twenty-year period, whereas the results were compared to the steady-state results based on infiltration value and observations averaged over the same period. The comparison of the steady-state and transient flow solutions includes the analyses of the goodness of fit, the parameter sensitivities, relative importance of the individual observations and one-percent sensitivity maps. The steady-state and transient flow solutions were subsequently translated into a site-scale transport model, used to predict the radionuclide concentrations in a hypothetical well in the aquifers. The translation of the flow solutions between the models of distinct scales was performed using the Local grid refinement method available in MODFLOW. In the site-scale models, MT3DMS transport simulations were performed to obtain respective concentration predictions in a hypothetical well, situated at 70 meters from the disposal tumuli. The equilibrium concentrations based on a constant source flux achieved using a steady-state solution were then

  10. Monitoring radionuclide and suspended-sediment transport in the Little Colorado River basin, Arizona and New Mexico, USA

    USGS Publications Warehouse

    Gray, John R.; Fisk, Gregory G.

    1992-01-01

    From July 1988 through September 1991, radionuclide and suspended-sediment transport were monitored in ephemeral streams in the semiarid Little Colorado River basin of Arizona and New Mexico, USA, where in-stream gross-alpha plus gross-beta activities have exceeded Arizona's Maximum Allowable Limit through releases from natural weathering processes and from uranium-mining operations in the Church Rock Mining District, Grants Mineral Belt, New Mexico. Water samples were collected at a network of nine continuous-record streamgauges equipped with microprocessor-based satellite telemetry and automatic water-sampling systems, and six partial-record streamgauges equipped with passive water samplers. Analytical results from these samples were used to calculate transport of selected suspended and dissolved radionuclides in the uranium-238 and thorium-232 decay series.

  11. Radionuclide-Chelating Agent Complexes in Low-Level Radioactive Decontamination Waste; Stability, Adsorption and Transport Potential

    SciTech Connect

    Serne, R. Jeffrey; Cantrell, Cantrell J.; Lindenmeier, Clark W.; Owen, Antionette T.; Kutnyakov, Igor V.; Orr, Robert D.; Felmy, Andrew R.

    2002-02-01

    Speciation calculations were done to determine whether organic complexants facilitate transport of radionuclides leached from waste buried in soils. EDTA readily mobilizes divalent transition metals and moderately impacts trivalent actinides. Picolinate readily mobilizes only Ni2+ and Co2+. These speciation predictions ignore the influence of soil adsorption and biodegradation that break apart the complexes. In adsorption studies, picolinate concentrations have to be >10-4 M to lower the adsorption of Ni and Co. For Sm(III), Th(IV), Np(V), U(VI), and Pu, the picolinate concentration must be >10-3 M before adsorption decreases. EDTA forms strong complexes with divalent transition metals and can stop adsorption of Ni and Co when EDTA solution concentrations are 10-5 M. EDTA complexes with Np(V), U(VI), and Pu are much weaker; EDTA concentrations would have to be >10-3 M to adversely effects non-transition metal/radionuclide adsorption. Most picolinate and ETDA-metal complexes appear to readily dissociate during interactions with soils. The enhanced migration of radionuclide-organic complexes may be limited to a few unique conditions. We recommend that mixtures of metal/radionuclides and EDTA should not be solidified or co-disposed with high pH materials such as cement. For weaker binding organic complexants, such as picolinate, citrate and oxalate, co-disposal of decontamination wastes and concrete should be acceptable.

  12. Water-Chemistry Evolution and Modeling of Radionuclide Sorption and Cation Exchange during Inundation of Frenchman Flat Playa

    SciTech Connect

    Hershey, Ronald; Cablk, Mary; LeFebre, Karen; Fenstermaker, Lynn; Decker, David

    2013-08-01

    Atmospheric tests and other experiments with nuclear materials were conducted on the Frenchman Flat playa at the Nevada National Security Site, Nye County, Nevada; residual radionuclides are known to exist in Frenchman Flat playa soils. Although the playa is typically dry, extended periods of winter precipitation or large single-event rainstorms can inundate the playa. When Frenchman Flat playa is inundated, residual radionuclides on the typically dry playa surface may become submerged, allowing water-soil interactions that could provide a mechanism for transport of radionuclides away from known areas of contamination. The potential for radionuclide transport by occasional inundation of the Frenchman Flat playa was examined using geographic information systems and satellite imagery to delineate the timing and areal extent of inundation; collecting water samples during inundation and analyzing them for chemical and isotopic content; characterizing suspended/precipitated materials and archived soil samples; modeling water-soil geochemical reactions; and modeling the mobility of select radionuclides under aqueous conditions. The physical transport of radionuclides by water was not evaluated in this study. Frenchman Flat playa was inundated with precipitation during two consecutive winters in 2009-2010 and 2010-2011. Inundation allowed for collection of multiple water samples through time as the areal extent of inundation changed and ultimately receded. During these two winters, precipitation records from a weather station in Frenchman Flat (Well 5b) provided information that was used in combination with geographic information systems, Landsat imagery, and image processing techniques to identify and quantify the areal extent of inundation. After inundation, water on the playa disappeared quickly, for example, between January 25, 2011 and February 10, 2011, a period of 16 days, 92 percent of the areal extent of inundation receded (2,062,800 m2). Water sampling provided

  13. Conceptual and Numerical Models for UZ Flow and Transport

    SciTech Connect

    H. Liu

    2000-03-03

    The purpose of this Analysis/Model Report (AMR) is to document the conceptual and numerical models used for modeling of unsaturated zone (UZ) fluid (water and air) flow and solute transport processes. This is in accordance with ''AMR Development Plan for U0030 Conceptual and Numerical Models for Unsaturated Zone (UZ) Flow and Transport Processes, Rev 00''. The conceptual and numerical modeling approaches described in this AMR are used for models of UZ flow and transport in fractured, unsaturated rock under ambient and thermal conditions, which are documented in separate AMRs. This AMR supports the UZ Flow and Transport Process Model Report (PMR), the Near Field Environment PMR, and the following models: Calibrated Properties Model; UZ Flow Models and Submodels; Mountain-Scale Coupled Processes Model; Thermal-Hydrologic-Chemical (THC) Seepage Model; Drift Scale Test (DST) THC Model; Seepage Model for Performance Assessment (PA); and UZ Radionuclide Transport Models.

  14. Short-term dispersal of Fukushima-derived radionuclides off Japan: modeling efforts and model-data intercomparison

    NASA Astrophysics Data System (ADS)

    Rypina, I. I.; Jayne, S. R.; Yoshida, S.; Macdonald, A. M.; Douglass, E.; Buesseler, K.

    2013-07-01

    The Great East Japan Earthquake and tsunami that caused a loss of power at the Fukushima nuclear power plants (FNPP) resulted in emission of radioactive isotopes into the atmosphere and the ocean. In June of 2011, an international survey measuring a variety of radionuclide isotopes, including 137Cs, was conducted in surface and subsurface waters off Japan. This paper presents the results of numerical simulations specifically aimed at interpreting these observations and investigating the spread of Fukushima-derived radionuclides off the coast of Japan and into the greater Pacific Ocean. Together, the simulations and observations allow us to study the dominant mechanisms governing this process, and to estimate the total amount of radionuclides in discharged coolant waters and atmospheric airborne radionuclide fallout. The numerical simulations are based on two different ocean circulation models, one inferred from AVISO altimetry and NCEP/NCAR reanalysis wind stress, and the second generated numerically by the NCOM model. Our simulations determine that > 95% of 137Cs remaining in the water within ~600 km of Fukushima, Japan in mid-June 2011 was due to the direct oceanic discharge. The estimated strength of the oceanic source is 16.2 ± 1.6 PBq, based on minimizing the model-data mismatch. We cannot make an accurate estimate for the atmospheric source strength since most of the fallout cesium had left the survey area by mid-June. The model explained several key features of the observed 137Cs distribution. First, the absence of 137Cs at the southernmost stations is attributed to the Kuroshio Current acting as a transport barrier against the southward progression of 137Cs. Second, the largest 137Cs concentrations were associated with a semi-permanent eddy that entrained 137Cs-rich waters, collecting and stirring them around the eddy perimeter. Finally, the intermediate 137Cs concentrations at the westernmost stations are attributed to younger, and therefore less Cs

  15. Basement Fill Model Evaluation of Maximum Radionuclide Concentrations for Initial Suite of Radionuclides. Zion Station Restoration Project

    SciTech Connect

    Sullivan, Terry

    2014-12-10

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant in order to establish a new water treatment plant. There is some residual radioactive particles from the plant which need to be brought down to levels so an individual who receives water from the new treatment plant does not receive a radioactive dose in excess of 25 mrem/y⁻¹ as specified in 10 CFR 20 Subpart E. The objectives of this report are: (a) To present a simplified conceptual model for release from the buildings with residual subsurface structures that can be used to provide an upper bound on radionuclide concentrations in the fill material and the water in the interstitial spaces of the fill. (b) Provide maximum water concentrations and the corresponding amount of mass sorbed to the solid fill material that could occur in each building for use by ZSRP in selecting ROCs for detailed dose assessment calculations.

  16. HUMTRN: documentation and verification for an ICRP-based age- and sex-specific human simulation model for radionuclide dose assessment

    SciTech Connect

    Gallegos, A.F.; Wenzel, W.J.

    1984-06-01

    The dynamic human simulation model HUMTRN is designed specifically as a major module of BIOTRAN to integrate climatic, hydrologic, atmospheric, food crop, and herbivore simulation with human dietary and physiological characteristics, and metabolism and radionuclides to predict radiation doses to selected organs of both sexes in different age groups. The model is based on age- and weight-specific equations developed for predicting human radionuclide transport from metabolic and physical characteristics. These characteristics are modeled from studies documented by the International Commission on Radiological Protection (ICRP 23). HUMTRN allows cumulative doses from uranium or plutonium radionuclides to be predicted by modeling age-specific anatomical, physiological, and metabolic properties of individuals between 1 and 70 years of age and can track radiation exposure and radionuclide metabolism for any age group for specified daily or yearly time periods. The simulated daily dose integration of eight or more simultaneous air, water, and food intakes gives a new, comprehensive, dynamic picture of radionuclide intake, uptake, and hazard analysis for complex scenarios. A detailed example using site-specific data based on the Pantex studies is included for verification. 14 references, 24 figures, 10 tables.

  17. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico.

    PubMed

    Goldstein, Steven J; Abdel-Fattah, Amr I; Murrell, Michael T; Dobson, Patrick F; Norman, Deborah E; Amato, Ronald S; Nunn, Andrew J

    2010-03-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ( approximately 10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that (230)Th/(238)U activity ratios range from 0.005 to 0.48 and (226)Ra/(238)U activity ratios range from 0.006 to 113. (239)Pu/(238)U mass ratios for the saturated zone are <2 x 10(-14), and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order (238)U approximately (226)Ra > (230)Th approximately (239)Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  18. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico

    SciTech Connect

    Goldstein, S.J.; Abdel-Fattah, A.I.; Murrell, M.T.; Dobson, P.F.; Norman, D.E.; Amato, R.S.; Nunn, A. J.

    2009-10-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ({approx}10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that {sup 230}Th/{sup 238}U activity ratios range from 0.005-0.48 and {sup 226}Ra/{sup 238}U activity ratios range from 0.006-113. {sup 239}Pu/{sup 238}U mass ratios for the saturated zone are <2 x 10{sup -14}, and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order {sup 238}U{approx}{sup 226}Ra > {sup 230}Th{approx}{sup 239}Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  19. Use of Transportable Radiation Detection Instruments to Assess Internal Contamination from Intakes of Radionuclides Part II: Calibration Factors and ICAT Computer Program.

    PubMed

    Anigstein, Robert; Olsher, Richard H; Loomis, Donald A; Ansari, Armin

    2016-12-01

    The detonation of a radiological dispersion device or other radiological incidents could result in widespread releases of radioactive materials and intakes of radionuclides by affected individuals. Transportable radiation monitoring instruments could be used to measure radiation from gamma-emitting radionuclides in the body for triaging individuals and assigning priorities to their bioassay samples for in vitro assessments. The present study derived sets of calibration factors for four instruments: the Ludlum Model 44-2 gamma scintillator, a survey meter containing a 2.54 × 2.54-cm NaI(Tl) crystal; the Captus 3000 thyroid uptake probe, which contains a 5.08 × 5.08-cm NaI(Tl) crystal; the Transportable Portal Monitor Model TPM-903B, which contains two 3.81 × 7.62 × 182.9-cm polyvinyltoluene plastic scintillators; and a generic instrument, such as an ionization chamber, that measures exposure rates. The calibration factors enable these instruments to be used for assessing inhaled or ingested intakes of any of four radionuclides: Co, I, Cs, and Ir. The derivations used biokinetic models embodied in the DCAL computer software system developed by the Oak Ridge National Laboratory and Monte Carlo simulations using the MCNPX radiation transport code. The three physical instruments were represented by MCNP models that were developed previously. The affected individuals comprised children of five ages who were represented by the revised Oak Ridge National Laboratory pediatric phantoms, and adult men and adult women represented by the Adult Reference Computational Phantoms described in Publication 110 of the International Commission on Radiological Protection. These calibration factors can be used to calculate intakes; the intakes can be converted to committed doses by the use of tabulated dose coefficients. These calibration factors also constitute input data to the ICAT computer program, an interactive Microsoft Windows-based software package that estimates intakes of

  20. Measuring and Modeling Naturally Occurring Radioactive Material: Interpreting the Relationship Between the Natural Radionuclides Present

    SciTech Connect

    Lombardo, A.J.; Mucha, A.F.

    2008-07-01

    The regulatory release of sites and facilities (property) for restricted or unrestricted use has evolved beyond prescribed levels to model-derived dose and risk based limits. Dose models for deriving corresponding soil and structure radionuclide concentration guidelines are necessarily simplified representations of complex processes. A conceptual site model is often developed to present a reasonable and somewhat conservative representation of the physical and chemical properties of the impacted material. Dose modeling software is then used to estimate resulting dose and/or radionuclide specific acceptance criteria (activity concentrations). When the source term includes any or all of the uranium, thorium or actinium natural decay series radionuclides the interpretation of the relationship between the individual radionuclides of the series is critical to a technically correct and complete assessment of risk and/or derivation of radionuclide specific acceptance criteria. Unlike man-made radionuclides, modeling and measuring naturally occurring radioactive material (NORM) and technologically enhanced NORM (TENORM) source terms involves the interpretation of the relationship between the radionuclide present, e.g., secular equilibrium, enrichment, depletion or transient equilibrium. Isotopes of uranium, radium, and thorium occur in all three natural decay series. Each of the three series also produces a radon gas isotope as one of its progeny. In nature, the radionuclides in the three natural decay series are in a state that is approaching or has achieved secular equilibrium, in which the activities of all radionuclides within each series are nearly equal. However, ores containing the three natural decay series may begin in approximate secular equilibrium, but after processing, equilibrium may be broken and certain elements (and the radioactive isotopes of that element) may be concentrated or removed. Where the original ore may have contained one long chain of natural

  1. MODEL IMPLEMENTATION TO EVALUATE THE COLLECTIVE FUTURE RADIONUCLIDE RELEASES FROM MULTIPLE FACILITIES AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Hiergesell, R.; Smith, F.; Hamm, L.; Phifer, M.; Swingle, R.

    2009-12-15

    A comprehensive Composite Analysis (CA) has been performed considering 152 sources of residual radioactive material at the Savannah River Site (SRS). As part of the CA a model was developed to perform deterministic base case calculations using the commercial GoldSim software. The model treated transport and decay of radionuclides as they are released at the source location and transported through the source region, vadose zone and aquifer to stream outcrops and from there to the Savannah River. A dose to the public was calculated assuming recreational use of stream water and residential use of river water. The specific results from the GoldSim modeling evaluation conducted as part of the CA indicate that the collective maximum dose resulting from the release of radionuclides from all 152 anticipated SRS End State sources of residual radionuclides demonstrate that maximum exposures expected to occur to any offsite MOP will not approach the 300 uSv/yr (30 mrem/yr) dose constraint, and in fact are currently estimated to be only 10% of this. For each of the POA's evaluated, the highest cumulative dose is realized at the Lower Three Runs POA and is calculated to be 29.7 uSv/yr (2.97 mrem/yr). The major dose contributing radionuclide for all of the POA's, with the exception of Upper Three Runs, was {sup 137}Cs in the contaminated streambed sediments. In Upper Three Runs {sup 237}Np from the H-Area Canyon Building was the major dose contributing radionuclide. The major exposure pathway for the SRS streams (where the Recreational Scenario was evaluated) was by the ingestion of fish. In the Savannah River, where the Residential Scenario was evaluated, ingestion of vegetation was the dominant exposure pathway. The uncertainty evaluation lends added assurance to the conclusion that the 30 mrem/yr dose constraint will not be exceeded, in that even at the 95th Percentile, this performance measure is not expected to be exceeded. It must also be added that these conclusions

  2. Structure and Function of Subsurface Microbial Communities Affecting Radionuclide Transport and Bio-immobilization

    SciTech Connect

    Kerkhof, Lee

    2013-10-23

    The goal of this research project was to employ a multi-disciplinary team to investigate the DOE-ERSP Field Research Center at Oak Ridge, TN (ORFRC), which contains well-defined subsurface contaminant plumes with contrasting pH and redox conditions. Part of the team would pursue cultivation-independent characterization of the microbial groups catalyzing relevant biogeochemical reactions to gain an understanding of the physiological mechanisms controlling radionuclide immobilization. Other team members would focus on cultivation and physiological characterization of model microorganisms from the site using single cell sorting methods. In order to understand and predict the in situ function of microbial communities, the PIs hope to develop new strategies for cultivation and to couple phylogenetic structure with microbial community function. Specific objectives by the Rutgers group was to discern the active bacteria at the Oak Ridge Research Field Challenge Site: 1. by applying stable isotope probing techniques to enrichment cultures developed from Florida State University; 2. by fingerprinting intact rRNA from groundwater samples obtained along the various flow pathways at ORFRC; and 3. by identifying functional genes for N and S cycling along the flowpaths to aid in detection of active bacteria.

  3. A DFN-based High Performance Computing Approach to the Simulation of Radionuclide Transport in Mineralogically Heterogeneous Fractured Rocks

    NASA Astrophysics Data System (ADS)

    Gylling, B.; Trinchero, P.; Molinero, J.; Deissmann, G.; Svensson, U.; Ebrahimi, H.; Hammond, G. E.; Bosbach, D.; Puigdomenech, I.

    2016-12-01

    Geological repositories for nuclear waste are based multi-barrier concepts using engineered and natural barriers. In fractured crystalline rocks, the efficiency of the host rock as transport barrier is related to the processes: advection along fractures, diffusion into the rock matrix and retention onto the available sorption sites. Anomalous matrix penetration profiles were observed in experiments (i.e. REPRO carried out by Posiva at the ONKALO underground facility in Finland and the Long Term Sorption Diffusion Experiment, LTDE-SD, carried out by SKB at the Äspö Hard Rock Laboratory in Sweden). The textural and mineralogical heterogeneity of the rock matrix was offered as plausible explanation for these anomalous penetration profiles. The heterogeneous structure of the rock matrix was characterised at the grain-scale using a micron-scale Discrete Fracture Network (DFN), which is then represented onto a micron-scale structured grid. Matrix fracture free volumes are identified as reactive biotite-bearing grains whereas the rest of the matrix domain constitutes the inter-granular regions. The reactive transport problem mimics the ingress of cesium along a single transmissive fracture. Part of the injected mass diffuses into the matrix where it might eventually sorb onto the surface of reactive grains. The reactive transport calculations are carried out using iDP (interface between DarcyTools and PFLOTRAN). The generation of the DFN is done by DarcyTools, which also takes care of solving the groundwater flow problem. Computed Darcy velocities are extracted and used as input for PFLOTRAN. All the simulation runs are carried out on the supercomputer JUQUEEN at the Jülich Supercomputing Centre. The results are compared with those derived with an alternative model, where biotite abundance is averaged over the whole matrix volume. The analysis of the cesium breakthrough computed at the fracture outlet shows that the averaged model provides later first-arrival time

  4. Modelling and experimental studies on the transfer of radionuclides to fruit.

    PubMed

    Carini, F; Atkinson, C J; Collins, C; Coughtrey, P J; Eged, K; Fulker, M; Green, N; Kinnersley, R; Linkov, I; Mitchell, N G; Mourlon, C; Ould-Dada, Z; Quinault, J M; Robles, B; Stewart, A; Sweeck, L; Venter, A

    2005-01-01

    Although fruit is an important component of the diet, the extent to which it contributes to radiological exposure remains unclear, partially as a consequence of uncertainties in models and data used to assess transfer of radionuclides in the food chain. A Fruits Working Group operated as part of the IAEA BIOMASS (BIOsphere Modelling and ASSessment) programme from 1997 to 2000, with the aim of improving the robustness of the models that are used for radiological assessment. The Group completed a number of modelling and experimental activities including: (i) a review of experimental, field and modelling information on the transfer of radionuclides to fruit; (ii) discussion of recently completed or ongoing experimental studies; (iii) development of a database on the transfer of radionuclides to fruit; (iv) development of a conceptual model for fruit and (v) two model intercomparison studies and a model validation study. The Group achieved significant advances in understanding the processes involved in transfer of radionuclides to fruit. The work demonstrated that further experimental and modelling studies are required to ensure that the current generation of models can be applied to a wide range of scenarios.

  5. A new general dynamic model predicting radionuclide concentrations and fluxes in coastal areas from readily accessible driving variables.

    PubMed

    Håkanson, Lars

    2005-01-01

    This paper presents a general, process-based dynamic model for coastal areas for radionuclides (metals, organics and nutrients) from both single pulse fallout and continuous deposition. The model gives radionuclide concentrations in water (total, dissolved and particulate phases and concentrations in sediments and fish) for entire defined coastal areas. The model gives monthly variations. It accounts for inflow from tributaries, direct fallout to the coastal area, internal fluxes (sedimentation, resuspension, diffusion, burial, mixing and biouptake and retention in fish) and fluxes to and from the sea outside the defined coastal area and/or adjacent coastal areas. The fluxes of water and substances between the sea and the coastal area are differentiated into three categories of coast types: (i) areas where the water exchange is regulated by tidal effects; (ii) open coastal areas where the water exchange is regulated by coastal currents; and (iii) semi-enclosed archipelago coasts. The coastal model gives the fluxes to and from the following four abiotic compartments: surface water, deep water, ET areas (i.e., areas where fine sediment erosion and transport processes dominate the bottom dynamic conditions and resuspension appears) and A-areas (i.e., areas of continuous fine sediment accumulation). Criteria to define the boundaries for the given coastal area towards the sea, and to define whether a coastal area is open or closed are given in operational terms. The model is simple to apply since all driving variables may be readily accessed from maps and standard monitoring programs. The driving variables are: latitude, catchment area, mean annual precipitation, fallout and month of fallout and parameters expressing coastal size and form as determined from, e.g., digitized bathymetric maps using a GIS program. Selected results: the predictions of radionuclide concentrations in water and fish largely depend on two factors, the concentration in the sea outside the given

  6. Mobility of Source Zone Heavy Metals and Radionuclides: The Mixed Roles of Fermentative Activity on Fate and Transport of U and Cr

    SciTech Connect

    Apel, William; Peyton, Brent; Gerlach, Robin; Lee, Brady

    2006-04-05

    Various U. S. Department of Energy (DOE) low and medium-level radioactive waste sites contain mixtures of heavy metals, radionuclides and assorted organic materials. Over time, water infiltrates the wastes, and releases metals and radionuclides causing transport into the surrounding environment. We propose that fermentative microorganisms are active in these sites and may control metal and radionuclide migration from source zones (Figure 1). The following overarching hypothesis will drive our research: 'Metals and radionuclides can be mobilized by infiltration of water into waste storage sites. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These low molecular weight organic compounds can increase metal and radionuclide mobility by chelation (i.e., certain organic acids) or decrease mobility by stimulating respiratory metal reducing microorganisms.' The objective of our research is to determine the effect of carbon and energy flow through simulated waste environments on metal and radionuclide migration from waste pits and trenches across the DOE complex. Metals and radionuclides can be mobilized by infiltration of water into waste storage sites. Cellulolytic and non-cellulolytic fermentative microorganisms have been chosen as the focus of this research because their activity is a critical first step that we hypothesize will control subsequent fate and transport in contaminated natural systems. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These

  7. Particle Tracking Model and Abstraction of Transport Processes

    SciTech Connect

    B. Robinson

    2004-10-21

    The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data.

  8. Railway switch transport model.

    PubMed

    Horvat, Martin; Prosen, Tomaž; Benenti, Giuliano; Casati, Giulio

    2012-11-01

    We propose a simple model of coupled heat and particle transport based on zero-dimensional classical deterministic dynamics, which is reminiscent of a railway switch whose action is a function only of the particle's energy. It is shown that already in the minimal three-terminal model, where the second terminal is considered as a probe with zero net particle and heat currents, one can find extremely asymmetric Onsager matrices as a consequence of time-reversal symmetry breaking of the model. This minimalistic transport model provides a better understanding of thermoelectric heat engines in the presence of time-reversal symmetry breaking.

  9. Modeling Transport Layer Protocols

    NASA Astrophysics Data System (ADS)

    Sasnauskas, Raimondas; Weingaertner, Elias

    In a layered communication architecture, transport layer protocols handle the data exchange between processes on different hosts over potentially lossy communication channels. Typically, transport layer protocols are either connection-oriented or are based on the transmission of individual datagrams. Well known transport protocols are the connection-oriented Transmission Control Protocol (TCP) [372] and the User Datagram Protocol (UDP) [370] as well as the Stream Control Transmission Protocol (SCTP) [340] and DCCP, the Datagram Congestion Control Protocol [259]. In this chapter, we focus on the modeling process of the transport layer. While we mostly use TCP and UDP as a base of comparison from this point, we emphasize that the methodologies discussed further on are conferrable to virtually any transport layer in any layered communication architecture.

  10. Application of natural radionuclides for determination of tropospheric ozone and aerosol transport.

    SciTech Connect

    Gaffney, J. S.; Marley, N. A.; Drayton, P. J.; Orlandini, K. A.

    2000-12-06

    Natural radionuclides have been proposed for use in assessing the transport of ozone and aerosols in the troposphere. For example, {sup 7}Be is known to be produced in the upper troposphere and lower stratosphere by interactions with cosmogenic particles. Beryllium-7 has a 53.28-day half-life and is a gamma emitter that attaches itself to fine particles in the atmosphere once it is formed. Indeed, in tropospheric aerosol samples TBe is typically found in association with aerosol particles that are 0.3 {micro}m in diameter. Some investigators have asserted that ozone from aloft can be transported into rural and urban regions during stratospheric/tropospheric folding events, leading to increased background levels of ozone. During the Texas 2000 Air Quality study, aerosol samples with a 2.5-{micro}m cutoff were collected during 12-hour cycles (day/night) for a 30-day period at the Deer Park, Texas, field site in August-September 2000. To monitor {sup 7}Be levels, high-volume samples were collected on glass fiber filters on Julian dates 225-259. Sample collection was at a field site near a city park, away from any nearby traffic. This site is under routine operation by the Texas Natural Resource Conservation Commission. Instruments operated at this same site during the study period included an ozone monitor (Dasibi), a nitrogen oxides instrument (API), a CO instrument (API), a nephelometer, a UV-B meter (Richardson-Berger), and a multifilter rotating shadow band radiometer (MFRSR, Yankee Environmental Systems). In addition, we made modified fast-response NO{sub 2} and peroxyacetyl nitrate (PAN) measurements by using a fast gas chromatography with luminol detection, to be described at this meeting (3). The results for {sup 7}Be (mBq m{sup {minus}3})are compared in Figure 1 with the maximum and average ozone values (ppb) observed at the site to identify potential correlations. In Figure 2, all of the {sup 7}Be data are plotted against the maximum and average ozone

  11. Lagrangian Sediment Transport Model

    NASA Astrophysics Data System (ADS)

    Maderych, V.; Brovchenko, I.; Fenical, S.; Shepsis, V.

    2004-12-01

    A new two-dimensional Lagrangian sediment transport model was developed to simulate a wide-range of sediment transport processes, including sediment mobility under combined current and wave action, sediment transport and bed change under wave and currents effects, sediment transport patterns at nearshore coastal and offshore structures, and turbidity and sediment motion during dredging and dredged material placement. The Lagrangian technique was used to simulate transport of sediments, deposition, and re-suspension. The model can be applied to cohesive, non-cohesive, or mixed sediments. The sediment transport is simulated using bathymetry data, bed resistance characteristics, wave height and period, depth-averaged current velocity and bed material type, size and gradation, which vary throughout the model domain.The non-cohesive sediment transport model is based on a solution of two-dimensional mass conservation equations for the bed layer material and 2D equations for movement of sediment fractions either bed load or suspended load. The water column and bottom are divided into a set of layers: water layer, active layer, several active bed layers, and the bed layer. The model also takes into account the effects of armoring and changes in the bed composition. Cohesive sediments move entirely as suspended load in the water layer and sediment transport computations are based on a solution of the two-dimensional mass conservation equations for the bed layer material and two-dimensional equations for movement of sediment as suspended load. The water column and bed, as for non-cohesive sediments, was divided into a set of layers. Following the approach of Van Ledden (2002), the erosion of sediments made up of mud and sand mixtures is non-cohesive if the mud content is below a critical level. Above a critical mud content, the bed behaves cohesively. Deposition fluxes of mud and sand are independent. The sediment concentration in the water and active layer is represented by

  12. The importance of transport parameter cross correlations in natural systems radioactive transport models

    SciTech Connect

    Reimus, Paul W

    2011-01-03

    Transport parameter cross correlations are rarely considered in models used to predict radionuclide transport in natural systems. In this paper, it is shown that parameter cross correlations could have a significant impact on radionuclide transport predictions in saturated media. In fractured rock, the positive correlation between fracture apertures and groundwater residence times is shown to result in significantly less retardation due to matrix diffusion than is predicted without the correlation. The suppression of matrix diffusion is further amplified by a tendency toward larger apertures, smaller matrix diffusion coefficients, and less sorption capacity in rocks of lower matrix porosity. In a hypothetical example, strong cross correlations between these parameters result in a decrease in predicted radionuclide travel times of an order of magnitude or more relative to travel times calculated with uncorrelated parameters. In porous media, expected correlations between permeability, porosity, and sorption capacity also result in shorter predicted travel times than when the parameters are assumed to be uncorrelated. Individual parameter standard deviations can also have a significant influence on predicted radionuclide travel times, particularly when cross correlations are considered.

  13. Distribution and transport kinetics of radionuclides sup 99 Mo and sup 131 I in a simulated aquatic ecosystem

    SciTech Connect

    Svadlenkova, M.; Konecny, J.; Obdrzalek, M.; Simanov, L. )

    1990-04-01

    Radioactive liquid wastes from nuclear power stations increase the activity not only of water but also of sediment, aquatic and shore plants, and animals. On average, the majority of the total radioactivity brought to the aquatic system is absorbed by the sediment; the remaining fraction is distributed between water and biomass. For us to be able to assess the influence of the nuclear power station at Temelin in South Bohemia on the nearby hydrosphere, the authors concentrated first on the experimental investigation of the distribution and transport kinetics of some radionuclides in a simulated aquatic system.

  14. Patient-Specific Dosimetry and Radiobiological Modeling of Targeted Radionuclide Therapy Grant - final report

    SciTech Connect

    George Sgouros, Ph.D.

    2007-03-20

    The broad, long-term objectives of this application are to 1. develop easily implementable tools for radionuclide dosimetry that can be used to predict normal organ toxicity and tumor response in targeted radionuclide therapy; and 2. to apply these tools to the analysis of clinical trial data in order to demonstrate dose-response relationships for radionuclide therapy treatment planning. The work is founded on the hypothesis that robust dose-response relationships have not been observed in targeted radionuclide therapy studies because currently available internal dosimetry methodologies are inadequate, failing to adequately account for individual variations in patient anatomy, radionuclide activity distribution/kinetics, absorbed dose-distribution, and absorbed dose-rate. To reduce development time the previously available software package, 3D-ID, one of the first dosimetry software packages to incorporate 3-D radionuclide distribution with individual patient anatomy; and the first to be applied for the comprehensive analysis of patient data, will be used as a platform to build the functionality listed above. The following specific aims are proposed to satisfy the long-term objectives stated above: 1. develop a comprehensive and validated methodology for converting one or more SPECT images of the radionuclide distribution to a 3-D representation of the cumulated activity distribution; 2. account for differences in tissue density and atomic number by incorporating an easily implementable Monte Carlo methodology for the 3-D dosimetry calculations; 3. incorporate the biologically equivalent dose (BED) and equivalent uniform dose (EUD) models to convert the spatial distribution of absorbed dose and dose-rate into equivalent single values that account for differences in dose uniformity and rate and that may be correlated with tumor response and normal organ toxicity; 4. test the hypothesis stated above by applying the resulting package to patient trials of targeted

  15. A model for calculating radionuclide concentrations in the Fermilab industrial cooling water system

    SciTech Connect

    Cossairt, J.Donald; /Fermilab

    2007-10-01

    Large particle accelerators such as those at the Fermi National Accelerator Laboratory (Fermilab) unavoidably produce radionuclides in their bulk shielding and also require large volume process cooling water systems to handle electrical heat loads. The Neutrinos at the Main Injector (NuMI) beam facility came on line during CY 2005. After several months of initial operation of this facility, measurable concentrations of {sup 3}H as tritiated water were identified throughout the Industrial Cooling Water (ICW) system. This was the first identification of measurable concentrations of any radionuclide leaving the Fermilab site, motivating an extensive effort to understand these discharges in order to minimize environmental releases. As part of this work, a simple model of radionuclide concentrations in this system has been developed.

  16. Modeling the fate of radionuclides in the unsaturated zone at the Nevada Test Site: Examples from Yucca Flat and Rainier Mesa

    NASA Astrophysics Data System (ADS)

    Kwicklis, E. M.; Dash, Z. V.; Viswanathan, H. S.; Levitt, D. G.; Lu, Z.; Dai, Z.; Zyvoloski, G.; Gable, C. W.; Miller, T. A.

    2010-12-01

    The Nevada Test Site (NTS), located 105 km northwest of Las Vegas, Nevada, hosted 828 underground nuclear explosions between 1951 and 1992, leaving an estimated 1.3e+08 curies of tritium, fission products, activation products and unspent fuel in the subsurface when the nuclear test moratorium was adopted in September, 1992. In two former testing areas of the NTS - Yucca Flat and Rainier Mesa- a significant fraction of the initial radionuclide inventory was introduced from nuclear tests with working points in the unsaturated zone. In Yucca Flat, an arid, low-elevation alluvium-filled basin where most tests were conducted in vertical shafts, unsaturated flow and transport models indicate that radionuclide migration to the water table is most likely where overlying subsidence craters receive significant infiltration from overland flow during infrequent runoff events. At Rainier Mesa, a wetter, high-elevation remnant of a once more extensive volcanic plateau, most tests were conducted at the ends of horizontal drifts in the vicinity of local perched water zones. Unsaturated flow and transport models of one of the larger tunnel complexes (N-tunnel) indicate that despite relatively high infiltration rates on the mesa, radionuclide diffusion from the flowing fractures to the porous matrix may significantly attenuate radionuclide movement to the water table.

  17. Flow and Transport of Radionuclides in the Rhizosphere: Imaging and Measurements in a 2D System

    NASA Astrophysics Data System (ADS)

    Pales, Ashley; Darnault, Christophe; Li, Biting; Clifford, Heather; Montgomery, Dawn; Moysey, Stephen; Powell, Brian; DeVol, Tim; Erdmann, Bryan; Edayilam, Nimisha; Tharayil, Nishanth; Dogan, Mine; Martinez, Nicole

    2017-04-01

    This research aims to build upon past 2D tank light transmission methods to quantify real-time flow in unsaturated porous media, understand how exudates effect unstable flow patterns, and understand radionuclide mobility and dispersion in the subsurface. A 2D tank light transmission method was created using a transparent flow through tank coupled with a random rainfall simulator; a commercial LED light and a CMOS DSLR Nikon D5500 camera were used to capture the real-time flow images. The images were broken down from RGB into HVI and analyzed in Matlab to produce quantifiable data about finger formation and water saturation distribution. Radionuclide locations were determined via handheld gamma scanner. Water saturation along the vertical and horizontal profile (Matlab) was used to quantify the finger more objectively than by eye assessment alone. The changes in finger formation and speed of propagation between the control rain water (0.01M NaCl) and the solutions containing plant exudates illustrates that the plant exudates increased the wettability (mobility) of water moving through unsaturated porous media. This understanding of plant exudates effect on unsaturated flow is important for works studying how plants, their roots and exudates, may affect the mobility of radionuclides in unsaturated porous media. As there is an increase in exudate concentration, the mobility of the radionuclides due to changing flow pattern and available water content in porous media may be improved causing more dispersion in the porous media and intake into the plant. Changes in plant root exudation impact the distribution and density of radionuclides in the rhizosphere and vadose zone.

  18. Analysis of models assessing the radionuclide migration from catchments to water bodies

    SciTech Connect

    Monte, L.

    1996-02-01

    In this paper the analysis of models for assessing the migration of radioactive substances from catchments to water bodies was carried out. Comparisons are made between the mathematical form of the experimental dissolved radionuclide transfer functions (Transfer Function = the amount of radionuclide flowing per unit time from upstream drainage basin to a water body following a single-pulse deposition of radioactive substance) evaluated for rivers in Europe contaminated after the Chernobyl accident, with the {open_quotes}Green Functions{close_quotes} (Green Function = the radionuclide flow per unit time from catchment to water body calculated by the model as a result of a single-pulse input deposition) characterizing some of the most common models. Generally transfer functions are the sum of some time-dependent exponential components. The analysis showed that two main components (a short-term and a long-term component) may be detected over a period of only a few years after the accident. The comparison of transfer functions and Green functions showed that (1) models based on the traditional concept of k{sub d} (the radionuclide partition coefficient soil-water) do not explain the higher value of the experimental long-term effective-decay constant for {sup 137}Cs compared with {sup 90}Sr; and (2) traditional models do not explain the nonlinear dependence of the flux (Bq s{sup -1}) of dissolved {sup 90}Sr migrating through a catchment as a function of the water flux. A semi-empirical model was developed to give reason for the above effects. This model is based on phenomena of water saturation in different soil layers and on the nonreversible processes responsible for the non-availability to migration of radionuclides. 12 refs., 4 figs., 7 tabs.

  19. Modeling of the fate of radionuclides in urban sewer systems after contamination due to nuclear or radiological incidents.

    PubMed

    Urso, L; Kaiser, J C; Andersson, K G; Andorfer, H; Angermair, G; Gusel, C; Tandler, R

    2013-04-01

    After an accidental radioactive contamination by aerosols in inhabited areas, the radiation exposure to man is determined by complex interactions between different factors such as dry or wet deposition, different types of ground surfaces, chemical properties of the radionuclides involved and building development as well as dependence on bomb construction e.g. design and geometry. At short-term, the first rainfall is an important way of natural decontamination: deposited radionuclides are washed off from surfaces and in urban areas the resulting contaminated runoff enters the sewer system and is collected in a sewage plant. Up to now the potential exposure caused by this process has received little attention and is estimated here with simulation models. The commercial rainfall-runoff model for urban sewer systems KANAL++ has been extended to include transport of radionuclides from surfaces through the drainage to various discharge facilities. The flow from surfaces is modeled by unit hydrographs, which produce boundary conditions for a system of 1d coupled flow and transport equations in a tube system. Initial conditions are provided by a map of surface contamination which is produced by geo-statistical interpolation of γ-dose rate measurements taking into account the detector environment. The corresponding methodology is implemented in the Inhabited Area Monitoring Module (IAMM) software module as part of the European decision system JRODOS. A hypothetical scenario is considered where a Radiation Dispersal Device (RDD) with Cs-137 is detonated in a small inhabited area whose drainage system is realistically modeled. The transition of deposited radionuclides due to rainfall into the surface runoff is accounted for by different nuclide-specific entrainment coefficients for paved and unpaved surfaces. The concentration of Cs-137 in water is calculated at the nodes of the drainage system and at the sewage treatment plant. The external exposure to staff of the

  20. Revisiting the radionuclide atmospheric dispersion event of the Chernobyl disaster - modelling sensitivity and data assimilation

    NASA Astrophysics Data System (ADS)

    Roustan, Yelva; Duhanyan, Nora; Bocquet, Marc; Winiarek, Victor

    2013-04-01

    A sensitivity study of the numerical model, as well as, an inverse modelling approach applied to the atmospheric dispersion issues after the Chernobyl disaster are both presented in this paper. On the one hand, the robustness of the source term reconstruction through advanced data assimilation techniques was tested. On the other hand, the classical approaches for sensitivity analysis were enhanced by the use of an optimised forcing field which otherwise is known to be strongly uncertain. The POLYPHEMUS air quality system was used to perform the simulations of radionuclide dispersion. Activity concentrations in air and deposited to the ground of iodine-131, caesium-137 and caesium-134 were considered. The impact of the implemented parameterizations of the physical processes (dry and wet depositions, vertical turbulent diffusion), of the forcing fields (meteorology and source terms) and of the numerical configuration (horizontal resolution) were investigated for the sensitivity study of the model. A four dimensional variational scheme (4D-Var) based on the approximate adjoint of the chemistry transport model was used to invert the source term. The data assimilation is performed with measurements of activity concentrations in air extracted from the Radioactivity Environmental Monitoring (REM) database. For most of the investigated configurations (sensitivity study), the statistics to compare the model results to the field measurements as regards the concentrations in air are clearly improved while using a reconstructed source term. As regards the ground deposited concentrations, an improvement can only be seen in case of satisfactorily modelled episode. Through these studies, the source term and the meteorological fields are proved to have a major impact on the activity concentrations in air. These studies also reinforce the use of reconstructed source term instead of the usual estimated one. A more detailed parameterization of the deposition process seems also to be

  1. Interpreting aerosol lifetimes using the GEOS-Chem model and constraints from radionuclide measurements

    NASA Astrophysics Data System (ADS)

    Croft, B.; Pierce, J. R.; Martin, R. V.

    2014-04-01

    Aerosol removal processes control global aerosol abundance, but the rate of that removal remains uncertain. A recent study of aerosol-bound radionuclide measurements after the Fukushima Daiichi nuclear power plant accident documents 137Cs removal (e-folding) times of 10.0-13.9 days, suggesting that mean aerosol lifetimes in the range of 3-7 days in global models might be too short by a factor of two. In this study, we attribute this discrepancy to differences between the e-folding and mean aerosol lifetimes. We implement a simulation of 137Cs and 133Xe into the GEOS-Chem chemical transport model and examine the removal rates for the Fukushima case. We find a general consistency between modelled and measured e-folding times. The simulated 137Cs global burden e-folding time is about 14 days. However, the simulated mean lifetime of aerosol-bound 137Cs over a 6-month post-accident period is only 1.8 days. We find that the mean lifetime depends strongly on the removal rates in the first few days after emissions, before the aerosols leave the boundary layer and are transported to altitudes and latitudes where lifetimes with respect to wet removal are longer by a few orders of magnitude. We present sensitivity simulations that demonstrate the influence of differences in altitude and location of the radionuclides on the mean lifetime. Global mean lifetimes are shown to strongly depend on the altitude of injection. The global mean 137Cs lifetime is more than one order of magnitude greater for the injection at 7 km than into the boundary layer above the Fukushima site. Instantaneous removal rates are slower during the first few days after the emissions for a free tropospheric versus boundary layer injection and this strongly controls the mean lifetimes. Global mean aerosol lifetimes for the GEOS-Chem model are 3-6 days, which is longer than that for the 137Cs injected at the Fukushima site (likely due to precipitation shortly after Fukushima emissions), but similar to the

  2. Monte Carlo-based evaluation of S-values in mouse models for positron-emitting radionuclides

    NASA Astrophysics Data System (ADS)

    Xie, Tianwu; Zaidi, Habib

    2013-01-01

    In addition to being a powerful clinical tool, Positron emission tomography (PET) is also used in small laboratory animal research to visualize and track certain molecular processes associated with diseases such as cancer, heart disease and neurological disorders in living small animal models of disease. However, dosimetric characteristics in small animal PET imaging are usually overlooked, though the radiation dose may not be negligible. In this work, we constructed 17 mouse models of different body mass and size based on the realistic four-dimensional MOBY mouse model. Particle (photons, electrons and positrons) transport using the Monte Carlo method was performed to calculate the absorbed fractions and S-values for eight positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Y-86 and I-124). Among these radionuclides, O-15 emits positrons with high energy and frequency and produces the highest self-absorbed S-values in each organ, while Y-86 emits γ-rays with high energy and frequency which results in the highest cross-absorbed S-values for non-neighbouring organs. Differences between S-values for self-irradiated organs were between 2% and 3%/g difference in body weight for most organs. For organs irradiating other organs outside the splanchnocoele (i.e. brain, testis and bladder), differences between S-values were lower than 1%/g. These appealing results can be used to assess variations in small animal dosimetry as a function of total-body mass. The generated database of S-values for various radionuclides can be used in the assessment of radiation dose to mice from different radiotracers in small animal PET experiments, thus offering quantitative figures for comparative dosimetry research in small animal models.

  3. Vegetation-derived insights on the mobilization and potential transport of radionuclides from the Nopal I natural analog site, Mexico

    SciTech Connect

    Leslie, B.W.; Pickett, D.A.; Pearcy, E.C.

    1999-07-01

    The Nopal I uranium (U) deposit, Pena Blanca, Mexico is a source term and contaminant transport natural analog to the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. In an attempt to characterize the mobilization and potential transport of radionuclides in the unsaturated zone at the Nopal I deposit, vegetation growing on ore piles was analyzed for {sup 238}U, {sup 235}U, and {sup 232}Th decay-series isotopes. Specimens of Phacelia robusta growing on high-grade piles of U ore were collected and analyzed by alpha autoradiography, and by alpha and gamma spectrometry. Activities for U, thorium (Th), and radium (Ra) isotopes (Bq/kg dried plant) were 300, 1,000, and 7,000 for {sup 238}U, {sup 230}Th, and {sup 226}Ra, respectively. The {sup 226}Ra activities in these specimens are among the highest ever measured for plants; furthermore, the plant-to-soil {sup 226}Ra concentration ratio is higher than expected. These results demonstrate the large mobility and bio-availability of Ra in the Nopal I environment, and support previous indications of recent loss of {sup 226}Ra from the ore body. Comparison between the activities of {sup 238}U and {sup 232}Th decay-chain Th isotopes in the plants and in the ore substrate indicate that relative mobilization into pore solutions of {sup 228}Th > {sup 230}Th > {sup 232}Th, in a ratio of about 50--25:4:1, respectively. The similarity of the plant's {sup 234}U/{sup 238}U activity ratio ({approximately}1.2) to that of a caliche deposit that formed adjacent to the Nopal ore body around 54 ka suggests the {sup 234}U/{sup 238}U activity ratio of U released from the ore is approximately 1.2. The U and {sup 226}Ra isotope activities of the plants and ore substrate, and solubility considerations, are used to assess a source term model of the potential Yucca Mountain repository. These results suggest the use of a natural analog source term model in performance assessments may be non-conservative.

  4. Stratospheric Transport Modelling

    NASA Astrophysics Data System (ADS)

    Simon, P.

    The MOCAGE chemistry-transport model (CTM) is a new model that has been de- veloped by Météo-France for the study of atmospheric chemistry. The standard ver- sion of the model uses a Semi-Lagrangian (SL) transport scheme, but other numerical schemes (Prather, PPM, etc) can also be activated. It is well known that the main strength of a SL transport scheme is its computational efficiency due to the possible use of large time-steps even for high resolutions; on the other hand, this scheme has two major deficiencies, namely its relatively strong diffusivity and its bad conservation properties. In this study, we shall investigate the impact of the numerics of the model's transport on a seasonal simulation of the stratospheric chemistry. Results from a se- ries of sensitivity experiments will be presented, addressing the following aspects: (1) comparison between the SL scheme and the other schemes (2) how to improve the performance of the SL scheme ? (3) impact of the model's geometry (isobaric vs isentropic levels)

  5. Radiation Effects on the Sorption and Mobilization of Radionuclide during Transport through the Geosphere

    SciTech Connect

    L.M. Wang; R.C. Eqing; K.F. Hayes

    2004-03-14

    Site restoration activities at DOE facilities and the permanent disposal of nuclear waste inevitably involve understanding the behavior of materials in a radiation field. Radionuclide decay and the associated radiation fields lead to physical and chemical changes that can degrade or enhance important material properties. Alpha-decay of the actinide elements and beta-decay of the fission products lead to atomic-scale changes in materials (radiation damage and transmutation).

  6. Reactive transport modeling

    USDA-ARS?s Scientific Manuscript database

    This special section in the Vadose Zone Journal focusing on reactive transport modeling was developed from a special symposium jointly sponsored by the Soil Physics and Soil Chemistry Divisions of the Soil Science Society of America at the 2010 annual meetings held in Long Beach, CA. It contains eig...

  7. Annual report, October 1980-September 1981 Multimedia radionuclide exposure assessment modeling.

    SciTech Connect

    Whelan, G.; Onishi, Y.; Simmons, C.S.; Horst, T.W.; Gupta, S.K.; Orgill, M.M.; Newbill, C.A.

    1982-12-01

    Pacific Northwest Laboratory (PNL) and Los Alamos National Laboratory (LANL) are jointly developing a methodology for assessing exposures of the air, water, and plants to radionuclides as part of an overall development effort of a radionuclide disposal site evaluation methodology. Work in FY-1981 continued the development of the Multimedia Contaminant Environmental Exposure Assessment (MCEA) methodology and initiated an assessment of radionuclide migration in Los Alamos and Pueblo Canyons, New Mexico, using the methodology. The AIRTRAN model was completed, briefly tested, and documented. In addition, a literature search for existing validation data for AIRTRAN was performed. The feasibility and advisability of including the UNSAT moisture flow model as a submodel of the terrestrial code BIOTRAN was assessed. A preliminary application of the proposed MCEA methodology, as it related to the Mortandad-South Mortandad Canyon site in New Mexico is discussed. This preliminary application represented a scaled-down version of the methodology in which only the terrestrial, overland, and surface water components were used. An update describing the progress in the assessment of radionuclide migration in Los Alamos and Pueblo Canyons is presented. 38 references, 47 figures, 11 tables.

  8. Radionuclide Therapy

    NASA Astrophysics Data System (ADS)

    Zalutsky, M. R.

    Radionuclide therapy utilizes unsealed sources of radionuclides as a treatment for cancer or other pathological conditions such as rheumatoid arthritis. Radionuclides that decay by the emission of β and α particles, as well as those that emit Auger electrons, have been used for this purpose. In this chapter, radiochemical aspects of radionuclide therapy, including criteria for radionuclide selection, radionuclide production, radiolabeling chemistry, and radiation dosimetry are discussed.

  9. Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system.

    PubMed

    Basit, Abdul; Espinosa, Francisco; Avila, Ruben; Raza, S; Irfan, N

    2008-12-01

    In this paper we present an atmospheric dispersion scenario for a proposed nuclear power plant in Pakistan involving the hypothetical accidental release of radionuclides. For this, a concept involving a Lagrangian stochastic particle model (LSPM) coupled with an Eulerian regional atmospheric modelling system (RAMS) is used. The atmospheric turbulent dispersion of radionuclides (represented by non-buoyant particles/neutral traces) in the LSPM is modelled by applying non-homogeneous turbulence conditions. The mean wind velocities governed by the topography of the region and the surface fluxes of momentum and heat are calculated by the RAMS code. A moving least squares (MLS) technique is introduced to calculate the concentration of radionuclides at ground level. The numerically calculated vertical profiles of wind velocity and temperature are compared with observed data. The results obtained demonstrate that in regions of complex terrain it is not sufficient to model the atmospheric dispersion of particles using a straight-line Gaussian plume model, and that by utilising a Lagrangian stochastic particle model and regional atmospheric modelling system a much more realistic estimation of the dispersion in such a hypothetical scenario was ascertained. The particle dispersion results for a 12 h ground release show that a triangular area of about 400 km(2) situated in the north-west quadrant of release is under radiological threat. The particle distribution shows that the use of a Gaussian plume model (GPM) in such situations will yield quite misleading results.

  10. Dynamic modelling of radionuclide uptake by marine biota: application to the Fukushima nuclear power plant accident.

    PubMed

    Vives i Batlle, Jordi

    2016-01-01

    The dynamic model D-DAT was developed to study the dynamics of radionuclide uptake and turnover in biota and sediments in the immediate aftermath of the Fukushima accident. This dynamics is determined by the interplay between the residence time of radionuclides in seawater/sediments and the biological half-lives of elimination by the biota. The model calculates time-variable activity concentration of (131)I, (134)Cs, (137)Cs and (90)Sr in seabed sediment, fish, crustaceans, molluscs and macroalgae from surrounding activity concentrations in seawater, with which to derive internal and external dose rates. A central element of the model is the inclusion of dynamic transfer of radionuclides to/from sediments by factorising the depletion of radionuclides adsorbed onto suspended particulates, molecular diffusion, pore water mixing and bioturbation, represented by a simple set of differential equations coupled with the biological uptake/turnover processes. In this way, the model is capable of reproducing activity concentration in sediment more realistically. The model was used to assess the radiological impact of the Fukushima accident on marine biota in the acute phase of the accident. Sediment and biota activity concentrations are within the wide range of actual monitoring data. Activity concentrations in marine biota are thus shown to be better calculated by a dynamic model than with the simpler equilibrium approach based on concentration factors, which tends to overestimate for the acute accident period. Modelled dose rates from external exposure from sediment are also significantly below equilibrium predictions. The model calculations confirm previous studies showing that radioactivity levels in marine biota have been generally below the levels necessary to cause a measurable effect on populations. The model was used in mass-balance mode to calculate total integrated releases of 103, 30 and 3 PBq for (131)I, (137)Cs and (90)Sr, reasonably in line with previous

  11. Behaviour and transport of radionuclides in soil and vegetation of a sand dune ecosystem.

    PubMed

    Copplestone, D; Johnson, M S; Jones, S R

    2001-01-01

    A sand dune ecosystem in the vicinity of the British Nuclear Fuels reprocessing plant at Sellafield, Cumbria, UK was used to examine the spatial, temporal and depth distributions of 134Cs, 137Cs, 238Pu, 239 + 240Pu and 241Am in soil and in two species of vegetation (Festuca rubra, Ammophila arenaria). Core samples showed evidence of the accumulation of radionuclides derived mainly from sea-to-land transfer. Accumulated deposits of radioactivity (0-0.1 m) lie within the range: 1.1-3.4 Bq kg-1 (134Cs), 260-440 Bq kg-1 (137Cs), 31-40 Bq kg-1 (238Pu), 150-215 Bq kg-1 (239 + 240Pu) and 190-240 Bq kg-1 (241Am). Soil profiles showed greater activity concentrations in their deeper regions and this is attributed to leaching of radionuclides in percolating drainage water accentuated by the coarse texture, low organic matter and clay mineral content of coastal sands. Radionuclide activity concentrations in F. rubra and A. arenaria were similar, in the ranges 20-70 Bq kg-1 (137Cs), 1-5 Bq kg-1 (238Pu), 10-30 Bq kg-1 (239 + 240Pu) and 10-65 Bq kg-1 (241Am). Clear temporal and spatial variations were observed in both species of vegetation, reflecting the weather conditions antecedent to the sampling period and the influence of sea-to-land transfer. Concentration ratios (vegetation:soil) for activity concentrations in the two species were similar, in the ranges: 0.05-0.14 (137Cs), 0.025-0.097 (238Pu), 0.022-0.057 (239 + 240Pu) and 0.025-0.212 (241Am).

  12. Variability in dose estimates associated with the food-chain transport and ingestion of selected radionuclides

    SciTech Connect

    Hoffman, F.O.; Gardner, R.H.; Eckerman, K.F.

    1982-06-01

    Dose predictions for the ingestion of /sup 90/Sr and /sup 137/Cs, using aquatic and terrestrial food chain transport models similar to those in the Nuclear Regulatory Commission's Regulatory Guide 1.109, are evaluated through estimating the variability of model parameters and determining the effect of this variability on model output. The variability in the predicted dose equivalent is determined using analytical and numerical procedures. In addition, a detailed discussion is included on /sup 90/Sr dosimetry. The overall estimates of uncertainty are most relevant to conditions where site-specific data is unavailable and when model structure and parameter estimates are unbiased. Based on the comparisons performed in this report, it is concluded that the use of the generic default parameters in Regulatory Guide 1.109 will usually produce conservative dose estimates that exceed the 90th percentile of the predicted distribution of dose equivalents. An exception is the meat pathway for /sup 137/Cs, in which use of generic default values results in a dose estimate at the 24th percentile. Among the terrestrial pathways of exposure, the non-leafy vegetable pathway is the most important for /sup 90/Sr. For /sup 90/Sr, the parameters for soil retention, soil-to-plant transfer, and internal dosimetry contribute most significantly to the variability in the predicted dose for the combined exposure to all terrestrial pathways. For /sup 137/Cs, the meat transfer coefficient the mass interception factor for pasture forage, and the ingestion dose factor are the most important parameters. The freshwater finfish bioaccumulation factor is the most important parameter for the dose prediction of /sup 90/Sr and /sup 137/Cs transported over the water-fish-man pathway.

  13. An international model validation exercise on radionuclide transfer and doses to freshwater biota.

    SciTech Connect

    Yankovich, T. L.; Vives i Batlle, J.; Vives-Lynch, S.; Beresford, N. A.; Barnett, C. L.; Beaugelin-Seiller, K.; Brown, J. E.; Cheng, J.-J.; Copplestone, D.; Heling, R.; Hosseini, A.; Howard, B. J.; Kamboj, S.; Kryshev, A. I.; Nedveckaite, T.; Smith, J. T.; Wood, M. D.; Environmental Science Division; AREVA Resources; Environmental Science, Westlakes Scientific Consulting Ltd.; Centre for Ecology and Hydrology; IRSN; Norwegian Radiation Protection Authority; The Environment Agency; Nuclear Research and Consultancy Group; Univ. of Liverpool; School of Earth and Environmental Sciences; Inst. of Physics, Lithuania; State Enterprise Scientific Production Association

    2010-06-09

    Under the International Atomic Energy Agency (IAEA)'s EMRAS (Environmental Modelling for Radiation Safety) program, activity concentrations of {sup 60}Co, {sup 90}Sr, {sup 137}Cs and {sup 3}H in Perch Lake at Atomic Energy of Canada Limited's Chalk River Laboratories site were predicted, in freshwater primary producers, invertebrates, fishes, herpetofauna and mammals using eleven modelling approaches. Comparison of predicted radionuclide concentrations in the different species types with measured values highlighted a number of areas where additional work and understanding is required to improve the predictions of radionuclide transfer. For some species, the differences could be explained by ecological factors such as trophic level or the influence of stable analogues. Model predictions were relatively poor for mammalian species and herpetofauna compared with measured values, partly due to a lack of relevant data. In addition, concentration ratios are sometimes under-predicted when derived from experiments performed under controlled laboratory conditions representative of conditions in other water bodies.

  14. An international model validation exercise on radionuclide transfer and doses to freshwater biota.

    PubMed

    Yankovich, T L; Vives i Batlle, J; Vives-Lynch, S; Beresford, N A; Barnett, C L; Beaugelin-Seiller, K; Brown, J E; Cheng, J-J; Copplestone, D; Heling, R; Hosseini, A; Howard, B J; Kamboj, S; Kryshev, A I; Nedveckaite, T; Smith, J T; Wood, M D

    2010-06-01

    Under the International Atomic Energy Agency (IAEA)'s EMRAS (Environmental Modelling for Radiation Safety) programme, activity concentrations of (60)Co, (90)Sr, (137)Cs and (3)H in Perch Lake at Atomic Energy of Canada Limited's Chalk River Laboratories site were predicted, in freshwater primary producers, invertebrates, fishes, herpetofauna and mammals using eleven modelling approaches. Comparison of predicted radionuclide concentrations in the different species types with measured values highlighted a number of areas where additional work and understanding is required to improve the predictions of radionuclide transfer. For some species, the differences could be explained by ecological factors such as trophic level or the influence of stable analogues. Model predictions were relatively poor for mammalian species and herpetofauna compared with measured values, partly due to a lack of relevant data. In addition, concentration ratios are sometimes under-predicted when derived from experiments performed under controlled laboratory conditions representative of conditions in other water bodies.

  15. SURFACE COMPLEXATION OF ACTINIDES WITH IRON OXIDES: IMPLICATIONS FOR RADIONUCLIDE TRANSPORT IN NEAR-SURFACE AQUIFERS

    SciTech Connect

    J.L. Jerden Jr.; A.J. Kropf; Y. Tsai

    2005-08-25

    The surface complexation of actinides with iron oxides plays a key role in actinide transport and retardation in geosphere-biosphere systems. The development of accurate actinide transport models therefore requires a mechanistic understanding of surface complexation reactions (i.e. knowledge of chemical speciation at mineral/fluid interfaces). Iron oxides are particularly important actinide sorbents due to their pH dependent surface charges, relatively high surface areas and ubiquity in oxic and suboxic near-surface systems. In this paper we present results from field and laboratory investigations that elucidate the mechanisms involved in binding uranium and neptunium to iron oxide mineral substrates in near neutral groundwaters. The field study involved sampling and characterizing uranium-bearing groundwaters and solids from a saprolite aquifer overlying an unmined uranium deposit in the Virginia Piedmont. The groundwaters were analyzed by inductively coupled mass spectrometry and ion chromatography and the aquifer solids were analyzed by electron microprobe. The laboratory study involved a series of batch sorption tests in which U(VI) and Np(V) were reacted with goethite, hematite and magnetite in simulated groundwaters. The pH, ionic strength, aging time, and sorbent/sorbate ratios were varied in these experiments. The oxidation state and coordination environment of neptunium in solutions and sorbents from the batch tests were characterized by X-ray absorption spectroscopy (XAS) at the Advanced Photon Source, Argonne National Laboratory. Results from this work indicate that, in oxidizing near-surface aquifers, the dissolved concentration of uranium may be limited to less than 30 parts per billion due to uptake by iron oxide mineral coatings and the precipitation of sparingly soluble U(VI) phosphate minerals. Results from the batch adsorption tests showed that, in near neutral groundwaters, a significant fraction of the uranium and neptunium adsorbed as strongly

  16. Experimental and modeling studies of coprecipitation as an attenuation mechanism for radionuclides, metals, and metalloid mobility

    NASA Astrophysics Data System (ADS)

    Zhu, C.; Martin, S.; Ford, R.; Nuhfer, N.

    2003-04-01

    Coprecipitation (CPT) is typically defined as the simultaneous removal of both the tracer and carrier constituents from an aqueous solution without regard to the specific mechanisms involved. CPT is potentially important to many environmental issues closely related to water resources, including acid mine drainage, radionuclide migration in fouled waste repositories, metal contaminant transport at industrial and defense sites, metal concentrations in aquatic systems, and wastewater treatment technology. The coprecipitation process may vary in each case and solid phase partitioning may be driven by surface adsorption, ion-exchange, surface precipitation, occlusion, and solid solution formation. Solid solution formation is a result of structural incorporation of the tracer into carrier structural sites resulting in a minor constituent in solid solution with the host phase possessing a solubility greatly reduced from that of its pure solid. Coprecipitation of Pb, Zn, Al, and As with ferric iron oxides has been or is being conducted in the laboratory. The coprecipitates have been examined by High Resolution Analytical Transmission Electron Microscopy, while the bulk solution results are modeled as surface complexation, bulk precipitation, or amorphous solid solutions. Coprecipitation with iron oxides may be relevant to a fouled repository where steel containers corrode and transform into iron oxides. Additionally, the coprecipitation of radium with barite, which has relevance to both naturally occurring radioactive materials (NORM) associated with oil and gas production and nuclear waste repositories, is assessed and modeled. A general correlation is found among excess thermodynamic properties of binary solutions in the barite isostructural family, the volume mismatch between the two end-members, and the differences in the non-solvation contribution to the Gibbs free energy of formation of the substituting aqueous metal ions.

  17. Conceptual Model for Radionuclide Release from the Engineered Barrier Systems (EBS) at Yucca Mountain

    NASA Astrophysics Data System (ADS)

    Hamdan, L. K.; Walton, J.; Woocay, A.

    2008-12-01

    Over time, nuclear waste packages at Yucca Mountain repository are likely to fail gradually or in stages, due to general or localized corrosion. Rock fall and other physical (or chemical) disturbances will lead to different general corrosion rates and different times of penetration. In the long run, the waste package is likely to evolve into a combination of failure locations mixed with relicts of intact Alloy-22 (or other waste package materials). Release of radionuclides (mostly by dissolution in water) from the waste packages is one of the most important factors determining the performance of the proposed Yucca Mountain repository. In this paper we develop a conceptual model of radionuclide release from the EBS. In this system, residual heat release in the waste, in conjunction with the capillary effect, is anticipated to set up flow systems in the relict protected areas, where liquid water flows into the protected area toward the warmest region, and vapor flows outward away from the warmest region - effectively preventing release and sometimes sequestering radionuclides in the relict sheltered areas (dead ends). We derive a dimensionless group that specifies the condition for the internal heat driven flow system, and estimates the minimum size of the covered areas required to sequester radionuclides and prevent release. Over time, the minimum area required for protection slowly increases while general corrosion decreases the average size of relict areas. Convolution of the two processes suggests that radionuclide release from the flow-through system of partially failed waste packages will be gradual and long delayed (100,000 - 1,000,000 years), even in the case of early penetration by localized corrosion.

  18. Radionuclide migration in groundwater at a low-level waste disposal site: a comparison of predictive performance modeling versus field observations

    SciTech Connect

    Robertson, D.E. Myers, D.A.; Bergeron, M.P.; Champ, D.R.; Killey, R.W.D.; Moltyaner, G.L.; Young, J.L.

    1985-08-01

    This paper describes a project which is structured to test the concept of modeling a shallow land low-level waste burial site. The project involves a comparison of the actual observed radionuclide migration in groundwaters at a 30-year-old well-monitored field site with the results of predictive transport modeling. The comparison is being conducted as a cooperative program with the Atomic Energy of Canada Ltd. (AECL) at the low-level waste management area at the Chalk River Nuclear Laboratories, Ontario, Canada. A joint PNL-AECL field inviestigation was conducted in 1983 and 1984 to complement the existing extensive data base on actual radionuclide migration. Predictive transport modeling is currently being conducted for this site; first, as if it were a new location being considered for a low-level waste shallow-land burial site and only minimal information about the site were available, and second, utilizing the extensive data base available for the site. The modeling results will then be compared with the empirical observations to provide insight into the level of effort needed to reasonably predict the spacial and temporal movement of radionuclides in the groundwater enviroment. 8 refs., 5 figs.,

  19. Geomorphic control of radionuclide diffusion in desert soils

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.; Harrington, Charles D.; Whitney, John W.; Cline, Michael; DeLong, Stephen B.; Keating, Gordon; Ebert, K. Teryn

    2005-12-01

    Diffusion is a standard model for the vertical migration of radionuclides in soil profiles. Here we show that diffusivity values inferred from fallout 137Cs profiles in soils on the Fortymile Wash alluvial fan, Nye County, Nevada, have a strong inverse correlation with the age of the geomorphic surface. This result suggests that radionuclide-bound particles are predominantly transported by infiltration rather than by bulk-mixing processes such as wetting/drying, freeze/thaw, and bioturbation. Our results provide a preliminary basis for using soil-geomorphic mapping, point-based calibration data, and the diffusion model to predict radionuclide transport in desert soils within a pedotransfer-function approach.

  20. Modelling Deposition and Erosion rates with RadioNuclides (MODERN) - Part 1: A new conversion model to derive soil redistribution rates from inventories of fallout radionuclides.

    PubMed

    Arata, Laura; Meusburger, Katrin; Frenkel, Elena; A'Campo-Neuen, Annette; Iurian, Andra-Rada; Ketterer, Michael E; Mabit, Lionel; Alewell, Christine

    2016-10-01

    The measurement of fallout radionuclides (FRN) has become one of the most commonly used tools to quantify sediment erosion or depositional processes. The conversion of FRN inventories into soil erosion and deposition rates is done with a variety of models, which suitability is dependent on the selected FRN, soil cultivation (ploughed or unploughed) and movement (erosion or deposition). The authors propose a new conversion model, which can be easily and comprehensively used for different FRN, land uses and soil redistribution processes. The new model MODERN (Modelling Deposition and Erosion rates with RadioNuclides) considers the precise depth distribution of any FRN at the reference site, and allows adapting it for any specific site conditions. MODERN adaptability and performance in converting different FRN inventories is discussed for a theoretical case as well as for two already published case studies i.e. a (137)Cs study in an alpine and unploughed area in the Aosta valley (Italy) and a (210)Pbex study on a ploughed area located in the Transylvanian Plain (Romania). The tests highlight a highly significant correspondence (i.e. correlation factor of 0.91) between the results of MODERN and the published results of other models currently used by the FRN scientific community (i.e. the Profile Distribution Model and the Mass Balance Model). The development and the cost free accessibility of MODERN (see modern.umweltgeo.unibas.ch) will ensure the promotion of wider application of FRNs for tracing soil erosion and sedimentation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Review and analysis of parameters for assessing transport of environmentally released radionuclides through agriculture

    SciTech Connect

    Baes, C.F. III; Sharp, R.D.; Sjoreen, A.L.; Shor, R.W.

    1984-09-01

    Most of the default parameters incorporated into the TERRA computer code are documented including a literature review and systematic analysis of element-specific transfer parameters B/sub v/, B/sub r/, F/sub m/, F/sub f/, and K/sub d/. This review and analysis suggests default values which are consistent with the modeling approaches taken in TERRA and may be acceptable for most assessment applications of the computer code. However, particular applications of the code and additional analysis of elemental transport may require alternative default values. Use of the values reported herein in other computer codes simulating terrestrial transport is not advised without careful interpretation of the limitations and scope these analyses. An approach to determination of vegetation-specific interception fractions is also discussed. The limitations of this approach are many, and its use indicates the need for analysis of deposition, interception, and weathering processes. Judgement must be exercised in interpretation of plant surface concentrations generated. Finally, the location-specific agricultural, climatological, and population parameters in the default SITE data base documented. These parameters are intended as alternatives to average values currently used. Indeed, areas in the United States where intensive crop, milk, or beef production occurs will be reflected in the parameter values as will areas where little agricultural activity occurs. However, the original information sources contained some small error and the interpolation and conversion methods used will add more. Parameters used in TERRA not discussed herein are discussed in the companion report to this one - ORNL-5785. In the companion report the models employed in and the coding of TERRA are discussed. These reports together provide documentation of the TERRA code and its use in assessments. 96 references, 78 figures, 21 tables.

  2. URANIUM-SERIES CONSTRAINTS ON RADIONUCLIDE TRANSPORT AND GROUNDWATER FLOW AT NOPAL I URANIUM DEPOSIT, SIERRA PENA BLANCA, MEXICO

    SciTech Connect

    S. J. Goldstein, S. Luo, T. L. Ku, and M. T. Murrell

    2006-04-01

    Uranium-series data for groundwater samples from the vicinity of the Nopal I uranium ore deposit are used to place constraints on radionuclide transport and hydrologic processes at this site, and also, by analogy, at Yucca Mountain. Decreasing uranium concentrations for wells drilled in 2003 suggest that groundwater flow rates are low (< 10 m/yr). Field tests, well productivity, and uranium isotopic constraints also suggest that groundwater flow and mixing is limited at this site. The uranium isotopic systematics for water collected in the mine adit are consistent with longer rock-water interaction times and higher uranium dissolution rates at the front of the adit where the deposit is located. Short-lived nuclide data for groundwater wells are used to calculate retardation factors that are on the order of 1,000 for radium and 10,000 to 10,000,000 for lead and polonium. Radium has enhanced mobility in adit water and fractures near the deposit.

  3. Atmospheric radionuclides transported to Fukuoka, Japan remote from the Fukushima Dai-ichi nuclear power complex following the nuclear accident.

    PubMed

    Momoshima, N; Sugihara, S; Ichikawa, R; Yokoyama, H

    2012-09-01

    Radionuclides were detected from the Fukushima nuclear accident at Fukuoka, Japan, 1000 km west of the Fukushima Dai-ichi nuclear power complex. Iodine-131 was first detected 3 d after the accident, indicating that it was probably transported dispersively because of local meteorological conditions, and not global air circulation. The maximum concentrations, 5.07 mBq m(-3) for (131)I, 4.04 mBq m(-3) for (134)Cs, and 4.12 mBq m(-3) for (137)Cs, were recorded in particles collected on April 6, 2011. However, these concentration levels decreased below the detection limit by April 26, 2011. Gaseous (131)I accounted for 30%-67% of the total (131)I content. The increase in dose by inhalation was negligible at Fukuoka. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Mobility of Source Zone Heavy Metals and Radionuclides: The Mixed Roles of Fermentative Activity on Fate and Transport of U and Cr. Final Report

    SciTech Connect

    Gerlach, Robin; Peyton, Brent M.; Apel, William A.

    2014-01-29

    Various U. S. Department of Energy (DOE) low and medium-level radioactive waste sites contain mixtures of heavy metals, radionuclides and assorted organic materials. In addition, there are numerous sites around the world that are contaminated with a mixture of organic and inorganic contaminants. In most sites, over time, water infiltrates the wastes, and releases metals, radionuclides and other contaminants causing transport into the surrounding environment. We investigated the role of fermentative microorganisms in such sites that may control metal, radionuclide and organics migration from source zones. The project was initiated based on the following overarching hypothesis: Metals, radionuclides and other contaminants can be mobilized by infiltration of water into waste storage sites. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These low molecular weight organic acids and alcohols can increase metal and radionuclide mobility by chelation (i.e., certain organic acids) or decrease mobility by stimulating respiratory metal reducing microorganisms. We demonstrated that fermentative organisms capable of affecting the fate of Cr6+, U6+ and trinitrotoluene can be isolated from organic-rich low level waste sites as well as from less organic rich subsurface environments. The mechanisms, pathways and extent of contaminant transformation depend on a variety of factors related to the type of organisms present, the aqueous chemistry as well as the geochemistry and mineralogy. This work provides observations and quantitative data across multiple scales that identify and predict the coupled effects of fermentative carbon and electron flow on the transport of radionuclides, heavy metals and organic contaminants in

  5. RAGBEEF: a FORTRAN IV implementation of a time-dependent model for radionuclide contamination of beef

    SciTech Connect

    Pleasant, J C; McDowell-Boyer, L M; Killough, G G

    1982-06-01

    RAGBEEF is a FORTRAN IV program that calculates radionuclide concentrations in beef as a result of ingestion of contaminated feeds, pasture, and pasture soil by beef cattle. The model implemented by RAGBEEF is dynamic in nature, allowing the user to consider age- and season-dependent aspects of beef cattle management in estimating concentrations in beef. It serves as an auxiliary code to RAGTIME, previously documented by the authors, which calculates radionuclide concentrations in agricultural crops in a dynamic manner, but evaluates concentrations in beef for steady-state conditions only. The time-dependent concentrations in feeds, pasture, and pasture soil generated by RAGTIME are used as input to the RAGBEEF code. RAGBEEF, as presently implemented, calculates radionuclide concentrations in the muscle of age-based cohorts in a beef cattle herd. Concentrations in the milk of lactating cows are also calculated, but are assumed age-dependent as in RAGTIME. Radionuclide concentrations in beef and milk are described in RAGBEEF by a system of ordinary linear differential equations in which the transfer rate of radioactivity between compartments is proportional to the inventory of radioactivity in the source compartment. This system is solved by use of the GEAR package for solution of systems of ordinary differential equations. The accuracy of this solution is monitored at various check points by comparison with explicit solutions of Bateman-type equations. This report describes the age- and season-dependent considerations making up the RAGBEEF model, as well as presenting the equations which describe the model and a documentation of the associated computer code. Listings of the RAGBEEF and updated RAGTIME codes are provided in appendices, as are the results of a sample run of RAGBEEF and a description of recent modifications to RAGTIME.

  6. Assessment of potential radionuclide transport in site-specific geologic formations

    SciTech Connect

    Dosch, R.G.

    1980-08-01

    Associated with the development of deep, geologic repositories for nuclear waste isolation is a need for safety assessments of the potential for nuclide migration. Frequently used in estimating migration rates is a parameter generally known as a distribution coefficient, K/sub d/, which describes the distribution of a radionuclide between a solid (rock) and a liquid (groundwater) phase. This report is intended to emphasize that the use of K/sub d/ must be coupled with a knowledge of the geology and release scenarios applicable to a repository. Selected K/sub d/ values involving rock samples from groundwater/brine simulants typical of two potential repository sites, WIPP and NTS, are used to illustrate this concern. Experimental parameters used in K/sub d/ measurements including nuclide concentration, site sampling/rock composition, and liquid-to-solid ratios are discussed. The solubility of U(VI) in WIPP brine/groundwater was addressed in order to assess the potential contribution of this phenomena to K/sub d/ values. Understanding mehanisms of sorption of radionuclides on rocks would lead to a better predictive capability. Sorption is attributed to the presence of trace constituents (often unidentified) in rocks. An attempt was made to determine if this applied to WIPP dolomite rocks by comparing sorption behavior of the natural material with that of a synthetic dolomite prepared in the laboratory with reagent grade chemicals. The results were inconclusive. The results of a study of Tc sorption by an argillite sample from the Calico Hills formation at NTS under ambient laboratory conditions were more conclusive. The Tc sorption was found to be associated with elemental carbon. Available evidence points to a reduction mechanism leading to the apparent sorption of Tc on the solid phase.

  7. M4FT-16LL080303052-State of Knowledge for Colloid Facilitated Radionuclide Transport and Update on Actinide Diffusion in Bentonite Backfill

    SciTech Connect

    Zavarin, Mavrik; Joseph, C.

    2016-08-16

    This progress report (Level 4 Milestone Number M4FT-16LL080303052) summarizes research conducted at Lawrence Livermore National Laboratory (LLNL) within the Crystalline Disposal R&D Activity Number FT-16LL080303051 and Crystalline International Collaborations Activity Number FT-16LL080303061. The focus of this research is the interaction of radionuclides with Engineered Barrier System (EBS) and host rock materials at various physico-chemical conditions relevant to subsurface repository environments. They include both chemical and physical processes such as solubility, sorption, and diffusion. The colloid-facilitated transport effort focused on preparation of a draft manuscript summarizing the state of knowledge and parameterization of colloid-facilitated transport mechanisms in support of reactive transport and performance assessment models for generic crystalline repositories. This draft manuscript is being submitted as a level 3 milestone with LANL as the primary author. LLNL’s contribution to that effort is summarized only briefly in the present report. A manuscript summarizing long-term U(VI) diffusion experiments through bentonite backfill material was recently accepted for publication; the contents of that manuscript are summarized in the present report. The Np(IV) diffusion experiments were started mid-year and are ongoing. The completion of these experiments is planned for early FY17. Our progress in quantifying Np(IV) diffusion in bentonite backfill is summarized in the present report. Our involvement with the NEA TDB project was summarized in a recent Argillite Disposal activity report. It is not included in this report.

  8. A microcomputer algorithm for solving compartmental models involving radionuclide transformations.

    PubMed

    Birchall, A

    1986-03-01

    An algorithm for solving first-order non-recycling compartment models is described. Given the initial amounts of a radioactive material in each compartment and the fundamental transfer rate constants between each compartment, the algorithm gives both the amount of material remaining at any time t and the integrated number of transformations that would occur up to time t. The method is analytical, and consequently, is ideally suited for implementation on a microcomputer. For a typical microcomputer with 64 kilobytes of random access memory, a model containing up to 100 compartments, with any number of interconnecting translocation routes, can be solved in a few seconds; providing that no recycling occurs. An example computer program, written in 30 lines of Microsoft BASIC, is included in an appendix to demonstrate the use of the algorithm. A detailed description is included to show how the algorithm is modified to satisfy the requirements commonly encountered in compartment modelling, for example, continuous intake, partitioning of activity, and transformations from radioactive progeny. Although the algorithm does not solve models involving recycling, it is often possible to represent such cases by a non-recycling model which is mathematically equivalent.

  9. Sensitivity analysis of radionuclide migration in compacted bentonite: a mechanistic model approach

    NASA Astrophysics Data System (ADS)

    Ochs, Michael; Lothenbach, Barbara; Shibata, Masahiro; Sato, Haruo; Yui, Mikazu

    2003-03-01

    Mechanistic model calculations for the migration of Cs, Ra, Am and Pb in compacted bentonite have been carried out to evaluate sensitivities with respect to different parameter variations. A surface chemical speciation/electric double layer model is used to calculate: (i) porewater composition and radionuclide speciation in solution and at the bentonite surface, yielding the distribution of mobile and sorbed species and (ii) interaction of diffusing species with negatively charged pore walls to obtain diffusion parameters. The basic scenario considers the interaction of compacted bentonite with a fresh-type groundwater; variations include the presence of bentonite impurities and saline groundwater. It is shown that these scenarios result in significant variations of porewater composition that affect migration via three mechanisms that can partly compensate each other: (1) effects on sorption through radionuclide complexation in solution, and competition of major cations for surface sites; (2) changes in radionuclide solution speciation leading to different diffusing species under different conditions; (3) effects on diffusion through changes in the electric double layer properties of the clay pores as a function of ionic strength.

  10. A fuzzy approach for modelling radionuclide in lake system.

    PubMed

    Desai, H K; Christian, R A; Banerjee, J; Patra, A K

    2013-10-01

    Radioactive liquid waste is generated during operation and maintenance of Pressurised Heavy Water Reactors (PHWRs). Generally low level liquid waste is diluted and then discharged into the near by water-body through blowdown water discharge line as per the standard waste management practice. The effluents from nuclear installations are treated adequately and then released in a controlled manner under strict compliance of discharge criteria. An attempt was made to predict the concentration of (3)H released from Kakrapar Atomic Power Station at Ratania Regulator, about 2.5 km away from the discharge point, where human exposure is expected. Scarcity of data and complex geometry of the lake prompted the use of Heuristic approach. Under this condition, Fuzzy rule based approach was adopted to develop a model, which could predict (3)H concentration at Ratania Regulator. Three hundred data were generated for developing the fuzzy rules, in which input parameters were water flow from lake and (3)H concentration at discharge point. The Output was (3)H concentration at Ratania Regulator. These data points were generated by multiple regression analysis of the original data. Again by using same methodology hundred data were generated for the validation of the model, which were compared against the predicted output generated by using Fuzzy Rule based approach. Root Mean Square Error of the model came out to be 1.95, which showed good agreement by Fuzzy model of natural ecosystem.

  11. Modeling interaction of deep groundwaters with bentonite and radionuclide speciation

    SciTech Connect

    Wanner, H.

    1987-12-01

    Based on available experimental data on the interaction of sodium bentonite and groundwater, a model has been developed that represents a means of extrapolation from laboratory data to the conditions in compacted bentonite. The basic reactions between sodium bentonite and groundwater are described by an ion exchange model for sodium, potassium, magnesium, and calcium. The model also assumes equilibrium with calcite and quartz. The calculations are carried out for two types of granitic groundwater: the Swiss reference groundwater (ionic strength I = 0.24 M) and the standard Swedish groundwater (I = 0.0044 M). It is calculated that the pore water of compacted sodium bentonite will have a pH of 9.7 and a carbonate activity of 8 x 10/sup -4/ M if the dry bentonite is saturated with Swiss reference groundwater; it will have a pH near 10.2 and )CO/sub 3//sup 2-/) = 8 x 10/sup -3/ M for standard Swedish groundwater. The long-term situation, which is important for nuclear waste disposal, is modeled by the assumption that the near field of a radioactive waste repository behaves like a mixing tank. It is calculated that sodium bentonite will be slowly converted to calcium bentonite over a long period. The model is used to calculate short- and long-term maximum solubilities of thorium, uranium, neptunium, plutonium, americium, and technetium in the near-field pore water of a potential Swiss nuclear waste repository. The redox potential in the near field is assumed to be controlled by the corrosion products of the iron canister.

  12. Distribution patterns of particle-reactive radionuclides in sediments off eastern Hainan Island, China: Implications for source and transport pathways

    NASA Astrophysics Data System (ADS)

    Huang, Dekun; Du, Jinzhou; Deng, Bing; Zhang, Jing

    2013-04-01

    The study of sediment sources and transport processes from land to ocean can help in predicting the fate of the pollutants released from land or the potential change in sediment delivery to coastal areas and/or open oceans. The activities of 7Be, excess 210Pb (210Pbxs), excess 234Th (234Thxs) and 137Cs in surface sediments collected offshore of eastern Hainan Island, China, in August of 2008 were measured by an HPGe γ-spectrometer to evaluate the sediment source and transport processes. The results showed that all the surface sediments were silt or sand, and the mean grain sizes of the northern locations were higher than those in the other regions. The ranges of activities of 7Be, 210Pbxs, 234Thxs and 137Cs in surface sediment were 0.14-12.7, 37.4-199, 2.24-176 and 0.02-1.06 Bq kg-1, with averages of 3.78±4.77, 110±8.1, 66.7±8.9 and 0.52±0.22 Bq kg-1, respectively. The activities of the radionuclides increased from coast to offshore in the northern section. The upwelling may cause high particle fluxes with high activities of 210Pbxs and 234Thxs. A comparison of the source and transport of the suspended sediments with river discharge along the coast shows that the coastal current and offshore upwelling are the dominant factors for the transport and sources of surface sediment in the study region. The sediment was transported from south to north by the coastal current, and sediments with a large grain size may be deposited via the north loop current. The ratios of the nuclide activities indicated that the suspended particles need approximately one year to be removed from the water column into the seabed and that the main source of the sediments off eastern Hainan Island in the study regions was terrigenous deposits.

  13. Modelling and mitigating dose to firefighters from inhalation of radionuclides in wildland fire smoke

    DOE PAGES

    Viner, Brian J.; Jannik, Tim; Stone, Daniel; ...

    2015-06-12

    Firefighters responding to wildland fires where surface litter and vegetation contain radiological contamination will receive a radiological dose by inhaling resuspended radioactive material in the smoke. This may increase their lifetime risk of contracting certain types of cancer. Using published data, we modelled hypothetical radionuclide emissions, dispersion and dose for 70th and 97th percentile environmental conditions and for average and high fuel loads at the Savannah River Site. We predicted downwind concentration and potential dose to firefighters for radionuclides of interest (137Cs, 238Pu, 90Sr and 210Po). Predicted concentrations exceeded dose guidelines in the base case scenario emissions of 1.0 ×more » 107 Bq ha–1 for 238Pu at 70th percentile environmental conditions and average fuel load levels for both 4- and 14-h shifts. Under 97th percentile environmental conditions and high fuel loads, dose guidelines were exceeded for several reported cases for 90Sr, 238Pu and 210Po. The potential for exceeding dose guidelines was mitigated by including plume rise (>2 m s–1) or moving a small distance from the fire owing to large concentration gradients near the edge of the fire. In conclusion, this approach can quickly estimate potential dose from airborne radionuclides in wildland fire and assist decision-making to reduce firefighter exposure.« less

  14. Modelling and mitigating dose to firefighters from inhalation of radionuclides in wildland fire smoke.

    SciTech Connect

    Viner, Brian J.

    2015-06-12

    Firefighters responding to wildland fires where surface litter and vegetation contain radiological contamination will receive a radiological dose by inhaling resuspended radioactive material in the smoke. This may increase their lifetime risk of contracting certain types of cancer. Using published data, we modelled hypothetical radionuclide emissions, dispersion and dose for 70th and 97th percentile environmental conditions and for average and high fuel loads at the Savannah River Site. We predicted downwind concentration and potential dose to firefighters for radionuclides of interest (137Cs, 238Pu, 90Sr and 210Po). Predicted concentrations exceeded dose guidelines in the base case scenario emissions of 1.0 x 107Bq ha-1 for 238Pu at 70th percentile environmental conditions and average fuel load levels for both 4- and 14-h shifts. Under 97th percentile environmental conditions and high fuel loads, dose guidelines were exceeded for several reported cases for 90Sr, 238Pu and 210Po. The potential for exceeding dose guidelines was mitigated by including plume rise (>2ms-1) or moving a small distance from the fire owing to large concentration gradients near the edge of the fire. This approach can quickly estimate potential dose from airborne radionuclides in wildland fire and assist decision-making to reduce firefighter exposure.

  15. Modeling the resuspension of radionuclides in Ukrainian regions impacted by Chernobyl fallout.

    PubMed

    Nair, S K; Miller, C W; Thiessen, K M; Garger, E K; Hoffman, F O

    1997-01-01

    Following the 1986 Chernobyl event, large amounts of radioactive materials were deposited in nearby areas. Concentrations of various radionuclides were measured in air and surface soil. To study the resuspension of radioactive particulate, three different exposure situations were developed on the basis of the collected data under the auspices of the international BIOMOVS II (BIOspheric MOdel Validation Study) project. Modelers were asked to predict seasonal air concentrations and resuspension factors at several locations at different distances from Chernobyl for six successive years following the accident. Measurements of radionuclide deposition on topsoil were provided for each site along with information on soil, vegetation, land use, surface roughness, meteorology, and climate. In this paper, the three exposure situations are described, along with the initial data set provided to the modelers; two modeling approaches used to make the endpoint predictions are also presented. After the model predictions were submitted, the measured air concentrations and resuspension factors were released to the modelers. Generally, the predictions were well within an order of magnitude of the measured values. Time-dependent trends in predictions and measurements were in good agreement with one of the models, which (a) explicitly accounted for loss processes in soil and (b) used calibration to improve its predictive capabilities. Reasons for variations between predictions and measurements, suggestions for the improvement of models, and conclusions from the model validation study are presented.

  16. Modeling the resuspension of radionuclides in Ukranian regions impacted by Chernobyl fallout

    SciTech Connect

    Nair, S.K.; Thiessen, K.M.; Hoffman, F.O.

    1997-01-01

    Following the 1986 Chernobyl event, large amounts of radioactive materials were deposited in nearby areas. Concentrations of various radionuclides were measured in air and surface soil. To study the resuspension of radioactive particulate, three different exposure situations were developed on the basis of the collected data under the auspices of the international BIOMOVS II (BIOspheric MOdel Validation Study) project. Modelers were asked to predict seasonal air concentrations and resuspension factors at several locations at different distances from Chernobyl for six successive years following the accident. Measurements of radionuclide deposition on topsoil were provided for each site along with information on soil, vegetation, land use, surface roughness, meteorology, and climate. In this paper, the three exposure situations are described, along with the initial data set provided to the modelers; two modeling approaches used to make the endpoint predictions are also presented. After the model predictions were submitted, the measured air concentrations and resuspension factors were released to the modelers. Generally, the predictions were well within an order of magnitude of the measured values. Time-dependent trends in predictions and measurements were in good agreement with one of the models, which (a) explicitly accounted for loss processes in soil and (b) used calibration to improve its predictive capabilities. Reasons for variations between predictions and measurements, suggestions for the improvement of models, and conclusions from the model validation study are presented. 12 refs., 15 figs., 4 tabs.

  17. Sediment transport and Hg recovery in Lavaca Bay, as evaluated from radionuclide and Hg distributions

    SciTech Connect

    Santschi, P.H.; Allison, M.A.; Asbill, S.; Perlet, A.B.; Cappellino, S.; Dobbs, C.; McShea, L.

    1999-02-01

    Mercury was released in the late 1960s from a chloralkali facility managed by ALCOA and deposited into sediments of Lavaca Bay, TX. Sediments have recorded this event as a well-defined subsurface concentration maximum. Radionuclide, mercury, X-radiography, and grain size data from sediment cores taken in 1997 at 15 stations in Lavaca bay were used to assess sediment and Hg movements in the bay. Sediment accumulation rates were calculated from bomb fallout nuclide ({sup 137}Cs, {sup 239,240}Pu) peaks in 1963 and from the steady-state delivery of {sup 210}Pb from the atmosphere. Sedimentation rates are highest at near-shore sites near the ALCOA facility and generally decrease away from shore. Sedimentation rates in some areas are likely influenced by anthropogenic activities such as dredging. Particle reworking, as assessed from {sup 7}Be measurements, is generally restricted to the upper 2--7 cm of sediments. Numerical simulations of Hg profiles using measured sedimentation and mixing parameters indicate that at most sites high remnant mercury concentrations at 15--60 cm depth cannot supply substantial amounts of Hg to surface sediments. Assuming no future Hg supplies, Hg concentrations in surface sediments are predicted to decrease exponentially with a recovery half-time of 4 {+-} 2 years.

  18. Modelling of calcium leaching and its influence on radionuclide migration across the concrete engineered barrier in a NSDF.

    PubMed

    Adinarayana, K N V; Sasidhar, P; Balasubramaniyan, V

    2013-10-01

    A multi barrier concept of disposal is adopted for both low and intermediate level radioactive waste disposal to prevent the spread of radionuclides into the human environment. Concrete engineered barrier is a part of multi barrier system for radioactive waste disposal. As long as the concrete barrier is intact, the containment of radioactive waste within the disposal facility is assured. However, every concrete structure has a finite lifetime. Concrete barriers degrade with time with lifetime dependent on type of concrete, external and internal environmental factors. This degradation allows the free moment of the radionuclides out of the concrete barrier. Hence an attempt was made to model the Calcium (Ca) leaching from side wall of a concrete engineered barrier in a Near Surface Disposal Facility (NSDF) and its influence on radionuclide migration across the concrete barrier, limited to conditions specified in the paper. The conceptual model assumes that rain water seeps into the engineered barrier through the top cover and dissolves radionuclides from the nuclear waste matrix. The modelling was attempted with Finite Difference analysis and validated with the results available in literature. The influence of Ca leaching on radionuclide migration in concrete barrier has been discussed for eight different radionuclides (Cs-137, Sr-90, I-129, H-3, Pu-239, Am-241, Co-60 and Tc-99).

  19. The new conversion model MODERN to derive erosion rates from inventories of fallout radionuclides

    NASA Astrophysics Data System (ADS)

    Arata, Laura; Meusburger, Katrin; Frenkel, Elena; A'Campo-Neuen, Annette; Iurian, Andra-Rada; Ketterer, Michael E.; Mabit, Lionel; Alewell, Christine

    2016-04-01

    The measurement of fallout radionuclides (FRNs) has become one of the most commonly used methods to quantify soil erosion and depositional processes. FRNs include anthropogenic radionuclides (e.g. 137Cs, 239+240Pu) released into the atmosphere during nuclear bomb tests and power plant accidents (e.g Chernobyl, Fukushima-Daiichi), as well as natural radiotracers such as 210Pbex and 7Be. FRNs reach the land surface by dry and wet fallouts from the atmosphere. Once deposited, FRNs are tightly adsorbed by fine soil particles and their subsequent redistribution is mostly associated with soil erosion processes. FRNs methods are based on a qualitative comparison: the inventory (total radionuclide activity per unit area) at a given sampling site is compared to that of a so called reference site. The conversion of FRN inventories into soil erosion and deposition rates is done with a variety of models, which suitability is dependent on the selected FRN, soil cultivation (ploughed or unploughed) and movement (erosion or deposition). The authors propose a new conversion model, which can be easily and comprehensively used for different FRNs, land uses and soil redistribution processes. This new model i.e. MODERN (MOdelling Deposition and Erosion rates with RadioNuclides) considers the precise depth distribution of a given FRN at a reference site, and allows adapting it for any specific site conditions. MODERN adaptability and performance has been tested on two published case studies: (i) a 137Cs study in an alpine and unploughed area in the Aosta valley (Italy) and (ii) a 210Pbex study on a ploughed area located in Romania. The results show a good agreement and a significant correlation (r= 0.91, p<0.0001) between the results of MODERN and the published models currently used by the FRN scientific community (i.e. the Profile Distribution Model and the Mass Balance Model). The open access code and the cost free accessibility of MODERN will ensure the promotion of a wider

  20. Advanced spatio-temporal modelling in long-term radiological assessment models--radionuclides in the soil column.

    PubMed

    Kłos, R A; Limer, L; Shaw, G; Pérez-Sánchez, D; Xu, S

    2014-03-01

    Recent developments in the modelling of key radionuclides in long-timescale assessments of the safety of geological disposal of spent fuel and other radioactive wastes emphasise the influence of the redox conditions of the soil column. Models with higher spatial resolution than typically employed in standard modelling approaches have been shown to capture important features of experimental observations that are not otherwise manifested. Furthermore, models with monthly, rather than annually, averaged parameters and with dynamic transfers between soil and plant have been shown to lead to key differences compared with standard models employing soil-plant concentration ratios. This paper looks at the potential for the inclusion of a higher spatio-temporal resolution in models for long-timescale dose assessments and includes representations of measured plant-root distributions as well as the effects of bioturbation. Focusing here on the distribution and dynamics of radionuclides in the soil column, the effects of different spatial and temporal resolution are compared, together with an investigation of the way in which the hydrology of the soil column is represented. The approach has been successfully incorporated into a practical assessment-level model. Results indicate the potential importance of higher spatio-temporal resolution in modelling soil column dynamics, particularly of weakly sorbing radionuclides in long-timescale assessments featuring sudden transitions between ecosystem types.

  1. Radionuclide trap

    DOEpatents

    McGuire, Joseph C.

    1978-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

  2. Environmental Transport Input Parameters for the Biosphere Model

    SciTech Connect

    M. A. Wasiolek

    2003-06-27

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003 [163602]). Some documents in Figure 1-1 may be under development and not available when this report is issued. This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA), but access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develops input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003 [160699]) describes the conceptual model, the mathematical model, and the input parameters. The purpose of this analysis is to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or volcanic ash). The analysis was performed in accordance with the TWP (BSC 2003 [163602]). This analysis develops values of parameters associated with many features, events, and processes (FEPs) applicable to the reference biosphere (DTN: M00303SEPFEPS2.000 [162452]), which are addressed in the biosphere model (BSC 2003 [160699]). The treatment of these FEPs is described in BSC (2003 [160699], Section 6.2). Parameter values

  3. DISTRIBUTION AND RANGE OF RADIONUCLIDE SORPTION COEFFICIENTS IN A SAVANNAH RIVER SITE SUBSURFACE: STOCHASTIC MODELING CONSIDERATIONS

    SciTech Connect

    Kaplan, D.; et. al

    2010-01-11

    The uncertainty associated with the sorption coefficient, or K{sub d} value, is one of the key uncertainties in estimating risk associated with burying low-level nuclear waste in the subsurface. The objective of this study was to measure >648 K{sub d} values and provide a measure of the range and distribution (normal or log-normal) of radionuclide K{sub d} values appropriate for the E-Area disposal site, within the Savannah River Site, near Aiken South Carolina. The 95% confidence level for the mean K{sub d} was twice the mean in the Aquifer Zone (18-30.5 m depth), equal to the mean for the Upper Vadose Zone (3.3-10 m depth), and half the mean for the Lower Vadose Zone (3.10-18 m depth). The distribution of K{sub d} values was log normal in the Upper Vadose Zone and Aquifer Zone, and normal in the Lower Vadose Zone. To our knowledge, this is the first report of natural radionuclide Kd variability in the literature. Using ranges and distribution coefficients that are specific to the hydrostratigraphic unit improved model accuracy and reduced model uncertainty. Unfortunately, extension of these conclusions to other sites is likely not appropriate given that each site has its own sources of hydrogeological variability. However, this study provides one of the first examples of the development stochastic ranges and distributions of K{sub d} values for a hydrological unit for stochastic modeling.

  4. Minority Transportation Expenditure Allocation Model

    SciTech Connect

    Vyas, Anant D.; Santini, Danilo J.; Marik, Sheri K.

    1993-04-12

    MITRAM (Minority TRansportation expenditure Allocation Model) can project various transportation related attributes of minority (Black and Hispanic) and majority (white) populations. The model projects vehicle ownership, vehicle miles of travel, workers, new car and on-road fleet fuel economy, amount and share of household income spent on gasoline, and household expenditures on public transportation and taxis. MITRAM predicts reactions to sustained fuel price changes for up to 10 years after the change.

  5. Stochastic models of intracellular transport

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.; Newby, Jay M.

    2013-01-01

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures.

  6. Modelling and mitigating dose to firefighters from inhalation of radionuclides in wildland fire smoke

    SciTech Connect

    Viner, Brian J.; Jannik, Tim; Stone, Daniel; Hepworth, Allan; Naeher, Luke; Adetona, Olorunfemi; Blake, John; Eddy, Teresa

    2015-06-12

    Firefighters responding to wildland fires where surface litter and vegetation contain radiological contamination will receive a radiological dose by inhaling resuspended radioactive material in the smoke. This may increase their lifetime risk of contracting certain types of cancer. Using published data, we modelled hypothetical radionuclide emissions, dispersion and dose for 70th and 97th percentile environmental conditions and for average and high fuel loads at the Savannah River Site. We predicted downwind concentration and potential dose to firefighters for radionuclides of interest (137Cs, 238Pu, 90Sr and 210Po). Predicted concentrations exceeded dose guidelines in the base case scenario emissions of 1.0 × 107 Bq ha–1 for 238Pu at 70th percentile environmental conditions and average fuel load levels for both 4- and 14-h shifts. Under 97th percentile environmental conditions and high fuel loads, dose guidelines were exceeded for several reported cases for 90Sr, 238Pu and 210Po. The potential for exceeding dose guidelines was mitigated by including plume rise (>2 m s–1) or moving a small distance from the fire owing to large concentration gradients near the edge of the fire. In conclusion, this approach can quickly estimate potential dose from airborne radionuclides in wildland fire and assist decision-making to reduce firefighter exposure.

  7. Modeling nearshore dispersal of river-derived multi-class suspended sediments and radionuclides during a flood event around the mouth of Niida River, Fukushima, Japan

    NASA Astrophysics Data System (ADS)

    Uchiyama, Y.; Yamanishi, T.; Iwasaki, T.; Shimizu, Y.; Tsumune, D.; Misumi, K.; Onda, Y.

    2016-12-01

    A quadruple nested synoptic oceanic downscale modeling based on ROMS was carried out to investigate hydrodynamics, multi-class non-cohesive sediment transport and associated dispersal of suspended radionuclides (cesium-137; 137Cs) originated from the nuclear accident occurred at the Fukushima Dai-ichi Power Plant in March 2011. The innermost model has horizontal grid resolution of 50 m to marginally resolve the topography around the river mouth including the surf zone. The model is forced by the JCOPE2 oceanic reanalysis as the outermost boundary conditions, the GPV-MSM atmospheric reanalysis, and an in-house SWAN spectral wave hindcast embedded in the operational GPV-CWM wave reanalysis. A particular attention is paid to nearshore behaviors and inventory of the nuclides attached to terrestrial minerals with grain sizes ranging from 5 to 79 micrometers that have been occasionally discharged out to the coastal ocean through hydrological processes within the river basin even after several years since the accident. We examine oceanic dispersal of sediment and suspended 137Cs influxes from Niida River, Fukushima, evaluated with the iRIC-Nays2DH river model. Our focus is on the first flood event in late May of 2011 after the accident. Alongshore asymmetry in transport of suspended sediments and 137Cs is exhibited, comprising storm-driven southward transport confined in the shallow area due to shoreward Ekman transport associated with strong northerly wind, followed by northwestward wide-spread transport under mild southerly wind condition. About 70 % of the Niida River-derived suspended 137Cs remains near the mouth for 20 days after the flood event. Nevertheless, our model results as well as an observation suggest that the area is dominated by erosion as for high bed shear stress all the time, thus suspended radionuclides are redistributed to dissipate away in long term.

  8. Foliar interception of radionuclides in dry conditions: a meta-analysis using a Bayesian modeling approach.

    PubMed

    Sy, Mouhamadou Moustapha; Ancelet, Sophie; Henner, Pascale; Hurtevent, Pierre; Simon-Cornu, Marie

    2015-09-01

    Uncertainty on the parameters that describe the transfer of radioactive materials into the (terrestrial) environment may be characterized thanks to datasets such as those compiled within International Atomic Energy Agency (IAEA) documents. Nevertheless, the information included in these documents is too poor to derive a relevant and informative uncertainty distribution regarding dry interception of radionuclides by the pasture grass and the leaves of vegetables. In this paper, 145 sets of dry interception measurements by the aboveground biomass of specific plants were collected from published scientific papers. A Bayesian meta-analysis was performed to derive the posterior probability distributions of the parameters that reflect their uncertainty given the collected data. Four competing models were compared in terms of both fitting performances and predictive abilities to reproduce plausible dry interception data. The asymptotic interception factor, applicable whatever the species and radionuclide to the highest aboveground biomass values (e.g. mature leafy vegetables), was estimated with the best model, to be 0.87 with a 95% credible interval (0.85, 0.89).

  9. Monte Carlo modeling provides accurate calibration factors for radionuclide activity meters.

    PubMed

    Zagni, F; Cicoria, G; Lucconi, G; Infantino, A; Lodi, F; Marengo, M

    2014-12-01

    Accurate determination of calibration factors for radionuclide activity meters is crucial for quantitative studies and in the optimization step of radiation protection, as these detectors are widespread in radiopharmacy and nuclear medicine facilities. In this work we developed the Monte Carlo model of a widely used activity meter, using the Geant4 simulation toolkit. More precisely the "PENELOPE" EM physics models were employed. The model was validated by means of several certified sources, traceable to primary activity standards, and other sources locally standardized with spectrometry measurements, plus other experimental tests. Great care was taken in order to accurately reproduce the geometrical details of the gas chamber and the activity sources, each of which is different in shape and enclosed in a unique container. Both relative calibration factors and ionization current obtained with simulations were compared against experimental measurements; further tests were carried out, such as the comparison of the relative response of the chamber for a source placed at different positions. The results showed a satisfactory level of accuracy in the energy range of interest, with the discrepancies lower than 4% for all the tested parameters. This shows that an accurate Monte Carlo modeling of this type of detector is feasible using the low-energy physics models embedded in Geant4. The obtained Monte Carlo model establishes a powerful tool for first instance determination of new calibration factors for non-standard radionuclides, for custom containers, when a reference source is not available. Moreover, the model provides an experimental setup for further research and optimization with regards to materials and geometrical details of the measuring setup, such as the ionization chamber itself or the containers configuration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Application of the computer program GENMOD for modeling the behaviour of radionuclides in the human body and for performing calculations of internal dose

    SciTech Connect

    Kassing, W.; Eckart, R.; Spitz, H.

    1996-07-01

    GENMOD is a computer program for modeling the behavior of radionuclides in the human body, and for performing various internal dosimetry calculations using the results obtained from the modeling. The program employs seven different mathematical models in describing the behavior of a wide variety of radionuclides in the body.

  11. Fast analysis of radionuclide decay chain migration

    NASA Astrophysics Data System (ADS)

    Chen, J. S.; Liang, C. P.; Liu, C. W.; Li, L.

    2014-12-01

    A novel tool for rapidly predicting the long-term plume behavior of an arbitrary length radionuclide decay chain is presented in this study. This fast tool is achieved based on generalized analytical solutions in compact format derived for a set of two-dimensional advection-dispersion equations coupled with sequential first-order decay reactions in groundwater system. The performance of the developed tool is evaluated by a numerical model using a Laplace transform finite difference scheme. The results of performance evaluation indicate that the developed model is robust and accurate. The developed model is then used to fast understand the transport behavior of a four-member radionuclide decay chain. Results show that the plume extents and concentration levels of any target radionuclide are very sensitive to longitudinal, transverse dispersion, decay rate constant and retardation factor. The developed model are useful tools for rapidly assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.

  12. Atmospheric Transport Modelling Activities at CTBTO in the Aftermath of the Fukushima Release

    NASA Astrophysics Data System (ADS)

    Krysta, M.; Coyne, J.; Nikkinen, M.; Gheddou, A.; Stöhlker, U.

    2012-04-01

    For an accidental radioactive release from the Fukushima nuclear power plant, a spatial location of the source term was known and some reasonable hypotheses were made concerning the time of the emission. Consequently, tests of the performance of an atmospheric transport model operational at CTBTO, FLEXPART, were made. Initially, FLEXPART was run daily in an analysis-forecast mode using NCEP meteorological fields to predict the dates when detections of the radioactive material at the IMS radionuclide stations should be expected. In parallel, ECMWF meteorological analyses were used to drive FLEXPART in a purely diagnostic mode to check for possible better matches between model outputs and radionuclide measurements than those forecast by the NCEP-driven runs. Secondly, once the operational forecasting period at CTBTO came to an end, the ATM activities have been re-focused on the problem of inferring source location from the radionuclide measurements. In addition to radionuclide measurements, a source location algorithm needs outputs of FLEXPART backtracking calculations, Source Receptor Sensitivity (SRS) fields. The SRS fields allow to make a link between radionuclide stations and possible source locations and are computed at CTBTO for each IMS radionuclide station on a daily basis. Various subsets of detections made in the aftermath of the Fukushima release were used to test source location algorithm implemented in our visualisation and analysis software, WEB-Grape. Finally, similar analyses were performed replacing CTBTO SRS fields with the SRS fields provided by the co-operating Regional Specialised Meteorological Centres (RSMCs) of WMO. In fact, the RSMCs support abnormal detections of radionuclides within the IMS network with the SRS calculations performed using their own atmospheric transport models fed with their own meteorological fields. The added value of the SRS fields provided by the RSMCs shall be illustrated.

  13. Characterization of calculation of in-situ retardation factors of contaminant transport using naturally-radionuclides and rock/water interaction occurring U-Series disequilibria timescales. 1997 annual progress report

    SciTech Connect

    Roback, R.; Murrel, M.; Goldstein, S.; Ku, T.L.; Luo, S.

    1997-01-01

    'The research is directed toward a quantitative assessment of contaminant transport rates in fracture-rock systems using uranium-series radionuclides. Naturally occurring uranium-and thorium-series radioactive disequilibria will provide information on the rates of adsorption-desorption and transport of radioactive contaminants as well as on fluid transport and rock dissolution in a natural setting. This study will also provide an improved characterization of preferential flow and contaminant transport at the Idaho Environmental and Engineering Lab. (INEEL) site. To a lesser extent, the study will include rocks in the unsaturated zone. The authors will produce a realistic model of radionuclide migration under unsaturated and saturated field conditions at the INEEL site, taking into account the retardation processes involved in the rock/water interaction. The major tasks are to (1) determine the natural distribution of U, Th, Pa and Ra isotopes in rock minerals. sorbed phases on the rocks, and in fluids from both saturated and unsaturated zones at the site, and (2) study rock/water interaction processes using U/Th series disequilibrium and a statistical analysis-based model for the Geologic heterogeneity plays an important role in transporting contaminants in fractured rocks. Preferential flow paths in the fractured rocks act as a major pathway for transport of radioactive contaminants in groundwaters. The weathering/dissolution of rock by groundwater also influences contaminant mobility. Thus, it is important to understand the hydrogeologic features of the site and their impact on the migration of radioactive contaminants. In this regard, quantification of the rock weathering/dissolution rate and fluid residence time from the observed decay-series disequilibria will be valuable. By mapping the spatial distribution of the residence time of groundwater in fractured rocks, the subsurface preferential flow paths (with high rock permeability and short fluid residence

  14. Environmental Transport Input Parameters for the Biosphere Model

    SciTech Connect

    M. Wasiolek

    2004-09-10

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]).

  15. Engineering biomineralised groundwater flow barriers for inhibiting radionuclide transport in fractured rocks

    NASA Astrophysics Data System (ADS)

    Blundell, N.; Cuthbert, M. O.; Riley, M. S.; Handley-Sidhu, S.; Renshaw, J. C.

    2012-04-01

    Microbially induced carbonate precipitation (MICP) is a promising engineering solution for inhibiting pollution transport in fractured rocks through permeability reduction of fine aperture fractures surrounding nuclear decommissioning sites or repositories. However, although many batch and column studies of MICP within porous media have been carried out, the method has yet to be successfully applied within fractured materials and upscaled to block and field scales to demonstrate its potential utility. This paper presents results of laboratory MICP experiments within artificial granite-perspex fractures (30 cm x 10 cm x 150 µm) under flowing conditions using ureolytic bacteria and a 'cementing solution' comprising dissolved urea and calcium chloride. A variety of injection combinations and bacterial/solute concentrations were trialled and changes in hydraulic conductivity of the fractures were measured over time. Injected bacteria were successfully 'fixed' by adding sufficient calcium chloride to encourage flocculation and hence mechanical filtration to trap the bacteria. Observed reductions in hydraulic conductivity of up to 3 orders of magnitude were achieved after 4 x 4 hour phases of injection with a decreasing mass of precipitate with distance from the inlet manifold. Although the results are very promising, a remaining challenge for successful upscaling of the technique to the field scale is in controlling the spatial distribution of bacterial fixing and precipitation to enable sealing of fractures at larger distances from the point of injection. In comparison to existing grouting techniques, MICP has the advantage of being low viscosity and is therefore potentially useful for very fine scale fractures while also potentially providing greater mechanical strength.

  16. Atmospheric transport and deposition of radionuclides released after the Fukushima Dai-chi accident and resulting effective dose

    NASA Astrophysics Data System (ADS)

    Marzo, Giuseppe A.

    2014-09-01

    On 11 March 2011 an earthquake off the Pacific coast of the Fukushima prefecture generated a tsunami that hit Fukushima Dai-ichi and Fukushima Da-ini Nuclear Power Plants. From 12 March a significant amount of radioactive material was released into the atmosphere and dispersed worldwide. Among the most abundant radioactive species released were iodine and cesium isotopes. By means of an atmospheric dispersion Lagrangian code and publicly available meteorological data, the atmospheric dispersion of 131I, 134Cs, and 137Cs have been simulated for three months after the event with a spatial resolution of 0.5° × 0.5° globally. The simulation has been validated by comparison to publicly available measurements collected in 206 locations worldwide. Sensitivity analysis shows that release height of the radionuclides, wet deposition velocity, and source term are the parameters with the most impact on the simulation results. The simulation shows that the radioactive plume, consisting of about 200 PBq by adding contributions from 131I, 134Cs, and 137Cs, has been transported over the entire northern hemisphere depositing up to 1.2 MBq m-2 nearby the NPPs to less than 20 Bq m-2 in Europe. The consequent effective dose to the population over a 50-year period, calculated by considering both external and internal pathways of exposure, is found to be about 40 mSv in the surroundings of Fukushima Dai-ichi, while other countries in the northern hemisphere experienced doses several orders of magnitude lower suggesting a small impact on the population health elsewhere.

  17. SRNL RADIONUCLIDE FIELD LYSIMETER EXPERIMENT: BASELINE CONSTRUCTION AND IMPLEMENTATION

    SciTech Connect

    Roberts, K.; Kaplan, D.; Bagwell, L.; Powell, B.; Almond, P.; Emerson, H.; Hixon, A.; Jablonski, J.; Buchanan, C.; Waterhouse, T.

    2012-10-17

    The purpose of this document is to compile information regarding experimental design, facility design, construction, radionuclide source preparation, and path forward for the ten year Savannah River National Laboratory (SRNL) Radionuclide Field Lysimeter Experiment at the Savannah River Site (SRS). This is a collaborative effort by researchers at SRNL and Clemson University. The scientific objectives of this study are to: Study long-term radionuclide transport under conditions more representative of vadose zone conditions than laboratory experiments; Provide more realistic quantification of radionuclide transport and geochemistry in the vadose zone, providing better information pertinent to radioactive waste storage solutions than presently exists; Reduce uncertainty and improve justification for geochemical models such as those used in performance assessments and composite analyses.

  18. Incorporation of Model and Parameter Uncertainty in Predicting Radionuclide Fluxes from the Climax Granite Intrusive, Nevada Test Site

    NASA Astrophysics Data System (ADS)

    Reeves, D. M.; Pohlmann, K. F.; Pohll, G. M.; Chapman, J. B.; Ye, M.

    2006-12-01

    The Yucca Flat-Climax Mine Corrective Action Unit requires the use of numerical models to predict radionuclide flux rates from three subsurface nuclear tests conducted in a fractured rock mass. Modeling flow and transport in the Climax granite intrusive (CGI) is unique; while attributes of rock fractures have been extensively characterized in subsurface tunnel and drift complexes, information on the saturated flow system, including the position of the water table within the CGI, is largely unknown. A modified version of the Death Valley Regional Flow System (DVRFS) model of Belcher et al. (2004) with refined discretization in the area of the CGI is used to provide boundary conditions and a calibration target for a local-scale stochastic continuum fracture flow and transport model. Uncertainty in the Climax DVRFS model is addressed by including five different geologic framework models, each weighted according to expert elicitation. Five ground water recharge models are then applied to each of the five geologic models, resulting in a total of 25 geologic/recharge models. The CGI fracture flow model consists of 3-D discrete fracture networks, randomly distributed according to probability distribution functions for fracture location, orientation, length and permeability. The networks are directly mapped onto a 3-D finite-difference grid and MODFLOW is used to simultaneously solve for fluid flow within the fracture network and rock matrix. Flow model calibration involved matching the geometric mean of total fluid flux through 200 Monte Carlo fracture network realizations to flux computed in the subsection of the Climax DVRFS model representing the area of the local-scale model domain. By maintaining a constant log_10 mean and variance of fracture conductivity, fracture density was altered until the geometric mean of flux from all 200 network realizations is within +/- 5% of the target flux from the regional model. Variability in flux for individual realizations

  19. A BENCHMARKING ANALYSIS FOR FIVE RADIONUCLIDE VADOSE ZONE MODELS (CHAIN, MULTIMED_DP, FECTUZ, HYDRUS, AND CHAIN 2D) IN SOIL SCREENING LEVEL CALCULATIONS

    EPA Science Inventory

    Five radionuclide vadose zone models with different degrees of complexity (CHAIN, MULTIMED_DP, FECTUZ, HYDRUS, and CHAIN 2D) were selected for use in soil screening level (SSL) calculations. A benchmarking analysis between the models was conducted for a radionuclide (99Tc) rele...

  20. A BENCHMARKING ANALYSIS FOR FIVE RADIONUCLIDE VADOSE ZONE MODELS (CHAIN, MULTIMED_DP, FECTUZ, HYDRUS, AND CHAIN 2D) IN SOIL SCREENING LEVEL CALCULATIONS

    EPA Science Inventory

    Five radionuclide vadose zone models with different degrees of complexity (CHAIN, MULTIMED_DP, FECTUZ, HYDRUS, and CHAIN 2D) were selected for use in soil screening level (SSL) calculations. A benchmarking analysis between the models was conducted for a radionuclide (99Tc) rele...

  1. Theoretical Transport Model for Tokamaks

    NASA Astrophysics Data System (ADS)

    Ghanem, Elsayed Mohammad

    In the present thesis work a theoretical transport model is suggested to study the anomalous transport of plasma particles and energy across the axisymmetric equilibrium toroidal magnetic flux surfaces in tokamaks. The model suggests a linear combination of two transport mechanisms; drift waves, which dominate the transport in the core region, and resistive ballooning modes, which dominate the transport in the edge region. The resulting unified model has been used in a predictive transport code to simulate the plasma transport in different tokamak experiments operating in both the ohmic heating phase and the low confinement mode (L-mode). For ohmic plasma, the model was used to study the saturation of energy confinement time at high plasma density. The effect of the resistive ballooning mode as a possible cause of the saturation phenomena has been investigated together with the effect of the ion temperature gradient mode. For the low confinement mode plasmas, the study has emphasized on using the model to obtain a scaling law for the energy confinement time with the various plasma parameters compared to the scaling laws that are derived based on fitting the experimental data.

  2. Radionuclide migration laboratory studies for validation of batch sorption data

    SciTech Connect

    Triay, I.R.; Mitchell, A.J.; Ott, M.A.

    1991-12-31

    Advective and diffusive migration experiments (within the Dynamic Transport Column Experiments and Diffusion Studies of the Yucca Mountain Site Characterization Project) involve utilizing crushed material, intact, and fractured tuff in order to test and improve (if necessary) transport models by experimentally observing the migration of sorbing and non-sorbing radionuclides on a laboratory scale. Performing a validation of the sorption data obtained with batch techniques (within the Batch Sorption Study) is an integral part of the mission of the Dynamic Transport Column Experiments and Diffusion Studies. In this paper the work scope of the radionuclide migration laboratory experiments (as they apply to validation of batch sorption data) is reviewed.

  3. Groundwater flow and transport modeling

    USGS Publications Warehouse

    Konikow, L.F.; Mercer, J.W.

    1988-01-01

    Deterministic, distributed-parameter, numerical simulation models for analyzing groundwater flow and transport problems have come to be used almost routinely during the past decade. A review of the theoretical basis and practical use of groundwater flow and solute transport models is used to illustrate the state-of-the-art. Because of errors and uncertainty in defining model parameters, models must be calibrated to obtain a best estimate of the parameters. For flow modeling, data generally are sufficient to allow calibration. For solute-transport modeling, lack of data not only limits calibration, but also causes uncertainty in process description. Where data are available, model reliability should be assessed on the basis of sensitivity tests and measures of goodness-of-fit. Some of these concepts are demonstrated by using two case histories. ?? 1988.

  4. Radionuclide Generators

    NASA Astrophysics Data System (ADS)

    Rösch, F.; Knapp, F. F. (Russ)

    Radionuclide generator systems continue to play a key role in providing both diagnostic and therapeutic radionuclides for various applications in nuclear medicine, oncology, and interventional cardiology. Although many parent/daughter pairs have been evaluated as radionuclide generator systems, there are a relatively small number of generators, which are currently in routine clinical and research use. Essentially every conceivable approach has been used for parent/separation strategies, including sublimation, thermochromatographic separation, solvent extraction, and adsorptive column chromatography. The most widely used radionuclide generator for clinical applications is the 99Mo/99mTc generator system, but recent years have seen an enormous increase in the use of generators to provide therapeutic radionuclides, which has paralleled the development of complementary technologies for targeting agents for therapy and in the general increased interest in the use of unsealed therapeutic radioactive sources. More recently, use of the 68Ge/68Ga generator is showing great potential as a source of positron-emitting 68Ga for positron emission tomography (PET)/CT imaging. Key advantages for the use of radionuclide generators include reasonable costs, the convenience of obtaining the desired daughter radionuclide on demand, and availability of the daughter radionuclide in high specific activity, no-carrier added form.

  5. When the model doesn’t cover reality: examples from radionuclide metrology

    NASA Astrophysics Data System (ADS)

    Pommé, S.

    2016-04-01

    It could be argued that activity measurements of radioactive substances should be under statistical control, considering that the measurand is unambiguously defined, the radioactive decay processes are theoretically well understood and the measurement function can be derived from physical principles. However, comparisons invariably show a level of discrepancy among activity standardisation results that exceeds expectation from uncertainty evaluations. Also decay characteristics of radionuclides determined from different experiments show unexpected inconsistencies. Arguably, the problem lies mainly in incomplete uncertainty assessment. Of the various reasons leading to incomplete uncertainty assessment, from human failure to limitations to the state-of-the-art knowledge, a selection of cases is discussed in which imperfections in the modelling of the measurement process can lead to unexpectedly large underestimations of uncertainty.

  6. Tracking landslides and landscape evolution using airborne lidar, InSAR, historical air photos, cosmogenic radionuclides, and numerical models

    NASA Astrophysics Data System (ADS)

    Roering, J. J.; Mackey, B. H.; Schmidt, D. A.; Handwerger, A. L.; Booth, A. M.; Cerovski-Darriau, C.

    2012-12-01

    In mountainous landscapes, landslides often dominate sediment budgets and impose a distinct morphologic signature. Although landsliding can be highly variable in space and time, the availability of remote sensing imagery, erosion rates via cosmogenic radionuclides, and airborne lidar has greatly improved our ability to decipher patterns of landslide activity related to tectonics, lithology, and climate. Here, we summarize a suite of studies for landslide-dominated catchments in Northern California that collectively reveal how landslides drive landscape evolution. Using historical air photos and airborne lidar, we mapped active, slow-moving landslides and their transport rates in the mélange- and mudstone-dominated Eel River by tracking the displacement of markers such as trees and shrubs. The landslides exhibit branching forms in upslope areas and tend to coalesce downslope, delivering sediment directly into channel networks. Although active landslides account for only 7% of the landscape surface, their sediment flux amounts to more than 50% of the suspended sediment recorded at downstream sediment gauging stations. These landslides also exhibit multi-year variations that appear to reflect climate trends, such as the Pacific Decadal Oscillation. Using satellite-based interferometry, we show that these landslides vary seasonally, accelerating approximately two months after the onset of rainfall events in the fall. Surprisingly, this seasonal response does not depend on landslide size, challenging existing hydrologic models for landslide triggering. Catchment-averaged erosion rates derived from cosmogenic radionuclides reveal strong local variations in erosion that appear to correspond with stream channel knickpoints along tributaries to the Eel River. These knickpoints are frequently observed using airborne lidar data while field studies demonstrate that they are comprised of massive collections of interlocking resistant coarse boulders (>10m) that will likely

  7. Modeling Np and Pu transport with a surface complexation model and spatially variant sorption capacities: Implications for reactive transport modeling and performance assessments of nuclear waste disposal sites

    USGS Publications Warehouse

    Glynn, P.D.

    2003-01-01

    One-dimensional (1D) geochemical transport modeling is used to demonstrate the effects of speciation and sorption reactions on the ground-water transport of Np and Pu, two redox-sensitive elements. Earlier 1D simulations (Reardon, 1981) considered the kinetically limited dissolution of calcite and its effect on ion-exchange reactions (involving 90Sr, Ca, Na, Mg and K), and documented the spatial variation of a 90Sr partition coefficient under both transient and steady-state chemical conditions. In contrast, the simulations presented here assume local equilibrium for all reactions, and consider sorption on constant potential, rather than constant charge, surfaces. Reardon's (1981) seminal findings on the spatial and temporal variability of partitioning (of 90Sr) are reexamined and found partially caused by his assumption of a kinetically limited reaction. In the present work, sorption is assumed the predominant retardation process controlling Pu and Np transport, and is simulated using a diffuse-double-layer-surface-complexation (DDLSC) model. Transport simulations consider the infiltration of Np- and Pu-contaminated waters into an initially uncontaminated environment, followed by the cleanup of the resultant contamination with uncontaminated water. Simulations are conducted using different spatial distributions of sorption capacities (with the same total potential sorption capacity, but with different variances and spatial correlation structures). Results obtained differ markedly from those that would be obtained in transport simulations using constant Kd, Langmuir or Freundlich sorption models. When possible, simulation results (breakthrough curves) are fitted to a constant K d advection-dispersion transport model and compared. Functional differences often are great enough that they prevent a meaningful fit of the simulation results with a constant K d (or even a Langmuir or Freundlich) model, even in the case of Np, a weakly sorbed radionuclide under the

  8. A model for selecting bioindicators to monitor radionuclide concentrations using Amchitka Island in the Aleutians as a case study

    SciTech Connect

    Burger, Joanna

    2007-11-15

    World War II and the Cold War have left the Unites States, and other Nations, with massive cleanup and remediation tasks for radioactive and other legacy hazardous wastes. While some sites can be cleaned up to acceptable residential risk levels, others will continue to hold hazardous wastes, which must be contained and monitored to protect human health and the environment. While media (soil, sediment, groundwater) monitoring is the usual norm at many radiological waste sites, for some situations (both biological and societal), biomonitoring may provide the necessary information to assure greater peace of mind for local and regional residents, and to protect ecologically valuable buffer lands or waters. In most cases, indicators are selected using scientific expertise and a literature review, but not all selected indicators will seem relevant to stakeholders. In this paper, I provide a model for the inclusion of stakeholders in the development of bioindicators for assessing radionuclide levels of biota in the marine environment around Amchitka Island, in the Aleutian Chain of Alaska. Amchitka was the site of three underground nuclear tests from 1965 to 1971. The process was stakeholder-initiated, stakeholder-driven, and included stakeholders during each phase. Phases included conceptualization, initial selection of biota and radionuclides, refinement of biota and radionuclide target lists, collection of biota, selection of biota and radionuclides for analysis, and selection of biota, tissues, and radionuclides for bioindicators. The process produced site-specific information on biota availability and on radionuclide levels that led to selection of site-appropriate bioindicators. I suggest that the lengthy, iterative, stakeholder-driven process described in this paper results in selection of bioindicators that are accepted by biologists, public health personnel, public-policy makers, resource agencies, regulatory agencies, subsistence hunters/fishers, and a wide

  9. Inter-comparison of dynamic models for radionuclide transfer to marine biota in a Fukushima accident scenario.

    PubMed

    Vives I Batlle, J; Beresford, N A; Beaugelin-Seiller, K; Bezhenar, R; Brown, J; Cheng, J-J; Ćujić, M; Dragović, S; Duffa, C; Fiévet, B; Hosseini, A; Jung, K T; Kamboj, S; Keum, D-K; Kryshev, A; LePoire, D; Maderich, V; Min, B-I; Periáñez, R; Sazykina, T; Suh, K-S; Yu, C; Wang, C; Heling, R

    2016-03-01

    We report an inter-comparison of eight models designed to predict the radiological exposure of radionuclides in marine biota. The models were required to simulate dynamically the uptake and turnover of radionuclides by marine organisms. Model predictions of radionuclide uptake and turnover using kinetic calculations based on biological half-life (TB1/2) and/or more complex metabolic modelling approaches were used to predict activity concentrations and, consequently, dose rates of (90)Sr, (131)I and (137)Cs to fish, crustaceans, macroalgae and molluscs under circumstances where the water concentrations are changing with time. For comparison, the ERICA Tool, a model commonly used in environmental assessment, and which uses equilibrium concentration ratios, was also used. As input to the models we used hydrodynamic forecasts of water and sediment activity concentrations using a simulated scenario reflecting the Fukushima accident releases. Although model variability is important, the intercomparison gives logical results, in that the dynamic models predict consistently a pattern of delayed rise of activity concentration in biota and slow decline instead of the instantaneous equilibrium with the activity concentration in seawater predicted by the ERICA Tool. The differences between ERICA and the dynamic models increase the shorter the TB1/2 becomes; however, there is significant variability between models, underpinned by parameter and methodological differences between them. The need to validate the dynamic models used in this intercomparison has been highlighted, particularly in regards to optimisation of the model biokinetic parameters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Inter-comparison of dynamic models for radionuclide transfer to marine biota in a Fukushima accident scenario

    SciTech Connect

    Vives i Batlle, J.; Beresford, N A; Beaugelin-Seiller, K; Bezhenar, R.; Brown, J.; Cheng, J.-J.; Cujic, M.; Dragovic, S.; Duffa, C.; Fievet, B.; Hosseini, A; Jung, K. T.; Kamboj, S.; Keum, D.-K.; Kryshev, A.; LePoire, D.; Maderich, V.; Min, B.-I.; Perianez, R.; Sazykina, T; Suh, K.-S.; Yu, C.; Wang, C.; Heling, R

    2016-03-01

    We report an inter-comparison of eight models designed to predict the radiological exposure of radionuclides in marine biota. The models were required to simulate dynamically the uptake and turnover of radionuclides by marine organisms. Model predictions of radionuclide uptake and turnover using kinetic calculations based on biological half-life (TB1/2) and/or more complex metabolic modelling approaches were used to predict activity concentrations and, consequently, dose rates of 90Sr, 131I and 137Cs to fish, crustaceans, macroalgae and molluscs under circumstances where the water concentrations are changing with time. For comparison, the ERICA Tool, a model commonly used in environmental assessment, and which uses equilibrium concentration ratios, was also used. As input to the models we used hydrodynamic forecasts of water and sediment activity concentrations using a simulated scenario reflecting the Fukushima accident releases. Although model variability is important, the intercomparison gives logical results, in that the dynamic models predict consistently a pattern of delayed rise of activity concentration in biota and slow decline instead of the instantaneous equilibrium with the activity concentration in seawater predicted by the ERICA Tool. The differences between ERICA and the dynamic models increase the shorter the TB1/2 becomes; however, there is significant variability between models, underpinned by parameter and methodological differences between them. The need to validate the dynamic models used in this intercomparison has been highlighted, particularly in regards to optimisation of the model biokinetic parameters.

  11. A mathematical model for predicting the probability of acute mortality in a human population exposed to accidentally released airborne radionuclides. Final report for Phase I of the project: early effects of inhaled radionuclides

    SciTech Connect

    Filipy, R.E.; Borst, F.J.; Cross, F.T.; Park, J.F.; Moss, O.R.

    1980-06-01

    The report presents a mathematical model for the purpose of predicting the fraction of human population which would die within 1 year of an accidental exposure to airborne radionuclides. The model is based on data from laboratory experiments with rats, dogs and baboons, and from human epidemiological data. Doses from external, whole-body irradiation and from inhaled, alpha- and beta-emitting radionuclides are calculated for several organs. The probabilities of death from radiation pneumonitis and from bone marrow irradiation are predicted from doses accumulated within 30 days of exposure to the radioactive aerosol. The model is compared with existing similar models under hypothetical exposure conditions. Suggestions for further experiments with inhaled radionuclides are included.

  12. Milestone M4FT-13LL0807071: International Collaboration - Radionuclide Interactions and Transport in Geologic Repository Environments - Pu Interaction with Bentonite

    SciTech Connect

    Begg, J D; Zavarin, M; Kersting, A B

    2013-11-13

    The focus of this project is to investigate radionuclide interactions with natural and engineered materials, specifically the mineral bentonite that will be used in EU repositories and possibly in US high-level waste repository designs. These experiments are designed to develop a mechanistic understanding of Pu interactions with representative mineral substrates under granitic chemical conditions. The sorption/desorption experiments cover a large range of Pu concentrations and will be compared to sorption/desorption experiment with montmorillonite. The experiments are being coordinated with the Colloid Formation and Migration (CFM) international project led by Karlsruhe Institute of Technology and located at the Grimsel Test Site underground research laboratory in Switzerland. Experiments will be completed by 8/15/2014. Milestone M4FT-13LL0807071 is a progress report on this effort. The research is addressing the following FEPs/needs identified in the R&D Roadmap: 2.2.09.05 - radionuclide speciation and solubility in host rock; 2.2.09.55 - sorption of dissolved radionuclides in host rock; 2.2.09.59 - colloidal transport in host rock.

  13. Radionuclide Mobility at the Nevada Test Site

    SciTech Connect

    Hu, Q; Smith, D; Rose, T; Glascoe, L; Steefel, C; Zavarin, M

    2003-11-13

    Underground nuclear tests conducted at the Nevada Test Site (NTS) are characterized by abundant fission product and actinide source terms. Included are {sup 99}Tc and other soluble radionuclides ({sup 3}H, {sup 14}C, {sup 36}Cl, {sup 85}Kr, and {sup 129}I), which are presumably mobile in groundwater and potentially toxic to down-gradient receptors. NTS provides the Office of Civilian Radioactive Waste Management (OCRWM) with an analog of the release of these radionuclides from a nuclear waste repository in the absence of engineered barriers. The investigation described in this report synthesizes a substantial body of data collected on the identity and distribution of soluble radionuclides at field scales over distances of hundreds of meters, for durations up to 40 years, and under hydrogeologic conditions very similar to the proposed geological repository at Yucca Mountain. This body of data is complemented by laboratory transport studies and a synthesis of recent modeling investigations from the NTS, with an emphasis on the ongoing Yucca Mountain Program (YMP) efforts. Overall, understanding the controls of radionuclide mobility associated with these nuclear tests will provide insight into the repository's future performance as well as bounds and calibrations for the numerical predictions of long-term radionuclide releases and migration.

  14. Next Generation Transport Phenomenology Model

    NASA Technical Reports Server (NTRS)

    Strickland, Douglas J.; Knight, Harold; Evans, J. Scott

    2004-01-01

    This report describes the progress made in Quarter 3 of Contract Year 3 on the development of Aeronomy Phenomenology Modeling Tool (APMT), an open-source, component-based, client-server architecture for distributed modeling, analysis, and simulation activities focused on electron and photon transport for general atmospheres. In the past quarter, column emission rate computations were implemented in Java, preexisting Fortran programs for computing synthetic spectra were embedded into APMT through Java wrappers, and work began on a web-based user interface for setting input parameters and running the photoelectron and auroral electron transport models.

  15. Next Generation Transport Phenomenology Model

    NASA Technical Reports Server (NTRS)

    Strickland, Douglas J.; Knight, Harold; Evans, J. Scott

    2004-01-01

    This report describes the progress made in Quarter 3 of Contract Year 3 on the development of Aeronomy Phenomenology Modeling Tool (APMT), an open-source, component-based, client-server architecture for distributed modeling, analysis, and simulation activities focused on electron and photon transport for general atmospheres. In the past quarter, column emission rate computations were implemented in Java, preexisting Fortran programs for computing synthetic spectra were embedded into APMT through Java wrappers, and work began on a web-based user interface for setting input parameters and running the photoelectron and auroral electron transport models.

  16. Hydrologic Nuclide Transport Models in Cyder, A Geologic Disposal Software Library - 13328

    SciTech Connect

    Huff, Kathryn D.

    2013-07-01

    Component level and system level abstraction of detailed computational geologic repository models have resulted in four rapid computational models of hydrologic radionuclide transport at varying levels of detail. Those models are described, as is their implementation in Cyder, a software library of interchangeable radionuclide transport models appropriate for representing natural and engineered barrier components of generic geology repository concepts. A proof of principle demonstration was also conducted in which these models were used to represent the natural and engineered barrier components of a repository concept in a reducing, homogenous, generic geology. This base case demonstrates integration of the Cyder open source library with the Cyclus computational fuel cycle systems analysis platform to facilitate calculation of repository performance metrics with respect to fuel cycle choices. (authors)

  17. Computational modeling of 137Cs contaminant transfer associated with sediment transport in Abukuma River.

    PubMed

    Iwasaki, T; Nabi, M; Shimizu, Y; Kimura, I

    2015-01-01

    A numerical model capable of simulating the transfer of (137)Cs in rivers associated with transport of fine sediment is presented. The accident at Fukushima Dai-ichi Nuclear Power Plant (FDNPP) released radionuclides into the atmosphere, and after fallout several radionuclides in them, such as radiocesium ((134)Cs, (137)Cs) and radioiodine ((131)I) were adsorbed on surface soil particles around FDNPP and transported by surface water. To understand the transport and deposition of the radioactive contaminant along with surface soil particles and its flux to the ocean, we modeled the transport of the (137)Cs contaminant by computing the water flow and the associated washload and suspended load transport. We have developed a two-dimensional model to simulate the plane flow structure, sediment transport and associated (137)Cs contaminant transport in rivers by combining a shallow water flow model and an advection-diffusion equation for the transport of sediment. The proposed model has been applied to the lower reach of Abukuma River, which is the main river in the highly contaminated area around FDNPP. The numerical results indicate that most (137)Cs supplied from the upstream river reach with washload would directly reach to Pacific Ocean. In contrast, washload-oriented (137)Cs supplied from the upstream river basin has a limited role in the radioactive contamination in the river. The results also suggest that the proposed framework of computational model can be a potential tool for understanding the sediment-oriented (137)Cs behavior in rivers.

  18. Screening sensitivity analysis of a radionuclides atmospheric dispersion model applied to the Fukushima disaster

    NASA Astrophysics Data System (ADS)

    Girard, Sylvain; Korsakissok, Irène; Mallet, Vivien

    2014-10-01

    Numerical models used to forecast the atmospheric dispersion of radionuclides following nuclear accidents are subject to substantial uncertainties. Input data, such as meteorological forecasts or source term estimations, as well as poorly known model parameters contribute for a large part to this uncertainty. A sensitivity analysis with the method of Morris was carried out in the case of the Fukushima disaster as a first step towards the uncertainty analysis of the Polyphemus/Polair3D model. The main difficulties stemmed from the high dimension of the model's input and output. Simple perturbations whose magnitudes were devised from a thorough literature review were applied to 19 uncertain inputs. Several outputs related to atmospheric activity and ground deposition were aggregated, revealing different inputs rankings. Other inputs based on gamma dose rates measurements were used to question the possibility of calibrating the inputs uncertainties. Some inputs, such as the cloud layer thickness, were found to have little influence on most considered outputs and could therefore be safely discarded from further studies. On the contrary, wind perturbations and emission factors for iodine and caesium are predominant. The performance indicators derived from dose rates observations displayed strong sensitivities. This emphasises the share of the overall uncertainty due to input uncertainties and asserts the relevance of the simple perturbation scheme that was employed in this work.

  19. Coupled Geochemical and Hydrological Processes Governing the Fate and Transport of Radionuclides and Toxic Metals Beneath the Hanford Tank Farms

    SciTech Connect

    Scott Fendorf; Phil Jardine

    2006-07-21

    The goal of this research was to provide an improved understanding and predictive capability of coupled hydrological and geochemical mechanisms that are responsible for the accelerated migration and immobilization of radionuclides and toxic metals in the badose zone beneath the Hanford Tank Farms.

  20. Radionuclide cisternogram

    MedlinePlus

    ... please enable JavaScript. A radionuclide cisternogram is a nuclear scan test. It is used to diagnose problems ... damage. The amount of radiation used during the nuclear scan is very small. Almost all of the ...

  1. Three-dimensional modeling of oceanic dispersal of land-derived multi-class suspended radionuclides after the Fukushima Dai-ichi accident

    NASA Astrophysics Data System (ADS)

    Uchiyama, Yusuke; Yamanishi, Takafumi; Tsumune, Daisuke; Misumi, Kazuhiro; Onda, Yuichi

    2016-04-01

    Several oceanic dispersal modeling have been conducted on dissolved radionuclides leaked from the Fukushima Dai-ichi Nuclear Power Plant (FNPP) where the direct release of radionuclides from the FNPP and atmospheric deposition are major sources. In the present study, we view freshwater discharge from the rivers as a missing piece for the inventory of the radionuclides in the ocean. The land-derived input introduces a time lag behind the direct release through hydrological process because these radionuclides mostly are attached to suspended particles that are transported quite differently to the dissolved matter. We thus develop a multi-class, non-cohesive sediment transport model based on ROMS along with a wave-enhanced bed boundary layer model of Soulsby (1995) and a stratigraphy submodel proposed by Blaas et al. (2007). Suspended 137Cs attached to the sediment is evaluated with an empirical power law proposed by Onda et al. (2014) as a function of specific surface area of the suspended particles. A 128 x 256 km domain with the grid resolution of dx = 250 m centered at the FNPP is configured as a test bed nested in the existing double nested ROMS domain with dx = 1 km (Uchiyama et al., 2012, 2013). The wave field is computed with an operational wave model SWAN (Booij et al., 1999) embedded in the JMA GVP-CWM wave reanalysis. A total of 20 rivers in the domain are configured as point sources of freshwater and sediments by exploiting a surface runoff model HYDREEMS (Toyoda et al., 2009) and an empirical discharge to sediment flux relation (Takekawa and Nihei, 2013). Fractions of three sediment classes, viz., fine sand, silt and clay, in the riverine discharge are determined empirically based on the outcome of a USLE-based river sediment modeling conducted by JAEA. The developed model successfully reproduces the dispersal of the land-derived sediments and their recirculation processes associated with resuspension and deposition in the Fukushima coast for 4 months

  2. VICTORIA: A mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions. Revision 1

    SciTech Connect

    Heams, T J; Williams, D A; Johns, N A; Mason, A; Bixler, N E; Grimley, A J; Wheatley, C J; Dickson, L W; Osborn-Lee, I; Domagala, P; Zawadzki, S; Rest, J; Alexander, C A; Lee, R Y

    1992-12-01

    The VICTORIA model of radionuclide behavior in the reactor coolant system (RCS) of a light water reactor during a severe accident is described. It has been developed by the USNRC to define the radionuclide phenomena and processes that must be considered in systems-level models used for integrated analyses of severe accident source terms. The VICTORIA code, based upon this model, predicts fission product release from the fuel, chemical reactions involving fission products, vapor and aerosol behavior, and fission product decay heating. Also included is a detailed description of how the model is implemented in VICTORIA, the numerical algorithms used, and the correlations and thermochemical data necessary for determining a solution. A description of the code structure, input and output, and a sample problem are provided.

  3. Mathematical Modeling of Kidney Transport

    PubMed Central

    Layton, Anita T.

    2013-01-01

    In addition to metabolic waste and toxin excretion, the kidney also plays an indispensable role in regulating the balance of water, electrolytes, nitrogen, and acid-base. In this review, we describe representative mathematical models that have been developed to better understand kidney physiology and pathophysiology, including the regulation of glomerular filtration, the regulation of renal blood flow by means of the tubuloglomerular feedback mechanisms and of the myogenic mechanism, the urine concentrating mechanism, epithelial transport, and regulation of renal oxygen transport. We discuss the extent to which these modeling efforts have expanded our understanding of renal function in both health and disease. PMID:23852667

  4. Modelling the behaviour of uranium-series radionuclides in soils and plants taking into account seasonal variations in soil hydrology.

    PubMed

    Pérez-Sánchez, D; Thorne, M C

    2014-05-01

    In a previous paper, a mathematical model for the behaviour of (79)Se in soils and plants was described. Subsequently, a review has been published relating to the behaviour of (238)U-series radionuclides in soils and plants. Here, we bring together those two strands of work to describe a new mathematical model of the behaviour of (238)U-series radionuclides entering soils in solution and their uptake by plants. Initial studies with the model that are reported here demonstrate that it is a powerful tool for exploring the behaviour of this decay chain or subcomponents of it in soil-plant systems under different hydrological regimes. In particular, it permits studies of the degree to which secular equilibrium assumptions are appropriate when modelling this decay chain. Further studies will be undertaken and reported separately examining sensitivities of model results to input parameter values and also applying the model to sites contaminated with (238)U-series radionuclides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Beryllium-7 and lead-210 chronometry of modern soil processes: The Linked Radionuclide aCcumulation model, LRC

    NASA Astrophysics Data System (ADS)

    Landis, Joshua D.; Renshaw, Carl E.; Kaste, James M.

    2016-05-01

    Soil systems are known to be repositories for atmospheric carbon and metal contaminants, but the complex processes that regulate the introduction, migration and fate of atmospheric elements in soils are poorly understood. This gap in knowledge is attributable, in part, to the lack of an established chronometer that is required for quantifying rates of relevant processes. Here we develop and test a framework for adapting atmospheric lead-210 chronometry (210Pb; half-life 22 years) to soil systems. We propose a new empirical model, the Linked Radionuclide aCcumulation model (LRC, aka "lark"), that incorporates measurements of beryllium-7 (7Be; half-life 54 days) to account for 210Pb penetration of the soil surface during initial deposition, a process which is endemic to soils but omitted from conventional 210Pb models (e.g., the Constant Rate of Supply, CRS model) and their application to sedimentary systems. We validate the LRC model using the 1963-1964 peak in bomb-fallout americium-241 (241Am; half-life of 432 years) as an independent, corroborating time marker. In three different soils we locate a sharp 241Am weapons horizon at disparate depths ranging from 2.5 to 6 cm, but with concordant ages averaging 1967 ± 4 via the LRC model. Similarly, at one site contaminated with mercury (HgT) we find that the LRC model is consistent with the recorded history of Hg emission. The close agreement of Pb, Am and Hg behavior demonstrated here suggests that organo-metallic colloid formation and migration incorporates many trace metals in universal soil processes and that these processes may be described quantitatively using atmospheric 210Pb chronometry. The 210Pb models evaluated here show that migration rates of soil colloids on the order of 1 mm yr-1 are typical, but also that these rates vary systematically with depth and are attributable to horizon-specific processes of leaf-litter decay, eluviation and illuviation. We thus interpret 210Pb models to quantify (i) exposure

  6. Review of the transport of selected radionuclides in the interim risk assessment for the Radioactive Waste Management Complex, Waste Area Group 7 Operable Unit 7-13/14, Idaho National Engineering and Environmental Laboratory, Idaho

    USGS Publications Warehouse

    Rousseau, Joseph P.; Landa, Edward R.; Nimmo, John R.; Cecil, L. DeWayne; Knobel, LeRoy L.; Glynn, Pierre D.; Kwicklis, Edward M.; Curtis, Gary P.; Stollenwerk, Kenneth G.; Anderson, Steven R.; Bartholomay, Roy C.; Bossong, Clifford R.; Orr, Brennon R.

    2005-01-01

    The U.S. Department of Energy (DOE) requested that the U.S. Geological Survey conduct an independent technical review of the Interim Risk Assessment (IRA) and Contaminant Screening for the Waste Area Group 7 (WAG-7) Remedial Investigation, the draft Addendum to the Work Plan for Operable Unit 7-13/14 WAG-7 comprehensive Remedial Investigation and Feasibility Study (RI/FS), and supporting documents that were prepared by Lockheed Martin Idaho Technologies, Inc. The purpose of the technical review was to assess the data and geotechnical approaches that were used to estimate future risks associated with the release of the actinides americium, uranium, neptunium, and plutonium to the Snake River Plain aquifer from wastes buried in pits and trenches at the Subsurface Disposal Area (SDA). The SDA is located at the Radioactive Waste Management Complex in southeastern Idaho within the boundaries of the Idaho National Engineering and Environmental Laboratory. Radionuclides have been buried in pits and trenches at the SDA since 1957 and 1952, respectively. Burial of transuranic wastes was discontinued in 1982. The five specific tasks associated with this review were defined in a ?Proposed Scope of Work? prepared by the DOE, and a follow-up workshop held in June 1998. The specific tasks were (1) to review the radionuclide sampling data to determine how reliable and significant are the reported radionuclide detections and how reliable is the ongoing sampling program, (2) to assess the physical and chemical processes that logically can be invoked to explain true detections, (3) to determine if distribution coefficients that were used in the IRA are reliable and if they have been applied properly, (4) to determine if transport model predictions are technically sound, and (5) to identify issues needing resolution to determine technical adequacy of the risk assessment analysis, and what additional work is required to resolve those issues.

  7. WASP TRANSPORT MODELING AND WASP ECOLOGICAL MODELING

    EPA Science Inventory

    A combination of lectures, demonstrations, and hands-on excercises will be used to introduce pollutant transport modeling with the U.S. EPA's general water quality model, WASP (Water Quality Analysis Simulation Program). WASP features include a user-friendly Windows-based interfa...

  8. WASP TRANSPORT MODELING AND WASP ECOLOGICAL MODELING

    EPA Science Inventory

    A combination of lectures, demonstrations, and hands-on excercises will be used to introduce pollutant transport modeling with the U.S. EPA's general water quality model, WASP (Water Quality Analysis Simulation Program). WASP features include a user-friendly Windows-based interfa...

  9. Modeling axisymmetric flow and transport.

    PubMed

    Langevin, Christian D

    2008-01-01

    Unmodified versions of common computer programs such as MODFLOW, MT3DMS, and SEAWAT that use Cartesian geometry can accurately simulate axially symmetric ground water flow and solute transport. Axisymmetric flow and transport are simulated by adjusting several input parameters to account for the increase in flow area with radial distance from the injection or extraction well. Logarithmic weighting of interblock transmissivity, a standard option in MODFLOW, can be used for axisymmetric models to represent the linear change in hydraulic conductance within a single finite-difference cell. Results from three test problems (ground water extraction, an aquifer push-pull test, and upconing of saline water into an extraction well) show good agreement with analytical solutions or with results from other numerical models designed specifically to simulate the axisymmetric geometry. Axisymmetric models are not commonly used but can offer an efficient alternative to full three-dimensional models, provided the assumption of axial symmetry can be justified. For the upconing problem, the axisymmetric model was more than 1000 times faster than an equivalent three-dimensional model. Computational gains with the axisymmetric models may be useful for quickly determining appropriate levels of grid resolution for three-dimensional models and for estimating aquifer parameters from field tests.

  10. Modeling axisymmetric flow and transport

    USGS Publications Warehouse

    Langevin, C.D.

    2008-01-01

    Unmodified versions of common computer programs such as MODFLOW, MT3DMS, and SEAWAT that use Cartesian geometry can accurately simulate axially symmetric ground water flow and solute transport. Axisymmetric flow and transport are simulated by adjusting several input parameters to account for the increase in flow area with radial distance from the injection or extraction well. Logarithmic weighting of interblock transmissivity, a standard option in MODFLOW, can be used for axisymmetric models to represent the linear change in hydraulic conductance within a single finite-difference cell. Results from three test problems (ground water extraction, an aquifer push-pull test, and upconing of saline water into an extraction well) show good agreement with analytical solutions or with results from other numerical models designed specifically to simulate the axisymmetric geometry. Axisymmetric models are not commonly used but can offer an efficient alternative to full three-dimensional models, provided the assumption of axial symmetry can be justified. For the upconing problem, the axisymmetric model was more than 1000 times faster than an equivalent three-dimensional model. Computational gains with the axisymmetric models may be useful for quickly determining appropriate levels of grid resolution for three-dimensional models and for estimating aquifer parameters from field tests.

  11. Uncertainty Modeling of Pollutant Transport in Atmosphere and Aquatic Route Using Soft Computing

    SciTech Connect

    Datta, D.

    2010-10-26

    Hazardous radionuclides are released as pollutants in the atmospheric and aquatic environment (ATAQE) during the normal operation of nuclear power plants. Atmospheric and aquatic dispersion models are routinely used to assess the impact of release of radionuclide from any nuclear facility or hazardous chemicals from any chemical plant on the ATAQE. Effect of the exposure from the hazardous nuclides or chemicals is measured in terms of risk. Uncertainty modeling is an integral part of the risk assessment. The paper focuses the uncertainty modeling of the pollutant transport in atmospheric and aquatic environment using soft computing. Soft computing is addressed due to the lack of information on the parameters that represent the corresponding models. Soft-computing in this domain basically addresses the usage of fuzzy set theory to explore the uncertainty of the model parameters and such type of uncertainty is called as epistemic uncertainty. Each uncertain input parameters of the model is described by a triangular membership function.

  12. Initial Radionuclide Inventories

    SciTech Connect

    H. Miller

    2004-09-19

    The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only. Bounding waste stream information and data were collected that capture probable limits. For commercially generated waste, this analysis considers alternative waste stream projections to bound the characteristics of wastes likely to be encountered using arrival scenarios that potentially impact the commercial spent nuclear fuel (CSNF) waste stream. For TSPA-LA, this radionuclide inventory analysis considers U.S. Department of Energy (DOE) high-level radioactive waste (DHLW) glass and two types of spent nuclear fuel (SNF): CSNF and DOE-owned (DSNF). These wastes are placed in two groups of waste packages: the CSNF waste package and the codisposal waste package (CDSP), which are designated to contain DHLW glass and DSNF, or DHLW glass only. The radionuclide inventory for naval SNF is provided separately in the classified ''Naval Nuclear Propulsion Program Technical Support Document'' for the License Application. As noted previously, the radionuclide inventory data presented here is intended only for TSPA-LA postclosure calculations. It is not applicable to preclosure safety calculations. Safe storage, transportation, and ultimate disposal of these wastes require safety analyses to support the design and licensing of repository equipment and facilities. These analyses will require radionuclide inventories to represent the radioactive source term that must be accommodated during handling, storage and disposition of these wastes. This analysis uses the best available information to identify the radionuclide inventory that is expected at the last year of last emplacement, currently identified as

  13. Task 3: PNNL Visit by JAEA Researchers to Participate in TODAM Code Applications to Fukushima Rivers and to Evaluate the Feasibility of Adaptation of FLESCOT Code to Simulate Radionuclide Transport in the Pacific Ocean Coastal Water Around Fukushima

    SciTech Connect

    Onishi, Yasuo

    2013-03-29

    Four JAEA researchers visited PNNL for two weeks in February, 2013 to learn the PNNL-developed, unsteady, one-dimensional, river model, TODAM and the PNNL-developed, time-dependent, three dimensional, coastal water model, FLESCOT. These codes predict sediment and contaminant concentrations by accounting sediment-radionuclide interactions, e.g., adsorption/desorption and transport-deposition-resuspension of sediment-sorbed radionuclides. The objective of the river and coastal water modeling is to simulate • 134Cs and 137Cs migration in Fukushima rivers and the coastal water, and • their accumulation in the river and ocean bed along the Fukushima coast. Forecasting the future cesium behavior in the river and coastal water under various scenarios would enable JAEA to assess the effectiveness of various on-land remediation activities and if required, possible river and coastal water clean-up operations to reduce the contamination of the river and coastal water, agricultural products, fish and other aquatic biota. PNNL presented the following during the JAEA visit to PNNL: • TODAM and FLESCOT’s theories and mathematical formulations • TODAM and FLESCOT model structures • Past TODAM and FLESCOT applications • Demonstrating these two codes' capabilities by applying them to simple hypothetical river and coastal water cases. • Initial application of TODAM to the Ukedo River in Fukushima and JAEA researchers' participation in its modeling. PNNL also presented the relevant topics relevant to Fukushima environmental assessment and remediation, including • PNNL molecular modeling and EMSL computer facilities • Cesium adsorption/desorption characteristics • Experiences of connecting molecular science research results to macro model applications to the environment • EMSL tour • Hanford Site road tour. PNNL and JAEA also developed future course of actions for joint research projects on the Fukushima environmental and remediation assessments.

  14. Stochastic model for the fluctuations of the atmospheric concentration of radionuclides and its application to uncertainty evaluation

    NASA Astrophysics Data System (ADS)

    Ichige, Hiroyuki; Fukuchi, Shun; Hatano, Yuko

    2015-02-01

    We propose a new model of the atmospheric concentration of a radionuclide with the inclusion of fluctuations of the concentration. The model is a stochastic differential equation and we derive the analytic solution of the equation. The solution agrees very well with the Chernobyl Cs-137 data. The advantage of the model is that the uncertainty in radiation exposure risk, with regard to the concentration fluctuations, can be quantitatively estimated. We show the range of fluctuations of ±σ, ±2σ, ±3σ in the 10-year measurement of the atmospheric concentration in Chernobyl and confirmed the validity of the model.

  15. Modification of the finite element heat and mass transfer code (FEHMN) to model multicomponent reactive transport

    SciTech Connect

    Viswanathan, H.S.

    1995-12-31

    The finite element code FEHMN is a three-dimensional finite element heat and mass transport simulator that can handle complex stratigraphy and nonlinear processes such as vadose zone flow, heat flow and solute transport. Scientists at LANL have been developed hydrologic flow and transport models of the Yucca Mountain site using FEHMN. Previous FEHMN simulations have used an equivalent K{sub d} model to model solute transport. In this thesis, FEHMN is modified making it possible to simulate the transport of a species with a rigorous chemical model. Including the rigorous chemical equations into FEHMN simulations should provide for more representative transport models for highly reactive chemical species. A fully kinetic formulation is chosen for the FEHMN reactive transport model. Several methods are available to computationally implement a fully kinetic formulation. Different numerical algorithms are investigated in order to optimize computational efficiency and memory requirements of the reactive transport model. The best algorithm of those investigated is then incorporated into FEHMN. The algorithm chosen requires for the user to place strongly coupled species into groups which are then solved for simultaneously using FEHMN. The complete reactive transport model is verified over a wide variety of problems and is shown to be working properly. The simulations demonstrate that gas flow and carbonate chemistry can significantly affect {sup 14}C transport at Yucca Mountain. The simulations also provide that the new capabilities of FEHMN can be used to refine and buttress already existing Yucca Mountain radionuclide transport studies.

  16. Radionuclide transport from soil to air, native vegetation, kangaroo rats and grazing cattle on the Nevada test site

    SciTech Connect

    Gilbert, R.O.; Shinn, J.H.; Essington, E.H.; Tamura, T.; Romney, E.M.; Moor, K.S.; O'Farrell, T.P.

    1988-12-01

    Between 1970 and 1986 the Nevada Applied Ecology Group (NAEG), U.S. Department of Energy, conducted environmental radionuclide studies at weapons-testing sites on or adjacent to the Nevada Test Site. In this paper, NAEG studies conducted at two nuclear (fission) sites (NS201, NS219) and two nonnuclear (nonfission) sites (Area 13 (Project 57) and Clean Slate 2) are reviewed, synthesized and compared regarding (1) soil particle-size distribution and physical-chemical characteristics of 239 + 240Pu-bearing radioactive particles, (2) 239 + 240Pu resuspension rates and (3) transuranic and fission-product radionuclide transfers from soil to native vegetation, kangaroo rats and grazing cattle. The data indicate that transuranic radionuclides were transferred more readily on the average from soil to air, the external surfaces of native vegetation and to tissues of kangaroo rats at Area 13 than at NS201 or NS219. The 239 + 240Pu resuspension factor for undisturbed soil at Area 13 was three to four orders-of-magnitude larger than at NS201 and NS219, the geometric mean (GM) vegetation-over-soil 239 + 240Pu concentration ratio was from ten to 100 times larger than at NS201, and the GM GI-over-soil, carcass-over-soil and pelt-over-soil 239 + 240Pu ratios for kangaroo rats were about ten times larger than at NS201. These results are consistent with the finding that Area 13, compared with NS201 or NS219, has a higher percentage of radioactivity associated with smaller soil particles and a larger percentage of resuspendable and respirable soil. However, the resuspension factor increased by a factor of 27 at NS201 when the surface soil was disturbed, and by a factor of 12 at NS219 following a wildfire.

  17. Box model of radionuclide dispersion and radiation risk estimation for population in case of radioactivity release from nuclear submarine {number_sign}601 dumped in the Kara Sea

    SciTech Connect

    Yefimov, E.I.; Pankratov, D.V.; Ignatiev, S.V.

    1997-12-31

    When ships with nuclear reactors or nuclear materials aboard suffer shipwreck or in the case of burial or dumping of radioactive wastes, atmospheric fallout, etc., radionuclides may be released and spread in the sea, contaminating the sea water and the sea bottom. When a nuclear submarine (NS) is dumped this spread of activity may occur due to gradual core destruction by corrosion over many years. The objective of this paper is to develop a mathematical model of radionuclide dispersion and to assess the population dose and radiation risk for radionuclide release from the NS No. 601, with Pb-Bi coolant that was dumped in the Kara Sea.

  18. Illicit Trafficking of Natural Radionuclides

    SciTech Connect

    Friedrich, Steinhaeusler; Lyudmila, Zaitseva

    2008-08-07

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.

  19. Illicit Trafficking of Natural Radionuclides

    NASA Astrophysics Data System (ADS)

    Friedrich, Steinhäusler; Lyudmila, Zaitseva

    2008-08-01

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.

  20. Long-term modelling of fly ash and radionuclide emissions as well as deposition fluxes due to the operation of large oil shale-fired power plants.

    PubMed

    Vaasma, Taavi; Kaasik, Marko; Loosaar, Jüri; Kiisk, Madis; Tkaczyk, Alan H

    2017-09-11

    Two of the world's largest oil shale-fired power plants (PPs) in Estonia have been operational over 40 years, emitting various pollutants, such as fly ash, SOx, NOx, heavy metals, volatile organic compounds as well as radionuclides to the environment. The emissions from these PPs have varied significantly during this period, with the maximum during the 1970s and 1980s. The oil shale burned in the PPs contains naturally occurring radionuclides from the (238)U and (232)Th decay series as well as (40)K. These radionuclides become enriched in fly ash fractions (up to 10 times), especially in the fine fly ash escaping the purification system. Using a validated Gaussian-plume model, atmospheric dispersion modelling was carried out to determine the quantity and a real magnitude of fly ash and radionuclide deposition fluxes during different decades. The maximum deposition fluxes of volatile radionuclides ((210)Pb and (210)Po) were around 70 mBq m(-2) d(-1) nearby the PPs during 1970s and 1980s. Due to the reduction of burned oil shale and significant renovations done on the PPs, the deposition fluxes were reduced to 10 mBq m(-2) d(-1) in the 2000s and down to 1.5 mBq m(-2) d(-1) in 2015. The maximum deposition occurs within couple of kilometers of the PPs, but the impacted area extends to over 50 km from the sources. For many radionuclides, including (210)Po, the PPs have been larger contributors of radionuclides to the environment via atmospheric pathway than natural sources. This is the first time that the emissions and deposition fluxes of radionuclides from the PPs have been quantified, providing the information about their radionuclide deposition load on the surrounding environment during various time periods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Development of a multimedia radionuclide exposure model for low-level waste management

    SciTech Connect

    Onishi, Y.; Whelan, G.; Skaggs, R.L.

    1982-03-01

    A method is being developed for assessing exposures of the air, water, and plants to low-level waste (LLW) as a part of an overall development effort of a LLW site evaluation methodology. The assessment methodology will predict LLW exposure levels in the environment by simulating dominant mechanisms of LLW migration and fate. The methodology consists of a series of physics-based models with proven histories of success; the models interact with each other to simulate LLW transport in the ecosystem. A scaled-down version of the methodology was developed first by combining the terrestrial ecological model, BIOTRAN; the overland transport model, ARM; the instream hydrodynamic model, DKWAV; and the instream sediment-contaminant transport model, TODAM (a one-dimensional version of SERATRA). The methodology was used to simulate the migration of /sup 239/Pu from a shallow-land disposal site (known as Area C) located near the head of South Mortandad Canyon on the LANL site in New Mexico. The scenario assumed that /sup 239/Pu would be deposited on the land surface through the natural processes of plant growth, LLW uptake, dryfall, and litter decomposition. Runoff events would then transport /sup 239/Pu to and in the canyon. The model provided sets of simulated LLW levels in soil, water and terrestrial plants in the region surrounding the site under a specified land-use and a waste management option. Over a 100-yr simulation period, only an extremely small quantity (6 x 10/sup -9/ times the original concentration) of buried /sup 239/Pu was taken up by plants and deposited on the land surface. Only a small fraction (approximately 1%) of that contamination was further removed by soil erosion from the site and carried to the canyon, where it remained. Hence, the study reveals that the environment around Area C has integrity high enough to curtail LLW migration under recreational land use.

  2. Scientific Analysis Cover Sheet for Radionuclide Screening

    SciTech Connect

    G. Ragan

    2002-08-09

    The waste forms under consideration for disposal in the proposed repository at Yucca Mountain contain scores of radionuclides (Attachments V and VI). It would be impractical and highly inefficient to model all of these radionuclides in a total system performance assessment (TSPA). Thus, the purpose of this radionuclide screening analysis is to remove from further consideration (screen out) radionuclides that are unlikely to significantly contribute to radiation dose to the public from the proposed nuclear waste repository at Yucca Mountain. The remaining nuclides (those screened in) are recommended for consideration in TSPA modeling for license application. This analysis also covers radionuclides that are not screened in based on dose, but need to be included in TSPA modeling for other reasons. For example, U.S. Environmental Protection Agency (EPA) and U.S. Nuclear Regulatory Commission (NRC) regulations require consideration of the combined activity of Ra-226 and Ra-228 in groundwater (40 CFR 197.30, 10 CFR 63.331). Also, Cm-245, Pu-241, and U-235 decay indirectly to potentially important radionuclides, and are not identified by the screening analysis as important. The radionuclide screening analysis separately considers two different postclosure time periods: the 10,000-y regulatory period for the proposed repository at Yucca Mountain and the period after 10,000 y up to 1 million y after emplacement. The incremental effect of extending the screening for the regulatory period to 20,000 y is also addressed. Four release scenarios are considered: (1) the nominal scenario, which entails long-term degradation of disposal containers and waste forms, (2) a human-intrusion scenario, (3) an intrusive igneous event, and (4) an eruptive igneous event. Because the first three scenarios require groundwater transport, they are called groundwater scenarios below. The screening analysis considers the following waste forms: spent boiling water reactor (BWR) fuel, spent

  3. Inferring Hillslope Hydrology from the Distribution of Fallout Radionuclides

    NASA Astrophysics Data System (ADS)

    Kaste, J. M.; Heimsath, A. M.; Friedland, A. J.

    2001-05-01

    Be-7, excess Pb-210, Cs-137, and Am-241 are short-lived (half-life < 500 yr) particle-reactive radionuclides with well-defined atmospheric source terms. Previous studies show that the redistribution of these radionuclides on agricultural fields is by particle transport, not via the dissolved phase. We use the distribution of short-lived atmospheric fallout on forested hillslopes to infer the hydrological processes governing local sediment transport. Here, we present radionuclide activities from soil samples collected at different depths along hillslope profiles in a forested watershed in New Hampshire. Radionuclide activities in stream sediment, water, and soil samples were determined by gamma spectroscopy. Sites with fallout radionuclide inventories consistent with the theoretical deposition flux can be assumed to be stable and undergoing little or no erosion. However, near-stream portions of the watershed which could be subject to saturated overland flow show a depletion of Be-7 and excess Pb-210 relative to the more stable locations. Sediment collected from the bottom of stream channels showed significant activities of short-lived radionuclides, particularly Be-7. This suggests that saturated overland flow is an important process eroding soil from certain parts of the hillslope and in-channel deposition occurs. By comparing the distribution of Be-7 (half-life ca. 53 days) with Cs-137 (half-life ca. 30 yr) we can identify the timescales of sediment transport processes. A hydrological model is presented to explain the distribution of radionuclides on hillslopes at our study site. The results from this study will help us better predict the fate of atmospherically deposited contaminants in watersheds.

  4. Dosimetric model for antibody targeted radionuclide therapy of tumor cells in cerebrospinal fluid

    SciTech Connect

    Millar, W.T.; Barrett, A. )

    1990-02-01

    Although encouraging results have been obtained using systemic radioimmunotherapy in the treatment of cancer, it is likely that regional applications may prove more effective. One such strategy is the treatment of central nervous system leukemia in children by intrathecal instillation of targeting or nontargeting beta particle emitting radionuclide carriers. The beta particle dosimetry of the spine is assessed, assuming that the spinal cord and the cerebrospinal fluid compartment can be adequately represented by a cylindrical annulus. The radionuclides investigated were {sup 90}Y, {sup 131}I, {sup 67}Cu, and {sup 199}Au. It is shown that the radiation dose to the cord can be significantly reduced using short range beta particle emitters and that there is little advantage in using targeting carriers with these radionuclides. {sup 199}Au and {sup 67}Cu also have the advantage of having a suitable gamma emission for imaging, permitting pretherapy imaging and dosimetric calculations to be undertaken prior to therapy. If these methods prove successful, it may be possible to replace the external beam component used in the treatment of central nervous system leukemia in children by intrathecal radionuclide therapy, thus reducing or avoiding side effects such as growth and intellectual impairment.

  5. Radionuclide speciation in effluent from La Hague reprocessing plant in France.

    PubMed

    Salbu, B; Skipperud, L; Germain, P; Guéguéniat, P; Strand, P; Lind, O C; Christensen, G

    2003-09-01

    Effluent from the La Hague nuclear fuel reprocessing plant was mixed with seawater in order to investigate the fate of the various radionuclides. Thus, a major objective of the present work is to characterize the effluent from La Hague reprocessing plant and to study how the radionuclide speciation changes with time when discharged into the marine environment. Discharges from the La Hague nuclear reprocessing plant represent an important source of artificially produced radionuclides to the North Sea. The transport, distribution, and biological uptake of radionuclides in the marine environment depends, however, on the physicochemical forms of radionuclides in the discharged effluents and on transformation processes that occur after entering the coastal waters. Information of these processes is needed to understand the transport and long-term distribution of the radionuclides. In the present work, a weekly discharged effluent from the nuclear fuel reprocessing plant at Cap La Hague in France was mixed with coastal water and fractionated with respect to particle size and charged species using ultra centrifugation and hollow fiber ultrafiltration with on line ion exchange. The size distribution pattern of gamma-emitting radionuclides was followed during a 62-h period after mixing the effluent with seawater. 54Mn was present as particulate material in the effluent, while other investigated radionuclides were discharged in a more mobile form or were mobilized after mixing with sea water (e.g., 60Co) and can be transported long distances in the sea. Sediments can act as a sink for less mobile discharged radionuclides (Skipperud et al. 2000). A kinetic model experiment was performed to provide information of the time-dependent distribution coefficients, Kd (t). The retention of the effluent radionuclides in sediments was surprisingly low (Kd 20-50), and the sediments acted as a poor sink for the released radionuclides. Due to the presence of non-reacting radionuclide

  6. Radionuclide transport from soil to air, native vegetation, kangaroo rats and grazing cattle on the Nevada test site.

    PubMed

    Gilbert, R O; Shinn, J H; Essington, E H; Tamura, T; Romney, E M; Moor, K S; O'Farrell, T P

    1988-12-01

    Between 1970 and 1986 the Nevada Applied Ecology Group (NAEG), U.S. Department of Energy, conducted environmental radionuclide studies at weapons-testing sites on or adjacent to the Nevada Test Site. In this paper, NAEG studies conducted at two nuclear (fission) sites (NS201, NS219) and two nonnuclear (nonfission) sites (Area 13 [Project 57] and Clean Slate 2) are reviewed, synthesized and compared regarding (1) soil particle-size distribution and physical-chemical characteristics of 239 + 240Pu-bearing radioactive particles, (2) 239 + 240Pu resuspension rates and (3) transuranic and fission-product radionuclide transfers from soil to native vegetation, kangaroo rats and grazing cattle. The data indicate that transuranic radionuclides were transferred more readily on the average from soil to air, the external surfaces of native vegetation and to tissues of kangaroo rats at Area 13 than at NS201 or NS219. The 239 + 240Pu resuspension factor for undisturbed soil at Area 13 was three to four orders-of-magnitude larger than at NS201 and NS219, the geometric mean (GM) vegetation-over-soil 239 + 240Pu concentration ratio was from ten to 100 times larger than at NS201, and the GM GI-over-soil, carcass-over-soil and pelt-over-soil 239 + 240Pu ratios for kangaroo rats were about ten times larger than at NS201. These results are consistent with the finding that Area 13, compared with NS201 or NS219, has a higher percentage of radioactivity associated with smaller soil particles and a larger percentage of resuspendable and respirable soil. However, the resuspension factor increased by a factor of 27 at NS201 when the surface soil was disturbed, and by a factor of 12 at NS219 following a wildfire. The average (GM) concentration of 239 + 240Pu for the GI (and contents) of Area 13 kangaroo rats and for the rumen contents of beef cattle that grazed Area 13 were very similar (400 vs. 440 Bq kg-1 dry wt, respectively) although the variability between individuals was very large. The

  7. A methodology for the assessment of rehabilitation success of post mining landscapes--sediment and radionuclide transport at the former Nabarlek uranium mine, Northern Territory, Australia.

    PubMed

    Hancock, G R; Grabham, M K; Martin, P; Evans, K G; Bollhöfer, A

    2006-02-01

    Protection of the environment post-mining is an important issue, especially where runoff and erosion can lead to undesirable material leaving post-mining landscapes and contaminating surrounding land and watercourses. Methods for assessment of the environmental impact and long-term behaviour of post-mining landforms based on scientific methodology are needed especially where field data are absent or poor. An appraisal of the former Nabarlek uranium mine was conducted to assess the site from a soil erosion perspective as part of an independent evaluation of overall rehabilitation success. Determination of the gross erosion occurring, sediment discharge to Cooper Creek and the resultant sediment associated radionuclide load in Cooper Creek were the primary objectives of the study. These objectives were achieved through the application of several models using parameter values collected from the site. The study found that the area containing the mill tailings repository is extremely stable and meets the guidelines established for long-term storage of uranium mill tailings. Most other areas on the site are stable; however there are some areas with a high sediment loss. Sediment concentration in Cooper Creek, which drains the site, was found to be within the Australian water quality guidelines for fresh water, however sediment concentrations in tributaries were found to exceed recommended levels. Radionuclide determinations on soil samples showed that the highest specific activities (Bq kg-1) were present on a small (0.44 ha) area with a relatively high erosion rate. This small area contributed the majority of the estimated flux to Cooper Creek of uranium-series radionuclides sorbed or structurally incorporated to eroded soil particles sourced from the mine site. This study provides a methodology for assessment of the erosional stability of such a landscape and consequent impact on water quality, using extensive field data and readily available and well known models and

  8. Forecasting the consequences of accidental releases of radionuclides in the atmosphere from ensemble dispersion modelling.

    PubMed

    Galmarini, S; Bianconi, R; Bellasio, R; Graziani, G

    2001-01-01

    The RTMOD system is presented as a tool for the intercomparison of long-range dispersion models as well as a system for support of decision making. RTMOD is an internet-based procedure that collects the results of more than 20 models used around the world to predict the transport and deposition of radioactive releases in the atmosphere. It allows the real-time acquisition of model results and their intercomparison. Taking advantage of the availability of several model results, the system can also be used as a tool to support decision making in case of emergency. The new concept of ensemble dispersion modelling is introduced which is the basis for the decision-making application of RTMOD. New statistical parameters are presented that allow gathering the results of several models to produce a single dispersion forecast. The devised parameters are presented and tested on the results of RTMOD exercises.

  9. Matrix Diffusion and Colloid-Facilitated Transport in Fractured Rocks: Model and Parameter Validation

    SciTech Connect

    Zavarin, M

    2002-08-02

    In this report, we review the results of Reimus et al. (2000a; 2000b) regarding matrix diffusion and colloid-facilitated transport in fractured rock and evaluate the implications of these results on modeling fracture flow at the Nevada Test Site (NTS). In particular, we examine these data in the context of the recent Cheshire hydrologic source term (HST) model results (Pawloski et al., 2001). This report is divided into several sections. In the first, we evaluate the effective diffusion coefficient (D{sub e}) data reported in Reimus et al. (2000a) for conservative tracer species ({sup 3}H, {sup 14}C, and {sup 99}Tc) and fit a simple effective diffusion model to these data. In the second, we use the fitted effective diffusion model, in conjunction with a surface complexation model, to simulate plutonium-colloid transport and compare model results to data reported in Reimus et al. (2000b). In the third, we evaluate the implications of these data with regards to radionuclide transport through fractures at the field scale and, in particular, with regards to the Cheshire HST model (Pawloski et al., 2001). Finally, we make recommendations regarding future radionuclide transport modeling efforts at the NTS.

  10. Transport Properties for Combustion Modeling

    SciTech Connect

    Brown, N.J.; Bastein, L.; Price, P.N.

    2010-02-19

    This review examines current approximations and approaches that underlie the evaluation of transport properties for combustion modeling applications. Discussed in the review are: the intermolecular potential and its descriptive molecular parameters; various approaches to evaluating collision integrals; supporting data required for the evaluation of transport properties; commonly used computer programs for predicting transport properties; the quality of experimental measurements and their importance for validating or rejecting approximations to property estimation; the interpretation of corresponding states; combination rules that yield pair molecular potential parameters for unlike species from like species parameters; and mixture approximations. The insensitivity of transport properties to intermolecular forces is noted, especially the non-uniqueness of the supporting potential parameters. Viscosity experiments of pure substances and binary mixtures measured post 1970 are used to evaluate a number of approximations; the intermediate temperature range 1 < T* < 10, where T* is kT/{var_epsilon}, is emphasized since this is where rich data sets are available. When suitable potential parameters are used, errors in transport property predictions for pure substances and binary mixtures are less than 5 %, when they are calculated using the approaches of Kee et al.; Mason, Kestin, and Uribe; Paul and Warnatz; or Ern and Giovangigli. Recommendations stemming from the review include (1) revisiting the supporting data required by the various computational approaches, and updating the data sets with accurate potential parameters, dipole moments, and polarizabilities; (2) characterizing the range of parameter space over which the fit to experimental data is good, rather than the current practice of reporting only the parameter set that best fits the data; (3) looking for improved combining rules, since existing rules were found to under-predict the viscosity in most cases; (4

  11. Coupled transport in rotor models

    NASA Astrophysics Data System (ADS)

    Iubini, S.; Lepri, S.; Livi, R.; Politi, A.

    2016-08-01

    Steady nonequilibrium states are investigated in a one-dimensional setup in the presence of two thermodynamic currents. Two paradigmatic nonlinear oscillators models are investigated: an XY chain and the discrete nonlinear Schrödinger equation. Their distinctive feature is that the relevant variable is an angle in both cases. We point out the importance of clearly distinguishing between energy and heat flux. In fact, even in the presence of a vanishing Seebeck coefficient, a coupling between (angular) momentum and energy arises, mediated by the unavoidable presence of a coherent energy flux. Such a contribution is the result of the ‘advection’ induced by the position-dependent angular velocity. As a result, in the XY model, the knowledge of the two diagonal elements of the Onsager matrix suffices to reconstruct its transport properties. The analysis of the nonequilibrium steady states finally allows to strengthen the connection between the two models.

  12. Radionuclide removal

    SciTech Connect

    Sorg, T.J.

    1991-01-01

    The U.S. Environmental Protection Agency proposed new and revised regulations on radionuclide contaminants in drinking water in June 1991. During the 1980's, the Drinking Water Research Division, USEPA conducted a research program to evaluate various technologies to remove radium, uranium and radon from drinking water. The research consisted of laboratory and field studies conducted by USEPA, universities and consultants. The paper summarizes the results of the most significant projects completed. General information is also presented on the general chemistry of the three radionuclides. The information presented indicates that the most practical treatment methods for radium are ion exchange and lime-soda softening and reverse osmosis. The methods tested for radon are aeration and granular activated carbon and the methods for uranium are anion exchange and reverse osmosis.

  13. Application of TOUGH2/EOS7R to modeling of radionuclide release from a low/intermediate level repository under two-phase conditions

    SciTech Connect

    Oldenburg, C.M.; Pruess, K.

    1996-06-01

    The generation of gas due to corrosion of repository waste packages under water-saturated conditions will give rise to pressure increases and two-phase flow conditions. We have developed a numerical simulator TOUGH2/EOS7R for modeling the two-phase flow and transport of a parent-daughter pair of radionuclides including the processes of adsorption, first-order decay, binary diffusion, and volatilization. TOUGH2/EOS7R is a descendant of EOS7, the water, brine and air module of TOUGH2. We apply TOUGH2/EOS7R to an example problem relevant to the disposal of low- and intermediate-level nuclear wastes in crystalline rock. The conceptual model and spatial discretization were provided to us by NAGRA. We demonstrate in preliminary simulations that to good approximation, the generation of hydrogen can be modeled using air as a proxy for hydrogen. Simulations of gas generation and subsequent flow and transport away from the repository demonstrate the use and flexibility of TOUGH2/EOS7R. By small modification in the code, users can printout data for calculating the fractional release curve (FR curve), which shows the instantaneous release rate from the repository.

  14. Chemical speciation of radionuclides migrating in groundwaters

    SciTech Connect

    Robertson, D.; Schilk, A.; Abel, K.; Lepel, E.; Thomas, C.; Pratt, S.; Cooper, E.; Hartwig, P.; Killey, R.

    1994-04-01

    In order to more accurately predict the rates and mechanisms of radionuclide migration from low-level waste disposal facilities via groundwater transport, ongoing studies are being conducted at field sites at Chalk River Laboratories to identify and characterize the chemical speciation of mobile, long-lived radionuclides migrating in groundwaters. Large-volume water sampling techniques are being utilized to separate and concentrate radionuclides into particular, cationic, anionic, and nonionic chemical forms. Most radionuclides are migrating as soluble, anionic species that appear to be predominantly organoradionuclide complexes. Laboratory studies utilizing anion exchange chromatography have separated several anionically complexed radionuclides, e.g., {sup 60}Co and {sup 106}Ru, into a number of specific compounds or groups of compounds. Further identification of the anionic organoradionuclide complexes is planned utilizing high resolution mass spectrometry. Large-volume ultra-filtration experiments are characterizing the particulate forms of radionuclides being transported in these groundwaters.

  15. Radionuclide daughter inventory generator code: DIG

    SciTech Connect

    Fields, D.E.; Sharp, R.D.

    1985-09-01

    The Daughter Inventory Generator (DIG) code accepts a tabulation of radionuclide initially present in a waste stream, specified as amounts present either by mass or by activity, and produces a tabulation of radionuclides present after a user-specified elapsed time. This resultant radionuclide inventory characterizes wastes that have undergone daughter ingrowth during subsequent processes, such as leaching and transport, and includes daughter radionuclides that should be considered in these subsequent processes or for inclusion in a pollutant source term. Output of the DIG code also summarizes radionuclide decay constants. The DIG code was developed specifically to assist the user of the PRESTO-II methodology and code in preparing data sets and accounting for possible daughter ingrowth in wastes buried in shallow-land disposal areas. The DIG code is also useful in preparing data sets for the PRESTO-EPA code. Daughter ingrowth in buried radionuclides and in radionuclides that have been leached from the wastes and are undergoing hydrologic transport are considered, and the quantities of daughter radionuclide are calculated. Radionuclide decay constants generated by DIG and included in the DIG output are required in the PRESTO-II code input data set. The DIG accesses some subroutines written for use with the CRRIS system and accesses files containing radionuclide data compiled by D.C. Kocher. 11 refs.

  16. Modeling ground water flow and radioactive transport in a fractured aquifer.

    PubMed

    Pohll, G; Hassan, A E; Chapman, J B; Papelis, C; Andricevic, R

    1999-01-01

    Three-dimensional numerical modeling is used to characterize ground water flow and contaminant transport at the Shoal nuclear test site in north-central Nevada. The fractured rock aquifer at the site is modeled using an equivalent porous medium approach. Field data are used to characterize the fracture system into classes: large, medium, and no/small fracture zones. Hydraulic conductivities are assigned based on discrete interval measurements. Contaminants from the Shoal test are assumed to all be located within the cavity. Several challenging issues are addressed in this study. Radionuclides are apportioned between surface deposits and volume deposits in nuclear melt glass, based on their volatility and previous observations. Surface-deposited radionuclides are released hydraulically after equilibration of the cavity with the surrounding ground water system, and as a function of ground water flow through the higher-porosity cavity into the low-porosity surrounding aquifer. Processes that are modeled include the release functions, retardation, radioactive decay, prompt injection, and ingrowth of daughter products. Prompt injection of radionuclides away from the cavity is found to increase the arrival of mass at the control plane but is not found to significantly impact calculated concentrations due to increased spreading. Behavior of the other radionuclides is affected by the slow chemical release and retardation behavior. The transport calculations are sensitive to many flow and transport parameters. Most important are the heterogeneity of the flow field and effective porosity. The effect of porosity in radioactive decay is crucial and has not been adequately addressed in the literature. For reactive solutes, retardation and the glass dissolution rate are also critical.

  17. A Bayesian Algorithm for Assessing Uncertainty in Radionuclide Source Terms

    NASA Astrophysics Data System (ADS)

    Robins, Peter

    2015-04-01

    Inferring source term parameters for a radionuclide release is difficult, due to the large uncertainties in forward dispersion modelling as a consequence of imperfect knowledge pertaining to wind vector fields and turbulent diffusion in the Earth's atmosphere. Additional sources of error include the radionuclide measurements obtained from sensors. These measurements may either be subject to random fluctuations or are simple indications that the true, unobserved quantity is below a detection limit. Consequent large reconstruction uncertainties can render a "best" estimate meaningless. A Markov Chain Monte Carlo (MCMC) Bayesian Algorithm is presented that attempts to account for uncertainties in atmospheric transport modelling and radionuclide sensor measurements to quantify uncertainties in radionuclide release source term parameters. Prior probability distributions are created for likely release locations at existing nuclear facilities and seismic events. Likelihood models are constructed using CTBTO adjoint modelling output and probability distributions of sensor response. Samples from the resulting multi-isotope source term parameters posterior probability distribution are generated that can be used to make probabilistic statements about the source term. Examples are given of marginal probability distributions obtained from simulated sensor data. The consequences of errors in numerical weather prediction wind fields are demonstrated with a reconstruction of the Fukushima nuclear reactor accident from International Monitoring System radionuclide particulate sensor data.

  18. Effect of carbonate soil on transport and dose estimates from long-lived radionuclides at U. S. Pacific Test Site

    SciTech Connect

    Conrado, C.L.; Hamilton, T.F.; Robison, W.L.; Stoker, A.C.

    1998-09-01

    The United States conducted a series of nuclear tests from 1946 to 1958 at Bikini, a coral atoll, in the Marshall Islands (MI). The aquatic and terrestrial environments of the atoll are still contaminated with several long-lived radionuclides that were generated during testing. The four major radionuclides found in terrestrial plants and soils are Cesium-137 ({sup 137} Cs), Strontium-90 ({sup 90} Sr), Plutonium-239+ 240 ({sup 239+240}Pu) and Americium-241 ({sup 241}Am). {sup 137}Cs in the coral soils is more available for uptake by plants than {sup 137}Cs associated with continental soils of North America or Europe. Soil-to-plant {sup 137}Cs median concentration ratios (CR) (kBq kg{sup {minus}1} dry weight plant/kBq kg {sup {minus}1} dry weight soil) for tropical fruits and vegetables range between 0.8 and 36, much larger than the range of 0.005 to 0.5 reported for vegetation in temperate zones. Conversely, {sup 90}Sr median CRs range from 0.006 to 1.0 at the atoll versus a range from 0.02 to 3.0 for continental silica-based soils. Thus, the relative uptake of {sup 137}Cs and {sup 90}Sr by plants in carbonate soils is reversed from that observed in silica-based soils. The CRs for {sup 239+240}Pu and {sup 241}Am are very similar to those observed in continental soils. Values range from 10{sup {minus}6} to 10{sup {minus}4} for both {sup 239+240}Pu and {sup 241}Am. No significant difference is observed between the two in coral soil. The uptake of {sup 137}Cs by plants is enhanced because of the absence of mineral binding sites and the low concentration of potassium in the coral soil. {sup 137}Cs is bound to the organic fraction of the soil, whereas {sup 90}Sr, {sup 239+240}Pu and {sup 241}Am are primarily bound to soil particles. Assessment of plant uptake for {sup 137}Cs and {sup 90}Sr into locally grown food crops was a major contributing factor in (1) reliably predicting the radiological dose for returning residents, and (2) developing a strategy to limit the

  19. Geomorphic control of radionuclide diffusion in desert soils

    USGS Publications Warehouse

    Pelletier, J.D.; Harrington, C.D.; Whitney, J.W.; Cline, M.; DeLong, S.B.; Keating, G.; Ebert, T.K.

    2005-01-01

    Diffusion is a standard model for the vertical migration of radionuclides in soil profiles. Here we show that diffusivity values inferred from fallout 137CS profiles in soils on the Fortymile Wash alluvial fan, Nye County, Nevada, have a strong inverse correlation with the age of the geomorphic surface. This result suggests that radionuclide-bound particles are predominantly transported by infiltration rather than by bulk-mixing processes such as wetting/ drying, freeze/thaw, and bioturbation. Our results provide a preliminary basis for using soil-geomorphic mapping, point-based calibration data, and the diffusion model to predict radionuclide trans desert soils within a pedotransfer-function approach. Copyright 2005 by the American Geophysical Union.

  20. MODELING CONTAMINANT TRANSPORT THROUGH SUBSURFACE SYSTEMS

    EPA Science Inventory

    Modeling of contaminant transport through soil to groundwater to a receptor requires that consideration be given to the many processes which control the transport and fate of chemical constituents in the subsurface environment. These processes include volatilization, degradation,...

  1. Modeling energy transport in nanostructures

    NASA Astrophysics Data System (ADS)

    Pattamatta, Arvind

    Heat transfer in nanostructures differ significantly from that in the bulk materials since the characteristic length scales associated with heat carriers, i.e., the mean free path and the wavelength, are comparable to the characteristic length of the nanostructures. Nanostructure materials hold the promise of novel phenomena, properties, and functions in the areas of thermal management and energy conversion. Example of thermal management in micro/nano electronic devices is the use of efficient nanostructured materials to alleviate 'hot spots' in integrated circuits. Examples in the manipulation of heat flow and energy conversion include nanostructures for thermoelectric energy conversion, thermophotovoltaic power generation, and data storage. One of the major challenges in Metal-Oxide Field Effect Transistor (MOSFET) devices is to study the 'hot spot' generation by accurately modeling the carrier-optical phonon-acoustic phonon interactions. Prediction of hotspot temperature and position in MOSFET devices is necessary for improving thermal design and reliability of micro/nano electronic devices. Thermoelectric properties are among the properties that may drastically change at nanoscale. The efficiency of thermoelectric energy conversion in a material is measured by a non-dimensional figure of merit (ZT) defined as, ZT = sigmaS2T/k where sigma is the electrical conductivity, S is the Seebeck coefficient, T is the temperature, and k is the thermal conductivity. During the last decade, advances have been made in increasing ZT using nanostructures. Three important topics are studied with respect to energy transport in nanostructure materials for micro/nano electronic and thermoelectric applications; (1) the role of nanocomposites in improving the thermal efficiency of thermoelectric devices, (2) the interfacial thermal resistance for the semiconductor/metal contacts in thermoelectric devices and for metallic interconnects in micro/nano electronic devices, (3) the

  2. Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: An impact assessment

    PubMed Central

    Evangeliou, N.; Zibtsev, S.; Myroniuk, V.; Zhurba, M.; Hamburger, T.; Stohl, A.; Balkanski, Y.; Paugam, R.; Mousseau, T. A.; Møller, A. P.; Kireev, S. I.

    2016-01-01

    In April and August 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) caused concerns about the secondary radioactive contamination that might have spread over Europe. The present paper assessed, for the first time, the impact of these fires over Europe. About 10.9 TBq of 137Cs, 1.5 TBq of 90Sr, 7.8 GBq of 238Pu, 6.3 GBq of 239Pu, 9.4 GBq of 240Pu and 29.7 GBq of 241Am were released from both fire events corresponding to a serious event. The more labile elements escaped easier from the CEZ, whereas the larger refractory particles were removed more efficiently from the atmosphere mainly affecting the CEZ and its vicinity. During the spring 2015 fires, about 93% of the labile and 97% of the refractory particles ended in Eastern European countries. Similarly, during the summer 2015 fires, about 75% of the labile and 59% of the refractory radionuclides were exported from the CEZ with the majority depositing in Belarus and Russia. Effective doses were above 1 mSv y−1 in the CEZ, but much lower in the rest of Europe contributing an additional dose to the Eastern European population, which is far below a dose from a medical X-ray. PMID:27184191

  3. Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: An impact assessment

    NASA Astrophysics Data System (ADS)

    Evangeliou, N.; Zibtsev, S.; Myroniuk, V.; Zhurba, M.; Hamburger, T.; Stohl, A.; Balkanski, Y.; Paugam, R.; Mousseau, T. A.; Møller, A. P.; Kireev, S. I.

    2016-05-01

    In April and August 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) caused concerns about the secondary radioactive contamination that might have spread over Europe. The present paper assessed, for the first time, the impact of these fires over Europe. About 10.9 TBq of 137Cs, 1.5 TBq of 90Sr, 7.8 GBq of 238Pu, 6.3 GBq of 239Pu, 9.4 GBq of 240Pu and 29.7 GBq of 241Am were released from both fire events corresponding to a serious event. The more labile elements escaped easier from the CEZ, whereas the larger refractory particles were removed more efficiently from the atmosphere mainly affecting the CEZ and its vicinity. During the spring 2015 fires, about 93% of the labile and 97% of the refractory particles ended in Eastern European countries. Similarly, during the summer 2015 fires, about 75% of the labile and 59% of the refractory radionuclides were exported from the CEZ with the majority depositing in Belarus and Russia. Effective doses were above 1 mSv y‑1 in the CEZ, but much lower in the rest of Europe contributing an additional dose to the Eastern European population, which is far below a dose from a medical X-ray.

  4. Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: An impact assessment.

    PubMed

    Evangeliou, N; Zibtsev, S; Myroniuk, V; Zhurba, M; Hamburger, T; Stohl, A; Balkanski, Y; Paugam, R; Mousseau, T A; Møller, A P; Kireev, S I

    2016-05-17

    In April and August 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) caused concerns about the secondary radioactive contamination that might have spread over Europe. The present paper assessed, for the first time, the impact of these fires over Europe. About 10.9 TBq of (137)Cs, 1.5 TBq of (90)Sr, 7.8 GBq of (238)Pu, 6.3 GBq of (239)Pu, 9.4 GBq of (240)Pu and 29.7 GBq of (241)Am were released from both fire events corresponding to a serious event. The more labile elements escaped easier from the CEZ, whereas the larger refractory particles were removed more efficiently from the atmosphere mainly affecting the CEZ and its vicinity. During the spring 2015 fires, about 93% of the labile and 97% of the refractory particles ended in Eastern European countries. Similarly, during the summer 2015 fires, about 75% of the labile and 59% of the refractory radionuclides were exported from the CEZ with the majority depositing in Belarus and Russia. Effective doses were above 1 mSv y(-1) in the CEZ, but much lower in the rest of Europe contributing an additional dose to the Eastern European population, which is far below a dose from a medical X-ray.

  5. DISTRIBUTION AND RANGE OF RADIONUCLIDE SORPTIOIN COEFFICIENTS IN A SAVANNAH RIVER SITE SUBSURFACE: STOCHASTIC MODELING CONSIDERATIONS - 10259

    SciTech Connect

    Kaplan, D.

    2010-01-04

    The uncertainty associated with the sorption coefficient, or K{sub d} value, is one of the key uncertainties in estimating risk associated with burying low-level nuclear waste in the subsurface. The objective of this study was to measure >648 K{sub d} values and provide a measure of the range and distribution (normal or log-normal) of radionuclide K{sub d} values appropriate for the E-Area disposal site, within the Savannah River Site, near Aiken South Carolina. The 95% confidence level for the mean K{sub d} was twice the mean in the Aquifer Zone (18-30.5 m depth), equal to the mean for the Upper Vadose Zone (3.3-10 m depth), and half the mean for the Lower Vadose Zone (3.3-18 m depth). The distribution of K{sub d} values was log normal in the Upper Vadose Zone and Aquifer Zone, and normal in the Lower Vadose Zone. To our knowledge, this is the first report of natural radionuclide K{sub d} variability in the literature. Using ranges and distribution coefficients that are specific to the hydrostratigraphic unit improved model accuracy and reduced model uncertainty. Unfortunately, extension of these conclusions to other sites is likely not appropriate given that each site has its own sources of hydrogeological variability. However, this study provides one of the first examples of the development stochastic ranges and distributions of K{sub d} values for a hydrological unit for stochastic modeling.

  6. Model transport directional solidification apparatus

    SciTech Connect

    Mason, J.T.; Eshelman, M.A.

    1986-07-01

    A model transport directional solidification apparatus is described. It has three functional components, each of which are described: the temperature gradient stage, the motor and drive mechanism, and the measuring systems. A small amount of sample is held between two glass slides on the temperature gradient stage so that the portion of sample in the hot chamber is molten and the portion in the cold chamber is solidified. Conditions are set so that the solid-liquid interface occurs in the gap between the chambers and can be observed through the microscope system. In-situ directional solidification is observed by driving the sample from the hot chamber to the cold chamber and observing the solidification process as it occurs. (LEW)

  7. A triple-continuum approach for modeling flow and transport processes in fractured rock.

    PubMed

    Wu, Yu-Shu; Liu, H H; Bodvarsson, G S

    2004-09-01

    This paper presents a triple-continuum conceptual model for simulating flow and transport processes in fractured rock. Field data collected from the unsaturated zone of Yucca Mountain, a repository site of high-level nuclear waste, show a large number of small-scale fractures. The effect of these small fractures has not been considered in previous modeling investigations within the context of a continuum approach. A new triple-continuum model (consisting of matrix, small-fracture, and large-fracture continua) has been developed to investigate the effect of these small fractures. This paper derives the model formulation and discusses the basic triple-continuum behavior of flow and transport processes under different conditions, using both analytical solutions and numerical approaches. The simulation results from the site-scale model of the unsaturated zone of Yucca Mountain indicate that these small fractures may have an important effect on radionuclide transport within the mountain. Copyright 2004 Elsevier B.V.

  8. Hydrology and radionuclide migration program 1987 progress report

    SciTech Connect

    Marsh, K.V.

    1991-03-01

    This report presents results from the Lawrence Livermore National Laboratory's participation in the Hydrology and Radionuclide Migration Program at the Nevada Test Site (NTS) during the fiscal year 1987. The report discussed initial data from a new well (UE20n-1) drilled at the Cheshire site; presents a description of a proposed laboratory study of migration of colloids in fractured media; lists data collected during the drilling and initial sampling of UE20n-1; and describes a tentative proposal for work to be performed in FY88 by Lamont-Doherty Geological Observatory. Groundwater sampled from the new well at the Cheshire site contains tritium concentrations comparable to those measured in previous years from locations above and within the Cheshire cavity. This presence of tritium, as well as several other radionuclides, in a well 100 m away from the cavity region indicates transport of radionuclides, validates a proposed model of the flow path, and provides data on rates of groundwater flow. Previous work at the Cheshire site has shown that radionuclides are transported by colloids through fractured media. However, we have no data that can be used for predictive modeling, and existing theories are not applicable. While physical transport mechanisms of sub-micrometer colloids to defined mineral surfaces are well known, predictions based on well-defined conditions differ from experimental observations by orders of magnitude. The U.C. Berkeley group has designed a laboratory experiment to quantify colloid retention and permeability alteration by the retained colloids.

  9. Mathematical model for predicting the probability of acute mortality in a human population exposed to accidentally released airborne radionuclides. Final report for Phase I

    SciTech Connect

    Filipy, R.E.; Borst, F.J.; Cross, F.T.; Park, J.F.; Moss, O.R.; Roswell, R.L.; Stevens, D.L.

    1980-05-01

    A mathematical model was constructed for the purpose of predicting the fraction of human population which would die within 1 year of an accidental exposure to airborne radionuclides. The model is based on data from laboratory experiments with rats, dogs and baboons, and from human epidemiological data. Doses from external, whole-body irradiation and from inhaled, alpha- and beta-emitting radionuclides are calculated for several organs. The probabilities of death from radiation pneumonitis and from bone marrow irradiation are predicted from doses accumulated within 30 days of exposure to the radioactive aerosol. The model is compared with existing similar models under hypothetical exposure conditions. Suggestions for further experiments with inhaled radionuclides are included. 25 refs., 16 figs., 13 tabs.

  10. Mass balances and uncertainty in radionuclide transport at the SRS F-area seepage basins groundwater plume

    NASA Astrophysics Data System (ADS)

    Wiedmer, A.; Hunt, J. R.; Faybishenko, B.; Agarwal, D.; Flach, G. P.; Whiteside, T.; Bennet, P.; Bagwell, L.; Romosan, A.; Hubbard, S. S.

    2011-12-01

    The ability to accurately model and predict flow and reactive transport behavior in soil and groundwater at a radioactively contaminated site is typically constrained by data availability. Techniques for managing, analyzing, and assessing the data are needed. There is a wealth of data and experience to be leveraged from the study of existing DOE sites such as the Savannah River Site (SRS). A new data management system is being developed as part of the Advanced Simulation Capability for Environmental Management (ASCEM) program to allow faster access to data and a more unified framework to address the challenges of site selection and environmental management. The monitoring network of 274 wells surrounding the F-area recorded 350000 data points over a period of almost 60 years. This data management system was developed for data mining, visualization and exploration and was used for F-area groundwater plume mass balance calculations. Process operations at the F-area led to the discharge of more than 12×106 m3 of low-level liquid radioactive waste solutions containing tritium, uranium and fission products into the seepage basins. Between 1953 and 1989, 14 104 Ci (corrected for evaporation and decay to 1989) of tritium was released into the basins according to operational data. Starting in the 1950s, SRS monitored radioactivity in Fourmile Branch (FMB) located downgradient of the basins. Through 1989 a total of 5 104 Ci (decay-corrected to 1989) was detected in FMB, leaving an estimated inventory of 9 104 Ci in the subsurface as of 1989. The sources of uncertainty in the mass balance calculations are discussed and compared with the tritium inventory determined from groundwater monitoring data prior to remediation.

  11. Modeling Transport Through Synthetic Nanopores

    PubMed Central

    Aksimentiev, Aleksei; Brunner, Robert K.; Cruz-Chú, Eduardo; Comer, Jeffrey; Schulten, Klaus

    2011-01-01

    Nanopores in thin synthetic membranes have emerged as convenient tools for high-throughput single-molecule manipulation and analysis. Because of their small sizes and their ability to selectively transport solutes through otherwise impermeable membranes, nanopores have numerous potential applications in nanobiotechnology. For most applications, properties of the nanopore systems have to be characterize at the atomic level, which is currently beyond the limit of experimental methods. Molecular dynamics (MD) simulations can provide the desired information, however several technical challenges have to be met before this method can be applied to synthetic nanopore systems. Here, we highlight our recent work on modeling synthetic nanopores of the most common types. First, we describe a novel graphical tool for setting up all-atom systems incorporating inorganic materials and biomolecules. Next, we illustrate the application of the MD method for silica, silicon nitride, and polyethylene terephthalate nanopores. Following that, we describe a method for modeling synthetic surfaces using a bias potential. Future directions for tool development and nanopore modeling are briefly discussed at the end of this article. PMID:21909347

  12. A comparison of models to assess the atmospheric dispersion of resuspended radionuclides on the Nevada Test Site

    SciTech Connect

    Green, J.R.; Eckart, R.E.

    1994-11-01

    A study of computer codes was made to determine the suitability of their use for modeling radionuclide dispersion from attachment to fugitive dust at the GMX safety shot area of the Nevada Test site. Two codes, the Industrial Source Complex 2 Long Term Model (ISCLT2) and the Fugitive Dust Model (FDM), were subsequently chosen to model the GMX site. Dose calculations were performed using the output values generated by the computer codes. The concentration values produced by the two codes were within a factor of two of each other and were not significantly different. The FDM, however, was felt to be a more useful code for use in calculating doses caused by attachment to fugitive dust.

  13. Surface charge accumulation of particles containing radionuclides in open air.

    PubMed

    Kim, Yong-ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. However, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. A charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify the particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. The study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Surface charge accumulation of particles containing radionuclides in open air

    DOE PAGES

    Kim, Yong-ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. But, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. Moreover, a charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify themore » particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. Our study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes.« less

  15. Surface charge accumulation of particles containing radionuclides in open air

    SciTech Connect

    Kim, Yong-ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. But, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. Moreover, a charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify the particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. Our study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes.

  16. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    SciTech Connect

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  17. Modelling PET radionuclide production in tissue and external targets using Geant4

    NASA Astrophysics Data System (ADS)

    Amin, T.; Infantino, A.; Lindsay, C.; Barlow, R.; Hoehr, C.

    2017-07-01

    The Proton Therapy Facility in TRIUMF provides 74 MeV protons extracted from a 500 MeV H- cyclotron for ocular melanoma treatments. During treatment, positron emitting radionuclides such as 1C, 15O and 13N are produced in patient tissue. Using PET scanners, the isotopic activity distribution can be measured for in-vivo range verification. A second cyclotron, the TR13, provides 13 MeV protons onto liquid targets for the production of PET radionuclides such as 18F, 13N or 68Ga, for medical applications. The aim of this work was to validate Geant4 against FLUKA and experimental measurements for production of the above-mentioned isotopes using the two cyclotrons. The results show variable degrees of agreement. For proton therapy, the proton-range agreement was within 2 mm for 11C activity, whereas 13N disagreed. For liquid targets at the TR13 the average absolute deviation ratio between FLUKA and experiment was 1.9±2.7, whereas the average absolute deviation ratio between Geant4 and experiment was 0. 6±0.4. This is due to the uncertainties present in experimentally determined reaction cross sections.

  18. Modification of the finite element heat and mass transfer code (FEHM) to model multicomponent reactive transport

    SciTech Connect

    Viswanathan, H.S.

    1996-08-01

    The finite element code FEHMN, developed by scientists at Los Alamos National Laboratory (LANL), is a three-dimensional finite element heat and mass transport simulator that can handle complex stratigraphy and nonlinear processes such as vadose zone flow, heat flow and solute transport. Scientists at LANL have been developing hydrologic flow and transport models of the Yucca Mountain site using FEHMN. Previous FEHMN simulations have used an equivalent Kd model to model solute transport. In this thesis, FEHMN is modified making it possible to simulate the transport of a species with a rigorous chemical model. Including the rigorous chemical equations into FEHMN simulations should provide for more representative transport models for highly reactive chemical species. A fully kinetic formulation is chosen for the FEHMN reactive transport model. Several methods are available to computationally implement a fully kinetic formulation. Different numerical algorithms are investigated in order to optimize computational efficiency and memory requirements of the reactive transport model. The best algorithm of those investigated is then incorporated into FEHMN. The algorithm chosen requires for the user to place strongly coupled species into groups which are then solved for simultaneously using FEHMN. The complete reactive transport model is verified over a wide variety of problems and is shown to be working properly. The new chemical capabilities of FEHMN are illustrated by using Los Alamos National Laboratory`s site scale model of Yucca Mountain to model two-dimensional, vadose zone {sup 14}C transport. The simulations demonstrate that gas flow and carbonate chemistry can significantly affect {sup 14}C transport at Yucca Mountain. The simulations also prove that the new capabilities of FEHMN can be used to refine and buttress already existing Yucca Mountain radionuclide transport studies.

  19. Uranium transport in a crushed granodiorite: experiments and reactive transport modeling.

    PubMed

    Dittrich, T M; Reimus, P W

    2015-01-01

    The primary objective of this study was to develop and demonstrate an experimental method to refine and better parameterize process models for reactive contaminant transport in aqueous subsurface environments and to reduce conservatism in such models without attempting to fully describe the geochemical system. Uranium was used as an example of a moderately adsorbing contaminant because of its relevance in geologic disposal of spent nuclear fuel. A fractured granodiorite from the Grimsel Test Site (GTS) in Switzerland was selected because this system has been studied extensively and field experiments have been conducted with radionuclides including uranium. We evaluated the role of pH, porous media size fraction, and flow interruptions on uranium transport. Rock cores drilled from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and optical microscopy, and used in uranium batch sorption and column breakthrough experiments. A synthetic water was prepared that represented the porewater that would be present after groundwater interacts with bentonite backfill material near a nuclear waste package. Uranium was conservatively transported at pH8.8. Significant adsorption and subsequent desorption was observed at pH ~7, with long desorption tails resulting after switching the column injection solution to uranium-free groundwater. Our experiments were designed to better interrogate this slow desorption behavior. A three-site model predicted sorption rate constants for a pH7.2 solution with a 75-150 μm granodiorite fraction to be 3.5, 0.012, and 0.012 mL/g-h for the forward reactions and 0.49, 0.0025, and 0.001 h(-1) for the reverse reactions. Surface site densities were 1.3, 0.042, and 0.042 μmol/g for the first, second, and third sites, respectively. 10-year simulations show that including a slow binding site increases the arrival time of a uranium pulse by ~70%.

  20. Uranium transport in a crushed granodiorite: Experiments and reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.; Reimus, P. W.

    2015-04-01

    The primary objective of this study was to develop and demonstrate an experimental method to refine and better parameterize process models for reactive contaminant transport in aqueous subsurface environments and to reduce conservatism in such models without attempting to fully describe the geochemical system. Uranium was used as an example of a moderately adsorbing contaminant because of its relevance in geologic disposal of spent nuclear fuel. A fractured granodiorite from the Grimsel Test Site (GTS) in Switzerland was selected because this system has been studied extensively and field experiments have been conducted with radionuclides including uranium. We evaluated the role of pH, porous media size fraction, and flow interruptions on uranium transport. Rock cores drilled from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and optical microscopy, and used in uranium batch sorption and column breakthrough experiments. A synthetic water was prepared that represented the porewater that would be present after groundwater interacts with bentonite backfill material near a nuclear waste package. Uranium was conservatively transported at pH 8.8. Significant adsorption and subsequent desorption was observed at pH ~ 7, with long desorption tails resulting after switching the column injection solution to uranium-free groundwater. Our experiments were designed to better interrogate this slow desorption behavior. A three-site model predicted sorption rate constants for a pH 7.2 solution with a 75-150 μm granodiorite fraction to be 3.5, 0.012, and 0.012 mL/g-h for the forward reactions and 0.49, 0.0025, and 0.001 h- 1 for the reverse reactions. Surface site densities were 1.3, 0.042, and 0.042 μmol/g for the first, second, and third sites, respectively. 10-year simulations show that including a slow binding site increases the arrival time of a uranium pulse by ~ 70%.

  1. Estimation of radionuclide ((137)Cs) emission rates from a nuclear power plant accident using the Lagrangian Particle Dispersion Model (LPDM).

    PubMed

    Park, Soon-Ung; Lee, In-Hye; Ju, Jae-Won; Joo, Seung Jin

    2016-10-01

    A methodology for the estimation of the emission rate of (137)Cs by the Lagrangian Particle Dispersion Model (LPDM) with the use of monitored (137)Cs concentrations around a nuclear power plant has been developed. This method has been employed with the MM5 meteorological model in the 600 km × 600 km model domain with the horizontal grid scale of 3 km × 3 km centered at the Fukushima nuclear power plant to estimate (137)Cs emission rate for the accidental period from 00 UTC 12 March to 00 UTC 6 April 2011. The Lagrangian Particles are released continuously with the rate of one particle per minute at the first level modelled, about 15 m above the power plant site. The presently developed method was able to simulate quite reasonably the estimated (137)Cs emission rate compared with other studies, suggesting the potential usefulness of the present method for the estimation of the emission rate from the accidental power plant without detailed inventories of reactors and fuel assemblies and spent fuels. The advantage of this method is not so complicated but can be applied only based on one-time forward LPDM simulation with monitored concentrations around the power plant, in contrast to other inverse models. It was also found that continuously monitored radionuclides concentrations from possibly many sites located in all directions around the power plant are required to get accurate continuous emission rates from the accident power plant. The current methodology can also be used to verify the previous version of radionuclides emissions used among other modeling groups for the cases of intermittent or discontinuous samplings. Copyright © 2016. Published by Elsevier Ltd.

  2. Analytical Performance Models for Geologic Repositories

    SciTech Connect

    Chambre, P.L.; Pigford, T.H.; Fujita, A.; Kanki, T.; Kobayashi,A.; Lung, H.; Ting, D.; Sato, Y.; Savoshy, S.J.

    1982-10-01

    This report presents analytical solutions of the dissolution and hydrogeologic transport of radionuclides in geologic repositories. Numerical examples are presented to demonstrate the equations resulting from these analyses. The subjects treated in the present report are: (a) Solubility-limited transport with transverse dispersion (Chapter 2); (b) Transport of a radionuclide chain with nonequilibrium chemical reactions (Chapter 3); (c) Advective transport in a two-dimensional flow field (Chapter 4); (d) Radionuclide.transport in fractured media (Chapter 5); (e) A mathematical model for EPA's analysis of generic repositories (Chapter 6); and (f) Dissolution of radionuclides from solid waste (Chapter 7).

  3. Fast hydrodynamic model for medium- and long-term dispersion in seawater in the English Channel and southern North Sea, qualitative and quantitative validation by radionuclide tracers

    NASA Astrophysics Data System (ADS)

    du Bois, P. Bailly; Dumas, F.

    The database for medium- and long-term model validation using 125Sb released by the La Hague reprocessing plant includes 1400 measurements performed between 1987 and 1994 in the English Channel and the North Sea and data for each release since 1982. Antimony-125 has a conservative behaviour in water masses over a period of several years. These data can be used qualitatively and quantitatively to compare the measured concentrations with the calculated ones and quantities of tracers. Tritium measurements are also available for model calibration. A two-dimensional hydrodynamic model has been developed to allow repetitive long-term simulations. This model uses a database of residual tidal currents calculated using the Lagrangian barycentric method [Salomon, J.C., Guéguéniat, P., Orbi, A., Baron, Y., 1988. A Lagrangian model for long-term tidally induced transport and mixing. Verification by artificial radionuclide concentrations. In: Guary, J.C., Guéguéniat, P., Pentreath, R.J. (Eds.), Radionuclides: A Tool for Oceanography, Cherbourg 1-5 June, 1987. Elsevier Applied Science Publishers, London, New York, pp. 384-394]. The area covered by the model includes the English Channel, the southern North Sea and the Irish Sea with a mesh size of 1 km. The main adjustment parameters of this model are the sources of wind data used and the calculation method for evaluating wind stress at the sea surface. With these parameters, the fluxes of radionuclides and water masses in the English Channel and the North Sea were balanced for the whole period of field measurements (1987-1994). The correlation factor between individual measurements in seawater and calculation results is 0.88 with an average error of ±54%, the error attributable to the measurement process being 15% on average. The mean flux through the Dover Strait is 126,000 m 3 s -1, close from the one obtained from previous studies [Salomon, J.C., Breton, M., Guéguéniat, P. 1993. Computed residual flow through the Dover

  4. Towards a realistic approach to validation of reactive transport models for performance assessment

    SciTech Connect

    Siegel, M.D.

    1993-12-31

    Performance assessment calculations are based on geochemical models that assume that interactions among radionuclides, rocks and groundwaters under natural conditions, can be estimated or bound by data obtained from laboratory-scale studies. The data include radionuclide distribution coefficients, measured in saturated batch systems of powdered rocks, and retardation factors measured in short-term column experiments. Traditional approaches to model validation cannot be applied in a straightforward manner to the simple reactive transport models that use these data. An approach to model validation in support of performance assessment is described in this paper. It is based on a recognition of different levels of model validity and is compatible with the requirements of current regulations for high-level waste disposal. Activities that are being carried out in support of this approach include (1) laboratory and numerical experiments to test the validity of important assumptions inherent in current performance assessment methodologies,(2) integrated transport experiments, and (3) development of a robust coupled reaction/transport code for sensitivity analyses using massively parallel computers.

  5. Lagrangian study of surface transport in the Kuroshio Extension area based on simulation of propagation of Fukushima-derived radionuclides

    NASA Astrophysics Data System (ADS)

    Prants, S. V.; Budyansky, M. V.; Uleysky, M. Yu.

    2014-02-01

    Lagrangian approach is applied to study near-surface large-scale transport in the Kuroshio Extension area using a simulation with synthetic particles advected by AVISO altimetric velocity field. A material line technique is proposed and applied to find out the origin of water masses in cold-core cyclonic rings pinched off from the jet in summer 2011. Tracking and Lagrangian maps provide the evidence of cross-jet transport. Fukushima-derived caesium isotopes are used as Lagrangian tracers to study transport and mixing in the area a few months after the 11 March 2011 tsunami that caused heavy damage of the Fukushima Nuclear Power Plant (FNPP). Tracking maps are computed to trace the origin of water parcels with measured levels of 134Cs and 137Cs concentrations collected during two research vessel (R/V) cruises in June and July 2011 in the large area of the northwest Pacific (Kaeriyama et al., 2013; Buesseler et al., 2012). It is shown that Lagrangian simulations are useful for finding the surface areas that are potentially dangerous due to the risk of radioactive contamination. The results of simulation are supported by tracks of the surface drifters that were deployed in the area.

  6. MITRAM. Minority Transportation Expenditure Allocation Model

    SciTech Connect

    Vyas, A.D.; Santini, D.J.

    1989-02-01

    MITRAM (Minority TRansportation expenditure Allocation Model) can project various transportation related attributes of minority (Black and Hispanic) and majority (white) populations. The model projects vehicle ownership, vehicle miles of travel, workers, new car and on-road fleet fuel economy, amount and share of household income spent on gasoline, and household expenditures on public transportation and taxis. MITRAM predicts reactions to sustained fuel price changes for up to 10 years after the change.

  7. New Perspectives for the Spent Nuclear Fuel Radionuclides Release Model in a Deep Geological Repository

    SciTech Connect

    Poinssot, Christophe; Ferry, Cecile; Poulesquen, Arnaud

    2007-07-01

    Spent Nuclear Fuel (SNF) source terms are used to define the release rate of radionuclides (RN) in a direct disposal and to assess the performance of this waste form. They classically distinguish between two contributions: (i) the Instant Release Fraction (IRF) of RN which are directly leached when water contacts the fuel, (ii) the slow and long term release of RN which are embedded within the fuel matrix. Recent experimental results bring significant input in our understanding and assessment of both contributions. However, they have not yet been integrated in the definition of the SNF source term. This paper will present the impact on the RN source term of the latest results on the SNF long term evolution and the key remaining scientific issues. (authors)

  8. Numerical Techniques for Radioactive Waste Repository Safety Assessment Based on Transport in Geological Media Models - 12083

    SciTech Connect

    Kapyrin, Ivan; Vassilevski, Yuri; Rastorguev, Alexander; Ivanov, Valeriy; Galinov, Alexander

    2012-07-01

    Radionuclide migration in geological media is considered within the framework of safety assessment of radioactive waste disposal facility. In this context groundwater flow and transport models are necessary. Computational technologies allowing for semiautomatic generation of unstructured meshes with different cell types, i.e. tetrahedra, hexahedra and pyramids and the subsequent solution of groundwater flow problems on these meshes are introduced. The application of methods is demonstrated in the groundwater flow model for a decommissioned subsurface reactor vessel, buried on its current location. (authors)

  9. Comparative Measures of Radionuclide Containment in the Crystalline Geophere

    SciTech Connect

    Cvetkovic, V.; Painter, S.; Selroos, J.O.

    2002-11-15

    A probabilistic model for assessing the capacity of a fractured crystalline rock volume to contain radionuclides is developed. The rock volume is viewed as a network of discrete fractures through which radionuclides are transported by flowing water. Diffusive mass transfer between the open fractures and the stagnant water in the pore space of the rock matrix allow radionuclides access to mineral grains where physical and chemical processes - collectively known as sorption - can retain radionuclides. A stochastic Lagrangian framework is adopted to compute the probability that a radionuclide particle will be retained by the rock, i.e., the probability that it will decay before being released from the rock volume. A dimensionless quantity referred to as the 'containment index' is related to this probability and proposed as a suitable measure for comparing different rock volumes; such a comparative measure may be needed, for example, in a site selection program for geological radioactive waste disposal. The probabilistic solution of the transport problem is based on the statistics of two Lagrangian variables: {tau}, the travel time of an imaginary tracer moving with the flowing water, and {beta}, a suitably normalized surface area available for retention. Statistics of {tau} and {beta} may be computed numerically using site-specific discrete fracture network simulations. Fracture data from the well-characterized Aespoe Hard Rock Laboratory site in southern Sweden are used to illustrate the implementation of the proposed containment index for six radionuclides ({sup 126}Sn, {sup 129}I, {sup 135}Cs, {sup 237}Np, {sup 239}Pu, and {sup 79}Se). It is found that fractures of small aperture imply prolonged travel times and hence long tails in both beta and tau. This, in turn, enhances retention and is favorable from a safety assessment perspective.

  10. Preliminary Environmental Flow and Transport Modeling at the INEEL

    SciTech Connect

    Magnuson, Swen O; Mccarthy, James Michael; Navratil, James Dale

    1999-09-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is located in southeastern Idaho in the USA. The primary mission since the laboratory was founded in 1949 has been nuclear reactor research. Fifty-two reactors have been built and operated on the INEEL. Other principal activities at the laboratory have been reprocessing of spent nuclear fuel. Low-level radioactive waste generated on site and mixed and transuranic waste from the Rocky Flats plutonium processing facility in Colorado has been disposed on the INEEL at the Radioactive Waste Management Complex (RWMC). Waste disposal at the RWMC began in 1952 with shallow land burial in pits and trenches. The INEEL was placed on the National Priorities List (NPL) in 1989. The resulting environmental assessments of the potential negative health impacts of disposed waste at the RWMC have required the use of predictive numerical simulations. A petroleum reservoir simulator called TETRAD was modified for use in simulating environmental flow and transport. Use of this code has allowed the complex subsurface stratigraphy to be simulated, including an extensive region of unsaturated fractured basalt. Dual continual simulation approaches have been used to assess combined aqueous- and gaseous-phase transport of volatile organic compounds as well as dissolved-phase transport of radionuclides. Calibration of the simulator to available monitoring data has increased the confidence in the simulator results to the point where the model sensitivities are being used to direct additional characterization efforts. Eventually, as the model calibration improves and confidence in the model predictions increases, the simulator will be used as a decision tool for selecting remedial alternatives for the wastes buried at the RWMC. An overview of the overall program including a summary of laboratory actinide migration studies will be presented.

  11. Two-point model for divertor transport

    SciTech Connect

    Galambos, J.D.; Peng, Y.K.M.

    1984-04-01

    Plasma transport along divertor field lines was investigated using a two-point model. This treatment requires considerably less effort to find solutions to the transport equations than previously used one-dimensional (1-D) models and is useful for studying general trends. It also can be a valuable tool for benchmarking more sophisticated models. The model was used to investigate the possibility of operating in the so-called high density, low temperature regime.

  12. Recent advances in the detection of specific natural organic compounds as carriers for radionuclides in soil and water environments, with examples of radioiodine and plutonium.

    PubMed

    Santschi, P H; Xu, C; Zhang, S; Schwehr, K A; Lin, P; Yeager, C M; Kaplan, D I

    2017-03-09

    Among the key environmental factors influencing the fate and transport of radionuclides in the environment is natural organic matter (NOM). While this has been known for decades, there still remains great uncertainty in predicting NOM-radionuclide interactions because of lack of understanding of radionuclide interactions with the specific organic moieties within NOM. Furthermore, radionuclide-NOM studies conducted using modelled organic compounds or elevated radionuclide concentrations provide compromised information related to true environmental conditions. Thus, sensitive techniques are required not only for the detection of radionuclides, and their different species, at ambient and/or far-field concentrations, but also for potential trace organic compounds that are chemically binding these radionuclides. GC-MS and AMS techniques developed in our lab are reviewed here that aim to assess how two radionuclides, iodine and plutonium, form strong bonds with NOM by entirely different mechanisms; iodine tends to bind to aromatic functionalities, whereas plutonium binds to N-containing hydroxamate siderophores at ambient concentrations. While low-level measurements are a prerequisite for assessing iodine and plutonium migration at nuclear waste sites and as environmental tracers, it is necessary to determine their in-situ speciation, which ultimately controls their mobility and transport in natural environments. More importantly, advanced molecular-level instrumentation (e.g., nuclear magnetic resonance (NMR) and Fourier-transform ion cyclotron resonance coupled with electrospray ionization (ESI-FTICRMS) were applied to resolve either directly or indirectly the molecular environments in which the radionuclides are associated with the NOM.

  13. Iron Reduction and Radionuclide Immobilization: Kinetic, Thermodynamic and Hydrologic controls & Reaction-Based Modeling - Final Report

    SciTech Connect

    William D. Burgos

    2004-06-18

    Our research focused on (1) microbial reduction of Fe(III) and U(VI) individually, and concomitantly in natural sediments, (2) Fe(III) oxide surface chemistry, specifically with respect to reactions with Fe(II)and U(VI), (3) the influence of humic substances on Fe(III) and U(VI) bioreduction, and on U(VI) complexation, and (4) the development of reaction-based reactive transport biogeochemical models to numerically simulate our experimental results. We have continued our investigations on microbial reduction of Fe(III) oxides. Modeling our earlier experimental results required assumption of a hydrated surface for hematite, more reactive than predicted based on theoretical solubility (Burgos et al.2002). Subsequent studies with Shewanella putrefaciens and Geobacter sulfurreducens confirmed the rates of Fe(III) bioreduction depend on oxide surface area rather than oxide thermodynamic properties (Roden,2003a,b;2004; Burgos et al,2003). We examined the potential for bioreduction of U(VI) by Geobacter sulfurreducens in the presence of synthetic Fe(III) oxides and natural Fe(III) oxide-containing solids (Jeon et al,2004a,b) in which more than 95% of added U(VI) was sorbed to mineral surfaces. The results showed a significant portion of solid-associated U(VI) was resistant to both enzymatic and abiotic (Fe(II)-driven) reduction, but the rate and extent of bioreduction of U(VI) was increased due to the addition of anthraquinone-2,6-disulfonate (AQDS). We conducted long-term semicontinuous culture and column experiments on coupled Fe(III) oxide/U(VI) reduction. These experiments were conducted with natural subsurface sediment from the Oyster site in Virginia, whose Fe content and microbial reducibility are comparable to ORNL FRC sediments (Jeon et al, 2004b). The results conclusively demonstrated the potential for sustained removal of U(VI) from solution via DMRB activity in excess of the U(VI) sorption capacity of the natural mineral assemblages. Jang (2004) demonstrated

  14. Uncertainty in tsunami sediment transport modeling

    USGS Publications Warehouse

    Jaffe, Bruce E.; Goto, Kazuhisa; Sugawara, Daisuke; Gelfenbaum, Guy R.; La Selle, SeanPaul M.

    2016-01-01

    Erosion and deposition from tsunamis record information about tsunami hydrodynamics and size that can be interpreted to improve tsunami hazard assessment. We explore sources and methods for quantifying uncertainty in tsunami sediment transport modeling. Uncertainty varies with tsunami, study site, available input data, sediment grain size, and model. Although uncertainty has the potential to be large, published case studies indicate that both forward and inverse tsunami sediment transport models perform well enough to be useful for deciphering tsunami characteristics, including size, from deposits. New techniques for quantifying uncertainty, such as Ensemble Kalman Filtering inversion, and more rigorous reporting of uncertainties will advance the science of tsunami sediment transport modeling. Uncertainty may be decreased with additional laboratory studies that increase our understanding of the semi-empirical parameters and physics of tsunami sediment transport, standardized benchmark tests to assess model performance, and development of hybrid modeling approaches to exploit the strengths of forward and inverse models.

  15. Integrated compartmental model for describing the transport of solute in a fractured porous medium. [FRACPORT

    SciTech Connect

    DeAngelis, D.L.; Yeh, G.T.; Huff, D.D.

    1984-10-01

    This report documents a model, FRACPORT, that simulates the transport of a solute through a fractured porous matrix. The model should be useful in analyzing the possible transport of radionuclides from shallow-land burial sites in humid environments. The use of the model is restricted to transport through saturated zones. The report first discusses the general modeling approach used, which is based on the Integrated Compartmental Method. The basic equations of solute transport are then presented. The model, which assumes a known water velocity field, solves these equations on two different time scales; one related to rapid transport of solute along fractures and the other related to slower transport through the porous matrix. FRACPORT is validated by application to a simple example of fractured porous medium transport that has previously been analyzed by other methods. Then its utility is demonstrated in analyzing more complex cases of pulses of solute into a fractured matrix. The report serves as a user's guide to FRACPORT. A detailed description of data input, along with a listing of input for a sample problem, is provided. 16 references, 18 figures, 3 tables.

  16. Final Report (BMWi Project No.: 02 E 10971): Joint project: Retention of radionuclides relevant for final disposal in natural clay rock and saline systems - Subproject 2: Geochemical behavior and transport of radionuclides in saline systems in the prese

    SciTech Connect

    Schmeide, Katja; Fritsch, Katharina; Lippold, Holger; Poetsch, Maria; Kulenkampff, Johannes; Lippmann-Pipke, Johanna; Jordan, Norbert; Joseph, Claudia; Moll, Henry; Cherkouk, Andrea; Bader, Miriam

    2016-02-29

    The objective of this project was to study the influence of increased salinities on interaction processes in the system radionuclide – organics – clay – aquifer. For this, complexation, redox, sorption, and diffusion studies were performed under variation of the ionic strength (up to 4 mol kg-1) and the background electrolyte (NaCl, CaCl2, MgCl2).

  17. Charge-transport model for conducting polymers

    NASA Astrophysics Data System (ADS)

    Dongmin Kang, Stephen; Jeffrey Snyder, G.

    2016-11-01

    The growing technological importance of conducting polymers makes the fundamental understanding of their charge transport extremely important for materials and process design. Various hopping and mobility edge transport mechanisms have been proposed, but their experimental verification is limited to poor conductors. Now that advanced organic and polymer semiconductors have shown high conductivity approaching that of metals, the transport mechanism should be discernible by modelling the transport like a semiconductor with a transport edge and a transport parameter s. Here we analyse the electrical conductivity and Seebeck coefficient together and determine that most polymers (except possibly PEDOT:tosylate) have s = 3 and thermally activated conductivity, whereas s = 1 and itinerant conductivity is typically found in crystalline semiconductors and metals. The different transport in polymers may result from the percolation of charge carriers from conducting ordered regions through poorly conducting disordered regions, consistent with what has been expected from structural studies.

  18. Charge-transport model for conducting polymers

    NASA Astrophysics Data System (ADS)

    Dongmin Kang, Stephen; Jeffrey Snyder, G.

    2017-02-01

    The growing technological importance of conducting polymers makes the fundamental understanding of their charge transport extremely important for materials and process design. Various hopping and mobility edge transport mechanisms have been proposed, but their experimental verification is limited to poor conductors. Now that advanced organic and polymer semiconductors have shown high conductivity approaching that of metals, the transport mechanism should be discernible by modelling the transport like a semiconductor with a transport edge and a transport parameter s. Here we analyse the electrical conductivity and Seebeck coefficient together and determine that most polymers (except possibly PEDOT:tosylate) have s = 3 and thermally activated conductivity, whereas s = 1 and itinerant conductivity is typically found in crystalline semiconductors and metals. The different transport in polymers may result from the percolation of charge carriers from conducting ordered regions through poorly conducting disordered regions, consistent with what has been expected from structural studies.

  19. Effect of eutrophication upon radionuclide dynamics in the Sacca di Goro lagoon (Po River Delta, Italy): a combined field, experimental and modeling study.

    PubMed

    Bondavalli, Cristina

    2003-01-01

    The focus of this paper is on the relationship between eutrophication and radionuclide circulation at the whole ecosystem scale in the shallow estuarine environment of the Sacca di Goro (Po River Delta, Italy). This lagoon is frequently affected by dystrophic crises, due to decomposition of huge amounts of macroalgae (mainly Ulva rigida), and critical conditions created at the interface between sediment and water are such that Cs-137 accumulated in the sediment can be mobilized and made available in the water column. The release of cesium from sediment in this ecosystem has been evaluated through a field experiment in which chemical conditions typical of anoxic crises were artificially created in enclosures. Also a lab experiment was carried out to shed light on possible cesium release by decomposing macroalgae. The two experiments allowed drawing conclusions on crucial factors controlling cesium release in the Sacca di Goro, the first objective of this research. The second objective was understanding the fate of radiocesium once transported in the water column. To this end ecological information gathered during the experiments and a yearly sampling campaign, has been converted into whole-system seasonal networks describing ecosystem flow structure for the Sacca di Goro. Analyzed by network analysis this model has provided clues about the dynamics of Cs-137 in terms of preferential pathways, sinks, sources, and cycling activity. Sediment, together with seston and dissolved cesium, appear to be the most significant components in the circulation of Cs-137; while macroalgal biomasses play a crucial role as an indirect causal factor.

  20. Analytical performance models for geologic repositories. Volume 2

    SciTech Connect

    Chambre, P.L.; Pigford, T.H.; Fujita, A.; Kanki, T.; Kobayashi, A.; Lung, H.; Ting, D.; Sato, Y.; Zavoshy, S.J.

    1982-10-01

    This report presents analytical solutions of the dissolution and hydrogeologic transport of radionuclides in geologic repositories. Numerical examples are presented to demonstrate the equations resulting from these analyses. The subjects treated in this report are: solubility-limited transport with transverse dispersion (chapter 2); transport of a radionuclide chain with nonequilibrium chemical reactions (chapter 3); advective transport in a two-dimensional flow field (chapter 4); radionuclide transport in fractured media (chapter 5); a mathematical model for EPA's analysis of generic repositories (chapter 6); and dissolution of radionuclides from solid waste (chapter 7). Volume 2 contains chapters 5, 6, and 7.

  1. 3D modeling of effects of increased oxygenation and activity concentration in tumors treated with radionuclides and antiangiogenic drugs

    SciTech Connect

    Lagerloef, Jakob H.; Kindblom, Jon; Bernhardt, Peter

    2011-08-15

    Purpose: Formation of new blood vessels (angiogenesis) in response to hypoxia is a fundamental event in the process of tumor growth and metastatic dissemination. However, abnormalities in tumor neovasculature often induce increased interstitial pressure (IP) and further reduce oxygenation (pO{sub 2}) of tumor cells. In radiotherapy, well-oxygenated tumors favor treatment. Antiangiogenic drugs may lower IP in the tumor, improving perfusion, pO{sub 2} and drug uptake, by reducing the number of malfunctioning vessels in the tissue. This study aims to create a model for quantifying the effects of altered pO{sub 2}-distribution due to antiangiogenic treatment in combination with radionuclide therapy. Methods: Based on experimental data, describing the effects of antiangiogenic agents on oxygenation of GlioblastomaMultiforme (GBM), a single cell based 3D model, including 10{sup 10} tumor cells, was developed, showing how radionuclide therapy response improves as tumor oxygenation approaches normal tissue levels. The nuclides studied were {sup 90}Y, {sup 131}I, {sup 177}Lu, and {sup 211}At. The absorbed dose levels required for a tumor control probability (TCP) of 0.990 are compared for three different log-normal pO{sub 2}-distributions: {mu}{sub 1} = 2.483, {sigma}{sub 1} = 0.711; {mu}{sub 2} = 2.946, {sigma}{sub 2} = 0.689; {mu}{sub 3} = 3.689, and {sigma}{sub 3} = 0.330. The normal tissue absorbed doses will, in turn, depend on this. These distributions were chosen to represent the expected oxygen levels in an untreated hypoxic tumor, a hypoxic tumor treated with an anti-VEGF agent, and in normal, fully-oxygenated tissue, respectively. The former two are fitted to experimental data. The geometric oxygen distributions are simulated using two different patterns: one Monte Carlo based and one radially increasing, while keeping the log-normal volumetric distributions intact. Oxygen and activity are distributed, according to the same pattern. Results: As tumor pO{sub 2

  2. Short-term Dispersal of Fukushima-derived Radionuclides off Japan: Modeling Efforts and Model-data Inter-comparison

    NASA Astrophysics Data System (ADS)

    Rypina, I. I.; Jayne, S. R.; Yoshida, S.; Macdonald, A. M.; Douglass, E.; Buesseler, K.

    2012-12-01

    As a result of the Tohoku earthquake and tsunami on March 11, 2011, the Fukushima nuclear power plants were damaged and radioactive isotopes were released to the atmosphere and into the ocean. In order to assess the levels of contamination, a field study was conducted on June 4-18 that focused on measuring radionuclide isotopes including Cs-137 in surface and subsurface waters and biota off Japan coast. To interpret these field measurements, we carried out numerical simulations of the short-term spreading of the Fukushima-derived radionuclides. The results are used to investigate the dominant mechanisms governing the short-term spread of radiation within the North Pacific, and to place the measured radioactive isotope concentrations in the context of the physical oceanographic circulation.

  3. DKPRO: A radionuclide decay and reprocessing code

    SciTech Connect

    Wootan, D.; Schmittroth, F.A.

    1997-07-14

    The DKPRO code solves the general problem of modeling complex nuclear wastes streams using ORIGEN2 radionuclide production files. There is a continuing need for estimates of Hanford radionuclides. Physical measurements are one basis; calculational estimates, the approach represented here, are another. Given a known nuclear fuel history, it is relatively straightforward to calculate radionuclide inventories with codes such as the widely-used Oak Ridge National Laboratory code ORIGEN2.

  4. Anomalous transport modelling of tokamak plasmas

    SciTech Connect

    Kinsey, J.; Singer, C.; Malone, G.; Tiouririne, N.

    1992-12-31

    Theory based transport simulations of DIII-D, JET, ITER are compared to experimental data using a combination of anamolous transport models. The Multiple-mode Transport Model is calibrated to a give set of L-mode and H-mode discharges with an emphasis on testing the adequacy of anomalous flux contributions from drift/{eta}{sub i} and resistive ballooning mode theories. A survey of possible additions and/or alternatives to the model from recent theories on neoclassical MHD effects, hot ion modes, circulating electron modes, and high-m tearing modes is also included.

  5. Anomalous transport modelling of tokamak plasmas

    SciTech Connect

    Kinsey, J.; Singer, C.; Malone, G.; Tiouririne, N.

    1992-01-01

    Theory based transport simulations of DIII-D, JET, ITER are compared to experimental data using a combination of anamolous transport models. The Multiple-mode Transport Model is calibrated to a give set of L-mode and H-mode discharges with an emphasis on testing the adequacy of anomalous flux contributions from drift/[eta][sub i] and resistive ballooning mode theories. A survey of possible additions and/or alternatives to the model from recent theories on neoclassical MHD effects, hot ion modes, circulating electron modes, and high-m tearing modes is also included.

  6. Sensitivity analysis of the noble gas transport and fate model: CASCADR9

    SciTech Connect

    Lindstrom, F.T.; Cawlfield, D.E.; Barker, L.E.

    1994-03-01

    CASCADR9 is a desert alluvial soil site-specific noble gas transport and fate model. Input parameters for CASCADR9 are: man-made source term, background concentration of radionuclides, radon half-life, soil porosity, period of barometric pressure wave, amplitude of barometric pressure wave, and effective eddy diffusivity. Using average flux, total flow, and radon concentration at the 40 day mark as output parameters, a sensitivity analysis for CASCADR9 is carried out, under a variety of scenarios. For each scenario, the parameter to which output parameters are most sensitive are identified.

  7. Long-range transport of gaseous 131I and other radionuclides from Fukushima accident to Southern Poland

    NASA Astrophysics Data System (ADS)

    Mietelski, Jerzy W.; Kierepko, Renata; Brudecki, Kamil; Janowski, Paweł; Kleszcz, Krzysztof; Tomankiewicz, Ewa

    2014-07-01

    A serious accident at Fukushima Dai-Ichi NPP triggered radioactive emission to the atmosphere on 12 March 2011. The results of gamma spectrometric measurements of both gaseous and aerosol fraction of the air, collected in Krakow over the period from March 21 till the end of May 2011, as well as wet and dry deposition recorded from March till the end of October 2011, are presented in this paper. Krakow happened to be the first Polish location where radioactive isotopes characteristic for reactor releases, such as 131I, 132I, 129mTe, 132Te, 134Cs, 136Cs, and 137Cs, were detected. The maximum activity for aerosols equal to (5.73 ± 0.35) mBq/m3, (0.461 ± 0.041) mBq/m3 and (0.436 ± 0.038) mBq/m3 for 131I, 134Cs and 137Cs, respectively, was recorded for March 29, 2011. The data on the fallout are also given. The results of the radiochemical analysis of aerosol samples showed no traces of plutonium or americium isotopes associated with the disaster to be detected. The results of air activity concentration from Fukushima accident observed in Central Europe, Poland, in comparison to those of Chernobyl accident observed in Japan are presented and discussed. The comparison has revealed a discrepancy in the recognized relative scale of both accidents, and important difference in long distance transport of contamination, to exist. An attempt to explain the variation in the activity ratios between the aerosol fraction for 131I and 137Cs as resulting from exchange between the gaseous and aerosol fractions of 131I while the contamination had been propagating, is made.

  8. A Benchmarking Analysis for Five Radionuclide Vadose Zone Models (Chain, Multimed{_}DP, Fectuz, Hydrus, and Chain 2D) in Soil Screening Level Calculations

    SciTech Connect

    Chen, J-S.; Drake, R.; Lin, Z.; Jewett, D. G.

    2002-02-26

    Five vadose zone models with different degrees of complexity (CHAIN, MULTIMED{_}DP, FECTUZ, HYDRUS, and CHAIN 2D) were selected for use in radionuclide soil screening level (SSL) calculations. A benchmarking analysis between the models was conducted for a radionuclide ({sup 99}Tc) release scenario at the Las Cruces Trench Site in New Mexico. Sensitivity of three model outputs to the input parameters were evaluated and compared among the models. The three outputs were peak contaminant concentrations, time to peak concentrations at the water table, and time to exceed the contaminants maximum critical level at a representative receptor well. Model parameters investigated include soil properties such as bulk density, water content, soil water retention parameters and hydraulic conductivity. Chemical properties examined include distribution coefficient, radionuclide half-life, dispersion coefficient, and molecular diffusion. Other soil characteristics, such as recharge rate, also were examined. Model sensitivity was quantified in the form of sensitivity and relative sensitivity coefficients. Relative sensitivities were used to compare the sensitivities of different parameters. The analysis indicates that soil water content, recharge rate, saturated soil water content, and soil retention parameter, {beta}, have a great influence on model outputs. In general, the results of sensitivities and relative sensitivities using five models are similar for a specific scenario. Slight differences were observed in predicted peak contaminant concentrations due to different mathematical treatment among models. The results of benchmarking and sensitivity analysis would facilitate the model selection and application of the model in SSL calculations.

  9. Role of Reservoirs in Radionuclide Transport in the River Systems: Comparative Analyses for the Rivers of the Chernobyl and Fukushima Fallout Zones

    NASA Astrophysics Data System (ADS)

    Zheleznyak, Mark; Kivva, , Sergei; Konoplev, Alexei; Nanba, Kenji; Onda, Yuichi

    2015-04-01

    reservoirs of the Fukushima fallout zone, including the spatial and temporal distribution and of 137Cs in water and suspended and bottom sediments, with the emphases on physical-chemical behavior of these radionuclides. The presentation is based on the consideration of published monitoring data for all considered water bodies, monitoring results of Fukushima University for Abukuma River and preliminary results of the modeling of some Japanese reservoirs in comparison with early modeling studies of the Dnieper reservoirs. The main conclusion for the compared watersheds is that the elevated precipitation and steeper slopes of the watersheds in Fukushima area as compared to the Chernobyl zone are the reasons for the higher radiocesium wash-off from the catchments but dilution in higher runoff keeps activity concentrations of radiocesium in river water of Fukushima area relatively small. The deeper reservoirs of the Fukushima Prefecture store larger part of the fluxes of the particulated radiocesium than the Dnieper reservoirs with the lower risks for its remobilization.

  10. Effect of Clay Nanoparticle Transport, Desorption Kinetics and Redox Equilibrium on Radionuclide Mobility in Fractured Rock investigated at the Grimsel Test Site (Switzerland)

    NASA Astrophysics Data System (ADS)

    Schaefer, T.; Huber, F. M.; Lagos, M.; Quinto, F.; Heck, S.; Martin, A. J.; Blechschmidt, I.; Lanyon, G. W.; Reiche, T.; Noseck, U.

    2015-12-01

    Transport of contaminants in crystalline environments might occur through dissolved species or attached to colloidal or nanoparticulate phases being mobile in water conducting features of the host rock. In this presentation we will discuss the mobility of clay nanoparticles as detected by laser-induced breakdown detection (LIBD) as a function of fracture surface roughness and groundwater chemistry. The on site observed Tc-99, U-233, Np-237, Pu-242 and Am-243 sorption/desorption kinetics with and without natural or synthetic clay minerals (smectites) are compared to laboratory studies under similar groundwater conditions. The desorption or redox kinetics were monitored over a duration of up to 426 days using natural fracture filling material as a concurrence ligand and monitoring the colloid attachment via detection of Al, Si, Ni and Zn as smectite structural elements. For trivalent actinides smectite desorption rates in the range of 1.2-3.7E-3 per hour could be determined and significantly lower desorption rates for tetravalent actinides were found. This results will be compared with field data of migration experiments performed at the Grimsel Test Site (GTS, Switzerland) using the same radionuclides and clay colloidal phases varying the fracture residence time by flow rate adjustment. Furthermore, the long-term actinide mobility will be addressed by presenting AMS/RIMS measurements of (a) samples collected several months into the tailing of the breakthrough curves not any longer detectable by HR-ICP-MS and (b) background samples of different GTS ground waters showing fallout U-236, whereas fallout Pu could not be detected indicating a much lower mobility under the given conditions.